Sample records for detect protein aggregates

  1. New methods allowing the detection of protein aggregates

    PubMed Central

    Demeule, Barthélemy; Palais, Caroline; Machaidze, Gia; Gurny, Robert

    2009-01-01

    Aggregation compromises the safety and efficacy of therapeutic proteins. According to the manufacturer, the therapeutic immunoglobulin trastuzumab (Herceptin®) should be diluted in 0.9% sodium chloride before administration. Dilution in 5% dextrose solutions is prohibited. The reason for the interdiction is not mentioned in the Food and Drug Administration (FDA) documentation, but the European Medicines Agency (EMEA) Summary of Product Characteristics states that dilution of trastuzumab in dextrose solutions results in protein aggregation. In this paper, asymmetrical flow field-flow fractionation (FFF), fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy (TEM) have been used to characterize trastuzumab samples diluted in 0.9% sodium chloride, a stable infusion solution, as well as in 5% dextrose (a solution prone to aggregation). When trastuzumab samples were injected in the FFF channel using a standard separation method, no difference could be seen between trastuzumab diluted in sodium chloride and trastuzumab diluted in dextrose. However, during FFF measurements made with appropriate protocols, aggregates were detected in 5% dextrose. The parameters enabling the detection of reversible trastuzumab aggregates are described. Aggregates could also be documented by fluorescence microscopy and TEM. Fluorescence spectroscopy data were indicative of conformational changes consistent with increased aggregation and adsorption to surfaces. The analytical methods presented in this study were able to detect and characterize trastuzumab aggregates. PMID:20061815

  2. Size analysis of polyglutamine protein aggregates using fluorescence detection in an analytical ultracentrifuge.

    PubMed

    Polling, Saskia; Hatters, Danny M; Mok, Yee-Foong

    2013-01-01

    Defining the aggregation process of proteins formed by poly-amino acid repeats in cells remains a challenging task due to a lack of robust techniques for their isolation and quantitation. Sedimentation velocity methodology using fluorescence detected analytical ultracentrifugation is one approach that can offer significant insight into aggregation formation and kinetics. While this technique has traditionally been used with purified proteins, it is now possible for substantial information to be collected with studies using cell lysates expressing a GFP-tagged protein of interest. In this chapter, we describe protocols for sample preparation and setting up the fluorescence detection system in an analytical ultracentrifuge to perform sedimentation velocity experiments on cell lysates containing aggregates formed by poly-amino acid repeat proteins.

  3. Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red.

    PubMed

    Sutter, Marc; Oliveira, Sabrina; Sanders, Niek N; Lucas, Bart; van Hoek, Arie; Hink, Mark A; Visser, Antonie J W G; De Smedt, Stefaan C; Hennink, Wim E; Jiskoot, Wim

    2007-03-01

    The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein beta-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of beta-galactosidase below and above the protein's unfolding temperature of 57.4 degrees C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with beta-galactosidase aggregates led to a shift of the emission maximum (lambda (max)) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated beta-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native beta-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with beta-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages.

  4. Non-Arrhenius protein aggregation.

    PubMed

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  5. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  6. Protein aggregation and prionopathies.

    PubMed

    Renner, M; Melki, R

    2014-06-01

    Prion protein and prion-like proteins share a number of characteristics. From the molecular point of view, they are constitutive proteins that aggregate following conformational changes into insoluble particles. These particles escape the cellular clearance machinery and amplify by recruiting the soluble for of their constituting proteins. The resulting protein aggregates are responsible for a number of neurodegenerative diseases such as Creutzfeldt-Jacob, Alzheimer, Parkinson and Huntington diseases. In addition, there are increasing evidences supporting the inter-cellular trafficking of these aggregates, meaning that they are "transmissible" between cells. There are also evidences that brain homogenates from individuals developing Alzheimer and Parkinson diseases propagate the disease in recipient model animals in a manner similar to brain extracts of patients developing Creutzfeldt-Jacob's disease. Thus, the propagation of protein aggregates from cell to cell may be a generic phenomenon that contributes to the evolution of neurodegenerative diseases, which has important consequences on human health issues. Moreover, although the distribution of protein aggregates is characteristic for each disease, new evidences indicate the possibility of overlaps and crosstalk between the different disorders. Despite the increasing evidences that support prion or prion-like propagation of protein aggregates, there are many unanswered questions regarding the mechanisms of toxicity and this is a field of intensive research nowadays. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  8. Non-pathogenic protein aggregates in skeletal muscle in MLF1 transgenic mice.

    PubMed

    Li, Zhi-Fang; Wu, Xiaohua; Jiang, Yun; Liu, Jianxiang; Wu, Chun; Inagaki, Masaki; Izawa, Ichiro; Mizisin, Andrew P; Engvall, Eva; Shelton, G Diane

    2008-01-15

    Protein aggregate formation in muscle is thought to be pathogenic and associated with clinical weakness. Over-expression of either wild type or a mutant form of myeloid leukemia factor 1 (MLF1) in transgenic mouse skeletal muscle and in cultured cells resulted in aggregate formation. Aggregates were detected in MLF1 transgenic mice at 6 weeks of age, and increased in size with age. However, histological examination of skeletal muscles of MLF1 transgenic mice revealed no pathological changes other than the aggregates, and RotaRod testing did not detect functional deficits. MLF1 has recently been identified as a protein that could neutralize the toxicity of intracellular protein aggregates in a Drosophila model of Huntington's disease (HD). We also demonstrate that MLF1 interacts with MRJ, a heat shock protein, which can independently neutralize the toxicity of intracellular protein aggregates in the Drosophila HD model. Our data suggest that over-expression of MLF1 has no significant impact on skeletal muscle function in mice; that progressive formation of protein aggregates in muscle are not necessarily pathogenic; and that MLF1 and MRJ may function together to ameliorate the toxic effects of polyglutamine or mutant proteins in myodegenerative diseases such as inclusion body myositis and oculopharyngeal muscular dystrophy, as well as neurodegenerative disease.

  9. Hollow-fiber flow field-flow fractionation with multi-angle laser scattering detection for aggregation studies of therapeutic proteins.

    PubMed

    Reschiglian, P; Roda, B; Zattoni, A; Tanase, M; Marassi, V; Serani, S

    2014-02-01

    The rapid development of protein-based pharmaceuticals highlights the need for robust analytical methods to ensure their quality and stability. Among proteins used in pharmaceutical applications, an important and ever increasing role is represented by monoclonal antibodies and large proteins, which are often modified to enhance their activity or stability when used as drugs. The bioactivity and the stability of those proteins are closely related to the maintenance of their complex structure, which however are influenced by many external factors that can cause degradation and/or aggregation. The presence of aggregates in these drugs could reduce their bioactivity and bioavailability, and induce immunogenicity. The choice of the proper analytical method for the analysis of aggregates is fundamental to understand their (size) dimensional range, their amount, and if they are present in the sample as generated by an aggregation or as an artifact due to the method itself. Size exclusion chromatography is one of the most important techniques for the quality control of pharmaceutical proteins; however, its application is limited to relatively low molar mass aggregates. Among the techniques for the size characterization of proteins, field-flow fractionation (FFF) represents a competitive choice because of its soft mechanism due to the absence of a stationary phase and application in a broader size range, from nanometer- to micrometer-sized analytes. In this paper, the microcolumn variant of FFF, the hollow-fiber flow FFF, was online coupled with multi-angle light scattering, and a method for the characterization of aggregates with high reproducibility and low limit of detection was demonstrated employing an avidin derivate as sample model.

  10. A universal method for detection of amyloidogenic misfolded proteins.

    PubMed

    Yam, Alice Y; Wang, Xuemei; Gao, Carol Man; Connolly, Michael D; Zuckermann, Ronald N; Bleu, Thieu; Hall, John; Fedynyshyn, Joseph P; Allauzen, Sophie; Peretz, David; Salisbury, Cleo M

    2011-05-24

    Diseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs. Here we report the evolution of a reagent that can selectively capture diverse misfolded proteins by interacting with a common supramolecular feature of protein aggregates. By coupling this enrichment tool with protein specific immunoassays, diverse misfolded proteins and sub-femtomole amounts of oligomeric aggregates can be detected in complex biological matrices. We anticipate that this near-universal approach for quantitative misfolded protein detection will become a useful research tool for better understanding amyloidogenic protein pathology as well as serve as the basis for early detection of misfolded protein diseases.

  11. Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence.

    PubMed

    He, Feng; Phan, Duke H; Hogan, Sabine; Bailey, Robert; Becker, Gerald W; Narhi, Linda O; Razinkov, Vladimir I

    2010-06-01

    The utility of extrinsic fluorescence as a tool for high throughput detection of monoclonal antibody aggregates was explored. Several IgG molecules were thermally stressed and the high molecular weight species were fractionated using size-exclusion chromatography (SEC). The isolated aggregates and monomers were studied by following the fluorescence of an extrinsic probe, SYPRO Orange. The dye displayed high sensitivity to structurally altered, aggregated IgG structures compared to the native form, which resulted in very low fluorescence in the presence of the dye. An example of the application is presented here to demonstrate the properties of this detection method. The fluorescence assay was shown to correlate with the SEC method in quantifying IgG aggregates. The fluorescent probe method appears to have potential to detect protein particles that could not be analyzed by SEC. This method may become a powerful high throughput tool to detect IgG aggregates in pharmaceutical solutions and to study other protein properties involving aggregation. It can also be used to study the kinetics of antibody particle formation, and perhaps allow identification of the species, which are the early building blocks of protein particles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  12. Protein aggregation and particle formation in prefilled glass syringes.

    PubMed

    Gerhardt, Alana; Mcgraw, Nicole R; Schwartz, Daniel K; Bee, Jared S; Carpenter, John F; Randolph, Theodore W

    2014-06-01

    The stability of therapeutic proteins formulated in prefilled syringes (PFS) may be negatively impacted by the exposure of protein molecules to silicone oil-water interfaces and air-water interfaces. In addition, agitation, such as that experienced during transportation, may increase the detrimental effects (i.e., protein aggregation and particle formation) of protein interactions with interfaces. In this study, surfactant-free formulations containing either a monoclonal antibody or lysozyme were incubated in PFS, where they were exposed to silicone oil-water interfaces (siliconized syringe walls), air-water interfaces (air bubbles), and agitation stress (occurring during end-over-end rotation). Using flow microscopy, particles (≥2 μm diameter) were detected under all conditions. The highest particle concentrations were found in agitated, siliconized syringes containing an air bubble. The particles formed in this condition consisted of silicone oil droplets and aggregated protein, as well as agglomerates of protein aggregates and silicone oil. We propose an interfacial mechanism of particle generation in PFS in which capillary forces at the three-phase (silicone oil-water-air) contact line remove silicone oil and gelled protein aggregates from the interface and transport them into the bulk. This mechanism explains the synergistic effects of silicone oil-water interfaces, air-water interfaces, and agitation in the generation of particles in protein formulations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    NASA Astrophysics Data System (ADS)

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  14. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein

    PubMed Central

    Viswanathan, Pragasam; Rimer, Jeffrey D.; Kolbach, Ann M.; Kleinman, Jack G.

    2011-01-01

    Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 µg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation. PMID:21229239

  15. Protein particulates: another generic form of protein aggregation?

    PubMed

    Krebs, Mark R H; Devlin, Glyn L; Donald, A M

    2007-02-15

    Protein aggregation is a problem with a multitude of consequences, ranging from affecting protein expression to its implication in many diseases. Of recent interest is the specific form of aggregation leading to the formation of amyloid fibrils, structures associated with diseases such as Alzheimer's disease. The ability to form amyloid fibrils is now regarded as a property generic to all polypeptide chains. Here we show that around the isoelectric point a different generic form of aggregation can also occur by studying seven widely different, nonrelated proteins that are also all known to form amyloid fibrils. Under these conditions gels consisting of relatively monodisperse spherical particulates are formed. Although these gels have been described before for beta-lactoglobulin, our results suggest that the formation of particulates in the regime where charge on the molecules is minimal is a common property of all proteins. Because the proteins used here also form amyloid fibrils, we further propose that protein misfolding into clearly defined aggregates is a generic process whose outcome depends solely on the general properties of the state the protein is in when aggregation occurs, rather than the specific amino acid sequence. Thus under conditions of high net charge, amyloid fibrils form, whereas under conditions of low net charge, particulates form. This observation furthermore suggests that the rules of soft matter physics apply to these systems.

  16. Inducing protein aggregation by extensional flow

    PubMed Central

    Dobson, John; Kumar, Amit; Willis, Leon F.; Tuma, Roman; Higazi, Daniel R.; Turner, Richard; Lowe, David C.; Ashcroft, Alison E.; Radford, Sheena E.; Kapur, Nikil

    2017-01-01

    Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein’s structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, β2-microglobulin (β2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36–1.8 ms, at concentrations as low as 0.5 mg mL−1. In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation. PMID:28416674

  17. Dynamic Fluctuations of Protein-Carbohydrate Interactions Promote Protein Aggregation

    PubMed Central

    Voynov, Vladimir; Chennamsetty, Naresh; Kayser, Veysel; Helk, Bernhard; Forrer, Kurt; Zhang, Heidi; Fritsch, Cornelius; Heine, Holger; Trout, Bernhardt L.

    2009-01-01

    Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs. Aggregation is one of the main problems in protein-based therapeutics because of immunogenicity concerns and decreased efficacy. To explore the significance of intramolecular interactions between aromatic amino acids and carbohydrates in the IgG glycosylated domain, we utilized computer simulations, fluorescence analysis, and site-directed mutagenesis. We find that the surface exposure of one aromatic amino acid increases due to dynamic fluctuations. Moreover, protein-carbohydrate interactions decrease upon stress, while protein-protein and carbohydrate-carbohydrate interactions increase. Substitution of the carbohydrate-interacting aromatic amino acids with non-aromatic residues leads to a significantly lower stability than wild type, and to compromised binding to Fc receptors. Our results support a mechanism for antibody aggregation via decreased protein-carbohydrate interactions, leading to the exposure of aggregation-prone regions, and to aggregation. PMID:20037630

  18. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  19. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    PubMed

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  20. Mining databases for protein aggregation: a review.

    PubMed

    Tsiolaki, Paraskevi L; Nastou, Katerina C; Hamodrakas, Stavros J; Iconomidou, Vassiliki A

    2017-09-01

    Protein aggregation is an active area of research in recent decades, since it is the most common and troubling indication of protein instability. Understanding the mechanisms governing protein aggregation and amyloidogenesis is a key component to the aetiology and pathogenesis of many devastating disorders, including Alzheimer's disease or type 2 diabetes. Protein aggregation data are currently found "scattered" in an increasing number of repositories, since advances in computational biology greatly influence this field of research. This review exploits the various resources of aggregation data and attempts to distinguish and analyze the biological knowledge they contain, by introducing protein-based, fragment-based and disease-based repositories, related to aggregation. In order to gain a broad overview of the available repositories, a novel comprehensive network maps and visualizes the current association between aggregation databases and other important databases and/or tools and discusses the beneficial role of community annotation. The need for unification of aggregation databases in a common platform is also addressed.

  1. The amyloid interactome: Exploring protein aggregation

    PubMed Central

    Mastrokalou, Chara V.; Hamodrakas, Stavros J.

    2017-01-01

    Protein-protein interactions are the quintessence of physiological activities, but also participate in pathological conditions. Amyloid formation, an abnormal protein-protein interaction process, is a widespread phenomenon in divergent proteins and peptides, resulting in a variety of aggregation disorders. The complexity of the mechanisms underlying amyloid formation/amyloidogenicity is a matter of great scientific interest, since their revelation will provide important insight on principles governing protein misfolding, self-assembly and aggregation. The implication of more than one protein in the progression of different aggregation disorders, together with the cited synergistic occurrence between amyloidogenic proteins, highlights the necessity for a more universal approach, during the study of these proteins. In an attempt to address this pivotal need we constructed and analyzed the human amyloid interactome, a protein-protein interaction network of amyloidogenic proteins and their experimentally verified interactors. This network assembled known interconnections between well-characterized amyloidogenic proteins and proteins related to amyloid fibril formation. The consecutive extended computational analysis revealed significant topological characteristics and unraveled the functional roles of all constituent elements. This study introduces a detailed protein map of amyloidogenicity that will aid immensely towards separate intervention strategies, specifically targeting sub-networks of significant nodes, in an attempt to design possible novel therapeutics for aggregation disorders. PMID:28249044

  2. Interplay Between Protein Homeostasis Networks in Protein Aggregation and Proteotoxicity

    PubMed Central

    Douglas, Peter M.; Cyr, Douglas M.

    2010-01-01

    The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self-association of disease proteins and determine whether they elicit a toxic or benign outcome. PMID:19768782

  3. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    PubMed Central

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.

    2018-01-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease. PMID:29515860

  4. Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots.

    PubMed

    Xu, Xiahong; Liu, Xin; Nie, Zhou; Pan, Yuliang; Guo, Manli; Yao, Shouzhuo

    2011-01-01

    Herein, we present a novel label-free fluorescent assay for monitoring the activity and inhibition of protein kinases based on the aggregation behavior of unmodified CdTe quantum dots (QDs). In this assay, cationic substrate peptides induce the selective aggregation of unmodified QDs with anionic surface charge, whereas phosphorylated peptides do not. Phosphorylation by kinase alters the net charge of peptides and subsequently inhibits the aggregation of unmodified QDs, causing an enhanced fluorescence with a 45 nm blue-shift in emission and a yellow-to-green emission color change. Hence the fluorescence response allows this QD-based method to easily probe kinase activity by a spectrometer or even by the naked eye. The feasibility of the method has been demonstrated by sensitive measurement of the activity of cAMP-dependent protein kinase (PKA) with a low detection limit (0.47 mU μL(-1)). On the basis of the fluorescence response of QDs on the concentration of PKA inhibitor H-89, the IC(50) value, the half maximal inhibitory concentration, was estimated, which was in agreement with the literature value. Moreover, the system can be applicable to detect the Forskolin/3-isobutyl-1-methylxantine (IBMX)-stimulated activation of PKA in cell lysate. Unlike the existing QD-based enzyme activity assays in which the modification process of QDs is essential, this method relies on unmodified QDs without the requirement of peptide labeling and QDs' modification, presenting a promising candidate for cost-effective kinase activity and inhibitor screening assays.

  5. An energy landscape approach to protein aggregation

    NASA Astrophysics Data System (ADS)

    Buell, Alexander; Knowles, Tuomas

    2012-02-01

    Protein aggregation into ordered fibrillar structures is the hallmark of a class of diseases, the most prominent examples of which are Alzheimer's and Parkinson's disease. Recent results (e.g. Baldwin et al. J. Am. Chem. Soc. 2011) suggest that the aggregated state of a protein is in many cases thermodynamically more stable than the soluble state. Therefore the solubility of proteins in a cellular context appears to be to a large extent under kinetic control. Here, we first present a conceptual framework for the description of protein aggregation ( see AK Buell et al., Phys. Rev. Lett. 2010) that is an extension to the generally accepted energy landscape model for protein folding. Then we apply this model to analyse and interpret a large set of experimental data on the kinetics of protein aggregation, acquired mainly with a novel biosensing approach (see TPJK Knowles et al, Proc. Nat. Acad. Sc. 2007). We show how for example the effect of sequence modifications on the kinetics and thermodynamics of human lysozyme aggregation can be understood and quantified (see AK Buell et al., J. Am. Chem. Soc. 2011). These results have important implications for therapeutic strategies against protein aggregation disorders, in this case lysozyme systemic amyloidosis.

  6. Mechanisms of m-cresol induced protein aggregation studied using a model protein cytochrome c†

    PubMed Central

    Singh, Surinder M.; Hutchings, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Multi-dose protein formulations require an effective antimicrobial preservative (AP) to inhibit microbial growth during long-term storage of unused formulations. m-cresol is one such AP, but has been shown to cause protein aggregation. However, the fundamental physical mechanisms underlying such AP-induced protein aggregation are not understood. In this study, we used a model protein cytochrome c to identify the protein unfolding that triggers protein aggregation. m-cresol induced cytochrome c aggregation at preservative concentrations that are commonly used to inhibit microbial growth. Addition of m-cresol decreased the temperature at which the protein aggregated and increased the aggregation rate. However, m-cresol did not perturb the tertiary or secondary structure of cytochrome c. Instead, it populated an “invisible” partially unfolded intermediate where a local protein region around the methionine residue at position 80 was unfolded. Stabilizing the Met80 region drastically decreased the protein aggregation, which conclusively shows that this local protein region acts as an aggregation “hot-spot”. Based on these results, we propose that APs induce protein aggregation by partial rather than global unfolding. Because of the availability of site-specific probes to monitor different levels of protein unfolding, cytochrome c provided a unique advantage in characterizing the partial protein unfolding that triggers protein aggregation. PMID:21229618

  7. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation

    PubMed Central

    Gsponer, Jörg; Babu, M. Madan

    2012-01-01

    Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257

  8. Lanosterol reverses protein aggregation in cataracts.

    PubMed

    Zhao, Ling; Chen, Xiang-Jun; Zhu, Jie; Xi, Yi-Bo; Yang, Xu; Hu, Li-Dan; Ouyang, Hong; Patel, Sherrina H; Jin, Xin; Lin, Danni; Wu, Frances; Flagg, Ken; Cai, Huimin; Li, Gen; Cao, Guiqun; Lin, Ying; Chen, Daniel; Wen, Cindy; Chung, Christopher; Wang, Yandong; Qiu, Austin; Yeh, Emily; Wang, Wenqiu; Hu, Xun; Grob, Seanna; Abagyan, Ruben; Su, Zhiguang; Tjondro, Harry Christianto; Zhao, Xi-Juan; Luo, Hongrong; Hou, Rui; Jefferson, J; Perry, P; Gao, Weiwei; Kozak, Igor; Granet, David; Li, Yingrui; Sun, Xiaodong; Wang, Jun; Zhang, Liangfang; Liu, Yizhi; Yan, Yong-Bin; Zhang, Kang

    2015-07-30

    The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.

  9. Understanding curcumin-induced modulation of protein aggregation.

    PubMed

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    PubMed

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. Electrostatic Effects in Filamentous Protein Aggregation

    PubMed Central

    Buell, Alexander K.; Hung, Peter; Salvatella, Xavier; Welland, Mark E.; Dobson, Christopher M.; Knowles, Tuomas P.J.

    2013-01-01

    Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules. PMID:23473495

  12. Tannin-assisted aggregation of natively unfolded proteins

    NASA Astrophysics Data System (ADS)

    Zanchi, D.; Narayanan, T.; Hagenmuller, D.; Baron, A.; Guyot, S.; Cabane, B.; Bouhallab, S.

    2008-06-01

    Tannin-protein interactions are essentially physical: hydrophobic and hydrogen-bond-mediated. We explored the tannin-assisted protein aggregation on the case of β-casein, which is a natively unfolded protein known for its ability to form micellar aggregates. We used several tannins with specified length. Our SAXS results show that small tannins increase the number of proteins per micelle, but keeping their size constant. It leads to a tannin-assisted compactization of micelles. Larger tannins, with linear dimensions greater than the crown width of micelles, lead to the aggregation of micelles by a bridging effect. Experimental results can be understood within a model where tannins are treated as effective enhancers of hydrophobic attraction between specific sites in proteins.

  13. Protein aggregation and misfolding: good or evil?

    NASA Astrophysics Data System (ADS)

    Pastore, Annalisa; Temussi, Pierandrea

    2012-06-01

    Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open.

  14. Protein aggregation and misfolding: good or evil?

    PubMed

    Pastore, Annalisa; Temussi, Pierandrea

    2012-06-20

    Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open.

  15. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    PubMed Central

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680

  16. Antimicrobial preservatives induce aggregation of interferon alpha-2a: The order in which preservatives induce protein aggregation is independent of the protein

    PubMed Central

    Bis, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis c, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol > phenol > benzyl alcohol > phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. PMID:24974985

  17. Effects of recombinant protein misfolding and aggregation on bacterial membranes.

    PubMed

    Ami, D; Natalello, A; Schultz, T; Gatti-Lafranconi, P; Lotti, M; Doglia, S M; de Marco, A

    2009-02-01

    The expression of recombinant proteins is known to induce a metabolic rearrangement in the host cell. We used aggregation-sensitive model systems to study the effects elicited in Escherichia coli cells by the aggregation of recombinant glutathione-S-transferase and its fusion with the green fluorescent protein that, according to the expression conditions, accumulate intracellularly as soluble protein, or soluble and insoluble aggregates. We show that the folding state of the recombinant protein and the complexity of the intracellular aggregates critically affect the cell response. Specifically, protein misfolding and aggregation induce changes in specific host proteins involved in lipid metabolism and oxidative stress, a reduction in the membrane permeability, as well as a rearrangement of its lipid composition. The temporal evolution of the host cell response and that of the aggregation process pointed out that the misfolded protein and soluble aggregates are responsible for the membrane modifications and the changes in the host protein levels. Interestingly, native recombinant protein and large insoluble aggregates do not seem to activate stress markers and membrane rearrangements.

  18. The Mechanisms of Aberrant Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Cohen, Samuel; Vendruscolo, Michele; Dobson, Chris; Knowles, Tuomas

    2012-02-01

    We discuss the development of a kinetic theory for understanding the aberrant loss of solubility of proteins. The failure to maintain protein solubility results often in the assembly of organized linear structures, commonly known as amyloid fibrils, the formation of which is associated with over 50 clinical disorders including Alzheimer's and Parkinson's diseases. A true microscopic understanding of the mechanisms that drive these aggregation processes has proved difficult to achieve. To address this challenge, we apply the methodologies of chemical kinetics to the biomolecular self-assembly pathways related to protein aggregation. We discuss the relevant master equation and analytical approaches to studying it. In particular, we derive the underlying rate laws in closed-form using a self-consistent solution scheme; the solutions that we obtain reveal scaling behaviors that are very generally present in systems of growing linear aggregates, and, moreover, provide a general route through which to relate experimental measurements to mechanistic information. We conclude by outlining a study of the aggregation of the Alzheimer's amyloid-beta peptide. The study identifies the dominant microscopic mechanism of aggregation and reveals previously unidentified therapeutic strategies.

  19. Dynamics of proteins aggregation. I. Universal scaling in unbounded media

    NASA Astrophysics Data System (ADS)

    Zheng, Size; Javidpour, Leili; Shing, Katherine S.; Sahimi, Muhammad

    2016-10-01

    It is well understood that in some cases proteins do not fold correctly and, depending on their environment, even properly-folded proteins change their conformation spontaneously, taking on a misfolded state that leads to protein aggregation and formation of large aggregates. An important factor that contributes to the aggregation is the interactions between the misfolded proteins. Depending on the aggregation environment, the aggregates may take on various shapes forming larger structures, such as protein plaques that are often toxic. Their deposition in tissues is a major contributing factor to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and prion. This paper represents the first part in a series devoted to molecular simulation of protein aggregation. We use the PRIME, a meso-scale model of proteins, together with extensive discontinuous molecular dynamics simulation to study the aggregation process in an unbounded fluid system, as the first step toward MD simulation of the same phenomenon in crowded cellular environments. Various properties of the aggregates have been computed, including dynamic evolution of aggregate-size distribution, mean aggregate size, number of peptides that contribute to the formation of β sheets, number of various types of hydrogen bonds formed in the system, radius of gyration of the aggregates, and the aggregates' diffusivity. We show that many of such quantities follow dynamic scaling, similar to those for aggregation of colloidal clusters. In particular, at long times the mean aggregate size S(t) grows with time as, S(t) ˜ tz, where z is the dynamic exponent. To our knowledge, this is the first time that the qualitative similarity between aggregation of proteins and colloidal aggregates has been pointed out.

  20. Molecular dynamics studies of protein folding and aggregation

    NASA Astrophysics Data System (ADS)

    Ding, Feng

    This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism

  1. Counter effect of sucrose on ethanol-induced aggregation of protein.

    PubMed

    Yadav, Jay Kant; Chandani, N; Pande Prajakt, P R; Chauhan, Jyoti Bala

    2010-12-01

    The present paper is an attempt to study the mechanism of ethanol induced aggregation of chicken egg albumin and to stabilize the protein against ethanol induced aggregation. The protein aggregation was determined by monitoring the light scattering of protein aggregates spectrophotometrically. The protein undergoes certain structural changes in water-ethanol solution and the degree of aggregation was found to be linearly depending upon the concentration of alcohol used. The intrinsic fluorescence study showed a large blue shift in the λ(max) (16 nm) in the presence of 50% ethanol. The ANS fluorescence intensity was found to be gradually increasing with increasing concentration of ethanol. This indicates an increase in the hydrophobic cluster on the protein surface and as a result the hydrophobic interaction is the major driving force for the aggregate formation. Addition of sucrose significantly reduced the ethanol-induced protein aggregation. In presence of 50% sucrose the ethanol the aggregation was reduced to 5%. The study reveals that addition of sucrose brings out changes in the solvent distribution and prevents the structural changes in protein which lead the aggregation.

  2. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.

    PubMed

    Vagenende, Vincent; Yap, Miranda G S; Trout, Bernhardt L

    2009-11-24

    The stability of proteins in aqueous solution is routinely enhanced by cosolvents such as glycerol. Glycerol is known to shift the native protein ensemble to more compact states. Glycerol also inhibits protein aggregation during the refolding of many proteins. However, mechanistic insight into protein stabilization and prevention of protein aggregation by glycerol is still lacking. In this study, we derive mechanisms of glycerol-induced protein stabilization by combining the thermodynamic framework of preferential interactions with molecular-level insight into solvent-protein interactions gained from molecular simulations. Contrary to the common conception that preferential hydration of proteins in polyol/water mixtures is determined by the molecular size of the polyol and the surface area of the protein, we present evidence that preferential hydration of proteins in glycerol/water mixtures mainly originates from electrostatic interactions that induce orientations of glycerol molecules at the protein surface such that glycerol is further excluded. These interactions shift the native protein toward more compact conformations. Moreover, glycerol preferentially interacts with large patches of contiguous hydrophobicity where glycerol acts as an amphiphilic interface between the hydrophobic surface and the polar solvent. Accordingly, we propose that glycerol prevents protein aggregation by inhibiting protein unfolding and by stabilizing aggregation-prone intermediates through preferential interactions with hydrophobic surface regions that favor amphiphilic interface orientations of glycerol. These mechanisms agree well with experimental data available in the literature, and we discuss the extent to which these mechanisms apply to other cosolvents, including polyols, arginine, and urea.

  3. Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein.

    PubMed

    Bis, Regina L; Mallela, Krishna M G

    2014-09-10

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis C, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol>phenol>benzyl alcohol>phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.

    PubMed

    Castillo, Virginia; Graña-Montes, Ricardo; Sabate, Raimon; Ventura, Salvador

    2011-06-01

    In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of polysaccharides on wine protein aggregation.

    PubMed

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine. Copyright © 2016. Published by Elsevier Ltd.

  6. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways

    PubMed Central

    Douglas, Peter M; Summers, Daniel W

    2009-01-01

    The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates. PMID:19421006

  7. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin.

    PubMed

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E

    2011-05-01

    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Functioning of Fluorescent Proteins in Aggregates in Anthozoa Species and in Recombinant Artificial Models

    PubMed Central

    Povarova, Natalia V.; Petri, Natalia D.; Blokhina, Anna E.; Bogdanov, Alexey M.; Lukyanov, Konstantin A.

    2017-01-01

    Despite great advances in practical applications of fluorescent proteins (FPs), their natural function is poorly understood. FPs display complex spatio-temporal expression patterns in living Anthozoa coral polyps. Here we applied confocal microscopy, specifically, the fluorescence recovery after photobleaching (FRAP) technique to analyze intracellular localization and mobility of endogenous FPs in live tissues. We observed three distinct types of protein distributions in living tissues. One type of distribution, characteristic for Anemonia, Discosoma and Zoanthus, is free, highly mobile cytoplasmic localization. Another pattern is seen in FPs localized to numerous intracellular vesicles, observed in Clavularia. The third most intriguing type of intracellular localization is with respect to the spindle-shaped aggregates and lozenge crystals several micrometers in size observed in Zoanthus samples. No protein mobility within those structures was detected by FRAP. This finding encouraged us to develop artificial aggregating FPs. We constructed “trio-FPs” consisting of three tandem copies of tetrameric FPs and demonstrated that they form multiple bright foci upon expression in mammalian cells. High brightness of the aggregates is advantageous for early detection of weak promoter activities. Simultaneously, larger aggregates can induce significant cytostatic and cytotoxic effects and thus such tags are not suitable for long-term and high-level expression. PMID:28704934

  9. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  10. Protein Aggregation and Its Impact on Product Quality

    PubMed Central

    Roberts, Christopher J.

    2014-01-01

    Protein pharmaceutical products are typically active as folded monomers that are composed of one or more protein chains, such as the heavy and light chains in monoclonal antibodies that are a mainstay of current drug pipelines. There are numerous possible aggregated states for a given protein, some of which are potentially useful, while most of which are considered deleterious from the perspective of pharmaceutical product quality and performance. This review provides an overview of how and why different aggregated states of proteins occur, how this potentially impacts product quality and performance, fundamental approaches to control aggregate formation, and the practical approaches that are currently used in the pharmaceutical industry. PMID:25173826

  11. Novel Benzothiazole Derivatives as Fluorescent Probes for Detection of β-Amyloid and α-Synuclein Aggregates.

    PubMed

    Watanabe, Hiroyuki; Ono, Masahiro; Ariyoshi, Taisuke; Katayanagi, Rikako; Saji, Hideo

    2017-08-16

    Deposits of β-amyloid (Aβ) and α-synuclein (α-syn) are the hallmark of Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. The detection of these protein aggregates with fluorescent probes is particularly of interest for preclinical studies using fluorescence microscopy on human brain tissue. In this study, we newly designed and synthesized three push-pull benzothiazole (PP-BTA) derivatives as fluorescent probes for detection of Aβ and α-syn aggregates. Fluorescence intensity of all PP-BTA derivatives significantly increased upon binding to Aβ(1-42) and α-syn aggregates in solution. In in vitro saturation binding assays, PP-BTA derivatives demonstrated affinity for both Aβ(1-42) (K d = 40-148 nM) and α-syn (K d = 48-353 nM) aggregates. In particular, PP-BTA-4 clearly stained senile plaques composed of Aβ aggregates in the AD brain section. Moreover, it also labeled Lewy bodies composed of α-syn aggregates in the PD brain section. These results suggest that PP-BTA-4 may serve as a promising fluorescent probe for the detection of Aβ and α-syn aggregates.

  12. Optical Aggregation of Gold Nanoparticles for SERS Detection of Proteins and Toxins in Liquid Environment: Towards Ultrasensitive and Selective Detection

    PubMed Central

    Foti, Antonino; Donato, Maria Grazia; Fazio, Barbara; Maragò, Onofrio M.; Lamy de la Chapelle, Marc

    2018-01-01

    Optical forces are used to aggregate plasmonic nanoparticles and create SERS–active hot spots in liquid. When biomolecules are added to the nanoparticles, high sensitivity SERS detection can be accomplished. Here, we pursue studies on Bovine Serum Albumin (BSA) detection, investigating the BSA–nanorod aggregations in a range from 100 µM to 50 nM by combining light scattering, plasmon resonance and SERS, and correlating the SERS signal with the concentration. Experimental data are fitted with a simple model describing the optical aggregation process. We show that BSA–nanorod complexes can be optically printed on non-functionalized glass surfaces, designing custom patterns stable with time. Furthermore, we demonstrate that this methodology can be used to detect catalase and hemoglobin, two Raman resonant biomolecules, at concentrations of 10 nM and 1 pM, respectively, i.e., well beyond the limit of detection of BSA. Finally, we show that nanorods functionalized with specific aptamers can be used to capture and detect Ochratoxin A, a fungal toxin found in food commodities and wine. This experiment represents the first step towards the addition of molecular specificity to this novel biosensor strategy. PMID:29562606

  13. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates

    PubMed Central

    O’Meally, Robert; Sonnenberg, Jason L.; Cole, Robert N.; Shewmaker, Frank P.

    2015-01-01

    Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases. PMID:26317359

  14. Arginine prevents thermal aggregation of hen egg white proteins.

    PubMed

    Hong, Taehun; Iwashita, Kazuki; Handa, Akihiro; Shiraki, Kentaro

    2017-07-01

    The control of aggregation and solubilization of hen egg white protein (HEWP) is an important issue for industrial applications of one of the most familiar food protein sources. Here, we investigated the effects of edible amino acids on heat-induced aggregation of HEWP. The addition of 0.6M arginine (Arg) completely suppressed the formation of insoluble aggregates of 1mgmL -1 HEWP following heat treatment, even at 90°C for 20min. In contrast, lysine (Lys), glycine (Gly), and sodium chloride (NaCl) did little to suppress the aggregation of HEWP under the same conditions. SDS-PAGE indicated that Arg suppresses the thermal aggregation of almost all types of HEWP at 1mgmL -1 . However, Arg did not suppress the thermal aggregation of HEWP at concentrations ≥10mgmL -1 and prompted the formation of aggregates. Transmission electron micrographs revealed a high-density structure of unfolded proteins in the presence of Arg. These results indicate that Arg exerts a greater suppressive effect on a protein mixture, such as HEWP, than on a single model protein. These observations may propose Arg as a safe and reasonable additive to HEWP for the elimination of microorganisms by allowing an increase in sterilization temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nanoparticle-mediated local and remote manipulation of protein aggregation.

    PubMed

    Kogan, Marcelo J; Bastus, Neus G; Amigo, Roger; Grillo-Bosch, Dolors; Araya, Eyleen; Turiel, Antonio; Labarta, Amilcar; Giralt, Ernest; Puntes, Victor F

    2006-01-01

    The local heat delivered by metallic nanoparticles selectively attached to their target can be used as a molecular surgery to safely remove toxic and clogging aggregates. We apply this principle to protein aggregates, in particular to the amyloid beta protein (Abeta) involved in Alzheimer's disease (AD), a neurodegenerative disease where unnaturally folded Abeta proteins self-assemble and deposit forming amyloid fibrils and plaques. We show the possibility to remotely redissolve these deposits and to interfere with their growth, using the local heat dissipated by gold nanoparticles (AuNP) selectively attached to the aggregates and irradiated with low gigahertz electromagnetic fields. Simultaneous tagging and manipulation by AuNP of Abeta at different stages of aggregation allow both, noninvasive exploration and dissolution of molecular aggregates.

  16. A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins

    PubMed Central

    Eronina, Tatyana; Borzova, Vera; Maloletkina, Olga; Kleymenov, Sergey; Asryants, Regina; Markossian, Kira; Kurganov, Boris

    2011-01-01

    To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = K agg(T−T 0)2, where K agg is the parameter characterizing the initial rate of aggregation and T 0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T 0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets. PMID:21760963

  17. Phosphorylation of NBR1 by GSK3 modulates protein aggregation

    PubMed Central

    Nicot, Anne-Sophie; Lo Verso, Francesca; Ratti, Francesca; Pilot-Storck, Fanny; Streichenberger, Nathalie; Sandri, Marco; Schaeffer, Laurent; Goillot, Evelyne

    2014-01-01

    The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy. PMID:24879152

  18. Protein aggregates as depots for the release of biologically active compounds.

    PubMed

    Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya

    2008-12-12

    Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.

  19. Protein aggregation studied by forward light scattering and light transmission analysis

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  20. Conformational stability as a design target to control protein aggregation.

    PubMed

    Costanzo, Joseph A; O'Brien, Christopher J; Tiller, Kathryn; Tamargo, Erin; Robinson, Anne Skaja; Roberts, Christopher J; Fernandez, Erik J

    2014-05-01

    Non-native protein aggregation is a prevalent problem occurring in many biotechnological manufacturing processes and can compromise the biological activity of the target molecule or induce an undesired immune response. Additionally, some non-native aggregation mechanisms lead to amyloid fibril formation, which can be associated with debilitating diseases. For natively folded proteins, partial or complete unfolding is often required to populate aggregation-prone conformational states, and therefore one proposed strategy to mitigate aggregation is to increase the free energy for unfolding (ΔGunf) prior to aggregation. A computational design approach was tested using human γD crystallin (γD-crys) as a model multi-domain protein. Two mutational strategies were tested for their ability to reduce/increase aggregation rates by increasing/decreasing ΔGunf: stabilizing the less stable domain and stabilizing the domain-domain interface. The computational protein design algorithm, RosettaDesign, was implemented to identify point variants. The results showed that although the predicted free energies were only weakly correlated with the experimental ΔGunf values, increased/decreased aggregation rates for γD-crys correlated reasonably well with decreases/increases in experimental ΔGunf, illustrating improved conformational stability as a possible design target to mitigate aggregation. However, the results also illustrate that conformational stability is not the sole design factor controlling aggregation rates of natively folded proteins.

  1. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  2. Detergent-mediated protein aggregation

    PubMed Central

    Neale, Chris; Ghanei, Hamed; Holyoake, John; Bishop, Russell E.; Privé, Gilbert G.; Pomès, Régis

    2016-01-01

    Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein’s hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation. PMID:23466535

  3. Oxidative stress and protein aggregation during biological aging.

    PubMed

    Squier, T C

    2001-09-01

    Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably

  4. Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli

    PubMed Central

    Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose

    2016-01-01

    ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid

  5. Effects of arginine on heat-induced aggregation of concentrated protein solutions.

    PubMed

    Shah, Dhawal; Shaikh, Abdul Rajjak; Peng, Xinxia; Rajagopalan, Raj

    2011-01-01

    Arginine is one of the commonly used additives to enhance refolding yield of proteins, to suppress aggregation of proteins, and to increase solubility of proteins, and yet the molecular interactions that contribute to the role of arginine are unclear. Here, we present experiments, using bovine serum albumin (BSA), lysozyme (LYZ), and β-lactoglobulin (BLG) as model proteins, to show that arginine can enhance heat-induced aggregation of concentrated protein solutions, contrary to the conventional belief that arginine is a universal suppressor of aggregation. Results show that the enhancement in aggregation is caused only for BSA and BLG, but not for LYZ, indicating that arginine's preferential interactions with certain residues over others could determine the effect of the additive on aggregation. We use this previously unrecognized behavior of arginine, in combination with density functional theory calculations, to identify the molecular-level interactions of arginine with various residues that determine arginine's role as an enhancer or suppressor of aggregation of proteins. The experimental and computational results suggest that the guanidinium group of arginine promotes aggregation through the hydrogen-bond-based bridging interactions with the acidic residues of a protein, whereas the binding of the guanidinium group to aromatic residues (aggregation-prone) contributes to the stability and solubilization of the proteins. The approach, we describe here, can be used to select suitable additives to stabilize a protein solution at high concentrations based on an analysis of the amino acid content of the protein. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  6. Insights into the Aggregation Mechanism of PolyQ Proteins with Different Glutamine Repeat Lengths.

    PubMed

    Yushchenko, Tetyana; Deuerling, Elke; Hauser, Karin

    2018-04-24

    Polyglutamine (polyQ) diseases, including Huntington's disease, result from the aggregation of an abnormally expanded polyQ repeat in the affected protein. The length of the polyQ repeat is essential for the disease's onset; however, the molecular mechanism of polyQ aggregation is still poorly understood. Controlled conditions and initiation of the aggregation process are prerequisites for the detection of transient intermediate states. We present an attenuated total reflection Fourier-transform infrared spectroscopic approach combined with protein immobilization to study polyQ aggregation dependent on the polyQ length. PolyQ proteins were engineered mimicking the mammalian N-terminus fragment of the Huntingtin protein and containing a polyQ sequence with the number of glutamines below (Q11), close to (Q38), and above (Q56) the disease threshold. A monolayer of the polyQ construct was chemically immobilized on the internal reflection element of the attenuated total reflection cell, and the aggregation was initiated via enzymatic cleavage. Structural changes of the polyQ sequence were monitored by time-resolved infrared difference spectroscopy. We observed faster aggregation kinetics for the longer sequences, and furthermore, we could distinguish β-structured intermediates for the different constructs, allowing us to propose aggregation mechanisms dependent on the repeat length. Q11 forms a β-structured aggregate by intermolecular interaction of stretched monomers, whereas Q38 and Q56 undergo conformational changes to various β-structured intermediates, including intramolecular β-sheets. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Protein aggregation in bacteria: the thin boundary between functionality and toxicity.

    PubMed

    Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan

    2013-09-01

    Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

  8. Role of prion protein aggregation in neurotoxicity.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer's, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  9. Motility and Segregation of Hsp104-Associated Protein Aggregates in Budding Yeast

    PubMed Central

    Zhou, Chuankai; Slaughter, Brian D.; Unruh, Jay R.; Eldakak, Amr; Rubinstein, Boris; Li, Rong

    2011-01-01

    SUMMARY During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother, and that Bni1p formin regulates this transport. Here we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data does not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells. PMID:22118470

  10. Aspirin-Mediated Acetylation Protects Against Multiple Neurodegenerative Pathologies by Impeding Protein Aggregation.

    PubMed

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Kakraba, Samuel; Alla, Ramani; Mehta, Jawahar L; Shmookler Reis, Robert J

    2017-12-10

    Many progressive neurological disorders, including Alzheimer's disease (AD), Huntington's disease, and Parkinson's disease (PD), are characterized by accumulation of insoluble protein aggregates. In prospective trials, the cyclooxygenase inhibitor aspirin (acetylsalicylic acid) reduced the risk of AD and PD, as well as cardiovascular events and many late-onset cancers. Considering the role played by protein hyperphosphorylation in aggregation and neurodegenerative diseases, and aspirin's known ability to donate acetyl groups, we asked whether aspirin might reduce both phosphorylation and aggregation by acetylating protein targets. Aspirin was substantially more effective than salicylate in reducing or delaying aggregation in human neuroblastoma cells grown in vitro, and in Caenorhabditis elegans models of human neurodegenerative diseases in vivo. Aspirin acetylates many proteins, while reducing phosphorylation, suggesting that acetylation may oppose phosphorylation. Surprisingly, acetylated proteins were largely excluded from compact aggregates. Molecular-dynamic simulations indicate that acetylation of amyloid peptide energetically disfavors its association into dimers and octamers, and oligomers that do form are less compact and stable than those comprising unacetylated peptides. Hyperphosphorylation predisposes certain proteins to aggregate (e.g., tau, α-synuclein, and transactive response DNA-binding protein 43 [TDP-43]), and it is a critical pathogenic marker in both cardiovascular and neurodegenerative diseases. We present novel evidence that acetylated proteins are underrepresented in protein aggregates, and that aggregation varies inversely with acetylation propensity after diverse genetic and pharmacologic interventions. These results are consistent with the hypothesis that aspirin inhibits protein aggregation and the ensuing toxicity of aggregates through its acetyl-donating activity. This mechanism may contribute to the neuro-protective, cardio

  11. Role of foam drainage in producing protein aggregates in foam fractionation.

    PubMed

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Dynamic Study of Protein Secretion and Aggregation in the Secretory Pathway

    PubMed Central

    Mossuto, Maria Francesca; Sannino, Sara; Mazza, Davide; Fagioli, Claudio; Vitale, Milena; Yoboue, Edgar Djaha; Anelli, Tiziana

    2014-01-01

    Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC. PMID:25279560

  13. A dynamic study of protein secretion and aggregation in the secretory pathway.

    PubMed

    Mossuto, Maria Francesca; Sannino, Sara; Mazza, Davide; Fagioli, Claudio; Vitale, Milena; Yoboue, Edgar Djaha; Sitia, Roberto; Anelli, Tiziana

    2014-01-01

    Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC.

  14. Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation.

    PubMed

    Geller, Ron; Pechmann, Sebastian; Acevedo, Ashley; Andino, Raul; Frydman, Judith

    2018-05-03

    Acquisition of mutations is central to evolution; however, the detrimental effects of most mutations on protein folding and stability limit protein evolvability. Molecular chaperones, which suppress aggregation and facilitate polypeptide folding, may alleviate the effects of destabilizing mutations thus promoting sequence diversification. To illuminate how chaperones can influence protein evolution, we examined the effect of reduced activity of the chaperone Hsp90 on poliovirus evolution. We find that Hsp90 offsets evolutionary trade-offs between protein stability and aggregation. Lower chaperone levels favor variants of reduced hydrophobicity and protein aggregation propensity but at a cost to protein stability. Notably, reducing Hsp90 activity also promotes clusters of codon-deoptimized synonymous mutations at inter-domain boundaries, likely to facilitate cotranslational domain folding. Our results reveal how a chaperone can shape the sequence landscape at both the protein and RNA levels to harmonize competing constraints posed by protein stability, aggregation propensity, and translation rate on successful protein biogenesis.

  15. Role of Prion Protein Aggregation in Neurotoxicity

    PubMed Central

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death. PMID:22942726

  16. Fluorescence lifetime dynamics of enhanced green fluorescent protein in protein aggregates with expanded polyglutamine

    NASA Astrophysics Data System (ADS)

    Ghukasyan, Vladimir; Hsu, Chih-Chun; Liu, Chia-Rung; Kao, Fu-Jen; Cheng, Tzu-Hao

    2010-01-01

    Protein aggregation is one of the characteristic steps in a number of neurodegenerative diseases eventually leading to neuronal death and thorough study of aggregation is required for the development of effective therapy. We apply fluorescence lifetime imaging for the characterization of the fluorescence dynamics of the enhanced green fluorescent protein (eGFP) in fusion with the polyQ-expanded polyglutamine stretch. At the expansion of polyQ above 39 residues, it has an inherent propensity to form amyloid-like fibrils and aggregates, and is responsible for Huntington's disease. The results of the experiments show that expression of the eGFP in fusion with the 97Q protein leads to the decrease of the eGFP fluorescence lifetime by ~300 ps. This phenomenon does not appear in Hsp104-deficient cells, where the aggregation in polyQ is prevented. We demonstrate that the lifetime decrease observed is related to the aggregation per se and discuss the possible role of refractive index and homo-FRET in these dynamics.

  17. Protein corona between nanoparticles and bacterial proteins in activated sludge: Characterization and effect on nanoparticle aggregation.

    PubMed

    Zhang, Peng; Xu, Xiao-Yan; Chen, You-Peng; Xiao, Meng-Qian; Feng, Bo; Tian, Kai-Xun; Chen, Yue-Hui; Dai, You-Zhi

    2018-02-01

    In this work, the protein coronas of activated sludge proteins on TiO 2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Apple Procyanidins Suppress Amyloid β-Protein Aggregation

    PubMed Central

    Toda, Toshihiko; Sunagawa, Tadahiro; Kanda, Tomomasa; Tagashira, Motoyuki; Shirasawa, Takuji; Shimizu, Takahiko

    2011-01-01

    Procyanidins (PCs) are major components of the apple polyphenols (APs). We previously reported that treatment with PC extended the mean lifespan of Caenorhabditis elegans (Sunagawa et al., 2011). In order to estimate the neuroprotective effects of PC, we investigated the antiaggregative activity of PC on amyloid β-protein (Aβ) aggregation, which is a pathological hallmark of Alzheimer's disease. We herein report that PC significantly suppressed Aβ42 aggregation and dissociated Aβ42 aggregates in a dose-dependent manner, indicating that PC is a potent suppressor of Aβ aggregation. Furthermore, PC significantly inhibited Aβ42 neurotoxicity and stimulated proliferation in PC-12 cells. These results suggested that the PC and AP acted as neuroprotective factors against toxic Aβ aggregates. PMID:21826271

  19. Formation and characterization of chitosan-protein particles with fractal whey protein aggregates.

    PubMed

    Ahmed, Khouloud Fekih; Aschi, Adel; Nicolai, Taco

    2018-05-15

    Hybrid protein-polysaccharide particles were formed by complexation of fractal whey protein aggregates and the cationic polysaccharide chitosan. The fractal aggregates were preformed by heating native whey protein isolate at pH 7 and subsequently mixed with chitosan at pH 3 where these proteins and polysaccharides don't interact with each other. Stable dispersions of protein-polysaccharide particles were formed spontaneously when the pH was gradually increased between 4.1 and 6.8, whereas in the absence of chitosan the fractal aggregates precipitated between pH 4.1 and 5.4. Potentiometric titration of the mixtures showed that deprotonation of both components was affected by complexation. With increasing pH, the size of the complexes increased sharply between pH 4.1. and pH 4.5, remained constant up to pH 5.6 and then increased again. A minimum amount of chitosan was needed to form stable complexes at pH 5.0 and the size of the complexes decreased with increasing chitosan concentration. Light scattering showed that the complexes were stable to dilution and had a self similar structure with a fractal dimensions close to two. The effect of changing the pH on the size and stability of the complexes was investigated. Suspensions of complexes of preformed whey protein aggregates and chitosan are more stable up to high pH (6.8) than complexes between native WPI and chitosan as reported in the literature. Copyright © 2018. Published by Elsevier B.V.

  20. Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model.

    PubMed

    Lee, Joo-Yong; Kawaguchi, Yoshiharu; Li, Ming; Kapur, Meghan; Choi, Su Jin; Kim, Hak-June; Park, Song-Yi; Zhu, Haining; Yao, Tso-Pang

    2015-01-01

    Aberrant accumulation of protein aggregates is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although a buildup of protein aggregates frequently leads to cell death, whether it is the key pathogenic factor in driving neurodegenerative disease remains controversial. HDAC6, a cytosolic ubiquitin-binding deacetylase, has emerged as an important regulator of ubiquitin-dependent quality control autophagy, a lysosome-dependent degradative system responsible for the disposal of misfolded protein aggregates and damaged organelles. Here, we show that in cell models HDAC6 plays a protective role against multiple disease-associated and aggregation-prone cytosolic proteins by facilitating their degradation. We further show that HDAC6 is required for efficient localization of lysosomes to protein aggregates, indicating that lysosome targeting to autophagic substrates is regulated. Supporting a critical role of HDAC6 in protein aggregate disposal in vivo, genetic ablation of HDAC6 in a transgenic SOD1G93A mouse, a model of ALS, leads to dramatic accumulation of ubiquitinated SOD1G93A protein aggregates. Surprisingly, despite a robust buildup of SOD1G93A aggregates, deletion of HDAC6 only moderately modified the motor phenotypes. These findings indicate that SOD1G93A aggregation is not the only determining factor to drive neurodegeneration in ALS, and that HDAC6 likely modulates neurodegeneration through additional mechanisms beyond protein aggregate clearance. © 2015 S. Karger AG, Basel.

  1. Heat-Induced Soluble Protein Aggregates from Mixed Pea Globulins and β-Lactoglobulin.

    PubMed

    Chihi, Mohamed-Lazhar; Mession, Jean-luc; Sok, Nicolas; Saurel, Rémi

    2016-04-06

    The present work investigates the formation of protein aggregates (85 °C, 60 min incubation) upon heat treatment of β-lactoglobulin (βlg)-pea globulins (Glob) mixtures at pH 7.2 and 5 mM NaCl from laboratory-prepared protein isolates. Various βlg/Glob weight ratios were applied, for a total protein concentration of 2 wt % in admixture. Different analytical methods were used to determine the aggregation behavior of "mixed" aggregates, that is, surface hydrophobicity and also sulfhydryl content, protein interactions by means of SDS-PAGE electrophoresis, and molecule size distribution by DLS and gel filtration. The production of "mixed" thermal aggregates would involve both the formation of new disulfide bonds and noncovalent interactions between the denatured βlg and Glob subunits. The majority of "mixed" soluble aggregates displayed higher molecular weight and smaller diameter than those for Glob heated in isolation. The development of pea-whey protein "mixed" aggregates may help to design new ingredients for the control of innovative food textures.

  2. Aggregation propensity of critical regions of the protein Tau

    NASA Astrophysics Data System (ADS)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  3. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-08-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner.more » Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.« less

  4. Protein aggregation induced during glass bead lysis of yeast

    PubMed Central

    Papanayotou, Irene; Sun, Beimeng; Roth, Amy F.; Davis, Nicholas G.

    2013-01-01

    Yeast cell lysates produced by mechanical glass bead disruption are widely used in a variety of applications, including for the analysis of native function, e.g. protein–protein interaction, enzyme assays and membrane fractionations. Below, we report a striking case of protein denaturation and aggregation that is induced by this lysis protocol. Most of this analysis focuses on the type 1 casein kinase Yck2, which normally tethers to the plasma membrane through C-terminal palmitoylation. Surprisingly, when cells are subjected to glass bead disruption, non-palmitoylated, cytosolic forms of the kinase denature and aggregate, while membrane-associated forms, whether attached through their native palmitoyl tethers or through a variety of artificial membrane-tethering sequences, are wholly protected from denaturation and aggregation. A wider look at the yeast proteome finds that, while the majority of proteins resist glass bead-induced aggregation, a significant subset does, in fact, succumb to such denaturation. Thus, yeast researchers should be aware of this potential artifact when embarking on biochemical analyses that employ glass bead lysates to look at native protein function. Finally, we demonstrate an experimental utility for glass bead-induced aggregation, using its fine discrimination of membrane-associated from non-associated Yck2 forms to discern fractional palmitoylation states of Yck2 mutants that are partially defective for palmitoylation. PMID:20641011

  5. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks

    PubMed Central

    Taylor, Dane; Caceres, Rajmonda S.; Mucha, Peter J.

    2017-01-01

    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős–Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K*. When layers are aggregated via a summation, we obtain K∗∝O(NL/T), where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than 𝒪(L−1/2). Moreover, we find that thresholding the summation can, in some cases, cause K* to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold. PMID:29445565

  6. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks.

    PubMed

    Taylor, Dane; Caceres, Rajmonda S; Mucha, Peter J

    2017-01-01

    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős-Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K * . When layers are aggregated via a summation, we obtain [Formula: see text], where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L , then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than ( L -1/2 ). Moreover, we find that thresholding the summation can, in some cases, cause K * to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.

  7. Al cation induces aggregation of serum proteins.

    PubMed

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High-Throughput Multiplexed Quantitation of Protein Aggregation and Cytotoxicity in a Huntington’s Disease Model

    PubMed Central

    Titus, Steven A; Southall, Noel; Marugan, Juan; Austin, Christopher P; Zheng, Wei

    2012-01-01

    A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation. PMID:23346268

  9. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.

    PubMed

    Malki, Abderrahim; Le, Hai-Tuong; Milles, Sigrid; Kern, Renée; Caldas, Teresa; Abdallah, Jad; Richarme, Gilbert

    2008-05-16

    The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.

  10. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  11. Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation.

    PubMed

    Duerkop, Mark; Berger, Eva; Dürauer, Astrid; Jungbauer, Alois

    2018-03-25

    The reported impact of shear stress on protein aggregation has been contradictory. At high shear rates, the occurrence of cavitation or entrapment of air is reasonable and their effects possibly misattributed to shear stress. Nine different proteins (α-lactalbumin, two antibodies, fibroblast growth factor 2, granulocyte colony stimulating factor [GCSF], green fluorescence protein [GFP], hemoglobin, human serum albumin, and lysozyme) are tested for their aggregation behavior on vapor/liquid interfaces generated by cavitation and compared it to the isolated effects of high shear stress and air/liquid interfaces generated by foaming. Cavitation induced the aggregation of GCSF by +68.9%, hemoglobin +4%, and human serum albumin +2.9%, compared to a control, whereas the other proteins do not aggregate. The protein aggregation behaviors of the different proteins at air/liquid interfaces are similar to cavitation, but the effect is more pronounced. Air-liquid interface induced the aggregation of GCSF by +94.5%, hemoglobin +35.5%, and human serum albumin (HSA) +31.1%. The results indicate that the sensitivity of a certain protein toward cavitation is very similar to air/liquid-induced aggregation. Hence, hydroxyl radicals cannot be seen as the driving force for protein aggregation when cavitation occurs. Further, high shear rates of up to 10 8  s -1 do not affect any of the tested proteins. Therefore, also within this study generated extremely high isolated shear rates cannot be considered to harm structural integrity when processing proteins. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles.

    PubMed

    Ayyadevara, Srinivas; Mercanti, Federico; Wang, Xianwei; Mackintosh, Samuel G; Tackett, Alan J; Prayaga, Sastry V S; Romeo, Francesco; Shmookler Reis, Robert J; Mehta, Jawahar L

    2016-05-01

    Neurodegenerative diseases are largely defined by protein aggregates in affected tissues. Aggregates contain some shared components as well as proteins thought to be specific for each disease. Aggregation has not previously been reported in the normal, aging heart or the hypertensive heart. Detergent-insoluble protein aggregates were isolated from mouse heart and characterized on 2-dimensional gels. Their levels increased markedly and significantly with aging and after sustained angiotensin II-induced hypertension. Of the aggregate components identified by high-resolution proteomics, half changed in abundance with age (392/787) or with sustained hypertension (459/824), whereas 30% (273/901) changed concordantly in both, each P<0.05. One fifth of these proteins were previously associated with age-progressive neurodegenerative or cardiovascular diseases, or both (eg, ApoE, ApoJ, ApoAIV, clusterin, complement C3, and others involved in stress-response and protein-homeostasis pathways). Because fibrosis is a characteristic of both aged and hypertensive hearts, we posited that aging of fibroblasts may contribute to the aggregates observed in cardiac tissue. Indeed, as cardiac myofibroblasts "senesced" (approached their replicative limit) in vitro, they accrued aggregates with many of the same constituent proteins observed in vivo during natural aging or sustained hypertension. In summary, we have shown for the first time that compact (detergent-insoluble) protein aggregates accumulate during natural aging, chronic hypertension, and in vitro myofibroblast senescence, sharing many common proteins. Thus, aggregates that arise from disparate causes (aging, hypertension, and replicative senescence) may have common underlying mechanisms of accrual. © 2016 American Heart Association, Inc.

  13. Dynamics of proteins aggregation. II. Dynamic scaling in confined media

    NASA Astrophysics Data System (ADS)

    Zheng, Size; Shing, Katherine S.; Sahimi, Muhammad

    2018-03-01

    In this paper, the second in a series devoted to molecular modeling of protein aggregation, a mesoscale model of proteins together with extensive discontinuous molecular dynamics simulation is used to study the phenomenon in a confined medium. The medium, as a model of a crowded cellular environment, is represented by a spherical cavity, as well as cylindrical tubes with two aspect ratios. The aggregation process leads to the formation of β sheets and eventually fibrils, whose deposition on biological tissues is believed to be a major factor contributing to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis diseases. Several important properties of the aggregation process, including dynamic evolution of the total number of the aggregates, the mean aggregate size, and the number of peptides that contribute to the formation of the β sheets, have been computed. We show, similar to the unconfined media studied in Paper I [S. Zheng et al., J. Chem. Phys. 145, 134306 (2016)], that the computed properties follow dynamic scaling, characterized by power laws. The existence of such dynamic scaling in unconfined media was recently confirmed by experiments. The exponents that characterize the power-law dependence on time of the properties of the aggregation process in spherical cavities are shown to agree with those in unbounded fluids at the same protein density, while the exponents for aggregation in the cylindrical tubes exhibit sensitivity to the geometry of the system. The effects of the number of amino acids in the protein, as well as the size of the confined media, have also been studied. Similarities and differences between aggregation in confined and unconfined media are described, including the possibility of no fibril formation, if confinement is severe.

  14. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation

    PubMed Central

    Nivon, Mathieu; Fort, Loïc; Muller, Pascale; Richet, Emma; Simon, Stéphanie; Guey, Baptiste; Fournier, Maëlenn; Arrigo, André-Patrick; Hetz, Claudio; Atkin, Julie D.; Kretz-Remy, Carole

    2016-01-01

    During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases. PMID:27075172

  15. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI).

    PubMed

    Chen, Xueping; Guan, Teng; Li, Chen; Shang, Huifang; Cui, Liying; Li, Xin-Min; Kong, Jiming

    2012-10-12

    Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI) and copper-zinc superoxide dismutase (SOD1) were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the formation of ubiquitinated-protein aggregates in cultured

  16. Modeling of chemical inhibition from amyloid protein aggregation kinetics.

    PubMed

    Vázquez, José Antonio

    2014-02-27

    The process of amyloid proteins aggregation causes several human neuropathologies. In some cases, e.g. fibrillar deposits of insulin, the problems are generated in the processes of production and purification of protein and in the pump devices or injectable preparations for diabetics. Experimental kinetics and adequate modelling of chemical inhibition from amyloid aggregation are of practical importance in order to study the viable processing, formulation and storage as well as to predict and optimize the best conditions to reduce the effect of protein nucleation. In this manuscript, experimental data of insulin, Aβ42 amyloid protein and apomyoglobin fibrillation from recent bibliography were selected to evaluate the capability of a bivariate sigmoid equation to model them. The mathematical functions (logistic combined with Weibull equation) were used in reparameterized form and the effect of inhibitor concentrations on kinetic parameters from logistic equation were perfectly defined and explained. The surfaces of data were accurately described by proposed model and the presented analysis characterized the inhibitory influence on the protein aggregation by several chemicals. Discrimination between true and apparent inhibitors was also confirmed by the bivariate equation. EGCG for insulin (working at pH = 7.4/T = 37°C) and taiwaniaflavone for Aβ42 were the compounds studied that shown the greatest inhibition capacity. An accurate, simple and effective model to investigate the inhibition of chemicals on amyloid protein aggregation has been developed. The equation could be useful for the clear quantification of inhibitor potential of chemicals and rigorous comparison among them.

  17. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    PubMed

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  18. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases

    NASA Astrophysics Data System (ADS)

    Bucciantini, Monica; Giannoni, Elisa; Chiti, Fabrizio; Baroni, Fabiana; Formigli, Lucia; Zurdo, Jesús; Taddei, Niccolò; Ramponi, Giampietro; Dobson, Christopher M.; Stefani, Massimo

    2002-04-01

    A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.

  19. Method for detecting and diagnosing disease caused by pathological protein aggregation

    DOEpatents

    Stevens, Fred J.; Myatt, Elizabeth A.; Solomon, Alan

    2000-01-01

    A method is provided for detecting pathological macromolecules in a patient, comprising obtaining body fluid from the patient, pretreating the body fluid, subjecting the pretreated body fluid to size-exclusion chromatography to create an excluded fluid, and analyzing the excluded fluid to detect macromolecules having a predetermined molecular weight. The method also allows for comparing elution spectra with reference spectra of suspect pathologic proteins.

  20. Protein aggregation as bacterial inclusion bodies is reversible.

    PubMed

    Carrió, M M; Villaverde, A

    2001-01-26

    Inclusion bodies are refractile, intracellular protein aggregates usually observed in bacteria upon targeted gene overexpression. Since their occurrence has a major economical impact in protein production bio-processes, in vitro refolding strategies are under continuous exploration. In this work, we prove spontaneous in vivo release of both beta-galactosidase and P22 tailspike polypeptides from inclusion bodies resulting in their almost complete disintegration and in the concomitant appearance of soluble, properly folded native proteins with full biological activity. Since, in particular, the tailspike protein exhibits an unusually slow and complex folding pathway involving deep interdigitation of beta-sheet structures, its in vivo refolding indicates that bacterial inclusion body proteins are not collapsed into an irreversible unfolded state. Then, inclusion bodies can be observed as transient deposits of folding-prone polypeptides, resulting from an unbalanced equilibrium between in vivo protein precipitation and refolding that can be actively displaced by arresting protein synthesis. The observation that the formation of big inclusion bodies is reversible in vivo can be also relevant in the context of amyloid diseases, in which deposition of important amounts of aggregated protein initiates the pathogenic process.

  1. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation

    PubMed Central

    2012-01-01

    Background Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs) for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp) function is fitted to fluorescence loss (FL) inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP), we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ) disease proteins like mutant huntingtin (mtHtt) can form large aggregates called inclusion bodies (IB’s). The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt) between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and experiments. Conclusions We

  2. Prediction of Protein Aggregation in High Concentration Protein Solutions Utilizing Protein-Protein Interactions Determined by Low Volume Static Light Scattering.

    PubMed

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2016-06-01

    The development of highly concentrated protein formulations is more demanding than for conventional concentrations due to an elevated protein aggregation tendency. Predictive protein-protein interaction parameters, such as the second virial coefficient B22 or the interaction parameter kD, have already been used to predict aggregation tendency and optimize protein formulations. However, these parameters can only be determined in diluted solutions, up to 20 mg/mL. And their validity at high concentrations is currently controversially discussed. This work presents a μ-scale screening approach which has been adapted to early industrial project needs. The procedure is based on static light scattering to directly determine protein-protein interactions at concentrations up to 100 mg/mL. Three different therapeutic molecules were formulated, varying in pH, salt content, and addition of excipients (e.g., sugars, amino acids, polysorbates, or other macromolecules). Validity of the predicted aggregation tendency was confirmed by stability data of selected formulations. Based on the results obtained, the new prediction method is a promising screening tool for fast and easy formulation development of highly concentrated protein solutions, consuming only microliter of sample volumes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu.

    PubMed

    Breydo, Leonid; Sales, Amanda E; Frege, Telma; Howell, Mark C; Zaslavsky, Boris Y; Uversky, Vladimir N

    2015-05-19

    We examined the effects of water-soluble polymers of various degrees of hydrophobicity on the folding and aggregation of proteins. The polymers we chose were polyethylene glycol (PEG) and UCON (1:1 copolymer of ethylene glycol and propylene glycol). The presence of additional methyl groups in UCON makes it more hydrophobic than PEG. Our earlier analysis revealed that similarly sized PEG and UCON produced different changes in the solvent properties of water in their solutions and induced morphologically different α-synuclein aggregates [Ferreira, L. A., et al. (2015) Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn., in press]. To improve our understanding of molecular mechanisms defining behavior of proteins in a crowded environment, we tested the effects of these polymers on secondary and tertiary structure and aromatic residue solvent accessibility of 10 proteins [five folded proteins, two hybrid proteins; i.e., protein containing ordered and disordered domains, and three intrinsically disordered proteins (IDPs)] and on the aggregation kinetics of insulin and α-synuclein. We found that effects of both polymers on secondary and tertiary structures of folded and hybrid proteins were rather limited with slight unfolding observed in some cases. Solvent accessibility of aromatic residues was significantly increased for the majority of the studied proteins in the presence of UCON but not PEG. PEG also accelerated the aggregation of protein into amyloid fibrils, whereas UCON promoted aggregation to amyloid oligomers instead. These results indicate that even a relatively small change in polymer structure leads to a significant change in the effect of this polymer on protein folding and aggregation. This is an indication that protein folding and especially aggregation are highly sensitive to the presence of other macromolecules, and an excluded volume effect is insufficient to describe their effect.

  4. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding.

    PubMed

    Żwirowski, Szymon; Kłosowska, Agnieszka; Obuchowski, Igor; Nillegoda, Nadinath B; Piróg, Artur; Ziętkiewicz, Szymon; Bukau, Bernd; Mogk, Axel; Liberek, Krzysztof

    2017-03-15

    Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp-substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp-substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions. © 2017 The Authors.

  5. Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation.

    PubMed

    Valiente-Gabioud, Ariel A; Miotto, Marco C; Chesta, María E; Lombardo, Verónica; Binolfi, Andres; Fernández, Claudio O

    2016-05-17

    The aggregation of proteins into toxic conformations plays a critical role in the development of different neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Creutzfled-Jakob's disease (CJD). These disorders share a common pathological mechanism that involves the formation of aggregated protein species including toxic oligomers and amyloid fibrils. The aggregation of alpha-synuclein (αS) in PD and the amyloid beta peptide (Aβ) and tau protein in AD results in neuronal death and disease onset. In the case of CJD, the misfolding of the physiological prion protein (PrP) induces a chain reaction that results in accumulation of particles that elicit brain damage. Currently, there is no preventive therapy for these diseases and the available therapeutic approaches are based on the treatment of the symptoms rather than the underlying causes of the disease. Accordingly, the aggregation pathway of these proteins represents a useful target for therapeutic intervention. Therefore, understanding the mechanism of amyloid formation and its inhibition is of high clinical importance. The design of small molecules that efficiently inhibit the aggregation process and/or neutralize its associated toxicity constitutes a promising tool for the development of therapeutic strategies against these disorders. In this accounts, we discuss current knowledge on the anti-amyloid activity of phthalocyanines and their potential use as drug candidates in neurodegeneration. These tetrapyrrolic compounds modulate the amyloid assembly of αS, tau, Aβ, and the PrP in vitro, and protect cells from the toxic effects of amyloid aggregates. In addition, in scrapie-infected mice, these compounds showed important prophylactic antiscrapie properties. The structural basis for the inhibitory effect of phthalocyanines on amyloid filament assembly relies on specific π-π interactions between the aromatic ring system of these molecules and aromatic residues in the

  6. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  7. Chaperonin-based biolayer interferometry to assess the kinetic stability of metastable, aggregation-prone proteins

    PubMed Central

    Lea, Wendy A.; Naik, Subhashchandra; Chaudhri, Tapan; Machen, Alexandra J.; O’Neil, Pierce T.; McGinn-Straub, Wesley; Tischer, Alexander; Auton, Matthew T.; Burns, Joshua R.; Baldwin, Michael R.; Khar, Karen R.; Karanicolas, John; Fisher, Mark T.

    2017-01-01

    Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy to decrease disease pathologies brought on by protein folding defects or deleterious kinetic transitions. Current methods of examining ligand binding to these marginally stable native states are limited, because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, multi-domain) and metastable proteins (e.g. low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant-pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein immobilized on a BLI biosensor to increasing denaturant concentrations (urea or GnHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remain is detected by increased GroEL binding. Since this kinetic denaturant pulse is brief, the amplitude of the GroEL binding to the immobilized protein depends on the duration of exposure to denaturant, the concentration of denaturant, wash times, and the underlying protein unfolding/refolding kinetics; fixing all other parameters and plotting GroEL binding amplitude versus denaturant pulse concentration results in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein is manifested by a decreased GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be

  8. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregationmore » propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.« less

  9. Aggregation of recombinant human botulinum protein antigen serotype C in varying solution conditions: implications of conformational stability for aggregation kinetics.

    PubMed

    Bai, Shujun; Manning, Mark Cornell; Randolph, Theodore W; Carpenter, John F

    2011-03-01

    Solution conditions greatly affect the aggregation rate of a protein. Elucidating these influences provides insight into the critical factors governing aggregation. In this study, recombinant human botulinum protein antigen serotype C [rBoNTC (H(c))] was employed as a model protein. rBoNTC (H(c)) aggregated irreversibly during incubation at 42°C. The aggregation rate was studied as a function of solution conditions, including varying the pH from 3.5 to 8.0 and with or without 150 mM NaCl, 7.5% (w/v) trehalose, and 0.5 M urea. Some solution conditions retarded rBoNTC (H(c)) aggregation, whereas others accelerated aggregation, particularly acidic pH and addition of NaCl or urea. To better understand the mechanism by which these solution conditions influenced aggregation rates, the structure of rBoNTC (H(c)) was characterized using circular dichroism, fluorescence, and ultraviolet absorbance spectroscopies. Conformational stability was assessed from equilibrium urea-induced unfolding studies and by using differential scanning calorimetry (DSC). The activation energy of the aggregation reaction (E(a)) was estimated from an analysis of the heating-rate dependence of the thermal transition observed during DSC heating scans. Overall, for rBoNTC (H(c)), an inverse correlation was found between conformational stability and aggregation rate, as well as between the kinetic barrier to unfolding (i.e., E(a)) and aggregation rate. Copyright © 2010 Wiley-Liss, Inc.

  10. Separating full-length protein from aggregating proteolytic products using filter flow-through purification.

    PubMed

    Churion, Kelly A; Rogers, Robert E; Bayless, Kayla J; Bondos, Sarah E

    2016-12-01

    Separation of full-length protein from proteolytic products is challenging, since the properties used to isolate the protein can also be present in proteolytic products. Many separation techniques risk non-specific protein adhesion and/or require a lot of time, enabling continued proteolysis and aggregation after lysis. We demonstrate that proteolytic products aggregate for two different proteins. As a result, full-length protein can be rapidly separated from these fragments by filter flow-through purification, resulting in a substantial protein purity enhancement. This rapid approach is likely to be useful for intrinsically disordered proteins, whose repetitive sequence composition and flexible nature can facilitate aggregation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Proteome-level interplay between folding and aggregation propensities of proteins.

    PubMed

    Tartaglia, Gian Gaetano; Vendruscolo, Michele

    2010-10-08

    With the advent of proteomics, there is an increasing need of tools for predicting the properties of large numbers of proteins by using the information provided by their amino acid sequences, even in the absence of the knowledge of their structures. One of the most important types of predictions concerns whether proteins will fold or aggregate. Here, we study the competition between these two processes by analyzing the relationship between the folding and aggregation propensity profiles for the human and Escherichia coli proteomes. These profiles are calculated, respectively, using the CamFold method, which we introduce in this work, and the Zyggregator method. Our results indicate that the kinetic behavior of proteins is, to a large extent, determined by the interplay between regions of low folding and high aggregation propensities. Copyright © 2010. Published by Elsevier Ltd.

  12. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.

    2015-08-01

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  13. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial tomore » progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.« less

  14. Disease-Associated Mutant Ubiquitin Causes Proteasomal Impairment and Enhances the Toxicity of Protein Aggregates

    PubMed Central

    Tank, Elizabeth M. H.; True, Heather L.

    2009-01-01

    Protein homeostasis is critical for cellular survival and its dysregulation has been implicated in Alzheimer's disease (AD) and other neurodegenerative disorders. Despite the growing appreciation of the pathogenic mechanisms involved in familial forms of AD, much less is known about the sporadic cases. Aggregates found in both familial and sporadic AD often include proteins other than those typically associated with the disease. One such protein is a mutant form of ubiquitin, UBB+1, a frameshift product generated by molecular misreading of a wild-type ubiquitin gene. UBB+1 has been associated with multiple disorders. UBB+1 cannot function as a ubiquitin molecule, and it is itself a substrate for degradation by the ubiquitin/proteasome system (UPS). Accumulation of UBB+1 impairs the proteasome system and enhances toxic protein aggregation, ultimately resulting in cell death. Here, we describe a novel model system to investigate how UBB+1 impairs UPS function and whether it plays a causal role in protein aggregation. We expressed a protein analogous to UBB+1 in yeast (Ubext) and demonstrated that it caused UPS impairment. Blocking ubiquitination of Ubext or weakening its interactions with other ubiquitin-processing proteins reduced the UPS impairment. Expression of Ubext altered the conjugation of wild-type ubiquitin to a UPS substrate. The expression of Ubext markedly enhanced cellular susceptibility to toxic protein aggregates but, surprisingly, did not induce or alter nontoxic protein aggregates in yeast. Taken together, these results suggest that Ubext interacts with more than one protein to elicit impairment of the UPS and affect protein aggregate toxicity. Furthermore, we suggest a model whereby chronic UPS impairment could inflict deleterious consequences on proper protein aggregate sequestration. PMID:19214209

  15. Polythiophenes Inhibit Prion Propagation by Stabilizing Prion Protein (PrP) Aggregates*

    PubMed Central

    Margalith, Ilan; Suter, Carlo; Ballmer, Boris; Schwarz, Petra; Tiberi, Cinzia; Sonati, Tiziana; Falsig, Jeppe; Nyström, Sofie; Hammarström, Per; Åslund, Andreas; Nilsson, K. Peter R.; Yam, Alice; Whitters, Eric; Hornemann, Simone; Aguzzi, Adriano

    2012-01-01

    Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrPC (PrPSc) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrPSc to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23–231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23–231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrPSc by stabilizing the conformation of PrPC or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrPSc deposits. PMID:22493452

  16. Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    PubMed Central

    Das, Utpal; Hariprasad, Gururao; Ethayathulla, Abdul S.; Manral, Pallavi; Das, Taposh K.; Pasha, Santosh; Mann, Anita; Ganguli, Munia; Verma, Amit K.; Bhat, Rajiv; Chandrayan, Sanjeev Kumar; Ahmed, Shubbir; Sharma, Sujata; Kaur, Punit; Singh, Tej P.; Srinivasan, Alagiri

    2007-01-01

    Background Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. Methodology We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Aβ1-42) peptide is modified. Changes in the hydrodynamic volume of Aβ1-42 in the presence of arginine measured by size exclusion chromatography show that arginine binds to Aβ1-42. Arginine increases the solubility of Aβ1-42 peptide in aqueous medium. It decreases the aggregation of Aβ1-42 as observed by atomic force microscopy. Conclusions Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation. PMID:18000547

  17. The missing piece in the puzzle: Prediction of aggregation via the protein-protein interaction parameter A∗2.

    PubMed

    Koepf, Ellen; Schroeder, Rudolf; Brezesinski, Gerald; Friess, Wolfgang

    2018-07-01

    The tendency of protein pharmaceuticals to form aggregates is a major challenge during formulation development, as aggregation affects quality and safety of the product. In particular, the formation of large native-like particles in the context of liquid-air interfacial stress is a well-known but not fully understood problem. Focusing on the two most fundamental criteria of protein formulation affecting protein-protein interaction, the impact of pH and ionic strength on the interaction parameter A ∗ 2 and its link to aggregation upon mechanical stress was investigated. A ∗ 2 of two monoclonal antibodies (mABs) and a polyclonal IgG was determined using dynamic light scattering and was correlated to the number of particles formed upon shaking in vials analyzed by visual inspection, turbidity analysis, light obscuration and micro-flow imaging. A good correlation between aggregation induced by interfacial stress and formulation pH was given. It could be shown that A ∗ 2 was highest for mAB 1 and lowest for IgG, what was in good accordance with the number of particles formed. Shaking of IgG resulted in overall higher numbers of particles compared to the two mABs. A ∗ 2 decreased and particle numbers increased with increasing pH. Different to pH, ionic strength only slightly affected A ∗ 2 . Nevertheless, at high ionic (100 mM) strength the samples exhibited more pronounced particle formation, particularly of large particles >25 µm, which was most pronounced at high pH. Protein solutions were identified to form continuous films with an inhomogeneous protein distribution at the liquid-air interface. These areas of agglomerated, native-like protein material can be transferred into the bulk solution by compression-decompression of the interface. Whether or not those clusters lead to the appearance of large protein aggregates or fall apart depends on the attractive or repulsive forces between protein molecules. Thus, protein aggregation due to interfacial

  18. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures

    PubMed Central

    Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador

    2015-01-01

    Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. PMID:25883144

  19. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand?

    PubMed

    Gouveia, Marisol; Xia, Ke; Colón, Wilfredo; Vieira, Sandra I; Ribeiro, Fernando

    2017-11-01

    Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Internal Structure and Preferential Protein Binding of Colloidal Aggregates.

    PubMed

    Duan, Da; Torosyan, Hayarpi; Elnatan, Daniel; McLaughlin, Christopher K; Logie, Jennifer; Shoichet, Molly S; Agard, David A; Shoichet, Brian K

    2017-01-20

    Colloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack. Dye-stabilized colloidal aggregates exhibit enhanced homogeneity and stability when compared to conventional colloidal aggregates, enabling investigation of some of these properties. By small-angle X-ray scattering and multiangle light scattering, pair distance distribution functions suggest that the dye-stabilized colloids are filled, not hollow, spheres. Stability of the coformulated colloids enabled investigation of their preference for binding DNA, peptides, or folded proteins, and their ability to purify one from the other. The coformulated colloids showed little ability to bind DNA. Correspondingly, the colloids preferentially sequestered protein from even a 1600-fold excess of peptides that are themselves the result of a digest of the same protein. This may reflect the avidity advantage that a protein has in a surface-to-surface interaction with the colloids. For the first time, colloids could be shown to have preferences of up to 90-fold for particular proteins over others. Loaded onto the colloids, bound enzyme could be spun down, resuspended, and released back into buffer, regaining most of its activity. Implications of these observations for colloid mechanisms and utility will be considered.

  1. Effect of Excipients on Liquid-Liquid Phase Separation and Aggregation in Dual Variable Domain Immunoglobulin Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-03-07

    Liquid-liquid phase separation (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich phase can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPβCD)) on liquid-liquid phase separation and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid phase separation decreased with increasing concentration of HPβCD, indicating its specific binding to the protein. However, HPβCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.

  2. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  3. [Myosin storage myopathy: a rare subtype of protein aggregate myopathies].

    PubMed

    Kiphuth, I C; Neuen-Jacob, E; Struffert, T; Wehner, M; Wallefeld, W; Laing, N; Schröder, R

    2010-04-01

    Myopathies with pathological protein aggregates comprise a numerically significant group of sporadic and hereditary muscle disorders. A rare disease entity within the group of protein aggregate myopathies is the myosin storage myopathy, which is caused by heterozygous mutations in the MYH7 gene which encodes the slow/beta-myosin heavy chain. We report the clinical, myopathological and MRI findings in the first German patient suffering from a myosin storage myopathy due to a heterozygous R 1845W missense mutation.

  4. Degradation of surfactant-associated protein B (SP-B) during in vitro conversion of large to small surfactant aggregates.

    PubMed Central

    Veldhuizen, R A; Inchley, K; Hearn, S A; Lewis, J F; Possmayer, F

    1993-01-01

    Pulmonary surfactant obtained from lung lavages can be separated by differential centrifugation into two distinct subfractions known as large surfactant aggregates and small surfactant aggregates. The large-aggregate fraction is the precursor of the small-aggregate fraction. The ratio of the small non-surface-active to large surface-active surfactant aggregates increases after birth and in several types of lung injury. We have utilized an in vitro system, surface area cycling, to study the conversion of large into small aggregates. Small aggregates generated by surface area cycling were separated from large aggregates by centrifugation at 40,000 g for 15 min rather than by the normal sucrose gradient centrifugation. This new separation method was validated by morphological studies. Surface-tension-reducing activity of total surfactant extracts, as measured with a pulsating-bubble surfactometer, was impaired after surface area cycling. This impairment was related to the generation of small aggregates. Immunoblot analysis of large and small aggregates separated by sucrose gradient centrifugation revealed the presence of detectable amounts of surfactant-associated protein B (SP-B) in large aggregates but not in small aggregates. SP-A was detectable in both large and small aggregates. PAGE of cycled and non-cycled surfactant showed a reduction in SP-B after surface area cycling. We conclude that SP-B is degraded during the formation of small aggregates in vitro and that a change in surface area appears to be necessary for exposing SP-B to protease activity. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8216208

  5. Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins.

    PubMed

    Cox, Dezerae; Carver, John A; Ecroyd, Heath

    2014-09-01

    Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini*

    PubMed Central

    Ouyang, Hui; Ali, Yousuf O.; Ravichandran, Mani; Dong, Aiping; Qiu, Wei; MacKenzie, Farrell; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.; Zhai, R. Grace

    2012-01-01

    The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome. PMID:22069321

  7. Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Hui; Ali, Yousuf O.; Ravichandran, Mani

    2012-07-11

    The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin Cmore » termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.« less

  8. Effect of dynamic high pressure homogenization on the aggregation state of soy protein.

    PubMed

    Keerati-U-Rai, Maneephan; Corredig, Milena

    2009-05-13

    Although soy proteins are often employed as functional ingredients in oil-water emulsions, very little is known about the aggregation state of the proteins in solution and whether any changes occur to soy protein dispersions during homogenization. The effect of dynamic high pressure homogenization on the aggregation state of the proteins was investigated using microdifferential scanning calorimetry and high performance size exclusion chromatography coupled with multiangle laser light scattering. Soy protein isolates as well as glycinin and beta-conglycinin fractions were prepared from defatted soy flakes and redispersed in 50 mM sodium phosphate buffer at pH 7.4. The dispersions were then subjected to homogenization at two different pressures, 26 and 65 MPa. The results demonstrated that dynamic high pressure homogenization causes changes in the supramolecular structure of the soy proteins. Both beta-conglycinin and glycinin samples had an increased temperature of denaturation after homogenization. The chromatographic elution profile showed a reduction in the aggregate concentration with homogenization pressure for beta-conglycinin and an increase in the size of the soluble aggregates for glycinin and soy protein isolate.

  9. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures.

    PubMed

    Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador

    2015-07-01

    Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.

    PubMed

    Paul, Albert Jesuran; Schwab, Karen; Prokoph, Nina; Haas, Elena; Handrick, René; Hesse, Friedemann

    2015-06-01

    Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 μg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 μmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.

  11. Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect

    PubMed Central

    Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel

    2013-01-01

    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular

  12. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  13. The effect of protein acetylation on the formation and processing of inclusion bodies and endogenous protein aggregates in Escherichia coli cells.

    PubMed

    Kuczyńska-Wiśnik, Dorota; Moruno-Algara, María; Stojowska-Swędrzyńska, Karolina; Laskowska, Ewa

    2016-11-10

    Acetylation of lysine residues is a reversible post-translational modification conserved from bacteria to humans. Several recent studies have revealed hundreds of lysine-acetylated proteins in various bacteria; however, the physiological role of these modifications remains largely unknown. Since lysine acetylation changes the size and charge of proteins and thereby may affect their conformation, we assumed that lysine acetylation can stimulate aggregation of proteins, especially for overproduced recombinant proteins that form inclusion bodies. To verify this assumption, we used Escherichia coli strains that overproduce aggregation-prone VP1GFP protein. We found that in ΔackA-pta cells, which display diminished protein acetylation, inclusion bodies were formed with a delay and processed faster than in the wild-type cells. Moreover, in ΔackA-pta cells, inclusion bodies exhibited significantly increased specific GFP fluorescence. In CobB deacetylase-deficient cells, in which protein acetylation was enhanced, the formation of inclusion bodies was increased and their processing was significantly inhibited. Similar results were obtained with regard to endogenous protein aggregates formed during the late stationary phase in ΔackA-pta and ΔcobB cells. Our studies revealed that protein acetylation affected the aggregation of endogenous E. coli proteins and the yield, solubility, and biological activity of a model recombinant protein. In general, decreased lysine acetylation inhibited the formation of protein aggregates, whereas increased lysine acetylation stabilized protein aggregates. These findings should be considered during the designing of efficient strategies for the production of recombinant proteins in E. coli cells.

  14. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-04-21

    Protein aggregation in aqueous cellular environments is linked to diverse human diseases. Protein aggregation proceeds through a multistep process initiated by conformational transitions, called protein misfolding, of monomer species toward aggregation-prone structures. Various forms of aggregate species are generated through the association of misfolded monomers including soluble oligomers and amyloid fibrils. Elucidating the molecular mechanisms and driving forces involved in the misfolding and subsequent association has been a central issue for understanding and preventing protein aggregation diseases such as Alzheimer's, Parkinson's, and type II diabetes. In this Account, we provide a thermodynamic perspective of the misfolding and aggregation of the amyloid-beta (Aβ) protein implicated in Alzheimer's disease through the application of fluctuating thermodynamics. This approach "dissects" the conventional thermodynamic characterization of the end states into the one of the fluctuating processes connecting them, and enables one to analyze variations in the thermodynamic functions that occur during the course of protein conformational changes. The central quantity in this approach is the solvent-averaged effective energy, f = Eu + Gsolv, comprising the protein potential energy (Eu) and the solvation free energy (Gsolv), whose time variation reflects the protein dynamics on the free energy landscape. Protein configurational entropy is quantified by the magnitude of fluctuations in f. We find that misfolding of the Aβ monomer when released from a membrane environment to an aqueous phase is driven by favorable changes in protein potential energy and configurational entropy, but it is also accompanied by an unfavorable increase in solvation free energy. The subsequent dimerization of the misfolded Aβ monomers occurs in two steps. The first step, where two widely separated monomers come into contact distance, is driven by water-mediated attraction, that is, by a

  15. Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation.

    PubMed

    Sart, Sébastien; Ma, Teng; Li, Yan

    2013-01-01

    Cultivation of undifferentiated pluripotent stem cells (PSCs) as aggregates has emerged as an efficient culture configuration, enabling rapid and controlled large scale expansion. Aggregate-based PSC cryopreservation facilitates the integrated process of cell expansion and cryopreservation, but its feasibility has not been demonstrated. The goals of current study are to assess the suitability of cryopreserving intact mouse embryonic stem cell (mESC) aggregates and investigate the effects of aggregate size and the formulation of cryopreservation solution on mESC survival and recovery. The results demonstrated the size-dependent cell survival and recovery of intact aggregates. In particular, the generation of reactive oxygen species (ROS) and caspase activation were reduced for small aggregates (109 ± 55 μm) compared to medium (245 ± 77 μm) and large (365 ± 141 μm) ones, leading to the improved cell recovery. In addition, a defined protein-free formulation was tested and found to promote the aggregate survival, eliminating the cell exposure to animal serum. The cryopreserved aggregates also maintained the pluripotent markers and the differentiation capacity into three-germ layers after thawing. In summary, the cryopreservation of small PSC aggregates in a defined protein-free formulation was shown to be a suitable approach toward a fully integrated expansion and cryopreservation process at large scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  16. Anti-protein aggregation is a potential target for preventing delayed neuronal death after transient ischemia.

    PubMed

    Ge, Pengfei; Luo, Yinan; Wang, Haifeng; Ling, Feng

    2009-12-01

    Brain ischemia has been an important risk factor for human being health, there is no effective medicine can be used to protect delayed neuronal injury or death secondary to blood reperfusion following ischemia. Recent discovery shows protein aggregation is an important factor resulting in ischemia-induced neuron death. Therefore, we propose the hypothesis that inhibiting protein aggregation may be an effective way to prevent delayed neuronal death after transient ischemia. At present, in vitro studies show some chemicals such as 4PBA (sodium 4-phenylbutyrate) and trehalose have the features of antagonizing protein aggregation in vitro. Moreover, polyQ-binding peptide (QBP1), geldanamycin, amino acids and amino acid derivatives have been also used in vitro to decrease aggregation and to increase protein stability. Although in vivo and systematical study should be performed to evaluate their effects of anti-protein aggregation, this enlightening us on using them to protect ischemic-induced neuronal death, and find new potential chemicals or methods which could be effective in keeping protein stable and prevent forming aggregates.

  17. State-of-the-Art Fluorescence Fluctuation-Based Spectroscopic Techniques for the Study of Protein Aggregation

    PubMed Central

    Kinjo, Masataka

    2018-01-01

    Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are devastating proteinopathies with misfolded protein aggregates accumulating in neuronal cells. Inclusion bodies of protein aggregates are frequently observed in the neuronal cells of patients. Investigation of the underlying causes of neurodegeneration requires the establishment and selection of appropriate methodologies for detailed investigation of the state and conformation of protein aggregates. In the current review, we present an overview of the principles and application of several methodologies used for the elucidation of protein aggregation, specifically ones based on determination of fluctuations of fluorescence. The discussed methods include fluorescence correlation spectroscopy (FCS), imaging FCS, image correlation spectroscopy (ICS), photobleaching ICS (pbICS), number and brightness (N&B) analysis, super-resolution optical fluctuation imaging (SOFI), and transient state (TRAST) monitoring spectroscopy. Some of these methodologies are classical protein aggregation analyses, while others are not yet widely used. Collectively, the methods presented here should help the future development of research not only into protein aggregation but also neurodegenerative diseases. PMID:29570669

  18. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae

    PubMed Central

    Specht, Sebastian; Miller, Stephanie B.M.

    2011-01-01

    The aggregation of proteins inside cells is an organized process with cytoprotective function. In Saccharomyces cerevisiae, aggregating proteins are spatially sequestered to either juxtanuclear or peripheral sites, which target distinct quality control pathways for refolding and degradation. The cellular machinery driving the sequestration of misfolded proteins to these sites is unknown. In this paper, we show that one of the two small heat shock proteins of yeast, Hsp42, is essential for the formation of peripheral aggregates during physiological heat stress. Hsp42 preferentially localizes to peripheral aggregates but is largely absent from juxtanuclear aggregates, which still form in hsp42Δ cells. Transferring the amino-terminal domain of Hsp42 to Hsp26, which does not participate in aggregate sorting, enables Hsp26 to replace Hsp42 function. Our data suggest that Hsp42 acts via its amino-terminal domain to coaggregate with misfolded proteins and perhaps link such complexes to further sorting factors. PMID:22065637

  19. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases.

    PubMed

    Villar-Piqué, Anna; Schmitz, Matthias; Candelise, Niccolò; Ventura, Salvador; Llorens, Franc; Zerr, Inga

    2018-02-10

    The presence of protein deposits is a common pathological hallmark in patients suffering from neurodegenerative conditions and other proteinopathies. Deciphering the molecular basis of protein misfolding and aggregation is a crucial step towards the full comprehension of the factors that trigger the onset of these diseases and for the development of efficient therapeutical strategies. In this regard, in vitro aggregation assays for misfolded proteins offer an excellent tool to study pathological processes of protein deposition under controlled conditions, where confounders can be easily discriminated. These methods are generally cost-effective and have been proved useful in many fields, including drug discovery and clinical diagnostics. Here, we review the bases of in vitro aggregation and seeding assays, recapitulate their main applications and offer a critical evaluation of their limitations. Comprehending the molecular mechanisms behind these assays and combining them with in vivo or cell-based experiments will maximize their potential and allow the necessary improvement to overcome some of the current drawbacks.

  20. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions

    PubMed Central

    Snell, Jared R.; Zhou, Chen; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported.1 Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. PMID:27488901

  1. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    PubMed

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Competition between protein folding and aggregation: A three-dimensional lattice-model simulation

    NASA Astrophysics Data System (ADS)

    Bratko, D.; Blanch, H. W.

    2001-01-01

    Aggregation of protein molecules resulting in the loss of biological activity and the formation of insoluble deposits represents a serious problem for the biotechnology and pharmaceutical industries and in medicine. Considerable experimental and theoretical efforts are being made in order to improve our understanding of, and ability to control, the process. In the present work, we describe a Monte Carlo study of a multichain system of coarse-grained model proteins akin to lattice models developed for simulations of protein folding. The model is designed to examine the competition between intramolecular interactions leading to the native protein structure, and intermolecular association, resulting in the formation of aggregates of misfolded chains. Interactions between the segments are described by a variation of the Go potential [N. Go and H. Abe, Biopolymers 20, 1013 (1981)] that extends the recognition between attracting types of segments to pairs on distinct chains. For the particular model we adopt, the global free energy minimum of a pair of protein molecules corresponds to a dimer of native proteins. When three or more molecules interact, clusters of misfolded chains can be more stable than aggregates of native folds. A considerable fraction of native structure, however, is preserved in these cases. Rates of conformational changes rapidly decrease with the size of the protein cluster. Within the timescale accessible to computer simulations, the folding-aggregation balance is strongly affected by kinetic considerations. Both the native form and aggregates can persist in metastable states, even if conditions such as temperature or concentration favor a transition to an alternative form. Refolding yield can be affected by the presence of an additional polymer species mimicking the function of a molecular chaperone.

  3. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders.

    PubMed

    Caughey, Byron; Lansbury, Peter T

    2003-01-01

    Many neurodegenerative diseases, including Alzheimer's and Parkinson's and the transmissible spongiform encephalopathies (prion diseases), are characterized at autopsy by neuronal loss and protein aggregates that are typically fibrillar. A convergence of evidence strongly suggests that protein aggregation is neurotoxic and not a product of cell death. However, the identity of the neurotoxic aggregate and the mechanism by which it disables and eventually kills a neuron are unknown. Both biophysical studies aimed at elucidating the precise mechanism of in vitro aggregation and animal modeling studies support the emerging notion that an ordered prefibrillar oligomer, or protofibril, may be responsible for cell death and that the fibrillar form that is typically observed at autopsy may actually be neuroprotective. A subpopulation of protofibrils may function as pathogenic amyloid pores. An analogous mechanism may explain the neurotoxicity of the prion protein; recent data demonstrates that the disease-associated, infectious form of the prion protein differs from the neurotoxic species. This review focuses on recent experimental studies aimed at identification and characterization of the neurotoxic protein aggregates.

  4. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  5. An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins.

    PubMed

    Rawat, Puneet; Kumar, Sandeep; Michael Gromiha, M

    2018-06-24

    Newly synthesized polypeptides must pass stringent quality controls in cells to ensure appropriate folding and function. However, mutations, environmental stresses and aging can reduce efficiencies of these controls, leading to accumulation of protein aggregates, amyloid fibrils and plaques. In-vitro experiments have shown that even single amino acid substitutions can drastically enhance or mitigate protein aggregation kinetics. In this work, we have collected a dataset of 220 unique mutations in 25 proteins and classified them as enhancers or mitigators on the basis of their effect on protein aggregation rate. The data were analyzed via machine learning to identify features capable of distinguishing between aggregation rate enhancers and mitigators. Our initial Support Vector Machine (SVM) model separated such mutations with an overall accuracy of 69%. When local secondary structures at the mutation sites were considered, the accuracies further improved by 13-15%. The machine-learnt features are distinct for each secondary structure class at mutation sites. Protein stability and flexibility changes are important features for mutations in α-helices. β-strand propensity, polarity and charge become important when mutations occur in β-strands and ability to form secondary structure, helical tendency and aggregation propensity are important for mutations lying in coils. These results have been incorporated into a sequence-based algorithm (available at http://www.iitm.ac.in/bioinfo/aggrerate-disc/) capable of predicting whether a mutation will enhance or mitigate a protein's aggregation rate. This algorithm will find several applications towards understanding protein aggregation in human diseases, enable in-silico optimization of biopharmaceuticals and enzymes for improved biophysical attributes and de novo design of bio-nanomaterials. Copyright © 2018. Published by Elsevier B.V.

  6. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    PubMed Central

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  7. Nonenzymatic Browning and Protein Aggregation in Royal Jelly during Room-Temperature Storage.

    PubMed

    Qiao, Jiangtao; Wang, Xueyu; Liu, Liqiang; Zhang, Hongcheng

    2018-02-28

    Royal jelly possesses numerous functional properties. Improper storage usually causes bioactivity loss, especially queen differentiation activity. To determine changes in royal jelly, we investigated nonenzymatic browning and protein changes in royal jelly during room-temperature storage from 1 to 6 months. Our results indicate that royal jelly experiences nonenzymatic browning and protein aggregation. The products of nonenzymatic browning dramatically increased, especially N ε -carboxymethyl lysine (CML) with growth of approximately 7-fold. We speculate that CML may be recognized as a freshness marker for royal jelly. Our results also demonstrate that the major royal jelly protein 1 (MRJP1) monomer gradually aggregated with MRJP1 oligomers into new oligomers of about 440 and 700 kDa. This suggests that the reduction of MRJP1 monomer may be attributable to aggregation. We provide the novel explanation that the differentiation loss of royal jelly may be due to the aggregation of MRJP1 limiting the honeybees' ability to digest and absorb royal jelly.

  8. The aggregation behavior and interactions of yak milk protein under thermal treatment.

    PubMed

    Wang, T T; Guo, Z W; Liu, Z P; Feng, Q Y; Wang, X L; Tian, Q; Ren, F Z; Mao, X Y

    2016-08-01

    The aggregation behavior and interactions of yak milk protein were investigated after heat treatments. Skim yak milk was heated at temperatures in the range of 65 to 95°C for 10 min. The results showed that the whey proteins in yak milk were denatured after heat treatment, especially at temperatures higher than 85°C. Sodium dodecyl sulfate-PAGE analysis indicated that heat treatment induced milk protein denaturation accompanied with aggregation to a certain extent. When the heating temperature was 75 and 85°C, the aggregation behavior of yak milk proteins was almost completely due to the formation of disulfide bonds, whereas denatured α-lactalbumin and β-lactoglobulin interacted with κ-casein. When yak milk was heated at 85 and 95°C, other noncovalent interactions were found between proteins including hydrophobic interactions. The particle size distributions and microstructures demonstrated that the heat stability of yak milk proteins was significantly lowered by heat treatment. When yak milk was heated at 65 and 75°C, no obvious changes were found in the particle size distribution and microstructures in yak milk. When the temperature was 85 and 95°C, the particle size distribution shifted to larger size trend and aggregates were visible in the heated yak milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. A Consensus Method for the Prediction of ‘Aggregation-Prone’ Peptides in Globular Proteins

    PubMed Central

    Tsolis, Antonios C.; Papandreou, Nikos C.; Iconomidou, Vassiliki A.; Hamodrakas, Stavros J.

    2013-01-01

    The purpose of this work was to construct a consensus prediction algorithm of ‘aggregation-prone’ peptides in globular proteins, combining existing tools. This allows comparison of the different algorithms and the production of more objective and accurate results. Eleven (11) individual methods are combined and produce AMYLPRED2, a publicly, freely available web tool to academic users (http://biophysics.biol.uoa.gr/AMYLPRED2), for the consensus prediction of amyloidogenic determinants/‘aggregation-prone’ peptides in proteins, from sequence alone. The performance of AMYLPRED2 indicates that it functions better than individual aggregation-prediction algorithms, as perhaps expected. AMYLPRED2 is a useful tool for identifying amyloid-forming regions in proteins that are associated with several conformational diseases, called amyloidoses, such as Altzheimer's, Parkinson's, prion diseases and type II diabetes. It may also be useful for understanding the properties of protein folding and misfolding and for helping to the control of protein aggregation/solubility in biotechnology (recombinant proteins forming bacterial inclusion bodies) and biotherapeutics (monoclonal antibodies and biopharmaceutical proteins). PMID:23326595

  10. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions.

    PubMed

    Snell, Jared R; Zhou, Chen; Carpenter, John F; Randolph, Theodore W

    2016-10-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported. Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest that nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Protein Aggregates and Novel Presenilin Gene Variants in Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M.; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E.; Monte, Federica del

    2010-01-01

    Background Heart failure (HF) is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as Idiopathic Dilated Cardiomyopathy (iDCM), the origin of HF is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of β-amyloid impair cell function and lead to cell death. Methods and Results We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca2+ homeostasis. Additionally, we have identified two new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 co-immunoprecipitates with SERCA2a. Conclusions Based on these findings we propose that two mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca2+ handling and a direct effect of PSEN1 sequence variants on EC-coupling protein function. PMID:20194882

  12. Patterns of [PSI+] aggregation allow insights into cellular organization of yeast prion aggregates

    PubMed Central

    Tyedmers, Jens

    2012-01-01

    The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates. PMID:22449721

  13. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape.

    PubMed

    Adamcik, Jozef; Mezzenga, Raffaele

    2018-02-15

    Protein folding involves a large number of steps and conformations in which the folding protein samples different thermodynamic states characterized by local minima. Kinetically trapped on- or off-pathway intermediates are metastable folding intermediates towards the lowest absolute energy minima, which have been postulated to be the natively folded state where intramolecular interactions dominate, and the amyloid state where intermolecular interactions dominate. However, this view largely neglects the rich polymorphism found within amyloid species. We review the protein folding energy landscape in view of recent findings identifying specific transition routes among different amyloid polymorphs. Observed transitions such as twisted ribbon→crystal or helical ribbon→nanotube, and forbidden transitions such helical ribbon↛crystal, are discussed and positioned within the protein folding and aggregation energy landscape. Finally, amyloid crystals are identified as the ground state of the protein folding and aggregation energy landscape. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fibrillar Structure and Charge Determine the Interaction of Polyglutamine Protein Aggregates with the Cell Surface*

    PubMed Central

    Trevino, R. Sean; Lauckner, Jane E.; Sourigues, Yannick; Pearce, Margaret M.; Bousset, Luc; Melki, Ronald; Kopito, Ron R.

    2012-01-01

    The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. PMID:22753412

  15. MBAR-enhanced lattice Monte Carlo simulation of the effect of helices on membrane protein aggregation

    NASA Astrophysics Data System (ADS)

    Xu, Yuanwei; Rodger, P. Mark

    2017-03-01

    We study the effect of helical structure on the aggregation of proteins using a simplified lattice protein model with an implicit membrane environment. A recently proposed Monte Carlo approach, which exploits the proven statistical optimality of the MBAR estimator in order to improve simulation efficiency, was used. The results show that with both two and four proteins present, the tendency to aggregate is strongly expedited by the presence of amphipathic helix (APH), whereas a transmembrane helix (TMH) slightly disfavours aggregation. When four protein molecules are present, partially aggregated states (dimers and trimers) were more common when the APH was present, compared with the cases where no helices or only the TMH is present.

  16. Detection and characterization of red blood cell (RBC) aggregation with photoacoustics

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.

    2012-02-01

    Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.

  17. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    PubMed

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and

  18. PIGN prevents protein aggregation in the endoplasmic reticulum independently of its function in the GPI synthesis.

    PubMed

    Ihara, Shinji; Nakayama, Sohei; Murakami, Yoshiko; Suzuki, Emiko; Asakawa, Masayo; Kinoshita, Taroh; Sawa, Hitoshi

    2017-02-01

    Quality control of proteins in the endoplasmic reticulum (ER) is essential for ensuring the integrity of secretory proteins before their release into the extracellular space. Secretory proteins that fail to pass quality control form aggregates. Here we show the PIGN-1/PIGN is required for quality control in Caenorhabditis elegans and in mammalian cells. In C. elegans pign-1 mutants, several proteins fail to be secreted and instead form abnormal aggregation. PIGN-knockout HEK293 cells also showed similar protein aggregation. Although PIGN-1/PIGN is responsible for glycosylphosphatidylinositol (GPI)-anchor biosynthesis in the ER, certain mutations in C. elegans pign-1 caused protein aggregation in the ER without affecting GPI-anchor biosynthesis. These results show that PIGN-1/PIGN has a conserved and non-canonical function to prevent deleterious protein aggregation in the ER independently of the GPI-anchor biosynthesis. PIGN is a causative gene for some human diseases including multiple congenital seizure-related syndrome (MCAHS1). Two pign-1 mutations created by CRISPR/Cas9 that correspond to MCAHS1 also cause protein aggregation in the ER, implying that the dysfunction of the PIGN non-canonical function might affect symptoms of MCAHS1 and potentially those of other diseases. © 2017. Published by The Company of Biologists Ltd.

  19. Conformational analysis of misfolded protein aggregation by FRET and live-cell imaging techniques.

    PubMed

    Kitamura, Akira; Nagata, Kazuhiro; Kinjo, Masataka

    2015-03-16

    Cellular homeostasis is maintained by several types of protein machinery, including molecular chaperones and proteolysis systems. Dysregulation of the proteome disrupts homeostasis in cells, tissues, and the organism as a whole, and has been hypothesized to cause neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). A hallmark of neurodegenerative disorders is formation of ubiquitin-positive inclusion bodies in neurons, suggesting that the aggregation process of misfolded proteins changes during disease progression. Hence, high-throughput determination of soluble oligomers during the aggregation process, as well as the conformation of sequestered proteins in inclusion bodies, is essential for elucidation of physiological regulation mechanism and drug discovery in this field. To elucidate the interaction, accumulation, and conformation of aggregation-prone proteins, in situ spectroscopic imaging techniques, such as Förster/fluorescence resonance energy transfer (FRET), fluorescence correlation spectroscopy (FCS), and bimolecular fluorescence complementation (BiFC) have been employed. Here, we summarize recent reports in which these techniques were applied to the analysis of aggregation-prone proteins (in particular their dimerization, interactions, and conformational changes), and describe several fluorescent indicators used for real-time observation of physiological states related to proteostasis.

  20. Protein Aggregation Inhibitors for ALS Therapy

    DTIC Science & Technology

    2013-07-01

    mechanisms of neuronal degeneration remain unknown in ALS, it has been postulated that protein misfolding and aggregation may be an early event that...our best compounds from last year at different doses in the ALS mouse model, and investigating possible mechanisms of action of the compounds...attachment of groups for pull-down mechanism of action experiments. Table 1. SAR studies of substituted pyrazolones. Entry R1 R2 EC50 (M) a

  1. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry.

    PubMed

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-10-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. © 2014 The Protein Society.

  2. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations.

    PubMed

    Musiani, F; Giorgetti, A

    2017-01-01

    Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment. © 2017 Elsevier Inc. All rights reserved.

  3. Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem.

    PubMed

    Aguado, Alejandra; Fernández-Higuero, José Angel; Moro, Fernando; Muga, Arturo

    2015-08-15

    The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Impact of additives on the formation of protein aggregates and viscosity in concentrated protein solutions.

    PubMed

    Bauer, Katharina Christin; Suhm, Susanna; Wöll, Anna Katharina; Hubbuch, Jürgen

    2017-01-10

    In concentrated protein solutions attractive protein interactions may not only cause the formation of undesired aggregates but also of gel-like networks with elevated viscosity. To guarantee stable biopharmaceutical processes and safe formulations, both phenomenons have to be avoided as these may hinder regular processing steps. This work screens the impact of additives on both phase behavior and viscosity of concentrated protein solutions. For this purpose, additives known for stabilizing proteins in solution or modulating the dynamic viscosity were selected. These additives were PEG 300, PEG 1000, glycerol, glycine, NaCl and ArgHCl. Concentrated lysozyme and glucose oxidase solutions at pH 3 and 9 served as model systems. Fourier-transformed-infrared spectroscopy was chosen to determine the conformational stability of selected protein samples. Influencing protein interactions, the impact of additives was strongly dependent on pH. Of all additives investigated, glycine was the only one that maintained protein conformational and colloidal stability while decreasing the dynamic viscosity. Low concentrations of NaCl showed the same effect, but increasing concentrations resulted in visible protein aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2017-05-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  6. Human High Temperature Requirement Serine Protease A1 (HTRA1) Degrades Tau Protein Aggregates*

    PubMed Central

    Tennstaedt, Annette; Pöpsel, Simon; Truebestein, Linda; Hauske, Patrick; Brockmann, Anke; Schmidt, Nina; Irle, Inga; Sacca, Barbara; Niemeyer, Christof M.; Brandt, Roland; Ksiezak-Reding, Hanna; Tirniceriu, Anca Laura; Egensperger, Rupert; Baldi, Alfonso; Dehmelt, Leif; Kaiser, Markus; Huber, Robert; Clausen, Tim; Ehrmann, Michael

    2012-01-01

    Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed. PMID:22535953

  7. Protein lipoxidation: Detection strategies and challenges

    PubMed Central

    Aldini, Giancarlo; Domingues, M. Rosário; Spickett, Corinne M.; Domingues, Pedro; Altomare, Alessandra; Sánchez-Gómez, Francisco J.; Oeste, Clara L.; Pérez-Sala, Dolores

    2015-01-01

    Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets. PMID:26072467

  8. Effects of different isoforms of apoE on aggregation of the α-synuclein protein implicated in Parkinson's disease.

    PubMed

    Emamzadeh, Fatemeh Nouri; Aojula, Harmesh; McHugh, Patrick C; Allsop, David

    2016-04-08

    Parkinson's disease is a progressive brain disorder due to the degeneration of dopaminergic neurons in the substantia nigra. The accumulation of aggregated forms of α-synuclein protein into Lewy bodies is one of the characteristic features of this disease although the pathological role of any such protein deposits in causing neurodegeneration remains elusive. Here, the effects of different apolipoprotein E isoforms (apoE2, apoE3, apoE4) on the aggregation of α-synuclein in vitro were examined using thioflavin T assays and also an immunoassay to detect the formation of multimeric forms. Our results revealed that the aggregation of α-synuclein is influenced by apoE concentration. At low concentrations of apoE (<15nM), all of the isoforms were able to increase the aggregation of α-synuclein (50μM), with apoE4 showing the greatest stimulatory effect. This is in contrast to a higher concentration (>15nM) of these isoforms, where a decrease in the aggregation of α-synuclein was noted. The data show that exceptionally low levels of apoE may seed α-syn aggregation, which could potentially lead to the pathogenesis of α-synuclein-induced neurodegeneration. On the other hand, higher levels of apoE could potentially lower the degree of α-synuclein aggregation and confer protection. The differential effects noted with apoE4 could explain why this particular isoform results in an earlier age of onset for Parkinson's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP

    PubMed Central

    Jaru-Ampornpan, Peera; Shen, Kuang; Lam, Vinh Q.; Ali, Mona; Doniach, Sebastian; Jia, Tony Z.; Shan, Shu-ou

    2010-01-01

    Membrane proteins impose enormous challenges to cellular protein homeostasis during their post-translational targeting, and require chaperones to keep them soluble and translocation-competent. Here we show that a novel targeting factor in the chloroplast Signal Recognition Particle (cpSRP), cpSRP43, is a highly specific molecular chaperone that efficiently reverses the aggregation of its substrate proteins. In contrast to AAA+-chaperones, cpSRP43 utilizes specific binding interactions with its substrate to mediate its disaggregase activity. This ‘disaggregase’ capability can allow targeting machineries to more effectively capture their protein substrates, and emphasizes a close connection between protein folding and trafficking processes. Moreover, cpSRP43 provides the first example of an ATP-independent disaggregase, and demonstrates that efficient reversal of protein aggregation can be attained by specific binding interactions between a chaperone and its substrate. PMID:20424608

  10. A ratiometric fluorescent probe for hydrophobic proteins in aqueous solution based on aggregation-induced emission.

    PubMed

    Peng, Lu; Wei, Ruirui; Li, Kai; Zhou, Zhaojuan; Song, Panshu; Tong, Aijun

    2013-04-07

    A novel fluorescent probe 1 is reported here with ratiometric response to hydrophobic proteins (casein) or proteins with hydrophobic pockets (BSA, HSA) through hydrophobic interaction. Probe 1 underwent deprotonation in aqueous solution at pH 7.4 and emitted blue fluorescence at 436 nm. Upon the addition of BSA, HSA or casein, the aggregation-induced emission fluorescence of 1 at 518 nm was turned on. The fluorescence intensity ratio, I518/I436 was linearly related to the concentrations of these proteins. The detection limits for BSA, HSA and casein based on IUPAC (CDL = 3Sb m(-1)) were 16.2 μg mL(-1), 10.5 μg mL(-1) and 5.7 μg mL(-1), respectively.

  11. Sensitive and molecular size-selective detection of proteins using a chip-based and heteroliganded gold nanoisland by localized surface plasmon resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Surin; Lee, Suseung; Yi, Jongheop

    2011-04-01

    A highly sensitive and molecular size-selective method for the detection of proteins using heteroliganded gold nanoislands and localized surface plasmon resonance (LSPR) is described. Two different heteroligands with different chain lengths (3-mercaptopionicacid and decanethiol) were used in fabricating nanoholes for the size-dependent separation of a protein in comparison with its aggregate. Their ratios on gold nanoisland were optimized for the sensitive detection of superoxide dismutase (SOD1). This protein has been implicated in the pathology of amyotrophic lateral sclerosis (ALS). Upon exposure of the optimized gold nanoisland to a solution of SOD1 and aggregates thereof, changes in the LSPR spectra were observed which are attributed to the size-selective and covalent chemical binding of SOD1 to the nanoholes. With a lower detection limit of 1.0 ng/ml, the method can be used to selectively detect SOD1 in the presence of aggregates at the molecular level.

  12. High Throughput Differential Scanning Fluorimetry (DSF) Formulation Screening with Complementary Dyes to Assess Protein Unfolding and Aggregation in Presence of Surfactants.

    PubMed

    McClure, Sean M; Ahl, Patrick L; Blue, Jeffrey T

    2018-03-05

    The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® - a commercially available fluorescent rotor dye - for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.g. SYPRO™ Orange) interact with surfactants, complicating DSF measurements. CRM197 formulations were prepared and analyzed in standard 96-well plate rT-PCR system, using SYPRO™ Orange and PROTEOSTAT® dyes. Orthogonal techniques (DLS and IPF) are employed to confirm unfolding/aggregation in selected formulations. Selected formulations are subjected to non-thermal stresses (stirring and shaking) in plate based format to characterize aggregation with PROTEOSTAT®. Agreement is observed between SYPRO™ Orange (unfolding) and PROTEOSTAT® (aggregation) DSF melt temperatures across wide range of non-surfactant formulations. PROTEOSTAT® can clearly detect temperature induced aggregation in low concentration (0.2 mg/mL) CRM197 formulations containing surfactant. PROTEOSTAT® can be used to explore aggregation due to non-thermal stresses in plate based format amenable to high throughput screening. DSF measurements with complementary extrinsic dyes (PROTEOSTAT®, SYPRO™ Orange) are suitable for high throughput screening of antigen thermal stability, across a wide range of relevant formulation conditions - including surfactants -with standard, plate based rT-PCR instrumentation.

  13. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  14. Free energy landscapes for initiation and branching of protein aggregation.

    PubMed

    Zheng, Weihua; Schafer, Nicholas P; Wolynes, Peter G

    2013-12-17

    Experiments on artificial multidomain protein constructs have probed the early stages of aggregation processes, but structural details of the species that initiate aggregation remain elusive. Using the associative-memory, water-mediated, structure and energy model known as AWSEM, a transferable coarse-grained protein model, we performed simulations of fused constructs composed of up to four copies of the Titin I27 domain or its mutant I27* (I59E). Free energy calculations enable us to quantify the conditions under which such multidomain constructs will spontaneously misfold. Consistent with experimental results, the dimer of I27 is found to be the smallest spontaneously misfolding construct. Our results show how structurally distinct misfolded states can be stabilized under different thermodynamic conditions, and this result provides a plausible link between the single-molecule misfolding experiments under native conditions and aggregation experiments under denaturing conditions. The conditions for spontaneous misfolding are determined by the interplay among temperature, effective local protein concentration, and the strength of the interdomain interactions. Above the folding temperature, fusing additional domains to the monomer destabilizes the native state, and the entropically stabilized amyloid-like state is favored. Because it is primarily energetically stabilized, the domain-swapped state is more likely to be important under native conditions. Both protofibril-like and branching structures are found in annealing simulations starting from extended structures, and these structures suggest a possible connection between the existence of multiple amyloidogenic segments in each domain and the formation of branched, amorphous aggregates as opposed to linear fibrillar structures.

  15. Multirobot autonomous landmine detection using distributed multisensor information aggregation

    NASA Astrophysics Data System (ADS)

    Jumadinova, Janyl; Dasgupta, Prithviraj

    2012-06-01

    We consider the problem of distributed sensor information fusion by multiple autonomous robots within the context of landmine detection. We assume that different landmines can be composed of different types of material and robots are equipped with different types of sensors, while each robot has only one type of landmine detection sensor on it. We introduce a novel technique that uses a market-based information aggregation mechanism called a prediction market. Each robot is provided with a software agent that uses sensory input of the robot and performs calculations of the prediction market technique. The result of the agent's calculations is a 'belief' representing the confidence of the agent in identifying the object as a landmine. The beliefs from different robots are aggregated by the market mechanism and passed on to a decision maker agent. The decision maker agent uses this aggregate belief information about a potential landmine and makes decisions about which other robots should be deployed to its location, so that the landmine can be confirmed rapidly and accurately. Our experimental results show that, for identical data distributions and settings, using our prediction market-based information aggregation technique increases the accuracy of object classification favorably as compared to two other commonly used techniques.

  16. Hsp105 reduces the protein aggregation and cytotoxicity by expanded-polyglutamine proteins through the induction of Hsp70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagishi, Nobuyuki; Goto, Kazumasa; Nakagawa, Satomi

    2010-09-10

    Hsp105{alpha} and Hsp105{beta} are major heat shock proteins in mammalian cells and belong to the HSP105/110 family. Hsp105{alpha} is expressed constitutively in the cytoplasm of cells, while Hsp105{beta}, an alternatively spliced form of Hsp105{alpha}, is expressed specifically in the nucleus of cells during mild heat shock. Here, we show that not only Hsp105{beta} but also Hsp105{alpha} accumulated in the nucleus of cells following the expression of enhanced green fluorescent protein with a pathological length polyQ tract (EGFP-polyQ97) and suppressed the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Mutants of Hsp105{alpha} and Hsp105{beta} with changes in the nuclearmore » localization signal sequences, which localized exclusively in the cytoplasm with or without the expression of EGFP-polyQ97, did not suppress the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Furthermore, Hsp70 was induced by the co-expression of Hsp105{alpha} and EGFP-polyQ97, and the knockdown of Hsp70 reduced the inhibitory effect of Hsp105{alpha} and Hsp105{beta} on the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. These observations suggested that Hsp105{alpha} and Hsp105{beta} suppressed the expanded polyQ tract-induced protein aggregation and apoptosis through the induction of Hsp70.« less

  17. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry

    PubMed Central

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-01-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6–8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay’s experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. PMID:25043635

  18. Salt- and pH-induced desorption: Comparison between non-aggregated and aggregated mussel adhesive protein, Mefp-1, and a synthetic cationic polyelectrolyte.

    PubMed

    Krivosheeva, Olga; Dedinaite, Andra; Claesson, Per M

    2013-10-15

    Mussel adhesive proteins are of great interest in many applications due to their ability to bind strongly to many types of surfaces under water. Effective use such proteins, for instance the Mytilus edulis foot protein - Mefp-1, for surface modification requires achievement of a large adsorbed amount and formation of a layer that is resistant towards desorption under changing conditions. In this work we compare the adsorbed amount and layer properties obtained by using a sample containing small Mefp-1 aggregates with that obtained by using a non-aggregated sample. We find that the use of the sample containing small aggregates leads to higher adsorbed amount, larger layer thickness and similar water content compared to what can be achieved with a non-aggregated sample. The layer formed by the aggregated Mefp-1 was, after removal of the protein from bulk solution, exposed to aqueous solutions with high ionic strength (up to 1M NaCl) and to solutions with low pH in order to reduce the electrostatic surface affinity. It was found that the preadsorbed Mefp-1 layer under all conditions explored was significantly more resistant towards desorption than a layer built by a synthetic cationic polyelectrolyte with similar charge density. These results suggest that the non-electrostatic surface affinity for Mefp-1 is larger than for the cationic polyelectrolyte. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde.

    PubMed

    Wu, Wei; Hua, Yufei; Lin, Qinlu

    2014-03-01

    Malondialdehyde (MDA) was selected as a representative of lipid peroxidation products to investigate the effects of oxidative modification on thermal aggregation and gel properties of soy protein by lipid peroxidation products. Incubation of soy protein with increasing concentration of MDA resulted in gradual decrease of particle size and content of thermal aggregates during heat denaturation. Oxidative modification by MDA resulted in a decrease in water holding capacity, gel hardness, and gel strength of soy protein gel. An increase in coarseness and interstice of MDA modified protein gel network was accompanied by uneven distribution of interstice as MDA concentration increased. The results showed that degree of thermal aggregation of MDA-modified soy protein gradually decreased as MDA concentration increased, which contributed to a decrease in water holding capacity, gel hardness, and gel strength of MDA-modified soy protein gel.

  20. SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating

    NASA Astrophysics Data System (ADS)

    Fazio, Barbara; D'Andrea, Cristiano; Foti, Antonino; Messina, Elena; Irrera, Alessia; Donato, Maria Grazia; Villari, Valentina; Micali, Norberto; Maragò, Onofrio M.; Gucciardi, Pietro G.

    2016-06-01

    Strategies for in-liquid molecular detection via Surface Enhanced Raman Scattering (SERS) are currently based on chemically-driven aggregation or optical trapping of metal nanoparticles in presence of the target molecules. Such strategies allow the formation of SERS-active clusters that efficiently embed the molecule at the “hot spots” of the nanoparticles and enhance its Raman scattering by orders of magnitude. Here we report on a novel scheme that exploits the radiation pressure to locally push gold nanorods and induce their aggregation in buffered solutions of biomolecules, achieving biomolecular SERS detection at almost neutral pH. The sensor is applied to detect non-resonant amino acids and proteins, namely Phenylalanine (Phe), Bovine Serum Albumin (BSA) and Lysozyme (Lys), reaching detection limits in the μg/mL range. Being a chemical free and contactless technique, our methodology is easy to implement, fast to operate, needs small sample volumes and has potential for integration in microfluidic circuits for biomarkers detection.

  1. SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating

    PubMed Central

    Fazio, Barbara; D’Andrea, Cristiano; Foti, Antonino; Messina, Elena; Irrera, Alessia; Donato, Maria Grazia; Villari, Valentina; Micali, Norberto; Maragò, Onofrio M.; Gucciardi, Pietro G.

    2016-01-01

    Strategies for in-liquid molecular detection via Surface Enhanced Raman Scattering (SERS) are currently based on chemically-driven aggregation or optical trapping of metal nanoparticles in presence of the target molecules. Such strategies allow the formation of SERS-active clusters that efficiently embed the molecule at the “hot spots” of the nanoparticles and enhance its Raman scattering by orders of magnitude. Here we report on a novel scheme that exploits the radiation pressure to locally push gold nanorods and induce their aggregation in buffered solutions of biomolecules, achieving biomolecular SERS detection at almost neutral pH. The sensor is applied to detect non-resonant amino acids and proteins, namely Phenylalanine (Phe), Bovine Serum Albumin (BSA) and Lysozyme (Lys), reaching detection limits in the μg/mL range. Being a chemical free and contactless technique, our methodology is easy to implement, fast to operate, needs small sample volumes and has potential for integration in microfluidic circuits for biomarkers detection. PMID:27246267

  2. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold

    PubMed Central

    Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.

    2015-01-01

    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187

  3. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein.

    PubMed

    Chen, Zhiqiang; Huang, Chao; Chennamsetty, Naresh; Xu, Xuankuo; Li, Zheng Jian

    2016-08-19

    Cation-exchange chromatography (CEX) of a structurally unstable Fc-fusion protein exhibited multi-peak elution profile upon a salt-step elution due to protein aggregation during intra-column buffer transition where low pH and high salt coexisted. The protein exhibited a single-peak elution behavior during a pH-step elution; nevertheless, the levels of soluble aggregates (i.e. high molecular weight species, HMW) in the CEX eluate were still found up to 12-fold higher than that for the load material. The amount of the aggregates formed upon the pH-step elution was dependent on column loading with maximum HMW achieved at intermediate loading levels, supporting the hypothesis that the aggregation was the result of both the conformational changes of the bound protein and the solution concentration of the aggregation-susceptible proteins during elution. Factors such as high load pH, short protein/resin contact time, hydrophilic resin surface, and weak ionizable ligand were effective, to some extent, to reduce aggregate formation by improving the structural integrity of the bound protein. An orthogonal technique, differential scanning fluorimetry (DSF) using Sypro Orange dye confirmed that the bound protein exposed more hydrophobic area than the native molecule in free solution, especially in the pH 4-5 range. The Sypro Orange dye study of resin surface property also demonstrated that the poly[styrene-divinylbenzene]-based Poros XS with polyhydroxyl surface coating is more hydrophobic compared to the agarose-based CM Sepharose FF and SP Sepharose FF. The hydrophobic property of Poros XS contributed to stronger interactions with the partially unfolded bound protein and consequently to the higher aggregate levels seen in Poros XS eluate. This work also investigates the aggregation reversibility in CEX eluate where up to 66% of the aggregates were observed to dissociate into native monomers over a period of 120h, and links the aggregate stability to such conditions as resin

  4. Lens protein composition, glycation and high molecular weight aggregation in aging rats.

    PubMed

    Swamy, M S; Abraham, E C

    1987-10-01

    Because of minimal or no turnover, lens proteins are subjected to substantial post-translational modifications which in turn disrupt lens architecture and change the optical properties leading to senile cataract formation. Progressive glycation is believed to have the potential to initiate the changes that are conducive to lens opacification. Fisher 344 rats were systematically followed from juvenile to older and aged phases of their life to study the relationship between lens glycation and high molecular weight (HMW) aggregate formation as well as quantitative and qualitative changes in lens crystallins. Levels of glycated proteins were quantified by affinity chromatography. Changes in lens crystallin composition and HMW aggregate formation were monitored by molecular sieve HPLC, further confirmed by SDS-PAGE and IEF techniques. As the age advances HMW and insoluble proteins increase with a concomitant disappearance of gamma-crystallins from soluble fraction. This disappearance of gamma-crystallins coincided with increased glycation (approximately 2-fold higher in insoluble fraction) and decreased sulfhydryl groups from soluble fraction. It appears that lens protein glycation, disappearance of gamma-crystallins and sulfhydryls from soluble fraction and increase of insoluble fraction and HMW aggregate are interrelated.

  5. Aggregation of model amyloid insulin protein in crowding environments and under ac-electric fields

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongli; Jing, Benxin; Murray, Brian; Sorci, Mirco; Belfort, Georges; Zhu, Y.

    2013-03-01

    In vitro experiments have been widely used to characterize the misfolding/unfolding pathway characteristic of amylodogenic proteins. Conversion from natively folded amyloidogenic proteins to oligomers via nucleation is the accepted path to fibril formation upon heating over a certain lag time period. In this work, we investigate the effect of crowing environment and external electric fields on the pathway and kinetics of insulin, a well-established amyloid model protein by single fluorescence spectroscopy and imaging. With added co-solutes, such as glycerol and polyvinylpyrrolidone (PVP), to mimic the cellular crowding environments, we have observed that the lag time can be significantly prolonged. The lag time increases with increasing co-solute concentration, yet showing little dependence on solution viscosity. Conversely, applied ac-electric fields can considerably shorten the lag timewhen a critical ac-voltage is exceeded. The strong dependence of lag time on ac-frequency over a narrow range of 500 Hz-5 kHz indicates the effect of ac-electroosmosis on the diffusion controlled process of insulin nucleation. Yet, no conformational structure is detected with insulin under applied ac-fields, suggesting the equivalence of ac-polarization to the conventional thermal activation process for insulin aggregation. These finding suggest that at least the aggregation kinetics of insulin can be altered by local solution condition or external stimuli, which gives new insight to the treatment of amyloid related diseases.

  6. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition.

    PubMed

    Moll, Lorna; Ben-Gedalya, Tziona; Reuveni, Hadas; Cohen, Ehud

    2016-04-01

    The discovery that the alteration of aging by reducing the activity of the insulin/IGF-1 signaling (IIS) cascade protects nematodes and mice from neurodegeneration-linked, toxic protein aggregation (proteotoxicity) raises the prospect that IIS inhibitors bear therapeutic potential to counter neurodegenerative diseases. Recently, we reported that NT219, a highly efficient IGF-1 signaling inhibitor, protects model worms from the aggregation of amyloid β peptide and polyglutamine peptides that are linked to the manifestation of Alzheimer's and Huntington's diseases, respectively. Here, we employed cultured cell systems to investigate whether NT219 promotes protein homeostasis (proteostasis) in mammalian cells and to explore its underlying mechanisms. We found that NT219 enhances the aggregation of misfolded prion protein and promotes its deposition in quality control compartments known as "aggresomes." NT219 also elevates the levels of certain molecular chaperones but, surprisingly, reduces proteasome activity and impairs autophagy. Our findings show that IGF-1 signaling inhibitors in general and NT219 in particular can promote proteostasis in mammalian cells by hyperaggregating hazardous proteins, thereby bearing the potential to postpone the onset and slow the progression of neurodegenerative illnesses in the elderly.-Moll, L., Ben-Gedalya, T., Reuveni, H., Cohen, E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. © FASEB.

  7. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates.

    PubMed

    Liu, Shu; Hossinger, André; Göbbels, Sarah; Vorberg, Ina M

    2017-03-04

    Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.

  8. High-throughput label-free detection of aggregate platelets with optofluidic time-stretch microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Ito, Takuro; Guo, Baoshan; Kobayashi, Hirofumi; Ozeki, Yasuyuki; Yatomi, Yutaka; Goda, Keisuke

    2017-02-01

    According to WHO, approximately 10 million new cases of thrombotic disorders are diagnosed worldwide every year. In the U.S. and Europe, their related diseases kill more people than those from AIDS, prostate cancer, breast cancer and motor vehicle accidents combined. Although thrombotic disorders, especially arterial ones, mainly result from enhanced platelet aggregability in the vascular system, visual detection of platelet aggregates in vivo is not employed in clinical settings. Here we present a high-throughput label-free platelet aggregate detection method, aiming at the diagnosis and monitoring of thrombotic disorders in clinical settings. With optofluidic time-stretch microscopy with a spatial resolution of 780 nm and an ultrahigh linear scanning rate of 75 MHz, it is capable of detecting aggregated platelets in lysed blood which flows through a hydrodynamic-focusing microfluidic device at a high throughput of 10,000 particles/s. With digital image processing and statistical analysis, we are able to distinguish them from single platelets and other blood cells via morphological features. The detection results are compared with results of fluorescence-based detection (which is slow and inaccurate, but established). Our results indicate that the method holds promise for real-time, low-cost, label-free, and minimally invasive detection of platelet aggregates, which is potentially applicable to detection of platelet aggregates in vivo and to the diagnosis and monitoring of thrombotic disorders in clinical settings. This technique, if introduced clinically, may provide important clinical information in addition to that obtained by conventional techniques for thrombotic disorder diagnosis, including ex vivo platelet aggregation tests.

  9. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes.

    PubMed

    Dasmeh, Pouria; Kepp, Kasper P

    2017-08-01

    Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million years, significantly higher than in other primates and rodents, although these paradoxically generally evolve much faster. The high evolutionary rate was partly due to relaxation of some selection pressures and partly to distinct positive selection of SOD1 in great apes. We then show that higher stability and net charge and changes at the dimer interface were selectively introduced upon separation from old world monkeys and lesser apes (gibbons). Consequently, human, chimpanzee and gorilla SOD1s have a net charge of -6 at physiological pH, whereas the closely related gibbons and macaques have -3. These features consistently point towards selection against the malicious aggregation effects of elevated SOD1 levels in long-living great apes. The findings mirror the impact of human SOD1 mutations that reduce net charge and/or stability and cause ALS, a motor neuron disease characterized by oxidative stress and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.

  10. Utilizing dynamic light scattering as a process analytical technology for protein folding and aggregation monitoring in vaccine manufacturing.

    PubMed

    Yu, Zhou; Reid, Jennifer C; Yang, Yan-Ping

    2013-12-01

    Protein aggregation is a common challenge in the manufacturing of biological products. It is possible to minimize the extent of aggregation through timely measurement and in-depth characterization of aggregation. In this study, we demonstrated the use of dynamic light scattering (DLS) to monitor inclusion body (IB) solubilization, protein refolding, and aggregation near the production line of a recombinant protein-based vaccine candidate. Our results were in good agreement with those measured by size-exclusion chromatography. DLS was also used to characterize the mechanism of aggregation. As DLS is a quick, nonperturbing technology, it can potentially be used as an at-line process analytical technology to ensure complete IB solubilization and aggregate-free refolding. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab.

    PubMed

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.

  12. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab

    PubMed Central

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions. PMID:26514585

  13. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele; Fischer, Peter

    2013-04-01

    The aggregation of proteins is of fundamental relevance in a number of daily phenomena, as important and diverse as blood coagulation, medical diseases, or cooking an egg in the kitchen. Colloidal food systems, in particular, are examples that have great significance for protein aggregation, not only for their importance and implications, which touches on everyday life, but also because they allow the limits of the colloidal science analogy to be tested in a much broader window of conditions, such as pH, ionic strength, concentration and temperature. Thus, studying the aggregation and self-assembly of proteins in foods challenges our understanding of these complex systems from both the molecular and statistical physics perspectives. Last but not least, food offers a unique playground to study the aggregation of proteins in three, two and one dimensions, that is to say, in the bulk, at air/water and oil/water interfaces and in protein fibrillation phenomena. In this review we will tackle this very ambitious task in order to discuss the current understanding of protein aggregation in the framework of foods, which is possibly one of the broadest contexts, yet is of tremendous daily relevance.

  14. Protein Kinase A Regulates Molecular Chaperone Transcription and Protein Aggregation

    PubMed Central

    Prince, Thomas; Calderwood, Stuart K.

    2011-01-01

    Heat shock factor 1 (HSF1) regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα) and becomes phosphorylated on at least one regulatory serine residue (S320). We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb) and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q) tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control. PMID:22216146

  15. Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide

    PubMed Central

    Choi, Mal-Gi; Kim, Mi Jin; Kim, Do-Geun; Yu, Ri; Jang, You-Na

    2018-01-01

    α-Synuclein (α-syn) is a major component of Lewy bodies found in synucleinopathies including Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB). Under the pathological conditions, α-syn tends to generate a diverse form of aggregates showing toxicity to neuronal cells and able to transmit across cells. However, mechanisms by which α-syn aggregates affect cytotoxicity in neurons have not been fully elucidated. Here we report that α-syn aggregates preferentially sequester specific synaptic proteins such as vesicle-associated membrane protein 2 (VAMP2) and synaptosomal-associated protein 25 (SNAP25) through direct binding which is resistant to SDS. The sequestration effect of α-syn aggregates was shown in a cell-free system, cultured primary neurons, and PD mouse model. Furthermore, we identified a specific blocking peptide derived from VAMP2 which partially inhibited the sequestration by α-syn aggregates and contributed to reduced neurotoxicity. These results provide a mechanism of neurotoxicity mediated by α-syn aggregates and suggest that the blocking peptide interfering with the pathological role of α-syn aggregates could be useful for designing a potential therapeutic drug for the treatment of PD. PMID:29608598

  16. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  17. Controllable g5p-Protein-Directed Aggregation of ssDNA-Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Maye, M; Zhang, Y

    We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.

  18. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusionmore » of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.« less

  19. Effects of crowders on the equilibrium and kinetic properties of protein aggregation

    NASA Astrophysics Data System (ADS)

    Bridstrup, John; Yuan, Jian-Min

    2016-08-01

    The equilibrium and kinetic properties of protein aggregation systems in the presence of crowders are investigated using simple, illuminating models based on mass-action laws. Our model yields analytic results for equilibrium properties of protein aggregates, which fit experimental data of actin and ApoC-II with crowders reasonably well. When the effects of crowders on rate constants are considered, our kinetic model is in good agreement with experimental results for actin with dextran as the crowder. Furthermore, the model shows that as crowder volume fraction increases, the length distribution of fibrils becomes narrower and shifts to shorter values due to volume exclusion.

  20. Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies.

    PubMed

    Bourdenx, Mathieu; Koulakiotis, Nikolaos Stavros; Sanoudou, Despina; Bezard, Erwan; Dehay, Benjamin; Tsarbopoulos, Anthony

    2017-08-01

    Alzheimer's and Parkinson's diseases are the most prevalent neurodegenerative diseases that generate important health-related direct and indirect socio-economic costs. They are characterized by severe neuronal losses in several disease-specific brain regions associated with deposits of aggregated proteins. In Alzheimer's disease, β-amyloid peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein tau are the two main neuropathological lesions, while Parkinson's disease is defined by the presence of Lewy Bodies that are intraneuronal proteinaceous cytoplasmic inclusions. α-Synuclein has been identified as a major protein component of Lewy Bodies and heavily implicated in the pathogenesis of Parkinson's disease. In the past few years, evidence has emerged to explain how these aggregate-prone proteins can undergo spontaneous self-aggregation, propagate from cell to cell, and mediate neurotoxicity. Current research now indicates that oligomeric forms are probably the toxic species. This article discusses recent progress in the understanding of the pathogenesis of these diseases, with a focus on the underlying mechanisms of protein aggregation, and emphasizes the pathophysiological molecular mechanisms leading to cellular toxicity. Finally, we present the putative direct link between β-amyloid peptide and tau in causing toxicity in Alzheimer's disease as well as α-synuclein in Parkinson's disease, along with some of the most promising therapeutic strategies currently in development for those incurable neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emadi, Saeed, E-mail: emadi@iasbs.ac.ir; Behzadi, Maliheh

    Highlights: • Lysozyme aggregated in guanidine thiocyanate (1.0 and 2.0 M). • Lysozyme aggregated in guanidine hydrochloride (4 and 5 M). • Lysozyme did not aggregated at any concentration (0.5–5 M) of urea. • Unfolding pathway is more important than unfolding per se in aggregation. - Abstract: Protein aggregation and its subsequent deposition in different tissues culminate in a diverse range of diseases collectively known as amyloidoses. Aggregation of hen or human lysozyme depends on certain conditions, namely acidic pH or the presence of additives. In the present study, the effects on the aggregation of hen egg-white lysozyme via incubationmore » in concentrated solutions of three different chaotropic agents namely guanidine thiocyanate, guanidine hydrochloride and urea were investigated. Here we used three different methods for the detection of the aggregates, thioflavin T fluorescence, circular dichroism spectroscopy and atomic force microscopy. Our results showed that upon incubation with different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0 M) of the chemical denaturants, lysozyme was aggregated at low concentrations of guanidine thiocyanate (1.0 and 2.0 M) and at high concentrations of guanidine hydrochloride (4 and 5 M), although no fibril formation was detected. In the case of urea, no aggregation was observed at any concentration.« less

  2. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases

    PubMed Central

    Alam, Parvez; Chaturvedi, Sumit Kumar; Siddiqi, Mohammad Khursheed; Rajpoot, Ravi Kant; Ajmal, Mohd Rehan; Zaman, Masihuz; Khan, Rizwan Hasan

    2016-01-01

    Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer’s, Parkinson’s and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases. PMID:27230476

  3. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases.

    PubMed

    Alam, Parvez; Chaturvedi, Sumit Kumar; Siddiqi, Mohammad Khursheed; Rajpoot, Ravi Kant; Ajmal, Mohd Rehan; Zaman, Masihuz; Khan, Rizwan Hasan

    2016-05-27

    Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer's, Parkinson's and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases.

  4. Attogram detection of picric acid by hexa-peri-hexabenzocoronene-based chemosensors by controlled aggregation-induced emission enhancement.

    PubMed

    Vij, Varun; Bhalla, Vandana; Kumar, Manoj

    2013-06-12

    Hexa-peri-hexabenzocoronene (HBC) based molecules 5 and 6 have been designed and synthesized. These planar coronenes are appended with rotors to invoke aggregation induced emission enhancement (AIEE) phenomenon by controlling the ratio of H2O in solutions of aggregates. These aggregates of HBC derivatives serve as highly selective chemosensors for picric acid (PA) in mixed aqueous solution. These aggregates are also able to detect PA in vapor phase. In addition, fluorescent test strips have been prepared by dip-coating the Whatman paper with aggregates of both compounds for trace detection of PA in contact mode with detection limits in attograms.

  5. Protein aggregates in Huntington’s disease

    PubMed Central

    Arrasate, Montserrat; Finkbeiner, Steven

    2014-01-01

    Huntington’s disease (HD) is an incurable neurodegenerative disease characterized by abnormal motor movements, personality changes, and early death. HD is caused by a mutation in the IT-15 gene that expands abnormally the number of CAG nucleotide repeats. As a result, the translated protein huntingtin contains disease-causing expansions of glutamines (polyQ) that make it prone to misfold and aggregate. While the gene and mutations that cause HD are known, the mechanisms underlying HD pathogenesis are not. Here we will review the state of knowledge of HD, focusing especially on a hallmark pathological feature—intracellular aggregates of mutant Htt called inclusion bodies (IBs). We will describe the role of IBs in the disease. We speculate that IB formation could be just one component of a broader coping response triggered by misfolded Htt whose efficacy may depend on the extent to which it clears toxic forms of mutant Htt. We will describe how IB formation might be regulated and which factors could determine different coping responses in different subsets of neurons. A differential regulation of IB formation as a function of the cellular context could, eventually, explain part of the neuronal vulnerability observed in HD. PMID:22200539

  6. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.

    PubMed

    Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J

    2016-06-03

    Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.

  7. Aggregation of a Monoclonal Antibody Induced by Adsorption to Stainless Steel

    PubMed Central

    Bee, Jared S.; Davis, Michele; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2014-01-01

    Stainless steel is a ubiquitous surface in therapeutic protein production equipment and is also present as the needle in some pre-filled syringe biopharmaceutical products. Stainless steel microparticles can cause of aggregation of a monoclonal antibody (mAb). The initial rate of mAb aggregation was second-order in steel surface area and zero-order in mAb concentration, generally consistent with a bimolecular surface aggregation being the rate-limiting step. Polysorbate 20 (PS20) suppressed the aggregation yet was unable to desorb the firmly bound first layer of protein that adsorbs to the stainless steel surface. Also, there was no exchange of mAb from the first adsorbed layer to the bulk phase, suggesting that the aggregation process actually occurs on subsequent adsorption layers. No oxidized Met residues were detected in the mass spectrum of a digest of a highly aggregated mAb, although there was five-fold increase in carbonyl groups due to protein oxidation. PMID:19725039

  8. Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white.

    PubMed

    Liu, Ya-Fei; Oey, Indrawati; Bremer, Phil; Carne, Alan; Silcock, Pat

    2017-01-01

    The effect of either pulsed electric fields (PEF) or thermal processing on protein aggregation of ovomucin-depleted egg white (OdEW) solutions at different pH was assessed by solution turbidity and SDS-PAGE. Heating to 60°C for 10min caused marked protein aggregation of OdEW at pH5, 7, and 9. At constant electric field strength (E=1.4-1.8kV/cm), PEF processing under high specific energy input (W spec =260-700kJ/kg) induced some protein aggregation at pH5 and 7, but not at either pH4 or 9. Similar effects of pH on protein aggregation were observed upon PEF processing at varied E (from 0.7 to 1.7kV/cm) but with constant W spec (713kJ/kg). Analysis by SDS-PAGE revealed that proteins in the OdEW solution at pH5 were most susceptible to both PEF- and heat-induced protein aggregation and lysozyme was only involved in the formation of insoluble aggregates under PEF. The present study shows that PEF treatment has considerable potential for minimizing protein aggregation in the processing of heat-labile egg white proteins. Retaining the OdEW proteins in solution during processing has potential industry application, for example, protein fortification of drinks with OdEW, where minimizing solution turbidity would be advantageous. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Classification and Characterization of Therapeutic Antibody Aggregates

    PubMed Central

    Joubert, Marisa K.; Luo, Quanzhou; Nashed-Samuel, Yasser; Wypych, Jette; Narhi, Linda O.

    2011-01-01

    A host of diverse stress techniques was applied to a monoclonal antibody (IgG2) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134–25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG1 and IgG2 subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced. PMID:21454532

  10. Differences in the Pathways of Proteins Unfolding Induced by Urea and Guanidine Hydrochloride: Molten Globule State and Aggregates

    PubMed Central

    Povarova, Olga I.; Kuznetsova, Irina M.; Turoverov, Konstantin K.

    2010-01-01

    It was shown that at low concentrations guanidine hydrochloride (GdnHCl) can cause aggregation of proteins in partially folded state and that fluorescent dye 1-anilinonaphthalene-8-sulfonic acid (ANS) binds with these aggregates rather than with hydrophobic clusters on the surface of protein in molten globule state. That is why the increase in ANS fluorescence intensity is often recorded in the pathway of protein denaturation by GdnHCl, but not by urea. So what was previously believed to be the molten globule state in the pathway of protein denaturation by GdnHCl, in reality, for some proteins represents the aggregates of partially folded molecules. PMID:21152408

  11. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    PubMed

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  12. An online detection system for aggregate sizes and shapes based on digital image processing

    NASA Astrophysics Data System (ADS)

    Yang, Jianhong; Chen, Sijia

    2017-02-01

    Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.

  13. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease.

    PubMed

    Micsenyi, Matthew C; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin; Walkley, Steven U

    2013-06-26

    Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2(-/-) mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin-proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2(-/-) neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation.

  14. Lysosomal Membrane Permeability Stimulates Protein Aggregate Formation in Neurons of a Lysosomal Disease

    PubMed Central

    Micsenyi, Matthew C.; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin

    2013-01-01

    Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2−/− mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin–proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2−/− neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation. PMID:23804102

  15. Tracking protein aggregation and mislocalization in cells with flow cytometry.

    PubMed

    Ramdzan, Yasmin M; Polling, Saskia; Chia, Cheryl P Z; Ng, Ivan H W; Ormsby, Angelique R; Croft, Nathan P; Purcell, Anthony W; Bogoyevitch, Marie A; Ng, Dominic C H; Gleeson, Paul A; Hatters, Danny M

    2012-03-18

    We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.

  16. In silico engineering of aggregation-prone recombinant proteins for substrate recognition by the chaperonin GroEL.

    PubMed

    Kumar, Vipul; Punetha, Ankita; Sundar, Durai; Chaudhuri, Tapan K

    2012-01-01

    Molecular chaperones appear to have been evolved to facilitate protein folding in the cell through entrapment of folding intermediates on the interior of a large cavity formed between GroEL and its co-chaperonin GroES. They bind newly synthesized or non-native polypeptides through hydrophobic interactions and prevent their aggregation. Some proteins do not interact with GroEL, hence even though they are aggregation prone, cannot be assisted by GroEL for their folding. In this study, we have attempted to engineer these non-substrate proteins to convert them as the substrate for GroEL, without compromising on their function. We have used a computational biology approach to generate mutants of the selected proteins by selectively mutating residues in the hydrophobic patch, similar to GroES mobile loop region that are responsible for interaction with GroEL, and compared with the wild counterparts for calculation of their instability and aggregation propensities. The energies of the newly designed mutants were computed through molecular dynamics simulations. We observed increased aggregation propensity of some of the mutants formed after replacing charged amino acid residues with hydrophobic ones in the well defined hydrophobic patch, raising the possibility of their binding ability to GroEL. The newly generated mutants may provide potential substrates for Chaperonin GroEL, which can be experimentally generated and tested for their tendency of aggregation, interactions with GroEL and the possibility of chaperone-assisted folding to produce functional proteins.

  17. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    PubMed Central

    2011-01-01

    Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK)2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli) when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs) under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might also provide hints for

  18. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity

    PubMed Central

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-01-01

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity. PMID:22955885

  19. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity.

    PubMed

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-09-25

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity.

  20. Maillard-reaction-induced modification and aggregation of proteins and hardening of texture in protein bar model systems.

    PubMed

    Zhou, Peng; Guo, Mufan; Liu, Dasong; Liu, Xiaoming; Labuza, Teodore P

    2013-03-01

    The hardening of high-protein bars causes problems in their acceptability to consumers. The objective of this study was to determine the progress of the Maillard reaction in model systems of high-protein nutritional bars containing reducing sugars, and to illustrate the influences of the Maillard reaction on the modification and aggregation of proteins and the hardening of bar matrices during storage. The progress of the Maillard reaction, glycation, and aggregation of proteins, and textural changes in bar matrices were investigated during storage at 25, 35, and 45 °C. The initial development of the Maillard reaction caused little changes in hardness; however, further storage resulted in dramatic modification of protein with formation of high-molecular-weight polymers, resulting in the hardening in texture. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula minimized the changes in texture. The hardening of high-protein bars causes problems in their acceptability to consumers. Maillard reaction is one of the mechanisms contributing to the hardening of bar matrix, particularly for the late stage of storage. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula will minimize the changes in texture. © 2013 Institute of Food Technologists®

  1. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.

    PubMed

    Xiao, Peng; Li, Qingyun; Joo, Yongjoon; Nam, Jutaek; Hwang, Sekyu; Song, Jaejung; Kim, Sungjee; Joo, Chulmin; Kim, Ki Hean

    2013-11-01

    We report the feasibility of a novel contrast agent, namely "smart" gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). "Smart" AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with "smart" gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of "smart" AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.

  2. Role of the disaggregase ClpB in processing of proteins aggregated as inclusion bodies.

    PubMed

    Zblewska, Kamila; Krajewska, Joanna; Zolkiewski, Michal; Kędzierska-Mieszkowska, Sabina

    2014-08-01

    Overproduction of heterologous proteins in bacterial systems often results in the formation of insoluble inclusion bodies (IBs), which is a major impediment in biochemical research and biotechnology. In principle, the activity of molecular chaperones could be employed to gain control over the IB formation and to improve the recombinant protein yields, but the potential of each of the major bacterial chaperones (DnaK/J, GroEL/ES, and ClpB) to process IBs has not been fully established yet. We investigated the formation of inclusion bodies (IBs) of two aggregation-prone proteins, VP1LAC and VP1GFP, overproduced in Escherichiacoli in the presence and absence of the chaperone ClpB. We found that both ClpB isoforms, ClpB95 and ClpB80 accumulated in E. coli cells during the production of IBs. The amount of IB proteins increased in the absence of ClpB. ClpB supported the resolubilization and reactivation of the aggregated VP1LAC and VP1GFP in E. coli cells. The IB disaggregation was optimal in the presence of both ClpB95 and ClpB80. Our results indicate an essential role of ClpB in controlling protein aggregation and inclusion body formation in bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammadi, Somayeh; Khayatian, Gholamreza

    2017-10-01

    We have described a simple and reliable colorimetric method for the sensing of biothiols such as cysteine, homocysteine, and glutathione in biological samples. The selective binding of chitosan capped silver nanoparticles to biothiols induced aggregation of the chitosan-Ag NPs. But the other amino acids that do not have thiol group cannot aggregate the chitosan-Ag NPs. Aggregation of chitosan-Ag NPs has been confirmed with UV-vis absorption spectra, zeta potential and transmission electron microscopy images. Under optimum conditions, good linear relationships existed between the absorption ratios (at A500/A415) and the concentrations of cysteine, homocysteine, and glutathione in the range of 0.1-10.0 μM with detection limits of 15.0, 84.6 and 40.0 nM, respectively. This probe was successfully applied to detect these biothiols in biological samples (urine and plasma).

  4. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  5. Fluorescence lifetime dynamics of eGFP in protein aggregates with expanded polyQ

    NASA Astrophysics Data System (ADS)

    Ghukasyan, Vladimir; Hsu, Chih-Chun; Liu, Chia-Rung; Kao, Fu-Jen; Cheng, Tzu-Hao

    2009-02-01

    Expanding a polyglutamine (polyQ) stretch at the N-terminus of huntingtin protein is the main cause of the neurodegenerative disorder Huntington's disease (HD). Expansion of polyQ above 39 residues has an inherent propensity to form amyloid-like fibrils and aggregation of the mutant protein is found to be a critical component for abnormal pathology of HD. Using yeast Saccharomyces cerevisiae as a model system, we have observed a decrease in fluorescence lifetime of the enhanced green fluorescence protein (eGFP) fused to 97 successive glutamine residues (97Q). Compared to the sample expressing evenly distributed eGFP, the 97Q-eGFP fusion proteins show the formation of grain-like particles and the reduction of eGFP lifetime by ~250 ps as measured by time-correlated single-photon counting technique (TCSPC). More importantly, this phenomenon does not appear in Hsp104-deficient cells. The gene product of HSP104 is required for the formation of polyQ aggregates in yeast cells; therefore, the cellular 97Q-eGFP become soluble and evenly distributive in the absence of Hsp104. Under this condition, the lifetime value of 97Q-eGFP is close to the one exhibited by eGFP alone. The independence of the effect of the environmental parameters, such as pH and refraction index is demonstrated. These data indicate that the fluorescence lifetime dynamics of eGFP is linked to the process of polyQ protein aggregation per se.

  6. Formation of J-Aggregates of an Anionic Oxacarbocyanine Dye Upon Interaction with Proteins and Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Pronkin, P. G.; Tatikolov, A. S.

    2017-05-01

    J-aggregation of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine was studied in aqueous solutions in the presence of proteins (collagens, immunoglobulin G, serum albumins) and polyelectrolytes (polyethyleneimine, polyvinylpyrrolidone). It was found that denaturation of human serum albumin by urea stimulated J-aggregation of the dye. The dye formed two types of J-aggregates in the presence of denatured albumin and polyethyleneimine. J-aggregates formed in the presence of polyethyleneimine rearranged over time.

  7. Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression.

    PubMed

    Kaisermayer, Christian; Reinhart, David; Gili, Andreas; Chang, Martina; Aberg, Per-Mikael; Castan, Andreas; Kunert, Renate

    2016-06-10

    In biphasic cultivations, the culture conditions are initially kept at an optimum for rapid cell growth and biomass accumulation. In the second phase, the culture is shifted to conditions ensuring maximum specific protein production and the protein quality required. The influence of specific culture parameters is cell line dependent and their impact on product quality needs to be investigated. In this study, a biphasic cultivation strategy for a Chinese hamster ovary (CHO) cell line expressing an erythropoietin fusion protein (Epo-Fc) was developed. Cultures were run in batch mode and after an initial growth phase, cultivation temperature and pH were shifted. Applying a DoE (Design of Experiments) approach, a fractional factorial design was used to systematically evaluate the influence of cultivation temperature and pH as well as their synergistic effect on cell growth as well as on recombinant protein production and aggregation. All three responses were influenced by the cultivation temperature. Additionally, an interaction between pH and temperature was found to be related to protein aggregation. Compared with the initial standard conditions of 37°C and pH 7.05, a parameter shift to low temperature and acidic pH resulted in a decrease in the aggregate fraction from 75% to less than 1%. Furthermore, the synergistic effect of temperature and pH substantially lowered the cell-specific rates of glucose and glutamine consumption as well as lactate and ammonium production. The optimized culture conditions also led to an increase of the cell-specific rates of recombinant Epo-Fc production, thus resulting in a more economic bioprocess. Copyright © 2016. Published by Elsevier B.V.

  8. Association of Spectrin-Like Proteins with the Actin-Organized Aggregate of Endoplasmic Reticulum in the Spitzenkörper of Gravitropically Tip-Growing Plant Cells1

    PubMed Central

    Braun, Markus

    2001-01-01

    Spectrin-like epitopes were immunochemically detected and immunofluorescently localized in gravitropically tip-growing rhizoids and protonemata of characean algae. Antiserum against spectrin from chicken erythrocytes showed cross-reactivity with rhizoid proteins at molecular masses of about 170 and 195 kD. Confocal microscopy revealed a distinct spherical labeling of spectrin-like proteins in the apices of both cell types tightly associated with an apical actin array and a specific subdomain of endoplasmic reticulum (ER), the ER aggregate. The presence of spectrin-like epitopes, the ER aggregate, and the actin cytoskeleton are strictly correlated with active tip growth. Application of cytochalasin D and A23187 has shown that interfering with actin or with the calcium gradient, which cause the disintegration of the ER aggregate and abolish tip growth, inhibits labeling of spectrin-like proteins. At the beginning of the graviresponse in rhizoids the labeling of spectrin-like proteins remained in its symmetrical position at the cell tip, but was clearly displaced to the upper flank in gravistimulated protonemata. These findings support the hypothesis that a displacement of the Spitzenkörper is required for the negative gravitropic response in protonemata, but not for the positive gravitropic response in rhizoids. It is evident that the actin/spectrin system plays a role in maintaining the organization of the ER aggregate and represents an essential part in the mechanism of gravitropic tip growth. PMID:11299343

  9. The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils.

    PubMed

    Buell, Alexander K

    2017-01-01

    The condensation and aggregation of individual protein molecules into dense insoluble phases is of relevance in such diverse fields as materials science, medicine, structural biology and pharmacology. A common feature of these condensation phenomena is that they usually are nucleated processes, i.e. the first piece of the condensed phase is energetically costly to create and hence forms slowly compared to its subsequent growth. Here we give a compact overview of the differences and similarities of various protein nucleation phenomena, their theoretical description in the framework of colloid and polymer science and their experimental study. Particular emphasis is put on the nucleation of a specific type of filamentous protein aggregates, amyloid fibrils. The current experimentally derived knowledge on amyloid fibril nucleation is critically assessed, and we argue that it is less advanced than is generally believed. This is due to (I) the lack of emphasis that has been put on the distinction between homogeneous and heterogeneous nucleation in experimental studies (II) the use of oversimplifying and/or inappropriate theoretical frameworks for the analysis of kinetic data of amyloid fibril nucleation. A strategy is outlined and advocated of how our understanding of this important class of processes can be improved in the future. © 2017 Elsevier Inc. All rights reserved.

  10. On the Role of Aggregation Prone Regions in Protein Evolution, Stability, and Enzymatic Catalysis: Insights from Diverse Analyses

    PubMed Central

    Buck, Patrick M.; Kumar, Sandeep; Singh, Satish K.

    2013-01-01

    The various roles that aggregation prone regions (APRs) are capable of playing in proteins are investigated here via comprehensive analyses of multiple non-redundant datasets containing randomly generated amino acid sequences, monomeric proteins, intrinsically disordered proteins (IDPs) and catalytic residues. Results from this study indicate that the aggregation propensities of monomeric protein sequences have been minimized compared to random sequences with uniform and natural amino acid compositions, as observed by a lower average aggregation propensity and fewer APRs that are shorter in length and more often punctuated by gate-keeper residues. However, evidence for evolutionary selective pressure to disrupt these sequence regions among homologous proteins is inconsistent. APRs are less conserved than average sequence identity among closely related homologues (≥80% sequence identity with a parent) but APRs are more conserved than average sequence identity among homologues that have at least 50% sequence identity with a parent. Structural analyses of APRs indicate that APRs are three times more likely to contain ordered versus disordered residues and that APRs frequently contribute more towards stabilizing proteins than equal length segments from the same protein. Catalytic residues and APRs were also found to be in structural contact significantly more often than expected by random chance. Our findings suggest that proteins have evolved by optimizing their risk of aggregation for cellular environments by both minimizing aggregation prone regions and by conserving those that are important for folding and function. In many cases, these sequence optimizations are insufficient to develop recombinant proteins into commercial products. Rational design strategies aimed at improving protein solubility for biotechnological purposes should carefully evaluate the contributions made by candidate APRs, targeted for disruption, towards protein structure and activity. PMID

  11. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Marotta, Nicholas P.; Lin, Yu Hsuan; Lewis, Yuka E.; Ambroso, Mark R.; Zaro, Balyn W.; Roth, Maxwell T.; Arnold, Don B.; Langen, Ralf; Pratt, Matthew R.

    2015-11-01

    Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.

  12. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses

    PubMed Central

    Åslund, Andreas; Sigurdson, Christina J.; Klingstedt, Therése; Grathwohl, Stefan; Bolmont, Tristan; Dickstein, Dara L.; Glimsdal, Eirik; Prokop, Stefan; Lindgren, Mikael; Konradsson, Peter; Holtzman, David M.; Hof, Patrick R.; Heppner, Frank L.; Gandy, Samuel; Jucker, Mathias; Aguzzi, Adriano; Hammarström, Per; Nilsson, K. Peter R.

    2010-01-01

    Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying cerebral amyloidoses. Here we report the chemical design of pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes (LCOs), which could be used for real-time visualization of cerebral protein aggregates in transgenic mouse models of neurodegenerative diseases by multiphoton microscopy. One of the LCOs, p-FTAA, showed conformation-dependent optical properties and could be utilized for ex vivo spectral assignment of distinct prion deposits from two mouse-adapted prion strains. p-FTAA also revealed staining of transient soluble pre-fibrillar non-thioflavinophilic Aβ- assemblies during in vitro fibrillation of Aβ peptides. In brain tissue samples, Aβ deposits and neurofibrillary tangles (NFTs) were readily identified by a strong fluorescence from p-FTAA and the LCO staining showed complete co-localization with conventional antibodies (6E10 and AT8), indicating that p-FTAA detects all the immuno-positive aggregated proteinaceous species in Alzheimer disease, but with significantly shorter imaging time (100 fold) compared to immunofluorescence. In addition, a patchy islet-like staining of individual Aβ plaque was unveiled by the anti-oligomer A11 antibody during co-staining with p-FTAA, suggesting that pre-fibrillar species are likely an intrinsic component of Aβ plaques in human brain. The major hallmarks of Alzheimer’s disease, namely Aβ aggregates versus NFTs could also be distinguished due to distinct emission spectra from p-FTAA. Overall, we demonstrate that LCOs can be utilized as powerful practical research tools for studying protein aggregation diseases and facilitate the study of amyloid origin, evolution and maturation, Aβ−tau interactions and pathogenesis both ex vivo and in vivo. PMID:19624097

  13. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases.

    PubMed

    Chiti, Fabrizio; Calamai, Martino; Taddei, Niccolo; Stefani, Massimo; Ramponi, Giampietro; Dobson, Christopher M

    2002-12-10

    Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.

  14. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  15. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability

    NASA Astrophysics Data System (ADS)

    Camilloni, Carlo; Sala, Benedetta Maria; Sormanni, Pietro; Porcari, Riccardo; Corazza, Alessandra; De Rosa, Matteo; Zanini, Stefano; Barbiroli, Alberto; Esposito, Gennaro; Bolognesi, Martino; Bellotti, Vittorio; Vendruscolo, Michele; Ricagno, Stefano

    2016-05-01

    A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues.

  16. Impact of asymmetrical flow field-flow fractionation on protein aggregates stability.

    PubMed

    Bria, Carmen R M; Williams, S Kim Ratanathanawongs

    2016-09-23

    The impact of asymmetrical flow field-flow fractionation (AF4) on protein aggregate species is investigated with the aid of multiangle light scattering (MALS) and dynamic light scattering (DLS). The experimental parameters probed in this study include aggregate stability in different carrier liquids, shear stress (related to sample injection), sample concentration (during AF4 focusing), and sample dilution (during separation). Two anti-streptavidin (anti-SA) IgG1 samples composed of low and high molar mass (M) aggregates are subjected to different AF4 conditions. Aggregates suspended and separated in phosphate buffer are observed to dissociate almost entirely to monomer. However, aggregates in citric acid buffer are partially stable with dissociation to 25% and 5% monomer for the low and high M samples, respectively. These results demonstrate that different carrier liquids change the aggregate stability and low M aggregates can behave differently than their larger counterparts. Increasing the duration of the AF4 focusing step showed no significant changes in the percent monomer, percent aggregates, or the average Ms in either sample. Syringe-induced shear related to sample injection resulted in an increase in hydrodynamic diameter (dh) as measured by batch mode DLS. Finally, calculations showed that dilution during AF4 separation is significantly lower than in size exclusion chromatography with dilution occurring mainly at the AF4 channel outlet and not during the separation. This has important ramifications when analyzing aggregates that rapidly dissociate (<∼2s) upon dilution as the size calculated by AF4 theory may be more accurate than that measured by online DLS. Experimentally, the dhs determined by online DLS generally agreed with AF4 theory except for the more well retained larger aggregates for which DLS showed smaller sizes. These results highlight the importance of using AF4 retention theory to understand the impacts of dilution on analytes. Copyright

  17. Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle

    PubMed Central

    Winter, Lilli; Staszewska, Ilona; Mihailovska, Eva; Fischer, Irmgard; Goldmann, Wolfgang H.; Schröder, Rolf; Wiche, Gerhard

    2014-01-01

    The ubiquitously expressed multifunctional cytolinker protein plectin is essential for muscle fiber integrity and myofiber cytoarchitecture. Patients suffering from plectinopathy-associated epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) and mice lacking plectin in skeletal muscle display pathological desmin-positive protein aggregation and misalignment of Z-disks, which are hallmarks of myofibrillar myopathies (MFMs). Here, we developed immortalized murine myoblast cell lines to examine the pathogenesis of plectinopathies at the molecular and single cell level. Plectin-deficient myotubes, derived from myoblasts, were fully functional and mirrored the pathological features of EBS-MD myofibers, including the presence of desmin-positive protein aggregates and a concurrent disarrangement of the myofibrillar apparatus. Using this cell model, we demonstrated that plectin deficiency leads to increased intermediate filament network and sarcomere dynamics, marked upregulation of HSPs, and reduced myotube resilience following mechanical stretch. Currently, no specific therapy or treatment is available to improve plectin-related or other forms of MFMs; therefore, we assessed the therapeutic potential of chemical chaperones to relieve plectinopathies. Treatment with 4-phenylbutyrate resulted in remarkable amelioration of the pathological phenotypes in plectin-deficient myotubes as well as in plectin-deficient mice. Together, these data demonstrate the biological relevance of the MFM cell model and suggest that this model has potential use for the development of therapeutic approaches for EBS-MD. PMID:24487589

  18. SUMO-1 is associated with a subset of lysosomes in glial protein aggregate diseases.

    PubMed

    Wong, Mathew B; Goodwin, Jacob; Norazit, Anwar; Meedeniya, Adrian C B; Richter-Landsberg, Christiane; Gai, Wei Ping; Pountney, Dean L

    2013-01-01

    Oligodendroglial inclusion bodies characterize a subset of neurodegenerative diseases. Multiple system atrophy (MSA) is characterized by α-synuclein glial cytoplasmic inclusions and progressive supranuclear palsy (PSP) is associated with glial tau inclusions. The ubiquitin homologue, SUMO-1, has been identified in inclusion bodies in MSA, located in discrete sub-domains in α-synuclein-positive inclusions. We investigated SUMO-1 associated with oligodendroglial inclusion bodies in brain tissue from MSA and PSP and in glial cell models. We examined MSA and PSP cases and compared to age-matched normal controls. Fluorescence immunohistochemistry revealed frequent SUMO-1 sub-domains within and surrounding inclusions bodies in both diseases and showed punctate co-localization of SUMO-1 and the lysosomal marker, cathepsin D, in affected brain regions. Cell counting data revealed that 70-75 % of lysosomes in inclusion body-positive oligodendrocytes were SUMO-1-positive consistently across MSA and PSP cases, compared to 20 % in neighbouring inclusion body negative oligodendrocytes and 10 % in normal brain tissue. Hsp90 co-localized with some SUMO-1 puncta. We examined the SUMO-1 status of lysosomes in 1321N1 human glioma cells over-expressing α-synuclein and in immortalized rat oligodendrocyte cells over-expressing the four repeat form of tau following treatment with the proteasome inhibitor, MG132. We also transfected 1321N1 cells with the inherently aggregation-prone huntingtin exon 1 mutant, HttQ74-GFP. Each cell model showed the association of SUMO-1-positive lysosomes around focal cytoplasmic accumulations of α-synuclein, tau or HttQ74-GFP, respectively. Association of SUMO-1 with lysosomes was also detected in glial cells bearing α-synuclein aggregates in a rotenone-lesioned rat model. SUMO-1 labelling of lysosomes showed a major increase between 24 and 48 h post-incubation of 1321N1 cells with MG132 resulting in an increase in a 90 kDa SUMO-1-positive band

  19. Kinetics of Inclusion Body Formation and Its Correlation with the Characteristics of Protein Aggregates in Escherichia coli

    PubMed Central

    Upadhyay, Arun K.; Murmu, Aruna; Singh, Anupam; Panda, Amulya K.

    2012-01-01

    The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH) and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm) and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2–3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies. PMID:22479486

  20. Detection of Mutant Huntingtin Aggregation Conformers and Modulation of SDS-Soluble Fibrillar Oligomers by Small Molecules

    PubMed Central

    Sontag, Emily Mitchell; Lotz, Gregor P.; Yang, Guocheng; Sontag, Christopher J.; Cummings, Brian J.; Glabe, Charles G.; Muchowski, Paul J.; Thompson, Leslie Michels

    2012-01-01

    The Huntington’s disease (HD) mutation leads to a complex process of Huntingtin (Htt) aggregation into multimeric species that eventually form visible inclusions in cytoplasm, nuclei and neuronal processes. One hypothesis is that smaller, soluble forms of amyloid proteins confer toxic effects and contribute to early cell dysfunction. However, analysis of mutant Htt aggregation intermediates to identify conformers that may represent toxic forms of the protein and represent potential drug targets remains difficult. We performed a detailed analysis of aggregation conformers in multiple in vitro, cell and ex vivo models of HD. Conformation-specific antibodies were used to identify and characterize aggregation species, allowing assessment of multiple conformers present during the aggregation process. Using a series of assays together with these antibodies, several forms could be identified. Fibrillar oligomers, defined as having a β-sheet rich conformation, are observed in vitro using recombinant protein and in protein extracts from cells in culture or mouse brain and shown to be globular, soluble and non-sedimentable structures. Compounds previously described to modulate visible inclusion body formation and reduce toxicity in HD models were also tested and consistently found to alter the formation of fibrillar oligomers. Interestingly, these compounds did not alter the rate of visible inclusion formation, indicating that fibrillar oligomers are not necessarily the rate limiting step of inclusion body formation. Taken together, we provide insights into the structure and formation of mutant Htt fibrillar oligomers that are modulated by small molecules with protective potential in HD models. PMID:24086178

  1. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    NASA Astrophysics Data System (ADS)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  2. Discrete Molecular Dynamics Approach to the Study of Disordered and Aggregating Proteins.

    PubMed

    Emperador, Agustí; Orozco, Modesto

    2017-03-14

    We present a refinement of the Coarse Grained PACSAB force field for Discrete Molecular Dynamics (DMD) simulations of proteins in aqueous conditions. As the original version, the refined method provides good representation of the structure and dynamics of folded proteins but provides much better representations of a variety of unfolded proteins, including some very large, impossible to analyze by atomistic simulation methods. The PACSAB/DMD method also reproduces accurately aggregation properties, providing good pictures of the structural ensembles of proteins showing a folded core and an intrinsically disordered region. The combination of accuracy and speed makes the method presented here a good alternative for the exploration of unstructured protein systems.

  3. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation.

    PubMed

    Pandey, R B; Farmer, B L

    2014-11-07

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ∼ 3) at low temperature to a ramified fibrous network (D ∼ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ∼ 1.6) of fibrous Glu- and Thr-chain configurations.

  4. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Farmer, B. L.

    2014-11-01

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.

  5. Cholesterol impairment contributes to neuroserpin aggregation

    NASA Astrophysics Data System (ADS)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  6. Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis

    PubMed Central

    Dasgupta, Anushka; Zheng, Jianzheng; Perrone-Bizzozero, Nora I.; Bizzozero, Oscar A.

    2013-01-01

    Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS. PMID:23489322

  7. High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging.

    PubMed

    Paul, Albert Jesuran; Bickel, Fabian; Röhm, Martina; Hospach, Lisa; Halder, Bettina; Rettich, Nina; Handrick, René; Herold, Eva Maria; Kiefer, Hans; Hesse, Friedemann

    2017-07-01

    Aggregation of therapeutic proteins is a major concern as aggregates lower the yield and can impact the efficacy of the drug as well as the patient's safety. It can occur in all production stages; thus, it is essential to perform a detailed analysis for protein aggregates. Several methods such as size exclusion high-performance liquid chromatography (SE-HPLC), light scattering, turbidity, light obscuration, and microscopy-based approaches are used to analyze aggregates. None of these methods allows determination of all types of higher molecular weight (HMW) species due to a limited size range. Furthermore, quantification and specification of different HMW species are often not possible. Moreover, automation is a perspective challenge coming up with automated robotic laboratory systems. Hence, there is a need for a fast, high-throughput-compatible method, which can detect a broad size range and enable quantification and classification. We describe a novel approach for the detection of aggregates in the size range 1 to 1000 μm combining fluorescent dyes for protein aggregate labelling and automated fluorescence microscope imaging (aFMI). After appropriate selection of the dye and method optimization, our method enabled us to detect various types of HMW species of monoclonal antibodies (mAbs). Using 10 μmol L -1 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (Bis-ANS) in combination with aFMI allowed the analysis of mAb aggregates induced by different stresses occurring during downstream processing, storage, and administration. Validation of our results was performed by SE-HPLC, UV-Vis spectroscopy, and dynamic light scattering. With this new approach, we could not only reliably detect different HMW species but also quantify and classify them in an automated approach. Our method achieves high-throughput requirements and the selection of various fluorescent dyes enables a broad range of applications.

  8. LC3 fluorescent puncta in autophagosomes or in protein aggregates can be distinguished by FRAP analysis in living cells

    PubMed Central

    Wang, Liang; Chen, Min; Yang, Jie; Zhang, Zhihong

    2013-01-01

    LC3 is a marker protein that is involved in the formation of autophagosomes and autolysosomes, which are usually characterized and monitored by fluorescence microscopy using fluorescent protein-tagged LC3 probes (FP-LC3). FP-LC3 and even endogenous LC3 can also be incorporated into intracellular protein aggregates in an autophagy-independent manner. However, the dynamic process of LC3 associated with autophagosomes and autolysosomes or protein aggregates in living cells remains unclear. Here, we explored the dynamic properties of the two types of FP-LC3-containing puncta using fluorescence microscopy techniques, including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET). The FRAP data revealed that the fluorescent signals of FP-LC3 attached to phagophores or in mature autolysosomes showed either minimal or no recovery after photobleaching, indicating that the dissociation of LC3 from the autophagosome membranes may be very slow. In contrast, FP-LC3 in the protein aggregates exhibited nearly complete recovery (more than 80%) and rapid kinetics of association and dissociation (half-time < 1 sec), indicating a rapid exchange occurs between the aggregates and cytoplasmic pool, which is mainly due to the transient interaction of LC3 and SQSTM1/p62. Based on the distinct dynamic properties of FP-LC3 in the two types of punctate structures, we provide a convenient and useful FRAP approach to distinguish autophagosomes from LC3-involved protein aggregates in living cells. Using this approach, we find the FP-LC3 puncta that adjacently localized to the phagophore marker ATG16L1 were protein aggregate-associated LC3 puncta, which exhibited different kinetics compared with that of autophagic structures. PMID:23482084

  9. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Detecting beta-amyloid aggregation from time-resolved emission spectra

    NASA Astrophysics Data System (ADS)

    Alghamdi, A.; Vyshemirsky, V.; Birch, D. J. S.; Rolinski, O. J.

    2018-04-01

    The aggregation of beta-amyloids is one of the key processes responsible for the development of Alzheimer’s disease. Early molecular-level detection of beta-amyloid oligomers may help in early diagnosis and in the development of new intervention therapies. Our previous studies on the changes in beta-amyloid’s single tyrosine intrinsic fluorescence response during aggregation demonstrated a four-exponential fluorescence intensity decay, and the ratio of the pre-exponential factors indicated the extent of the aggregation in the early stages of the process before the beta-sheets were formed. Here we present a complementary approach based on the time-resolved emission spectra (TRES) of amyloid’s tyrosine excited at 279 nm and fluorescence in the window 240-450 nm. TRES have been used to demonstrate sturctural changes occuring on the nanosecond time scale after excitation which has significant advantages over using steady-state spectra. We demonstrate this by resolving the fluorescent species and revealing that beta-amyloid’s monomers show very fast dielectric relaxation, and its oligomers display a substantial spectral shift due to dielectric relaxation, which gradually decreases when the oligomers become larger.

  11. Aggregation of gluten proteins in model dough after fibre polysaccharide addition.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Wilczewska, Agnieszka Z; Markiewicz, Karolina H

    2017-09-15

    FT-Raman spectroscopy, thermogravimetry and differential scanning calorimetry were used to study changes in structure of gluten proteins and their thermal properties influenced by four dietary fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin) during development of a model dough. The flour reconstituted from wheat starch and wheat gluten was mixed with the polysaccharides in five concentrations: 3%, 6%, 9%, 12% and 18%. The obtained results showed that all polysaccharides induced similar changes in secondary structure of gluten proteins concerning formation of aggregates (1604cm -1 ), H-bonded parallel- and antiparallel-β-sheets (1690cm -1 ) and H-bonded β-turns (1664cm -1 ). These changes concerned mainly glutenins since β-structures are characteristic for them. The observed structural changes confirmed hypothesis about partial dehydration of gluten network after polysaccharides addition. The gluten aggregation and dehydration processes were also reflected in the DSC results, while the TGA ones showed that gluten network remained thermally stable after polysaccharides addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles.

    PubMed

    Du, Gaoshang; Wang, Lumei; Zhang, Dongwei; Ni, Xuan; Zhou, Xiaotong; Xu, Hanyi; Xu, Lurong; Wu, Shijian; Zhang, Tong; Wang, Wenhao

    2016-12-01

    This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89-500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Microscopic analysis of protein oxidative damage: effect of carbonylation on structure, dynamics, and aggregability of villin headpiece.

    PubMed

    Petrov, Drazen; Zagrovic, Bojan

    2011-05-11

    One of the most important irreversible oxidative modifications of proteins is carbonylation, the process of introducing a carbonyl group in reaction with reactive oxygen species. Notably, carbonylation increases with the age of cells and is associated with the formation of intracellular protein aggregates and the pathogenesis of age-related disorders such as neurodegenerative diseases and cancer. However, it is still largely unclear how carbonylation affects protein structure, dynamics, and aggregability at the atomic level. Here, we use classical molecular dynamics simulations to study structure and dynamics of the carbonylated headpiece domain of villin, a key actin-organizing protein. We perform an exhaustive set of molecular dynamics simulations of a native villin headpiece together with every possible combination of carbonylated versions of its seven lysine, arginine, and proline residues, quantitatively the most important carbonylable amino acids. Surprisingly, our results suggest that high levels of carbonylation, far above those associated with cell death in vivo, may be required to destabilize and unfold protein structure through the disruption of specific stabilizing elements, such as salt bridges or proline kinks, or tampering with the hydrophobic effect. On the other hand, by using thermodynamic integration and molecular hydrophobicity potential approaches, we quantitatively show that carbonylation of hydrophilic lysine and arginine residues is equivalent to introducing hydrophobic, charge-neutral mutations in their place, and, by comparison with experimental results, we demonstrate that this by itself significantly increases the intrinsic aggregation propensity of both structured, native proteins and their unfolded states. Finally, our results provide a foundation for a novel experimental strategy to study the effects of carbonylation on protein structure, dynamics, and aggregability using site-directed mutagenesis. © 2011 American Chemical Society

  14. Detection and Characterization of Aggregates, Prefibrillar Amyloidogenic Oligomers, and Protofibrils Using Fluorescence Spectroscopy

    PubMed Central

    Lindgren, Mikael; Sörgjerd, Karin; Hammarström, Per

    2005-01-01

    Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300–500 kD) within 2 h that matured after 20 h into larger spherical clusters (30–50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300–500 kD) with an apparent dissociation constant of 1.6 μM, which was slightly better than for ThT (6.8 μM). Time

  15. Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    PubMed Central

    Stefani, Massimo; Rigacci, Stefania

    2013-01-01

    Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols. PMID:23765219

  16. Network Intrusion Detection and Visualization using Aggregations in a Cyber Security Data Warehouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czejdo, Bogdan; Ferragut, Erik M; Goodall, John R

    2012-01-01

    The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our pro-posed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describemore » the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.« less

  17. Co-production of GroELS discriminates between intrinsic and thermally-induced recombinant protein aggregation during substrate quality control

    PubMed Central

    2011-01-01

    Background The effects and effectiveness of the chaperone pair GroELS on the yield and quality of recombinant polypeptides produced in Escherichia coli are matter of controversy, as the reported activities of this complex are not always consistent and eventually indicate undesired side effects. The divergence in the reported data could be due, at least partially, to different experimental conditions in independent research approaches. Results We have then selected two structurally different model proteins (namely GFP and E. coli β-galactosidase) and two derived aggregation-prone fusions to explore, in a systematic way, the eventual effects of GroELS co-production on yield, solubility and conformational quality. Host cells were cultured at two alternative temperatures below the threshold at which thermal stress is expected to be triggered, to minimize the involvement of independent stress factors. Conclusions From the analysis of protein yield, solubility and biological activity of the four model proteins produced alone or along the chaperones, we conclude that GroELS impacts on yield and quality of aggregation-prone proteins with intrinsic determinants but not on thermally induced protein aggregation. No effective modifications of protein solubility have been observed, but significant stabilization of small (encapsulable) substrates and moderate chaperone-induced degradation of larger (excluded) polypeptides. These findings indicate that the activities of this chaperone pair in the context of actively producing recombinant bacteria discriminate between intrinsic and thermally-induced protein aggregation, and that the side effects of GroELS overproduction might be determined by substrate size. PMID:21992454

  18. Aggregation factor analysis for protein formulation by a systematic approach using FTIR, SEC and design of experiments techniques.

    PubMed

    Feng, Yan Wen; Ooishi, Ayako; Honda, Shinya

    2012-01-05

    A simple systematic approach using Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and design of experiments (DOE) techniques was applied to the analysis of aggregation factors for protein formulations in stress and accelerated testings. FTIR and SEC were used to evaluate protein conformational and storage stabilities, respectively. DOE was used to determine the suitable formulation and to analyze both the main effect of single factors and the interaction effect of combined factors on aggregation. Our results indicated that (i) analysis at a low protein concentration is not always applicable to high concentration formulations; (ii) an investigation of interaction effects of combined factors as well as main effects of single factors is effective for improving conformational stability of proteins; (iii) with the exception of pH, the results of stress testing with regard to aggregation factors would be available for suitable formulation instead of performing time-consuming accelerated testing; (iv) a suitable pH condition should not be determined in stress testing but in accelerated testing, because of inconsistent effects of pH on conformational and storage stabilities. In summary, we propose a three-step strategy, using FTIR, SEC and DOE techniques, to effectively analyze the aggregation factors and perform a rapid screening for suitable conditions of protein formulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-02

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.

  20. Effects of the size and content of protein aggregates on the rheological and structural properties of soy protein isolate emulsion gels induced by CaSO4.

    PubMed

    Wang, Xufeng; He, Zhiyong; Zeng, Maomao; Qin, Fang; Adhikari, Benu; Chen, Jie

    2017-04-15

    The effects of the size and content of soy protein isolate (SPI) aggregates on the rheological and textural properties of CaSO 4 -induced SPI emulsion gels were investigated. Considerable differences in the rheological, water-holding, and micro-structural properties were observed. The gels with larger and/or more SPI aggregates showed substantial increase in the elastic modulus and had lower gelation temperatures. Creep data suggested that the size of the SPI aggregates contributed more to the elastic modulus, whereas the increase of aggregate content enhanced the elastic modulus and viscous component of the gels. The water-holding capacity was markedly enhanced (p<0.05) with the increase in both the size and content of SPI aggregates. Confocal laser scanning microscopy and scanning electron microscopy showed that larger and/or more SPI aggregates resulted in more homogeneous networks with smaller oil droplets. These insights provide important information for the product development in relation to soy protein-stabilized emulsions and emulsion gels. Copyright © 2016. Published by Elsevier Ltd.

  1. Protein Aggregation/Folding: The Role of Deterministic Singularities of Sequence Hydrophobicity as Determined by Nonlinear Signal Analysis of Acylphosphatase and Aβ(1–40)

    PubMed Central

    Zbilut, Joseph P.; Colosimo, Alfredo; Conti, Filippo; Colafranceschi, Mauro; Manetti, Cesare; Valerio, MariaCristina; Webber, Charles L.; Giuliani, Alessandro

    2003-01-01

    The problem of protein folding vs. aggregation was investigated in acylphosphatase and the amyloid protein Aβ(1–40) by means of nonlinear signal analysis of their chain hydrophobicity. Numerical descriptors of recurrence patterns provided the basis for statistical evaluation of folding/aggregation distinctive features. Static and dynamic approaches were used to elucidate conditions coincident with folding vs. aggregation using comparisons with known protein secondary structure classifications, site-directed mutagenesis studies of acylphosphatase, and molecular dynamics simulations of amyloid protein, Aβ(1–40). The results suggest that a feature derived from principal component space characterized by the smoothness of singular, deterministic hydrophobicity patches plays a significant role in the conditions governing protein aggregation. PMID:14645049

  2. Sequential ordering among multicolor fluorophores for protein labeling facility via aggregation-elimination based β-lactam probes.

    PubMed

    Sadhu, Kalyan K; Mizukami, Shin; Watanabe, Shuji; Kikuchi, Kazuya

    2011-05-01

    Development of protein labeling techniques with small molecules is enthralling because this method brings promises for triumph over the limitations of fluorescent proteins in live cell imaging. This technology deals with the functionalization of proteins with small molecules and is anticipated to facilitate the expansion of various protein assay methods. A new straightforward aggregation and elimination-based technique for a protein labeling system has been developed with a versatile emissive range of fluorophores. These fluorophores have been applied to show their efficiency for protein labeling by exploiting the same basic principle. A genetically modified version of class A type β-lactamase has been used as the tag protein (BL-tag). The strength of the aggregation interaction between a fluorophore and a quencher plays a governing role in the elimination step of the quencher from the probes, which ultimately controls the swiftness of the protein labeling strategy. Modulation in the elimination process can be accomplished by the variation in the nature of the fluorophore. This diversity facilitates the study of the competitive binding order among the synthesized probes toward the BL-tag labeling method. An aggregation and elimination-based BL-tag technique has been explored to develop an order of color labeling from the equimolar mixture of the labeling probe in solutions. The qualitative and quantitative determination of ordering within the probes toward labeling studies has been executed through SDS-PAGE and time-dependent fluorescence intensity enhancement measurements, respectively. The desirable multiple-wavelength fluorescence labeling probes for the BL-tag technology have been developed and demonstrate broad applicability of this labeling technology to live cell imaging with coumarin and fluorescein derivatives by using confocal microscopy.

  3. Cellular protein quality control and the evolution of aggregates in spinocerebellar ataxia type 3 (SCA3).

    PubMed

    Seidel, K; Meister, M; Dugbartey, G J; Zijlstra, M P; Vinet, J; Brunt, E R P; van Leeuwen, F W; Rüb, U; Kampinga, H H; den Dunnen, W F A

    2012-10-01

    A characteristic of polyglutamine diseases is the increased propensity of disease proteins to aggregate, which is thought to be a major contributing factor to the underlying neurodegeneration. Healthy cells contain mechanisms for handling protein damage, the protein quality control, which must be impaired or inefficient to permit proteotoxicity under pathological conditions. We used a quantitative analysis of immunohistochemistry of the pons of eight patients with the polyglutamine disorder spinocerebellar ataxia type 3. We employed the anti-polyglutamine antibody 1C2, antibodies against p62 that is involved in delivering ubiquitinated protein aggregates to autophagosomes, antibodies against the chaperones HSPA1A and DNAJB1 and the proteasomal stress marker UBB⁺¹. The 1C2 antibody stained neuronal nuclear inclusions (NNIs), diffuse nuclear staining (DNS), granular cytoplasmic staining (GCS) and combinations, with reproducible distribution. P62 always co-localized with 1C2 in NNI. DNS and GCS co-stained with a lower frequency. UBB⁺¹ was present in a subset of neurones with NNI. A subset of UBB⁺¹-containing neurones displayed increased levels of HSPA1A, while DNAJB1 was sequestered into the NNI. Based on our results, we propose a model for the aggregation-associated pathology of spinocerebellar ataxia type 3: GCS and DNS aggregation likely represents early stages of pathology, which progresses towards formation of p62-positive NNI. A fraction of NNI exhibits UBB⁺¹ staining, implying proteasomal overload at a later stage. Subsequently, the stress-inducible HSPA1A is elevated while DNAJB1 is recruited into NNIs. This indicates that the stress response is only induced late when all endogenous protein quality control systems have failed. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  4. The effect of time-dependent macromolecular crowding on the kinetics of protein aggregation: a simple model for the onset of age-related neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Minton, Allen

    2014-08-01

    A linear increase in the concentration of "inert" macromolecules with time is incorporated into simple excluded volume models for protein condensation or fibrillation. Such models predict a long latent period during which no significant amount of protein aggregates, followed by a steep increase in the total amount of aggregate. The elapsed time at which these models predict half-conversion of model protein to aggregate varies by less than a factor of two when the intrinsic rate constant for condensation or fibril growth of the protein is varied over many orders of magnitude. It is suggested that this concept can explain why the symptoms of neurodegenerative diseases associated with the aggregation of very different proteins and peptides appear at approximately the same advanced age in humans.

  5. Autophagy-independent incorporation of GFP-LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1.

    PubMed

    Shvets, Elena; Elazar, Zvulun

    2008-11-01

    LC3 is a widely used marker of autophagosomes in mammalian cells. However, in addition to its autophagosomal localization, GFP-LC3 is often found associated with protein aggregates that are formed in an autophagy-independent manner. In addition, LC3 directly interacts with p62/SQSTM1 (hereafter named p62), a common constituent of protein aggregates. In our recent report, we mapped the regions in LC3 involved in its binding to p62 and showed that this binding is essential for the incorporation of p62 into autophagosomes. Here we demonstrate that the autophagy-unrelated association of GFP-LC3 with protein aggregates is dependent on its interaction with p62.

  6. Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein

    PubMed Central

    Wolschner, Christina; Giese, Armin; Kretzschmar, Hans A.; Huber, Robert; Moroder, Luis; Budisa, Nediljko

    2009-01-01

    Prion disease is characterized by the α→β structural conversion of the cellular prion protein (PrPC) into the misfolded and aggregated “scrapie” (PrPSc) isoform. It has been speculated that methionine (Met) oxidation in PrPC may have a special role in this process, but has not been detailed and assigned individually to the 9 Met residues of full-length, recombinant human PrPC [rhPrPC(23-231)]. To better understand this oxidative event in PrP aggregation, the extent of periodate-induced Met oxidation was monitored by electrospray ionization-MS and correlated with aggregation propensity. Also, the Met residues were replaced with isosteric and chemically stable, nonoxidizable analogs, i.e., with the more hydrophobic norleucine (Nle) and the highly hydrophilic methoxinine (Mox). The Nle-rhPrPC variant is an α-helix rich protein (like Met-rhPrPC) resistant to oxidation that lacks the in vitro aggregation properties of the parent protein. Conversely, the Mox-rhPrPC variant is a β-sheet rich protein that features strong proaggregation behavior. In contrast to the parent Met-rhPrPC, the Nle/Mox-containing variants are not sensitive to periodate-induced in vitro aggregation. The experimental results fully support a direct correlation of the α→β secondary structure conversion in rhPrPC with the conformational preferences of Met/Nle/Mox residues. Accordingly, sporadic prion and other neurodegenerative diseases, as well as various aging processes, might also be caused by oxidative stress leading to Met oxidation. PMID:19416900

  7. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases.

    PubMed

    Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S

    2012-02-01

    HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  8. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major site of autologous antibody binding.

    PubMed

    Kannan, R; Labotka, R; Low, P S

    1988-09-25

    Because the interaction of denatured hemoglobins (i.e. hemichromes) with the red cell membrane has been associated with several abnormalities commonly observed in hemichrome-containing erythrocytes, we have undertaken to isolate and characterize the hemichrome-rich membrane protein aggregates from sickle cells. The aggregates were isolated by two procedures: one at low ionic strength by centrifugation of detergent-solubilized spectrin-depleted inside-out vesicles, and the other at physiological ionic strength by detergent solubilization of whole cells followed by cytoskeletal disruption and centrifugation. The extensively washed aggregates obtained by both methods yielded similar results. These insoluble complexes were found to be highly cross-linked by predominantly intermolecular disulfide bonds; however, other nonreducible covalent linkages were also observed. Both in the presence and absence of reducing agents, the aggregate disintegrated when the hemichromes were removed by high ionic strength, suggesting that the aggregate depended heavily on the cohesive properties of the hemichromes for stability. Protein assays demonstrated that the aggregates comprised approximately 1.3% of the total membrane protein, roughly two-thirds of which appeared to be globin chains. Other major components identified in the aggregate were band 3, ankyrin, bands 4.1, 4.9, and 5, glycophorins A and B, and autologous IgG. Quantitative analysis of the IgG content demonstrated that three-fourths of the surface-bound IgG on washed sickle cells was clustered at these aggregate sites, representing an enrichment of approximately 250-fold over nonaggregated regions of the membrane. Since clustered cell surface IgG is thought to trigger removal of erythrocytes from circulation, the hemichrome-induced membrane reorganization at these aggregate sites may be an important cause of the greatly shortened life span of sickle cells.

  9. Aggregate structure and effect of phthalic anhydride modified soy protein on the mechanical properties of styrene-butadiene copolymer

    USDA-ARS?s Scientific Manuscript database

    The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...

  10. Light-induced aggregation of microbial exopolymeric substances.

    PubMed

    Sun, Luni; Xu, Chen; Zhang, Saijin; Lin, Peng; Schwehr, Kathleen A; Quigg, Antonietta; Chiu, Meng-Hsuen; Chin, Wei-Chun; Santschi, Peter H

    2017-08-01

    Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells

    PubMed Central

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation. PMID:24817874

  12. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells.

    PubMed

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation.

  13. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  14. Protein Structural Perturbation and Aggregation on Homogeneous Surfaces

    PubMed Central

    Sethuraman, Ananthakrishnan; Belfort, Georges

    2005-01-01

    We have demonstrated that globular proteins, such as hen egg lysozyme in phosphate buffered saline at room temperature, lose native structural stability and activity when adsorbed onto well-defined homogeneous solid surfaces. This structural loss is evident by α-helix to turns/random during the first 30 min and followed by a slow α-helix to β-sheet transition. Increase in intramolecular and intermolecular β-sheet content suggests conformational rearrangement and aggregation between different protein molecules, respectively. Amide I band attenuated total reflection/Fourier transformed infrared (ATR/FTIR) spectroscopy was used to quantify the secondary structure content of lysozyme adsorbed on six different self-assembled alkanethiol monolayer surfaces with –CH3, –OPh, –CF3, –CN, –OCH3, and –OH exposed functional end groups. Activity measurements of adsorbed lysozyme were in good agreement with the structural perturbations. Both surface chemistry (type of functional groups, wettability) and adsorbate concentration (i.e., lateral interactions) are responsible for the observed structural changes during adsorption. A kinetic model is proposed to describe secondary structural changes that occur in two dynamic phases. The results presented in this article demonstrate the utility of the ATR/FTIR spectroscopic technique for in situ characterization of protein secondary structures during adsorption on flat surfaces. PMID:15542559

  15. pH-responsive modulation of insulin aggregation and structural transformation of the aggregates.

    PubMed

    Smirnova, Ekaterina; Safenkova, Irina; Stein-Margolina, Vita; Shubin, Vladimir; Polshakov, Vladimir; Gurvits, Bella

    2015-02-01

    Over the past two decades, much information has appeared on electrostatically driven molecular mechanisms of protein self-assembly and formation of aggregates of different morphology, varying from soluble amorphous structures to highly-ordered amyloid-like fibrils. Protein aggregation represents a special tool in biomedicine and biotechnology to produce biological materials for a wide range of applications. This has awakened interest in identification of pH-triggered regulators of transformation of aggregation-prone proteins into structures of higher order. The objective of the present study is to elucidate the effects of low-molecular-weight biogenic agents on aggregation and formation of supramolecular structures of human recombinant insulin, as a model therapeutic protein. Using dynamic light scattering, turbidimetry, circular dichroism, fluorescence spectroscopy, atomic force microscopy, transmission electron microscopy, and nuclear magnetic resonance, we have demonstrated that the amino acid l-arginine (Arg) has the striking potential to influence insulin aggregation propensity. It was shown that modification of the net charge of insulin induced by changes in the pH level of the incubation medium results in dramatic changes in the interaction of the protein with Arg. We have revealed the dual effects of Arg, highly dependent on the pH level of the solution - suppression or acceleration of the aggregation of insulin at pH 7.0 or 8.0, respectively. These effects can be regulated by manipulating the pH of the environment. The results of this study may be of interest for development of appropriate drug formulations and for the more general insight into the functioning of insulin in living systems, as the protein is known to release by exocytosis from pancreatic beta cells in a pH-dependent manner. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  16. Molecular Dynamics Simulations to Clarify the Concentration Dependency of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Nishikawa, Naohiro; Sakae, Yoshitake; Okamoto, Yuko

    We examined the concentration dependency of amyloid protein aggregation by using several molecular dynamics simulations, which were performed with different concentrations for each system. For these simulations, we used a fragment of amyloid-β, which is believed to be the cause of Alzheimer's disease, as our simulation system. We found that high concentration of amyloid peptides promotes the formation of β-structures which is the origin of amyloid fibrils.

  17. Modulation of protein stability and aggregation properties by surface charge engineering.

    PubMed

    Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu

    2013-09-01

    An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.

  18. Cooperative structural transitions in amyloid-like aggregation

    NASA Astrophysics Data System (ADS)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  19. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.

    PubMed

    Saha, Arindam; Jana, Nikhil R

    2015-01-14

    Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.

  20. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  1. Detecting protein-protein interactions using Renilla luciferase fusion proteins.

    PubMed

    Burbelo, Peter D; Kisailus, Adam E; Peck, Jeremy W

    2002-11-01

    We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.

  2. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor

    NASA Astrophysics Data System (ADS)

    Naderi, Mahboube; Hosseini, Morteza; Ganjali, Mohammad Reza

    2018-04-01

    In this work, we studied the feasibility of interaction among gold nanoparticles (AuNPs) and a cationic dye in an aptasensor system for the detection of potassium ions. The presence and absence of potassium in the solution was distinguishable by different colors (between orange and green) appeared after reaction. Cationic dye (Y5GL) acts as a new aggregator for AuNP-based sensors which changes the aggregated AuNP solution color from blue-purple to green. In the presence of K+ ions, the aptamer dissociated from the surface of the AuNP so that free AuNPs and cationic dye make the solution green. The aptasensor showed that the analytical linear range was from 10 nM to 50 mM and the detection limit was 4.4 nM. Also, we examined the practicality of this method on a simple paper based platform. The linear range of the colorimetric paper sensor covered of K+ concentration from 10 μM to 40 mM and the detection limit of 6.2 μM was obtained. The selectivity of AuNP aggregation-based sensor improved by the use of cationic dye. Rapidity, simplicity, high sensitivity and excellent selectivity made this assay suitable for practical determination of K+ in real urine samples.

  3. Identification of Structural Features of Condensed Tannins That Affect Protein Aggregation

    PubMed Central

    Ropiak, Honorata M.; Lachmann, Peter; Ramsay, Aina; Green, Rebecca J.; Mueller-Harvey, Irene

    2017-01-01

    A diverse panel of condensed tannins was used to resolve the confounding effects of size and subunit composition seen previously in tannin-protein interactions. Turbidimetry revealed that size in terms of mean degree of polymerisation (mDP) or average molecular weight (amw) was the most important tannin parameter. The smallest tannin with the relatively largest effect on protein aggregation had an mDP of ~7. The average size was significantly correlated with aggregation of bovine serum albumin, BSA (mDP: r = -0.916; amw: r = -0.925; p<0.01; df = 27), and gelatin (mDP: r = -0.961; amw: r = -0.981; p<0.01; df = 12). The procyanidin/prodelphinidin and cis-/trans-flavan-3-ol ratios gave no significant correlations. Tryptophan fluorescence quenching indicated that procyanidins and cis-flavan-3-ol units contributed most to the tannin interactions on the BSA surface and in the hydrophobic binding pocket (r = 0.677; p<0.05; df = 9 and r = 0.887; p<0.01; df = 9, respectively). Circular dichroism revealed that higher proportions of prodelphinidins decreased the apparent α-helix content (r = -0.941; p<0.01; df = 5) and increased the apparent β-sheet content (r = 0.916; p<0.05; df = 5) of BSA. PMID:28125657

  4. Identification of Structural Features of Condensed Tannins That Affect Protein Aggregation.

    PubMed

    Ropiak, Honorata M; Lachmann, Peter; Ramsay, Aina; Green, Rebecca J; Mueller-Harvey, Irene

    2017-01-01

    A diverse panel of condensed tannins was used to resolve the confounding effects of size and subunit composition seen previously in tannin-protein interactions. Turbidimetry revealed that size in terms of mean degree of polymerisation (mDP) or average molecular weight (amw) was the most important tannin parameter. The smallest tannin with the relatively largest effect on protein aggregation had an mDP of ~7. The average size was significantly correlated with aggregation of bovine serum albumin, BSA (mDP: r = -0.916; amw: r = -0.925; p<0.01; df = 27), and gelatin (mDP: r = -0.961; amw: r = -0.981; p<0.01; df = 12). The procyanidin/prodelphinidin and cis-/trans-flavan-3-ol ratios gave no significant correlations. Tryptophan fluorescence quenching indicated that procyanidins and cis-flavan-3-ol units contributed most to the tannin interactions on the BSA surface and in the hydrophobic binding pocket (r = 0.677; p<0.05; df = 9 and r = 0.887; p<0.01; df = 9, respectively). Circular dichroism revealed that higher proportions of prodelphinidins decreased the apparent α-helix content (r = -0.941; p<0.01; df = 5) and increased the apparent β-sheet content (r = 0.916; p<0.05; df = 5) of BSA.

  5. Bayesian model aggregation for ensemble-based estimates of protein pKa values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, Luke J.; Hogan, Emilie A.; Pulsipher, Trenton C.

    2014-03-01

    This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pmore » $$K_a$$ predictions. Structure-based p$$K_a$$ calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for p$$K_a$$ prediction, ranging from empirical statistical models to {\\it ab initio} quantum mechanical approaches. However, each of these methods are based on a set of assumptions that have inherent bias and sensitivities that can effect a model's accuracy and generalizability for p$$K_a$$ prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the Garc{\\'i}a-Moreno lab. Our study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods in our cross-validation study with improvements from 40-70\\% over other method classes. This work illustrates a new possible mechanism for improving the accuracy of p$$K_a$$ prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.« less

  6. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  7. Curcumin inhibits aggregation of alpha-synuclein.

    PubMed

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  8. The saliva proteome of the blood-feeding insect Triatoma infestans is rich in platelet-aggregation inhibitors

    NASA Astrophysics Data System (ADS)

    Charneau, Sébastien; Junqueira, Magno; Costa, Camila M.; Pires, Daniele L.; Fernandes, Ellen S.; Bussacos, Ana C.; Sousa, Marcelo V.; Ricart, Carlos André O.; Shevchenko, Andrej; Teixeira, Antonio R. L.

    2007-12-01

    The saliva of the bloodsucking bug Triatoma infestans vector of Chagas disease contains an anti-hemostatic molecular cocktail that prevents coagulation, vasoconstriction and platelet aggregation in a vertebrate prey. In order to characterize T. infestans saliva proteome, we separated the secreted saliva by two-dimensional gel electrophoresis (2-DE). More than 200 salivary proteins were detected on the 2-DE map, mainly in the alkaline region. By nanoLC-MS/MS analysis using a LTQ-Orbitrap equipment followed by a combination of conventional and sequence-similarity searches, we identified 58 main protein spots. Most of such proteins possess potential blood-feeding associated functions, particularly anti-platelet aggregation proteins belonging to lipocalin and apyrase families. The saliva protein composition indicates a highly specific molecular mechanism of early response to platelet aggregation. This first proteome analysis of the T. infestans secreted saliva provides a basis for a better understanding of this fluid protein composition highly directed to counterpart hemostasis of the prey, thus promoting the bug's blood-feeding.

  9. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    PubMed Central

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-01-01

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences. PMID:26723608

  10. Role of data aggregation in biosurveillance detection strategies with applications from ESSENCE.

    PubMed

    Burkom, Howard S; Elbert, Y; Feldman, A; Lin, J

    2004-09-24

    Syndromic surveillance systems are used to monitor daily electronic data streams for anomalous counts of features of varying specificity. The monitored quantities might be counts of clinical diagnoses, sales of over-the-counter influenza remedies, school absenteeism among a given age group, and so forth. Basic data-aggregation decisions for these systems include determining which records to count and how to group them in space and time. This paper discusses the application of spatial and temporal data-aggregation strategies for multiple data streams to alerting algorithms appropriate to the surveillance region and public health threat of interest. Such a strategy was applied and evaluated for a complex, authentic, multisource, multiregion environment, including >2 years of data records from a system-evaluation exercise for the Defense Advanced Research Project Agency (DARPA). Multivariate and multiple univariate statistical process control methods were adapted and applied to the DARPA data collection. Comparative parametric analyses based on temporal aggregation were used to optimize the performance of these algorithms for timely detection of a set of outbreaks identified in the data by a team of epidemiologists. The sensitivity and timeliness of the most promising detection methods were tested at empirically calculated thresholds corresponding to multiple practical false-alert rates. Even at the strictest false-alert rate, all but one of the outbreaks were detected by the best method, and the best methods achieved a 1-day median time before alert over the set of test outbreaks. These results indicate that a biosurveillance system can provide a substantial alerting-timeliness advantage over traditional public health monitoring for certain outbreaks. Comparative analyses of individual algorithm results indicate further achievable improvement in sensitivity and specificity.

  11. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    PubMed

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  12. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington’s disease

    PubMed Central

    Chen, Mingchen; Wolynes, Peter G.

    2017-01-01

    Huntington’s disease (HD) is a neurodegenerative disease caused by an abnormal expansion in the polyglutamine (polyQ) track of the Huntingtin (HTT) protein. The severity of the disease depends on the polyQ repeat length, arising only in patients with proteins having 36 repeats or more. Previous studies have shown that the aggregation of N-terminal fragments (encoded by HTT exon 1) underlies the disease pathology in mouse models and that the HTT exon 1 gene product can self-assemble into amyloid structures. Here, we provide detailed structural mechanisms for aggregation of several protein fragments encoded by HTT exon 1 by using the associative memory, water-mediated, structure and energy model (AWSEM) to construct their free energy landscapes. We find that the addition of the N-terminal 17-residue sequence (NT17) facilitates polyQ aggregation by encouraging the formation of prefibrillar oligomers, whereas adding the C-terminal polyproline sequence (P10) inhibits aggregation. The combination of both terminal additions in HTT exon 1 fragment leads to a complex aggregation mechanism with a basic core that resembles that found for the aggregation of pure polyQ repeats using AWSEM. At the extrapolated physiological concentration, although the grand canonical free energy profiles are uphill for HTT exon 1 fragments having 20 or 30 glutamines, the aggregation landscape for fragments with 40 repeats has become downhill. This computational prediction agrees with the critical length found for the onset of HD and suggests potential therapies based on blocking early binding events involving the terminal additions to the polyQ repeats. PMID:28400517

  13. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation.

    PubMed

    Aslam, Kiran; Tsai, Chai-Jui; Hazbun, Tony R

    2016-11-01

    The yeast homolog of DJ-1, Hsp31, is a multifunctional protein that is involved in several cellular pathways including detoxification of the toxic metabolite methylglyoxal and as a protein deglycase. Prior studies ascribed Hsp31 as a molecular chaperone that can inhibit α-Syn aggregation in vitro and alleviate its toxicity in vivo. It was also shown that Hsp31 inhibits Sup35 aggregate formation in yeast, however, it is unknown if Hsp31 can modulate [PSI + ] phenotype and Sup35 prionogenesis. Other small heat shock proteins, Hsp26 and Hsp42 are known to be a part of a synergistic proteostasis network that inhibits Sup35 prion formation and promotes its disaggregation. Here, we establish that Hsp31 inhibits Sup35 [PSI + ] prion formation in collaboration with a well-known disaggregase, Hsp104. Hsp31 transiently prevents prion induction but does not suppress induction upon prolonged expression of Sup35 indicating that Hsp31 can be overcome by larger aggregates. In addition, elevated levels of Hsp31 do not cure [PSI + ] strains indicating that Hsp31 cannot intervene in a pre-existing prion oligomerization cycle. However, Hsp31 can modulate prion status in cooperation with Hsp104 because it inhibits Sup35 aggregate formation and potentiates [PSI + ] prion curing upon overexpression of Hsp104. The absence of Hsp31 reduces [PSI + ] prion curing by Hsp104 without influencing its ability to rescue cellular thermotolerance. Hsp31 did not synergize with Hsp42 to modulate the [PSI + ] phenotype suggesting that both proteins act on similar stages of the prion cycle. We also showed that Hsp31 physically interacts with Hsp104 and together they prevent Sup35 prion toxicity to greater extent than if they were expressed individually. These results elucidate a mechanism for Hsp31 on prion modulation that suggest it acts at a distinct step early in the Sup35 aggregation process that is different from Hsp104. This is the first demonstration of the modulation of [PSI + ] status by the

  14. Comparison of sea turtle thrombocyte aggregation to human platelet aggregation in whole blood.

    PubMed

    Soslau, Gerald; Prest, Phillip J; Class, Reiner; George, Robert; Paladino, Frank; Violetta, Gary

    2005-11-01

    The endangered sea turtles are living "fossils" that afford us an opportunity to study the hemostatic process as it likely existed millions of years ago. There are essentially no data about turtle thrombocyte aggregation prior to our studies. Thrombocytes are nucleated cells that serve the same hemostatic functions as the anucleated mammalian platelet. Sea turtle thrombocytes aggregate in response to collagen and beta-thrombin. Ristocetin induces an agglutination/aggregation response indicating the presence of a von Willebrand-like receptor, GPIb, found in all mammalian platelets. Samples treated with alpha-thrombin plus gamma-thrombin followed by ristocetin results in a rapid, stronger response than ristocetin alone. These responses are inhibited by the RGDS peptide that blocks fibrinogen cross-linking of mammalian platelets via the fibrinogen receptor, GPIIb/IIIa. Three platelet-like proteins, GPIb, GPIIb/IIIa and P-selection are detected in sea turtle thrombocytes by fluorescence activated cell sorting. Turtle thrombocytes do not respond to ADP, epinephrine, serotonin, thromboxane A2 mimetic, U46619, trypsin, or alpha-thrombin and gamma-thrombin added alone. Comparison of hemostasis in sea turtles to other vertebrates could provide a framework for understanding the structure/function and evolution of these pathways and their individual components.

  15. Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiophene-Based Ligands to Distinguish β-Amyloid or Tau Polymorphic Aggregates

    PubMed Central

    Klingstedt, Therése; Shirani, Hamid; Mahler, Jasmin; Wegenast-Braun, Bettina M; Nyström, Sofie; Goedert, Michel; Jucker, Mathias; Nilsson, K Peter R

    2015-01-01

    The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the existence of distinct aggregated morphotypes has been suggested to explain the heterogeneous phenotype reported for these diseases. Thus, the development of molecular probes able to distinguish such morphotypes is essential. We report an anionic tetrameric oligothiophene compound that can be utilized for spectral assignment of different morphotypes of β-amyloid or tau aggregates present in transgenic mice at distinct ages. The ability of the ligand to spectrally distinguish between the aggregated morphotypes was reduced when the spacing between the anionic substituents along the conjugated thiophene backbone was altered, which verified that specific molecular interactions between the ligand and the protein aggregate are necessary to detect aggregate polymorphism. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between different morphotypes of protein aggregates. PMID:26013403

  16. Polyglutamine aggregation in Huntington and related diseases.

    PubMed

    Polling, Saskia; Hill, Andrew F; Hatters, Danny M

    2012-01-01

    Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.

  17. Why do proteins aggregate? “Intrinsically insoluble proteins” and “dark mediators” revealed by studies on “insoluble proteins” solubilized in pure water

    PubMed Central

    Song, Jianxing

    2013-01-01

    In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded

  18. An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin

    PubMed Central

    Hevia, Arancha; Martínez, Noelia; Ladero, Víctor; Álvarez, Miguel A.; Margolles, Abelardo

    2013-01-01

    Autoaggregation in lactic acid bacteria is directly related to the production of certain extracellular proteins, notably, aggregation-promoting factors (APFs). Production of aggregation-promoting factors confers beneficial traits to probiotic-producing strains, contributing to their fitness for the intestinal environment. Furthermore, coaggregation with pathogens has been proposed to be a beneficial mechanism in probiotic lactic acid bacteria. This mechanism would limit attachment of the pathogen to the gut mucosa, favoring its removal by the human immune system. In the present paper, we have characterized a novel aggregation-promoting factor in Lactobacillus plantarum. A mutant with a knockout of the D1 gene showed loss of its autoaggregative phenotype and a decreased ability to bind to mucin, indicating an adhesion role of this protein. In addition, heterologous production of the D1 protein or an internal fragment of the protein, characterized by its abundance in serine/threonine, strongly induced autoaggregation in Lactococcus lactis. This result strongly suggested that this internal fragment is responsible for the bioactivity of D1 as an APF. To our knowledge, this is the first report on a gene coding for an aggregation-promoting factor in Lb. plantarum. PMID:23892754

  19. Magnetic Fluids Have Ability to Decrease Amyloid Aggregation Associated with Amyloid-Related Diseases

    NASA Astrophysics Data System (ADS)

    Antosova, Andrea; Koneracka, Martina; Siposova, Katarina; Zavisova, Vlasta; Daxnerova, Zuzana; Vavra, Ivo; Fabian, Martin; Kopcansky, Peter; Gazova, Zuzana

    2010-12-01

    At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several amyloid-related diseases. We have investigated the effect of four magnetic fluids (MFs)—electrostatically stabilized Fe3O4 magnetic nanoparticles (MF1) and sterically stabilized Fe3O4 magnetic nanoparticles by sodium oleate (MF2, MF3 and MF4) with adsorbed BSA (MF2) or dextran (MF4)—on amyloid aggregation of two proteins, human insulin and chicken egg lysozyme. The morphology, particle size and size distribution of the prepared magnetic fluids were characterized. We have found that MFs are able to decrease amyloid aggregation of both studied proteins and the extent of depolymerization depended on the MF properties. The most effective reduction was observed for MF4 as 90% decrease of amyloids was detected for insulin and lysozyme amyloid aggregates. Our findings indicate that MFs have potential to be used for treatment of amyloid diseases.

  20. Modeling Protein Aggregation and the Heat Shock Response in ALS iPSC-Derived Motor Neurons.

    PubMed

    Seminary, Emily R; Sison, Samantha L; Ebert, Allison D

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by the selective loss of the upper and lower motor neurons. Only 10% of all cases are caused by a mutation in one of the two dozen different identified genes, while the remaining 90% are likely caused by a combination of as yet unidentified genetic and environmental factors. Mutations in C9orf72, SOD1 , or TDP-43 are the most common causes of familial ALS, together responsible for at least 60% of these cases. Remarkably, despite the large degree of heterogeneity, all cases of ALS have protein aggregates in the brain and spinal cord that are immunopositive for SOD1, TDP-43, OPTN, and/or p62. These inclusions are normally prevented and cleared by heat shock proteins (Hsps), suggesting that ALS motor neurons have an impaired ability to induce the heat shock response (HSR). Accordingly, there is evidence of decreased induction of Hsps in ALS mouse models and in human post-mortem samples compared to unaffected controls. However, the role of Hsps in protein accumulation in human motor neurons has not been fully elucidated. Here, we generated motor neuron cultures from human induced pluripotent stem cell (iPSC) lines carrying mutations in SOD1, TDP-43 , or C9orf72 . In this study, we provide evidence that despite a lack of overt motor neuron loss, there is an accumulation of insoluble, aggregation-prone proteins in iPSC-derived motor neuron cultures but that content and levels vary with genetic background. Additionally, although iPSC-derived motor neurons are generally capable of inducing the HSR when exposed to a heat stress, protein aggregation itself is not sufficient to induce the HSR or stress granule formation. We therefore conclude that ALS iPSC-derived motor neurons recapitulate key early pathological features of the disease and fail to endogenously upregulate the HSR in response to increased protein burden.

  1. Modeling Protein Aggregation and the Heat Shock Response in ALS iPSC-Derived Motor Neurons

    PubMed Central

    Seminary, Emily R.; Sison, Samantha L.; Ebert, Allison D.

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by the selective loss of the upper and lower motor neurons. Only 10% of all cases are caused by a mutation in one of the two dozen different identified genes, while the remaining 90% are likely caused by a combination of as yet unidentified genetic and environmental factors. Mutations in C9orf72, SOD1, or TDP-43 are the most common causes of familial ALS, together responsible for at least 60% of these cases. Remarkably, despite the large degree of heterogeneity, all cases of ALS have protein aggregates in the brain and spinal cord that are immunopositive for SOD1, TDP-43, OPTN, and/or p62. These inclusions are normally prevented and cleared by heat shock proteins (Hsps), suggesting that ALS motor neurons have an impaired ability to induce the heat shock response (HSR). Accordingly, there is evidence of decreased induction of Hsps in ALS mouse models and in human post-mortem samples compared to unaffected controls. However, the role of Hsps in protein accumulation in human motor neurons has not been fully elucidated. Here, we generated motor neuron cultures from human induced pluripotent stem cell (iPSC) lines carrying mutations in SOD1, TDP-43, or C9orf72. In this study, we provide evidence that despite a lack of overt motor neuron loss, there is an accumulation of insoluble, aggregation-prone proteins in iPSC-derived motor neuron cultures but that content and levels vary with genetic background. Additionally, although iPSC-derived motor neurons are generally capable of inducing the HSR when exposed to a heat stress, protein aggregation itself is not sufficient to induce the HSR or stress granule formation. We therefore conclude that ALS iPSC-derived motor neurons recapitulate key early pathological features of the disease and fail to endogenously upregulate the HSR in response to increased protein burden. PMID:29515358

  2. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    PubMed

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  3. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation.

    PubMed

    Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko

    2017-08-01

    The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  4. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  5. Sugar-Terminated Nanoparticle Chaperones Are 102-105 Times Better Than Molecular Sugars in Inhibiting Protein Aggregation and Reducing Amyloidogenic Cytotoxicity.

    PubMed

    Pradhan, Nibedita; Shekhar, Shashi; Jana, Nihar R; Jana, Nikhil R

    2017-03-29

    Sugar-based osmolyte molecules are known to stabilize proteins under stress, but usually they have poor chaperone performance in inhibiting protein aggregation. Here, we show that the nanoparticle form of sugars molecule can enhance their chaperone performance typically by 10 2 -10 5 times, compared to molecular sugar. Sugar-based plate-like nanoparticles of 20-40 nm hydrodynamic size have been synthesized by simple heating of acidic aqueous solution of glucose/sucrose/maltose/trehalose. These nanoparticles have excitation-dependent green/yellow/orange emission and surface chemistry identical to the respective sugar molecule. Fibrillation of lysozyme/insulin/amyloid beta in extracellular space, aggregation of mutant huntingtin protein inside model neuronal cell, and cytotoxic effect of fibrils are investigated in the presence of these sugar nanoparticles. We found that sugar nanoparticles are 10 2 -10 5 times efficient than respective sugar molecules in inhibiting protein fibrillation and preventing cytotoxicity arising of fibrils. We propose that better performance of the nanoparticle form is linked to its stronger binding with fibril structure and enhanced cell uptake. This result suggests that nanoparticle form of osmolyte can be an attractive option in prevention and curing of protein aggregation-derived diseases.

  6. Cell-to-cell Transmission of Polyglutamine Aggregates in C. elegans

    PubMed Central

    Kim, Dong-Kyu; Cho, Kyu-Won; Ahn, Woo Jung; Perez-Acuña, Dayana; Jeong, Hyunsu; Lee, He-Jin

    2017-01-01

    Huntington disease (HD) is an inherited neurodegenerative disorder characterized by motor and cognitive dysfunction caused by expansion of polyglutamine (polyQ) repeat in exon 1 of huntingtin (HTT). In patients, the number of glutamine residues in polyQ tracts are over 35, and it is correlated with age of onset, severity, and disease progression. Expansion of polyQ increases the propensity for HTT protein aggregation, process known to be implicated in neurodegeneration. These pathological aggregates can be transmitted from neuron to another neuron, and this process may explain the pathological spreading of polyQ aggregates. Here, we developed an in vivo model for studying transmission of polyQ aggregates in a highly quantitative manner in real time. HTT exon 1 with expanded polyQ was fused with either N-terminal or C-terminal fragments of Venus fluorescence protein and expressed in pharyngeal muscles and associated neurons, respectively, of C. elegans. Transmission of polyQ proteins was detected using bimolecular fluorescence complementation (BiFC). Mutant polyQ (Q97) was transmitted much more efficiently than wild type polyQ (Q25) and forms numerous inclusion bodies as well. The transmission of Q97 was gradually increased with aging of animal. The animals with polyQ transmission exhibited degenerative phenotypes, such as nerve degeneration, impaired pharyngeal pumping behavior, and reduced life span. The C. elegans model presented here would be a useful in vivo model system for the study of polyQ aggregate propagation and might be applied to the screening of genetic and chemical modifiers of the propagation. PMID:29302199

  7. Small heat shock proteins protect against {alpha}-synuclein-induced toxicity and aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). {alpha}-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and {alpha}B-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messengermore » RNA levels are {approx}2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by {approx}80% in a culture model while {alpha}B-crystallin reduces toxicity by {approx}20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.« less

  8. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing

    PubMed Central

    Klein, Pierre; Oloko, Martine; Roth, Fanny; Montel, Valérie; Malerba, Alberto; Jarmin, Susan; Gidaro, Teresa; Popplewell, Linda; Perie, Sophie; Lacau St Guily, Jean; de la Grange, Pierre; Antoniou, Michael N.; Dickson, George; Butler-Browne, Gillian; Bastide, Bruno; Mouly, Vincent; Trollet, Capucine

    2016-01-01

    A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein. PMID:27507886

  9. pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis.

    PubMed

    Pica, Andrea; Leone, Serena; Di Girolamo, Rocco; Donnarumma, Federica; Emendato, Alessandro; Rega, Michele Fortunato; Merlino, Antonello; Picone, Delia

    2018-04-01

    MNEI and its variant Y65R-MNEI are sweet proteins with potential applications as sweeteners in food industry. Also, they are often used as model systems for folding and aggregation studies. X-ray crystallography was used to structurally characterize Y65R-MNEI at five different pHs, while circular dichroism and fluorescence spectroscopy were used to study their thermal and chemical stability. ThT assay and AFM were used for studying the kinetics of aggregation and morphology of the aggregates. Crystal structures of Y65R-MNEI revealed the existence of a dimer in the asymmetric unit, which, depending on the pH, assumes either an open or a closed conformation. The pH dramatically affects kinetics of formation and morphology of the aggregates: both MNEI and Y65R-MNEI form fibrils at acidic pH while amorphous aggregates are observed at neutral pH. The mutation Y65R induces structural modifications at the C-terminal region of the protein, which account for the decreased stability of the mutant when compared to MNEI. Furthermore, the pH-dependent conformation of the Y65R-MNEI dimer may explain the different type of aggregates formed as a function of pH. The investigation of the structural bases of aggregation gets us closer to the possibility of controlling such process, either by tuning the physicochemical environmental parameters or by site directed mutagenesis. This knowledge is helpful to expand the range of stability of proteins with potential industrial applications, such as MNEI and its mutant Y65R-MNEI, which should ideally preserve their structure and soluble state through a wide array of conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Morphology-Variable Aggregates Prepared from Cholesterol-Containing Amphiphilic Glycopolymers: Their Protein Recognition/Adsorption and Drug Delivery Applications

    PubMed Central

    Wang, Zhao; Luo, Ting; Cao, Amin; Sun, Jingjing; Jia, Lin

    2018-01-01

    In this study, a series of diblock glycopolymers, poly(6-O-methacryloyl-d-galactopyranose)-b-poly(6-cholesteryloxyhexyl methacrylate) (PMAgala-b-PMAChols), with cholesterol/galactose grafts were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and deprotection process. The glycopolymers could self-assemble into aggregates with various morphologies depending on cholesterol/galactose-containing block weight ratios, as determined by transmission electronic microscopy (TEM) and dynamic laser light scattering (DLS). In addition, the lectin (Ricinus communis agglutinin II, RCA120) recognition and bovine serum albumin (BSA) adsorption of the PMAgala-b-PMAChol aggregates were evaluated. The SK-Hep-1 tumor cell inhibition properties of the PMAgala-b-PMAChol/doxorubicin (DOX) complex aggregates were further examined in vitro. Results indicate that the PMAgala-b-PMAChol aggregates with various morphologies showed different interaction/recognition features with RCA120 and BSA. Spherical aggregates (d ≈ 92 nm) possessed the highest RCA120 recognition ability and lowest BSA protein adsorption. In addition, the DOX-loaded spherical complex aggregates exhibited a better tumor cell inhibition property than those of nanofibrous complex aggregates. The morphology-variable aggregates derived from the amphiphilic glycopolymers may serve as multifunctional biomaterials with biomolecular recognition and drug delivery features. PMID:29495614

  11. Prediction and Reduction of the Aggregation of Monoclonal Antibodies.

    PubMed

    van der Kant, Rob; Karow-Zwick, Anne R; Van Durme, Joost; Blech, Michaela; Gallardo, Rodrigo; Seeliger, Daniel; Aßfalg, Kerstin; Baatsen, Pieter; Compernolle, Griet; Gils, Ann; Studts, Joey M; Schulz, Patrick; Garidel, Patrick; Schymkowitz, Joost; Rousseau, Frederic

    2017-04-21

    Protein aggregation remains a major area of focus in the production of monoclonal antibodies. Improving the intrinsic properties of antibodies can improve manufacturability, attrition rates, safety, formulation, titers, immunogenicity, and solubility. Here, we explore the potential of predicting and reducing the aggregation propensity of monoclonal antibodies, based on the identification of aggregation-prone regions and their contribution to the thermodynamic stability of the protein. Although aggregation-prone regions are thought to occur in the antigen binding region to drive hydrophobic binding with antigen, we were able to rationally design variants that display a marked decrease in aggregation propensity while retaining antigen binding through the introduction of artificial aggregation gatekeeper residues. The reduction in aggregation propensity was accompanied by an increase in expression titer, showing that reducing protein aggregation is beneficial throughout the development process. The data presented show that this approach can significantly reduce liabilities in novel therapeutic antibodies and proteins, leading to a more efficient path to clinical studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation.

    PubMed

    Lou, Zhichao; Wang, Bin; Guo, Cunlan; Wang, Kun; Zhang, Haiqian; Xu, Bingqian

    2015-11-01

    By in situ time-lapse AFM, we investigated early-stage aggregates of PrP formed at low concentration (100 ng/mL) on mica and Au(111) surfaces in acetate buffer (pH 4.5). Remarkably different PrP assemblies were observed. Oligomeric structures of PrP aggregates were observed on mica surface, which was in sharp contrast to the multi-layer PrP aggregates yielding parallel linear patterns observed Au(111) surface. Combining molecular dynamics and docking simulations, PrP monomers, dimers and trimers were revealed as the basic units of the observed aggregates. Besides, the mechanisms of the observed PrP aggregations and the corresponding molecular-substrate and intermolecular interactions were suggested. These interactions involved gold-sulfur interaction, electrostatic interaction, hydrophobic interaction, and hydrogen binding interaction. In contrast, the PrP aggregates observed in pH 7.2 PBS buffer demonstrated similar large ball-like structures on both mica and Au(111) surfaces. The results indicate that the pH of a solution and the surface of the system can have strong effects on supramolecular assemblies of prion proteins. This study provides in-depth understanding on the structural and mechanistic nature of PrP aggregation, and can be used to study the aggregation mechanisms of other proteins with similar misfolding properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Protein detection by Simple Western™ analysis.

    PubMed

    Harris, Valerie M

    2015-01-01

    Protein Simple© has taken a well-known protein detection method, the western blot, and revolutionized it. The Simple Western™ system uses capillary electrophoresis to identify and quantitate a protein of interest. Protein Simple© provides multiple detection apparatuses (Wes, Sally Sue, or Peggy Sue) that are suggested to save scientists valuable time by allowing the researcher to prepare the protein sample, load it along with necessary antibodies and substrates, and walk away. Within 3-5 h the protein will be separated by size, or charge, immuno-detection of target protein will be accurately quantitated, and results will be immediately made available. Using the Peggy Sue instrument, one study recently examined changes in MAPK signaling proteins in the sex-determining stage of gonadal development. Here the methodology is described.

  14. The small heat shock proteins αB-crystallin (HSPB5) and Hsp27 (HSPB1) inhibit the intracellular aggregation of α-synuclein.

    PubMed

    Cox, Dezerae; Ecroyd, Heath

    2017-07-01

    Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. Proteostasis is preserved in the face of stress by a complex network of cellular machinery, including the small heat shock molecular chaperone proteins (sHsps), which act to inhibit the aggregation and deposition of misfolded protein intermediates. Despite this, the pathogenesis of several neurodegenerative diseases has been inextricably linked with the amyloid fibrillar aggregation and deposition of α-synuclein (α-syn). The sHsps are potent inhibitors of α-syn aggregation in vitro. However, the limited availability of a robust, cell-based model of α-syn aggregation has, thus far, restricted evaluation of sHsp efficacy in the cellular context. As such, this work sought to establish a robust model of intracellular α-syn aggregation using Neuro-2a cells. Aggregation of α-syn was found to be sensitive to inhibition of autophagy and the proteasome, resulting in a significant increase in the proportion of cells containing α-syn inclusions. This model was then used to evaluate the capacity of the sHsps, αB-c and Hsp27, to prevent α-syn aggregation in cells. To do so, we used bicistronic expression plasmids to express the sHsps. Unlike traditional fluorescent fusion constructs, these bicistronic expression plasmids enable only individual transfected cells expressing the sHsps (via expression of the fluorescent reporter) to be analysed, but without the need to tag the sHsp, which can affect its oligomeric structure and chaperone activity. Overexpression of both αB-c and Hsp27 significantly reduced the intracellular aggregation of α-syn. Thus, these findings suggest that overexpressing or boosting the activity of sHsps may be a way of preventing amyloid fibrillar aggregation of α-syn in the context of neurodegenerative disease.

  15. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Chebotareva, Natalia A.; Kleymenov, Sergey Yu.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Stein-Margolina, Vita A.; Shubin, Vladimir V.; Markov, Denis I.; Kurganov, Boris I.

    2016-01-01

    Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates. PMID:27101281

  16. The impact of thermal treatment on the stability of freeze-dried amorphous pharmaceuticals: II. Aggregation in an IgG1 fusion protein.

    PubMed

    Wang, Bingquan; Cicerone, Marcus T; Aso, Yukio; Pikal, Michael J

    2010-02-01

    The objective of this research was to investigate the impact of thermal treatment on storage stability of an IgG1 fusion protein. IgG1 protein formulations were prepared by freeze-drying the protein with sucrose. Some samples were used as controls, and others were subjected to a further heat treatment (annealing). The protein structure was investigated with Fourier transform infrared spectroscopy (FTIR), and protein aggregation was monitored with size exclusion HPLC. Enthalpy recovery was studied using DSC, and global mobility represented by the structural relaxation time constant (tau(beta)) was characterized by a thermal activity monitor (TAM). The local mobility of the protein system was monitored by both (13)C solid-state NMR and neutron backscattering. Annealing increased the storage stability of the protein, as shown by the smaller aggregation rate and less total aggregation at the end of a storage period. The structural relaxation time constant of an annealed sample was significantly higher than the unannealed control sample, suggesting a decrease in global mobility of the protein system upon annealing. However, annealing does not significantly impact the protein secondary structure or the local mobility. Given the similar protein native structure and specific surface area, the improved stability upon annealing is mainly a result of reduced global molecular mobility. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  17. Sensitive, label-free protein assay using 1-ethyl-3-methylimidazolium tetrafluoroborate-supported microchip electrophoresis with laser-induced fluorescence detection.

    PubMed

    Xu, Yuanhong; Li, Jing; Wang, Erkang

    2008-05-01

    Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) instead of PBS was applied as running buffers in microchip electrophoresis. Due to the excellent properties of EMImBF4, not only nonspecific protein adsorption was more efficiently suppressed, but also approximately ten-fold higher fluorescence intensity enhancement was obtained than that using PBS. Under the optimal conditions, detection limits for BSA, bovine hemoglobin, cytochrome c, and trypsin were 1.00x10(-6), 2x10(-6), 7x10(-7), and 5x10(-7) mg/mL, respectively. Thus, without covalent modification of the protein, a protein assay method with high sensitivity was achieved on microchips.

  18. On the origin of the phase-space diffusion limit in (dis)ordered protein aggregation

    NASA Astrophysics Data System (ADS)

    Gadomski, A.; Siódmiak, J.; Santamaría-Holek, I.

    2013-08-01

    Derivation of a phase-space diffusion limit (D-L) allows to obtain a useful formula for a characteristic width of the macroion-channeling filter, controlling model (dis)ordered protein aggregations in a non-ideal aqueous solution. The channel’s width is estimated at the order of an inner half-width of the Stern-type double layer circumventing the growing object and depends in turn on an interplay of the local thermal and electrostatic conditions. The interfacial channeling effect manifests at the edge of biomolecular hydration-duration dependent (non)Markovianity of the system. The interface vs. solution aggregation late-time dynamics are discussed in such local (non)isothermal context with the aim to suggest their experimental assessment.

  19. AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress.

    PubMed

    Liu, Yu; Fares, Matthew; Dunham, Noah P; Gao, Zi; Miao, Kun; Jiang, Xueyuan; Bollinger, Samuel S; Boal, Amie K; Zhang, Xin

    2017-07-17

    Drug-induced proteome stress that involves protein aggregation may cause adverse effects and undermine the safety profile of a drug. Safety of drugs is regularly evaluated using cytotoxicity assays that measure cell death. However, these assays provide limited insights into the presence of proteome stress in live cells. A fluorogenic protein sensor is reported to detect drug-induced proteome stress prior to cell death. An aggregation prone Halo-tag mutant (AgHalo) was evolved to sense proteome stress through its aggregation. Detection of such conformational changes was enabled by a fluorogenic ligand that fluoresces upon AgHalo forming soluble aggregates. Using 5 common anticancer drugs, we exemplified detection of differential proteome stress before any cell death was observed. Thus, this sensor can be used to evaluate drug safety in a regime that the current cytotoxicity assays cannot cover and be generally applied to detect proteome stress induced by other toxins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads.

    PubMed

    Uddin, Rokon; Burger, Robert; Donolato, Marco; Fock, Jeppe; Creagh, Michael; Hansen, Mikkel Fougt; Boisen, Anja

    2016-11-15

    We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25pM with the same sample-to-answer time (15min 30s) using the two differently sized beads for the two detection methods. In both cases a sample volume of only 10µl is required. The demonstrated automation, low sample-to-answer time and portability of both detection instruments as well as integration of the assay on a low-cost disc are important steps for the implementation of these as portable tools in an out-of-lab setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Controlled Aggregation of Ferritin to Modulate MRI Relaxivity

    PubMed Central

    Bennett, Kevin M.; Shapiro, Erik M.; Sotak, Christopher H.; Koretsky, Alan P.

    2008-01-01

    Ferritin is an iron storage protein expressed in varying concentrations in mammalian cells. The deposition of ferric iron in the core of ferritin makes it a magnetic resonance imaging contrast agent, and ferritin has recently been proposed as a gene expression reporter protein for magnetic resonance imaging. To date, ferritin has been overexpressed in vivo and has been coexpressed with transferrin receptor to increase iron loading in cells. However, ferritin has a relatively low T2 relaxivity (R2 ≈ 1 mM−1s−1) at typical magnetic field strengths and so requires high levels of expression to be detected. One way to modulate the transverse relaxivity of a superparamagnetic agent is to cause it to aggregate, thereby manipulating the magnetic field gradients through which water diffuses. In this work, it is demonstrated by computer simulation and in vitro that aggregation of ferritin can alter relaxivity. The effects of aggregate size and intraaggregate perturber spacing on R2 are studied. Computer modeling indicates that the optimal spacing of the ferritin molecules in aggregate for increasing R2 is 100–200 nm for a typical range of water diffusion rates. Chemical cross-linking of ferritin at 12 Å spacing led to a 70% increase in R2 compared to uncross-linked ferritin controls. To modulate ferritin aggregation in a potentially biologically relevant manner, ferritin was attached to actin and polymerized in vitro. The polymerization of ferritin-F-actin caused a 20% increase in R2 compared to unpolymerized ferritin-G-actin. The R2-value was increased by another 10% by spacing the ferritin farther apart on the actin filaments. The modulation of ferritin aggregation by binding to cytoskeletal elements may be a useful strategy to make a functional reporter gene for magnetic resonance imaging. PMID:18326661

  2. The Myxococcus xanthus Spore Cuticula Protein C Is a Fragment of FibA, an Extracellular Metalloprotease Produced Exclusively in Aggregated Cells

    PubMed Central

    Lee, Bongsoo; Mann, Petra; Grover, Vidhi; Treuner-Lange, Anke; Kahnt, Jörg; Higgs, Penelope I.

    2011-01-01

    Myxococcus xanthus is a soil bacterium with a complex life cycle involving distinct cell fates, including production of environmentally resistant spores to withstand periods of nutrient limitation. Spores are surrounded by an apparently self-assembling cuticula containing at least Proteins S and C; the gene encoding Protein C is unknown. During analyses of cell heterogeneity in M. xanthus, we observed that Protein C accumulated exclusively in cells found in aggregates. Using mass spectrometry analysis of Protein C either isolated from spore cuticula or immunoprecipitated from aggregated cells, we demonstrate that Protein C is actually a proteolytic fragment of the previously identified but functionally elusive zinc metalloprotease, FibA. Subpopulation specific FibA accumulation is not due to transcriptional regulation suggesting post-transcriptional regulation mechanisms mediate its heterogeneous accumulation patterns. PMID:22174937

  3. Suppression and dissolution of amyloid aggregates using ionic liquids.

    PubMed

    Takekiyo, Takahiro; Yoshimura, Yukihiro

    2018-04-25

    Amyloid aggregates are composed of protein fibrils with a dominant β-sheet structure, are water-insoluble, and are involved in the pathogenesis of many neurodegenerative diseases. Development of pharmaceuticals to treat these diseases and the design of recovery agents for amyloid-type inclusion bodies require the successful suppression and dissolution of such aggregates. Since ionic liquids (ILs) are composed of both a cation and anion and are known to suppress protein aggregation and to dissolve water-insoluble compounds such as cellulose; they may also have potential use as suppression/dissolution agents for amyloid aggregates. In the following review, we present the suppression and dissolution effects of ILs on amyloid aggregates so far reported. The protein-IL affinity (the ability of ILs to interact with amyloid proteins) was found to be the biochemical basis for ILs' suppression of amyloid formation, and the hydrogen-bonding basicity of ILs might be the basis for their ability to dissolve amyloid aggregates. These findings present the potential of ILs to serve as novel pharmaceuticals to treat neurodegenerative diseases and as recovery agents for various amyloid aggregates.

  4. Methylglyoxal-induced modification causes aggregation of myoglobin

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  5. Fourier transform infrared spectroscopy provides an evidence of papain denaturation and aggregation during cold storage.

    PubMed

    Rašković, Brankica; Popović, Milica; Ostojić, Sanja; Anđelković, Boban; Tešević, Vele; Polović, Natalija

    2015-01-01

    Papain is a cysteine protease with wide substrate specificity and many applications. Despite its widespread applications, cold stability of papain has never been studied. Here, we used differential spectroscopy to monitor thermal denaturation process. Papain was the most stabile from 45 °C to 60 °C with ΔG°321 of 13.9±0.3 kJ/mol and Tm value of 84±1 °C. After cold storage, papain lost parts of its native secondary structures elements which gave an increase of 40% of intermolecular β-sheet content (band maximum detected at frequency of 1621 cm(-1) in Fourier transform infrared (FT-IR) spectrum) indicating the presence of secondary structures necessary for aggregation. The presence of protein aggregates after cold storage was also proven by analytical size exclusion chromatography. After six freeze-thaw cycles around 75% of starting enzyme activity of papain was lost due to cold denaturation and aggregation of unfolded protein. Autoproteolysis of papain did not cause significant loss of the protein activity. Upon the cold storage, papain underwent structural rearrangements and aggregation that correspond to other cold denatured proteins, rather than autoproteolysis which could have the commercial importance for the growing polypeptide based industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Validity of Particle-Counting Method Using Laser-Light Scattering for Detecting Platelet Aggregation in Diabetic Patients

    NASA Astrophysics Data System (ADS)

    Nakadate, Hiromichi; Sekizuka, Eiichi; Minamitani, Haruyuki

    We aimed to study the validity of a new analytical approach that reflected the phase from platelet activation to the formation of small platelet aggregates. We hoped that this new approach would enable us to use the particle-counting method with laser-light scattering to measure platelet aggregation in healthy controls and in diabetic patients without complications. We measured agonist-induced platelet aggregation for 10 min. Agonist was added to the platelet-rich plasma 1 min after measurement started. We compared the total scattered light intensity from small aggregates over a 10-min period (established analytical approach) and that over a 2-min period from 1 to 3 min after measurement started (new analytical approach). Consequently platelet aggregation in diabetics with HbA1c ≥ 6.5% was significantly greater than in healthy controls by both analytical approaches. However, platelet aggregation in diabetics with HbA1c < 6.5%, i.e. patients in the early stages of diabetes, was significantly greater than in healthy controls only by the new analytical approach, not by the established analytical approach. These results suggest that platelet aggregation as detected by the particle-counting method using laser-light scattering could be applied in clinical examinations by our new analytical approach.

  7. RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease.

    PubMed

    Bishof, Isaac; Dammer, Eric B; Duong, Duc M; Kundinger, Sean; Gearing, Marla; Lah, James J; Levey, Allan I; Seyfried, Nicholas T

    2018-05-25

    U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and other RNA-binding proteins (RBPs) are mislocalized to cytoplasmic neurofibrillary tau aggregates in Alzheimer's disease (AD), yet the co-aggregation mechanisms are incompletely understood. U1-70K harbors two disordered low-complexity domains (LC1 and LC2) that are necessary for aggregation in AD brain extracts. The LC1 domain contains highly repetitive basic (R/K) and acidic (D/E) residues, referred to as a basic-acidic dipeptide (BAD) domain. We report here that this domain shares many of the properties of the Q/N-rich LC domains in RBPs that also aggregate in neurodegenerative disease. These properties included self-assembly into oligomers and localization to nuclear granules. Co-immunoprecipitations of recombinant U1-70K and deletions lacking the LC domain(s) followed by quantitative proteomic analyses were used to resolve functional classes of U1-70K-interacting proteins that depend on the BAD domain for their interaction. Within this interaction network, we identified a class of RBPs with BAD domains nearly identical to that found in U1-70K. Two members of this class, LUC7L3 and RBM25, required their respective BAD domains for reciprocal interactions with U1-70K and nuclear granule localization. Strikingly, a significant proportion of RBPs with BAD domains had elevated insolubility in the AD brain proteome. Furthermore, we show that the BAD domain of U1-70K can interact with tau from AD brains, but not from other tauopathies. These findings highlight a mechanistic role for BAD domains in stabilizing RBP interactions and in potentially mediating co-aggregation with pathological, AD-specific tau isoforms. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.

    2016-02-01

    Particles in simulations are traditionally endowed with fixed interactions. While this is appropriate for particles representing atoms or molecules, objects with significant internal dynamics—like sequences of amino acids or even an entire protein—are poorly modelled by invariable particles. We develop a highly coarse grained polymorph patchy particle with the ultimate aim of simulating proteins as chains of particles at the secondary structure level. Conformational changes, e.g., a transition between disordered and β-sheet states, are accommodated by internal coordinates that determine the shape and interaction characteristics of the particles. The internal coordinates, as well as the particle positions and orientations, are propagated by Brownian Dynamics in response to their local environment. As an example of the potential offered by polymorph particles, we model the amyloidogenic intrinsically disordered protein α-synuclein, involved in Parkinson's disease, as a single particle with two internal states. The simulations yield oligomers of particles in the disordered state and fibrils of particles in the "misfolded" cross-β-sheet state. The aggregation dynamics is complex, as aggregates can form by a direct nucleation-and-growth mechanism and by two-step-nucleation through conversions between the two cluster types. The aggregation dynamics is complex, with fibrils formed by direct nucleation-and-growth, by two-step-nucleation through the conversion of an oligomer and by auto-catalysis of this conversion.

  9. Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates

    PubMed Central

    Lim, Junghyun; Lachenmayer, M. Lenard; Wu, Shuai; Liu, Wenchao; Kundu, Mondira; Wang, Rong; Komatsu, Masaaki; Oh, Young J.; Zhao, Yanxiang; Yue, Zhenyu

    2015-01-01

    Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease. PMID:25723488

  10. Aggregation of Human S100A8 and S100A9 Amyloidogenic Proteins Perturbs Proteostasis in a Yeast Model

    PubMed Central

    Eremenko, Ekaterina; Ben-Zvi, Anat; Morozova-Roche, Ludmilla A.; Raveh, Dina

    2013-01-01

    Amyloid aggregates of the calcium-binding EF-hand proteins, S100A8 and S100A9, have been found in the corpora amylacea of patients with prostate cancer and may play a role in carcinogenesis. Here we present a novel model system using the yeast Saccharomyces cerevisiae to study human S100A8 and S100A9 aggregation and toxicity. We found that S100A8, S100A9 and S100A8/9 cotransfomants form SDS-resistant non-toxic aggregates in yeast cells. Using fluorescently tagged proteins, we showed that S100A8 and S100A9 accumulate in foci. After prolonged induction, S100A8 foci localized to the cell vacuole, whereas the S100A9 foci remained in the cytoplasm when present alone, but entered the vacuole in cotransformants. Biochemical analysis of the proteins indicated that S100A8 and S100A9 alone or coexpressed together form amyloid-like aggregates in yeast. Expression of S100A8 and S100A9 in wild type yeast did not affect cell viability, but these proteins were toxic when expressed on a background of unrelated metastable temperature-sensitive mutant proteins, Cdc53-1p, Cdc34-2p, Srp1-31p and Sec27-1p. This finding suggests that the expression and aggregation of S100A8 and S100A9 may limit the capacity of the cellular proteostasis machinery. To test this hypothesis, we screened a set of chaperone deletion mutants and found that reducing the levels of the heat-shock proteins Hsp104p and Hsp70p was sufficient to induce S100A8 and S100A9 toxicity. This result indicates that the chaperone activity of the Hsp104/Hsp70 bi-chaperone system in wild type cells is sufficient to reduce S100A8 and S100A9 amyloid toxicity and preserve cellular proteostasis. Expression of human S100A8 and S100A9 in yeast thus provides a novel model system for the study of the interaction of amyloid deposits with the proteostasis machinery. PMID:23483999

  11. Sorbitol crystallization-induced aggregation in frozen mAb formulations.

    PubMed

    Piedmonte, Deirdre Murphy; Hair, Alison; Baker, Priti; Brych, Lejla; Nagapudi, Karthik; Lin, Hong; Cao, Wenjin; Hershenson, Susan; Ratnaswamy, Gayathri

    2015-02-01

    Sorbitol crystallization-induced aggregation of mAbs in the frozen state was evaluated. The effect of protein aggregation resulting from sorbitol crystallization was measured as a function of formulation variables such as protein concentration and pH. Long-term studies were performed on both IgG1 and IgG2 mAbs over the protein concentration range of 0.1-120 mg/mL. Protein aggregation was measured by size-exclusion HPLC (SE-HPLC) and further characterized by capillary-electrophoresis SDS. Sorbitol crystallization was monitored and characterized by subambient differential scanning calorimetry and X-ray diffraction. Aggregation due to sorbitol crystallization is inversely proportional to both protein concentration and formulation pH. At high protein concentrations, sorbitol crystallization was suppressed, and minimal aggregation by SE-HPLC resulted, presumably because of self-stabilization of the mAbs. The glass transition temperature (Tg ') and fragility index measurements were made to assess the influence of molecular mobility on the crystallization of sorbitol. Tg ' increased with increasing protein concentration for both mAbs. The fragility index decreased with increasing protein concentration, suggesting that it is increasingly difficult for sorbitol to crystallize at high protein concentrations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Detection and analysis of protein ISGylation.

    PubMed

    Takeuchi, Tomoharu; Yokosawa, Hideyoshi

    2008-01-01

    ISG15 is a ubiquitin-like modifi er that is conjugated to target proteins by a sequential reaction catalyzed by E1/E2/E3 enzymes (protein ISGylation). ISG15 and protein ISGylation are upregulated by interferon stimuli. ISG15 functions as an antiviral protein against Sindbis virus and HIV-1, but the molecular mechanism remains unknown. Here we describe in detail methods for detecting and analyzing protein ISGylation. The methods consist of plasmid transfection and affi nity purifi cation of ISGylated proteins. In addition, we describe a method for detecting ISGylation of a target protein, Ubc13.

  13. Application of a high-throughput relative chemical stability assay to screen therapeutic protein formulations by assessment of conformational stability and correlation to aggregation propensity.

    PubMed

    Rizzo, Joseph M; Shi, Shuai; Li, Yunsong; Semple, Andrew; Esposito, Jessica J; Yu, Shenjiang; Richardson, Daisy; Antochshuk, Valentyn; Shameem, Mohammed

    2015-05-01

    In this study, an automated high-throughput relative chemical stability (RCS) assay was developed in which various therapeutic proteins were assessed to determine stability based on the resistance to denaturation post introduction to a chaotrope titration. Detection mechanisms of both intrinsic fluorescence and near UV circular dichroism (near-UV CD) are demonstrated. Assay robustness was investigated by comparing multiple independent assays and achieving r(2) values >0.95 for curve overlays. The complete reversibility of the assay was demonstrated by intrinsic fluorescence, near-UV CD, and biologic potency. To highlight the method utility, we compared the RCS assay with differential scanning calorimetry and dynamic scanning fluorimetry methodologies. Utilizing C1/2 values obtained from the RCS assay, formulation rank-ordering of 12 different mAb formulations was performed. The prediction of long-term stability on protein aggregation is obtained by demonstrating a good correlation with an r(2) of 0.83 between RCS and empirical aggregation propensity data. RCS promises to be an extremely useful tool to aid in candidate formulation development efforts based on the complete reversibility of the method to allow for multiple assessments without protein loss and the strong correlation between the C1/2 data obtained and accelerated stability under stressed conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  15. Kinetics of aggregation in charged nanoparticle solutions driven by different mechanisms

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Yadav, I.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2017-05-01

    The structure and kinetics during aggregation of anionic silica nanoparticles as induced through different mechanisms have been studied by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Three different additives, namely an electrolyte (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) were used to initiate nanoparticle aggregation. Electrolyte induced aggregation can be explained by DLVO interaction, whereas depletion interaction (non-DLVO interaction) is found responsible for nanoparticle aggregation in case of non-ionic surfactant. Unlike these two cases, strong electrostatic attraction between nanoparticle and oppositely charged protein results into protein-mediated nanoparticle aggregation. The electrolyte induced aggregation show quite slow aggregation rate whereas protein mediated as well as surfactant induced aggregation takes place almost instantaneously. The significant differences observed in the kinetics are explained based on range of interactions responsible for the aggregation. In spite of differences in mechanism and kinetics, the nanoparticle clusters are found to have similar fractal morphology (fractal dimension ˜ 2.5) in all the three cases.

  16. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    PubMed

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  17. Comparative Analysis of the Conformation, Aggregation, Interaction, and Fibril Morphologies of Human α-, β-, and γ-Synuclein Proteins.

    PubMed

    Jain, Manish Kumar; Singh, Priyanka; Roy, Sneha; Bhat, Rajiv

    2018-06-13

    The human synuclein (syn) family is comprised of α-, β-, and γ-syn proteins. α-syn has the highest propensity for aggregation, and its aggregated forms accumulate in Lewy bodies (LB) and Lewy neurites, which are involved in Parkinson's disease (PD). β- and γ-syn are absent in LB, and their exact role is still enigmatic. β-syn does not form aggregates under physiological conditions (pH 7.4), while γ-syn is associated with neural and non-neural diseases like breast cancer. Because of their similar regional distribution in the brain, natively unfolded structure, and high degree of sequence homology, studying the effect of the environment on their conformation, interactions, fibrillation, and fibril morphologies has become important. Our studies show that high temperatures, low pH values, and high concentrations increase the rate of fibrillation of α- and γ-syn, while β-syn forms fibrils only at low pH. Fibril morphologies are strongly dependent on the immediate environment of the proteins. The high molar ratio of β-syn inhibits the fibrillation in α- and γ-syn. However, preformed seed fibrils of β- and γ-syn do not affect fibrillation of α-syn. Surface plasmon resonance data show that interactions between α- and β-syn, β- and γ-syn, and α- and γ-syn are weak to moderate in nature and can be physiologically significant in counteracting several adverse conditions in the cells that trigger their aggregation. These studies could be helpful in understanding collective human synuclein behavior in various protein environments and in the modulation of the homeostasis between β-syn and healthy versus corrupt α- and γ-syn that can potentially affect PD pathology.

  18. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions

    PubMed Central

    2017-01-01

    Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid

  19. Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Howser, Rachel; Moslehy, Yashar; Gu, Haichang; Dhonde, Hemant; Mo, Y. L.; Ayoub, Ashraf; Song, Gangbing

    2011-07-01

    Structural health monitoring is an important aspect of the maintenance of large civil infrastructures, especially for bridge columns in areas of high seismic activity. In this project, recently developed innovative piezoceramic-based sensors were utilized to perform the health monitoring of a shear-critical reinforced concrete (RC) bridge column subjected to reversed cyclic loading. After the column failed, it was wrapped with fiber reinforced polymer (FRP) sheets, commonly used to retrofit seismically damaged structures. The FRP-strengthened column was retested under the same reversed cyclic loading pattern. Innovative piezoceramic-based sensors, called 'smart aggregates', were utilized as transducers for health monitoring purposes. On the basis of the smart aggregates developed, an active-sensing approach and an impact-hammer-based approach were used to evaluate the health status of the RC column during the loading procedure. Wave transmission energy is attenuated by the existence of cracks during the loading procedure, and this attenuation phenomenon alters the curve of the transfer function between the actuator and sensor. To detect the damage occurrence and evaluate the damage severity, transfer function curves were compared with those obtained during the period of healthy status. A transfer-function-based damage index matrix was developed to demonstrate the damage severity at different locations. Experimental results verified the effectiveness of the smart aggregates in health monitoring of the FRP-strengthened column as well as the unstrengthened column. The experimental results show that the proposed smart-aggregate-based approach can successfully detect damage occurrence and evaluate its severity.

  20. Monitoring Insulin Aggregation via Capillary Electrophoresis

    PubMed Central

    Pryor, Elizabeth; Kotarek, Joseph A.; Moss, Melissa A.; Hestekin, Christa N.

    2011-01-01

    Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation. PMID:22272138

  1. Uncovering the mechanism of aggregation of human transthyretin

    DOE PAGES

    Saelices, Lorena; Johnson, Lisa M.; Liang, Wilson Y.; ...

    2015-10-12

    The tetrameric thyroxine transport protein transthyretin (TTR) forms amyloid fibrils upon dissociation and monomer unfolding. The aggregation of transthyretin has been reported as the cause of the life-threatening transthyretin amyloidosis. The standard treatment of familial cases of TTR amyloidosis has been liver transplantation. Although aggregation-preventing strategies involving ligands are known, understanding the mechanism of TTR aggregation can lead to additional inhibition approaches. Several models of TTR amyloid fibrils have been proposed, but the segments that drive aggregation of the protein have remained unknown. Here we identify β-strands F and H as necessary for TTR aggregation. Based on the crystal structuresmore » of these segments, we designed two non-natural peptide inhibitors that block aggregation. Lastly, this work provides the first characterization of peptide inhibitors for TTR aggregation, establishing a novel therapeutic strategy.« less

  2. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy.

    PubMed

    Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Kobayashi, Hirofumi; Aisaka, Yuri; Ito, Takuro; Guo, Baoshan; Nitta, Nao; Kutsuna, Natsumaro; Ozeki, Yasuyuki; Nakagawa, Atsuhiro; Yatomi, Yutaka; Goda, Keisuke

    2017-07-11

    According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.

  3. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    PubMed Central

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  4. Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiophene-Based Ligands to Distinguish β-Amyloid or Tau Polymorphic Aggregates.

    PubMed

    Klingstedt, Therése; Shirani, Hamid; Mahler, Jasmin; Wegenast-Braun, Bettina M; Nyström, Sofie; Goedert, Michel; Jucker, Mathias; Nilsson, K Peter R

    2015-06-15

    The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the existence of distinct aggregated morphotypes has been suggested to explain the heterogeneous phenotype reported for these diseases. Thus, the development of molecular probes able to distinguish such morphotypes is essential. We report an anionic tetrameric oligothiophene compound that can be utilized for spectral assignment of different morphotypes of β-amyloid or tau aggregates present in transgenic mice at distinct ages. The ability of the ligand to spectrally distinguish between the aggregated morphotypes was reduced when the spacing between the anionic substituents along the conjugated thiophene backbone was altered, which verified that specific molecular interactions between the ligand and the protein aggregate are necessary to detect aggregate polymorphism. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between different morphotypes of protein aggregates. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

  5. Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked

    PubMed Central

    Powis, Katie; Schrul, Bianca; Tienson, Heather; Gostimskaya, Irina; Breker, Michal; High, Stephen; Schuldiner, Maya; Jakob, Ursula; Schwappach, Blanche

    2013-01-01

    Summary The endomembrane system of yeast contains different tail-anchored proteins that are post-translationally targeted to membranes via their C-terminal transmembrane domain. This hydrophobic segment could be hazardous in the cytosol if membrane insertion fails, resulting in the need for energy-dependent chaperoning and the degradation of aggregated tail-anchored proteins. A cascade of GET proteins cooperates in a conserved pathway to accept newly synthesized tail-anchored proteins from ribosomes and guide them to a receptor at the endoplasmic reticulum, where membrane integration takes place. It is, however, unclear how the GET system reacts to conditions of energy depletion that might prevent membrane insertion and hence lead to the accumulation of hydrophobic proteins in the cytosol. Here we show that the ATPase Get3, which accommodates the hydrophobic tail anchor of clients, has a dual function: promoting tail-anchored protein insertion when glucose is abundant and serving as an ATP-independent holdase chaperone during energy depletion. Like the generic chaperones Hsp42, Ssa2, Sis1 and Hsp104, we found that Get3 moves reversibly to deposition sites for protein aggregates, hence supporting the sequestration of tail-anchored proteins under conditions that prevent tail-anchored protein insertion. Our findings support a ubiquitous role for the cytosolic GET complex as a triaging platform involved in cellular proteostasis. PMID:23203805

  6. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    PubMed

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  7. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch

    PubMed Central

    Kuiper, E. F. E.; de Mattos, Eduardo P.; Jardim, Laura B.; Kampinga, Harm H.; Bergink, Steven

    2017-01-01

    Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level. PMID:28386214

  8. A universal DNA-based protein detection system.

    PubMed

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  9. A Universal DNA-Based Protein Detection System

    PubMed Central

    Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan

    2014-01-01

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265

  10. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

    PubMed

    Paranjape, Smita R; Riley, Andrew P; Somoza, Amber D; Oakley, C Elizabeth; Wang, Clay C C; Prisinzano, Thomas E; Oakley, Berl R; Gamblin, T Chris

    2015-05-20

    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.

  11. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    PubMed Central

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-01-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. PMID:15084750

  12. [Detection of protein-protein interactions by FRET and BRET methods].

    PubMed

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  13. Holographic Characterization of Colloidal Fractal Aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.

    In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.

  14. Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology.

    PubMed

    Gatti-Lafranconi, Pietro; Natalello, Antonino; Ami, Diletta; Doglia, Silvia Maria; Lotti, Marina

    2011-07-01

    Cells have evolved complex and overlapping mechanisms to protect their proteins from aggregation. However, several reasons can cause the failure of such defences, among them mutations, stress conditions and high rates of protein synthesis, all common consequences of heterologous protein production. As a result, in the bacterial cytoplasm several recombinant proteins aggregate as insoluble inclusion bodies. The recent discovery that aggregated proteins can retain native-like conformation and biological activity has opened the way for a dramatic change in the means by which intracellular aggregation is approached and exploited. This paper summarizes recent studies towards the direct use of inclusion bodies in biotechnology and for the detection of bottlenecks in the folding pathways of specific proteins. We also review the major biophysical methods available for revealing fine structural details of aggregated proteins and which information can be obtained through these techniques. © 2011 The Authors Journal compilation © 2011 FEBS.

  15. Aggregation in charged nanoparticles solutions induced by different interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in

    2016-05-23

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction betweenmore » nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.« less

  16. Inversion of the Balance between Hydrophobic and Hydrogen Bonding Interactions in Protein Folding and Aggregation

    PubMed Central

    Fitzpatrick, Anthony W.; Knowles, Tuomas P. J.; Waudby, Christopher A.; Vendruscolo, Michele; Dobson, Christopher M.

    2011-01-01

    Identifying the forces that drive proteins to misfold and aggregate, rather than to fold into their functional states, is fundamental to our understanding of living systems and to our ability to combat protein deposition disorders such as Alzheimer's disease and the spongiform encephalopathies. We report here the finding that the balance between hydrophobic and hydrogen bonding interactions is different for proteins in the processes of folding to their native states and misfolding to the alternative amyloid structures. We find that the minima of the protein free energy landscape for folding and misfolding tend to be respectively dominated by hydrophobic and by hydrogen bonding interactions. These results characterise the nature of the interactions that determine the competition between folding and misfolding of proteins by revealing that the stability of native proteins is primarily determined by hydrophobic interactions between side-chains, while the stability of amyloid fibrils depends more on backbone intermolecular hydrogen bonding interactions. PMID:22022239

  17. Nitrosative stress mediated misfolded protein aggregation mitigated by Na-D-β-hydroxybutyrate intervention.

    PubMed

    Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando; Miranda, Manuel; Narayan, Mahesh

    2012-09-28

    Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-β-hydroxybutyrate (NaβHB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that NaβHB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    PubMed

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Aragonite-Associated Mollusk Shell Protein Aggregates To Form Mesoscale “Smart” Hydrogels

    DOE PAGES

    Perovic, Iva; Davidyants, Anastasia; Evans, John Spencer

    2016-11-30

    In the mollusk shell there exists a framework silk fibroin-polysaccharide hydrogel coating around nacre aragonite tablets, and this coating facilitates the synthesis and organization of mineral nanoparticles into mesocrystals. In this report, we identify that a protein component of this coating, n16.3, is a hydrogelator. Due to the presence of intrinsic disorder, aggregation-prone regions, and nearly equal balance of anionic and cationic side chains, this protein assembles to form porous mesoscale hydrogel particles in solution and on mica surfaces. These hydrogel particles change their dimensionality, organization, and internal structure in response to pH and ions, particularly Ca(II), which indicates thatmore » these behave as ion-responsive or “smart” hydrogels. Thus, in addition to silk fibroins, the gel phase of the mollusk shell nacre framework layer may actually consist of several framework hydrogelator proteins, such as n16.3, which can promote mineral nanoparticle organization and assembly during the nacre biomineralization process and also serve as a model system for designing ion-responsive, composite, and smart hydrogels.« less

  20. Differences between reversible (self-association) and irreversible aggregation of rHuG-CSF in carbohydrate and polyol formulations.

    PubMed

    Pavišić, Renata; Dodig, Ivana; Horvatić, Anita; Mijić, Lucija; Sedić, Mirela; Linarić, Maša Rajić; Sovulj, Ita Gruić; Preočanin, Tajana; Krajačić, Mirjana Bukvić; Cindrić, Mario

    2010-11-01

    Severe immunogenic and other debilitating human disorders potentially induced by protein aggregates have brought this phenomenon into the focus of biopharmaceutical science over the past decade. Depending on its driving forces, the process induced in the model protein rHuG-CSF may be either reversible or irreversible, resulting in the assembly of self-associated protein species or irreversible aggregates of various final morphologies. The aim of our work was to investigate the correlation between irreversible and reversible aggregation and the protective effect of non-specific formulation stabilisers, selected from the group of carbohydrates and polyols including trehalose, xylitol, cellobiitol, turanose, cellobiose, leucrose, lactitol, lyxose, and sorbitol, against both irreversible protein aggregation and reversible self-association processes of the rHuG-CSF. The formation of irreversible aggregates was thermally induced and evaluated using differential scanning calorimetry and size-exclusion chromatography. As opposed to the irreversible aggregation process, the process of self-association was induced by the agitation experiment by directly augmenting the protein solution contact surfaces. Absence of statistical connectivity between different stabilisers' ability to inhibit self-association or aggregation reactions indicates that these are two distinct physicochemical processes with different formulation stabilizing outcomes. Reaction mechanism of thermally induced aggregation observed in the study was in line with published literature data, while the reaction mechanism for self-association process was postulated. The postulate has been verified experimentally by isothermal calorimetry and agitation set of experiments conducted after size-exclusion chromatography and asymmetrical flow field-flow fractionation separation of monomeric, dimeric, trimeric, oligomeric, and large self-associated forms detected on multi-angle light scattering, fluorescence, UV, and

  1. Pseudocatalytic Antiaggregation Activity of Antibodies: Immunoglobulins can Influence α-Synuclein Aggregation at Substoichiometric Concentrations.

    PubMed

    Breydo, Leonid; Morgan, Dave; Uversky, Vladimir N

    2016-04-01

    Protein aggregation is involved in a variety of diseases. Alteration of the aggregation pathway, either to produce less toxic structures or to increase aggregate clearance, is a promising therapeutic route. Both active and passive immunization has been used for this purpose. However, the mechanism of action of antibodies on protein aggregates is not completely clear especially given poor ability of antibodies to cross blood-brain barrier. Here, we have shown that antibodies can interfere with protein aggregation at substoichiometric concentrations (as low as 1:1000 antibody to protein ratio). This is an indication that antibodies interact with aggregation intermediates in chaperone-like manner altering the aggregation pathways at very low antibody levels. This observation supports earlier suggestions that antibodies can inhibit aggregation by interaction with low abundance aggregation intermediates.

  2. Computational study of aggregation mechanism in human lysozyme[D67H

    PubMed Central

    Patel, Dharmeshkumar

    2017-01-01

    Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it. PMID:28467454

  3. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes

    PubMed Central

    Petersson, Frida; Kilsgård, Ola; Shannon, Oonagh

    2018-01-01

    Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction. PMID:29385206

  4. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes.

    PubMed

    Petersson, Frida; Kilsgård, Ola; Shannon, Oonagh; Lood, Rolf

    2018-01-01

    Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction.

  5. Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone.

    PubMed

    Morgan, M Thomas; Bagchi, Pritha; Fahrni, Christoph J

    2011-10-12

    Due to the lipophilicity of the metal-ion receptor, previously reported Cu(I)-selective fluorescent probes form colloidal aggregates, as revealed by dynamic light scattering. To address this problem, we have developed a hydrophilic triarylpyrazoline-based fluorescent probe, CTAP-2, that dissolves directly in water and shows a rapid, reversible, and highly selective 65-fold fluorescence turn-on response to Cu(I) in aqueous solution. CTAP-2 proved to be sufficiently sensitive for direct in-gel detection of Cu(I) bound to the metallochaperone Atox1, demonstrating the potential for cation-selective fluorescent probes to serve as tools in metalloproteomics for identifying proteins with readily accessible metal-binding sites.

  6. Novel aminobenzanthrone dyes for amyloid fibril detection

    NASA Astrophysics Data System (ADS)

    Vus, Kateryna; Trusova, Valeriya; Gorbenko, Galyna; Kirilova, Elena; Kirilov, Georgiy; Kalnina, Inta; Kinnunen, Paavo

    2012-04-01

    A series of novel fluorescent aminobenzanthrone dyes have been tested for their ability to identify and characterize the oligomeric and fibrillar aggregates of lysozyme. The parameters of the dye binding to native, oligomeric and fibrillar protein have been calculated from the results of fluorimetric titration. Furthermore, several additional quantities reflecting the preference of the probe to either pre-fibrillar or fibrillar protein aggregates, have been evaluated. Based on the comparative analysis of the recovered parameters, AM4 was recommended for selective detection of protein pre-fibrillar assemblies, while the dyes AM1, AM2, AM3 were selected as the most prospective amyloid tracers.

  7. FUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice.

    PubMed

    Kino, Yoshihiro; Washizu, Chika; Kurosawa, Masaru; Yamada, Mizuki; Doi, Hiroshi; Takumi, Toru; Adachi, Hiroaki; Katsuno, Masahisa; Sobue, Gen; Hicks, Geoffrey G; Hattori, Nobutaka; Shimogori, Tomomi; Nukina, Nobuyuki

    2016-10-14

    FUS/TLS is an RNA/DNA-binding protein associated with neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Previously, we found that a prion-like domain in the N-terminus of FUS/TLS mediates co-aggregation between FUS/TLS and mutant huntingtin, the gene product of Huntington's disease (HD). Here, we show that heterozygous knockout of FUS/TLS worsened the phenotypes of model mice of (HD, but not spinal and bulbar muscular atrophy (SBMA). This difference was correlated with the degree of pathological association between disease proteins and FUS/TLS. Co-aggregation between FUS/TLS and mutant huntingtin resulted in the depletion of free FUS/TLS protein in HD mice that was detected as a monomer in SDS-PAGE analysis. Recently, we found that FUS/TLS paralogs, TAF15 and EWS, were up-regulated in homozygous FUS/TLS knockout mice. These two proteins were up-regulated in both HD and FUS/TLS heterozygote mice, and were further elevated in HD-TLS +/- double mutant mice, consistent with the functional impairment of FUS/TLS. These results suggest that FUS/TLS sequestration by co-aggregation is a rate-limiting factor of disease phenotypes of HD and that inclusions may have an adverse aspect, rather than being simply benign or protective. In addition, our results highlight inclusions as repositories of potential modifiers of neurodegeneration.

  8. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor

    PubMed Central

    Sun, Kai; Chang, Yong; Zhou, Binbin; Wang, Xiaojin; Liu, Lin

    2017-01-01

    This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide–kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications. PMID:28331314

  9. Formation of thermally induced aggregates of the soya globulin beta-conglycinin.

    PubMed

    Mills, E N; Huang, L; Noel, T R; Gunning, A P; Morris, V J

    2001-06-11

    The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.

  10. Protein Stains to Detect Antigen on Membranes.

    PubMed

    Dsouza, Anil; Scofield, R Hal

    2015-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after western blotting. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. "Detection" is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  11. Protein stains to detect antigen on membranes.

    PubMed

    D'souza, Anil; Scofield, R Hal

    2009-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after electrophoresis. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. Detection is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  12. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    NASA Astrophysics Data System (ADS)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  13. Kinetic Model for 1D aggregation of yeast ``prions''

    NASA Astrophysics Data System (ADS)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv

    2004-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  14. Thermal aggregation of glycated bovine serum albumin.

    PubMed

    Rondeau, Philippe; Navarra, Giovanna; Cacciabaudo, Francesco; Leone, Maurizio; Bourdon, Emmanuel; Militello, Valeria

    2010-04-01

    Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadik, Golam; Tanaka, Toshihisa, E-mail: tanaka@psy.med.osaka-u.ac.jp; Kato, Kiyoko

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase Amore » (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.« less

  16. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol

    PubMed Central

    Antony, Binu; Johny, Jibin; Aldosari, Saleh A.

    2018-01-01

    In insects, perception of the environment—food, mates, and prey—is mainly guided by chemical signals. The dynamic process of signal perception involves transport to odorant receptors (ORs) by soluble secretory proteins, odorant binding proteins (OBPs), which form the first stage in the process of olfactory recognition and are analogous to lipocalin family proteins in vertebrates. Although OBPs involved in the transport of pheromones to ORs have been functionally identified in insects, there is to date no report for Coleoptera. Furthermore, there is a lack of information on olfactory perception and the molecular mechanism by which OBPs participate in the transport of aggregation pheromones. We focus on the red palm weevil (RPW) Rhynchophorus ferrugineus, the most devastating quarantine pest of palm trees worldwide. In this work, we constructed libraries of all OBPs and selected antenna-specific and highly expressed OBPs for silencing through RNA interference. Aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferruginone), and a kairomone, ethyl acetate, were then sequentially presented to individual RPWs. The results showed that antenna-specific RferOBP1768 aids in the capture and transport of ferrugineol to ORs. Silencing of RferOBP1768, which is responsible for pheromone binding, significantly disrupted pheromone communication. Study of odorant perception in palm weevil is important because the availability of literature regarding the nature and role of olfactory signaling in this insect may reveal likely candidates representative of animal olfaction and, more generally, of molecular recognition. Knowledge of OBPs recognizing the specific pheromone ferrugineol will allow for designing biosensors for the detection of this key compound in weevil monitoring in date palm fields. PMID:29618982

  17. Interplay Between Hydrophobic Effect and Dipole Interactions in Peptide Aggregation

    NASA Astrophysics Data System (ADS)

    Ganesan, Sai; Matysiak, Silvina

    In the past decade, the development of various coarse-grained models for proteins have provided key insights into the driving forces in folding and aggregation.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.With this model,we were able to achieve significant α/ β secondary structure content,without any added bias.We now extend the model to study peptide aggregation at hydrophobic-hydrophilic interface using elastin-like octapeptides (GV)4 as a model system.A condensation-ordering mechanism of aggregation is observed in water.Our results suggest that backbone interpeptide dipolar interactions,not hydrophobicity,plays a more significant role in fibril-like peptide aggregation.We observe a cooperative effect in hydrogen bonding or dipolar interactions, with increase in aggregate size in water and interface.Based on this cooperative effect, we provide a potential explanation for the observed nucleus size in peptide aggregation pathways.Without dipolar particles,peptide aggregation is not observed at the hydrophilic-hydrophobic interface.Thus,the presence of dipoles,not hydrophobicity plays a key role in aggregation observed at hydrophobic interfaces.

  18. The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2.

    PubMed

    Gil, Lázaro; Marcos, Ernesto; Izquierdo, Alienys; Lazo, Laura; Valdés, Iris; Ambala, Peris; Ochola, Lucy; Hitler, Rikoi; Suzarte, Edith; Álvarez, Mayling; Kimiti, Prisilla; Ndung'u, James; Kariuki, Thomas; Guzmán, María Guadalupe; Guillén, Gerardo; Hermida, Lisset

    2015-01-01

    Previously, we reported the ability of the chimeric protein DIIIC-2 (domain III of the dengue envelope protein fused to the capsid protein of dengue-2 virus), to induce immunity and protection in mice, when it is highly aggregated with a non-defined oligodeoxynucleotide (ODN) and adjuvanted in alum. In this work, three different defined ODNs were studied as aggregating agents. Our results suggest that the nature of the ODN influences the capacity of protein DIIIC-2 to activate cell-mediated immunity in mice. Consequently, the ODN 39M was selected to perform further experiments in mice and nonhuman primates. Mice receiving the preparation 39M-DIIIC-2 were solidly protected against dengue virus (DENV) challenge. Moreover, monkeys immunized with the same preparation developed neutralizing antibodies, as measured by four different neutralization tests varying the virus strains and the cell lines used. Two of the immunized monkeys were completely protected against challenge, whereas the third animal had a single day of low-titer viremia. This is the first work describing the induction of short-term protection in monkeys by a formulation that is suitable for human use combining a recombinant protein from DENV with alum.

  19. Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled p-Terphenylbenzimidazolium-Based Molecular Baskets.

    PubMed

    Sandhu, Sana; Kumar, Rahul; Singh, Prabhpreet; Mahajan, Aman; Kaur, Manmeet; Kumar, Subodh

    2015-05-20

    1-(p-Terphenyl)-benzimidazolium (TRIPOD-TP) molecules undergo self-assembly to form rodlike structures in aqueous medium, as shown by field-emission scanning electron microscopy, transmission electron microscopy, and dynamic light scattering studies. Upon gradual addition of picric acid (PA), these aggregates undergo an aggregation/disaggregation process to complex morphological structures (10(-12)-10(-10) M PA) and spherical aggregates (10(-9)-10(-8) M PA). These spherical aggregates undergo further dissolution to well-dispersed spheres between 10(-7)-10(-6) M PA. During fluorescence studies, these aggregates demonstrate superamplified fluorescence quenching (>97%) in the presence of 10(-5) to 0.2 equiv of the probe concentration, an unprecedented process with PA. The lowest detection limits by solution of TRIPOD-TP are 5 × 10(-13) PA, 50 × 10(-12) M 2,4-dinitrophenol, 200 × 10(-12) M 2,4,6-trinitrotoluene, and 1 nM 1-chloro-2,4-dinitrobenzene. Paper strips dipped in the solution of TRIPOD-TP demonstrate quantitative fluorescence quenching between 10(-17) and 10(-6) M PA using front-surface steady state studies and can measure as low as 2.29 × 10(-20) g/cm(2) PA.

  20. Silicone Oil- and Agitation-Induced Aggregation of a Monoclonal Antibody in Aqueous Solution

    PubMed Central

    Thirumangalathu, Renuka; Krishnan, Sampathkumar; Ricci, Margaret Speed; Brems, David N.; Randolph, Theodore W.; Carpenter, John F.

    2009-01-01

    Silicone oil, which is used as a lubricant or coating in devices such as syringes, needles and pharmaceutical containers, has been implicated in aggregation and particulation of proteins and antibodies. Aggregation of therapeutic protein products induced by silicone oil can pose a challenge to their development and commercialization. To systematically characterize the role of silicone oil on protein aggregation, the effects of agitation, temperature, pH and ionic strength on silicone oil-induced loss of monomeric anti-streptavidin IgG 1 antibody were examined. Additionally, the influences of excipients polysorbate20 and sucrose on protein aggregation were investigated. In the absence of agitation, protein absorbed to silicone oil with approximately monolayer coverage, however silicone oil did not stimulate aggregation during isothermal incubation unless samples were also agitated. A synergistic stimulation of aggregation by a combination of agitation and silicone oil was observed. Solution conditions which reduced colloidal stability of the antibody, as assessed by determination of osmotic second virial coefficients, accelerated aggregation during agitation with silicone oil. Polysorbate20 completely inhibited silicone oil-induced monomer loss during agitation. A formulation strategy optimizing colloidal stability of the antibody as well as incorporation of surfactants such as polysorbate20 is proposed to reduce silicone oil-induced aggregation of therapeutic protein products. PMID:19360857

  1. The aggregation-promoting factor in Lactobacillus delbrueckii ssp. bulgaricus: confirmation of the presence and expression of the apf gene and in silico analysis of the corresponding protein.

    PubMed

    Yungareva, Tsvetelina; Urshev, Zoltan

    2018-06-19

    In lactobacilli the aggregation phenotype is linked to their ability to colonize the intestinal and urogenital tracts and to counteract pathogenic bacteria. In all available complete genome sequences of Lactobacillus delbrueckii ssp. bulgaricus there are at least two genes putatively related to aggregation, one of which is annotated as aggregation-promoting factor (apf). Here we report the results from the in silico analysis of this gene and its product. The apf gene was present in the genome of all 70 tested L. delbr. ssp. bulgaricus strains. Its expression was confirmed for a selection of five strains with aggregation phenotype and two aggregation-negative strains. The mature Apf protein had a length of 257-284 amino acids with predicted molecular weight in the range of 28.64-30.36 kDa and isoelectric point of 10.6 ± 0.1, showing some similarity to Apf1 and Apf2 from L. johnsonii NCC533 and Apf1 and Apf2 from L. gasseri which are similar in size (28-35 kDa) and share a similar high isoelectric point (pI > 9). Predictive analyzes have indicated that Apf is a secretory protein. The 30 amino acid signal peptide and the predicted cleavage site in the pre-protein suggested that it was processed by Type I Signal protease. In the mature Apf protein a glutamine-rich N-terminal region was followed by an unusual lysine/alanine-rich region with variable length, supposed to be positively charged under physiological conditions, interacting with bacterial teichoic acids. The alignment of the C-termini of the Apf proteins showed similarity to conserved C-terminal domains in aggregation-related proteins in other lactobacilli such as Apf1 of Lactobacillus johnsonii ATCC 11506 and the secretory protein Sep of L. fermentum BR11, that may be involved in non-covalent binding to carbohydrates. The C-terminal anchor and the cationic domain in Apf may serve as mediators of physical cell-to-cell interaction in L. delbr. ssp. bulgaricus.

  2. Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Vandenbroucke, Roosmarijn E.; Broos, Katleen; Brans, Toon; van Wonterghem, Elien; Libert, Claude; Demeester, Jo; de Smedt, Stefaan C.; Braeckmans, Kevin

    2016-09-01

    Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis. Here, we report on continuous fluorescence recovery after photobleaching (cFRAP) as a analytical method enabling size distribution measurements of nanomaterials (1-100 nm) in undiluted biological fluids. We demonstrate that cFRAP allows to measure protein aggregation in human serum and to determine the permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique that paves the way towards exciting new applications that benefit from nanomaterial sizing in bio-fluids.

  3. Anisotropy of the Coulomb Interaction between Folded Proteins: Consequences for Mesoscopic Aggregation of Lysozyme

    PubMed Central

    Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy

    2012-01-01

    Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950

  4. Protein/Arabinoxylans Gels: Effect of mass ratio on the rheological, microstructural and diffusional characteristics

    USDA-ARS?s Scientific Manuscript database

    Arabinoxylan (AX) gels entrapping standard model proteins at different mass ratios were formed. The distribution of protein through the network was investigated by confocal laser scanning microscopy (CLSM). In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ra...

  5. Clinical Detection of Pre-Cataractous Lens Protein Changes using Dynamic Light Scattering

    PubMed Central

    Datiles, Manuel B.; Ansari, Rafat R.; Suh, Kwang I.; Vitale, Susan; Reed, George F.; Zigler, J. Samuel; Ferris., Frederick L.

    2008-01-01

    Purpose To use Dynamic Light Scattering (DLS) to clinically assess early pre-cataractous lens protein changes. Methods We performed a cross sectional study in 380 eyes of 235 subjects aged 7–86 years with AREDS clinical lens nuclear grades ranging from 0–3.8. A DLS device was used to assess α-crystallin, a molecular chaperone protein shown to bind other damaged lens proteins, preventing their aggregation. The outcome measure was the α-crystallin index (ACI), a measure of unbound α-crystallin in each lens. The association of ACI with increasing nuclear opacity and aging was determined. Results There was a significant decrease in ACI associated with increasing grades of lens nuclear opacity (p<0.0001). There are significant losses of α-crystallin even in clinically clear lenses associated with aging (p<0.0001). The standard error of measurement was 3%. Conclusions DLS clinically detects loss of α-crystallin proteins even in clinically clear lenses. ACI measurements may be useful in identifying patients at high risk for developing cataract, and as an outcome variable in clinical lens studies. Clinical Relevance Our studies suggest that the ACI may be a useful measure of the protective α-crystallin molecular chaperone reserve present in a lens, analogous to creatinine clearance in estimating renal function reserve. PMID:19064850

  6. Effects of Pasteurella haemolytica leukotoxic culture supernatant on bovine neutrophil aggregation.

    PubMed

    Conlon, P; Gervais, M; Chaudhari, S; Conlon, J

    1992-07-01

    Pasteurella haemolytica A1 leukotoxic culture supernatant was evaluated for its ability to cause aggregation of bovine peripheral neutrophils. Neutrophils were isolated by a hypotonic lysis method and incubated with zymosan-activated plasma (ZAP), leukotoxic culture supernatant, antileukotoxin serum, calcium and magnesium-free media, p-bromophenacyl bromide and protein kinase C inhibitors. Aggregation was evaluated by changes in infrared light transmittance. Leukotoxic culture supernatant caused neutrophils to aggregate, and this effect was significantly removed by preincubation with antileukotoxin serum. Aggregation to ZAP and leukotoxin was dependent on the presence of extra-cellular calcium. Activation of protein kinase C by phorbol myristate acetate induced aggregation which was reduced by staurosporine; however, aggregation to leukotoxin did not involve protein kinase C activation. Phospholipase A2 inhibition did not alter the aggregation response to ZAP or to leukotoxin. The in vitro measurement of neutrophil aggregation induced by the leukotoxin of P. haemolytica reflects cytoskeletal and other activation events that may contribute to the intense inflammatory process which this organism induces in the lungs of cattle.

  7. Effects of Pasteurella haemolytica leukotoxic culture supernatant on bovine neutrophil aggregation.

    PubMed Central

    Conlon, P; Gervais, M; Chaudhari, S; Conlon, J

    1992-01-01

    Pasteurella haemolytica A1 leukotoxic culture supernatant was evaluated for its ability to cause aggregation of bovine peripheral neutrophils. Neutrophils were isolated by a hypotonic lysis method and incubated with zymosan-activated plasma (ZAP), leukotoxic culture supernatant, antileukotoxin serum, calcium and magnesium-free media, p-bromophenacyl bromide and protein kinase C inhibitors. Aggregation was evaluated by changes in infrared light transmittance. Leukotoxic culture supernatant caused neutrophils to aggregate, and this effect was significantly removed by preincubation with antileukotoxin serum. Aggregation to ZAP and leukotoxin was dependent on the presence of extra-cellular calcium. Activation of protein kinase C by phorbol myristate acetate induced aggregation which was reduced by staurosporine; however, aggregation to leukotoxin did not involve protein kinase C activation. Phospholipase A2 inhibition did not alter the aggregation response to ZAP or to leukotoxin. The in vitro measurement of neutrophil aggregation induced by the leukotoxin of P. haemolytica reflects cytoskeletal and other activation events that may contribute to the intense inflammatory process which this organism induces in the lungs of cattle. PMID:1423054

  8. Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles

    PubMed Central

    Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon

    2014-01-01

    A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867

  9. Dissociation, aggregation of sesame alpha-globulin in nonionic detergent solution.

    PubMed

    Lakshmi, T S; Nandi, P K

    1978-10-01

    Nonionic detergents Triton X-100 and Brij 36T induce dissociation and aggregation of the protein sesame alpha-globulin above the critical micelle concentrations (cmc) of the detergents. Spectrophotometric titration in Triton shows no change in the pKInt value of the tyrosyl groups at 1x10-3 M detergent where both dissociation and aggregation of the protein are observed. Fluorescence measurement does not indicate any change in the environment of the tryptophan groups of the protein in Brij. Viscosity measurements show no major conformational change of the protein in the detergent solution. Binding measurements suggest that perhaps micelles of the detergent predominantly bind to the protein. The detergent micelles preferentially bind to the exposed hydrophobic surfaces of the protein subunits. The association of the protein detergent complex through electrostatic interaction is probably responsible for the formation of the aggregates.

  10. Entrapment of Aβ1-40 peptide in unstructured aggregates

    NASA Astrophysics Data System (ADS)

    Corsale, C.; Carrotta, R.; Mangione, M. R.; Vilasi, S.; Provenzano, A.; Cavallaro, G.; Bulone, D.; San Biagio, P. L.

    2012-06-01

    Recognizing the complexity of the fibrillogenesis process provides a solid ground for the development of therapeutic strategies aimed at preventing or inhibiting protein-protein aggregation. Under this perspective, it is meaningful to identify the possible aggregation pathways and their relative products. We found that Aβ-peptide dissolved in a pH 7.4 solution at small peptide concentration and low ionic strength forms globular aggregates without typical amyloid β-conformation. ThT binding kinetics was used to monitor aggregate formation. Circular dichroism spectroscopy, AFM imaging, static and dynamic light scattering were used for structural and morphological characterization of the aggregates. They appear stable or at least metastable with respect to fiber growth, therefore appearing as an incidental product in the pathway of fibrillogenesis.

  11. The chaperonin CCT promotes the formation of fibrillar aggregates of γ-tubulin.

    PubMed

    Pouchucq, Luis; Lobos-Ruiz, Pablo; Araya, Gissela; Valpuesta, José María; Monasterio, Octavio

    2018-04-01

    The type II chaperonin CCT is involved in the prevention of the pathogenesis of numerous human misfolding disorders, as it sequesters misfolded proteins, blocks their aggregation and helps them to achieve their native state. In addition, it has been reported that CCT can prevent the toxicity of non-client amyloidogenic proteins by the induction of non-toxic aggregates, leading to new insight in chaperonin function as an aggregate remodeling factor. Here we add experimental evidence to this alternative mechanism by which CCT actively promotes the formation of conformationally different aggregates of γ-tubulin, a non-amyloidogenic CCT client protein, which are mediated by specific CCT-γ-tubulin interactions. The in vitro-induced aggregates were in some cases long fiber polymers, which compete with the amorphous aggregates. Direct injection of unfolded purified γ-tubulin into single-cell zebra fish embryos allowed us to relate this in vitro activity with the in vivo formation of intracellular aggregates. Injection of a CCT-binding deficient γ-tubulin mutant dramatically diminished the size of the intracellular aggregates, increasing the toxicity of the misfolded protein. These results point to CCT having a role in the remodeling of aggregates, constituting one of its many functions in cellular proteostasis. Copyright © 2018. Published by Elsevier B.V.

  12. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    PubMed

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  13. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Iris, E-mail: iris.valdes@cigb.edu.c; Bernardo, Lidice; Gil, Lazaro

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated inmore » mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.« less

  14. EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution

    NASA Astrophysics Data System (ADS)

    Meng, Xuan-Yu; Li, Baoyu; Liu, Shengtang; Kang, Hongsuk; Zhao, Lin; Zhou, Ruhong

    2016-02-01

    As a major effective component in green tea, (-)-epigallocatechin-3-gallate (EGCG)’s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG.

  15. Reverse phase protein microarrays: fluorometric and colorimetric detection.

    PubMed

    Gallagher, Rosa I; Silvestri, Alessandra; Petricoin, Emanuel F; Liotta, Lance A; Espina, Virginia

    2011-01-01

    The Reverse Phase Protein Microarray (RPMA) is an array platform used to quantitate proteins and their posttranslationally modified forms. RPMAs are applicable for profiling key cellular signaling pathways and protein networks, allowing direct comparison of the activation state of proteins from multiple samples within the same array. The RPMA format consists of proteins immobilized directly on a nitrocellulose substratum. The analyte is subsequently probed with a primary antibody and a series of reagents for signal amplification and detection. Due to the diversity, low concentration, and large dynamic range of protein analytes, RPMAs require stringent signal amplification methods, high quality image acquisition, and software capable of precisely analyzing spot intensities on an array. Microarray detection strategies can be either fluorescent or colorimetric. The choice of a detection system depends on (a) the expected analyte concentration, (b) type of microarray imaging system, and (c) type of sample. The focus of this chapter is to describe RPMA detection and imaging using fluorescent and colorimetric (diaminobenzidine (DAB)) methods.

  16. Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics.

    PubMed

    Freedman, Kevin J; Bastian, Arangassery R; Chaiken, Irwin; Kim, Min Jun

    2013-03-11

    Protein conjugation provides a unique look into many biological phenomena and has been used for decades for molecular recognition purposes. In this study, the use of solid-state nanopores for the detection of gp120-associated complexes are investigated. They exhibit monovalent and multivalent binding to anti-gp120 antibody monomer and dimers. In order to investigate the feasibility of many practical applications related to nanopores, detection of specific protein complexes is attempted within a heterogeneous protein sample, and the role of voltage on complexed proteins is researched. It is found that the electric field within the pore can result in unbinding of a freely translocating protein complex within the transient event durations measured experimentally. The strong dependence of the unbinding time with voltage can be used to improve the detection capability of the nanopore system by adding an additional level of specificity that can be probed. These data provide a strong framework for future protein-specific detection schemes, which are shown to be feasible in the realm of a 'real-world' sample and an automated multidimensional method of detecting events. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Physics of Amyloid Aggregation and Templating in Prions

    NASA Astrophysics Data System (ADS)

    Cox, Daniel

    2012-02-01

    The problem of self-assembled amyloid aggregation of proteins in structures with beta-strands perpendicular to a one dimensional grown axis is interesting at a fundamental level (is this the most generic end state of proteins?), from a biological level (if the self-assembly can be regulated it is of use in contexts like spider silk and bacterial colony formation), for human public health (aggregation unregulated induces diseases like mad cow and Alzheimer's), and for possible materials applications (e.g., in tissue scaffolding). In this presentation, I will review the work of my group in examining the possibility that the left-handed beta helix (LHBH) structure can be the building block of the aggregates of mammalian prion and yeast prion proteins. I will also discuss our efforts to assess the possibility of a novel pH driven structural switch between LHBH and alpha-helical forms in the ordered half of the mammalian prion protein, and now the possibly pH stabilized LHBH structure can template aggregate growth of the disordered half of the protein, identified in numerous experimental studies as most relevant to disease.

  18. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    PubMed Central

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  19. Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.

    PubMed

    Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B

    2006-07-01

    alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.

  20. A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.

    1996-01-01

    Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.

  1. Protein detection using biobarcodes.

    PubMed

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  2. Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease

    PubMed Central

    Bender, Tom; Lewrenz, Ilka; Franken, Sebastian; Baitzel, Catherina; Voos, Wolfgang

    2011-01-01

    Proteins in a natural environment are constantly challenged by stress conditions, causing their destabilization, unfolding, and, ultimately, aggregation. Protein aggregation has been associated with a wide variety of pathological conditions, especially neurodegenerative disorders, stressing the importance of adequate cellular protein quality control measures to counteract aggregate formation. To secure protein homeostasis, mitochondria contain an elaborate protein quality control system, consisting of chaperones and ATP-dependent proteases. To determine the effects of protein aggregation on the functional integrity of mitochondria, we set out to identify aggregation-prone endogenous mitochondrial proteins. We could show that major metabolic pathways in mitochondria were affected by the aggregation of key enzyme components, which were largely inactivated after heat stress. Furthermore, treatment with elevated levels of reactive oxygen species strongly influenced the aggregation behavior, in particular in combination with elevated temperatures. Using specific chaperone mutant strains, we showed a protective effect of the mitochondrial Hsp70 and Hsp60 chaperone systems. Moreover, accumulation of aggregated polypeptides was strongly decreased by the AAA-protease Pim1/LON. We therefore propose that the proteolytic breakdown of aggregation-prone polypeptides represents a major protective strategy to prevent the in vivo formation of aggregates in mitochondria. PMID:21209324

  3. Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis.

    PubMed

    Vinay Kumar, Chundi; Kumar, K M; Swetha, Rayapadi; Ramaiah, Sudha; Anbarasu, Anand

    2014-08-07

    Mutations in the gene encoding vesicle-associated membrane protein (VAPB) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The VAPB gene is mapped to chromosome number 20 and can be found at cytogenetic location 20q13.33 of the chromosome. VAPB is seen to play a significant role in the unfolded protein response (UPR), which is a process that suppresses the accumulation of unfolded proteins in the endoplasmic reticulum. Earlier studies have reported two points; which we have analyzed in our study. Firstly, the mutation P56S in the VAPB is seen to increase the stability of the protein and secondly, the mutation P56S in VAPB is seen to interrupt the functioning of the gene and loses its ability to be involved in the activation of the IRE1/XBP1 pathway which leads to ALS. With correlation on the previous research studies on the stability of this protein, we carried out Molecular dynamics (MD) simulation. We analyzed the SNP results of 17 nsSNPs obtained from dbSNP using SIFT, polyphen, I-Mutant, SNP&GO, PhDSNP and Mutpred to predict the role of nsSNPs in VAPB. MD simulation is carried out and plots for RMSD, RMSF, Rg, SASA, H-bond and PCA are obtained to check and prove the stability of the wild type and the mutant protein structure. The protein is checked for its aggregation and the results obtained show changes in the protein structure that might result in the loss of function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease.

    PubMed

    Ruiz-Riquelme, Alejandro; Sánchez-Iglesias, Sofía; Rábano, Alberto; Guillén-Navarro, Encarna; Domingo-Jiménez, Rosario; Ramos, Adriana; Rosa, Isaac; Senra, Ana; Nilsson, Peter; García, Ángel; Araújo-Vilar, David; Requena, Jesús R

    2015-11-01

    Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Insulin aggregation tracked by its intrinsic TRES

    NASA Astrophysics Data System (ADS)

    Chung, Li Hung C.; Birch, David J. S.; Vyshemirsky, Vladislav; Ryadnov, Maxim G.; Rolinski, Olaf J.

    2017-12-01

    Time-resolved emission spectra (TRES) have been used to detect conformational changes of intrinsic tyrosines within bovine insulin at a physiological pH. The approach offers the ability to detect the initial stages of insulin aggregation at the molecular level. The data analysis has revealed the existence of at least three fluorescent species undergoing dielectric relaxation and significant spectral changes due to insulin aggregation. The results indicate the suitability of the intrinsic TRES approach for insulin studies and for monitoring its stability during storage and aggregation in insulin delivery devices.

  6. From The Cover: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    NASA Astrophysics Data System (ADS)

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-04-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. protein misfolding | neurodegenerative diseases

  7. Anti-aggregation-based spectrometric detection of Hg(II) at physiological pH using gold nanorods.

    PubMed

    Rajeshwari, A; Karthiga, D; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-10-01

    An efficient detection method for Hg (II) ions at physiological pH (pH7.4) was developed using tween 20-modified gold nanorods (NRs) in the presence of dithiothreitol (DTT). Thiol groups (-SH) at the end of DTT have a higher affinity towards gold atoms, and they can covalently interact with gold NRs and leads to their aggregation. The addition of Hg(II) ions prevents the aggregation of gold NRs due to the covalent bond formation between the -SH group of DTT and Hg(II) ions in the buffer system. The changes in the longitudinal surface plasmon resonance peak of gold NRs were characterized using a UV-visible spectrophotometer. The absorption intensity peak of gold NRs at 679nm was observed to reduce after interaction with DTT, and the absorption intensity was noted to increase by increasing the concentration of Hg(II) ions. The TEM analysis confirms the morphological changes of gold NRs before and after addition of Hg(II) ions in the presence of DTT. Further, the aggregation and disaggregation of gold NRs were confirmed by particle size and zeta potential analysis. The developed method shows an excellent linearity (y=0.001x+0.794) for the graph plotted between the absorption ratio and Hg(II) concentration (1 to 100pM) under the optimized conditions. The limit of detection was noted to be 0.42pM in the buffer system. The developed method was tested in simulated body fluid, and it was found to have a good recovery rate. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantification of Anti-Aggregation Activity of Chaperones: A Test-System Based on Dithiothreitol-Induced Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Kara, Dmitriy A.; Chebotareva, Natalia A.; Makeeva, Valentina F.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Kurganov, Boris I.

    2013-01-01

    The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation (v agg) have been discussed. The comparison of the dependences of v agg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of v agg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin–target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L]0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L]0.5 = 53 and 58 mM, respectively). PMID:24058554

  9. Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins.

    PubMed

    Torres, Isabel Celigueta; Nieto, Gema; Nylander, Tommy; Simonsen, Adam Cohen; Tolkach, Alexander; Ipsen, Richard

    2017-05-01

    The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.

  10. Immunofluorescence detection of pea protein in meat products.

    PubMed

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  11. ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ.

    PubMed

    Jang, Ja-Young; Cho, Hyungmin; Park, Hye-Yoon; Rhim, Hyangshuk; Kang, Seongman

    2017-11-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons. Aggregation of ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial ALS (fALS). Recently, intracellular amyloid-β (Aβ) is detected in motor neurons of both sporadic and familial ALS. We have previously shown that intracellular Aβ specifically interacts with G93A, an ALS-linked SOD1 mutant. However, little is known about the pathological and biological effect of this interaction in neurons. In this study, we have demonstrated that the Aβ-binding region is exposed on the SOD1 surface through the conformational changes due to misfolding of SOD1. Interestingly, we found that the intracellular aggregation of Aβ is enhanced through the direct interaction of Aβ with the Aβ-binding region exposed to misfolded SOD1. Ultimately, increased Aβ aggregation by this interaction promotes neuronal cell death. Consistent with this result, Aβ aggregates was three-fold higher in the brains of G93A transgenic mice than those of non Tg. Our study provides the first direct evidence that Aβ, an AD-linked factor, is associated to the pathogenesis of ALS and provides molecular clues to understand common aggregation mechanisms in the pathogenesis of neurodegenerative diseases. Furthermore, it will provide new insights into the development of therapeutic approaches for ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation

    PubMed Central

    Pashley, Clare L.; Hewitt, Eric W.; Radford, Sheena E.

    2016-01-01

    The mouse and human β2-microglobulin protein orthologs are 70 % identical in sequence and share 88 % sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH 2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3 M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation. PMID:26780548

  13. Toxicity and aggregation of the polyglutamine disease protein, ataxin-3 is regulated by its binding to VCP/p97 in Drosophila melanogaster.

    PubMed

    Ristic, Gorica; Sutton, Joanna R; Libohova, Kozeta; Todi, Sokol V

    2018-04-26

    Among the nine dominantly inherited, age-dependent neurodegenerative diseases caused by abnormal expansion in the polyglutamine (polyQ) repeat of otherwise unrelated proteins is Spinocerebellar Ataxia Type 3 (SCA3). SCA3 is caused by polyQ expansion in the deubiquitinase (DUB), ataxin-3. Molecular sequelae related to SCA3 remain unclear. Here, we sought to understand the role of protein context in SCA3 by focusing on the interaction between this DUB and Valosin-Containing Protein (VCP). VCP is bound directly by ataxin-3 through an arginine-rich area preceding the polyQ repeat. We examined the importance of this interaction in ataxin-3-dependent degeneration in Drosophila melanogaster. Our assays with new isogenic fly lines expressing pathogenic ataxin-3 with an intact or mutated VCP-binding site show that disrupting the ataxin-3-VCP interaction delays the aggregation of the toxic protein in vivo. Importantly, early on flies that express pathogenic ataxin-3 with a mutated VCP-binding site are indistinguishable from flies that do not express any SCA3 protein. Also, reducing levels of VCP through RNA-interference has a similar, protective effect to mutating the VCP-binding site of pathogenic ataxin-3. Based on in vivo pulse-chases, aggregated species of ataxin-3 are highly stable, in a manner independent of VCP-binding. Collectively, our results highlight an important role for the ataxin-3-VCP interaction in SCA3, based on a model that posits a seeding effect from VCP on pathogenic ataxin-3 aggregation and subsequent toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Exploring the aggregation free energy landscape of the amyloid-β protein (1–40)

    PubMed Central

    Zheng, Weihua; Tsai, Min-Yeh; Chen, Mingchen; Wolynes, Peter G.

    2016-01-01

    A predictive coarse-grained protein force field [associative memory, water-mediated, structure, and energy model for molecular dynamics (AWSEM)-MD] is used to study the energy landscapes and relative stabilities of amyloid-β protein (1–40) in the monomer and all of its oligomeric forms up to an octamer. We find that an isolated monomer is mainly disordered with a short α-helix formed at the central hydrophobic core region (L17-D23). A less stable hairpin structure, however, becomes increasingly more stable in oligomers, where hydrogen bonds can form between neighboring monomers. We explore the structure and stability of both prefibrillar oligomers that consist of mainly antiparallel β-sheets and fibrillar oligomers with only parallel β-sheets. Prefibrillar oligomers are polymorphic but typically take on a cylindrin-like shape composed of mostly antiparallel β-strands. At the concentration of the simulation, the aggregation free energy landscape is nearly downhill. We use umbrella sampling along a structural progress coordinate for interconversion between prefibrillar and fibrillar forms to identify a conversion pathway between these forms. The fibrillar oligomer only becomes favored over its prefibrillar counterpart in the pentamer where an interconversion bottleneck appears. The structural characterization of the pathway along with statistical mechanical perturbation theory allow us to evaluate the effects of concentration on the free energy landscape of aggregation as well as the effects of the Dutch and Arctic mutations associated with early onset of Alzheimer’s disease. PMID:27698130

  15. Aggregation of Sea Urchin Phagocytes Is Augmented In Vitro by Lipopolysaccharide

    PubMed Central

    Majeske, Audrey J.; Bayne, Christopher J.; Smith, L. Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ∼10% of the cells were positive for Sp185/333 proteins. At 24 hr, ∼90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the

  16. Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide.

    PubMed

    Majeske, Audrey J; Bayne, Christopher J; Smith, L Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ~10% of the cells were positive for Sp185/333 proteins. At 24 hr, ~90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the

  17. Adaptive enhanced sampling with a path-variable for the simulation of protein folding and aggregation

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.

    2017-12-01

    In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.

  18. Adaptive enhanced sampling with a path-variable for the simulation of protein folding and aggregation.

    PubMed

    Peter, Emanuel K

    2017-12-07

    In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.

  19. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  20. Analysis of nanoparticle–protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins

    PubMed Central

    Ali, Neserin; Mattsson, Karin; Rissler, Jenny; Karlsson, Helen Marg; Svensson, Christian R.; Gudmundsson, Anders; Lindh, Christian H.; Jönsson, Bo A. G.; Cedervall, Tommy; Kåredal, Monica

    2016-01-01

    Abstract Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona. PMID:26186033

  1. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease

    PubMed Central

    Myöhänen, TT; Hannula, MJ; Van Elzen, R; Gerard, M; Van Der Veken, P; García-Horsman, JA; Baekelandt, V; Männistö, PT; Lambeir, AM

    2012-01-01

    BACKGROUND AND PURPOSE The aggregation of α-synuclein is connected to the pathology of Parkinson's disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains. EXPERIMENTAL APPROACH Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg−1 a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated. KEY RESULTS In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain. CONCLUSIONS AND IMPLICATIONS The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes. PMID:22233220

  2. The application of STEP-technology® for particle and protein dispersion detection studies in biopharmaceutical research.

    PubMed

    Gross-Rother, J; Herrmann, N; Blech, M; Pinnapireddy, S R; Garidel, P; Bakowsky, U

    2018-05-30

    Particle detection and analysis techniques are essential in biopharmaceutical industries to evaluate the quality of various parenteral formulations regarding product safety, product quality and to meet the regulations set by the authority agencies. Several particle analysis systems are available on the market, but for the operator, it is quite challenging to identify the suitable method to analyze the sample. At the same time these techniques are the basis to gain a better understanding in biophysical processes, e.g. protein interaction and aggregation processes. The STEP-Technology® (Space and Time resolved Extinction Profiles), as used in the analytical photocentrifuge LUMiSizer®, has been shown to be an effective and promising technique to investigate particle suspensions and emulsions in various fields. In this study, we evaluated the potentials and limitations of this technique for biopharmaceutical model samples. For a first experimental approach, we measured silica and polystyrene (PS) particle standard suspensions with given particle density and refractive index (RI). The concluding evaluation was performed using a variety of relevant data sets to demonstrate the significant influences of the particle density for the final particle size distribution (PSD). The most challenging property required for successful detection, turbidity, was stated and limits have been set based on the depicted absorbance value at 320 nm (A320 values). Furthermore, we produced chemically cross-linked protein particle suspensions to model physically "stable" protein aggregates. These results of LUMiSizer® analysis have been compared to the orthogonal methods of nanoparticle tracking analysis (NTA), dynamic light scattering (DLS) and micro-flow imaging (MFI). Sedimentation velocity distributions showed similar tendencies, but the PSDs and absolute size values could not be obtained. In conclusion, we could demonstrate some applications as well as limitations of this technique

  3. Tryptophan to Glycine mutation in the position 116 leads to protein aggregation and decreases the stability of the LITAF protein.

    PubMed

    Kumar, Chundi Vinay; Swetha, Rayapadi G; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-01

    Mutations in the gene-encoding vesicle lipopolysaccharide-induced tumor necrosis factor (LITAF) protein cause Charcot-Marie-Tooth type 1C (CMT1C) disease, a neurological disorder. The LITAF gene is mapped to chromosome number 16 and can be found at cytogenetic location 16p13 of the chromosome. CMT1C-linked small integral membrane protein of lysosome/late endosome mutants are loss-of-function mutants that act in a dominant negative manner to impair endosomal trafficking, leading to prolonged extracellular signal-regulated kinases 1/2 signaling downstream of ErbB activation. Mutation W116G in the LITAF decreases the stability of the protein and also interrupts the functioning of gene. We have analyzed the single nucleotide polymorphism (SNP) results of 28 nsSNPs obtained from dbSNP. We also carried out multiple molecular dynamics simulations of 200 ns and obtained results of root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent-accessible surface area, H-bond, and principal component analysis to check and prove the stability of both the wild type and the mutant. The protein was then checked for its aggregation and the results showed loss of helix. The loss of helix leads to the instability of the protein.

  4. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.

    PubMed

    Pankiv, Serhiy; Clausen, Terje Høyvarde; Lamark, Trond; Brech, Andreas; Bruun, Jack-Ansgar; Outzen, Heidi; Øvervatn, Aud; Bjørkøy, Geir; Johansen, Terje

    2007-08-17

    Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.

  5. Protein kinase C involvement in the acetylcholine release reduction induced by amyloid-beta(25-35) aggregates on neuromuscular synapses.

    PubMed

    Tomàs, Marta; Garcia, Neus; Santafé, Manuel M; Lanuza, Maria; Tomàs, Josep

    2009-01-01

    Using intracellular recording of the diaphragm muscle of adult rats, we have investigated the short-term functional effects of amyloid-beta (Abeta(25-35) peptide aggregates on the modulation of acetylcholine (ACh) release and the involvement of protein kinase C (PKC). The non-aggregated form of this peptide does not change the evoked and spontaneous transmitter release parameters on the neuromuscular synapse. However, the aggregated form of Abeta(25-35) acutely interferes with evoked quantal ACh release (approximately 40% reduction) when synaptic activity in the ex vivo neuromuscular preparation is maintained by low frequency (1 Hz) electrical stimulation. This effect is partially dependent on the activity of PKC that may have a permissive action. The end result of Abeta(25-35) is in opposition to the PKC-dependent maintenance effect on ACh release manifested in active synapses.

  6. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors.

    PubMed

    Abskharon, Romany; Dang, Johnny; Elfarash, Ameer; Wang, Zerui; Shen, Pingping; Zou, Lewis S; Hassan, Sedky; Wang, Fei; Fujioka, Hisashi; Steyaert, Jan; Mulaj, Mentor; Surewicz, Witold K; Castilla, Joaquín; Wohlkonig, Alexandre; Zou, Wen-Quan

    2017-10-04

    The infectious prion protein (PrP Sc or prion) is derived from its cellular form (PrP C ) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrP C to PrP Sc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrP C (BVPrP) is highly susceptible to PrP Sc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.

  7. A Protein Aggregation Inhibitor, Leuco-Methylthioninium Bis(Hydromethanesulfonate), Decreases α-Synuclein Inclusions in a Transgenic Mouse Model of Synucleinopathy

    PubMed Central

    Schwab, Karima; Frahm, Silke; Horsley, David; Rickard, Janet E.; Melis, Valeria; Goatman, Elizabeth A.; Magbagbeolu, Mandy; Douglas, Morag; Leith, Michael G.; Baddeley, Thomas C.; Storey, John M. D.; Riedel, Gernot; Wischik, Claude M.; Harrington, Charles R.; Theuring, Franz

    2018-01-01

    α-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson’s disease (PD). We have tested whether N,N,N′,N′-tetramethyl-10H-phenothiazine-3,7-diaminium bis(hydromethanesulfonate) (leuco-methylthioninium bis(hydromethanesulfonate); LMTM), a tau aggregation inhibitor, affects α-Syn aggregation in vitro and in vivo. Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn) fused with a signal sequence peptide to promote α-Syn aggregation were used. Aggregated α-Syn was observed following differentiation of N1E-115 neuroblastoma cells transfected with h-α-Syn. The appearance of aggregated α-Syn was inhibited by LMTM, with an EC50 of 1.1 μM, with minimal effect on h-α-Syn mRNA levels being observed. Two independent lines of mice (L58 and L62) transgenic for the same fusion protein accumulated neuronal h-α-Syn that, with aging, developed into fibrillary inclusions characterized by both resistance to proteinase K (PK)-cleavage and their ability to bind thiazin red. There was a significant decrease in α-Syn-positive neurons in multiple brain regions following oral treatment of male and female mice with LMTM administered daily for 6 weeks at 5 and 15 mg MT/kg. The early aggregates of α-Syn and the late-stage fibrillar inclusions were both susceptible to inhibition by LMTM, a treatment that also resulted in the rescue of movement and anxiety-related traits in these mice. The results suggest that LMTM may provide a potential disease modification therapy in PD and other synucleinopathies through the inhibition of α-Syn aggregation. PMID:29375308

  8. The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent

    PubMed Central

    Tixador, Philippe; Herzog, Laëtitia; Reine, Fabienne; Jaumain, Emilie; Chapuis, Jérôme; Le Dur, Annick; Laude, Hubert; Béringue, Vincent

    2010-01-01

    Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics. PMID:20419156

  9. Markov chain aggregation and its applications to combinatorial reaction networks.

    PubMed

    Ganguly, Arnab; Petrov, Tatjana; Koeppl, Heinz

    2014-09-01

    We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.

  10. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors

    NASA Astrophysics Data System (ADS)

    Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.

  11. Computational methods in preformulation study for pharmaceutical solid dosage forms of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Majee, Sutapa Biswas; Biswas, Gopa Roy

    2017-06-01

    Design and delivery of protein-based biopharmaceuticals needs detailed planning and strict monitoring of intermediate processing steps, storage conditions and container-closure system to ensure a stable, elegant and biopharmaceutically acceptable dosage form. Selection of manufacturing process variables and conditions along with packaging specifications can be achieved through properly designed preformulation study protocol for the formulation. Thermodynamic stability and biological activity of therapeutic proteins depend on folding-unfolding and three-dimensional packing dynamics of amino acid network in the protein molecule. Lack of favourable environment may cause protein aggregation with loss in activity and even fatal immunological reaction. Although lyophilization can enhance the stability of protein-based formulations in the solid state, it can induce protein unfolding leading to thermodynamic instability. Formulation stabilizers such as preservatives can also result in aggregation of therapeutic proteins. Modern instrumental techniques in conjunction with computational tools enable rapid and accurate prediction of amino acid sequence, thermodynamic parameters associated with protein folding and detection of aggregation "hot-spots." Globular proteins pose a challenge during investigations on their aggregation propensity. Biobetter therapeutic monoclonal antibodies with enhanced stability, solubility and reduced immunogenic potential can be designed through mutation of aggregation-prone zones. The objective of the present review article is to focus on the various analytical methods and computational approaches used in the study of thermodynamic stability and aggregation tendency of therapeutic proteins, with an aim to develop optimal and marketable formulation. Knowledge of protein dynamics through application of computational tools will provide the essential inputs and relevant information for successful and meaningful completion of preformulation studies on

  12. Effects of environmental factors on MSP21-25 aggregation indicate the roles of hydrophobic and electrostatic interactions in the aggregation process.

    PubMed

    Zhang, Xuecheng; Dong, Yuanqiu; Yu, Jigang; Tu, Xiaoming

    2014-01-01

    Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the merozoite surface of Plasmodium falciparum, is recognized to be important for the parasite's invasion into the host cell and is thus a promising malaria vaccine candidate. However, mediated mainly by its conserved N-terminal 25 residues (MSP21-25), MSP2 readily forms amyloid fibril-like aggregates under physiological conditions in vitro, which impairs its potential as a vaccine component. In addition, there is evidence that MSP2 exists in aggregated forms on the merozoite surface in vivo. To elucidate the aggregation mechanism of MSP21-25 and thereby understand the behavior of MSP2 in vivo and find ways to avoid the aggregation of relevant vaccine in vitro, we investigated the effects of agitation, pH, salts, 1-anilinonaphthalene-8-sulfonic acid (ANS), trimethylamine N-oxide dihydrate (TMAO), urea, and sub-micellar sodium dodecyl sulfate (SDS) on the aggregation kinetics of MSP21-25 using thioflavin T (ThT) fluorescence. The results showed that MSP21-25 aggregation was accelerated by agitation, while repressed by acidic pHs. The salts promoted the aggregation in an anion nature-dependent pattern. Hydrophobic surface-binding agent ANS and detergent urea repressed MSP21-25 aggregation, in contrast to hydrophobic interaction strengthener TMAO, which enhanced the aggregation. Notably, sub-micellar SDS, contrary to its micellar form, promoted MSP21-25 aggregation significantly. Our data indicated that hydrophobic interactions are the predominant driving force of the nucleation of MSP21-25 aggregation, while the elongation is controlled mainly by electrostatic interactions. A kinetic model of MSP21-25 aggregation and its implication were also discussed.

  13. CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation.

    PubMed

    Kim, Hyojung; Ham, Sangwoo; Jo, Minkyung; Lee, Gum Hwa; Lee, Yun-Song; Shin, Joo-Ho; Lee, Yunjong

    2017-10-03

    Aging is considered the major risk factor for neurodegenerative diseases including Parkinson's disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leading to retardation of cell proliferation. Instant deletion of telomere in SH-SY5Y cells impaired mitochondrial function with diminished mitochondrial respiration and cell viability. Supporting the pathological relevance of cell aging by CRISPR-Cas9 mediated telomere removal, alterations were observed in the levels of PD-associated proteins including PTEN-induced putative kinase 1, peroxisome proliferator-activated receptor γ coactivator 1-α, nuclear respiratory factor 1, parkin, and aminoacyl tRNA synthetase complex interacting multifunctional protein 2. Significantly, α-synuclein expression in the background of telomere removal led to the enhancement of protein aggregation, suggesting positive feed-forward interaction between aging and PD pathogenesis. Collectively, our results demonstrate that CRISPR-Cas9 can be used to efficiently model cellular aging and PD.

  14. Computational design and biophysical characterization of aggregation-resistant point mutations for γD crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity.

    PubMed

    Sahin, Erinc; Jordan, Jacob L; Spatara, Michelle L; Naranjo, Andrea; Costanzo, Joseph A; Weiss, William F; Robinson, Anne Skaja; Fernandez, Erik J; Roberts, Christopher J

    2011-02-08

    γD crystallin is a natively monomeric eye-lens protein that is associated with hereditary juvenile cataract formation. It is an attractive model system as a multidomain Greek-key protein that aggregates through partially folded intermediates. Point mutations M69Q and S130P were used to test (1) whether the protein-design algorithm RosettaDesign would successfully predict mutants that are resistant to aggregation when combined with informatic sequence-based predictors of peptide aggregation propensity and (2) how the mutations affected relative unfolding free energies (ΔΔG(un)) and intrinsic aggregation propensity (IAP). M69Q was predicted to have ΔΔG(un) ≫ 0, without significantly affecting IAP. S130P was predicted to have ΔΔG(un) ∼ 0 but with reduced IAP. The stability, conformation, and aggregation kinetics in acidic solution were experimentally characterized and compared for the variants and wild-type (WT) protein using circular dichroism and intrinsic fluorescence spectroscopy, calorimetric and chemical unfolding, thioflavin-T binding, chromatography, static laser light scattering, and kinetic modeling. Monomer secondary and tertiary structures of both variants were indistinguishable from WT, while ΔΔG(un) > 0 for M69Q and ΔΔG(un) < 0 for S130P. Surprisingly, despite being the least conformationally stable, S130P was the most resistant to aggregation, indicating a significant decrease of its IAP compared to WT and M69Q.

  15. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin.

    PubMed

    Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2016-06-01

    In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.

  16. Aggregation of trypsin and trypsin inhibitor by Al cation.

    PubMed

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-04-01

    Al cation may trigger protein structural changes such as aggregation and fibrillation, causing neurodegenerative diseases. We report the effect of Al cation on the solution structures of trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis, UV-Visible, Fourier transform infrared (FTIR) spectroscopic methods and atomic force microscopy (AFM). Thermodynamic parameters showed Al-protein bindings occur via H-bonding and van der Waals contacts for trypsin and trypsin inhibitor. AFM showed that Al cations are able to force trypsin into larger or more robust aggregates than trypsin inhibitor, with trypsin 5±1 SE (n=52) proteins per aggregate and for trypsin inhibitor 8.3±0.7 SE (n=118). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced more alterations of trypsin inhibitor conformation than trypsin. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment.

    PubMed

    Austerberry, James I; Dajani, Rana; Panova, Stanislava; Roberts, Dorota; Golovanov, Alexander P; Pluen, Alain; van der Walle, Christopher F; Uddin, Shahid; Warwicker, Jim; Derrick, Jeremy P; Curtis, Robin

    2017-06-01

    The aggregation propensities for a series of single-chain variable fragment (scFv) mutant proteins containing supercharged sequences, salt bridges and lysine/arginine-enriched motifs were characterised as a function of pH and ionic strength to isolate the electrostatic contributions. Recent improvements in aggregation predictors rely on using knowledge of native-state protein-protein interactions. Consistent with previous findings, electrostatic contributions to native protein-protein interactions correlate with aggregate growth pathway and rates. However, strong reversible self-association observed for selected mutants under native conditions did not correlate with aggregate growth, indicating 'sticky' surfaces that are exposed in the native monomeric state are inaccessible when aggregates grow. We find that even though similar native-state protein-protein interactions occur for the arginine and lysine-enriched mutants, aggregation propensity is increased for the former and decreased for the latter, providing evidence that lysine suppresses interactions between partially folded states under these conditions. The supercharged mutants follow the behaviour observed for basic proteins under acidic conditions; where excess net charge decreases conformational stability and increases nucleation rates, but conversely reduces aggregate growth rates due to increased intermolecular electrostatic repulsion. The results highlight the limitations of using conformational stability and native-state protein-protein interactions as predictors for aggregation propensity and provide guidance on how to engineer stabilizing charged mutations. Copyright © 2017. Published by Elsevier B.V.

  18. Aggregation of Lens Crystallins in an In Vivo Hyperbaric Oxygen Guinea Pig Model of Nuclear Cataract: Dynamic Light-Scattering and HPLC Analysis

    PubMed Central

    Simpanya, M. Francis; Ansari, Rafat R.; Suh, Kwang I.; Leverenz, Victor R.; Giblin, Frank J.

    2006-01-01

    Purpose The role of oxygen in the formation of lens high-molecular-weight (HMW) protein aggregates during the development of human nuclear cataract is not well understood. The purpose of this study was to investigate lens crystallin aggregate formation in hyperbaric oxygen (HBO)–treated guinea pigs by using in vivo and in vitro methods. Methods Guinea pigs were treated three times weekly for 7 months with HBO, and lens crystallin aggregation was investigated in vivo with the use of dynamic light-scattering (DLS) and in vitro by HPLC analysis of water-insoluble (WI) proteins. DLS measurements were made every 0.1 mm across the 4.5- to 5.0-mm optical axis of the guinea pig lens. Results The average apparent diameter of proteins in the nucleus (the central region) of lenses of HBO-treated animals was nearly twice that of the control animals (P < 0.001). Size distribution analysis conducted at one selected point in the nucleus and cortex (the outer periphery of the lens) after dividing the proteins into small-diameter and large-diameter groups, showed in the O2-treated nucleus a threefold increase in intensity (P < 0.001) and a doubling in apparent size (P = 0.03) of large-diameter aggregate proteins, compared with the same control group. No significant changes in apparent protein diameter were detected in the O2-treated cortex, compared with the control. The average diameter of protein aggregates at the single selected location in the O2-treated nucleus was estimated to be 150 nm, a size capable of scattering light and similar to the size of aggregates found in human nuclear cataracts. HPLC analysis indicated that one half of the experimental nuclear WI protein fraction (that had been dissolved in guanidine) consisted of disulfide cross-linked 150- to 1000-kDa aggregates, not present in the control. HPLC-isolated aggregates contained αA-, β-, γ-, and ζ-crystallins, but not αB-crystallin, which is devoid of −SH groups and thus does not participate in disulfide

  19. Effect of Surface Curvature and Chemistry on Protein Stability, Adsorption and Aggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun

    Enzyme immobilization has been of great industrial importance because of its use in various applications like bio-fuel cells, bio-sensors, drug delivery and bio-catalytic films. Although research on enzyme immobilization dates back to the 1970's, it has been only in the past decade that scientists have started to address the problems involved systematically. Most of the previous works on enzyme immobilization have been retrospective in nature i.e enzymes were immobilized on widely used substrates without a compatibility study between the enzyme and the substrate. Consequently, most of the enzymes lost their activity upon immobilization onto these substrates due to many governing factors like protein-surface and inter-protein interactions. These interactions also play a major role biologically in cell signaling, cell adhesion and inter-protein interactions specifically is believed to be the major cause for neurodegenerative diseases like Alzheimer's and Parkinson's disease. Therefore understanding the role of these forces on proteins is the need of the hour. In my current research, I have mainly focused on two factors a) Surface Curvature b) Surface Chemistry as both of these play a pivotal role in influencing the activity of the enzymes upon immobilization. I study the effect of these factors computationally using a stochastic method known as Monte Carlo simulations. My research work carried out in the frame work of a Hydrophobic-Polar (HP) lattice model for the protein shows that immobilizing enzymes inside moderately hydrophilic or hydrophobic pores results in an enhancement of the enzymatic activity compared to that in the bulk. Our results also indicate that there is an optimal value of surface curvature and hydrophobicity/hydrophilicity where this enhancement of enzymatic activity is highest. Further, our results also show that immobilization of enzymes inside hydrophobic pores of optimal sizes are most effective in mitigating protein-aggregation. These

  20. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters.

    PubMed

    Borana, Mohanish S; Mishra, Pushpa; Pissurlenkar, Raghuvir R S; Hosur, Ramakrishna V; Ahmad, Basir

    2014-03-01

    Interaction of small molecule inhibitors with protein aggregates has been studied extensively, but how these inhibitors modulate aggregation kinetic parameters is little understood. In this work, we investigated the ability of two potential aggregation inhibiting drugs, curcumin and kaempferol, to control the kinetic parameters of aggregation reaction. Using thioflavin T fluorescence and static light scattering, the kinetic parameters such as amplitude, elongation rate constant and lag time of guanidine hydrochloride-induced aggregation reactions of hen egg white lysozyme were studied. We observed a contrasting effect of inhibitors on the kinetic parameters when aggregation reactions were measured by these two probes. The interactions of these inhibitors with hen egg white lysozyme were investigated using fluorescence quench titration method and molecular dynamics simulations coupled with binding free energy calculations. We conclude that both the inhibitors prolong nucleation of amyloid aggregation through binding to region of the protein which is known to form the core of the protein fibril, but once the nucleus is formed the rate of elongation is not affected by the inhibitors. This work would provide insight into the mechanism of aggregation inhibition by these potential drug molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO3(.).

    PubMed

    Diwan, Uzra; Kumar, Virendra; Mishra, Rakesh K; Rana, Nishant Kumar; Koch, Biplob; Singh, Manish Kumar; Upadhyay, K K

    2016-07-27

    The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO3(-)/SO3(2-) by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10(-8) M. The fluorescent detection of HSO3(-) was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO3(─) through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO3(-) aggregates in aqueous solution were characterized by DLS along with SEM analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb(III) and Sb(V).

    PubMed

    Verdugo, Marcelo; Ruiz Encinar, Jorge; Costa-Fernández, José Manuel; Menendez-Miranda, Mario; Bouzas-Ramos, Diego; Bravo, Manuel; Quiroz, Waldo

    2017-01-01

    Antimony is a metalloid that affects biological functions in humans due to a mechanism still not understood. There is no doubt that the toxicity and physicochemical properties of Sb are strongly related with its chemical state. In this paper, the interaction between Sb(III) and Sb(V) with bovine serum albumin (BSA) was investigated in vitro by fluorescence spectroscopy, and circular dichroism (CD) under simulated physiological conditions. Moreover, the coupling of the separation technique, asymmetric flow field-flow fractionation, with elemental mass spectrometry to understand the interaction of Sb(V) and Sb(III) with the BSA was also used. Our results showed a different behaviour of Sb(III) vs. Sb(V) regarding their effects on the interaction with the BSA. The effects in terms of protein aggregates and conformational changes were higher in the presence of Sb(III) compared to Sb(V) which may explain the differences in toxicity between both Sb species in vivo. Obtained results demonstrated the protective effect of GSH that modifies the degree of interaction between the Sb species with BSA. Interestingly, in our experiments it was possible to detect an interaction between BSA and Sb species, which may be related with the presence of labile complex between the Sb and a protein for the first time.

  3. Protein detection system

    DOEpatents

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  4. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation.

    PubMed

    Pashley, Clare L; Hewitt, Eric W; Radford, Sheena E

    2016-02-13

    The mouse and human β2-microglobulin protein orthologs are 70% identical in sequence and share 88% sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Folding and Aggregation of Mucin Domains.

    NASA Astrophysics Data System (ADS)

    Urbanc, Brigita; Bansil, Rama; Turner, Bradley

    2007-03-01

    Mucin glycoproteins consist of tandem repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin via disulfide bonds and play an important role in the pH dependent gelation of gastric mucin, which is essential to protecting the stomach from autodigestion. We have examined the folding and aggregation of the non-repetitive sequence of von Willebrand factor vWF-C1 domain (67 amino acids) and PGM 2X (242 amino acids) using Discrete Molecular Dynamics (four-bead protein model with hydrogen bonding and amino acid-specific hydrophobic/hydrophilic and electrostatic interactions of side chains). Simulations of vWF C1 show 4-6 β-strands separated by turns/loops with more loops at lower pH. A simulation of several vWF C1 proteins at low pH shows aggregates still with a high content of β-strands and enhanced turn/loop regions. For the PGM 2X simulation the contact map shows several salt bridges enclosing hairpin turns. The implications of these simulations for describing the aggregation/gelation of PGM will be discussed.

  6. Receptors for aggregated IgG on mouse lymphocytes: their presence on thymocytes, thymus-derived, and bone marrow-derived lymphocytes.

    PubMed

    Anderson, C L; Grey, H M

    1974-05-01

    An autoradiographic binding assay employing (125)I-labeled heat-aggregated mouse IgG2b myeloma protein (MOPC 141) was used to demonstrate receptors for IgG on 20-45% of Balb/c thymocytes and on 70-80% of splenocytes. Binding could also be shown with heat or BDB aggregates of another IgG2b (MOPC 195), with IgG1 and with human gamma-globulin, but not with aggregated chicken gamma-globulin, IgA, BSA, nor with aggregated Fab fragments of IgG2b. Optimum binding was obtained at 37 degrees C. Detection of binding was dependent upon aggregate size with complexes of more than 100 IgG molecules being optimal, aggregates of 6-25 detecting splenocytes but not thymocytes, and aggregates of less than 6 binding to a negligible extent. Comparison of grain counts on various cell types showed mastocytoma cells (P815) and macrophages averaging 40-50 grains/cell/day, allogeneically activated thymocytes 20-30, splenocytes 2-3, L5178 lymphoma cells 1, and positive thymocytes 0.6 grains/cell/day. Double labeling experiments for surface Ig, theta-antigen, and agg IgG receptor on mouse spleen cells indicated that a relatively high density of receptor was present on about 80% of B cells, 30% of T cells, and 60% of SIg(-), theta(-), null cells.

  7. Optical Detection of Degraded Therapeutic Proteins.

    PubMed

    Herrington, William F; Singh, Gajendra P; Wu, Di; Barone, Paul W; Hancock, William; Ram, Rajeev J

    2018-03-23

    The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.

  8. Protein Misfolding Diseases.

    PubMed

    Hartl, F Ulrich

    2017-06-20

    The majority of protein molecules must fold into defined three-dimensional structures to acquire functional activity. However, protein chains can adopt a multitude of conformational states, and their biologically active conformation is often only marginally stable. Metastable proteins tend to populate misfolded species that are prone to forming toxic aggregates, including soluble oligomers and fibrillar amyloid deposits, which are linked with neurodegeneration in Alzheimer and Parkinson disease, and many other pathologies. To prevent or regulate protein aggregation, all cells contain an extensive protein homeostasis (or proteostasis) network comprising molecular chaperones and other factors. These defense systems tend to decline during aging, facilitating the manifestation of aggregate deposition diseases. This volume of the Annual Review of Biochemistry contains a set of three articles addressing our current understanding of the structures of pathological protein aggregates and their associated disease mechanisms. These articles also discuss recent insights into the strategies cells have evolved to neutralize toxic aggregates by sequestering them in specific cellular locations.

  9. A Method for Identifying Small-Molecule Aggregators Using Photonic Crystal Biosensor Microplates

    PubMed Central

    Chan, Leo L.; Lidstone, Erich A.; Finch, Kristin E.; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.

    2010-01-01

    Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work, we show that photonic crystal (PC) optical biosensor microplate technology can be used to identify and quantify small-molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an α-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the α-chymotrypsin assay. DLS measurements, in contrast, demonstrated inconsistent readings for many compounds that are found to form aggregates in shapes, very different from the classical spherical particles assumed in DLS modeling. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, whereas the microplate-based sensor format enables compatibility with high-throughput automated liquid-handling methods used in pharmaceutical screening. PMID:20930952

  10. Native Electrophoresis-Coupled Activity Assays Reveal Catalytically-Active Protein Aggregates of Escherichia coli β-Glucuronidase

    PubMed Central

    Burchett, Gina G.; Folsom, Charles G.; Lane, Kimberly T.

    2015-01-01

    β-glucuronidase is found as a functional homotetramer in a variety of organisms, including humans and other animals, as well as a number of bacteria. This enzyme is important in these organisms, catalyzing the hydrolytic removal of a glucuronide moiety from substrate molecules. This process serves to break down sugar conjugates in animals and provide sugars for metabolism in bacteria. While β-glucuronidase is primarily found as a homotetramer, previous studies have indicated that the human form of the protein is also catalytically active as a dimer. Here we present evidence for not only an active dimer of the E. coli form of the protein, but also for several larger active complexes, including an octomer and a 16-mer. Additionally, we propose a model for the structures of these large complexes, based on computationally-derived molecular modeling studies. These structures may have application in the study of human disease, as several diseases have been associated with the aggregation of proteins. PMID:26121040

  11. Native Electrophoresis-Coupled Activity Assays Reveal Catalytically-Active Protein Aggregates of Escherichia coli β-Glucuronidase.

    PubMed

    Burchett, Gina G; Folsom, Charles G; Lane, Kimberly T

    2015-01-01

    β-glucuronidase is found as a functional homotetramer in a variety of organisms, including humans and other animals, as well as a number of bacteria. This enzyme is important in these organisms, catalyzing the hydrolytic removal of a glucuronide moiety from substrate molecules. This process serves to break down sugar conjugates in animals and provide sugars for metabolism in bacteria. While β-glucuronidase is primarily found as a homotetramer, previous studies have indicated that the human form of the protein is also catalytically active as a dimer. Here we present evidence for not only an active dimer of the E. coli form of the protein, but also for several larger active complexes, including an octomer and a 16-mer. Additionally, we propose a model for the structures of these large complexes, based on computationally-derived molecular modeling studies. These structures may have application in the study of human disease, as several diseases have been associated with the aggregation of proteins.

  12. Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis.

    PubMed

    Cavicchi, Richard E; King, Jason; Ripple, Dean C

    2018-05-01

    The spatially averaged density of protein aggregates is an important parameter that can be used to relate size distributions measured by orthogonal methods, to characterize protein particles, and perhaps to estimate the amount of protein in aggregate form in a sample. We obtained a series of images of protein aggregates exhibiting Brownian diffusion while settling under the influence of gravity in a sealed capillary. The aggregates were formed by stir-stressing a monoclonal antibody (NISTmAb). Image processing yielded particle tracks, which were then examined to determine settling velocity and hydrodynamic diameter down to 1 μm based on mean square displacement analysis. Measurements on polystyrene calibration microspheres ranging in size from 1 to 5 μm showed that the mean square displacement diameter had improved accuracy over the diameter derived from imaged particle area, suggesting a future method for correcting size distributions based on imaging. Stokes' law was used to estimate the density of each particle. It was found that the aggregates were highly porous with density decreasing from 1.080 to 1.028 g/cm 3 as the size increased from 1.37 to 4.9 μm. Published by Elsevier Inc.

  13. Exploring the early steps of amyloid peptide aggregation by computers.

    PubMed

    Mousseau, Normand; Derreumaux, Philippe

    2005-11-01

    The assembly of normally soluble proteins into amyloid fibrils is a hallmark of neurodegenerative diseases. Because protein aggregation is very complex, involving a variety of oligomeric metastable intermediates, the detailed aggregation paths and structural characterization of the intermediates remain to be determined. Yet, there is strong evidence that these oligomers, which form early in the process of fibrillogenesis, are cytotoxic. In this paper, we review our current understanding of the underlying factors that promote the aggregation of peptides into amyloid fibrils. We focus here on the structural and dynamic aspects of the aggregation as observed in state-of-the-art computer simulations of amyloid-forming peptides with an emphasis on the activation-relaxation technique.

  14. Structure-based inhibitors of tau aggregation

    NASA Astrophysics Data System (ADS)

    Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S.

    2018-02-01

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

  15. Microwave-induced formation of oligomeric amyloid aggregates.

    PubMed

    Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung

    2018-08-24

    Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.

  16. Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity.

    PubMed

    Villar-Piqué, Anna; Lopes da Fonseca, Tomás; Sant'Anna, Ricardo; Szegö, Éva Mónika; Fonseca-Ornelas, Luis; Pinho, Raquel; Carija, Anita; Gerhardt, Ellen; Masaracchia, Caterina; Abad Gonzalez, Enrique; Rossetti, Giulia; Carloni, Paolo; Fernández, Claudio O; Foguel, Debora; Milosevic, Ira; Zweckstetter, Markus; Ventura, Salvador; Outeiro, Tiago Fleming

    2016-10-18

    Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity.

  17. A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates

    NASA Astrophysics Data System (ADS)

    Rajasekhar, K.; Narayanaswamy, Nagarjun; Murugan, N. Arul; Kuang, Guanglin; Ågren, Hans; Govindaraju, T.

    2016-04-01

    A major challenge in the Alzheimer’s disease (AD) is its timely diagnosis. Amyloid β (Aβ) aggregates have been proposed as the most viable biomarker for the diagnosis of AD. Here, we demonstrate hemicyanine-based benzothiazole-coumarin (TC) as a potential probe for the detection of highly toxic Aβ42 aggregates through switch-on, enhanced (~30 fold) red fluorescence (Emax = 654 nm) and characteristic colorimetric (light red to purple) optical outputs. Interestingly, TC exhibits selectivity towards Aβ42 fibrils compared to other abnormal protein aggregates. TC probe show nanomolar binding affinity (Ka = 1.72 × 107 M-1) towards Aβ42 aggregates and also displace ThT bound to Aβ42 fibrils due to its high binding affinity. The Aβ42 fibril-specific red-shift in the absorption spectra of TC responsible for the observed colorimetric optical output has been attributed to micro-environment change around the probe from hydrophilic-like to hydrophobic-like nature. The binding site, binding energy and changes in optical properties observed for TC upon interaction with Aβ42 fibrils have been further validated by molecular docking and time dependent density functional theory studies.

  18. Rapid detection of proteins in transgenic crops without protein reference standards by targeted proteomic mass spectrometry.

    PubMed

    Schacherer, Lindsey J; Xie, Weiping; Owens, Michaela A; Alarcon, Clara; Hu, Tiger X

    2016-09-01

    Liquid chromatography coupled with tandem mass spectrometry is increasingly used for protein detection for transgenic crops research. Currently this is achieved with protein reference standards which may take a significant time or efforts to obtain and there is a need for rapid protein detection without protein reference standards. A sensitive and specific method was developed to detect target proteins in transgenic maize leaf crude extract at concentrations as low as ∼30 ng mg(-1) dry leaf without the need of reference standards or any sample enrichment. A hybrid Q-TRAP mass spectrometer was used to monitor all potential tryptic peptides of the target proteins in both transgenic and non-transgenic samples. The multiple reaction monitoring-initiated detection and sequencing (MIDAS) approach was used for initial peptide/protein identification via Mascot database search. Further confirmation was achieved by direct comparison between transgenic and non-transgenic samples. Definitive confirmation was provided by running the same experiments of synthetic peptides or protein standards, if available. A targeted proteomic mass spectrometry method using MIDAS approach is an ideal methodology for detection of new proteins in early stages of transgenic crop research and development when neither protein reference standards nor antibodies are available. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Auto-aggregation properties of a novel aerobic denitrifier Enterobacter sp. strain FL.

    PubMed

    Wang, Xia; An, Qiang; Zhao, Bin; Guo, Jin Song; Huang, Yuan Sheng; Tian, Meng

    2018-02-01

    Enterobacter sp. strain FL was newly isolated from activated sludge and exhibited significant capability of auto-aggregation as well as aerobic denitrification. The removal efficiencies of NO 3 - -N, total nitrogen (TN), and TOC by strain FL in batch culture reached 94.6, 63.9, and 72.5% in 24 h, respectively. The production of N 2 O and N 2 in the presence of oxygen demonstrated the occurrence of aerobic denitrification. The auto-aggregation index of strain FL reached 54.3%, suggesting a high tendency that the cells would agglomerate into aggregates. The production of extracellular polymeric substances (EPSs), which were mainly composed of proteins followed by polysaccharides, was considered to be related to the cell aggregation according to Fourier transform infrared (FT-IR) and confocal laser scanning microscopy (CLSM). The proteins in EPS were evenly and tightly combined to cells and altered the protein secondary structures of cell surface from random coils to β-sheets and three-turn helices. The alteration of protein secondary structures of cell surface caused by the proteins in EPS might play a dominant role in the auto-aggregation of strain FL. To further assess the feasibility of strain FL for synthetic wastewater treatment, a sequencing batch reactor (SBR), solely inoculated with strain FL, was conducted. During the 16 running cycles, the removal efficiency of NO 3 - -N was 90.2-99.7% and the auto-aggregation index was stabilized at 35.0-41.5%. The EPS promoted the biomass of strain FL to aggregate in the SBR.

  20. Two-dimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol.

    PubMed Central

    Paquet, M J; Laviolette, M; Pézolet, M; Auger, M

    2001-01-01

    Two-dimensional infrared correlation spectroscopy (2D-IR) was used in this study to investigate the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. The influence of temperature on the aggregation has been evaluated by monitoring the intensity of a band at 1616 cm(-1), which is characteristic of aggregated proteins, and the 2D-IR analysis has been used to determine the various secondary structure components of cytochrome c involved before and during its aggregation. The 2D-IR correlation analysis clearly reveals for the first time that aggregation starts to occur between nearly native proteins, which then unfold, yielding to further aggregation of the protein. Later in the aggregation process, the formation of intermolecular bonds and unfolding of the alpha-helices appear to be simultaneous. These results lead us to propose a two-step aggregation process. Finally, the results obtained during the heating period clearly indicate that before the protein starts to aggregate, there is a loosening of the tertiary structure of cytochrome c, resulting in a decrease of the beta-sheet content and an increase of the amount of beta-turns. This study clearly demonstrates the potential of 2D-IR spectroscopy to investigate the aggregation of proteins and this technique could therefore be applied to other proteins such as those involved in fibrilogenesis. PMID:11423415

  1. Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death.

    PubMed

    Thellung, Stefano; Scoti, Beatrice; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Gagliani, Maria Cristina; Porcile, Carola; Russo, Claudio; Pagano, Aldo; Tacchetti, Carlo; Cortese, Katia; Florio, Tullio

    2018-02-07

    According to the "gain-of-toxicity mechanism", neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological  blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response

  2. Pyrene-based chemosens or detects picric acid upto attogram level through aggregation enhanced excimer emission.

    PubMed

    Chopra, Rakesh; Kaur, Paramjit; Singh, Kamaljit

    2015-03-15

    A pyrene-based small molecular weight probe, exhibiting aggregation enhanced excimer emission has been synthesized. The crystalline emissive form detects 2,4,6-trinitrophenol (picric acid) at parts-per-billion concentration in solution and as low as 0.46 attogram in direct contact mode, operating predominantly in a static quenching mechanism, proposed on the basis of steady state and life-time fluorescence measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nitrosative stress mediated misfolded protein aggregation mitigated by Na-D-{beta}-hydroxybutyrate intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-taggedmore » synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.« less

  4. Deciphering Structural Intermediates and Genotoxic Fibrillar Aggregates of Albumins: A Molecular Mechanism Underlying for Degenerative Diseases

    PubMed Central

    Naeem, Aabgeena; Amani, Samreen

    2013-01-01

    The misfolding and aggregation of proteins is involved in some of the most prevalent neurodegenerative disorders. The importance of human serum albumin (HSA) stems from the fact that it is involved in bio-regulatory and transport phenomena. Here the effect of acetonitrile (ACN) on the conformational stability of HSA and by comparison, ovalbumin (OVA) has been evaluated in the presence and absence of NaCl. The results show the presence of significant amount of secondary structure in HSA at 70% ACN and in OVA at 50% ACN, as evident from far-UV Circular Dichroism (CD) and Attenuated Total Reflection Fourier transformed infra red spectroscopy (ATR-FTIR). Tryptophan and 8-Anilino-1-Naphthalene-Sulphonic acid (ANS) fluorescence indicate altered tryptophan environment and high ANS binding suggesting a compact “molten globule”-like conformation with enhanced exposure of hydrophobic surface area. However, in presence of NaCl no intermediate state was observed. Detection of aggregates in HSA and OVA was possible at 90% ACN. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and ATR-FTIR. These aggregates exhibit increase Thioflavin T (Th T) fluorescence with a red shift of Congo red (CR) absorption spectrum. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis confirmed the presence of fibrillar aggregates. Single cell gel electrophoresis (SCGE) assay of these fibrillar aggregates showed the DNA damage resulting in cell necrosis confirming their genotoxic nature. Some proteins not related to any human disease form fibrils in vitro. In the present study ACN gives access to a model system to study the process of aggregation. PMID:23342075

  5. Protein associations and analytical ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Laue, Tom

    2010-03-01

    Analytical ultracentrifugation (AUC) is a first principle method for characterizing the thermodynamics of macromolecules in solution. Since AUC directly assesses mass, it is particularly useful for characterizing both reversible and irreversible binding interactions between macromolecules. The principle measurement in AUC is the concentration as a function of radial position, which may be provided by either absorbance, interference or fluorescence detection. Each of these three different detectors may be used to characterize protein associations using either sedimentation equilibrium or sedimentation velocity analysis. Examples will be shown for characterizing irreversible (aggregate) formation, high-accuracy reversible association analysis, and the detection of protein interactions in complex and concentrated fluids (e.g. serum, cell cytosol).

  6. The Role of Shape Complementarity in the Protein-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-11-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity.

  7. Detection of Protein SUMOylation In Situ by Proximity Ligation Assays.

    PubMed

    Sahin, Umut; Jollivet, Florence; Berthier, Caroline; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2016-01-01

    Sumoylation is a posttranslational process essential for life and concerns a growing number of crucial proteins. Understanding the influence of this phenomenon on individual proteins or on cellular pathways in which they function has become an intense area of research. A critical step in studying protein sumoylation is to detect sumoylated forms of a particular protein. This has proven to be a challenging task for a number of reasons, especially in the case of endogenous proteins and in vivo studies or when studying rare cells such as stem cells. Proximity ligation assays that allow detection of closely interacting protein partners can be adapted for initial detection of endogenous sumoylation or ubiquitination in a rapid, ultrasensitive, and cheap manner. In addition, modified forms of a given protein can be detected in situ in various cellular compartments. Finally, the flexibility of this technique may allow rapid screening of drugs and stress signals that may modulate protein sumoylation.

  8. Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity

    PubMed Central

    Weisberg, Sarah J.; Lyakhovetsky, Roman; Werdiger, Ayelet-chen; Gitler, Aaron D.; Soen, Yoav; Kaganovich, Daniel

    2012-01-01

    Neurodegenerative diseases constitute a class of illnesses marked by pathological protein aggregation in the brains of affected individuals. Although these disorders are invariably characterized by the degeneration of highly specific subpopulations of neurons, protein aggregation occurs in all cells, which indicates that toxicity arises only in particular cell biological contexts. Aggregation-associated disorders are unified by a common cell biological feature: the deposition of the culprit proteins in inclusion bodies. The precise function of these inclusions remains unclear. The starting point for uncovering the origins of disease pathology must therefore be a thorough understanding of the general cell biological function of inclusions and their potential role in modulating the consequences of aggregation. Here, we show that in human cells certain aggregate inclusions are active compartments. We find that toxic aggregates localize to one of these compartments, the juxtanuclear quality control compartment (JUNQ), and interfere with its quality control function. The accumulation of SOD1G93A aggregates sequesters Hsp70, preventing the delivery of misfolded proteins to the proteasome. Preventing the accumulation of SOD1G93A in the JUNQ by enhancing its sequestration in an insoluble inclusion reduces the harmful effects of aggregation on cell viability. PMID:22967507

  9. Impaired Heme Binding and Aggregation of Mutant Cystathionine β-Synthase Subunits in Homocystinuria

    PubMed Central

    Janošík, Miroslav; Oliveriusová, Jana; Janošíková, Bohumila; Sokolová, Jitka; Kraus, Eva; Kraus, Jan P.; Kožich, Viktor

    2001-01-01

    During the past 20 years, cystathionine β-synthase (CBS) deficiency has been detected in the former Czechoslovakia with a calculated frequency of 1:349,000. The clinical manifestation was typical of homocystinuria, and about half of the 21 patients were not responsive to pyridoxine. Twelve distinct mutations were detected in 30 independent homocystinuric alleles. One half of the alleles carried either the c.833 T→C or the IVS11−2A→C mutation; the remaining alleles contained private mutations. The abundance of five mutant mRNAs with premature stop codons was analyzed by PCR-RFLP. Two mRNAs, c.828_931ins104 (IVS7+1G→A) and c.1226 G→A, were severely reduced in the cytoplasm as a result of nonsense-mediated decay. In contrast, the other three mRNAs—c.19_20insC, c.28_29delG, and c.210_235del26 (IVS1−1G→C)—were stable. Native western blot analysis of 14 mutant fibroblast lines showed a paucity of CBS antigen, which was detectable only in aggregates. Five mutations—A114V (c.341C→T), A155T (c.463G→A), E176K (c.526G→A), I278T (c.833T→C), and W409_G453del (IVS11−2A→C)—were expressed in Escherichia coli. All five mutant proteins formed substantially more aggregates than did the wild-type CBS, and no aggregates contained heme. These data suggest that abnormal folding, impaired heme binding, and aggregation of mutant CBS polypeptides may be common pathogenic mechanisms in CBS deficiency. PMID:11359213

  10. Nucleic Acids for Ultra-Sensitive Protein Detection

    PubMed Central

    Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen

    2013-01-01

    Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338

  11. Biomarkers for ragwort poisoning in horses: identification of protein targets

    PubMed Central

    Moore, Rowan E; Knottenbelt, Derek; Matthews, Jacqueline B; Beynon, Robert J; Whitfield, Phillip D

    2008-01-01

    Background Ingestion of the poisonous weed ragwort (Senecio jacobea) by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods. Results One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin. Conclusion These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock. PMID:18691403

  12. Isolation, characterization, and aggregation of a structured bacterial matrix precursor.

    PubMed

    Chai, Liraz; Romero, Diego; Kayatekin, Can; Akabayov, Barak; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-06-14

    Biofilms are surface-associated groups of microbial cells that are embedded in an extracellular matrix (ECM). The ECM is a network of biopolymers, mainly polysaccharides, proteins, and nucleic acids. ECM proteins serve a variety of structural roles and often form amyloid-like fibers. Despite the extensive study of the formation of amyloid fibers from their constituent subunits in humans, much less is known about the assembly of bacterial functional amyloid-like precursors into fibers. Using dynamic light scattering, atomic force microscopy, circular dichroism, and infrared spectroscopy, we show that our unique purification method of a Bacillus subtilis major matrix protein component results in stable oligomers that retain their native α-helical structure. The stability of these oligomers enabled us to control the external conditions that triggered their aggregation. In particular, we show that stretched fibers are formed on a hydrophobic surface, whereas plaque-like aggregates are formed in solution under acidic pH conditions. TasA is also shown to change conformation upon aggregation and gain some β-sheet structure. Our studies of the aggregation of a bacterial matrix protein from its subunits shed new light on assembly processes of the ECM within bacterial biofilms.

  13. Amyloid fibril formation in vitro from halophilic metal binding protein: Its high solubility and reversibility minimized formation of amorphous protein aggregations

    PubMed Central

    Tokunaga, Yuhei; Matsumoto, Mitsuharu; Tokunaga, Masao; Arakawa, Tsutomu; Sugimoto, Yasushi

    2013-01-01

    Halophilic proteins are characterized by high net negative charges and relatively small fraction of hydrophobic amino acids, rendering them aggregation resistant. These properties are also shared by histidine-rich metal binding protein (HP) from moderate halophile, Chromohalobacter salexigens, used in this study. Here, we examined how halophilic proteins form amyloid fibrils in vitro. His-tagged HP, incubated at pH 2.0 and 58°C, readily formed amyloid fibrils, as observed by thioflavin fluorescence, CD spectra, and transmission or atomic force microscopies. Under these low-pH harsh conditions, however, His-HP was promptly hydrolyzed to smaller peptides most likely responsible for rapid formation of amyloid fibril. Three major acid-hydrolyzed peptides were isolated from fibrils and turned out to readily form fibrils. The synthetic peptides predicted to form fibrils in these peptide sequences by Waltz software also formed fibrils. Amyloid fibril was also readily formed from full-length His-HP when incubated with 10–20% 2,2,2-trifluoroethanol at pH 7.8 and 25°C without peptide bond cleavage. PMID:24038709

  14. Synthetic food additive dye "Tartrazine" triggers amorphous aggregation in cationic myoglobin.

    PubMed

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Khan, Mohd Shahnawaz; Ali, Mohd Sajid; Al-Senaidy, Abdulrahman M; Alsenaidy, Mohammad A; Husain, Fohad Mabood; Al-Lohedan, Hamad A

    2017-05-01

    Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Detecting deleterious fine particles in concrete aggregates and defining their impact.

    DOT National Transportation Integrated Search

    2010-10-01

    This study examined the types of microfines in aggregates found in northern Wisconsin and their influence on : concrete prepared according to WisDOT specifications. Aggregates were collected from 28 sources and 69 : percent were found to contain clay...

  16. Modulation of mutant Huntingtin aggregates and toxicity by human myeloid leukemia factors.

    PubMed

    Banerjee, Manisha; Datta, Moumita; Bhattacharyya, Nitai P

    2017-01-01

    Increased poly glutamine (polyQ) stretch at N-terminal of Huntingtin (HTT) causes Huntington's disease. HTT interacts with large number of proteins, although the preference for such interactions with wild type or mutated HTT protein remains largely unknown. HYPK, an intrinsically unstructured protein chaperone and interactor of mutant HTT was found to interact with myeloid leukemia factor 1 (MLF1) and 2 (MLF2). To identify the role of these two proteins in mutant HTT mediated aggregate formation and toxicity in a cell model, both the proteins were found to preferentially interact with the mutated N-terminal HTT. They significantly reduced the number of cells containing mutant HTT aggregates and subsequent apoptosis in Neuro2A cells. Additionally, in FRAP assay, mobile fraction of mutant HTT aggregates was increased in the presence of MLF1 or MLF2. Further, MLF1 could release transcription factors like p53, CBP and CREB from mutant HTT aggregates. Moreover, in HeLa cell co-expressing mutant HTT exon1 and full length MLF1, p53 was released from the aggregates, leading to the recovery of the expression of the GADD45A transcript, a p53 regulated gene. Taking together, these results showed that MLF1 and MLF2 modulated the formation of aggregates and induction of apoptosis as well as the expressions of genes indirectly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity

    PubMed Central

    Villar-Piqué, Anna; Lopes da Fonseca, Tomás; Sant’Anna, Ricardo; Szegö, Éva Mónika; Fonseca-Ornelas, Luis; Pinho, Raquel; Carija, Anita; Gerhardt, Ellen; Masaracchia, Caterina; Abad Gonzalez, Enrique; Rossetti, Giulia; Carloni, Paolo; Fernández, Claudio O.; Foguel, Debora; Milosevic, Ira; Zweckstetter, Markus; Ventura, Salvador; Outeiro, Tiago Fleming

    2016-01-01

    Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity. PMID:27708160

  18. The Role of Shape Complementarity in the Protein-Protein Interactions

    PubMed Central

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody–antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561

  19. Aggregation of concentrated monoclonal antibody solutions studied by rheology and neutron scattering

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Pathak, Jai; Colby, Ralph

    2013-03-01

    Protein solutions are studied using rheology and scattering techniques to investigate aggregation. Here we present a monoclonal antibody (mAb) that aggregates after incubation at 40 °C (below its unfolding temperature), with a decrease in monomer purity of 6% in 10 days. The mAb solution contains surfactant and behaves as a Newtonian fluid when reconstituted into solution from the lyophilized form (before incubation at 40 °C). In contrast, mAb solutions incubated at 40 °C for 1 month exhibit shear yielding in torsional bulk rheometers. Interfacial rheology reveals that interfacial properties are controlled by the surfactant, producing a negligible surface contribution to the bulk yield stress. These results provide evidence that protein aggregates formed in the bulk are responsible for the yield stress. Small-angle neutron scattering (SANS) measurements show an increase in intensity at low wavevectors (q < 4*10-2 nm-1) that we attribute to protein aggregation, and is not observed in solutions stored at 4 °C for 3 days before the measurement. This work suggests a correlation between the aggregated state of the protein (stability) and the yield stress from rheology. Research funded by MedImmune

  20. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    NASA Astrophysics Data System (ADS)

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-06-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.

  1. Molecular dynamics simulations of lysozyme-lipid systems: probing the early steps of protein aggregation.

    PubMed

    Trusova, Valeriya M; Gorbenko, Galyna P

    2017-07-10

    Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein-lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.

  2. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.

    PubMed

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  3. Effect of antimicrobial preservatives on partial protein unfolding and aggregation†

    PubMed Central

    Hutchings, Regina L.; Singh, Surinder M.; Cabello-Villegas, Javier; Mallela, Krishna M. G.

    2014-01-01

    One-third of protein formulations are multi-dose. These require antimicrobial preservatives (APs); however, some APs have been shown to cause protein aggregation. Our previous work on a model protein cytochrome c indicated that partial protein unfolding, rather than complete unfolding, triggers aggregation. Here, we examined the relative strength of five commonly used APs on such unfolding and aggregation, and explored whether stabilizing the aggregation “hot-spot” reduces such aggregation. All APs induced protein aggregation in the order m-cresol > phenol > benzyl alcohol > phenoxyethanol > chlorobutanol. All these enhanced the partial protein unfolding that includes a local region which was predicted to be the aggregation “hot-spot”. The extent of destabilization correlated with the extent of aggregation. Further, we show that stabilizing the “hot-spot” reduces aggregation induced by all five APs. These results indicate that m-cresol causes the most protein aggregation, whereas chlorobutanol causes the least protein aggregation. The same protein region acts as the “hot-spot” for aggregation induced by different APs, implying that developing strategies to prevent protein aggregation induced by one AP will also work for others. PMID:23169345

  4. Temperature dependent rapid annealing effect induces amorphous aggregation of human serum albumin.

    PubMed

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M; Al-Lohedan, Hammad; Badr, Gamal; Khan, Rizwan Hasan

    2016-01-01

    This study represents an analysis of the thermal aggregation of human serum albumin (HSA) induced by novel rosin modified compounds. The aggregation process causes conformational alterations in the secondary and tertiary structures of the proteins. The conversion of globular protein to amorphous aggregates was carried out by spectroscopic, calorimetric and microscopic techniques to investigate the factors that are responsible for the structural, conformational and morphological alteration in the protein. Our outcome results show that the aggregation of HSA was dependent on the hydrophobicity, charge and temperature, because the formation of amorphous aggregates occurs in the presence of a novel cationic rosin compound, quaternary amine of rosin diethylaminoethyl ester (QRMAE), at 40°C and pH 7.4 (but at 25°C on similar pH value, there was no evidence of aggregate formation). In addition, the parent compound of QRMAE, i.e., abietic acid, and other derivatives such as nonionic rosin compounds [(RMPEG-750) and (RMA-MPEG-750)] do not shows the aggregating property. This work provides precise and necessary information that aid in the understanding the effects of rosin derivative compounds on HSA. This study also restrains important information for athletes, health providers, pharmaceutical companies, industries, and soft drink-processing companies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    PubMed

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  6. Key role of the N-terminus of chicken annexin A5 in vesicle aggregation.

    PubMed

    Turnay, Javier; Guzmán-Aránguez, Ana; Lecona, Emilio; Barrasa, Juan I; Olmo, Nieves; Lizarbe, Ma Antonia

    2009-05-01

    Annexins are calcium-dependent phospholipid-binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N-terminus as truncation of the N-terminus of chicken annexin A5 significantly decreases this process and replacement of the N-terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N-terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium-dependent membrane aggregation.

  7. Neisseria gonorrhoeae Aggregation Reduces Its Ceftriaxone Susceptibility.

    PubMed

    Wang, Liang-Chun; Litwin, Madeline; Sahiholnasab, Zahraossadat; Song, Wenxia; Stein, Daniel C

    2018-06-15

    Antibiotic resistance in Neisseria gonorrhoeae (GC) has become an emerging threat worldwide and heightens the need for monitoring treatment failures. N. gonorrhoeae , a gram-negative bacterium responsible for gonorrhea, infects humans exclusively and can form aggregates during infection. While minimal inhibitory concentration (MIC) tests are often used for determining antibiotic resistance development and treatment, the knowledge of the true MIC in individual patients and how it relates to this laboratory measure is not known. We examined the effect of aggregation on GC antibiotic susceptibility and the relationship between bacterial aggregate size and their antibiotic susceptibility. Aggregated GC have a higher survival rate when treated with ceftriaxone than non-aggregated GC, with bacteria in the core of the aggregates surviving the treatment. GC lacking opacity-associated protein or pili, or expressing a truncated lipooligosaccharide, three surface molecules that mediate GC-GC interactions, reduce both aggregation and ceftriaxone survival. This study demonstrates that the aggregation of N. gonorrhoeae can reduce the susceptibility to antibiotics, and suggests that antibiotic utilization can select for GC surface molecules that promote aggregation which in turn drive pathogen evolution. Inhibiting aggregation may be a potential way of increasing the efficacy of ceftriaxone treatment, consequently reducing treatment failure.

  8. Tripping Up Trp: Modification of Protein Tryptophan Residues by Reactive Oxygen Species, Modes of Detection, and Biological Consequences

    PubMed Central

    Ehrenshaft, Marilyn; Deterding, Leesa J.; Mason, Ronald P.

    2015-01-01

    Proteins comprise a majority of the dry weight of a cell, rendering them a major target for oxidative modification. Oxidation of proteins can result in significant alterations in protein molecular mass such as breakage of the polypeptide backbone, and/or polymerization of monomers into dimers, multimers and sometimes into insoluble aggregates. Protein oxidation can also result in structural changes to amino acid residue side chains, conversions which have only a modest effect on protein size but can have widespread consequences for protein function. There are a wide range of rate constants for amino acid reactivity, with cysteine, methionine, tyrosine, phenylalanine and tryptophan having the highest rate constants with commonly encountered biological oxidants. Free tryptophan and tryptophan protein residues react at a diffusion limited rate with hydroxyl radical, and also have high rate constants for reactions with singlet oxygen and ozone. Although oxidation of proteins in general and tryptophan residues specifically can have effects detrimental to the health of cells and organisms, some modifications are neutral while others contribute to the function of the protein in question or may act as a signal that damaged proteins need to be replaced. This review provides a brief overview of the chemical mechanisms by which tryptophan residues become oxidized, presents both the strengths and weaknesses of some of the techniques used to detect these oxidative interactions and discusses selected examples of the biological consequences of tryptophan oxidation in proteins from animals, plants and microbes. PMID:26393422

  9. Functionalized nanoparticle probes for protein detection

    NASA Astrophysics Data System (ADS)

    Park, Do Hyun; Lee, Jae-Seung

    2015-05-01

    In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications. [Figure not available: see fulltext.

  10. Accuracy of diagnosis criteria in patients with suspected diagnosis of sporadic Creutzfeldt-Jakob disease and detection of 14-3-3 protein, France, 1992 to 2009

    PubMed Central

    Peckeu, Laurene; Delasnerie-Lauprètre, Nicole; Brandel, Jean-Philippe; Salomon, Dominique; Sazdovitch, Véronique; Laplanche, Jean-Louis; Duyckaerts, Charles; Seilhean, Danielle; Haïk, Stéphane; Hauw, Jean-Jacques

    2017-01-01

    Diagnostic criteria of Creutzfeldt–Jakob disease (CJD), a rare and fatal transmissible nervous system disease with public health implications, are determined by clinical data, electroencephalogram (EEG), detection of 14-3-3 protein in cerebrospinal fluid (CSF), brain magnetic resonance imaging and prion protein gene examination. The specificity of protein 14-3-3 has been questioned. We reviewed data from 1,572 autopsied patients collected over an 18-year period (1992–2009) and assessed whether and how 14-3-3 detection impacted the diagnosis of sporadic CJD in France, and whether this led to the misdiagnosis of treatable disorders. 14-3-3 detection was introduced into diagnostic criteria for CJD in 1998. Diagnostic accuracy decreased from 92% for the 1992–1997 period to 85% for the 1998–2009 period. This was associated with positive detections of 14-3-3 in cases with negative EEG and alternative diagnosis at autopsy. Potentially treatable diseases were found in 163 patients (10.5%). This study confirms the usefulness of the recent modification of diagnosis criteria by the addition of the results of CSF real-time quaking-induced conversion, a method based on prion seed-induced misfolding and aggregation of recombinant prion protein substrate that has proven to be a highly specific test for diagnosis of sporadic CJD. PMID:29043964

  11. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel

  12. A common 'aggregation-prone' interface possibly participates in the self-assembly of human zona pellucida proteins.

    PubMed

    Louros, Nikolaos N; Chrysina, Evangelia D; Baltatzis, Georgios E; Patsouris, Efstratios S; Hamodrakas, Stavros J; Iconomidou, Vassiliki A

    2016-03-01

    Human zona pellucida (ZP) is composed of four glycoproteins, namely ZP1, ZP2, ZP3 and ZP4. ZP proteins form heterodimers, which are incorporated into filaments through a common bipartite polymerizing component, designated as the ZP domain. The latter is composed of two individually folded subdomains, named ZP-N and ZP-C. Here, we have synthesized six 'aggregation-prone' peptides, corresponding to a common interface of human ZP2, ZP3 and ZP4. Experimental results utilizing electron microscopy, X-ray diffraction, ATR FT-IR spectroscopy and polarizing microscopy indicate that these peptides self-assemble forming fibrils with distinct amyloid-like features. Finally, by performing detailed modeling and docking, we attempt to shed some light in the self-assembly mechanism of human ZP proteins. © 2016 Federation of European Biochemical Societies.

  13. Development of a fast and simple test system for the semiquantitative protein detection in cerebrospinal liquids based on gold nanoparticles.

    PubMed

    Göbel, Gero; Lange, Robert; Hollidt, Jörg-Michael; Lisdat, Fred

    2016-01-01

    The fast and simple detection of increased protein concentrations in cerebrospinal liquids is preferable in the emergency medicine and it can help to avoid unnecessary laboratory work by an early classification of neurological diseases. Here a test system is developed which is based on the electrostatic interaction between negatively charged gold nanoparticles and proteins at pH values around 5. The test system can be adjusted in such a way that protein/nanoparticles aggregates are formed leading to a red-shift in the absorption spectrum of the nanoparticles suspension. At concentrations above 500 mg/l the color of the suspension changes from red via violet toward blue in a rather small concentration range from 500 to 1000 mg/l. Furthermore the influence of various parameters such as gold nanoparticle concentration, pH value and varying ion concentration in the sample on the test system is examined. Finally cerebrospinal liquids of a larger number of patients have been analyzed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Engineering cell aggregates through incorporated polymeric microparticles.

    PubMed

    Ahrens, Caroline C; Dong, Ziye; Li, Wei

    2017-10-15

    Ex vivo cell aggregates must overcome significant limitations in the transport of nutrients, drugs, and signaling proteins compared to vascularized native tissue. Further, engineered extracellular environments often fail to sufficiently replicate tethered signaling cues and the complex architecture of native tissue. Co-cultures of cells with microparticles (MPs) is a growing field directed towards overcoming many of these challenges by providing local and controlled presentation of both soluble and tethered proteins and small molecules. Further, co-cultured MPs offer a mechanism to better control aggregate architecture and even to report key characteristics of the local microenvironment such as pH or oxygen levels. Herein, we provide a brief introduction to established and developing strategies for MP production including the choice of MP materials, fabrication techniques, and techniques for incorporating additional functionality. In all cases, we emphasize the specific utility of each approach to form MPs useful for applications in cell aggregate co-culture. We review established techniques to integrate cells and MPs. We highlight those strategies that promote targeted heterogeneity or homogeneity, and we describe approaches to engineer cell-particle and particle-particle interactions that enhance aggregate stability and biological response. Finally, we review advances in key application areas of MP aggregates and future areas of development. Cell-scaled polymer microparticles (MPs) integrated into cellular aggregates have been shown to be a powerful tool to direct cell response. MPs have supported the development of healthy cartilage, islets, nerves, and vasculature by the maintenance of soluble gradients as well as by the local presentation of tethered cues and diffusing proteins and small molecules. MPs integrated with pluripotent stem cells have directed in vivo expansion and differentiation. Looking forward, MPs are expected to support both the

  15. The Importance of a Gatekeeper Residue on the Aggregation of Transthyretin

    PubMed Central

    Sant'Anna, Ricardo; Braga, Carolina; Varejão, Nathalia; Pimenta, Karinne M.; Graña-Montes, Ricardo; Alves, Aline; Cortines, Juliana; Cordeiro, Yraima; Ventura, Salvador; Foguel, Debora

    2014-01-01

    Protein aggregation into β-sheet-enriched amyloid fibrils is associated with an increasing number of human disorders. The adoption of such amyloid conformations seems to constitute a generic property of polypeptide chains. Therefore, during evolution, proteins have adopted negative design strategies to diminish their intrinsic propensity to aggregate, including enrichment of gatekeeper charged residues at the flanks of hydrophobic aggregation-prone segments. Wild type transthyretin (TTR) is responsible for senile systemic amyloidosis, and more than 100 mutations in the TTR gene are involved in familial amyloid polyneuropathy. The TTR 26–57 segment bears many of these aggressive amyloidogenic mutations as well as the binding site for heparin. We demonstrate here that Lys-35 acts as a gatekeeper residue in TTR, strongly decreasing its amyloidogenic potential. This protective effect is sequence-specific because Lys-48 does not affect TTR aggregation. Lys-35 is part of the TTR basic heparin-binding motif. This glycosaminoglycan blocks the protective effect of Lys-35, probably by neutralization of its side chain positive charge. A K35L mutation emulates this effect and results in the rapid self-assembly of the TTR 26–57 region into amyloid fibrils. This mutation does not affect the tetrameric protein stability, but it strongly increases its aggregation propensity. Overall, we illustrate how TTR is yet another amyloidogenic protein exploiting negative design to prevent its massive aggregation, and we show how blockage of conserved protective features by endogenous factors or mutations might result in increased disease susceptibility. PMID:25086037

  16. Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR.

    PubMed

    Wiegand, Thomas; Liao, Wei-Chih; Ong, Ta Chung; Däpp, Alexander; Cadalbert, Riccardo; Copéret, Christophe; Böckmann, Anja; Meier, Beat H

    2017-11-01

    DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31 P- 13 C polarization-transfer experiments followed by the recording of a 2D 13 C- 13 C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.

  17. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  18. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters.

    PubMed

    Lin, Liyun; Hu, Yuefang; Zhang, Liangliang; Huang, Yong; Zhao, Shulin

    2017-08-15

    In this work, we prepared glutathione (GSH)-capped copper nanoclusters (Cu NCs) with red emission by simply adjusting the pH of GSH/Cu 2+ mixture at room temperature. A photoluminescence light-up method for detecting Zn 2+ was then developed based on the aggregation induced emission enhancement of GSH-capped Cu NCs. Zn 2+ could trigger the aggregation of Cu NCs, inducing the enhancement of luminescence and the increase of absolute quantum yield from 1.3% to 6.2%. GSH-capped Cu NCs and the formed aggregates were characterized, and the possible mechanism was also discussed. The prepared GSH-capped Cu NCs exhibited a fast response towards Zn 2+ and a wider detection range from 4.68 to 2240μM. The detection limit (1.17μM) is much lower than that of the World Health Organization permitted in drinking water. Furthermore, taking advantages of the low cytotoxicity, large Stokes shift, red emission and light-up detection mode, we explored the use of the prepared GSH-capped Cu NCs in the imaging of Zn 2+ in living cells. The developed luminescence light-up nanoprobe may hold the potentials for Zn 2+ -related drinking water safety and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Alpha casein micelles show not only molecular chaperone-like aggregation inhibition properties but also protein refolding activity from the denatured state.

    PubMed

    Sakono, Masafumi; Motomura, Konomi; Maruyama, Tatsuo; Kamiya, Noriho; Goto, Masahiro

    2011-01-07

    Casein micelles are a major component of milk proteins. It is well known that casein micelles show chaperone-like activity such as inhibition of protein aggregation and stabilization of proteins. In this study, it was revealed that casein micelles also possess a high refolding activity for denatured proteins. A buffer containing caseins exhibited higher refolding activity for denatured bovine carbonic anhydrase than buffers including other proteins. In particular, a buffer containing α-casein showed about a twofold higher refolding activity compared with absence of α-casein. Casein properties of surface hydrophobicity, a flexible structure and assembly formation are thought to contribute to this high refolding activity. Our results indicate that casein micelles stabilize milk proteins by both chaperone-like activity and refolding properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Biological role of bacterial inclusion bodies: a model for amyloid aggregation.

    PubMed

    García-Fruitós, Elena; Sabate, Raimon; de Groot, Natalia S; Villaverde, Antonio; Ventura, Salvador

    2011-07-01

    Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cell's cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background. © 2011 The Authors Journal compilation © 2011 FEBS.