Science.gov

Sample records for detect subsurface chromium

  1. Chromium Chemistry in the Subsurface

    EPA Science Inventory

    Chromium (VI) (Cr) is carcinogenic and a threat to human and ecological health. There are adequate and acceptable methods to characterize and assess Cr contaminated sites. Cr chemistry in the environment is well understood. There are documented methods to address Cr contaminat...

  2. Detection of microbes in the subsurface

    NASA Technical Reports Server (NTRS)

    White, David C.; Tunlid, Anders

    1989-01-01

    The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.

  3. Chromium

    MedlinePlus

    ... Mertz W. Chromium in human nutrition: a review. J Nutr 1993;123:626-33. Mertz W. Interaction ... metabolism by chromium(III) in malnourished infants. Am J Clin Nutr 1968;21:203-11. Jeejeebhoy KN, ...

  4. Cytokine detection for the diagnosis of chromium allergy*

    PubMed Central

    Martins, Luis Eduardo Agner Machado; dos Reis, Vitor Manoel Silva

    2013-01-01

    BACKGROUND Patch testing remains the gold standard method for the identification of the etiologic agent of allergic contact dermatitis. However, it is a subjective, time-consuming exam whose technique demands special care and which presents some contraindications, which hamper its use. In a recent study, we showed that the proliferation assay can suitably replace patch testing for the diagnosis of chromium allergy, which had been previously demonstrated only for nickel allergy. In this study, we try to refine the method by reducing the incubation period of cultures for lymphocyte proliferation assays in response to chromium. OBJECTIVE Develop an alternative or complementary diagnostic test for chromium allergic contact dermatitis. METHODS We compared the production of 9 cytokines (IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17 and RANTES) between 18 chromium-allergic patients and 19 controls. RESULTS Chromium increased the production of IFN-y, IL-5, IL-2 and IL-13 in allergic patients, but only IL-2 and especially IL-13 helped discriminate allergic patients from controls. The sensitivity, specificity and accuracy found with IL-13 were about 80%. CONCLUSIONS IL-13 and IL-2 detection may be used to diagnose chromium allergy in 2-day cultures. However, in general, the 6-day cultures seem to be superior for this purpose. PMID:24173176

  5. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    orthogonal transmission surveys to detect and locate the object. Furthermore, we showed that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  6. Detecting NAPLs Heterogeneously Distributed in the Subsurface

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Pirestani, K.

    2004-12-01

    A particularly difficult task facing engineers and managers concerned with subsurface spills of nonaqueous phase liquids (NAPLs) is determining where the NAPL is and how much is there. Borrowing from past work in petroleum reservoir engineering, partitioning interwell tracer tests (PITT) were developed for characterizing the NAPL source zone and assessing the performance of remediation technologies. PITTs have been used to determine domain-average NAPL saturations as well as the spatial distribution of the NAPL. While these tracer tests work well when the NAPL is distributed uniformly throughout the domain, if NAPL is located nonuniformly, either as millimeter-scale ganglia or pools that are centimeter-scale and larger, the flow paths of the injected tracer solution may bypass NAPL-contaminated zones. In this case, the transfer of tracer mass from the main flow paths to the NAPL may be slow, resulting in extensive tailing of tracer breakthrough curves and underestimation of NAPL mass. In this work we examined the influence of nonuniform NAPL distribution and local-scale mass transfer resistance on the accuracy of measured NAPL saturations using PITTs. Two mathematical models were used along with laboratory column experiments to explore the influence of tracer partition coefficient, tracer detection limit, and injected tracer mass on NAPL measurement when the NAPL was distributed nonuniformly. When dimensionless mass transfer coefficients were small, NAPL measurement errors decreased with decreasing tracer partition coefficient, decreasing tracer detection limit, and increasing injected tracer mass. Extrapolating breakthrough curves exponentially reduced but did not eliminate systematic errors in NAPL measurement. Although transport in a single stream tube was used in the mathematical models and laboratory experiments, the results from this simplified domain were supported by data taken from a three-dimensional computational experiment, where the NAPL resided as

  7. Chromium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of chromium (Cr) on glucose and insulin metabolism are well documented. Normal dietary intake of Cr appears to be suboptimal because several studies have reported beneficial effects of Cr in people with elevated blood glucose or type 2 diabetes eating conventional diets. Stresses that ...

  8. ENVIRONMENTAL RESEARCH BRIEF: INNOVATIVE MEASURES FOR SUBSURFACE CHROMIUM REMEDIATION: SOURCE ZONE, CONCENTRATED PLUME, AND DILUTE PLUME.

    EPA Science Inventory

    This environmental research brief reports on innovative measures for addressing 1) the source zone soils, 2) the concentrated portion of the ground-water plume, and 3) the dilute portion of the ground-water plume. For the source zone, surfactant-enhanced chromium extraction is ev...

  9. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  10. Subsurface event detection and classification using Wireless Signal Networks.

    PubMed

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  11. Subsurface Defect Detection in Metals with Pulsed Eddy Current

    SciTech Connect

    Plotnikov, Yuri A.; Bantz, Walter J.

    2005-04-09

    The eddy current (EC) method is traditionally used for open surface crack detection in metallic components. Subsurface voids in bulk metals can also be detected by the eddy current devices. Taking into consideration the skin effect in conductive materials, a lower frequency of electromagnetic excitation is used for a deeper penetration. A set of special specimens was designed and fabricated to investigate sensitivity to subsurface voids. Typically, flat bottom holes (FBHs) are used for subsurface defect simulation. This approach is not very representative of real defects for eddy current inspection because the FBH depth extends to the bottom of the specimen. Two-layer specimens with finite depth FBHs were fabricated and scanned with conventional EC of variable frequency. Sensitivity and spatial resolution of EC diminish with flaw depth. The pulsed EC approach was applied for flaw detection at variable distance under the surface. The transient response from multi-layer model was derived and compared to experiments. The multi-frequency nature of pulsed excitation provides effective coverage of a thick layer of material in one pass. Challenging aspects of subsurface flaw detection and visualization using the EC technique are discussed.

  12. Subsurface biological activity zone detection using genetic search algorithms

    SciTech Connect

    Mahinthakumar, G.; Gwo, J.P.; Moline, G.R.; Webb, O.F.

    1999-12-01

    Use of generic search algorithms for detection of subsurface biological activity zones (BAZ) is investigated through a series of hypothetical numerical biostimulation experiments. Continuous injection of dissolved oxygen and methane with periodically varying concentration stimulates the cometabolism of indigenous methanotropic bacteria. The observed breakthroughs of methane are used to deduce possible BAZ in the subsurface. The numerical experiments are implemented in a parallel computing environment to make possible the large number of simultaneous transport simulations required by the algorithm. The results show that genetic algorithms are very efficient in locating multiple activity zones, provided the observed signals adequately sample the BAZ.

  13. LRS data processing methods for detection of lunar subsurface echoes

    NASA Astrophysics Data System (ADS)

    Oshigami, Shoko; Mochizuki, Kengo; Watanabe, Shiho; Watanabe, Toshiki; Yamaguchi, Yasushi; Yamaji, Atsushi; Ono, Takayuki; Kumamoto, Atsushi; Nakagawa, Hiromu; Kobayashi, Takao; Kasahara, Yoshiya

    Lunar Radar Sounder (LRS) is an instrument for one of fifteen science missions of SE- LENE (KAGUYA). LRS is a ground-penetrating FM-CW radar system of HF-band. LRS detects echoes reflected from subsurface discontinuities where dielectric constants of the rocks change. The range resolution of LRS is 75 m in free space, whereas the sampling interval in the flight direction is about 75 m when the spacecraft altitude is 100 km. The primary objective of LRS is to investigate lunar subsurface structures. We plan to perform global soundings by LRS to contribute to studying the evolution of the Moon. In this presentation, we introduce the techniques to process LRS data to produce data products and to detect subsurface echoes. We have two standard data products of LRS under consideration. The time series data of ‘A-scope' which is a plot of signal power spectrum as a function of range derived from of the waveform data are called ‘B-scan'. Because LRS instruments change timing of data recording (measurement delay time) according to the predicted distance between KAGUYA spacecraft and lunar surface, observation range with respect to the spacecraft varies from pulse to pulse. In addition, flight altitude of KAGUYA changes in the range of several tens of kilometers. Therefore a trace of surface nadir echoes in unprocessed B-scan images does not correspond to actual lunar topography. We corrected variations of the measurement delay time and flight altitude of KAGUYA to produce a B-scan data product with the original spatial resolution (BScan high) and a reduced spatial resolution product (BScan low) both in the PDS format. The echo signals in A-scope data might be classified in the following categories; (1) a surface nadir echo, (2) surface off-nadir backscattering echoes, and (3) subsurface echoes. The most intense signal usually comes from the nadir point, when KAGUYA is flying over a level surface. The A-scope data also include various noises resulted from, for example

  14. DETECTION OF SUBSURFACE FACILITIES INCLUDING NON-METALLIC PIPE

    SciTech Connect

    Mr. Herb Duvoisin

    2003-05-26

    CyTerra has leveraged our unique, shallow buried plastic target detection technology developed under US Army contracts into deeper buried subsurface facilities and including nonmetallic pipe detection. This Final Report describes a portable, low-cost, real-time, and user-friendly subsurface plastic pipe detector (LULU- Low Cost Utility Location Unit) that relates to the goal of maintaining the integrity and reliability of the nation's natural gas transmission and distribution network by preventing third party damage, by detecting potential infringements. Except for frequency band and antenna size, the LULU unit is almost identical to those developed for the US Army. CyTerra designed, fabricated, and tested two frequency stepped GPR systems, spanning the frequencies of importance (200 to 1600 MHz), one low and one high frequency system. Data collection and testing was done at a variety of locations (selected for soil type variations) on both targets of opportunity and selected buried targets. We developed algorithms and signal processing techniques that provide for the automatic detection of the buried utility lines. The real time output produces a sound as the radar passes over the utility line alerting the operator to the presence of a buried object. Our unique, low noise/high performance RF hardware, combined with our field tested detection algorithms, represents an important advancement toward achieving the DOE potential infringement goal.

  15. LIBS fiber optic sensor for subsurface heavy metals detection

    NASA Astrophysics Data System (ADS)

    Saggese, Steven J.; Greenwell, Roger A.

    1996-12-01

    Laser induced breakdown spectroscopy (LIBS) is being used to detect heavy metal concentrations in soils. The overall goal of this effort is to develop a field deployable system that will conduct heavy metal subsurface mapping of the vadose zone using a cone penetrometer deployed fiber optic sensor. This paper presents results on the LIBS analysis of different spiked soil samples with the same chemical matrix, NIST soil samples with variable matrices, a comparison of the performance of the LIBS system with free space delivery of the laser beam versus the performance using an optical fiber probe, and the effect of several system parameters on performance.

  16. Roadside IED detection using subsurface imaging radar and rotary UAV

    NASA Astrophysics Data System (ADS)

    Qin, Yexian; Twumasi, Jones O.; Le, Viet Q.; Ren, Yu-Jiun; Lai, C. P.; Yu, Tzuyang

    2016-05-01

    Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload (less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and clutters.

  17. Detection of carcinogenic chromium in synthetic hair dyes using laser induced breakdown spectroscopy.

    PubMed

    Gondal, M A; Maganda, Y W; Dastageer, M A; Al Adel, F F; Naqvi, A A; Qahtan, T F

    2014-03-10

    A laser induced breakdown spectroscopic (LIBS) system, consisting of a pulsed 266 nm laser radiation, in conjunction with a high-resolution spectrograph, a gated intensified charge coupled device camera, and a built-in delay generator were used to develop a sensitive detector to quantify the concentration of toxic substances such as chromium in synthetic hair dyes available on the local market. The strong atomic transition line of chromium (Cr I) at 427.5 nm wavelength was used as a fingerprint wavelength to calibrate the detection system and also to quantify the levels of chromium in the hair dye samples. The limit of detection achieved by our LIBS detection system for chromium was 1.2 ppm, which enabled us to detect chromium concentration in the range of 5-11 ppm in the commercial hair dyes available on the local market. The concentrations of chromium in the hair dyes measured using our system were validated using a standard analytical technique such as inductively coupled plasma mass spectrometry (ICPMS), and acceptable agreement (nearly 8%) was found between the results obtained by the two methods (LIBS and ICPMS). This study is highly significant for human health, specifically for people using synthetic hair dyes for changing the color of their hair. PMID:24663421

  18. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    NASA Astrophysics Data System (ADS)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  19. Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry.

    PubMed

    Weldy, Effie; Wolff, Chloe; Miao, Zhixin; Chen, Hao

    2013-09-01

    From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI). PMID:23937937

  20. Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry.

    PubMed

    Weldy, Effie; Wolff, Chloe; Miao, Zhixin; Chen, Hao

    2013-09-01

    From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI).

  1. Phase shift reflectometry for sub-surface defect detection

    NASA Astrophysics Data System (ADS)

    Asundi, Anand; Lei, Huang; Eden, Teoh Kang Min; Sreemathy, Parthasarathy; May, Watt Sook

    2012-11-01

    Phase Shift Reflectometry has recently been seen as a novel alternative to interferometry since it can provide warpage measurement over large areas with no need for large optical components. To confirm its capability and to explore the use of this method for sub-surface defect detection, a Chinese magic mirror is used. This bronze mirror which dates back to the Chinese Han Dynasty appears at first sight to be an ordinary convex mirror. However, unlike a normal mirror, when illuminated by a beam of light, an image is formed onto a screen. It has been hypothesized that there are indentations inside the mirror which alter the path of reflected light rays and hence the reflected image. This paper explores various methods to measure these indentations. Of the methods test Phase Shift Reflectometry (PSR) was found suitable to be the most suitable both in terms of the sensitivity and the field of view.

  2. Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse.

    PubMed

    Fibbi, Donatella; Doumett, Saer; Lepri, Luciano; Checchini, Leonardo; Gonnelli, Cristina; Coppini, Ester; Del Bubba, Massimo

    2012-01-15

    In this study, during a two-year period, we investigated the fate of hexavalent and trivalent chromium in a full-scale subsurface horizontal flow constructed wetland planted with Phragmites australis. The reed bed operated as post-treatment of the effluent wastewater from an activated sludge plant serving the textile industrial district and the city of Prato (Italy). Chromium speciation was performed in influent and effluent wastewater and in water-suspended solids, at different depths and distances from the inlet; plants were also analyzed for total chromium along the same longitudinal profile. Removals of hexavalent and trivalent chromium equal to 72% and 26%, respectively were achieved. The mean hexavalent chromium outlet concentration was 1.6 ± 0.9 μg l(-1) and complied with the Italian legal limits for water reuse. Chromium in water-suspended solids was in the trivalent form, thus indicating that its removal from wastewater was obtained by the reduction of hexavalent chromium to the trivalent form, followed by accumulation of the latter inside the reed bed. Chromium in water-suspended solids was significantly affected by the distance from the inlet. Chromium concentrations in the different plant organs followed the same trend of suspended solids along the longitudinal profile and were much lower than those found in the solid material, evidencing a low metal accumulation in P. australis.

  3. Modeling the influence of exopolymeric substances (EPS) extracted from Pseudomonas bacteria on chromium (III) sorption and transport in heterogeneous subsurface soils

    NASA Astrophysics Data System (ADS)

    Kantar, C.; Demiray, H.; Koleli, N.; Mercan, N.

    2009-04-01

    In situ remediation of soils contaminated with Cr(VI) is usually accomplished through microbial reduction of Cr(VI) to Cr(III) by soil microorganisms including Pseudomonas bacteria. Cr(VI) is a toxic substance that may stimulate the production of exopolymeric substances (EPS) by soil bacteria. Natural organic ligands such as EPS may have a pronounced impact on Cr(III) solubility, sorption, transport and bioavailability in subsurface systems. In this study, laboratory sorption and column experiments were performed to investigate the influence of exopolymeric substances (EPS) extracted from Pseudomonas aeruginosa P16, Pseudomonas putida P18 and Pseudomonas stutzeri P40 on chromium (III) sorption and transport in heterogeneous subsurface soils. The results from laboratory experiments indicate that microbial EPS enhanced Cr(III) solubility, which, in turn, led to an increase in Cr(III) transport through columns packed with subsurface soils under slightly acidic to alkaline pH conditions. A reactive transport code that includes a semi-empirical surface complexation model (SCM) to describe chemical processes e.g., sorption was used to simulate bench-scale column data for Cr(III) transport in the presence of EPS. Our transport simulations suggest that for an accurate simulation of Cr(III) transport in the presence of microbial EPS, the following processes and/or interactions need to be explicitly considered: 1) Cr(III)-EPS interactions; 2) binary soil/Cr and soil/EPS surface complexes; and 3) ternary soil/Cr/EPS complexes.

  4. Sampling and Analysis Instruction for Evaluation of Residual Chromium Contamination in the Subsurface Soil at 100-C-7

    SciTech Connect

    W. S. Thompson

    2007-02-15

    This sampling and analysis instruction (SAI) provides the requirements for sample collection and laboratory analysis to evaluate the extent of hexavalent chromium contamination present in the soil below the 100-C-7 and 100-C-7:1 remedial action waste site excavations.

  5. Detection and Localization of Subsurface Two-Dimensional Metallic Objects

    NASA Astrophysics Data System (ADS)

    Meschino, S.; Pajewski, L.; Schettini, G.

    2009-04-01

    "Roma Tre" University, Applied Electronics Dept.v. Vasca Navale 84, 00146 Rome, Italy Non-invasive identification of buried objects in the near-field of a receiver array is a subject of great interest, due to its application to the remote sensing of the earth's subsurface, to the detection of landmines, pipes, conduits, to the archaeological site characterization, and more. In this work, we present a Sub-Array Processing (SAP) approach for the detection and localization of subsurface perfectly-conducting circular cylinders. We consider a plane wave illuminating the region of interest, which is assumed to be a homogeneous, unlossy medium of unknown permittivity containing one or more targets. In a first step, we partition the receiver array so that the field scattered from the targets result to be locally plane at each sub-array. Then, we apply a Direction of Arrival (DOA) technique to obtain a set of angles for each locally plane wave, and triangulate these directions obtaining a collection of crossing crowding in the expected object locations [1]. We compare several DOA algorithms such as the traditional Bartlett and Capon Beamforming, the Pisarenko Harmonic Decomposition (PHD), the Minimum-Norm method, the Multiple Signal Classification (MUSIC) and the Estimation of Signal Parameters via Rotational Techinque (ESPRIT) [2]. In a second stage, we develop a statistical Poisson based model to manage the crossing pattern in order to extract the probable target's centre position. In particular, if the crossings are Poisson distributed, it is possible to feature two different distribution parameters [3]. These two parameters perform two density rate for the crossings, so that we can previously divide the crossing pattern in a certain number of equal-size windows and we can collect the windows of the crossing pattern with low rate parameters (that probably are background windows) and remove them. In this way we can consider only the high rate parameter windows (that most

  6. [Use of colored samples in the detection of occupational exposure to allergic effects of chromium and nickel compounds].

    PubMed

    Czernielewski, A; Kieć-Swierczyńska, M; Kowalska, G; Czernielewski, J

    1977-01-01

    By using a coloured sample with diphenylcarbazide, chromium content in raw materials and industrial intermediate products was determined. At the same time chromium content was determined quantitatively by atomic absorption. The method was said to be simple and easy to be done in any industrial physician's conditions. The sample's sensitivity was said to be 1:100 000. Results of the determinations indicated that protective leather gloves contained considerable content of chromium, and chromium-free machine oils and lubricants were polluted with chromium's minute quantities as the oils and lubrications were being used. It was stated that coloured samples aiming at the detection of chromium, cobalt and nickel should be routinely used in preventive activity of industrial physicians. PMID:147380

  7. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  8. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  9. Subsurface Ice Detection via Low Frequency Surface Electromagnetic Method

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.; Mcginnis, R. N.

    2014-12-01

    The geophysical detection of ice in the Cryosphere is typically conducted by measuring the absence of water. These interpretations can become non-unique in dry soils or in clay- and silt-rich soils that contain significant quantities of unfrozen water. Extensive laboratory measurements of electrical properties were made on permafrost samples as a function of frequency, temperature, and water content. These laboratory measurements show that the amount of ice can be uniquely obtained by measuring a frequency dependence of the electrical properties over a large frequency range (20 kHz - 10 Hz). In addition, the electrical properties of permafrost are temperature dependent, which can allow for an estimate of subsurface temperature. In order to test this approach in the field, we performed field surveys at four locations in Alaska. We used three low frequency electromagnetic methods: Spectral Induced Polarization (SIP: 20 kHz - 10 Hz), Capacively Coupled Resistivity (CCR: OhmMapper - 16.5 kHz), and DC Resistivity (Syscal ~ 8 Hz). At the Cold Regions Research and Engineering Laboratory permafrost tunnel near Fox, AK, we used SIP to measure the average ice concentration of 80 v% and determined the temperature to be -3±1°C by matching survey results to lab data. SIP data acquisition is very slow; therefore, at three sites near Tok, AK, we used CCR to perform reconnaissance of the area. Then SIP and DC resistivity were performed at anomalous areas. The three survey types give very similar absolute resistivity values. We found that while SIP gives the most quantitative results, the frequency dependence from the CCR and DC resistivity surveys is all that are needed to determine ice content in permafrost.

  10. The detection of hexavalent chromium by organically doped sol-gels

    SciTech Connect

    Wong, P.W.; Mackenzie, J.D.

    1994-12-31

    The sol-gel process can be used to produce porous inorganic matrices that are doped with organic molecules. These doped gels can be used as a quantitative method for the spectrophotometric determination of trace concentrations of metallic ions. For the detection of hexavalent chromium, malachite green was used as the dopant. Preliminary results indicate concentrations on the order of 5 ppb are detectable using this method.

  11. PERMEABLE REACTIVE SUBSURFACE BARRIERS FOR THE INTERCEPTION AND REMEDIATION OF CHLORINATED HYDROCARBON AND CHROMIUM (VI) PLUMES IN GROUND WATER

    EPA Science Inventory

    This document concerns the use of permeable reactive subsurface barriers for the remediation of plumes of chlorinated hydrocarbons and Cr(VI) species in ground water, using zero-valent iron (Fe0) as the reactive substrate. Such systems have undergone thorough laboratory research,...

  12. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution

    SciTech Connect

    Kantar, C.; Dodge, C.; Demiray, H.; Dogan, N.M.

    2011-01-26

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  13. Role of Microbial Exopolymeric Substances (EPS) on Chromium Sorption and Transport in Heterogeneous Subsurface Soils: I. Cr(III) Complexation with EPS in Aqueous Solution

    SciTech Connect

    C Kantar; H Demiray; N Dogan; C Dodge

    2011-12-31

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  14. Roentgenological detection of casting defects in cobalt-chromium alloy frameworks.

    PubMed

    Wictorin, L; Julin, P; Möllersten, L

    1979-04-01

    A method for non-destructive X-ray investigation of casting defects in cobalt-chromium prosthetic frameworks has been developed and tested. The attenuation properties of a cobalt-chromium alloy were studied. A dental X-ray machine with a tube voltage working at 70 kVp and a focus-film distance of 45-50 cm on dental ultraspeed film made it possible to detect defects representing 10% or less of the thickness of cobalt-chromium details with dimensions between 0.6 and 3.0 mm. The frequency and site of internal defects in sixty-six frameworks were investigated. Of the sixty-six frameworks only two were without roentgenologically visible defects. In the other sixty-four frameworks 294 pores or cracks were recorded. The defects were mostly situated in the saddles. Porosities occurred in 53% of the saddlebar regions. The results confirmed the need for a non-destructive routine test of prosthetic frameworks. PMID:374696

  15. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  16. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  17. Multiple instance dictionary learning for subsurface object detection using handheld EMI

    NASA Astrophysics Data System (ADS)

    Zare, Alina; Cook, Matthew; Alvey, Brendan; Ho, Dominic K.

    2015-05-01

    A dictionary learning approach for subsurface object detection using handheld electromagnetic induction (EMI) data is presented. A large number of unsupervised and supervised dictionary learning methods have been developed in the literature. However, the majority of these methods require data point-specific labels during training. In the application to subsurface object detection, often the specific training data samples that correspond to target and non-target are not known and difficult to determine manually. In this paper, a dictionary learning method that addresses this issue using the multiple instance learning techniques is presented. Results are shown on real EMI data sets.

  18. EM Task 13 - Cone Penetrometer for Subsurface Heavy Metals Detection

    SciTech Connect

    Ames A. Grisanti; Charlene R. Crocker

    1998-11-01

    Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd has become an area of concern for many industrial and government organizations (1) Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2) Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils that allow cost-effective, rapid, in situ measurements. The overall objectives of this project are to evaluate potential calibration techniques for the laser-induced breakdown spectroscopy (LIBS)-CPT instrument, to provide a preliminary evaluation of the LIBS instrument calibration using samples obtained from the field and to provide technical support to field demonstration of the LIBS-CPT instrument at a DOE facility.

  19. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    The purpose of the work was to determine the capability of various geophysical methods to detect PCE in the subsurface. Measurements were made with ten different geophysical techniques before, during, and after the PCE injection. This approach provided a clear identification of a...

  20. An efficient contextual algorithm to detect subsurface fires with NOAA/AVHRR data

    SciTech Connect

    Gautam, R.S.; Singh, D.; Mittal, A.

    2008-07-15

    This paper deals with the potential application of National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) data to detect subsurface fire (subsurface hotspots) by proposing an efficient contextual algorithm. Although few algorithms based on the fixed-thresholding approach have been proposed for subsurface hotspot detection, however, for each application, thresholds have to be specifically tuned to cope with unique environmental conditions. The main objective of this paper is to develop an instrument-independent adaptive method by which direct threshold or multithreshold can be avoided. The proposed contextual algorithm is helpful to monitor subsurface hotspots with operational satellite data, such as the Jharia region of India, without making any region-specific guess in thresholding. Novelty of the proposed work lies in the fact that once the algorithmic model is developed for the particular region of interest after optimizing the model parameters, there is no need to optimize those parameters again for further satellite images. Hence, the developed model can be used for optimized automated detection and monitoring of subsurface hotspots for future images of the particular region of interest. The algorithm is adaptive in nature and uses vegetation index and different NOAA/AVHRR channel's statistics to detect hotspots in the region of interest. The performance of the algorithm is assessed in terms of sensitivity and specificity and compared with other well-known thresholding, techniques such as Otsu's thresholding, entropy-based thresholding, and existing contextual algorithm proposed by Flasse and Ceccato. The proposed algorithm is found to give better hotspot detection accuracy with lesser false alarm rate.

  1. Tunnel and Subsurface Void Detection and Range to Target Measurement

    SciTech Connect

    Phillip B. West

    2009-06-01

    Engineers and technicians at the Idaho National Laboratory invented, designed, built and tested a device capable of detecting and measuring the distance to, an underground void, or tunnel. Preliminary tests demonstrated positive detection of, and range to, a void thru as much as 30 meters of top-soil earth. Device uses acoustic driving point impedance principles pioneered by the Laboratory for well-bore physical properties logging. Data receipts recorded by the device indicates constructive-destructive interference patterns characteristic of acoustic wave reflection from a downward step-change in impedance mismatch. Prototype tests demonstrated that interference patterns in receipt waves could depict the patterns indicative of specific distances. A tool with this capability can quickly (in seconds) indicate the presence and depth/distance of a void or tunnel. Using such a device, border security and military personnel can identify threats of intrusion or weapons caches in most all soil conditions including moist and rocky.

  2. Sub-surface defect detection in a steel sheet

    NASA Astrophysics Data System (ADS)

    Atzlesberger, J.; Zagar, B. G.; Cihal, R.; Brummayer, M.; Reisinger, P.

    2013-08-01

    In recent years, the focus on quality control in the steel industry has shifted from offline to inline non-destructive testing in order to detect defects at the earliest possible stage in the production process. The detection and elimination of such defects is vital for sustaining product quality and reducing costs. Various measurement principles (e.g. ultrasonic testing, electromagnetic acoustic transducer, x-ray inspection) were analyzed and their advantages and disadvantages are discussed regarding their usability in a steel plant. Based on these findings a magnetic method combined with a new sensor concept was chosen. By using highly sensitive sensors based on the giant magnetoresistive effect, it is possible to detect magnetic flux leakage variations on the surface of a magnetized steel strip caused by defects or inhomogeneities inside the material. Based on promising measurement results of preliminary tests and simulation results obtained by finite element method-models, a prototype is now being built for offline measurements and the optimization of the measurement method. In the event that the development of this second prototype is successful, an inline configuration will be implemented.

  3. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium.

    PubMed

    Fu, QiangQiang; Tang, Yong; Shi, CongYing; Zhang, XiaoLi; Xiang, JunJian; Liu, Xi

    2013-11-15

    A novel fluorescence quenching immunochromatographic sensor (ICS) was developed for detecting chromium (Cr(3+)) within 15 min utilizing the fluorescence quenching function of gold nanoparticles (Au-NPs). The sensor performed with a positive readout. When the low concentrations of Cr(3+) samples were applied, detection signals of the test line (T line) were quenched, whereas when higher concentration Cr(3+) samples (1.56 ng/mL) were applied, the detection signal of the T line appeared. The detection signal intensity of the T line increased with increasing concentrations of Cr(3+). The low detection limit of developed fluorescence quenching ICS was 1.56 ng/mL. The fluorescence quenching ICS has a linear range of detection of Cr(3+) comprising between 6.25 ng/mL to 800 ng/mL. The recoveries of the fluorescence quenching ICS to detect Cr(3+) in tap water ranged from 94.7% to 101.7%. This result indicated that the developed sensor gave higher sensitivity and reliable reproducibility. It could provide a general detection method for small analyte in water samples.

  4. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium.

    PubMed

    Fu, QiangQiang; Tang, Yong; Shi, CongYing; Zhang, XiaoLi; Xiang, JunJian; Liu, Xi

    2013-11-15

    A novel fluorescence quenching immunochromatographic sensor (ICS) was developed for detecting chromium (Cr(3+)) within 15 min utilizing the fluorescence quenching function of gold nanoparticles (Au-NPs). The sensor performed with a positive readout. When the low concentrations of Cr(3+) samples were applied, detection signals of the test line (T line) were quenched, whereas when higher concentration Cr(3+) samples (1.56 ng/mL) were applied, the detection signal of the T line appeared. The detection signal intensity of the T line increased with increasing concentrations of Cr(3+). The low detection limit of developed fluorescence quenching ICS was 1.56 ng/mL. The fluorescence quenching ICS has a linear range of detection of Cr(3+) comprising between 6.25 ng/mL to 800 ng/mL. The recoveries of the fluorescence quenching ICS to detect Cr(3+) in tap water ranged from 94.7% to 101.7%. This result indicated that the developed sensor gave higher sensitivity and reliable reproducibility. It could provide a general detection method for small analyte in water samples. PMID:23800612

  5. Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min; Cai, Huai-Hong; Yang, Fen; Lin, Dewen; Yang, Pei-Hui; Cai, Jiye

    2014-01-01

    Simple and sensitive determination of chromium (III) ions (Cr3+) has potential applications for detecting trace contamination in environment. Here, the assay is based on the enhancement of resonance Rayleigh scattering (RRS) by Cr3+-induced aggregation of citrate-capped gold nanoparticles (AuNPs). Transmission electron microscopy (TEM) and UV-vis absorption spectroscopy were employed to characterize the nanostructures and spectroscopic properties of the Cr3+-AuNP system. The experiment conditions, such as reaction time, pH value, salt concentration and interfering ions, were investigated. The combination of signal amplification of Cr3+-citrate chelation with high sensitivity of RRS technique allow a selective assay of Cr3+ ions with a detection limit of up to 1.0 pM. The overall assay can be carried out at room temperature within only twenty minutes, making it suitable for high-throughput routine applications in environment and food samples.

  6. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples

    SciTech Connect

    Liu, Xi; Xiang, Jun-Jian; Tang, Yong; Zhang, Xiao-Li; Fu, Qiang-Qiang; Zou, Jun-Hui; Lin, Yuehe

    2012-09-01

    An immunochromatographic assay (ICA) using gold nanoparticles coated with monoclonal antibody (McAb) for the detection of chromium ions (Cr) in water and serum samples was developed, optimized, and validated. Gold nanoparticles coated with affinity- purified monoclonal antibodies against isothiocyanobenzyl-EDTA (iEDTA)-chelated Cr3+ were used as the detecting reagent in this completive immunoassay-based one- step test strip. The ICA was investigated to measure chromium speciation in water samples. Chromium standard samples of 0-80 ng/mL in water were determined by the test strips. The results showed that the visual lowest detection limit (LDL) of the test strip was 50.0 ng/mL. A portable colorimetric lateral flow reader was used for the quantification of Cr. The results indicated that the linear range of the ICA with colorimetric detection was 5-80 ng/mL. The ICA was also validated for the detection of chromium ions in serum samples. The test trips showed high stability in that they could be stored at at 37 C for at least 12 weeks without significant loss of activity. The test strip also showed good selectivity for Cr detection with negligible interference from other heavy metals. Because of its low cost and short testing time (within 5 min), the test strip is especially suitable for on-site large- scale screening of Cr-polluted water samples, biomonitoring of Cr exposure, and many other field applications.

  7. Subsurface Cavity Detection by Using Integrated Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Aykaç, Sinem; Rezzan Ozerk, Zeynep; Işıkdeniz Şerifoǧlu, Betül; Bihter Demirci, Büşra; Timur, Emre; Çakir, Korhan

    2016-04-01

    Global warming experienced in recent years in Turkey has led to a severe drought around the Konya Plain in central Anatolia .As a result, excessive amount of ground water was drawn in the region for the sustainability of agricultural activities. So, five small-scale shallow depth sinkholes have occured at different times, at an average interval between 400-450 m. in the study area; Konya-Atlantı. Generally, sinkholes formation occurres among natural processes has turned into disasters caused by humans due to excessive use of groundwater. Consequently, investigations were carried out within a partnership research programme on cavity detection and ground penetration radar, microgravity and multi-frequency electromagnetic methods were jointly utilized. . Exact locations and dimensions of two possible hidden cavities were determined by using these multidisciplinary methods. Keywords: Cavity;Ground-penetrating radar;Konya;Microgravimetry;Multi-frequency electromagnetic method.

  8. Monitor for detecting nuclear waste leakage in a subsurface repository

    NASA Astrophysics Data System (ADS)

    Klainer, S.; Hirschfeld, T.; Bowman, H.; Milanovich, F.; Perry, D.; Johnson, D.

    1980-11-01

    A remote fiber optics system is employed in conjunction with the coprecipitation enhanced fluorimetry technique to detect radioactive waste leakage. An in situ monitoring capability using fiber optics to effect communication between the instrumentation and the sample is demonstrated. The sample is an actinide or a tracer material leaking from an underground nuclear waste repository into the ground water. A lanthanide (which is an excellent fluorescent agent), actinide or other species which does not radiation damage is chosen as the tracer to maximize sensitivity, specificity, and relevance. Taggants having variable excitation and emission wavelengths create a need for an acromatic retroreflective fiber coupler. This was done using the geometrical properties of the fiber to design a coupler requiring no dichroics or glossy energy splitting surfaces.

  9. Airborne lidar detection of subsurface oceanic scattering layers

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Krabill, William B.; Buntzen, Rodney R.; Gilbert, Gary D.

    1988-01-01

    The airborne lidar detection and cross-sectional mapping of submerged oceanic scattering layers are reported. The field experiment was conducted in the Atlantic Ocean southeast of Assateague Island, VA. NASA's Airborne Oceanographic Lidar was operated in the bathymetric mode to acquire on-wavelength 532-nm depth-resolved backscatter signals from shelf/slope waters. Unwanted laser pulse reflection from the air-water interface was minimized by spatial filtering and off-nadir operation. The presence of thermal stratification over the shelf was verified by the deployment of airborne expendable bathythermographs. Optical beam transmission measurements acquired from a surface truthing vessel indicated the presence of a layer of turbid water near the sea floor over the inner portion of the shelf.

  10. Monitor for detecting nuclear waste leakage in a subsurface repository

    SciTech Connect

    Klainer, S.; Hirschfeld, T.; Bowman, H.; Milanovich, F.; Perry, D.; Johnson, D.

    1980-11-05

    The remote fiber fluorimetric portion of the program is slightly ahead of schedule and proceeding well technically. Proof of principle has been demonstrated over a 0.2 km path length using an organic tracer material. Performance and design calculations have been made for the fiber optic components of the system. Optimized fibers have been ordered and special jigs and optical couplings are presently being fabricated. Progress on the high-sensitivity analyzer using coprecipitation techniques has proceeded well ahead of schedule with technical results far above expectations. Preliminary measurements in the UO/sub 2//sup 2 +//CaF/sub 2/ detection system has proved sensitivities well beyond the natural background limit. While further improvement of sensitivity (to 10/sup -15/ g) already is planned, emphasis will now be placed on locating and dealing with possible interferences and on determining how to improve and optimize quantitative accuracy. In addition, simplication of the sample preparation procedure and downscaling to use very small (< 1 ml) groundwater samples is planned. In the longer time frame, work on maximum chemical speciation and the possibility of isotopic speciation will be undertaken. Once the coprecipitation procedures, instrumentation, and spectroscopy have been fully refined for uranium, then the process will be repeated for plutonium and perhaps americium and thorium.

  11. Subsurface detection and characterization of Hertzian cracks in advanced ceramic materials using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bashkansky, Mark; Reintjes, John F.

    2002-06-01

    Optical Coherence Tomography (OCT) is an active optical imaging technique that is capable of three-dimensional resolution better than 10 microns in all dimensions. OCT was originally developed as a non-invasive technique in biomedical field. It also found uses in the NDE of various materials including ceramics, plastics and composites. In various ceramics OCT can be used to detect microscopic, subsurface defects at depths approaching hundreds of microns. The depth of penetration depends on the material and on the wavelength of light. Here we demonstrate an application of OCT to the subsurface imaging in various materials and, in particular, to the detection of a surface-penetrating Hertzian crack in a Si3N4 ceramic ball. We present measured subsurface trajectory of the crack and compare it to theoretical predictions. These cracks represent one of the most important failure mechanisms in advanced ceramic materials. The ability to map subsurface trajectories of cracks is a valuable tool in the evaluation of different existing theories. Better theoretical understanding of various properties of crack initiation and propagation can lead to engineering of improved ceramic materials.

  12. Detection of highly toxic elements (lead and chromium) in commercially available eyeliner (kohl) using laser induced break down spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Dastageer, M. A.; Al-Adel, F. F.; Naqvi, A. A.; Habibullah, Y. B.

    2015-12-01

    A sensitive laser induced breakdown spectroscopic system was developed and optimized for using it as a sensor for the detection of trace levels of lead and chromium present in the cosmetic eyeliner (kohl) of different price ranges (brands) available in the local market. Kohl is widely used in developing countries for babies as well adults for beautification as well eyes protection. The atomic transition lines at 405.7 nm and 425.4 nm were used as the marker lines for the detection of lead and chromium respectively. The detection system was optimized by finding the appropriate gate delay between the laser excitation and the data acquisition system and also by achieving optically thin plasma near the target by establishing the local thermodynamic equilibrium condition. The detection system was calibrated for these two hazardous elements and the kohl samples under investigation showed 8-15 ppm by mass of lead and 4-9 ppm by mass of Chromium, which are higher than the safe permissible levels of these elements. The limits of detection of the LIBS system for lead and chromium were found to be 1 and 2 ppm respectively.

  13. Prospects of passive radio detection of a subsurface ocean on Europa with a lander

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve

    2016-09-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  14. Visual detection of subsurface defects using enhanced magneto-optic imaging system

    NASA Astrophysics Data System (ADS)

    Cheng, Yu Hua H.; Liu, Xingmake; Tian, Gui Y.; Bai, Libing

    2013-01-01

    An enhanced magneto-optic (MO) imaging system is presented to detect the invisible and buried subsurface flaws in metallic specimens. The choice of the MO thin films, the design of the magnetic excitation device and the development of the image processing approaches are presented in this paper and the quality improvement in MO imaging has been demonstrated due to the proposed methods. Experimental results have been provided and verify the reliability and accuracy of the enhanced MO imaging system.

  15. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  16. The Wigner distribution function applied to the detection of subsurface objects

    NASA Astrophysics Data System (ADS)

    Testorf, Markus E.; Saillard, Marc

    2006-08-01

    The Wigner distribution function is used to display data obtained from a bistatic radar imaging setup. In particular, a scheme is developed to exploit the properties of the Wigner function for subsurface detection. Based on heuristic considerations it is argued that in the Wigner domain a separation of surface scattering and target signal is possible depending on the properties of the respective local plane wave spectra. An intuitive understanding of the phase space approach is developed from the case of a point target located underneath a planar dielectric interface. In addition, data based on rigorous computations of rough surface scattering are used to validate the method.

  17. Detection of Sub-Surface Water on Mars by Controlled and Natural Source Electromagnetic Induction

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.

    2001-01-01

    Detection of subsurface liquid water on Mars is a leading scientific objective for Mars exploration in this decade. We describe electromagnetic induction (EM) methods that are both uniquely well suited for detection of subsurface liquid water on Mars and practical within the context of a Mars exploration program. EM induction methods are ideal for detection of more highly conducting (liquid water bearing) soils and rock beneath a more resistive overburden. A combined natural source and controlled source method offers an efficient and unambiguous characterization of the depth to liquid water and the extent of the aqueous region. The controlled source method employs an ac vertical dipole source (horizontal loop) to probe the depth to the conductor and a natural source method (gradient sounding) to characterize its conductivity-thickness product. These methods are proven in geophysical exploration and can be tailored to cope with any reasonable Mars crustal electrical conductivity. We describe a practical experiment and discuss experiment optimization to address the range of material properties likely encountered in the Mars crust.

  18. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  19. Detection of subsurface trace impurity in polished fused silica with biological method.

    PubMed

    Wang, Zhuo; Wang, Lin; Yang, Junhong; Peng, Wenqiang; Hu, Hao

    2014-09-01

    Subsurface damage (SSD), especially photoactive impurities, degrades the performance of high energy optics by reduction in the laser induced damage threshold. As the polishing defects are trace content and lie beneath the surface, they are difficult to detect. We herein present a biological method to measure impurities on polished fused silica, based on the intense inhibiting ability about trace level of ceria on enzyme activity. And the enzyme activity is measured in the individual etching solutions of a sequential etching process. Results show that detectability of the biological method satisfies the needs of trace impurity detection with low cost and simple apparatus. Furthermore ceria can be used to tag SSD in lapped and polished optics. PMID:25321508

  20. SHARAD Detection of Subsurface Interfaces in Southern-Central Utopia Planitia

    NASA Astrophysics Data System (ADS)

    Stuurman, C. M.; Brothers, T. C.; Holt, J. W.; Kerrigan, M.; Osinski, G. R.

    2013-12-01

    Characterising the extent and distribution of subsurface ice in the middle-latitudes of Mars is an ongoing endeavour, with applications to both paleoclimate and future missions. Utopia Planitia has been posited as an ice-rich area by climate models, Gamma-Ray Spectrometer results suggestive of high hydrogen concentrations, and high densities of periglacial and glacial surface morphologies. The SHAllow RADar (SHARAD) instrument on the Mars Reconnaissance Orbiter is a radar sounder which transmits a 15-25 MHz chirped pulse. The data is recorded in the time delay and can be used to map and characterize Mars' subsurface. In the Utopia Planitia region, SHARAD data can potentially constrain modeling efforts, help locate potential water resources for future exploration, and give volumetric constraints on features that were previously only observed in two dimensions. Thus far, most mid-latitudinal reflectors using the SHARAD instrument have been associated with isolated surface morphologies, such as lobate debris aprons, lineated valley fill, and reflectors beneath volcanic flows. Recently, SHARAD radargrams over pedestal craters in the mid-latitudes have also yielded results suggestive of water-ice composition, and a massive, radar-transparent layer has been found in Arcadia Planitia. Overall, however, there has been a dearth of SHARAD evidence suggestive of the massive subsurface ice sheets predicted by climate models. This project analyzed several hundred SHARAD radargrams throughout Utopia Planitia. Subsurface reflectors were detected by visually inspecting radar data and comparing to simulated radargrams that predict off nadir surface echoes that can be confused with subsurface reflections. Regions of high amplitude subsurface reflections that do not appear in the simulated radargrams were thus interpreted as reflectors represenative of geologic contacts. SHARAD analysis revealed several reflectors in the Southern-Central Utopia Planitia region. These reflectors were

  1. Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids

    SciTech Connect

    Jin, M.; Delshad, M.; Dwarakanath, V.; McKinney, D.C.; Pope, G.A.; Sepehrnoori, K.; Tilburg, C.E.; Jackson, R.E.

    1995-05-01

    In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer test results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations. 43 refs., 10 figs., 1 tab.

  2. Cone Penetrometer for Subsurface Heavy Metals Detection. Semiannual report, November 1, 1996--March 31, 1997

    SciTech Connect

    Grisanti, Ames A.; Timpe, Ronald C.; Foster, H.J.; Eylands, Kurt E.; Crocker, Charlene R.

    1997-12-31

    Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd, has become an area of concern for many industrial and government organizations (1). Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2). Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils which allow cost-effective, rapid, in situ measurements. Laser-induced breakdown spectroscopy (LIBS) has been used to successfully measure metals content in a variety of matrices (3-15) including soil (16,17). Under the Department of Energy (DOE) Federal Energy Technology Center (FETC) Industry Program, Science {ampersand} Engineering Associates (SEA) is developing a subsurface cone penetrometer (CPT) probe for heavy metals detection that employs LIBS (18). The LIES-CPT unit is to be applied to in situ, real-time sampling and analysis of heavy metals in soil. As part of its contract with DOE FETC, SEA is scheduled to field test its LIBS-CPT system in September 1997.

  3. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2016-10-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  4. Detecting a subsurface cylinder by a Time Reversal MUSIC like method

    NASA Astrophysics Data System (ADS)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R

  5. Automated laser scatter detection of surface and subsurface defects in Si{sub 3}N{sub 4} components

    SciTech Connect

    Steckenrider, J.S.

    1995-06-01

    Silicon Nitride (Si{sub 3}N{sub 4}) ceramics are currently a primary material of choice to replace conventional materials in many structural applications because of their oxidation resistance and desirable mechanical and thermal properties at elevated temperatures. However, surface or near-subsurface defects, such as cracks, voids, or inclusions, significantly affect component lifetimes. These defects are currently difficult to detect, so a technique is desired for the rapid automated detection and quantification of both surface and subsurface defects. To address this issue, the authors have developed an automated system based on the detection of scattered laser light which provides a 2-D map of surface or subsurface defects. This system has been used for the analysis of flexure bars and button-head tensile rods of several Si{sub 3}N{sub 4} materials. Mechanical properties of these bars have also been determined and compared with the laser scatter results.

  6. Fiber optic/cone penetrometer system for subsurface heavy metals detection

    SciTech Connect

    Saggese, S.; Greenwell, R.

    1995-10-01

    The objective of this project is to develop an integrated fiber optic sensor/cone penetrometer system to analyze the heavy metals content of the subsurface. This site characterization tool will use an optical fiber cable assembly which delivers high power laser energy to vaporize and excite a sample in-situ and return the emission spectrum from the plasma produced for chemical analysis. The chemical analysis technique, often referred to as laser induced breakdown spectroscopy (LIBS), has recently shown to be an effective method for the quantitative analysis of contaminants soils. By integrating the fiber optic sensor with the cone penetrometer, we anticipate that the resultant system will enable in-situ, low cost, high resolution, real-time subsurface characterization of numerous heavy metal soil contaminants simultaneously. There are several challenges associated with the integration of the LIBS sensor and cone penetrometer. One challenge is to design an effective means of optically accessing the soil via the fiber probe in the penetrometer. A second challenge is to develop the fiber probe system such that the resultant emission signal is adequate for quantitative analysis. Laboratory techniques typically use free space delivery of the laser to the sample. The high laser powers used in the laboratory cannot be used with optical fibers, therefore, the effectiveness of the LIBS system at the laser powers acceptable to fiber delivery must be evaluated. The primary objectives for this project are: (1) Establish that a fiber optic LIBS technique can be used to detect heavy metals to the required concentration levels; (2) Design and fabricate a fiber optic probe for integration with the penetrometer system for the analysis of heavy metals in soil samples; (3) Design, fabricate, and test an integrated fiber/penetrometer system; (4) Fabricate a rugged, field deployable laser source and detection hardware system; and (6) Demonstrate the prototype in field deployments.

  7. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  8. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  9. The Effects of Subsurface Heterogeneity on Detectability of CO2 Leakage to Shallow Groundwater Aquifers

    NASA Astrophysics Data System (ADS)

    Wolaver, B. D.; Sun, A. Y.; Nicot, J.; Hovorka, S. D.; Nuñez-Lopez, V.; Young, M.

    2011-12-01

    Numerical simulations of CO2 storage reservoir leakage can be used to assess risks of shallow groundwater aquifer contamination during monitoring network design. Improperly plugged and abandoned wells are well known to represent one of the greatest risks to successful containment at geologic carbon sequestration sites. Casing and cement seal failure of wells penetrating the confining layer may create fast-flow pathways for CO2 and brine migration from the storage reservoir into the shallow subsurface. To protect drinking water aquifers from possible leaks, injection permits require identification of artificial penetrations and evaluation that wells are adequately plugged and abandoned. However, assumptions made during well evaluation may overlook the likelihood of well failure leading to a leak into an aquifer. We present a monitoring approach that provides quick and accurate detection in the event of a leak to an aquifer. Sand and shale facies are classified to simulate aquifer heterogeneity using representative borehole geophysical data from Texas, U.S.A. Gulf Coast Aquifer System wells. Numerical models simulate pressure perturbations in response to a leak to an aquifer overlying a storage reservoir. Candidate monitoring well locations for a possible leak of randomly selected location are chosen from a suite of possible wells based on the detectability of CO2 leakage from the groundwater model. We first show that the locations and magnitudes of leakage can be identified for homogeneous aquifers by using an inversion procedure and pressure observations. We then consider the effects of conceptual model uncertainty, pressure measurement error, and background noise on detectability of leaky wells. While substantial previous work quantified pressure perturbations caused by leaky wells using analytical solutions or simple numerical model configurations, the effects of formation heterogeneity on pressure perturbation and other uncertain factors are not well examined

  10. Screening and detection of biomarkers in chickpea plants exposed to chromium and cadmium.

    PubMed

    Khan, Mather Ali; Ram, Mauji; Jha, Prabhakar; Ahmad, M Mobeen; Alam, Pravej; Kamaluddin; Ali, Athar; Kiran, Usha; Abdin, M Z

    2011-01-01

    A broad screening protocol, covering the most general phytochemical groups of compounds, was developed on the basis of high performance thin layer chromatography (HPTLC). A total of six TLC systems, comprising three derivatization reagents, two stationary phases and two mobile phases, were included. The screening method was applied for the identification of biomarkers in the chickpea plant exposed to cadmium and chromium. The biomarkers were selected on the basis of significant changes (0.26-4.6 fold) in concentration levels of phytochemicals. Totally, five different amino acids, three organic acids, one sulphur containing compound and one sugar were identified as biomarkers in chickpea exposed heavy metal.

  11. Cassini microwave radiometry observations of Enceladus' South Pole: Detection of a warm subsurface?

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; Leyrat, C.; Janssen, M. A.; Stolzenbach, A.; Wye, L. C.; West, R. D.; Lorenz, R. D.; Mitchell, K. L.

    2012-12-01

    At the beginning of the Cassini mission, the ISS (Imaging Science Subsystem) and CIRS (Composite Infra-Red Spectrometer) instruments discovered a geologically active region at the south pole of Saturn's moon Enceladus (e.g. Porco et al., 2005). Plumes venting material emanate from this region. Six years later, on November 6, 2011, the first-ever Synthetic Aperture Radar (SAR) image of Enceladus was acquired during the E16 flyby of the moon at the wavelength of 2-cm (Mitchell et al., AGU 2011). The SAR swath is located within the seemingly young South Pole Terrains, not far from the active sulci also known as the "tiger stripes" identified as the sources of the plumes. Concurrently to the SAR image, radiometry data were collected in the passive mode of the instrument with a ground footprint of 25-40 km across the track and ~5 km along. The Cassini radiometer records the thermal emission from the surface in the microwave domain, at 2-cm. More specifically, it measures the brightness temperature of the surface that varies both with the emissivity and the vertical temperature profile below the surface down to a depth, which depends on the electrical properties of the subsurface. Typically, radio instruments sense 10 to 100 wavelengths into an icy crust and can thus provide unique insight into the compositional, thermal and physical (porosity, roughness) state of planetary regoliths at depths much greater than the ones sampled by thermal IR spectrometers. In particular, microwave radiometer can be used to detect possible endogenic activity beneath the surface. The measured calibrated brightness temperatures during E16 cover a range from 33 to 60 K. In order to analyze these dataset, we have modeled the expected thermal emission from Enceladus' surface. In absence of endogenic emission, the temperature structure of any airless satellite results from a balance between solar insolation, heat transport within the subsurface and reradiation outward. The developed thermal

  12. Detection of Subsurface Defects Using X-Ray Lateral Migration Radiography - A New Backscatter Imaging Technique

    SciTech Connect

    Edward T. Dugan; Alan M. Jacobs

    2003-02-10

    A new Compton X-ray backscatter imaging technique called lateral migration radiography (LMR) is applied to detecting a class of sub-surface defects in materials and structures of industrial importance. These include flaws and defects for which there is either no known method or an effective method for detection. Examples are delamination in layered composite structures, defects in deposited coatings on metal surfaces such as in aircraft jet engine components and geometrical structural/composition changes (e.g. due to corrosion) on the inside of shell-like components with only outside surface area access.Research efforts include: the construction of simulated flawed test objects on which experimental measurements are performed to establish LMR flaw detection capabilities; performance of Monte Carlo simulations of these measurements to assist in predicting optimum source-detector configurations and to help obtain a detailed understanding of the physics of lateral migration in small voids and how this impacts the resulting LMR image contrasts; the procurement of samples of materials of industrial importance with flaws and defects; the application of LMR to the detection of flaws and defects in these samples; the development of a multi-detector scanning system to provide for faster, more effective flaw detection; and a determination, for the types of samples examined, of the limits and capabilities of flaw detection using LMR.LMR imaging measurements on the machined samples showed that the optimum contrast in flaw-to-background signal intensity occurred at an X-ray energy of 75 kVp for the aluminum samples and at 35 kVp for the Delrin sample. Monte Carlo simulations and experimental measurements on the aluminum samples showed that LMR is capable of detecting defects down to the tens of microns range. Measurements on the aluminum samples also showed that LMR is capable of detecting relatively small composition variations; a 30 % difference in image intensity was

  13. Theoretical and experimental investigations of ferrofluids for guiding and detecting liquids in the subsurface. FY 1997 annual report

    SciTech Connect

    Moridis, G.J.; Borglin, S.E.; Oldenburg, C.M.; Becker, A.

    1998-03-01

    Ferrofluids are stable colloidal suspensions of magnetic particles in various carrier liquids with high saturation magnetizations, which can be manipulated in virtually any fashion, defying gravitational or viscous forces in response to external magnetic fields. In this report, the authors review the results of their investigation of the potential of ferrofluids (1) to accurately and effectively guide reactants (for in-situ treatment) or barrier liquids (low-viscosity permeation grouts) to contaminated target zones in the subsurface using electromagnetic forces, and (2) to trace the movement and position of liquids injected in the subsurface using geophysical methods. They investigate the use of ferrofluids to enhance the efficiency of in-situ treatment and waste containment through (a) accurate guidance and delivery of reagent liquids to the desired subsurface contamination targets and/or (b) effective sweeping of the contaminated zone as ferrofluids move from the application point to an attracting magnet/collection point. They also investigate exploiting the strong magnetic signature of ferrofluids to develop a method for monitoring of liquid movement and position during injection using electromagnetic methods. The authors demonstrated the ability to induce ferrofluid movement in response to a magnetic field, and measured the corresponding magnetopressure. They demonstrated the feasibility of using conventional magnetometry for detecting subsurface zones of various shapes containing ferrofluids for tracing liquids injected for remediation or barrier formation. Experiments involving spherical, cylindrical and horizontal slabs showed a very good agreement between predictions and measurements.

  14. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE (PCE) IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...

  15. Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water

    NASA Astrophysics Data System (ADS)

    Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.

    2012-12-01

    Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive

  16. Detection of Surface and Subsurface Cracks in Metallic and Non-Metallic Materials Using a Complementary Split-Ring Resonator

    PubMed Central

    Albishi, Ali; Ramahi, Omar M.

    2014-01-01

    Available microwave techniques for crack detection have some challenges, such as design complexity and working at a high frequency. These challenges make the sensing apparatus design complex and relatively very expensive. This paper presents a simple method for surface and subsurface crack detection in metallic and non-metallic materials based on complementary split-ring resonators (CSRRs). A CSRR sensor can be patterned on the ground plane of a microstrip line and fabricated using printed circuit board technology. Compared to available microwave techniques for sub-millimeter crack detection, the methods presented here show distinct advantages, such as high spatial resolution, high sensitivity and design simplicity. The response of the CSRR as a sensor for crack detection is studied and analysed numerically. Experimental validations are also presented. PMID:25325340

  17. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    NASA Astrophysics Data System (ADS)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi

  18. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes.

    PubMed

    Harry, Katherine J; Hallinan, Daniel T; Parkinson, Dilworth Y; MacDowell, Alastair A; Balsara, Nitash P

    2014-01-01

    Failure caused by dendrite growth in high-energy-density, rechargeable batteries with lithium metal anodes has prevented their widespread use in applications ranging from consumer electronics to electric vehicles. Efforts to solve the lithium dendrite problem have focused on preventing the growth of protrusions from the anode surface. Synchrotron hard X-ray microtomography experiments on symmetric lithium-polymer-lithium cells cycled at 90 °C show that during the early stage of dendrite development, the bulk of the dendritic structure lies within the electrode, underneath the polymer/electrode interface. Furthermore, we observed crystalline impurities, present in the uncycled lithium anodes, at the base of the subsurface dendritic structures. The portion of the dendrite protruding into the electrolyte increases on cycling until it spans the electrolyte thickness, causing a short circuit. Contrary to conventional wisdom, it seems that preventing dendrite formation in polymer electrolytes depends on inhibiting the formation of subsurface structures in the lithium electrode.

  19. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI).

    PubMed

    Ouyang, Ruizhuo; Bragg, Stefanie A; Chambers, James Q; Xue, Zi-Ling

    2012-04-13

    We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNP layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol-gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNP layer is then self-assembled on the surface of the sol-gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10-1200 ng L(-1) and a low detection limit of 2.9 ng L(-1). In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy.

  20. Application of an Orbital GPR Model to Detecting Martian Polar Subsurface Features

    NASA Technical Reports Server (NTRS)

    Xu, Y.; Cummer, S. A.; Farrell, W. M.

    2005-01-01

    There are numerous challenges in successfully implementing and interpreting planetary ground penetrating radar (GPR) measurements. Many are due to substantial uncertainties in the target ground parameters and the intervening medium (i.e., the ionosphere). These uncertainties generate a compelling need for meaningful quantitative simulation of the planetary GPR problem. An accurate numerical model would enable realistic numerical GPR simulations using parameter regimes much broader than are possible in laboratory or field experiments. Parameters such as source bandwidth and power, surface and subsurface features, and ionospheric profiles could be rapidly iterated to understand their impact on GPR performance and the reliable interpretation of GPR data.

  1. Subsurface faults detection based on magnetic anomalies investigation: A field example at Taba protectorate, South Sinai

    NASA Astrophysics Data System (ADS)

    Khalil, Mohamed H.

    2016-08-01

    Quantitative interpretation of the magnetic data particularly in a complex dissected structure necessitates using of filtering techniques. In Taba protectorate, Sinai synthesis of different filtering algorithms was carried out to distinct and verifies the subsurface structure and estimates the depth of the causative magnetic sources. In order to separate the shallow-seated structure, filters of the vertical derivatives (VDR), Butterworth high-pass (BWHP), analytic signal (AS) amplitude, and total horizontal derivative of the tilt derivative (TDR_THDR) were conducted. While, filters of the apparent susceptibility and Butterworth low-pass (BWLP) were conducted to identify the deep-seated structure. The depths of the geological contacts and faults were calculated by the 3D Euler deconvolution. Noteworthy, TDR_THDR was independent of geomagnetic inclination, significantly less susceptible to noise, and more sensitive to the details of the shallow superimposed structures. Whereas, the BWLP proved high resolution capabilities in attenuating the shorter wavelength of the near surface anomalies and emphasizing the longer wavelength derived from deeper causative structure. 3D Euler deconvolution (SI = 0) was quite amenable to estimate the depths of superimposed subsurface structure. The pattern, location, and trend of the deduced shallow and deep faults were conformed remarkably to the addressed fault system.

  2. Flow injection analysis of trace chromium (VI) in drinking water with a liquid waveguide capillary cell and spectrophotometric detection.

    PubMed

    Ma, Jian; Yuan, Dongxing; Byrne, Robert H

    2014-01-01

    Hexavalent chromium (Cr(VI)) is an acknowledged hazardous material in drinking waters. As such, effective monitoring and assessment of the risks posed by Cr(VI) are important analytical objectives for both human health and environmental science. However, because of the lack of highly sensitive, rapid, and simple procedures, a relatively limited number of studies have been carried out in this field. Here we report a simple and sensitive analytical procedure of flow injection analysis (FIA) for sub-nanomolar Cr(VI) in drinking water samples with a liquid core waveguide capillary cell (LWCC). The procedure is based on a highly selective reaction between 1, 5-diphenylcarbazide and Cr(VI) under acidic conditions. The optimized experimental parameters included reagent concentrations, injection volume, length of mixing coil, and flow rate. Measurements at 540 nm, and a 650-nm reference wavelength, produced a 0.12-nM detection limit. Relative standard deviations for 1, 2, and 10 nM samples were 5.6, 3.6, and 0.72 % (n = 9), and the analysis time was <2 min sample(-1). The effects of salinity and interfering ions, especially Fe(III), were evaluated. Using the FIA-LWCC method, different sources of bottled waters and tap waters were examined. The Cr(VI) concentrations of the bottled waters ranged from the detection limit to ∼20 nM, and tap waters collected from the same community supply had Cr(VI) concentration around 14 nM.

  3. Surface and subsurface damage detection in cement-based materials using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Ruan, T.; Poursaee, A.

    2016-04-01

    Cement-based materials are widely used in infrastructure facilities. However, often the degradation of structures leads to the failures earlier than designed service life. Thus, non-destructive testing techniques are urgently needed to evaluate the health information of the structures. In this paper, the implementation of Electrical Resistance Tomography (ERT) was investigated. This low cost, radiation free and easy to perform modality is based on measuring the electrical properties of the material under test and using that to evaluate the existence of defects in that material. It uses a set of boundary potentials and injected current to reconstruct the conductivity distribution. An automatic measurement system was developed and surface damages as well as subsurface damages on mortar specimens were investigated. The reconstructed images were capable to show the presence and the location of the damages.

  4. EM Task 13 -- Cone penetrometer for subsurface heavy metals detection. Semi-annual report, April 1--September 30, 1997

    SciTech Connect

    Grisanti, A.A.; Timpe, R.C.; Foster, H.J.; Eylands, K.E.; Crocker, C.R.

    1997-12-31

    Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd has become an area of concern for many industrial and government organizations. Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time-consuming and costly. Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils which allow cost-effective, rapid, in situ measurements. Laser induced breakdown spectroscopy (LIBS) has been used to successfully measure metals content in a variety of matrices including soil. Science and Engineering Associates (SEA) is developing a subsurface cone penetrometer (CPT) probe for heavy metal detection that employs LIBS. The LIBS/CPT unit is to be applied to in situ, real-time sampling and analysis of heavy metals in soil. The overall objectives of this project are to evaluate potential calibration techniques for the LIBS/CPT instrument and to provide a preliminary evaluation of the LIBS instrument calibration using samples obtained from the field.

  5. Subsurface eddies in the southern South China Sea detected from in-situ observation in October 2011

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Qiao, Fangli; Guo, Jingsong

    2014-05-01

    Two anticyclonic subsurface eddies (SSEs) are detected from the in-situ hydrography data of the southern South China Sea (SCS) during 15-25 October 2011. Both SSEs have the lens-shaped water bodies below the thermocline. Their maximum swirl speed appears at the depth of lens' core, which is also characterized by a dump in the T-S diagram. These eddies do not have an enclosed saline-water or warm-water body in its lens' core, which is different from those SSEs reported in other seas. These SSEs should be locally generated by the horizontal shear of the Southeast Vietnam Offshore Current. In the SSE generation site of the southern SCS, there is an upper-layer anticyclonic eddy (AE2) that is right above the SSE (SE2). After leaving its generation site, the eddy loses its energy source and starts to weaken. In this case, the eddy will decay quickly in the upper layer due to the restraint of the thermocline, and finally evolves into a pure subsurface eddy (i.e. SE4).

  6. Research, development, demonstration, testing, and evaluation characterization technology project: FY90 year-end report on subsurface detection methods

    SciTech Connect

    Sandness, G.A.; Stewart, T.L.

    1992-03-01

    Most of the site cleanup projects to be conducted at US Department of Energy (DOE) facilities will include subsurface investigations using geophysical sensors. When performed at an early state of a site characterization effort, they will help define site boundaries and waste distributions, provide guidance for the optimization of subsurface sampling plans, reduce the cost of site exploration tasks, and enhance the safety of personnel involved in sampling and excavation activities. In FY 89, researchers of Pacific Northwest Laboratory constructed a digital data acquisition system (DAS) to be used in geophysical surveys of hazardous waste burial sites. The DAS is essentially a specialized microcomputer that has been ruggedized to permit operation on a moving off-road vehicle. It was designed primarily to record and display ground-penetrating radar (GPR) data, but it is capable of simultaneously or separately recording data produced by other types of geophysical sensors. Our work in FY 90 focused primarily on improving certain hardware components of the DAS and on writing the software needed to process and display the recorded data on a personal computer (PC)-based data processing system. A secondary aspect of our work during the past year was constructed and testing a breadboard version of a time-domain metal detector. Metal detectors are commonly used in site characterization surveys to detect and map metallic wastes such as 55-gal drums, storage tanks, pipes, and cables. However, currently available instruments tend to be unstable, difficult to use, and generally unsuitable for quantitative site characterization measurements.

  7. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  8. Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules

    NASA Astrophysics Data System (ADS)

    Rodriguez, Gilberto A.; Lonai, John D.; Mernaugh, Raymond L.; Weiss, Sharon M.

    2014-08-01

    A porous silicon (PSi) Bloch surface wave (BSW) and Bloch sub-surface wave (BSSW) composite biosensor is designed and used for the size-selective detection of both small and large molecules. The BSW/BSSW structure consists of a periodic stack of high and low refractive index PSi layers and a reduced optical thickness surface layer that gives rise to a BSW with an evanescent tail that extends above the surface to enable the detection of large surface-bound molecules. Small molecules were detected in the sensor by the BSSW, which is a large electric field intensity spatially localized to a desired region of the Bragg mirror and is generated by the implementation of a step or gradient refractive index profile within the Bragg mirror. The step and gradient BSW/BSSW sensors are designed to maximize both resonance reflectance intensity and sensitivity to large molecules. Size-selective detection of large molecules including latex nanospheres and the M13KO7 bacteriophage as well as small chemical linker molecules is reported.

  9. In Situ Tracer method for establishing the presence and predicting the activity of heavy metal-reducing microbes in the subsurface. Final Report

    SciTech Connect

    Hatfield, K.

    2003-07-01

    Tracer method to establish presence and distribution of chromium reducing microbes. The primary objective of this research was to establish an in situ tracer method for detecting the presence. distribution. and activity of subsurface heavy metal-reducing microorganisms. Research focused on microbial systems responsible for the reduction of chromium and a suite of biotracers coupled to the reduction process. The tracer method developed may be used to characterize sites contaminated with chromium or expedite bioremediation: and although research focused on chromium. the method can be easily extended to other metals, organics, and radionuclides. This brief final report contains three major sections. The first identifies specific products of the research effort such as students supported and publications. The second section briefly presents major research findings, while the last section summarizes the overall research effort.

  10. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    NASA Astrophysics Data System (ADS)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    Our study aims at contributing to the quantification and characterization of chromium transport processes from host rocks and soil matrices to groundwater. We focus on dissolved hexavalent chromium detected in groundwaters of geological regions with ophiolitic rocks (ophiolites and serpentinites) inclusions due to its critical ecological impact. (Oze et al., 2004). Despite the large number of analyses on the occurrence of high concentrations of hazardous hexavalent chromium ions in natural waters, only few studies were performed with the objective of identifying and investigating the geochemical reactions which could occur in the natural system rock - groundwater - dissolved chromium (Fantoni et al., 2002, Stephen and James, 2004, Lelli et al., 2013). In this context, there is a need for integration of results obtained from diverse studies in various regions and settings to improve our knowledge repository. Our theoretical analyses are grounded and driven by practical scenarios detected in subsurface reservoirs exploited for civil and industrial use located in the Emilia-Romagna region (Italy). Available experimental datasets are complemented with data from other international regional-scale settings (Altay mountains region, Russia). Modeling of chromium transformation and migration particularly includes characterization of the multispecies geochemical system. A key aspect of our study is the analysis of the complex competitive sorption processes governing heavy metal evolution in groundwater. The results of the research allow assessing the critical qualitative features of the mechanisms of hexavalent chromium ion mobilization from host rocks and soils and the ensuing transformation and migration to groundwater under the influence of diverse environmental factors. The study is then complemented by the quantification of the main sources of uncertainty associated with prediction of heavy metal contamination levels in the groundwater system explored. Fantoni, D

  11. Chromium - blood test

    MedlinePlus

    Serum chromium ... This test may be done to diagnose chromium poisoning or deficiency. ... Serum chromium level normally is less than or equal to 1.4 micrograms/milliliter (mcg/mL). Normal value ranges ...

  12. Structured-illumination reflectance imaging for enhanced detection of subsurface tissue bruising in apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this research, a novel method of fresh bruise detection was developed using a structured illumination reflectance imaging (SIRI) system. The SIRI system projects sinusoidal patterns of illumination onto samples, and image demodulation is then used to recover depth-specific information through var...

  13. Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of CO2

    SciTech Connect

    Alonso, Jesus

    2016-01-01

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well, detecting multiple CO2 releases, in real time, at varying depths. Early CO2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.

  14. Subsurface detection of coral reefs in shallow waters using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Rodriguez-Diaz, Eladio; Jimenez-Rodriguez, Luis O.; Velez-Reyes, Miguel; Gilbes, Fernando; DiMarzio, Charles A.

    2003-09-01

    Hyperspectral Remote Sensing has the potential to be used as an effective coral monitoring system from either space or airborne sensors. The problems to be addressed in hyperspectral imagery of coastal waters are related to the medium, which presents high scattering and absorption, and the object to be detected. The object to be detected, in this case coral reefs or different types of ocean floor, has a weak signal as a consequence of its interaction with the medium. The retrieval of information about these targets requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and detection. This paper presents the development of algorithms that does not use labeled samples to detect coral reefs under coastal shallow waters. Synthetic data was generated to simulate data gathered using a high resolution imaging spectrometer (hyperspectral) sensor. A semi-analytic model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. Tikhonov method of regularization was used as a starting point in order to arrive at an inverse formulation that incorporates a priori information about the target. This expression will be used in an inversion process on a pixel by pixel basis to estimate the ocean floor signal. The a priori information is in the form of previously measured spectral signatures of objects of interest, such as sand, corals, and sea grass.

  15. A harmonic pulse testing method for leakage detection in deep subsurface storage formations

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Lu, Jiemin; Hovorka, Susan

    2015-06-01

    Detection of leakage in deep geologic storage formations (e.g., carbon sequestration sites) is a challenging problem. This study investigates an easy-to-implement frequency domain leakage detection technology based on harmonic pulse testing (HPT). Unlike conventional constant-rate pressure interference tests, HPT stimulates a reservoir using periodic injection rates. The fundamental principle underlying HPT-based leakage detection is that leakage modifies a storage system's frequency response function, thus providing clues of system malfunction. During operations, routine HPTs can be conducted at multiple pulsing frequencies to obtain experimental frequency response functions, using which the possible time-lapse changes are examined. In this work, a set of analytical frequency response solutions is derived for predicting system responses with and without leaks for single-phase flow systems. Sensitivity studies show that HPT can effectively reveal the presence of leaks. A search procedure is then prescribed for locating the actual leaks using amplitude and phase information obtained from HPT, and the resulting optimization problem is solved using the genetic algorithm. For multiphase flows, the applicability of HPT-based leakage detection procedure is exemplified numerically using a carbon sequestration problem. Results show that the detection procedure is applicable if the average reservoir conditions in the testing zone stay relatively constant during the tests, which is a working assumption under many other interpretation methods for pressure interference tests. HPT is a cost-effective tool that only requires periodic modification of the nominal injection rate. Thus it can be incorporated into existing monitoring plans with little additional investment.

  16. Detection of above-ground and subsurface unexploded ordnance using ultrawideband (UWB) synthetic aperture radar (SAR) and electromagnetic modeling tools

    NASA Astrophysics Data System (ADS)

    Sullivan, Anders J.; Damarla, Thyagaraju; Geng, Norbert; Dong, Yanting; Carin, Lawrence

    2000-08-01

    Recent development of wideband, high-resolution SAR technology has shown that detecting buried targets over large open areas may be possible. Ground clutter and soil type are tow limiting factor influencing the practicality of using wideband SAR for wide-area target detection. In particular, the presence of strong ground clutter because of the unevenness, roughness or inconsistency of the soil itself may limit the radar's capability to resolve the target from the clutter. Likewise, the soil material properties can also play a major tole. The incident wave may experience significant attenuation as the wave penetrates lossy soil. In an attempt to more fully characterize this problem, fully polarimetric ultra-wideband measurements have been taken by the US Army Research Laboratory's SAR at test sites in Yuma, Arizona, and Elgin Air Force Base, Florida. SAR images have been generated for above-ground and subsurface unexploded ordnance targets, including 155-mm shells. Additionally, a full-wave method of moments (MoM) model has been developed for the electromagnetic scattering from these same targets, accounting for the lossy nature and frequency dependency of the various soils. An approximate model based on phys9cal optics (PO) has also been developed. The efficacy of using PO in lieu of the MoM to generate the electromagnetic scattering data is examined. We compare SAR images from the measured data with images produced by the MoM and PO simulations by using a standard back-projection technique.

  17. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  18. On the use of log-gabor features for subsurface object detection using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Harris, Samuel; Ho, K. C.; Zare, Alina

    2016-05-01

    regions with significant amount of metal debris. The challenge for the handheld GPR is to reduce the false alarm rate and limit the undesirable human operator effect. This paper proposes the use of log-Gabor features to improve the detection performance. In particular, we apply 36 log-Gabor filters to the B-scan of the GPR data in the time domain for the purpose to extract the edge behaviors of a prescreener alarm. The 36 log-Gabor filters cover the entire frequency plane with different bandwidths and orientations. The energy of each filter output forms an element of the feature vector and an SVM is trained to perform target vs non-target classification. Experimental results using the experimental hand held demonstrator data collected at a government site supports the increase in detection performance by using the log-Gabor features.

  19. Sub-surface single ion detection in diamond: A path for deterministic color center creation

    NASA Astrophysics Data System (ADS)

    Abraham, John; Aguirre, Brandon; Pacheco, Jose; Camacho, Ryan; Bielejec, Edward; Sandia National Laboratories Team

    Deterministic single color center creation remains a critical milestone for the integrated use of diamond color centers. It depends on three components: focused ion beam implantation to control the location, yield improvement to control the activation, and single ion implantation to control the number of implanted ions. A surface electrode detector has been fabricated on diamond where the electron hole pairs generated during ion implantation are used as the detection signal. Results will be presented demonstrating single ion detection. The detection efficiency of the device will be described as a function of implant energy and device geometry. It is anticipated that the controlled introduction of single dopant atoms in diamond will provide a basis for deterministic single localized color centers. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Hyperspectral Detection of a Subsurface CO2 Leak in the Presence of Water Stressed Vegetation

    PubMed Central

    Bellante, Gabriel J.; Powell, Scott L.; Lawrence, Rick L.; Repasky, Kevin S.; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool. PMID:25330232

  1. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    PubMed

    Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  2. Subsurface fracture mapping using microearthquakes detected during primary oil production, Clinton County, Kentucky

    SciTech Connect

    Rutledge, J.T.; Phillips, W.S.; Roff, A.; Albright, J.N.; Hamilton-Smith, T.; Jones, S.K.; Kimmich, K.C.

    1994-09-01

    Downhole microseismic monitoring tests were conducted in Clinton County, Kentucky to determine if microearthquakes associated with primary production could be detected on a scale of interwell distances ({>=}400 ft) and to determine if such microearthquakes could be used to map reservoir fractures. The oil reservoirs occur in shallow (750 to 2400 ft), low-porosity (< 2%), carbonate rocks of Ordovician age. The reservoir system controlling the occurrence and flow of off and its relationship to the local and regional geology is poorly understood. Discrete reservoir microearthquakes were detected at an average rate of 11 events per week and at distances up to 4000 ft in an initial monitoring test using a single, triaxial downhole geophone receiver. In a second monitoring test 2 downhole, triaxial geophone tools were placed in a monitor well 800 ft from a new, high-volume oil well. Over a 6-month period of continuous monitoring 165 discrete, high-quality, microearthquake waveforms were recorded. Approximately 11,000 barrels of fluid were extracted in the monitor area during the 6-month period. Presently, it is unknown whether or not the microseismicity is induced by production. Hypocenters computed for 121 events delineate 4 extensive (up to 0.15 square-miles), low-angle, planar features striking approximately N65{degrees}E within the Ordovician reservoir depth interval. A composite fault-plane solution indicates a thrust focal mechanism. Such thrust structures are not observed in the surface-exposed Mississippian section, which lies above and is separated from the Ordovician section by a major unconformity of Devonian age. General relationships between the fractures revealed by the microseismicity and oil occurrence have yet to be demonstrated in the study area. The observed microseismicity occurs away from production wells, and to date, no new wells have been drilled into the mapped fracture along which shear displacement was detected.

  3. Detection of surface and subsurface conditions in permafrost area after wildfire by using satellite images, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Harada, K.; Narita, K.; Saito, K.; Iwahana, G.; Sawada, Y.; Fukuda, M.

    2013-12-01

    In 1971 and 2002, large tundra fires burned a wide area that is underlain by discontinuous permafrost near the Kougarok River on the Seward Peninsula in western Alaska. Both fires destroyed the vegetation and altered the ground surface thermal conditions. The objective of this study is to understand the characteristics of the post-fire variations in the distribution and condition of the permafrost and of the changes attributed to the wildfire in the thermal and water conditions in the active layer. Especially, we tried to detect thaw depth, surface and subsurface conditions by using satellite images. Summer field observations were conducted at both burned and unburned sites in the area beginning in 2005. The average thaw depth at the burned sites in 2012 was 30% deeper than the depths at the unburned sites. The differences in thaw depth have decreased over time. Boring surveys up to a depth of 2 m conducted in 2012 confirm the presence of massive ice at both sites, which implies the possibility of thermokarst development caused by the thawing of the permafrost after wildfires. The visible satellite image for the burned site detected white-colored areas, corresponding to Clamagrostis canadensis growing areas, surrounded by green-colored areas. The thaw depth at the white-colored areas was deeper by 60% than at the surrounding burned areas. The surface roughness values were also high at these white-colored areas. There was a significant difference in the normalized difference vegetation index (NDVI) between the white-colored areas and the other areas. Thus, satellite images of areas after wildfires may help detect low NDVI areas that have a deeper thaw depth with the possibility of thermokarst development.

  4. Self-Nulling Eddy Current Probe for Surface and Subsurface Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Fulton, J. P.; Nath, S.; Namkung, M.; Simpson, J. W.

    1994-01-01

    An eddy current probe which provides a null-signal in the presence of unflawed material without the need for any balancing circuitry has been developed at NASA Langley Research Center. Such a unique capability of the probe reduces set-up time, eliminates tester configuration errors, and decreases instrumentation requirements. The probe is highly sensitive to surface breaking fatigue cracks, and shows excellent resolution for the measurement of material thickness, including material loss due to corrosion damage. The presence of flaws in the material under test causes an increase in the extremely stable and reproducible output voltage of the probe. The design of the probe and some examples illustrating its flaw detection capabilities are presented.

  5. Discriminative detection and enumeration of microbial life in marine subsurface sediments.

    PubMed

    Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio

    2009-05-01

    Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology.

  6. Discriminative detection and enumeration of microbial life in marine subsurface sediments.

    PubMed

    Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio

    2009-05-01

    Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology. PMID:19212428

  7. A comparative study between deflectometry and shearography for detection of subsurface defects

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Burke, Jan; Bergmann, Ralf B.

    2014-07-01

    Nondestructive testing of objects is the basis for quality control in a production line. There exists a wide range of optical and tactile methods for the detection of surface defects. For hidden defects (below the surface) different methods like Xray or ultrasound are state of the art; also, optical methods like thermography and interferometry can be used in combination with a load. This load can be mechanical, electrical or thermal and is used to produce a measurable signal (deviation of the surface, thermal signature) on the surface. Typically, the surface or the surface gradient of a specimen in a loaded and an unloaded state is measured and the two results are compared afterwards or in real time. The evaluation of shape differences is easier than measuring absolute shapes because systematic errors (e.g. calibration) cancel themselves out and the resolution mostly depends on the measurement system's sensitivity. In this paper we give an overview of the different parameters influencing the successful implementation of optical nondestructive testing (ONdT) methods. In a second step, we compare shearography and deflectometry, identify relevant parameters and show restrictions of both methods with regard to the systems used. We present measurements with different methods and show how these results can be compared. We discuss the feasibility of both methods and the applicability of the systems used in a production line with respect to parameters concerning the quality control of produced goods.

  8. Airborne imaging lidar, detection and classification of surface and subsurface objects in a marine environment

    SciTech Connect

    Cianciotto, F.T.P.

    1996-11-01

    The current problem of imaging objects located within a body of water is overcome by the use of a Gated Imaging Lidar System. Due to variation of suspended particulate matter within a body of water, normal visible video reconnaissance has proven to be highly unreliable. By using nanosecond short pulsed, low repetition rate blue-green laser signals that are exclusively tuned for specific water conditions, Lidar systems are capable of reproducing clear images from oceanic surface to significant depths. One of the major advantages of gated Lidar is that back scatter from layers above and below the region to be searched is basically reduced to zero. This discrimination in layer searching greatly increase the signal to noise ratio of the system, substantially increasing the likelihood of target recognition. Imaging Lidar systems have been successfully used for numerous military applications, studying of marine life forms, and oil spill detection and classification. Gated imaging Lidar systems are light weight with low power consumption and can be operated by personnel with minimal instruction. 6 refs., 5 figs., 1 tab.

  9. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  10. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-11-16

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  11. A study of P-band synthetic aperture radar applicability and performance for Mars exploration: Imaging subsurface geology and detecting shallow moisture

    NASA Astrophysics Data System (ADS)

    Paillou, Philippe; Lasne, Yannick; Heggy, Essam; Malézieux, Jean-Marie; Ruffié, Gilles

    2006-04-01

    Over the past decade, orbital images of the Martian surface revealed key evidence about the history of the planet environment (craters, faults, paleo-lakes, and rivers), partially hidden under a widespread layer of aeolian deposits. Furthermore, several recent observations and studies support the hypothesis that water could be found in the shallow subsurface of Mars. Low-frequency synthetic aperture radar (SAR) has demonstrated its subsurface imaging capabilities on Earth, especially in arid regions. While SAR potentials for Mars exploration have already been widely discussed, we present here results of a theoretical and parametric study, based on the experience we gained from terrestrial surveys on Mars analog test sites, which evaluates the capabilities of a P-band (430 MHz) SAR for Mars exploration for both shallow subsurface geology mapping and moisture detection. We suggest that a P-band polarimetric SAR can probe the first meters of the Martian subsurface to reveal the dust-covered geology and to monitor moisture changes over large scales.

  12. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration

    NASA Astrophysics Data System (ADS)

    Herlihy, David M.; Waegele, Matthias M.; Chen, Xihan; Pemmaraju, C. D.; Prendergast, David; Cuk, Tanja

    2016-06-01

    Although the water oxidation cycle involves the critical step of O-O bond formation, the transition metal oxide radical thought to be the catalytic intermediate for this step has eluded direct observation. The radical represents the transformation of charge into a nascent catalytic intermediate, which lacks a newly formed bond and is therefore inherently difficult to detect. Here, using theoretical calculations and ultrafast in situ infrared spectroscopy of photocatalysis at an n-SrTiO3/aqueous interface, we reveal a subsurface vibration of the oxygen directly below, and uniquely generated by, the oxyl radical (Ti-O•). Intriguingly, this interfacial Ti-O stretch vibration, once decoupled from the lattice, couples to reactant dynamics (water librations). These experiments demonstrate subsurface vibrations and their coupling to solvent and electron dynamics to detect nascent catalytic intermediates at the solid-liquid interface at the molecular level. One can envision using the subsurface vibrations and their coupling across the interface to track and control catalysis dynamically.

  13. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration.

    PubMed

    Herlihy, David M; Waegele, Matthias M; Chen, Xihan; Pemmaraju, C D; Prendergast, David; Cuk, Tanja

    2016-06-01

    Although the water oxidation cycle involves the critical step of O-O bond formation, the transition metal oxide radical thought to be the catalytic intermediate for this step has eluded direct observation. The radical represents the transformation of charge into a nascent catalytic intermediate, which lacks a newly formed bond and is therefore inherently difficult to detect. Here, using theoretical calculations and ultrafast in situ infrared spectroscopy of photocatalysis at an n-SrTiO3/aqueous interface, we reveal a subsurface vibration of the oxygen directly below, and uniquely generated by, the oxyl radical (Ti-O(•)). Intriguingly, this interfacial Ti-O stretch vibration, once decoupled from the lattice, couples to reactant dynamics (water librations). These experiments demonstrate subsurface vibrations and their coupling to solvent and electron dynamics to detect nascent catalytic intermediates at the solid-liquid interface at the molecular level. One can envision using the subsurface vibrations and their coupling across the interface to track and control catalysis dynamically. PMID:27219698

  14. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    SciTech Connect

    Burningham, J.S.

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  15. Advanced Algorithms and High-Performance Testbed for Large-Scale Site Characterization and Subsurface Target Detecting Using Airborne Ground Penetrating SAR

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1997-01-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.

  16. Chromium in diet

    MedlinePlus

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  17. Geophysical imaging of near subsurface layers to detect fault and fractured zones in the Tournemire Experimental Platform, France.

    NASA Astrophysics Data System (ADS)

    Nhu Ba, Elise, Vi; Noble, Mark; Gélis, Céline; Gesret, Alexandrine; Cabrera, Justo

    2013-04-01

    could either be detected in the upper limestone formation because of the acquisition geometry. In order to better image the clay-rock and upper limestone layers, IRSN, Mines ParisTech and UPPA conducted large-scale 2D and 3D very high-resolution seismic surveys in 2010 and 2011 from the surface in the framework of the GNR TRASSE. We analyze this new dataset with the first arrival traveltime tomography method in order to assess its potential to detect fault and fracture zones in near subsurface layers. For this purpose, we develop a new fast inversion algorithm that allows introducing a priori information and choosing a specific model parameterization. We validate our approach based on the Simultaneous Iterative Reconstruction Technique with synthetic data and present the first results of the new real dataset processing. We finally compare these results to a 2D high-resolution electrical resistivity profile acquired at the same location. These electrical resistivity data could also be considered as some a priori information in our inversion scheme.

  18. Processes affecting the remediation of chromium-contaminated sites.

    PubMed Central

    Palmer, C D; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitation/dissolution reactions control the transformation and mobility of chromium. The reduction of CrVI to CrIII can occur in the presence of ferrous iron in solution or in mineral phases, reduced sulfur compounds, or soil organic matter. At neutral to alkaline pH, the CrIII precipitates as amorphous hydroxides or forms complexes with organic matter. CrIII is oxidized by manganese dioxide, a common mineral found in many soils. Solid-phase precipitates of hexavalent chromium such as barium chromate can serve either as sources or sinks for CrVI. Adsorption of CrVI in soils increases with decreasing chromium concentration, making it more difficult to remove the chromium as the concentration decreases during pump-and-treat remediation. Knowledge of these chemical and physical processes is important in developing and selecting effective, cost-efficient remediation designs for chromium-contaminated sites. PMID:1935849

  19. Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As

    SciTech Connect

    Paggel, J.J.; Hasselblatt, M.; Horn, K.

    1997-04-01

    The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted in terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.

  20. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    SciTech Connect

    Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Fessenden, Julianna E.; Rahn, Thom A.; Amonette, James E.; Barr, Jon L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie S.; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

    2010-03-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U. S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  1. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    SciTech Connect

    Spangler, L.H.; Dobeck, L.M.; Nehrir, A.; Humphries, S.; Barr, J.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Repasky, K.S.; Lewicki, J.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, T.; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.T.; Wielopolski, L.; Oldenburg, C.M.

    2009-10-20

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  2. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    SciTech Connect

    Spangler, L.H.; Wielopolski, L.; Dobeck, L. M.; Repasky, K. S.; Nehrir, A. R.; Humphries, S. D.; Barr, J. L.; Keith, C. J.; Shaw, J. A.; Rouse, J. H.; Cunningham, A. B.; Benson, S. M.; Oldenburg, C. M.; Lewicki, J. L.; Wells, A. W.; Diehl, J. R.; Strazisar, B. R.; Fessenden, J. E.; Rahn, T. A.; Amonette, J. E.; Barr, J. L.; Pickles, W. L.; Jacobson, J. D.; Silver, E. A.; Male, E. J.; Rauch, H. W.; Gullickson, K. S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.

    2010-03-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO{sub 2} transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO{sub 2} release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO{sub 2} transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO{sub 2} from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO{sub 2} through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  3. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    USGS Publications Warehouse

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2010-01-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented. ?? 2009 The Author(s).

  4. Advanced algorithms and high-performance testbed for large-scale site characterization and subsurface target detection using airborne ground-penetrating SAR

    NASA Astrophysics Data System (ADS)

    Fijany, Amir; Collier, James B.; Citak, Ari

    1999-08-01

    A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, JPL, Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field, in Colorado, by using SRI airborne, ground penetrating, SAR. The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance testbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and maximum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accuracy UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data. In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma Proving Ground, AZ, acquired by SRI SAR.

  5. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can

  6. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    PubMed

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.

  7. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    PubMed

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth. PMID:26414525

  8. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Liu, Hongwu; Lan, Caifeng; Fu, Qiangqiang; Huang, Caihong; Luo, Zhi; Jiang, Tianjiu; Tang, Yong

    2014-12-01

    We report a simple and ultra-sensitive surface enhanced Raman scattering (SERS) strip sensor based on silver nanoparticles (AgNPs) and lateral flow immunoassays (LFIAs). LFIAs are inexpensive, simple, portable and robust, thus making them commonplace in medicine, agriculture and food safety. However, their applications are limited due to the low signal intensity of the color-formation reaction based on the label accumulation. SERS is a powerful molecular spectroscopy technique for ultra-detection, which is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when the molecules are illuminated and the surface plasmons are excited. Because of the rapidity and robustness of LFIAs and the high sensitivity of SERS, we introduce SERS into LFIAs (SERS-LFIA). Our SERS-LFIA demonstrates fast, excellent performance and is suitable for the semiquantitative examination of ultratrace analytes (Cr3+), with the limit of the detection (LOD) as low as 10-5 ng mL-1, which is 105-fold more highly sensitive than those previously used to detect Cr3+ within 15 min.

  9. SUMMARY CONCLUSIONS FOR THE PILOT IN-SITU CHROMIUM REDUCTION TEST AT RIVERBANK ARMY AMMUNITIONS PLANT

    SciTech Connect

    Ridley, M

    2007-04-25

    A treatability study was conducted at Riverbank Army Ammunition Plant's (RBAAP) Site 17, to evaluate the effectiveness of a permeable reactive barrier (PRB) for the treatment of hexavalent chromium (Cr{sup 6+}). The chromium contamination at Site 17 is hydrologically isolated and unsuitable for standard extraction and treatment (pump and treat). The majority of the chromium contamination at Site 17 is trapped within the fine grain sediments of a clay/slit zone (45 to 63). The PRB was established above and adjacent to the contaminated zone at Site 17 to reduce the hexavalent chromium as it leaches out of the contaminated clay/silt zone separating the A zone from the A zone. Site 17 and the monitoring network are described in the In-Situ Chromium Reduction Treatability Study Work Plan (CH2MHILL, January 2004). The PRB was created by reducing naturally occurring Fe{sup 3+} to Fe{sup 2+} with the injection of a buffered sodium dithionite solution into subsurface chromium source area. The Cr{sup 6+} leaching out of the contaminated clay/silt zone and migrating through the PRB is reduced by Fe{sup 2+} to Cr{sup 3+} and immobilized (Amonette, et al., 1994). The sodium dithionite will also reduce accessible Cr{sup 6+}, however the long-term reductant is the Fe{sup 2+}. Bench scale tests (Appendix A) were conducted to assess the quantity and availability of the naturally occurring iron at Site 17, the ability of the sodium dithionite to reduce the hexavalent chromium and Fe within the sediments, and the by-products produced during the treatment. Appendix A, provides a detailed description of the laboratory treatability tests, and provides background information on the technologies considered as possible treatment options for Site 17. Following the sodium dithionite treatment, groundwater/treatment solution was extracted to remove treatment by-products (sulfate, manganese, and iron). The following sections briefly discuss the current treatment status, future recommendations

  10. Observational Approach to Chromium Site Remediation - 13266

    SciTech Connect

    Scott Myers, R.

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational

  11. COUPLED IRON CORROSION AND CHROMATE REDUCTION: MECHANISMS FOR SUBSURFACE REMEDIATION

    EPA Science Inventory

    The reduction of chromium from the Cr(VI) to the Cr- (Ill) state by the presence of elemental, or zero-oxidation-state, iron metal was studied to evaluate the feasibility of such a process for subsurface chromate remediation. Reactions were studied in systems of natural aquifer m...

  12. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  13. Sodium sulfur container with chromium/chromium oxide coating

    DOEpatents

    Ludwig, Frank A.; Higley, Lin R.

    1981-01-01

    A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

  14. Outline of occupational chromium poisoning in China.

    PubMed

    Yang, Yuan; Liu, Hong; Xiang, Xian-hong; Liu, Fu-you

    2013-06-01

    The present study analyzed the feature of occupational chromium poisoning in China since the 1980s. The collected data were acquired from 18 previous surveys of chromium poisoning in 14 cities of China. The method of risk assessment was applied to calculate the relative risk and 95% CI, p < 0.05 was considered as a significant risk. The results showed that nasal disease was the most common sign of occupational chromium poisoning, and the prevalence rate of nasal disease was 17.83% in total population of 6,998. Further, the risk analysis showed that occupational chromium poisoning led to an increased risk of lung or liver cancer in male workers due to the definite carcinogenicity of hexavalent chromium. Significantly, an increased risk of spontaneous or threatened abortion was also found in female workers. In conclusion, these studies suggest that early detection of impaired reproductive function or impaired lung or liver function in female or male workers is essential for controlling occupational chromium poisoning in China. PMID:23604023

  15. Chromium carcinogenicity: California strategies.

    PubMed

    Alexeeff, G V; Satin, K; Painter, P; Zeise, L; Popejoy, C; Murchison, G

    1989-10-01

    Hexavalent chromium was identified by California as a toxic air contaminant (TAC) in January 1986. The California Department of Health Services (CDHS) concurred with the findings of the International Agency for Research on Cancer that there is sufficient evidence to demonstrate the carcinogenicity of chromium in both animals and humans. CDHS did not find any compelling evidence demonstrating the existence of a threshold with respect to chromium carcinogenesis. Experimental data was judged inadequate to assess potential human reproductive risks from ambient exposures. Other health effects were not expected to occur at ambient levels. The theoretically increased lifetime carcinogenic risk from a continuous lifetime exposure to hexavalent chromium fell within the range 12-146 cancer cases per nanogram hexavalent chromium per cubic meter of air per million people exposed, depending on the potency estimate used. The primary sources found to contribute significantly to the risk of exposure were chrome platers, chromic acid anodizing facilities and cooling towers utilizing hexavalent chromium as a corrosion inhibitor. Evaluation of genotoxicity data, animal studies and epidemiological studies indicates that further consideration should be given to the potential carcinogenicity of hexavalent chromium via the oral route.

  16. The carcinogenicity of chromium

    PubMed Central

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Present evidence indicates that the trivalent chromium compounds do not cause cancer although high concentrations in some in vitro systems have shown genetic toxicity. Hexavalent chromium compounds cause cancer in humans, in experimental animals and exert genetic toxicity in bacteria and in mammalian cells in vitro. Epidemiological evidence and animal experiments indicate that the slightly soluble hexavalent salts are the most potent carcinogens, but proper identification and characterization of exposure patterns in epidemiological work are lacking. Workers also tend to have mixed exposures. Soluble and slightly soluble salts are equally potent genotoxic agents in vitro. Further work for establishing dose estimates for risk evaluation in epidemiological work is important. In vitro systems should be applied for further identification of the mechanism of the carcinogenic effects, and animal experiments are urgent for comparison of the carcinogenic potency of the different hexavalent salts. Hexavalent chromium salts must be regarded as established carcinogens, and proper action should be taken in all industries with regard to such exposure. At present the carcinogenic risk to the general population caused by chromium compounds seems to be negligible, chromium in cigarettes, however, is an uncertainty in this respect. The amount of chromium and the type of chromium compounds inhaled from cigarettes is not known. PMID:7023928

  17. Analysis of polarimetric terahertz imaging for non-destructive detection of subsurface defects in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Martin, Robert Warren

    During the manufacture of wind turbine blades, internal defects can form which negatively affect their structural integrity and can lead to premature failure. These defects are often not detected before the final installation of the blades onto wind turbines in the field. The purpose of this research was to investigate the advantages of using fully-polarimetric inverse synthetic aperture radar (ISAR) terahertz imaging techniques for scanning the interior structure of the wind turbine blades in order to detect and identify any defects in the blade's internal structure before the blade leaves the manufacturer. Additionally, the research has investigated the use of the Euler parameter polarimetric transformation in improving defect detection, and increasing understanding of the scattering properties of such defects. Use of an image compositing algorithm and of the Euler parameters was found to enhance defect detection.

  18. Subsurface defect detection in first layer of pavement structure and reinforced civil engineering structure by FRP bonding using active infrared thermography

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Ibos, Laurent

    2010-05-01

    samples in laboratory. In parallel numerical simulations have been used to generate a set of time sequence of thermal maps for simulated samples with and without subsurface defect. Using this set of experimental and simulated data different approaches (thermal contrast, FFT analysis, polynomial interpolation, singular value decomposition…) for defect location have been studied and compared. Defect depth retrieval was also studied on such data using different thermal model coupled to a direct or an inverse approach. Trials were conducted both with an uncooled and cooled infrared camera with different measurement performances. Results obtained will be discussed and analysed in the paper we plan to present. Finally, combining numerical simulations and experiments allows us discussing on the sensitivity influence of the infrared camera used to detect subsurface defects.

  19. Glutamine-containing “turn-on” fluorescence sensor for the highly sensitive and selective detection of chromium (III) ion in water

    NASA Astrophysics Data System (ADS)

    Zhao, Meili; Ma, Liguo; Zhang, Min; Cao, Weiguang; Yang, Liting; Ma, Li-Jun

    2013-12-01

    In this study, we reported a new fluorescence sensor for chromium (III) ion, dansyl-L-glutamine (1). The sensor displayed a unique selective fluorescence “turn-on” response to Cr3+ over other common metal ions in water. Notably, 1 still showed a ratiometric response to Cr3+ in UV-vis absorption spectra. The binding mechanism of 1 to Cr3+ was further clarified by using NMR and ESI-MS spectra. The experiment results indicated that the dual-responses of 1 to Cr3+ should attribute to the coordination of deprotonated sulfonamide group with Cr3+ and the protonation of the dimethylamino group due to the coordination of Cr3+ for 1. In addition, two chloride ions also coordinated to the complex of sensor-chromium (III) ion, which further strengthened the conformation of 1-Cr3+.

  20. Image reconstruction and subsurface detection by the application of Tikhonov regularization to inverse problems in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Jiminez-Rodriguez, Luis O.; Rodriguez-Diaz, Eladio; Velez-Reyes, Miguel; DiMarzio, Charles A.

    2003-05-01

    Hyperspectral Remote Sensing has the potential to be used as an effective coral monitoring system from space. The problems to be addressed in hyperspectral imagery of coastal waters are related to the medium, clutter, and the object to be detected. In coastal waters the variability due to the interaction between the coast and the sea can bring significant disparity in the optical properties of the water column and the sea bottom. In terms of the medium, there is high scattering and absorption. Related to clutter we have the ocean floor, dissolved salt and gases, and dissolved organic matter. The object to be detected, in this case the coral reefs, has a weak signal, with temporal and spatial variation. In real scenarios the absorption and backscattering coefficients have spatial variation due to different sources of variability (river discharge, different depths of shallow waters, water currents) and temporal fluctuations. The retrieval of information about an object beneath some medium with high scattering and absorption properties requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and detection. This paper presents the development of algorithms for retrieving information and its application to the recognition and classification of coral reefs under water with particles that provide high absorption and scattering. The data was gathered using a high resolution imaging spectrometer (hyperspectral) sensor. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo, ρ, of the ocean floor using a priori information. The a priori information is in the form of measured spectral signatures of objects of interest, such as sand, corals, and sea grass.

  1. Surface wave attenuation in the shallow subsurface from multichannel-multishot seismic data: a new approach for detecting fractures and lithological discontinuities

    NASA Astrophysics Data System (ADS)

    Ikeda, Tatsunori; Tsuji, Takeshi

    2016-07-01

    Surface wave analysis generally neglects amplitude information, instead using phase information to delineate near-surface S-wave velocity structures. To effectively characterize subsurface heterogeneities from amplitude information, we propose a method of estimating lateral variation of attenuation coefficients of surface waves from multichannel-multishot (multifold) seismic data. We extend the concept of the common midpoint cross-correlation method, used for phase velocity estimation, to the analysis of attenuation coefficients. Our numerical experiments demonstrated that when used together, attenuation coefficients and phase velocities could characterize a lithological boundary as well as fracture zone. We applied the proposed method to multifold seismic reflection data acquired in Shikoku Island, Japan. We clearly observed abrupt changes in lateral variation of estimated attenuation coefficients around fault locations associated with a lithological boundary and with well-developed fractures, whereas phase velocity results could detect only the lithological boundary. Our study demonstrated that simultaneous interpretation of attenuation coefficients and phase velocities has the potential to distinguish localized fractures from lithological boundaries.

  2. Mineral of the month: chromium

    USGS Publications Warehouse

    Papp, John F.

    2005-01-01

    Chromium is one of the most indispensable industrial metals and it plays an essential but hidden role in daily life. Chromium is used in many consumer and building products, and it contributes to a clean, efficient and healthy environment.

  3. The analytical biochemistry of chromium.

    PubMed Central

    Katz, S A

    1991-01-01

    The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matrices while preserving its oxidation state. Typical recoveries are 90 to 105% in samples spiked with both trivalent and hexavalent chromium. Determination of hexavalent chromium after extraction with sodium carbonate-sodium hydroxide solution, coupled with the determination of total chromium after nitric acid-hydrogen peroxide digestion, has been applied to the evaluation of chromium speciation in airborne particulates, sludges, and biological tissues. PMID:1935842

  4. Importance of Mobile Genetic Elements and Conjugal Gene Transfer for Subsurface Microbial Community Adaptation to Biotransformation of Metals

    SciTech Connect

    Sorensen, Soren J.

    2005-06-01

    The overall goal of this project is to investigate the effect of mobile genetic elements and conjugal gene transfer on subsurface microbial community adaptation to mercury and chromium stress and biotransformation. Our studies focus on the interaction between the fate of these metals in the subsurface and the microbial community structure and activity.

  5. In Vitro Selection of Chromium-Dependent DNAzymes for Sensing Chromium(III) and Chromium(VI).

    PubMed

    Zhou, Wenhu; Vazin, Mahsa; Yu, Tianmeng; Ding, Jinsong; Liu, Juewen

    2016-07-01

    Chromium is a very important analyte for environmental monitoring, and developing biosensors for chromium is a long-standing analytical challenge. In this work, in vitro selection of RNA-cleaving DNAzymes was carried out in the presence of Cr(3+) . The most active DNAzyme turned out to be the previously reported lanthanide-dependent Ce13d DNAzyme. Although the Ce13d activity was about 150-fold lower with Cr(3+) than that with lanthanides, the activity of lanthanides and other competing metals was masked by using a phosphate buffer; this left Cr(3+) as the only metal that could activate Ce13d. With 100 μm Cr(3+) , the cleavage rate is 1.6 h(-1) at pH 6. By using a molecular beacon design, Cr(3+) was measured with a detection limit of 70 nm, which was significantly lower than the United States Environmental Protection Agency (EPA) limit (11 μm). Cr(4+) was measured after reduction by NaBH4 to Cr(3+) , and it could be sensed with a similar detection limit of 140 nm Cr(4+) ; this value was lower than the EPA limit of 300 nm. This sensor was tested for chromium speciation analysis in a real sample, and the results supported its application for environmental monitoring. At the same time, it has enhanced our understanding of the interactions between chromium and DNA. PMID:27249536

  6. In Vitro Selection of Chromium-Dependent DNAzymes for Sensing Chromium(III) and Chromium(VI).

    PubMed

    Zhou, Wenhu; Vazin, Mahsa; Yu, Tianmeng; Ding, Jinsong; Liu, Juewen

    2016-07-01

    Chromium is a very important analyte for environmental monitoring, and developing biosensors for chromium is a long-standing analytical challenge. In this work, in vitro selection of RNA-cleaving DNAzymes was carried out in the presence of Cr(3+) . The most active DNAzyme turned out to be the previously reported lanthanide-dependent Ce13d DNAzyme. Although the Ce13d activity was about 150-fold lower with Cr(3+) than that with lanthanides, the activity of lanthanides and other competing metals was masked by using a phosphate buffer; this left Cr(3+) as the only metal that could activate Ce13d. With 100 μm Cr(3+) , the cleavage rate is 1.6 h(-1) at pH 6. By using a molecular beacon design, Cr(3+) was measured with a detection limit of 70 nm, which was significantly lower than the United States Environmental Protection Agency (EPA) limit (11 μm). Cr(4+) was measured after reduction by NaBH4 to Cr(3+) , and it could be sensed with a similar detection limit of 140 nm Cr(4+) ; this value was lower than the EPA limit of 300 nm. This sensor was tested for chromium speciation analysis in a real sample, and the results supported its application for environmental monitoring. At the same time, it has enhanced our understanding of the interactions between chromium and DNA.

  7. Microbial exudate promoted dissolution and transformation of chromium containing minerals

    NASA Astrophysics Data System (ADS)

    Saad, E. M.; Sun, J.; Tang, Y.

    2015-12-01

    Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.

  8. Chromium(VI)

    Integrated Risk Information System (IRIS)

    Chromium ( VI ) ; CASRN 18540 - 29 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  9. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  10. Chromium and aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased blood glucose, insulin, blood lipids, and fat mass, and decreased lean body mass leading to increased incidences of diabetes and cardiovascular diseases. Improved chromium nutrition is associated with improvements in all of these variables. Insulin sensitivity de...

  11. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  12. Intracellular chromium reduction.

    PubMed

    Arslan, P; Beltrame, M; Tomasi, A

    1987-10-22

    Two steps are involved in the uptake of Cr(VI): (1) the diffusion of the anion CrO4(2-) through a facilitated transport system, presumably the non-specific anion carrier and (2) the intracellular reduction of Cr(VI) to Cr(III). The intracellular reduction of Cr(VI), keeping the cytoplasmic concentration of Cr(VI) low, facilitates accumulation of chromate from extracellular medium into the cell. In the present paper, a direct demonstration of intracellular chromium reduction is provided by means of electron paramagnetic (spin) resonance (EPR) spectroscopy. Incubation of metabolically active rat thymocytes with chromate originates a signal which can be attributed to a paramagnetic species of chromium, Cr(V) or Cr(III). The EPR signal is originated by intracellular reduction of chromium since: (1) it is observed only when cells are incubated with chromate, (2) it is present even after extensive washings of the cells in a chromium-free medium; (3) it is abolished when cells are incubated with drugs able to reduce the glutathione pool, i.e., diethylmaleate or phorone; and (4) it is abolished when cells are incubated in the presence of a specific inhibitor of the anion carrier, 4-acetamido-4'-isothiocyanatostilbene-2-2'-disulfonic acid. PMID:2820507

  13. GROUND WATER ISSUE: NATURAL ATTENUATION OF HEXA- VALENT CHROMIUM IN GROUND WATER AND SOILS

    EPA Science Inventory

    In this paper, what is known about the transformation of chromium in the subsurface is explored. This is an attempt to identify conditions where it is most likely to occur, and describe soil tests that can assist in determining the likelihood of natural attenuation of Cr(VI) in s...

  14. Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results.

    PubMed

    Zhao, Xingmin; Sobecky, Patricia A; Zhao, Lanpo; Crawford, Patrice; Li, Mingtang

    2016-04-01

    The simulation of Cr(VI) behavior in an unsaturated zone and aquifer, using a 3D experimental set-up were performed to illustrate the distribution, transport and transformation of Cr(VI), and further to reveal the potential harm of Cr(VI) after entering the groundwater. The result indicated that chromium(VI) was transported in the vertical direction, meanwhile, was transported in the horizontal direction under the influence of groundwater flow. The direction and distance away from the pollution source zone had great effect on the chromium(VI) concentration. At the sampling sites near the pollution source zone, there was a sudden increase of chromium(VI) concentration. The concentration of chromium(III) concentration in some random effluent samples was not detected. Chromium had not only transported but also had fraction and specie transformation in the unsaturated zone and aquifer. The relative concentration of residue fraction chromium was decreased with time. The content of Fe-Mn oxide fraction chromium was increased with time. The relative content of exchangeable and carbonate-bound fraction chromium was lower and the content variations were not obvious. Chromium(VI) (91-98%) was first reduced to chromium(III) rapidly. The oxidation reaction occurred later and the relative content of chromium(VI) was increased again. The presence of manganese oxides under favorable soil conditions can promote the reoxidation of Cr(III) to Cr(VI). PMID:26736171

  15. Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results.

    PubMed

    Zhao, Xingmin; Sobecky, Patricia A; Zhao, Lanpo; Crawford, Patrice; Li, Mingtang

    2016-04-01

    The simulation of Cr(VI) behavior in an unsaturated zone and aquifer, using a 3D experimental set-up were performed to illustrate the distribution, transport and transformation of Cr(VI), and further to reveal the potential harm of Cr(VI) after entering the groundwater. The result indicated that chromium(VI) was transported in the vertical direction, meanwhile, was transported in the horizontal direction under the influence of groundwater flow. The direction and distance away from the pollution source zone had great effect on the chromium(VI) concentration. At the sampling sites near the pollution source zone, there was a sudden increase of chromium(VI) concentration. The concentration of chromium(III) concentration in some random effluent samples was not detected. Chromium had not only transported but also had fraction and specie transformation in the unsaturated zone and aquifer. The relative concentration of residue fraction chromium was decreased with time. The content of Fe-Mn oxide fraction chromium was increased with time. The relative content of exchangeable and carbonate-bound fraction chromium was lower and the content variations were not obvious. Chromium(VI) (91-98%) was first reduced to chromium(III) rapidly. The oxidation reaction occurred later and the relative content of chromium(VI) was increased again. The presence of manganese oxides under favorable soil conditions can promote the reoxidation of Cr(III) to Cr(VI).

  16. Studies of chromium gettering

    SciTech Connect

    Simpkins, J.E.; Mioduszewski, P.; Stratton, L.W.

    1982-01-01

    Preliminary results have shown that hydrogen pumping by chromium is a surface effect. Unlike with titanium, the getter material used in many present day tokamaks, there is no significant diffusion into the bulk. Additional experiments have been carried out to measure the basic characteristics of chromium films for gases of interest in tokamak research. These gases include deuterium, oxygen and nitrogen. A vacuum system is described which allowed precise control of the test gas, a constant wall temperature and determination of the projected getter surface area. A quadrupole mass spectrometer, rather than simply a total pressure gauge, was utilized to measure the partial pressure of the test gas as well as the residual gas composition in the system. A quartz crystal monitor was used to measure film thickness. Pumping speeds and sticking coefficients are given as a function of surface coverage for each test gas. A comparison will be made with titanium films deposited in the same vacuum system and under similar conditions.

  17. AES XPS study of chromium carbides and chromium iron carbides

    NASA Astrophysics Data System (ADS)

    Detroye, M.; Reniers, F.; Buess-Herman, C.; Vereecken, J.

    1999-04-01

    The nature of chromium rich carbides which precipitate at grain boundaries in steels is still not perfectly understood. We performed a multitechnique approach on model chromium carbide and chromium-iron carbide samples: Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and High Energy Electron Diffraction (HEED) were used to characterise the samples. Significant chemical shifts were observed for the Cr, Fe and C XPS peaks in the M 7C 3 compound (M stands for metal), indicating unambiguously that the compound formed is a mixed iron-chromium carbide.

  18. Subsurface ice and brine sampling using an ultrasonic/sonic gopher for life detection and characterization in the McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Sherrit, S.; Chang, Z.; Wessel, L.; Bao, X.; Doran, P. T.; Fritsen, C. H.; Kenig, F.; McKay, C. P.; Murray, A.; Peterson, T.

    2004-01-01

    There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records.

  19. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    NASA Astrophysics Data System (ADS)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Adamski, Paweł; Moszyński, Dariusz

    2016-09-01

    Four nanocomposites containing mixed phases of Co3Mo3N and Co2Mo3N doped with chromium have been prepared. A linear fit is found for relation between Co2Mo3N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2-300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping.

  20. Groundwater contaminant by hexavalent chromium

    SciTech Connect

    Parsons, C.

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  1. The determination of nanogram amounts of Chromium in urine by x-ray fluorescence spectroscopy

    USGS Publications Warehouse

    Beyermann, K.; Rose, H.J.; Christian, R.P.

    1969-01-01

    Nanogram amounts of chromium can be extracted as oxinate into chloform. By treatment of the chloroform layer 3 M hydrochloric acid, oxinates of other elements and excess of reagent are removed, leaving a chloroform solution of the chromium chelate only. This solution is concentrated and transferred to the top of a small brass rod acting as sample holder. The intensity of the X-ray fluorescence of the Cr K?? line is measured with curved crystal optics. Chromium amounts greater than 5 ng can be detected. The application of the procedure to the analysis of the chromium content of urine is demonstrated. ?? 1969.

  2. Chromium toxicity in plants.

    PubMed

    Shanker, Arun K; Cervantes, Carlos; Loza-Tavera, Herminia; Avudainayagam, S

    2005-07-01

    Due to its wide industrial use, chromium is considered a serious environmental pollutant. Contamination of soil and water by chromium (Cr) is of recent concern. Toxicity of Cr to plants depends on its valence state: Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Since plants lack a specific transport system for Cr, it is taken up by carriers of essential ions such as sulfate or iron. Toxic effects of Cr on plant growth and development include alterations in the germination process as well as in the growth of roots, stems and leaves, which may affect total dry matter production and yield. Cr also causes deleterious effects on plant physiological processes such as photosynthesis, water relations and mineral nutrition. Metabolic alterations by Cr exposure have also been described in plants either by a direct effect on enzymes or other metabolites or by its ability to generate reactive oxygen species which may cause oxidative stress. The potential of plants with the capacity to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained interest in recent years. PMID:15878200

  3. Hexavalent chromium monitor

    DOEpatents

    Tao, Shiquan; Winstead, Christopher B.

    2005-04-12

    A monitor is provided for use in measuring the concentration of hexavalent chromium in a liquid, such as water. The monitor includes a sample cell, a light source, and a photodetector. The sample cell is in the form of a liquid-core waveguide, the sample cell defining an interior core and acting as a receiver for the liquid to be analyzed, the interior surface of the sample cell having a refractive index of less than 1.33. The light source is in communication with a first end of the sample cell for emitting radiation having a wavelength of about and between 350 to 390 nm into the interior core of the waveguide. The photodetector is in communication with a second end of the waveguide for measuring the absorption of the radiation emitted by the light source by the liquid in the sample cell. The monitor may also include a processor electronically coupled to the photodetector for receipt of an absorption signal to determine the concentration of hexavalent chromium in the liquid.

  4. INL Subsurface Wireless Sensor Platform

    SciTech Connect

    Dennis C. Kunerth; John M. Svoboda; James T. Johnson

    2005-10-01

    The Idaho National Laboratory is developing a versatile micro-power sensor interface platform for periodic subsurface sensing of environmental variables important to waste disposal sites such as volumetric moisture, water potential, and temperature. The key characteristics of the platform architecture are that the platform is passive until externally energized --no internal power source is required -- and that it communicates with a "reader" via short-range telemetry - no wires penetrate the subsurface. Other significant attributes include the potential for a long service life and a compact size that makes it well suited for retrofitting existing landfill structures. Functionally, the sensor package is "read" by a short-range induction coil that activates and powers the sensor platform as well as detects the sensor output via a radio frequency signal generated by the onboard programmable interface controller microchip. As a result, the platform has a functional subsurface communication range of approximately 10 to 12 ft. and can only accept sensors that require low power to operate.

  5. Geophysical characterization of subsurface barriers

    SciTech Connect

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  6. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  7. Subsurface Microbiology and Biogeochemistry

    SciTech Connect

    Fredrickson, Jim K.; Fletcher, Madilyn

    2001-05-01

    Jim contributed a chapter to this book, in addition to co-editing it with Madilyn Fletcher. Fredrickson, J. K., and M. Fletcher. (eds.) 2001 Subsurface Microbiology and Biogeochemistry. Wiley-Liss, Inc., New York.

  8. Electrical Subsurface Grounding Analysis

    SciTech Connect

    J.M. Calle

    2000-11-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

  9. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  10. Site Recommendation Subsurface Layout

    SciTech Connect

    C.L. Linden

    2000-06-28

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.

  11. Investigation of total and hexavalent chromium in filtered and unfiltered groundwater samples at the Tucson International Airport Superfund Site

    USGS Publications Warehouse

    Tillman, Fred; McCleskey, R. Blaine; Hermosillo, Edyth

    2016-01-01

    Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.

  12. Investigation of Total and Hexavalent Chromium in Filtered and Unfiltered Groundwater Samples at the Tucson International Airport Superfund Site.

    PubMed

    Tillman, Fred D; McCleskey, R Blaine; Hermosillo, Edyth

    2016-10-01

    Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.

  13. Chromium isotopes as indicators of hexavalent chromium reduction

    SciTech Connect

    Johnson, Thomas M.

    2012-03-20

    This is the final report for a university research project which advanced development of a new technology for identifying chemical reduction of hexavalent chromium contamination in groundwater systems. Reduction renders mobile and toxic hexavalent chromium immobile and less toxic. The new method uses stable isotope ratio measurements, which are made using multicollector ICP-mass spectrometry. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

  14. Chromium reduction in Pseudomonas putida.

    PubMed Central

    Ishibashi, Y; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells. PMID:2389940

  15. Best Practice -- Subsurface Investigations

    SciTech Connect

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  16. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  17. Terrestrial Subsurface Ecosystem

    SciTech Connect

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free of microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our

  18. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    SciTech Connect

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-12-31

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, {approximately}77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of {approximately}60 {mu}g/L to below the detection limit of the analytical methods.

  19. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  20. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.

    PubMed

    Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R

    2006-05-01

    This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.

  1. Galvanic cells including cobalt-chromium alloys.

    PubMed

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  2. Mare Chromium Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This crater, located in Mare Chromium, shows evidence of exterior modification, with little interior modification. While the rim is still visible, the ejecta blanket has been removed or covered. There is some material at the bottom of the crater, but the interior retains the bowl shape from the initial formation of the crater.

    Image information: VIS instrument. Latitude -34.4, Longitude 174.4 East (185.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Antiferromagnetism in chromium

    NASA Astrophysics Data System (ADS)

    Jaramillo, Rafael

    I present two experimental studies of the spin density wave antiferromagnetic order in elemental Chromium. The first addresses the response of the magnetic ground state to applied pressure. The spin and charge order parameters are probed at high pressure and low temperature in a diamond anvil cell using monochromatic X-ray diffraction. We find that the magnetism is suppressed exponentially with pressure, providing a canonical example of a weak-coupling, mean-field ground state, before terminating at a quantum phase transition. We confirm the harmonic relationship between the spin and charge degrees of freedom in the low temperature regime, and we identify the microscopic coupling between pressure and magnetism. The discovery of the long-sought-after quantum critical regime sets the stage for a complete study of antiferromagnetic quantum criticality in this clean model system. The second study addresses the thermodynamics and transport properties of antiferromagnetic domain structure. We find a robust thermal hysteresis in the longitudinal and Hall resistivities of sub-mm bulk Cr samples. The temperature limits of the hysteresis are correlated with domain wall fluctuations and freezing. The persistent sign of the hysteresis and the macroscopic return point memory warrant a new understanding of domain wall energetics. By combining electrical transport and X-ray microdiffraction measurements we are able to pinpoint the effects of antiferromagnetic domain walls on electron transport.

  4. Subsurface connection methods for subsurface heaters

    SciTech Connect

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  5. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    SciTech Connect

    T. Wilson; R. Novotny

    1999-11-22

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES).

  6. Inhalation toxicity of chromium from Whetlerite dust in rats.

    PubMed

    Hilaski, R; Katz, S; Salem, H

    1992-08-01

    The acute inhalation toxicity and metabolic fate of chromium and copper from Whetlerite dust in rats were investigated. Groups of male and female, Sprague-Dawley rats were exposed to Whetlerite dust and base carbon dust as outlined in the OECD Limit Test guidelines. At 14, 28 and 180 days post-exposure, rats were evaluated for gross pathological changes and tissues were collected for chromium and copper determination. Four deaths occurred during or post-exposure, but did not appear to be compound related. No gross pathological changes were observed at necropsy in either group. Organ chromium concentrations were below detection limits of 0.5 micrograms Cr/g dry tissue in both exposure groups. According to OECD guidelines, neither Whetlerite dust nor base carbon dust demonstrated an acute inhalation toxicity.

  7. Can Analysis of Acetylene and Its Biodegradation Products in Enceladus Plumes be Used to Detect the Presence of Sub-Surface Life?

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Oremland, R. S.

    2014-12-01

    The search for biosignatures of life on Earth includes measurement of the stable isotope fractionation of reactants and products attributed to enzymatic processes and comparison with the often smaller chemical (abiotic) fractionation. We propose that this approach might be applied to study the origin and fate of organic compounds contained in water vapor plumes emanating from Enceladus or other icy bodies, perhaps revealing information about the potential for biology occurring within a sub-surface "habitable" zone. Methanol and C2-hydrocarbons including ethylene, ethane and acetylene (C2H2) have been identified in the plumes of Enceladus. Biological degradation of acetylene proceeds by anaerobic fermentation via acetylene hydratase through acetaldehyde, with a second enzyme (acetaldehyde dismutase) forming acetate and ethanol. We found that incubation of cultures of acetylene-fermenting bacteria exhibit a kinetic isotope effect (KIE) associated with the net removal of C2H2. Consumption of acetylene by both growing and washed-cell cultures of bacteria closely related to Pelobacter acetylenicus (e.g, strain SFB93) was accompanied by a carbon isotopic fractionation of about 2 per mil (KIE = 1.8-2.7 ‰), a result we are examining with other cultures of acetylene fermenters. In addition, we are measuring the carbon isotopic composition of acetaldehyde, ethanol and acetate during fermentation to learn whether these products are fractionated sufficiently, relative to their substrate, to warrant measurement of their isotopic composition in Enceladus (or Europa) plumes to indicate enzymatic activity in liquid environments below the crust of these moons.

  8. Subsurface Sounding of Mars: The Effects of Surface Roughness

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Jordan, R.; Safaeinili, A.; Safaenelli, A.; Seu, R.; Orosei, R.

    2001-01-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) will conduct a global survey of Mars from the Mars Express Orbiter starting in 2004. The primary objective of the subsurface observations is to detect material interfaces in the upper several kilometers of the crust of Mars, with a particular emphasis on mapping the 3D distribution of water and ice in that portion of the crust. In order to detect subsurface interfaces, the returned echo from the subsurface must be distinguished from noise and clutter, which can arise from a variety of sources. One source of clutter is surface topography that generates backscattered energy at the same time delay as the subsurface region of interest. Surface topography can affect the detectability of subsurface features in several other ways. Surface roughness at scales comparable or somewhat smaller than the radar wavelength reduces the coherency of the wave as it passes the upper interface. Also, surface slope (tilt) at scales of the radar footprint and larger (> 5 km) affects the apparent Doppler signature of the echoes, and effectively disperses the wave transmitted into the subsurface, making processing and interpretation difficult. In this paper, we report on the roughness characteristics of Mars at these various scales as measured by the Mars Global Surveyor Laser Altimeter (MOLA), and consider the implications for achieving the subsurface sounding goals of MARSIS. Additional information is contained in the original extended abstract.

  9. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  10. Autonomous microexplosives subsurface tracing system final report.

    SciTech Connect

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  11. Marine subsurface eukaryotes: the fungal majority.

    PubMed

    Edgcomb, Virginia P; Beaudoin, David; Gast, Rebecca; Biddle, Jennifer F; Teske, Andreas

    2011-01-01

    Studies on the microbial communities of deep subsurface sediments have indicated the presence of Bacteria and Archaea throughout the sediment column. Microbial eukaryotes could also be present in deep-sea subsurface sediments; either bacterivorous protists or eukaryotes capable of assimilating buried organic carbon. DNA- and RNA-based clone library analyses are used here to examine the microbial eukaryotic diversity and identify the potentially active members in deep-sea sediment cores of the Peru Margin and the Peru Trench. We compared surface communities with those much deeper in the same cores, and compared cores from different sites. Fungal sequences were most often recovered from both DNA- and RNA-based clone libraries, with variable overall abundances of different sequence types and different dominant clone types in the RNA-based and the DNA-based libraries. Surficial sediment communities were different from each other and from the deep subsurface samples. Some fungal sequences represented potentially novel organisms as well as ones with a cosmopolitan distribution in terrestrial, fresh and salt water environments. Our results indicate that fungi are the most consistently detected eukaryotes in the marine sedimentary subsurface; further, some species may be specifically adapted to the deep subsurface and may play important roles in the utilization and recycling of nutrients.

  12. Unconventional drop in the electrical resistance of chromium metal thin films at low temperature

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Kubota, T.; Takanashi, K.

    2016-09-01

    We studied the electrical resistance of single-crystal and polycrystalline chromium films. The ρ (T) curve of single-crystal films decrease with decreasing temperature and show humps at around 300 K consistent with the bulk chromium being an itinerant antiferromagnet. In the polycrystalline films, on the other hand, the ρ (T) curves deviate from those of the bulk chromium. Moreover, we observed sudden decrease in the resistance around 1.5 K. Although previous studies suggested that chromium films become superconductive (Schmidt et al. (1972) [12]), it is difficult to conclude whether a superconducting transition occurs because the electrical resistivity is not zero in all films. No anomaly was detected by resistance measurements around room temperature, and the sudden decrease in the resistance at low temperature may be attributed to the suppression of antiferromagnetic interaction by thinning down the chromium element.

  13. Drill Embedded Nanosensors For Planetary Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Li, Jing

    2014-01-01

    We have developed a carbon nanotube (CNT) sensor for water vapor detection under Martian Conditions and the miniaturized electronics can be embedded in the drill bit for collecting sensor data and transmit it to a computer wirelessly.This capability will enable the real time measurement of ice during drilling. With this real time and in-situ measurement, subsurface ice detection can be easy, fast, precise and low cost.

  14. Diffusion of Chromium in Alpha Cobalt-Chromium Solid Solutions

    NASA Technical Reports Server (NTRS)

    Weeton, John W

    1951-01-01

    Diffusion of chromium in cobalt-chromium solid solutions was investigated in the range 0 to 40 atomic percent at temperatures of 1360 degrees, 1300 degrees, 1150 degrees, and 10000 degrees c. The diffusion coefficients were found to be relatively constant within the composition range covered by each specimen. The activation heat of diffusion was determined to be 63,000 calories per mole. This value agrees closely with the value of 63,400 calories per mole calculated by means of the Dushman-Langmuir equation.

  15. Toxic effects of chromium and its compounds.

    PubMed

    Baruthio, F

    1992-01-01

    Chromium was discovered in 1797 by Vauquelin. Numerous industrial applications raised chromium to a very important economic element. At the same time, with the development of its uses, the adverse effects of chromium compounds in human health were being defined. Trivalent chromium is an essential trace element in humans and in animals. Chromium as pure metal has no adverse effect. Little toxic effect is attributed to trivalent chromium when present in very large quantities. Both acute and chronic toxicity of chromium are mainly caused by hexavalent compounds. The most important toxic effects, after contact, inhalation, or ingestion of hexavalent chromium compounds are the following: dermatitis, allergic and eczematous skin reactions, skin and mucous membrane ulcerations, perforation of the nasal septum, allergic asthmatic reactions, bronchial carcinomas, gastro-enteritis, hepatocellular deficiency, and renal oligo anuric deficiency. Prevention of occupational risks, biological monitoring of workers, and treatment of poisoning are also reported.

  16. Phylogenetic relationships among subsurface microorganisms

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  17. Precipitating Chromium Impurities in Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1982-01-01

    Two new treatments for silicon wafers improve solar-cell conversion efficiency by precipitating electrically-active chromium impurities. One method is simple heat treatment. Other involves laser-induced damage followed by similar heat treatment. Chromium is one impurity of concern in metallurgical-grade silicon for solar cells. In new treatment, chromium active centers are made electrically inactive by precipitating chromium from solid solution, enabling use of lower grade, lower cost silicon in cell manufacture.

  18. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  19. Turkey liver - a chromium enriched food source

    SciTech Connect

    Polansky, M.M.; Bryden, N.A.; Richards, M.; Anderson, R.A.

    1986-03-01

    There are presently no known foods for humans that are particularly good sources of chromium. As a means of obtaining Cr enriched foods, turkeys were fed diets containing various levels of supplemental chromium. Four groups of 6-month old turkey hens were fed either the basal diet for laying hens or this diet supplemented with 25, 100 or 200 ..mu..g of chromium as chromium chloride per g of diet. Liver Cr concentration of the turkeys sacrificed after 1 week increased from 7 ng/g (wet wt) while consuming the basal diet to 15, 48 and 68 ng/g, respectively, while consuming the diets with supplemental chromium. Comparable values for the turkeys sacrificed after 5 weeks were 2, 43, 170 and 325 ng/g. Similar trends but higher chromium values were observed for kidney samples. The chromium contents of the dark and white meat and eggs were not altered significantly. Chromium concentrations of the pancreas, gizzard and heart increased marginally; final chromium concentrations were less than 23 ng/g even after 5 weeks on the highest level of supplemental chromium. Chromium content of spleen and lungs was approximately 2-fold higher than that of the pancreas, gizzard or heart. Therefore, turkey liver is a food source suitable for Cr enrichment while the eggs, dark and white meat and other edible parts do not appear to be enriched following chromium supplementation.

  20. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  1. Environmental biochemistry of chromium.

    PubMed

    Losi, M E; Amrhein, C; Frankenberger, W T

    1994-01-01

    Chromium is a d-block transitional element with many industrial uses. It occurs naturally in various crustal materials and is discharged to the environment as industrial waste. Although it can occur in a number of oxidation states, only 3+ and 6+ are found in environmental systems. The environmental behavior of Cr is largely a function of its oxidation state. Hexavalent Cr compounds (mainly chromates and dichromates) are considered toxic to a variety of terrestrial and aquatic organisms and are mobile in soil/water systems, much more so than trivalent Cr compounds. This is largely because of differing chemical properties: Hexavalent Cr compounds are strong oxidizers and highly soluble, while trivalent Cr compounds tend to form relatively inert precipitates at near-neutral pH. The trivalent state is generally considered to be the stable form in equilibrium with most soil/water systems. A diagram of the Cr cycle in soils and water is given in Fig. 6 (Bartlett 1991). This illustration provides a summary of environmentally relevant reactions. Beginning with hexavalent Cr that is released into the environment as industrial waste, there are a number of possible fates, including pollution of soil and surface water and leaching into groundwater, where it may remain stable and, in turn, can be taken up by plants or animals, and adsorption/precipitation, involving soil colloids and/or organic matter. Herein lies much of the environmental concern associated with the hexavalent form. A portion of the Cr(VI) will be reduced to the trivalent form by inorganic electron donors, such as Fe2+ and S2-, or by bioprocesses involving organic matter. Following this conversion, Cr3+ can be expected to precipitate as oxides and hydroxides or to form complexes with numerous ligands. This fraction includes a vast majority of global Cr reserves. Soluble Cr3+ complexes, such as those formed with citrate, can undergo oxidation when they come in contact with manganese dioxide, thus reforming

  2. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    SciTech Connect

    Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

    2010-03-01

    A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

  3. Chromium(III), insoluble salts

    Integrated Risk Information System (IRIS)

    Chromium ( III ) , insoluble salts ; CASRN 16065 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments

  4. Chromium removal by zeolite-rich materials obtained from an exhausted FCC catalyst: Influence of chromium incorporation on the sorbent structure.

    PubMed

    Gonzalez, Maximiliano R; Pereyra, Andrea M; Torres Sánchez, Rosa M; Basaldella, Elena I

    2013-10-15

    A spent FCC catalyst was converted into a zeolitic mixture, and the product obtained was afterward used as trapping material for Cr(III) species frequently found in aqueous solutions. Eventual changes in the sorbent structure produced by Cr incorporation were studied by different characterization techniques such as point of zero charge determinations (PZC), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared absorption (FTIR). The XRD and FTIR analyses indicated that chromium incorporation produces an amorphization of the material, and PZC measurements show no surface adsorption of charged chromium species. SEM and EDX analyses clearly show that after chromium sorption, the initial microspheroidal catalyst morphology was maintained, and the presence of chromium species was mainly detected in the outer microsphere surface, where the zeolite crystals were hydrothermally grown.

  5. A comparison of two real-time polymerase chain reaction assays using hybridization probes targeting either 16S ribosomal RNA or a subsurface lipoprotein gene for detecting leptospires in canine urine.

    PubMed

    Gentilini, Fabio; Zanoni, Renato Giulio; Zambon, Elisa; Turba, Maria Elena

    2015-11-01

    Leptospires are excreted in the urine of infected animals, and the prompt detection of leptospiral DNA using polymerase chain reaction (PCR) is increasingly being used. However, contradictory data has emerged concerning the diagnostic accuracy of the most popular PCR assays that target either the 16S ribosomal RNA (rrs) or the subsurface lipoprotein (LipL32) genes. In order to clarify the effect of the gene target, a novel hydrolysis probe-based, quantitative real-time PCR (qPCR) assay targeting the LipL32 gene was developed, validated, and then compared directly to the previously described rrs hydrolysis probe-based qPCR using a convenience collection of canine urine samples. The novel LipL32 qPCR assay was linear from 5.9 × 10(6) to 59 genome equivalents per reaction. Both the LipL32 and the rrs qPCR assays showed a limit of detection of 10 target copies per reaction indicating an approximately equivalent analytical sensitivity. Both assays amplified all 20 pathogenic leptospiral strains tested but did not amplify a representative collection of bacteria commonly found in voided canine urine. When the field samples were assayed, 1 and 5 out of 184 samples yielded an amplification signal in the LipL32 and rrs assays, respectively. Nevertheless, when the limit of detection was considered as the cutoff for interpreting findings, the 4 discordant cases were judged as negative. In conclusion, our study confirmed that both LipL32 and rrs are suitable targets for qPCR for the detection of leptospiral DNA in canine urine. However, the rrs target requires the mandatory use of a cutoff value in order to correctly interpret spurious amplifications.

  6. A comparison of two real-time polymerase chain reaction assays using hybridization probes targeting either 16S ribosomal RNA or a subsurface lipoprotein gene for detecting leptospires in canine urine.

    PubMed

    Gentilini, Fabio; Zanoni, Renato Giulio; Zambon, Elisa; Turba, Maria Elena

    2015-11-01

    Leptospires are excreted in the urine of infected animals, and the prompt detection of leptospiral DNA using polymerase chain reaction (PCR) is increasingly being used. However, contradictory data has emerged concerning the diagnostic accuracy of the most popular PCR assays that target either the 16S ribosomal RNA (rrs) or the subsurface lipoprotein (LipL32) genes. In order to clarify the effect of the gene target, a novel hydrolysis probe-based, quantitative real-time PCR (qPCR) assay targeting the LipL32 gene was developed, validated, and then compared directly to the previously described rrs hydrolysis probe-based qPCR using a convenience collection of canine urine samples. The novel LipL32 qPCR assay was linear from 5.9 × 10(6) to 59 genome equivalents per reaction. Both the LipL32 and the rrs qPCR assays showed a limit of detection of 10 target copies per reaction indicating an approximately equivalent analytical sensitivity. Both assays amplified all 20 pathogenic leptospiral strains tested but did not amplify a representative collection of bacteria commonly found in voided canine urine. When the field samples were assayed, 1 and 5 out of 184 samples yielded an amplification signal in the LipL32 and rrs assays, respectively. Nevertheless, when the limit of detection was considered as the cutoff for interpreting findings, the 4 discordant cases were judged as negative. In conclusion, our study confirmed that both LipL32 and rrs are suitable targets for qPCR for the detection of leptospiral DNA in canine urine. However, the rrs target requires the mandatory use of a cutoff value in order to correctly interpret spurious amplifications. PMID:26450835

  7. Phylogenetic relationships among subsurface microorganisms

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This report summarizes the progress made from 6/90--3/91 toward completion of our project, Phylogenetic Relationships among subsurface microorganisms. 16S rRNA was sequenced, and based on the sequence the SMCC isolates were assigned to preliminary groups. Microorganisms were obtained at various depths at the Savannah River Site, including the Surface (0 m), Congaree (91 m), and Middendorf (244 m, 259 m, 265 m). Sequence data from four isolates from the Congaree formation indicate these microorganisms can be divided into Pseudomonas spp. or Acinetobacter spp. Three 16S rRNA probes were synthesized based on sequence data. The synthesized probes were tested through in situ hybridization. Optimal conditions for in situ hybridization were determined. Because stability of RNA-DNA hybrids is dependent on hybridization stringency, related organisms can be differentiated using a single probe under different strigencies. The results of these hybridizations agree with results obtained by Balkwill and Reeves using restriction fragment length polymorphism analysis. The RNA content of a cell reflects its metabolic state. Cells which are starved for four days are not detectable with the homologous 16S rRNA probe. However, within 15 minutes of refeeding, detectable rRNA appeared. This suggests that organisms which are undetectable in environmental samples due to starvation may be detectable after addition of nutrients. Stepwise addition of specific nutrients could indicate which nutrients are rate limiting for growth. Preliminary experiments with soil samples from the Hanford Site indicate indigenous microorganisms can be detected by oligionucleotide probes. Further, using multiple probes based on universal sequences increases the number of organisms detected. Double label experiments, using a rhodamine-labelled oligionucleotide probe with free coumarin succinimidyl ester will allow simultaneous detection of total bacteria and specific 16S rRNA containing bacteria. 4 tabs. (MHB)

  8. Surface and subsurface oxygen on Pd(111)

    NASA Astrophysics Data System (ADS)

    Leisenberger, F. P.; Koller, G.; Sock, M.; Surnev, S.; Ramsey, M. G.; Netzer, F. P.; Klötzer, B.; Hayek, K.

    2000-01-01

    The interaction of O2 with Pd(111) in the temperature range from 300 K to 1000 K was studied by molecular beam adsorption, thermal desorption (TDS), low energy electron diffraction (LEED), high-resolution X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS). Using a capillary array doser and high effective oxygen pressures, evidence was found for the formation of a densely packed chemisorbed oxygen adlayer saturating at ΘO close to 1 and separately for subsurface migration of oxygen at elevated temperatures, but not at room temperature and below. Up to completion of a p(2×2) oxygen adlayer at 0.25 ML surface coverage, the dissociative sticking probability of oxygen into the chemisorbed state is high and masks the much slower diffusion into the bulk. Beyond 0.25 ML surface coverage, the adsorption rate into the chemisorbed state becomes small and the influence of bulk migration detectable. Exposure of the sample to high oxygen dosages at 1000 K fills up the subsurface reservoir and subsequent sticking measurements are no longer influenced by oxygen loss to the bulk. The subsurface oxygen could be distinguished in both XPS and off-specular HREELS. These latter techniques revealed that considerable concentrations of oxygen in the near-surface region can build up, even at lower temperatures (523 K) and oxygen exposures (40 L). In contrast to chemisorbed oxygen atoms on Pd(111), the subsurface species cannot be removed by reaction with CO.

  9. Subsurface fracture spacing

    SciTech Connect

    Lorenz, J.C. ); Hill, R.E. )

    1991-01-01

    This study was undertaken in order to document and analyze the unique set of data on subsurface fracture characteristics, especially spacing, provided by the US Department of Energy's Slant Hole Completion Test well (SHCT-1) in the Piceance Basin, Colorado. Two hundred thirty-six (236) ft (71.9 m) of slant core and 115 ft (35.1 m) of horizontal core show irregular, but remarkably close, spacings for 72 natural fractures cored in sandstone reservoirs of the Mesaverde Group. Over 4200 ft (1280 m) of vertical core (containing 275 fractures) from the vertical Multiwell Experiment wells at the same location provide valuable information on fracture orientation, termination, and height, but only data from the SHCT-1 core allow calculations of relative fracture spacing. Within the 162-ft (49-m) thick zone of overlapping core from the vertical and deviated wellbores, only one fracture is present in vertical core whereas 52 fractures occur in the equivalent SHCT-1 core. The irregular distribution of regional-type fractures in these heterogeneous reservoirs suggests that measurements of average fracture spacing'' are of questionable value as direct input parameters into reservoir engineering models. Rather, deviated core provides data on the relative degree of fracturing, and confirms that cross fractures can be rare in the subsurface. 13 refs., 11 figs.

  10. Synthesis of chromium containing pigments from chromium galvanic sludges.

    PubMed

    Andreola, F; Barbieri, L; Bondioli, F; Cannio, M; Ferrari, A M; Lancellotti, I

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr(0.04)Sn(0.97)SiO(5) and green Ca(3)Cr(2)(SiO(4))(3) were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr(2)O(3). The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr(2)O(3). PMID:18289775

  11. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    EPA Science Inventory

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  12. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUND WATER: VOLUME 1 DESIGN AND INSTALLATION

    EPA Science Inventory

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  13. AN IN SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER:VOLUME 2 PERFORMANCE MONITORING

    EPA Science Inventory

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  14. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  15. Food Chromium Contents, Chromium Dietary Intakes And Related Biological Variables In French Free-Living Elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromium (Cr III), an essential trace element, functions in potentiating insulin sensitivity, regulating glucose homeostasis, improving lipid profile, and maintaining lean body mass. Glucose intolerance and chromium deficiency increase with age, and could be aggravating factors of the metabolic synd...

  16. Containment of subsurface contaminants

    DOEpatents

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  17. Nonintrusive subsurface surveying capability

    SciTech Connect

    Tunnell, T.W.; Cave, S.P.

    1994-06-01

    This presentation describes the capabilities of a ground-pentrating radar (GPR) system developed by EG&G Energy Measurements (EM), a prime contractor to the Department of Energy (DOE). The focus of the presentation will be on the subsurface survey of DOE site TA-21 in Los Alamos, New Mexico. EG&G EM developed the system for the Department of Defense. The system is owned by the Department of the Army and currently resides at KO in Albuquerque. EM is pursuing efforts to transfer this technology to environmental applications such as waste-site characterization with DOE encouragement. The Army has already granted permission to use the system for the waste-site characterization activities.

  18. Containment of subsurface contaminants

    DOEpatents

    Corey, John C.

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  19. Evaluation of a chemical etching solution for nickel-chromium-beryllium and chromium-cobalt alloys.

    PubMed

    Ferrari, M; Cagidiaco, M C; Borracchini, A; Bertelli, E

    1989-11-01

    Two chemical etching solutions were capable of providing micromechanical retention in two nickel-chromium-beryllium alloys and in a chromium-cobalt alloy. A resin matrix was used to verify the quality of etching on the metal surfaces. The chemical etching solutions created high microretentive surfaces in nickel-chromium-beryllium alloy but the chromium-cobalt alloy surfaces after etching were less retentive. Improved chemical etching technique should encourage expanded use of the resin-bonded retainers.

  20. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study.

    PubMed

    Sinyoung, Suthatip; Songsiriritthigul, Prayoon; Asavapisit, Suwimol; Kajitvichyanukul, Puangrat

    2011-07-15

    The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca(6)Al(4)Cr(2)O(15), Ca(5)Cr(3)O(12), Ca(5)Cr(2)SiO(12), and CaCr(2)O(7), with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca(5)(CrO(4))(3)OH, CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr(3+) from Ca(6)Al(4)Cr(2)O(15) and Cr(6+) from CaCr(2)O(7), CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process.

  1. Natural occurrence of hexavalent chromium in the Aromas Red Sands Aquifer, California.

    PubMed

    Gonzalez, A R; Ndung'u, K; Flegal, A R

    2005-08-01

    To address increasing concerns of chromium contamination in the drinking water of Santa Cruz County, we designed a study to investigate the source(s) and spatial gradients of the chromium concentration and speciation in local aquifers. This study was catalyzed by a report (January 2001) bythe Soquel Creek Water District of elevated hexavalent chromium concentrations ranging from 6 to 36 microg L(-1), approaching the state's maximum concentration limit of 50 microg L(-1), in the Aromas Red Sands aquifer. To test the accuracy of those preliminary measurements, we collected groundwater using trace metal clean techniques from 11 sites in Santa Cruz County, including 10 from the aquifer with reportedly elevated chromium concentrations and 1 from an adjacent aquifer, the Purisima, and analyzed them fortotal chromium using inductively couple plasma mass spectrometry. Nine of the reportedly 10 contaminated sites had total chromium concentrations ranging from 5 to 39 microg L(-1), while one from the control site was below the limit of detection (0.01 microg L(-1)). We also measured the speciation of chromium at all sites using a solid supported membrane extraction coupled with graphite furnace atomic absorption spectrometry and determined that on average 84% of total chromium was Cr(VI). In addition to the groundwater analyses, a series of extractions were performed on sediment samples from both the Aromas Red Sands and Purisima aquifers. These tests were used to empirically characterize sediment trace metal (Cr, Fe, Mn) distributions in five phases providing information about the origin, availability, reactivity, and mobilization of these trace metals. Results from groundwater and sediment samples indicate that the chromium is naturally occurring in the Aromas Red Sands aquifer, possibly by Cr(III) mineral deposits being oxidized to Cr(VI) by manganese oxides in the aquifer.

  2. Simultaneous Electrodialytic Preconcentration and Speciation of Chromium(III) and Chromium(VI).

    PubMed

    Ohira, Shin-Ichi; Nakamura, Koretaka; Shelor, C Phillip; Dasgupta, Purnendu K; Toda, Kei

    2015-11-17

    Large amounts of chromium (Cr) compounds are used for manufacturing of various products and various chemical processes. Some inevitably find their way into the environment. Environmental Cr is dominantly inorganic and is either in the cationic +3 oxidation state or in the anionic oxochromium +6 oxidation state. The two differ dramatically in their implications; Cr(III) is essential to human nutrition and even sold as a supplement, while Cr(VI) is a potent carcinogen. Drinking water standards for chromium may be based on total Cr or Cr(VI) only. Thus, Cr speciation analysis is very important. Despite their high sensitivity, atomic spectrometric techniques or induction coupled plasma-mass spectrometry (ICP-MS) cannot directly differentiate the oxidation states. We present here a new electrodialytic separation concept. Sample analyte ions are quantitatively transferred via appropriately ionically functionalized dialysis membranes into individual receptors that are introduced into the ICP-MS. There was no significant conversion of Cr(VI) to Cr(III) or vice versa during the very short (6 s) separation process. Effects of salinity (up to ∼20 mM NaCl) can be eliminated with proper membrane functionalization and receptor optimization. With the ICP-MS detector we used, the limits of detection for either form of Cr was 0.1 μg/L without preconcentration. Up to 10-fold preconcentration was readily possible by increasing the donor solution flow rate relative to the acceptor solution flow rates. The proposed approach permits simultaneous matrix isolation, preconcentration, and chromium speciation.

  3. Resonant seismic emission of subsurface objects

    SciTech Connect

    Korneev, Valeri A.

    2009-04-15

    Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion.

  4. Subsurface Ventilation System Description Document

    SciTech Connect

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  5. Subsurface Ventilation System Description Document

    SciTech Connect

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  6. Environmental exposure to chromium compounds in the valley of León, México.

    PubMed Central

    Armienta-Hernández, M A; Rodríguez-Castillo, R

    1995-01-01

    The effects on the environment and health of the operation of a chromate compounds factory and tanneries in the León valley in central México are discussed. Sampling and analysis of chromium were performed in water, soil, and human urine. Groundwater has been polluted in an area of about 5 km2 by the leaching of a solid factory waste, which results in concentrations up to 50 mg/l of hexavalent chromium. The plume shape and extension appear to be controlled by the prevailing well extraction regime. Total chromium was detected in the soil around the factory as a result of both aerial transport and deposition of dust produced in the chromate process and irrigation with tannery-contaminated water. Analysis of the impact of chromium in air and water on populations with various degrees of exposure revealed that highly harmful health effects were not observed. PMID:7621799

  7. Automated Ground-Water Sampling and Analysis of Hexavalent Chromium using a “Universal” Sampling/Analytical System

    PubMed Central

    Burge, Scott R.; Hoffman, Dave A.; Hartman, Mary J.; Venedam, Richard J.

    2005-01-01

    The capabilities of a “universal platform” for the deployment of analytical sensors in the field for long-term monitoring of environmental contaminants were expanded in this investigation. The platform was previously used to monitor trichloroethene in monitoring wells and at groundwater treatment systems (1,2). The platform was interfaced with chromium (VI) and conductivity analytical systems to monitor shallow wells installed adjacent to the Columbia River at the 100-D Area of the Hanford Site, Washington. A groundwater plume of hexavalent chromium is discharging into the Columbia River through the gravels beds used by spawning salmon. The sampling/analytical platform was deployed for the purpose of collecting data on subsurface hexavalent chromium concentrations at more frequent intervals than was possible with the previous sampling and analysis methods employed a the Site.

  8. Surface Signature of Subsurface-Intensified Vortices

    NASA Astrophysics Data System (ADS)

    Ciani, D.; Carton, X. J.; Chapron, B.; Bashmachnikov, I.

    2014-12-01

    The ocean at mesoscale (20-200 km) and submesoscale (0.5-20km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origin areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea surface and at intrathermocline depths (0-1500m), and are presently investigated by means of model outputs, in-situ and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT satellite mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011).Using analytical models in the frame of the QG theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both coupled QG-SQG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddy characteristics (radius, depth, thickness, velocity) were varied, to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), is a first step towards systematic and synoptic detection of subsurface vortices.

  9. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  10. Synthesis and characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol.

    PubMed

    Kumar, S Praveen; Suresh, R; Giribabu, K; Manigandan, R; Munusamy, S; Muthamizh, S; Narayanan, V

    2015-03-15

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  11. Subsurface Facility System Description Document

    SciTech Connect

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  12. Vegetation sampling for the screening of subsurface pollution

    NASA Astrophysics Data System (ADS)

    Karlson, U. G.; Petersen, M. D.; Algreen, M.; Rein, A.; Sheehan, E.; Limmer, M. A.; Burken, J. G.; Mayer, P.; Trapp, S.

    2012-04-01

    Measurement of vegetation samples has been reported as an alternative, cheap method to drilling for exploring subsurface pollution. The purpose of this presentation is to give an update on some further developments of this field method - faster sampling and improved analysis for chlorinated solvents, and application of phytomonitoring to heavy metal contamination. Rapid analysis of trees for chlorinated solvents was facilitated by employing automated headspace SPME-GC/ECD, resulting in a detection limit of 0.87 and 0.04 μg/kg fresh weight of wood for TCE and PCE, respectively, which is significantly lower than we have reported earlier, using manual injection of 1mL headspace air into a GC/MS. Technical details of the new method will be presented. As an even more direct alternative, time weighted average SPME analysis has been developed for in planta sampling of trees, using novel polydimethylsiloxane/carboxen SPME fibres designed for field application. In a different study, trees growing on a former dump site in Norway were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and <1 mg/kg for Cd, Cr, As and Ni. For all except one case, mean concentrations from the dump site were higher than those from a unpolluted reference site, but the difference was small and not always significant. Differences between tree species were typically higher than differences between the polluted and the unpolluted site. As all these elements occur naturally, and Cu, Ni, and Zn are essential elements, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with the same tree species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e

  13. SUBSURFACE DETECTION OF ENVIRONMENTAL POLLUTANTS. (R826184)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Detection and modeling of subsurface coal oxidation

    USGS Publications Warehouse

    Leonhart, Leo S.; Rasmussen, William O.; Barringer, Anthony R.

    1980-01-01

    The oxidation and sustained ignition of coal and coaly wastes within surface coal mine spoils in the southwestern U.S. have hampered the success of reclamation efforts at these locations. To assess better the magnitude, depth, geometry, and dynamics of the oxidation process thermal infrared remote sensing data have been used. Digital thermal imagery was found to be useful for this purpose and was integrated with finite different heat transfer models to yield predictions of several characteristics of the thermal source. In addition to thermal infrared imagery, aerial color and false color infrared imagery were found to provide useful information for the interpretation of oxidation phenomena by means of variations in surface vegetation, color of the surface material, subsidence, etc. The combined use of thermal infrared imagery and thermal modeling techniques are well suited for use in exploration and interpretation of other thermal targets.

  15. Environmental Durability of Electroplated Black Chromium

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1983-01-01

    Report describes tests of durability of electroplated black chromium coatings on solar-collector panels in rural, industrial, and seacoast environments for 60, 36, and 13 months, respectively. Black-chromium coating showed exceptionally-good optical durability in all three environments.

  16. REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS

    EPA Science Inventory

    The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...

  17. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... efficient in removing mono-dispersed particles of 0.3 micrometers in diameter or larger. Historical... means that disperses chromium (VI) into the air or onto an employee's body. (iii) The employer shall... change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs,...

  18. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... efficient in removing mono-dispersed particles of 0.3 micrometers in diameter or larger. Historical... means that disperses chromium (VI) into the air or onto an employee's body. (iii) The employer shall... change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs,...

  19. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... efficient in removing mono-dispersed particles of 0.3 micrometers in diameter or larger. Historical... means that disperses chromium (VI) into the air or onto an employee's body. (iii) The employer shall... change rooms in conformance with 29 CFR 1910.141. Where skin contact with chromium (VI) occurs,...

  20. Hydrogen Utilization Potential in Subsurface Sediments.

    PubMed

    Adhikari, Rishi R; Glombitza, Clemens; Nickel, Julia C; Anderson, Chloe H; Dunlea, Ann G; Spivack, Arthur J; Murray, Richard W; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  1. Hydrogen Utilization Potential in Subsurface Sediments

    PubMed Central

    Adhikari, Rishi R.; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  2. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  3. Microbial Transport in the Subsurface

    SciTech Connect

    Ginn, Timothy R.; Camesano, Terri; Scheibe, Timothy D.; Nelson, Kirk B.; Clement, T. P.; Wood, Brian D.

    2005-12-01

    In this article we focus on the physical, chemical, and biological processes involved in the transport of bacteria in the saturated subsurface. We will first review conceptual models of bacterial phases in the subsurface, and then the processes controlling fate and transport on short (e.g., bioremediation) time scales. Finally we briefly review field bacterial transport experiments and discuss a number of issues that impact the application of current process descriptions and models at the field scale.

  4. Metalliferous Biosignatures for Deep Subsurface Microbial Activity

    NASA Astrophysics Data System (ADS)

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian `red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  5. Metalliferous Biosignatures for Deep Subsurface Microbial Activity.

    PubMed

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian 'red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  6. Metalliferous Biosignatures for Deep Subsurface Microbial Activity.

    PubMed

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian 'red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity. PMID:26376912

  7. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic.

    PubMed

    Buchireddy, Prashanth R; Bricka, R Mark; Gent, David B

    2009-02-15

    As a result of wood treatment, and the recent banning of the copper, chromium, and arsenic (CCA) treated wood for residential use many CCA treatment facilities have been abandoned or being closed. Soil contamination resulting from CCA is common at these sites. In this study, the feasibility of electrokinetic technique to remove CCA from contaminated soil was investigated. To better understand the ionic mobility within the soil and to detect the generation and advancement of acid front, sampling ports were provided along the longitudinal axis of a test cell. To determine the effect of varying current, three tests were performed at different current densities of 5.9, 2.9, and 1.5mA/cm(2) for a period of 15 days. The initial concentrations of copper, chromium, and arsenic in the soil were 4800, 3100, and 5200mg/kg, respectively. Dilute nitric acid was used as an amendment to neutralize the hydroxyl ions produced at the cathode. Experiments resulted in removal efficiencies as high as 65% for copper, 72% for chromium, and 77% for arsenic. The results also indicated that the advancement of acid front favored desorption of metals from the soil and the metals were mobilized either as free cations or metal complexes. Chromium that was in its +6 valence state was transported as anion prior to its reduction. However, once the chromium was reduced to chromium(III) its transport direction reversed with transport being favored towards the cathode.

  8. [Bioremediation of chromium (VI) contaminated site by reduction and microbial stabilization of chromium].

    PubMed

    Zheng, Jia-Chuan; Zhang, Jian-Rong; Liu, Xi-Wen; Xu, Qian; Shi, Wei-Lin

    2014-10-01

    Chromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed. The results showed that the chromium (VI) content in toxicity characteristic leaching liquid (TCLL) dropped by 96. 8% (from 8.26 mg · L(-1) to 0.26 mg · L(-1)), and the total chromium content dropped by 95.7% (from 14.66 mg · L(-1) to 0.63 mg · L(-1)) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium (VI) content in TCLL of the reduced soil was increased from 8.26 mg · L(-1) to 14.68 mg · L(-1). However, the content after bioremediation was decreased to 2.68 mg · L(-1). The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (VI) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.

  9. Urinary chromium as an indicator of the exposure of welders to chromium.

    PubMed

    Tola, S; Kilpiö, J; Virtamo, M; Haapa, K

    1977-12-01

    Five welders working with high alloy Cr-Ni steel and one working with mild steel were followed during one work week. The chromium concentration in air was measured concomitantly with urinary chromium determinations. The water-soluble chromium concentrations in air exceeded 0.05 mg/m3 during welding with coated electrodes, but metal inert-gas (MIG) welding produced much lower concentrations. The proportion of water-soluble hexavalent chromium in the air was usually more than 50% of the total chromium concentration during welding with coated electrodes, whereas less than 10% of the chromium produced during MIG welding was in a water-soluble. Since water-soluble chromium (hexavalent) is the more important biologically, the determination of both water-soluble and water-insoluble chromium concentrations is emphasized instead of the measurement of the total concentration. The urinary chromium concentration proved to be a good indicator of short-term exposure to water-soluble chromium when exposure was above the current threshold limit value of 0.05 mg/m3, concentrations of more than 30 microgram/g of creatinine representing an exposure level higher than the threshold limit value.

  10. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias.

    PubMed

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-03-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  11. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias.

    PubMed

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-03-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  12. Low-chromium reduced-activation chromium-tungsten steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J.

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  13. Subsurface plankton layers in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Churnside, James H.; Marchbanks, Richard D.

    2015-06-01

    The first synoptic measurements of subsurface plankton layers were made in the western Arctic Ocean in July 2014 using airborne lidar. Layers were detected in open water and in pack ice where up to 90% of the surface was covered by ice. Layers under the ice were less prevalent, weaker, and shallower than those in open water. Layers were more prevalent in the Chukchi Sea than in the Beaufort Sea. Three quarters of the layers observed were thinner than 5 m. The presence of these layers, which are not adequately captured in satellite data, will influence primary productivity, secondary productivity, fisheries recruitment, and carbon export to the benthos.

  14. Subsurface Geotechnical Parameters Report

    SciTech Connect

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  15. Origin and concentration profile of chromium in a Greek aquifer.

    PubMed

    Dermatas, Dimitris; Mpouras, Thanasis; Chrysochoou, Maria; Panagiotakis, Iraklis; Vatseris, Christos; Linardos, Nikos; Theologou, Eleni; Boboti, Nefeli; Xenidis, Anthimos; Papassiopi, Nymphodora; Sakellariou, Lefki

    2015-01-01

    In this paper the origin and concentration of chromium (Cr) in an ophiolitic aquifer in Vergina, northern Greece were investigated. The study area has only agricultural activity so that industrial Cr contamination was precluded. Soil sampling included topsoil and drillcore samples collected down to 98 m depth. Groundwater samples were collected from three existing wells and a spring at the area and from different depths of the soil boring using the discrete sampling method. Mineralogical analysis of soils confirmed the presence of ultramafic minerals, including chrysotile and chromite. Soil elemental analysis showed significant concentration of total chromium (Crtot; max 12,000 mg/kg) and hexavalent chromium (Cr(VI); max 7.5mg/kg). Significant Crtot (91 μg/L) and Cr(VI) (64 μg/L) concentrations exceeding the drinking water limit of 50 μg/L were also detected in groundwater. In both the discrete soil and groundwater samples a decreasing trend of Cr(VI) concentration was observed with increasing depth, while Crtot increased. The increasing trend in Crtot is attributed to the increasing contribution of unweathered ultramafic minerals with depth, while the decreasing Cr(VI) may be related to the increasing soil pH that does not favor Cr(III) oxidation by Mn-oxides.

  16. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    SciTech Connect

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated.

  17. Occupational asthma due to chromium.

    PubMed

    Leroyer, C; Dewitte, J D; Bassanets, A; Boutoux, M; Daniel, C; Clavier, J

    1998-01-01

    We describe a 28-year-old subject employed as a roofer in a construction company since the age of 19, who developed work-related symptoms of a cough, shortness of breath, wheezing, rhinitis and headaches. A description of a usual day at work suggested that the symptoms worsened while he was sawing corrugated fiber cement. Baseline spirometry was normal, and there was a mild bronchial hyperresponsiveness to carbachol. A skin patch test to chromium was negative. A specific inhalation challenge showed a boderline fall in forced expiratory volume in 1 s (FEV1) after exposure to fiber cement dust. Exposure to nebulization of potassium dichromate (K2Cr2O7), at 0.1 mg.ml-1 for 30 min, was followed by an immediate fall by 20% FEV1. Simultaneously, a significant increase in bronchial hyperresponsiveness was demonstrated. PMID:9782225

  18. Chromium(III) Binding Phage Screening for the Selective Adsorption of Cr(III) and Chromium Speciation.

    PubMed

    Yang, Ting; Zhang, Xiao-Yu; Zhang, Xiao-Xiao; Chen, Ming-Li; Wang, Jian-Hua

    2015-09-30

    The screening of suitable sorption medium is the key for highly selective solid phase extraction (SPE) of heavy metals. Herein, we demonstrate a universal protocol for producing selective SPE adsorbent through an evolutional approach based on phage display peptide library. By choosing chromium(III) as the model target, immobilized Cr(III) resins are first prepared using Ni-NTA affinity resins for the interaction with NEB heptapeptide phage library. After three rounds of positive biopanning against target Cr(III) and negative biopanning against foreign metal species, Cr(III) binding phages with high selectivity are obtained. The binding affinity and selectivity are further assessed with ELISA. The phages bearing peptide (YKASLIT) is finally chosen and immobilized on cytopore beads for Cr(III) preconcentration. The retained Cr(III) is efficiently recovered by 0.10 mol L(-1) HNO3 and quantified with ICP-MS. By loading 4000 μL of sample solution at pH 7.0 for 2 h and stripping with 400 μL of 0.10 mol L(-1) HNO3, a linear range of 0.05-0.50 μg L(-1) is achieved along with an enrichment factor of 7.1. The limit of detection is derived to be 15 ng L(-1) (3σ, n = 7) with a RSD of 3.6% (0.25 μg L(-1), n = 7). The procedure is validated by analyzing chromium content in a certified reference material GBW08608 (simulate water). In addition, chromium speciation in real water samples is demonstrated. Cr(VI) is first converted into Cr(III), and the latter subjected to the sorption onto the Cr(III) binding phage, followed by elution and quantification of the total chromium amount, and finally speciation is achieved by difference.

  19. Chromium(III) Binding Phage Screening for the Selective Adsorption of Cr(III) and Chromium Speciation.

    PubMed

    Yang, Ting; Zhang, Xiao-Yu; Zhang, Xiao-Xiao; Chen, Ming-Li; Wang, Jian-Hua

    2015-09-30

    The screening of suitable sorption medium is the key for highly selective solid phase extraction (SPE) of heavy metals. Herein, we demonstrate a universal protocol for producing selective SPE adsorbent through an evolutional approach based on phage display peptide library. By choosing chromium(III) as the model target, immobilized Cr(III) resins are first prepared using Ni-NTA affinity resins for the interaction with NEB heptapeptide phage library. After three rounds of positive biopanning against target Cr(III) and negative biopanning against foreign metal species, Cr(III) binding phages with high selectivity are obtained. The binding affinity and selectivity are further assessed with ELISA. The phages bearing peptide (YKASLIT) is finally chosen and immobilized on cytopore beads for Cr(III) preconcentration. The retained Cr(III) is efficiently recovered by 0.10 mol L(-1) HNO3 and quantified with ICP-MS. By loading 4000 μL of sample solution at pH 7.0 for 2 h and stripping with 400 μL of 0.10 mol L(-1) HNO3, a linear range of 0.05-0.50 μg L(-1) is achieved along with an enrichment factor of 7.1. The limit of detection is derived to be 15 ng L(-1) (3σ, n = 7) with a RSD of 3.6% (0.25 μg L(-1), n = 7). The procedure is validated by analyzing chromium content in a certified reference material GBW08608 (simulate water). In addition, chromium speciation in real water samples is demonstrated. Cr(VI) is first converted into Cr(III), and the latter subjected to the sorption onto the Cr(III) binding phage, followed by elution and quantification of the total chromium amount, and finally speciation is achieved by difference. PMID:26346061

  20. Potential of Live Spirulina platensis on Biosorption of Hexavalent Chromium and Its Conversion to Trivalent Chromium.

    PubMed

    Colla, Luciane Maria; Dal'Magro, Clinei; De Rossi, Andreia; Thomé, Antônio; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalga biomass has been described worldwide according their capacity to realize biosorption of toxic metals. Chromium is one of the most toxic metals that could contaminate superficial and underground water. Considering the importance of Spirulina biomass in production of supplements for humans and for animal feed we assessed the biosorption of hexavalent chromium by living Spirulina platensis and its capacity to convert hexavalent chromium to trivalent chromium, less toxic, through its metabolism during growth. The active biomass was grown in Zarrouk medium diluted to 50% with distilled water, keeping the experiments under controlled conditions of aeration, temperature of 30°C and lighting of 1,800 lux. Hexavalent chromium was added using a potassium dichromate solution in fed-batch mode with the aim of evaluate the effect of several additions contaminant in the kinetic parameters of the culture. Cell growth was affected by the presence of chromium added at the beginning of cultures, and the best growth rates were obtained at lower metal concentrations in the medium. The biomass removed until 65.2% of hexavalent chromium added to the media, being 90.4% converted into trivalent chromium in the media and 9.6% retained in the biomass as trivalent chromium (0.931 mg.g(-1)). PMID:25436450

  1. Nematoda from the terrestrial deep subsurface of South Africa.

    PubMed

    Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C

    2011-06-01

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.

  2. Nematoda from the terrestrial deep subsurface of South Africa

    NASA Astrophysics Data System (ADS)

    Borgonie, G.; García-Moyano, A.; Litthauer, D.; Bert, W.; Bester, A.; van Heerden, E.; Möller, C.; Erasmus, M.; Onstott, T. C.

    2011-06-01

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.

  3. Nematoda from the terrestrial deep subsurface of South Africa.

    PubMed

    Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C

    2011-06-01

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System. PMID:21637257

  4. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  5. Endoscopic subsurface imaging in tissues

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  6. Uptake, Distribution and Speciation of Chromium

    SciTech Connect

    Bluskov,S.; Arocena, J.; Omotoso, O.; Young, J.

    2005-01-01

    Brassica juncea (Indian mustard) has been widely used in phytoremediation because of its capacity to accumulate high levels of chromium (Cr) and other metals. The present study was conducted to investigate mechanism(s) involved in Cr binding and sequestration by B. juncea. The plants were grown under greenhouse conditions in field-moist or air-dried soils, amended with 100 mg kg -1 of Cr (III or VI). The plant concentrated Cr mainly in the roots. B. juncea removed an average of 48 and 58 {mu}g Cr per plant from Cr (III) and Cr (VI)-treated soils, respectively. The uptake of Cr was not affected by the moisture status of the soils. X-ray absorption near-edge spectroscopy measurements showed only Cr (III) bound predominantly to formate and acetate ligands, in the bulk and rhizosphere soils, respectively. In the plant tissues, Cr (III) was detected, primarily as acetate in the roots and oxalate in the leaves. X-ray microprobe showed the sites of Cr localization, and probably sequestration, in epidermal and cortical cells in the roots and epidermal and spongy mesophyll cells in the leaves. These findings demonstrate the ability of B. juncea to detoxify more toxic Cr (VI), thereby making this plant a potential candidate for phytostabilization.

  7. Potentiometry: A Chromium (III) -- EDTA Complex

    ERIC Educational Resources Information Center

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  8. Efficiency of silicon solar cells containing chromium

    NASA Technical Reports Server (NTRS)

    Salama, A. M. (Inventor)

    1982-01-01

    Efficiency of silicon solar cells containing about one quadrillon atoms cu cm of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200 C to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon mateial.

  9. Efficiency of silicon solar cells containing chromium

    DOEpatents

    Frosch, Robert A. Administrator of the National Aeronautics and Space; Salama, Amal M.

    1982-01-01

    Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

  10. Electrodeposition of microcrystalline chromium from fused salts

    SciTech Connect

    Vargas, T.; Varma, R.; Brown, A.

    1987-01-01

    Chromium can be conveniently electroplated from fused chloride electrolytes. The deposition from LiCl-KCl (eutectic)-CrCl/sub 2/ melts is known to produce large crystal grains. Large grain size and other problems encountered in the electrodeposition of microcrystalline chromium from fused salt are discussed. The results indicate that combined use of forced electrolyte convection and a nucleating pulse in conjunction with a periodic reverse pulse produces fine-grained deposits.

  11. Towed Subsurface Optical Communications Buoy

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert C.; Farr, William H.

    2013-01-01

    The innovation allows critical, high-bandwidth submarine communications at speed and depth. This reported innovation is a subsurface optical communications buoy, with active neutral buoyancy and streamlined flow surface veins for depth control. This novel subsurface positioning for the towed communications buoy enables substantial reduction in water-absorption and increased optical transmission by eliminating the intervening water absorption and dispersion, as well as by reducing or eliminating the beam spread and the pulse spreading that is associated with submarine-launched optical beams.

  12. Phylogenetic relationships among subsurface microorganisms. Project technical progress report

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1993-08-01

    The development of group-specific, 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface microorganisms is described. Because portions of the 16S RRNA molecule are unique to particular organisms or groups, these unique sequences can serve as targets for hybridization probes with varied specificity. Target sequences for selected microbial groups have been identified by analysis of the available RRNA sequence data for subsurface microbes. Hybridization probes for these target sequences were produced and their effectiveness and specificity tested with RNA cell blot and in situ hybridizations. Selected probes were used to study phylogenetic relationships among subsurface microbes and to classify these organisms into the specific groups that the probes are designed to detect. To date, this work has been performed on the P24 and C10 borehole isolates from the Savannah River Site. The probes will also be used, with in situ hybridizations, to detect and monitor selected microbial groups in freshly collected subsurface samples and laboratory microcosms in collaboration with other investigators. In situ hybridizations permit detection of selected microbial types without the necessity to isolate and culture them in the laboratory.

  13. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    SciTech Connect

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of

  14. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    DOE PAGES

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions bymore » this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  15. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    PubMed Central

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 µM h−1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  16. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  17. Bioremediation of chromium solutions and chromium containing wastewaters.

    PubMed

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction.

  18. The measurement of volatile chromium in biological materials.

    PubMed

    Shapcott, D; Khoury, K; Demers, P P; Vobecky, J; Vobecky, J

    1977-10-01

    Chromium is an essential trace element in mammals since dietary chromium deficiency results in glucose intolerance due to decreased sensitivity to insulin. In humans, both adults and children with glucose intolerance have been improved by treatment with chromium. Furthermore, chromium deficiency has been implicated as a causative factor in hypercholesterolemia and atherosclerosis. However, little is known of the metabolism of chromium in humans, primarily because of analytical difficulties. The biologically active form of chromium is the "glucose tolerance factor" (GTF) which is a co-ordination complex of trivalent chromium with nicotinic acid and certain amino acids. At physiological pH, ionic chromium as a simple inorganic salt is insoluble in water, but trivalent chromium forms stable complexes with ascorbic acid, amino acids and other substances present in blood and tissue. Chromium is present in serum, bound to protein and also as dialysable or ultrafiltrable chromium (free chromium). The free chromium includes G.T.F. and other coordination complexes and represents the metabolically active form of the element; the ratio free/protein bound chromium in serum varies within the individual according to the diet and the metabolic state. PMID:912855

  19. Release of Hexavalent Chromium by Ash and Soils in Wildfire-Impacted Areas

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Plumlee, Geoffrey S.; Hageman, Philip L.; Adams, Monique

    2008-01-01

    The highly oxidizing environment of a wildfire has the potential to convert any chromium present in the soil or in residential or industrial debris to its more toxic form, hexavalent chromium, a known carcinogen. In addition, the highly basic conditions resulting from the combustion of wood and wood products could result in the stabilization of any aqueous hexavalent chromium formed. Samples were collected from the October 2007 wildfires in Southern California and subjected to an array of test procedures to evaluate the potential effects of fire-impacted soils and ashes on human and environmental health. Soil and ash samples were leached using de-ionized water to simulate conditions resulting from rainfall on fire-impacted areas. The resulting leachates were of high pH (10-13) and many, particularly those of ash from burned residential areas, contained elevated total chromium as much as 33 micrograms per liter. Samples were also leached using a near-neutral pH simulated lung fluid to model potential chemical interactions of inhaled particles with fluids lining the respiratory tract. High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectrometry was used to separate and detect individual species (for example, Cr+3, Cr+6, As+3, As+5, Se+4, and Se+6). These procedures were used to determine the form of the chromium present in the de-ionized water and simulated lung fluid leachates. The results show that in the de-ionized water leachate, all of the chromium present is in the form of Cr+6, and the resulting high pH tends to stabilize Cr+6 from reduction to Cr+3. Analysis of the simulated lung fluid leachates indicates that the predominant form of chromium present in the near-neutral pH of lung fluid would be Cr+6, which is of concern due to the high possibility of inhalation of the small ash and soil particulates, particularly by fire or restoration crews.

  20. Subsurface In situ elemental composition measurements with PING

    NASA Astrophysics Data System (ADS)

    Parsons, A.; McClanahan, T.; Bodnarik, J.; Evans, L.; Nowicki, S.; Schweitzer, J.; Starr, R.

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  1. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  2. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    PubMed

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated. PMID:25705745

  3. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    PubMed

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  4. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    SciTech Connect

    D.W. Markman

    2001-08-06

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M&O 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M&O 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree of

  5. Carrier element-free coprecipitation (CEFC) method for the separation, preconcentration and speciation of chromium using an isatin derivative.

    PubMed

    Bulut, Volkan Numan; Ozdes, Duygu; Bekircan, Olcay; Gundogdu, Ali; Duran, Celal; Soylak, Mustafa

    2009-01-19

    A new, simple, rapid and sensitive separation, preconcentration and speciation procedure for chromium in environmental liquid and solid samples has been established. The present speciation procedure for Cr(III) and Cr(VI) is based on combination of carrier element-free coprecipitation (CEFC) and flame atomic absorption spectrometric (FAAS) determinations. In this method a newly synthesized organic coprecipitant, 5-chloro-3-[4-(trifluoromethoxy) phenylimino]indolin-2-one (CFMEPI), was used without adding any carrier element for coprecipitation of chromium(III). After reduction of chromium(VI) by concentrated H(2)SO(4) and ethanol, the procedure was applied for the determination of total chromium. Chromium(VI) was calculated as the difference between the amount of total chromium and chromium(III). The optimum conditions for coprecipitation and speciation processes were investigated on several commonly tested experimental parameters, such as pH of the solution, amount of coprecipitant, sample volume, etc. No considerable interference was observed from the other investigated anions and cations, which may be found in natural water samples. The preconcentration factor was found to be 40. The detection limit for chromium(III) corresponding to three times the standard deviation of the blank (N=10) was found 0.7 microg L(-1). The present procedure was successfully applied for speciation of chromium in several liquid and solid environmental samples. In order to support the accuracy of the method, the certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) were analyzed, and standard APDC-MIBK liquid-liquid extraction method was performed. The results obtained were in good agreement with the certified values. PMID:19100880

  6. Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    NASA Astrophysics Data System (ADS)

    Petel, O. E.; Appleby-Thomas, G. J.; Wood, D. C.; Capozzi, A.; Nabavi, A.; Goroshin, S.; Frost, D. L.; Hazell, P. J.

    2016-04-01

    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a one-dimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium contents.

  7. Assay of In Vivo Chromium with a Hollow-fiber Dialysis Sensor

    PubMed Central

    Ly, Suw Young; Yoo, Hai-Soo; Jung, Minki; Ko, Kwang Hee; Kim, Byung Jin; Lee, Ki Chul; Choi, Byung Min

    2010-01-01

    The analytical in vivo chromium ion was searched for using a voltammetric hollow-fiber dialysis sensor via square wave stripping voltammetry (SW) , cyclic voltammetry (CV) , and chronoamperometry. Under optimum parameters, the analytical results indicated linear working ranges of 50~400 mg/l CV and 10~80 μg/l SW within a 30-sec accumulation time. The analytical detection limit (S/N) was 6.0 μg/l. The developed method can be applied to in vivo tissues and in ex vivo toxicity assay, as well as to other materials that require chromium analysis. PMID:24278529

  8. Oral Chromium Exposure and Toxicity

    PubMed Central

    Sun, Hong; Brocato, Jason

    2015-01-01

    Hexavalent chromium [Cr(VI)] is a known carcinogen when inhaled. However, inhalational exposure to Cr(VI) affects only a small portion of the population, mainly by occupational exposures. In contrast, oral exposure to Cr(VI) is widespread and affects many people throughout the globe. In 2008, the National Toxicology Program (NTP) released a 2-year study demonstrating that ingested Cr(VI) was carcinogenic in rats and mice. The effects of Cr(VI) oral exposure is mitigated by reduction in the gut, however a portion evades the reductive detoxification and reaches target tissues. Once Cr(VI) enters the cell, it ultimately gets reduced to Cr(III), which mediates its toxicity via induction of oxidative stress during the reduction while Cr intermediates react with protein and DNA. Cr(III) can form adducts with DNA that may lead to mutations. This review will discuss the potential adverse effects of oral exposure to Cr(VI) by presenting up-to-date human and animal studies, examining the underlying mechanisms that mediate Cr(VI) toxicity, as well as highlighting opportunities for future research. PMID:26231506

  9. Enhanced spectrophotometric determination of chromium (VI) with diphenylcarbazide using internal standard and derivative spectrophotometry.

    PubMed

    Wróbel, K; Wróbel, K; López-de-Alba, P L; López-Martínez, L

    1997-11-01

    In the present work, erioglaucine A was applied as internal standard to enhanced spectrophotometric determination of chromium (VI) with diphenylcarbazide. The following procedure was used: (1) addition of internal standard and formation of ion pairs of Cr (VI) with benzyltributylammonium bromide (BTAB) (sample volume 100 ml), (2) extraction to 10 ml of methylene chloride, (3) evaporation in nitrogen stream, and (4) redissolution in a micro-volume with addition of diphenylcarbazide for color development (final volume 200 mul). The preconcentration factor achieved was about 400 and it was shown that, using internal standard, the analytical errors due to sample treatment were reduced. The analytical signals for chromium and internal standard were obtained at 591.30 and 653.50 nm from first derivative spectra, normalized against (1)D(653.50nm). The analytical characteristics evaluated were: detection limit = 0.06 mug l(-1), quantification limit = 0.19 mug l(-1), precision for 1 mug l(-1) 14.2%, and for 10 mug l(-1) 3.2%, correlation coefficient of linear regression was 0.9985. The proposed procedure was applied to determination of chromium (VI) in tap water. Total chromium was determined by electrothermal atomic absorption spectrometry, the recovery of hexavalent chromium added was then evaluated and compared with the results of the proposed procedure. In this experiment, good agreement was obtained between results obtained by the two methods. PMID:18966962

  10. Stainless steel cookware as a significant source of nickel, chromium, and iron.

    PubMed

    Kuligowski, J; Halperin, K M

    1992-08-01

    Stainless steels are widely used materials in food preparation and in home and commercial cookware. Stainless is readily attacked by organic acids, particularly at cooking temperatures; hence iron, chromium, and nickel should be released from the material into the food. Nickel is implicated in numerous health problems, notably allergic contact dermatitis. Conversely, chromium and iron are essential nutrients for which stainless could be a useful source. Home cookware was examined by atomic absorption spectroscopy: seven different stainless utensils as well as cast iron, mild steel, aluminum and enamelled steel. The materials were exposed to mildly acidic conditions at boiling temperature. Nickel was a major corrosion product from stainless steel utensils; chromium and iron were also detected. It is recommended that nickel-sensitive patients switch to a material other than stainless, and that the stainless steel cookware industry seriously consider switching to a non-nickel formulation.

  11. Atmospheric energy for subsurface life on Mars?

    PubMed Central

    Weiss, Benjamin P.; Yung, Yuk L.; Nealson, Kenneth H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H2 and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H2 and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H2O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life. PMID:10660689

  12. Atmospheric energy for subsurface life on Mars?

    NASA Technical Reports Server (NTRS)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  13. Phylogenetic relationships among subsurface microorganisms. Progress report

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-12-31

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  14. Atmospheric energy for subsurface life on Mars?

    PubMed

    Weiss, B P; Yung, Y L; Nealson, K H

    2000-02-15

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  15. Oral bioavailability of chromium from a specific site

    SciTech Connect

    Witmer, C.M.; Harris, R. ); Shupack, S.I. )

    1991-05-01

    Analysis of soil from a specific site in New Jersey indicated a low level of sodium and chromium present as a calcium compound. Chromium was then administered orally to young, mature male rats at a level of 240 {mu}g/kg for 14 days as chromium-contaminated soil, as CaCrO{sub 4}, and as an equimolar mixture of the soil and calcium salts for 14 days. The rats were sacrificed 24 hours after the last dosing, and tissues were taken immediately for chromium analysis. Blood, muscle, and liver contained the highest levels of chromium in these animals, although kidney contained the highest concentration per gram of tissue. Total amount of chromium in the tissues was less than 2% of the administered chromium. In a study of the excretion of chromium, the animals were dosed orally for 8 days and the chromium in feces and urine was determined on days 1, 2, 7, and 8. The animals administered the chromium in soil had higher levels of chromium in both urine and feces on all days compared to the group fed the CaCrO{sub 4}. The total recovery of chromium in any of the 2-day periods was less than 50% of the chromium administered during that period.

  16. Chromium Recycling in the United States in 1998

    USGS Publications Warehouse

    Papp, John F.

    2001-01-01

    The purpose of this report is to illustrate the extent to which chromium was recycled in the United States in 1998 and to identify chromium-recycling trends. The major use of chromium was in the metallurgical industry to make stainless steel; substantially less chromium was used in the refractory and chemical industries. In this study, the only chromium recycling reported was that which was a part of stainless steel scrap reuse. In 1998, 20 percent of the U.S. apparent consumption of chromium was secondary (from recycling); the remaining 80 percent was based on net chromium commodity imports and stock adjustments. Chromite ore was not mined in the United States in 1998. In 1998, 75,300 metric tons (t) of chromium contained in old scrap was consumed in the United States; it was valued at $66.4 million. Old scrap generated contained 132,000 t of chromium. The old scrap recycling efficiency was 87 percent, and the recycling rate was 20 percent. About 18,000 t of chromium in old scrap was unrecovered. New scrap consumed contained 28,600 t of chromium, which yielded a new-to-old-scrap ratio of 28:72. U.S. chromium-bearing stainless steel scrap net exports were valued at $154 million and were estimated to have contained 41,000 t of chromium.

  17. Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide.

    PubMed Central

    Arrage, A A; Phelps, T J; Benoit, R E; White, D C

    1993-01-01

    Aerobic and microaerophilic subsurface bacteria were screened for resistance to UV light. Contrary to the hypothesis that subsurface bacteria should be sensitive to UV light, the organisms studied exhibited resistance levels as efficient as those of surface bacteria. A total of 31% of the aerobic subsurface isolates were UV resistant, compared with 26% of the surface soil bacteria that were tested. Several aerobic, gram-positive, pigmented, subsurface isolates exhibited greater resistance to UV light than all of the reference bacterial strains tested except Deinococcus radiodurans. None of the microaerophilic, gram-negative, nonpigmented, subsurface isolates were UV resistant; however, these isolates exhibited levels of sensitivity similar to those of the gram-negative reference bacteria Escherichia coli B and Pseudomonas fluorescens. Photoreactivation activity was detected in three subsurface isolates, and strain UV3 exhibited a more efficient mechanism than E. coli B. The peroxide resistance of four subsurface isolates was also examined. The aerobic subsurface bacteria resistant to UV light tolerated higher levels of H2O2 than the microaerophilic organisms. The conservation of DNA repair pathways in subsurface microorganisms may be important in maintaining DNA integrity and in protecting the organisms against chemical insults, such as oxygen radicals, during periods of slow growth. PMID:8285661

  18. [Occupational exposure to chromium(VI) compounds].

    PubMed

    Skowroń, Jolanta; Konieczko, Katarzyna

    2015-01-01

    This article discusses the effect of chromium(VI) (Cr(VI)) on human health under conditions of acute and chronic exposure in the workplace. Chromium(VI) compounds as carcinogens and/or mutagens pose a direct danger to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be reduced to a minimum. In the European Union the proposed binding occupational exposure limit value (BOELV) for chromium(VI) of 0.025 mg/m³ is still associated with high cancer risk. Based on the Scientific Commitee of Occupational Exposure Limits (SCOEL) document chromium(VI) concentrations at 0.025 mg/m³ increases the risk of lung cancer in 2-14 cases per 1000 exposed workers. Exposure to chromium(VI) compounds expressed in Cr(VI) of 0.01 mg Cr(VI)/m3; is responsible for the increased number of lung cancer cases in 1-6 per 1000 people employed in this condition for the whole period of professional activity.

  19. The enriched chromium neutrino source for GALLEX

    SciTech Connect

    Hartmann, F.X.; Hahn, R.L.

    1991-01-18

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs.

  20. Differences in proliferation, differentiation, and cytokine production by bone cells seeded on titanium-nitride and cobalt-chromium-molybdenum surfaces.

    PubMed

    van Hove, Ruud P; Nolte, Peter A; Semeins, Cornelis M; Klein-Nulend, Jenneke

    2013-08-01

    Titanium-nitride coating is used to improve cobalt-chromium-molybdenum implant survival in total knee arthroplasty, but its effect on osteoconduction is unknown. Chromium and cobalt ions negatively affect the growth and metabolism of cultured osteoblasts while enhancing osteoclastogenic cytokine production. Therefore, it was hypothesized that a titanium-nitride surface would enhance osteoblast proliferation and/or differentiation and reduce osteoclastogenic cytokine production compared with a cobalt-chromium-molybdenum surface. MC3T3-E1 osteoblasts showed increased proliferation and decreased differentiation on titanium-nitride, while cytokine interleukin-6 production was higher on porous cobalt-chromium-molybdenum (p < 0.05), though interleukin-1β was occasionally detected on both surfaces. These findings suggest improved osteoconduction on titanium-nitride compared with cobalt-chromium-molybdenum surface.

  1. Microbeam x-ray absorption spectroscopy study of chromium in large-grain uranium dioxide fuel

    NASA Astrophysics Data System (ADS)

    Mieszczynski, C.; Kuri, G.; Bertsch, J.; Martin, M.; Borca, C. N.; Delafoy, Ch; Simoni, E.

    2014-09-01

    Synchrotron-based microprobe x-ray absorption spectroscopy (XAS) has been used to study the local atomic structure of chromium in chromia-doped uranium dioxide (UO2) grains. The specimens investigated were a commercial grade chromia-doped UO2 fresh fuel pellet, and materials from a spent fuel pellet of the same batch, irradiated with an average burnup of ~40 MW d kg-1. Uranium L3-edge and chromium K-edge XAS have been measured, and the structural environments of central uranium and chromium atoms have been elucidated. The Fourier transform of uranium L3-edge extended x-ray absorption fine structure shows two well-defined peaks of U-O and U-U bonds at average distances of 2.36 and 3.83 Å. Their coordination numbers are determined as 8 and 11, respectively. The chromium Fourier transform extended x-ray absorption fine structure of the pristine UO2 matrix shows similar structural features with the corresponding spectrum of the irradiated spent fuel, indicative of analogous chromium environments in the two samples studied. From the chromium XAS experimental data, detectable next neighbor atoms are oxygen and uranium of the cation-substituted UO2 lattice, and two distinct subshells of chromium and oxygen neighbors, possibly because of undissolved chromia particles present in the doped fuels. Curve-fitting analyses using theoretical amplitude and phase-shift functions of the closest Cr-O shell and calculations with ab initio computer code FEFF and atomic clusters generated from the chromium-dissolved UO2 structure have been carried out. There is a prominent reduction in the length of the adjacent Cr-O bond of about 0.3 Å in chromia-doped UO2 compared with the ideal U-O bond length in standard UO2 that would be expected because of the change in effective Coulomb interactions resulting from replacing U4+ with Cr3+ and their ionic size differences. The contraction of shortest Cr-U bond is ~0.1 Å relative to the U-U bond length in bulk UO2. The difference in the

  2. Method of installing subsurface barrier

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  3. Surface and Subsurface Analyses of Metal-on-Polyethylene Total Hip Replacement Retrievals.

    PubMed

    Vuong, Vicky; Pettersson, Maria; Persson, Cecilia; Larsson, Sune; Grandfield, Kathryn; Engqvist, Håkan

    2016-05-01

    Metal-on-polyethylene (MoP) articulations are one of the most reliable implanted hip prostheses. Unfortunately, long-term failure remains an obstacle to the service life. There is a lack of higher resolution research investigating the metallic surface component of MoP hip implants. This study investigates the surface and subsurface features of metallic cobalt chromium molybdenum alloy (CoCrMo) femoral head components from failed MoP retrievals. Unused prostheses were used for comparison to differentiate between wear-induced defects and imperfections incurred during implant manufacturing. The predominant scratch morphology observed on the non-implanted references was shallow and linear, whereas the scratches on the retrievals consisted of largely nonlinear, irregular scratches of varying depth (up to 150 nm in retrievals and up to 60 nm in reference samples). Characteristic hard phases were observed on the surface and subsurface material of the cast samples. Across all samples, a 100-400 nm thick nanocrystalline layer was visible in the immediate subsurface microstructure. Although observation of the nanocrystalline layer has been reported in metal-on-metal articulations, its presence in MoP retrievals and unimplanted prostheses has not been extensively examined. The results suggest that manufacturing-induced surface and subsurface microstructural features are present in MoP hip prostheses prior to implantation and naturally, these imperfections may influence the in vivo wear processes after implantation. PMID:26399989

  4. Surface and Subsurface Analyses of Metal-on-Polyethylene Total Hip Replacement Retrievals.

    PubMed

    Vuong, Vicky; Pettersson, Maria; Persson, Cecilia; Larsson, Sune; Grandfield, Kathryn; Engqvist, Håkan

    2016-05-01

    Metal-on-polyethylene (MoP) articulations are one of the most reliable implanted hip prostheses. Unfortunately, long-term failure remains an obstacle to the service life. There is a lack of higher resolution research investigating the metallic surface component of MoP hip implants. This study investigates the surface and subsurface features of metallic cobalt chromium molybdenum alloy (CoCrMo) femoral head components from failed MoP retrievals. Unused prostheses were used for comparison to differentiate between wear-induced defects and imperfections incurred during implant manufacturing. The predominant scratch morphology observed on the non-implanted references was shallow and linear, whereas the scratches on the retrievals consisted of largely nonlinear, irregular scratches of varying depth (up to 150 nm in retrievals and up to 60 nm in reference samples). Characteristic hard phases were observed on the surface and subsurface material of the cast samples. Across all samples, a 100-400 nm thick nanocrystalline layer was visible in the immediate subsurface microstructure. Although observation of the nanocrystalline layer has been reported in metal-on-metal articulations, its presence in MoP retrievals and unimplanted prostheses has not been extensively examined. The results suggest that manufacturing-induced surface and subsurface microstructural features are present in MoP hip prostheses prior to implantation and naturally, these imperfections may influence the in vivo wear processes after implantation.

  5. Chromium Stable Isotope Fractionation During Bacterial Reduction of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Sikora, E. R.; Johnson, T. M.; Bullen, T. D.

    2004-05-01

    Chromium is a common contaminant in surface water and ground water. It is redox-active, occurring as Cr(VI), which is soluble and toxic, and Cr(III), which is insoluble and less toxic. Reduction of Cr(VI) to Cr(III) is often the most important reaction controlling attenuation of Cr plumes, and Cr stable isotope (53Cr/52Cr) measurements show great promise as indicators of this reaction. Previous results indicate Cr(VI) reduction involves a kinetic isotope effect; lighter isotopes reduce at greater rates and heavier isotopes become increasingly enriched in the remaining Cr(VI) with increasing extent of reduction. If the size of this effect can be constrained well, then precise estimates of reduction are possible. The few experiments completed to date involved abiotic Cr(VI) reduction and indicated a fractionation factor of 1000lnα = 3.4 ± 0.2. Abiotic reduction by Fe(II), organic compounds, and other agents is possible in natural settings, but some bacteria are known to reduce Cr(VI) as well. This study determined Cr fractionation factors for anaerobic reduction by Shewanella Oneidensis MR-1. Previous studies of kinetic isotope effects during reduction of sulfate, selenate, and nitrate reveal that fractionation factors depend on the metabolic states of the bacteria. Those in rich media usually induce less fractionation than those in leaner conditions. Concentrations of electron donors and other nutrients are usually small in natural settings, so we suspended MR-1 cells in buffer solutions with small concentrations of lactate or formate, and Cr(VI). Reduction occurred slowly, over days or weeks. The calculated value of 1000lnα was 4.1 ± 0.2 for several experiments with a range of donor concentrations between 3.6 and 100 micromolar. This suggests that under the lean conditions found in most aquifers, the kinetic isotope effect induced by bacterial reduction is roughly equal to that induced by abiotic reduction, and that the Cr isotope method will be useful for

  6. Chromium Stable Isotope Fractionation During Abiotic Reduction of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Kitchen, J. W.; Johnson, T. M.; Bullen, T. D.

    2004-12-01

    Chromium, a common surface water and ground water contaminant, occurs as Cr(VI), which is soluble and toxic, and Cr(III), which is insoluble and less toxic. Reduction of Cr(VI) to Cr(III) is often the most important reaction controlling attenuation of Cr plumes, and Cr stable isotope (53Cr/52Cr) measurements show great promise as indicators of this reaction. Cr(VI) reduction involves a kinetic isotope effect; lighter isotopes react at greater rates and heavier isotopes become increasingly enriched in the remaining Cr(VI) with increasing extent of reduction. If the size of this effect can be constrained well, then precise estimates of reduction are possible. Cr(VI) reduction can be mediated by microbes, or may occur abiotically in the presence of Fe(II) and a variety of organic compounds. A recent study of bacterial reduction of Cr(VI) under low electron donor conditions yielded a Cr isotope fractionation factor of 1000lnα = 4.1 ± 0.2. A previous study of abiotic reduction indicated a fractionation factor of 1000lnα = 3.4 ± 0.2, but this work was limited to 3 experiments. The present study provides a more detailed look at Cr isotope fractionation induced by abiotic Cr(VI) reduction by: Fe(II); mandelic acid with alumina and goethite catalysts; and humic substances. Reduction occurred slowly, over days or weeks. The fractionation factor for the organic reductants (all at pH=4), including two surface-catalyzed mandelic acid reactions, two fulvic reactions, and one humic reaction,- was 1000lnα = 3.0 ± 0.4, with no statistically significant differences between experiments. The fractionation factors for the Fe(II) experiments were 4.7 ± 0.3, 3.7 ± 0.2, and 2.9 ± 0.2 for pH = 4, 5, and 6, respectively. Further work is necessary to better constrain this pH dependence and to determine if it occurs with the organic reductants. The overall variability in the size of the Cr isotope fractionation during Cr(VI) reduction translates into a moderate level of uncertainty

  7. Quantification of total and hexavalent chromium in lager beers: variability between styles and estimation of daily intake of chromium from beer.

    PubMed

    Vieira, Elsa; Soares, M Elisa; Kozior, Marta; Krejpcio, Zbigniew; Ferreira, Isabel M P L V O; Bastos, M Lourdes

    2014-09-17

    A survey of the presence of total and hexavalent chromium in lager beers was conducted to understand the variability between different styles of lager beer packaged in glass or cans and to estimate daily intake of total Cr and hexavalent chromium from beer. Graphite-furnace atomic absorption spectroscopy using validated methodologies was applied. Selective extraction of hexavalent chromium was performed using a Chromabond NH2/500 mg column and elution with nitric acid. The detection limits were 0.26 and 0.68 μg L(-1) for total Cr and Cr(VI), respectively. The mean content of total Cr ranged between 1.13 μg L(-1) in canned pale lager and 4.32 μg L(-1) in low-alcohol beers, whereas the mean content of Cr(VI) was <2.51 μg L(-1). Considering an intake of 500 mL of beer, beer consumption can contribute approximately 2.28-8.64 and 1.6-6.17% of the recommended daily intake of chromium for women and men, respectively.

  8. Thermal stabilization of chromium(VI) in kaolin.

    PubMed

    Wei, Yu-Ling; Chiu, Shu-Yuan; Tsai, Hsien-Neng; Yang, Yaw-Wen; Lee, Jyh-Fu

    2002-11-01

    Reduction of Cr(VI) by heating may be a useful detoxification mechanism for thermal immobilization. Using X-ray absorption spectroscopy, the change of speciation of chromium in 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin further heated at 500, 900, or 1100 degrees C was studied. The 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin sample was prepared by mixing 1.5 L of 0.257 M CrO3 solution (pH 0.71) with 0.5 kg of kaolin powder for 48 h, and then the slurry was heated (dried) at 105 degrees C until a constant weight was reached. The toxicity characteristic leaching procedure method was used to determine the percentage of leached chromium from all heated samples. In all 500-900 degrees C heated Cr(VI)-sorbed kaolin samples, Cr2O3 transformed from the hydrated Cr(VI) by a 4-h heat application was identified by the X-ray absorption near edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopy as the key species that is leaching-resistant due to its low solubility. For the 1100 degrees C heated Cr(VI)-sorbed kaolin sample, the Fourier transform of its EXAFS spectrum indicates that the intensity of the peaks at 2.45 (Cr-Cr shell of Cr2O3) and 5.00 A (Cr-Cr and Cr-O shells of Cr2O3) without phase shift correction is either relatively smaller or disappearing, compared with that of the 500-900 degrees C heated Cr(VI)-sorbed kaolin samples. It is suggested that chromium octahedra were bridged to silica tetrahedra and incorporated in minerals formed at 1100 degrees C, such as mullite or sillimanite, since these phases were detected by XRD. Cr of this form is not easily leached. PMID:12433175

  9. Hexavalent and trivalent chromium in leather: What should be done?

    PubMed

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions.

  10. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  11. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  12. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  13. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  14. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  15. Avoidance behavior of young black ducks treated with chromium

    USGS Publications Warehouse

    Heinz, G.H.; Haseltine, S.D.

    1981-01-01

    Pairs of adult black ducks (Anas rubripes) were fed a diet containing 0, 20, or 200 ppm chromium in the form of chromium potassium sulfate. Ducklings from these pairs were fed the same diets as adults and were tested for their avoidance responses to a fright stimulus. Neither level of chromium had a significant effect on avoidance behavior.

  16. 21 CFR 73.3111 - Chromium oxide greens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Chromium oxide greens. 73.3111 Section 73.3111... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3111 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens (chromic oxide) (CAS Reg. No....

  17. 21 CFR 73.3111 - Chromium oxide greens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Chromium oxide greens. 73.3111 Section 73.3111... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3111 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens (chromic oxide) (CAS Reg. No....

  18. 21 CFR 73.3111 - Chromium oxide greens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chromium oxide greens. 73.3111 Section 73.3111... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3111 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens (chromic oxide) (CAS Reg. No....

  19. Effects of exercise on chromium levels. Is supplementation required?

    PubMed

    Clarkson, P M

    1997-06-01

    It is estimated that most individuals are not ingesting sufficient amounts of chromium in their diets. Although there is little information on chromium intake in athletes, many athletes ingest more calories than do non-athletes so their chromium intake should be adequate. However, athletes who restrict calories to maintain low bodyweights could compromise their chromium status. Some evidence also shows that exercise may increase chromium loss into the urine. At present, it is not known whether this loss necessitates additional chromium in the diet or whether the body will increase retention in response to the loss. Chromium deficiency is thought to contribute to glucose intolerance and unhealthy blood lipid profiles. The primary function of chromium is to potentiate the effects of insulin, and thereby alter glucose, amino acid and fat metabolism. Chromium supplements have been purported to increase muscle mass and decrease body fat. However, the preponderance of evidence has not supported this claim. There is little information available on the long term use of chromium supplements, but at present, supplements within the Estimated Safe and Adequate Daily Dietary Allowance (ESADDI) level do not appear harmful. The prudent course of action for athletes would be to ingest foods rich in chromium and perhaps take a multivitamin/mineral supplement containing no more than the ESADDI of chromium. PMID:9219318

  20. 21 CFR 73.2327 - Chromium oxide greens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium oxide greens. 73.2327 Section 73.2327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2327 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens shall conform in identify and specifications to...

  1. 21 CFR 73.2327 - Chromium oxide greens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.2327 Section 73.2327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2327 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens shall conform in identify and specifications to...

  2. 48 CFR 252.223-7008 - Prohibition of Hexavalent Chromium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Chromium. 252.223-7008 Section 252.223-7008 Federal Acquisition Regulations System DEFENSE ACQUISITION... of Provisions And Clauses 252.223-7008 Prohibition of Hexavalent Chromium. As prescribed in 223.7306, use the following clause: Prohibition of Hexavalent Chromium (MAY 2011) (a) Definitions. As used...

  3. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to...

  4. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide...

  5. 21 CFR 73.3111 - Chromium oxide greens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium oxide greens. 73.3111 Section 73.3111... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3111 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens (chromic oxide) (CAS Reg. No....

  6. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to...

  7. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide...

  8. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color...

  9. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color...

  10. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  11. Synthesis and characterisation of chromium carbides

    NASA Astrophysics Data System (ADS)

    Detroye, M.; Reniers, F.; Buess-Herman, C.; Vereecken, J.

    1997-11-01

    This paper presents the synthesis and the characterisation of various chromium carbide compounds. Thin Cr 23C 6 films were deposited by reactive sputtering while Cr 7C 3 films were formed by the carburisation of chromium films in a CH 4/H 2 atmosphere. Cr xC y powders were synthesised from various precursors (Cr, CrN, Cr 2O 3) by reaction with CH 4/H 2 at high temperature. The samples were characterised by AES, XRD and electron diffraction. The effects of the experimental parameters (gas composition, temperature, reaction time) on the purity, the phase formed and the composition of the product of reaction are examined and discussed.

  12. Strategies for chromium bioremediation of tannery effluent.

    PubMed

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  13. Strategies for chromium bioremediation of tannery effluent.

    PubMed

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  14. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  15. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Nested investigation of subsurface connectivity between hillslopes and streams

    NASA Astrophysics Data System (ADS)

    Beiter, Daniel; Blume, Theresa; Weiler, Markus

    2016-04-01

    The high spatial variability of the subsurface, and thereby the spatial variability of its hydrological characteristics, still pose a great challenge to in-depth understanding and prediction of subsurface flow and the mechanisms that dynamically connect hillslopes and streams. Even though physical processes in porous media are theoretically very well understood, predicting hillslopes' responses to a specific (precipitation) event can be very intricate, due to the structural heterogeneity of real hillslope-stream systems. In the here presented study (carried out as part of the Catchments As Organized Systems (CAOS) research unit) we assess the linkage between hillslopes and streams via subsurface flow paths. This linkage can also be called "Connectivity", which describes separate regions within a certain catchment as being in a linked state - or not - via water flux. We focus our experimental efforts on several hillslopes with differing geological and morphological properties and seek for indications of connectivity at the hillslope/stream reach scale. These hillslopes are instrumented with soil moisture sensors and observation wells measuring shallow groundwater levels, electric conductivity and temperature continuously. This gives us a first indication of subsurface storage fluctuations and hillslope responses. This setup is extended at selected sites by additional observation wells and electrical resistivity tomography (ERT) transects which are measured in time lapse mode. Hillslope scale forced flow through experiments, where subsurface water flux is induced from upslope, will give an indication for a potential maximum of connectivity in a more or less controlled, yet real, environment. First results of these experiments are reported alongside with response patterns to natural rainfall events. The aim is to identify hydrological and morphological controls on subsurface connectivity depending on the site's characteristics, the system's current state and the

  17. Chromium in rivers impacted by tannery wastes determined by high performance liquid chromatography - inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira de Abreu, M.-H.; Vignati, D.; Dominik, J.

    2003-05-01

    The total chromium concentrations by ICP-MS and HPLC-ICP-MS and the redox chromium species have been determined in rivers impacted by untreated wastes from tanneries at Fès (Morocco). The results obtained by two ICP-MS analysis methods showed significantly different chromium values at m/z 53. The higher values obtained with external calibration, can be attributed to matrix effects, especially ^{37}Cl ^{16}O at m/z 53. This is confirmed on the chromatograms by the presence of a peak at 100s with the anomalous ^{52}Cr/^{53}Cr isotopic ratio. The hexavalent chromium was not detected. Two trivalent chromium monomer species, Cr(OH)(H2O)5^{2+} and Cr(H2O)6^{3+}, were present in low concentrations. We suppose that the major part of chromium occurred as Cr(III) polymeric species which were not retained on the column. These Cr(III) forms are usually complexed with Cl^- or/and SO4^{2-}, used as tanning agents.

  18. Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver.

    PubMed

    Wada, O; Wu, G Y; Yamamoto, A; Manabe, S; Ono, T

    1983-10-01

    From liver of dogs injected iv with potassium dichromate (38 mg/kg body wt), a low-molecular-weight chromium-binding substance (LMCr) was purified into two subfractions, LMCr I and LMCr II, which differ in physical and chemical properties. LMCr I was identified to be an anionic, organic chromium compound with a molecular weight of 1500. It contained glutamic acid, glycine, and cysteine as the predominant amino acids and firmly bound chromium in a ratio of one chromium(III) to one molecule of LMCr I. LMCr II was isolated in crystalline form and demonstrated to be a water-soluble, inorganic chromium(III) complex consisting of Na2HPO4 . 7H2O and Na2HPO4 . 2H2O. Although its crystallization reduced the chromium content, it had a maximum chromium-binding capacity as much as one chromium per one phosphorus in water. The mixture of LMCr I and LMCr II as approximated to be the natural composition showed a lower acute toxicity as measured by lethality in mice and had higher rates of urinary excretion and renal clearance in rabbits, accompanied by lower rates of renal tubular reabsorption and retention in kidney and liver than potassium dichromate(VI) and chromium(III) chloride. Pretreatment with chromium-free LMCr II remarkably reduced the mortality rates of mice acutely poisoned with chromium chloride. These results indicate that LMCr plays an important role in the detoxification and excretion of chromium in mammals. PMID:6617615

  19. Chromium speciation in environmental samples using a solid phase spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; Kassem, Mohammed A.

    2012-10-01

    A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.

  20. Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique

    SciTech Connect

    Ma Bin; Shen Zhengxiang; He Pengfei; Sha Fei; Wang Chunliang; Wang Bin; Ji Yiqin; Liu Huasong; Li Weihao; Wang Zhanshan

    2011-03-20

    We evaluate the subsurface quality of polished fused silica samples using the nanoindenter technique. Two kinds of samples, consisting of hundreds of nanometers and micrometers of subsurface damage layers, are fabricated by controlling the grinding and polishing processes, and the subsurface quality has been verified by the chemical etching method. Then several nanoindentation experiments are performed using the Berkovich tip to investigate the subsurface quality. Some differences are found by relative measurements in terms of the relationship between the total penetration and the peak load on the surfaces, the modulus calculated over the defined depths and from unload, and the indented morphology at a constant load near the surface collapse threshold. Finally, the capabilities of such a mechanical method for detecting subsurface flaws are discussed and analyzed.

  1. Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes.

    PubMed

    Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2012-02-21

    We report the fabrication of gold screen printed macro electrodes which are electrochemically characterised and contrasted to polycrystalline gold macroelectrodes with their potential analytical application towards the sensing of chromium(III) and (VI) critically explored. It is found that while these gold screen printed macro electrodes have electrode kinetics typically one order of magnitude lower than polycrystalline gold macroelectrodes as is measured via a standard redox probe, in terms of analytical sensing, these gold screen printed macro electrodes mimic polycrystalline gold in terms of their analytical performance towards the sensing of chromium(III) and (VI), whilst boasting additional advantages over the macro electrode due to their disposable one-shot nature and the ease of mass production. An additional advantage of these gold screen printed macro electrodes compared to polycrystalline gold is the alleviation of the requirement to potential cycle the latter to form the required gold oxide which aids in the simplification of the analytical protocol. We demonstrate that gold screen printed macro electrodes allow the low micro-molar sensing of chromium(VI) in aqueous solutions over the range 10 to 1600 μM with a limit of detection (3σ) of 4.4 μM. The feasibility of the analytical protocol is also tested through chromium(VI) detection in environmental samples.

  2. Evaluating Foraminifera as an Archive for Seawater Chromium Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Wang, X.; Planavsky, N.; Hull, P. M.; Tripati, A.; Reinhard, C.; Zou, H.; Elder, L. E.; Henehan, M. J.

    2015-12-01

    In recent years there has been growing interest in using chromium isotopes (δ53Cr) as a proxy to investigate the redox evolution of Earth's ocean-atmosphere system throughout geological history. Potential archives for seawater δ53Cr that have been identified to date include iron formations and organic-rich siliciclastic sediments. However, these types of sediments are not common and they are discontinuous over geologic time. As a result, alternative types of archives are needed. Here we evaluate the utility of foraminifera tests as a recorder of seawater δ53Cr. Core-tops used were from different ocean basins. Mono-specific samples of Globigerinoides sacculifer, Orbulina universa, Pulleniatina obliquiloculata, Globoratalia crassula-crassaformis, Globoratalia truncatulinoides, and Globigerinella siphonifera were isolated to investigate inter-species isotope fractionation. Chromium concentrations were measured by isotope dilution method to be 0.1-0.3 μg/g. The δ53Cr values of these species range from 0.2‰ to 2.4‰, with an analytical uncertainty of 0.3‰ (95% confidence). Despite the high analytical uncertainty due to the extremely low levels of Cr present, there is still large detectable variation in foraminiferal δ53Cr values, which overlap presently available seawater values (Bonnand et al., 2013; Scheiderich et al., 2015). Possible explanations for such variations in foraminiferal δ53Cr values include heterogeneity of seawater δ53Cr in the modern oceans, and/or photobiochemical redox cycling of Cr in the surface oceans. Therefore, care should be taken when using foraminifera to reconstruct past seawater δ53Cr values. ReferencesBonnand, P., James, R., Parkinson, I., Connelly, D., Fairchild, I., 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10-20. Scheiderich, K., Amini, M., Holmden, C., Francois, R., 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific

  3. Removal of chromium from wastewater by reverse osmosis

    NASA Astrophysics Data System (ADS)

    Çimen, Aysel

    2015-07-01

    Removal of chromium from wastewaters has been studied and the optimal process conditions were determined. The reverse osmosis (RO) technique, the sea water high rejection (SWHR) and high rejection brackish water (AG, SE, and SG) membranes were used. The chromium rejection depended on membrane type, pH of the feed water and operating pressure. The removal of chromium was most effective when the feed water pH 3. The rejection efficiency of the membranes increased in the order AG > SWHR > SG > SE. RO method can be efficiently used (with >91% rejection) for the removal of chromium from wastewater of chromium coating processes.

  4. Preconcentration Method on Modified Silica Fiber for Chromium Speciation

    PubMed Central

    Chahal, Varinder Kaur; Singh, Raghubir; Malik, Ashok Kumar; Matysik, Frank-Michael; Puri, Jugal Kishore

    2012-01-01

    A new method involving pre-concentration on modified silica fiber is described for the speciation of chromium(III) [Cr(III)] and chromium(VI) [Cr(VI)] in aqueous media. This method is based on the different chelating behavior of Cr(III) and Cr(VI) with morpholine-4-carbodithioate (MDTC). Both complexes are extracted on silica fiber modified by sol-gel technology by using 3-aminopropyltriethoxysilane (APS) as a precursor. All extracted samples are directly injected into an high-performance liquid chromatography injector for the simultaneous determination of Cr(III) and Cr(VI). Cr(VI) forms two different complexes, and Cr(III) forms a single complex with MDTC. Therefore, the concentration of Cr(VI) is determined directly from the peak area obtained at 5.4 min; whereas, the assay of Cr(III) is based on subtracting the peak area of Cr(VI) from the total peak area obtained at 4.3 min. Under the optimized conditions, the limits of detection for Cr(III) and Cr(VI) are found to be 0.7 ng/mL and 0.2 ng/mL, respectively. PMID:22291053

  5. Hydrolysis of iron and chromium fluorides: mechanism and kinetics.

    PubMed

    Gálvez, José L; Dufour, Javier; Negro, Carlos; López-Mateos, Federico

    2008-06-15

    Fluoride complexes of metallic ions are one of the main problems when processing industrial effluents with high content of fluoride anion. The most important case is derived from pickling treatment of stainless steel, which is performed with HNO3/HF mixtures to remove oxides scale formed over the metal surface. Waste from this process, spent pickling liquor, must be treated for recovering metallic and acid content. Conventional treatments produce a final effluent with high quantity of fluoride complexes of iron and chromium. This work proposes a hydrolysis treatment of these solid metal fluorides by reacting them with a basic agent. Metal oxides are obtained, while fluoride is released to solution as a solved salt, which can be easily recovered as hydrofluoric acid. Solid iron and chromium fluorides, mainly K2FeF5(s) and CrF3(s), obtained in the UCM treatment process, were employed in this work. Optimal hydrolysis operating conditions were obtained by means of a factorial design: media must be basic but pH cannot be higher than 9.5, temperature from 40 to 70 degrees C and alkali concentration (potassium hydroxide) below 1.1 mol L(-1). Secondary reactions have been detected, which are probably due to fluoride adsorption onto obtained oxides surface. Mechanism of reaction consists of several stages, involving solid fluoride dissolution and complexes decomposition. Hydrolysis kinetics has been modeled with classical crystal dissolution kinetics, based on mass transfer phenomena. PMID:17988794

  6. Nickel-chromium-silicon brazing filler metal

    DOEpatents

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  7. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and compounds in construction, except: (2) Exposures that occur in the application of pesticides... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide...

  8. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and compounds in construction, except: (2) Exposures that occur in the application of pesticides... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide...

  9. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that occur in the application of pesticides regulated by the Environmental Protection Agency or another... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide...

  10. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that occur in the application of pesticides regulated by the Environmental Protection Agency or another... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide...

  11. Trace Elements Excluding Iron - Chromium and Zinc

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The percentage of middle-aged US adults who are participating in leisure-time physical activities is growing. These adults also seek credible information about specific supplements that the public press routinely describes as necessary to enable increases in physical performance. Chromium and zinc a...

  12. Chemical behavior of acidified chromium (3) solutions

    SciTech Connect

    Terman, D.K.

    1981-05-01

    A unique energy-storage system has been developed at NASA's Lewis Research Center called REDOX. This NASA-REDOX system is an electrochemical storage device that utilized the oxidation and reduction of two fully soluble redox couples for charging and discharging. The redox couples now being investigated are acidified chloride solutions of chromium (Cr(+2)/Cr(+3)) and iron (Fe(+2)/Fe(+3)).

  13. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  14. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chromium (VI); any history of respiratory system dysfunction; any history of asthma, dermatitis, skin... them by the use of respiratory protection that complies with the requirements of paragraph (f) of this... achieve compliance with the PEL. (f) Respiratory protection—(1) General. Where respiratory protection...

  15. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chromium (VI); any history of respiratory system dysfunction; any history of asthma, dermatitis, skin... use of respiratory protection that complies with the requirements of paragraph (f) of this section... achieve compliance with the PEL. (f) Respiratory protection—(1) General. Where respiratory protection...

  16. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chromium (VI); any history of respiratory system dysfunction; any history of asthma, dermatitis, skin... use of respiratory protection that complies with the requirements of paragraph (f) of this section... achieve compliance with the PEL. (f) Respiratory protection—(1) General. Where respiratory protection...

  17. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chromium (VI); any history of respiratory system dysfunction; any history of asthma, dermatitis, skin... them by the use of respiratory protection that complies with the requirements of paragraph (f) of this... achieve compliance with the PEL. (f) Respiratory protection—(1) General. Where respiratory protection...

  18. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chromium (VI); any history of respiratory system dysfunction; any history of asthma, dermatitis, skin... use of respiratory protection that complies with the requirements of paragraph (f) of this section... achieve compliance with the PEL. (f) Respiratory protection—(1) General. Where respiratory protection...

  19. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chromium (VI); any history of respiratory system dysfunction; any history of asthma, dermatitis, skin... them by the use of respiratory protection that complies with the requirements of paragraph (f) of this... achieve compliance with the PEL. (f) Respiratory protection—(1) General. Where respiratory protection...

  20. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    PubMed

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  1. Nephrotoxic and hepatotoxic effects of chromium compounds in rats

    SciTech Connect

    Laborda, R.; Diaz-Mayans, J.; Nunez, A.

    1986-03-01

    The nephrotoxic, hepatotoxic and cardiotoxic actions of hexavalent chromium compounds, as well as their effects on lung, blood and circulation may contribute to the fatal outcome of chromium intoxication. Although trivalent chromium have been regarded as relatively biologically inert, there are a few salts of chromium III that have been found to be carcinogenic when inhaled, ingested or brought in contact with the tissues. Sensitive persons and industry workers have been subjects of dermatitis, respiratory tract injuries and digestive ulcers due to chromium compounds. In this work, the authors have studied the effect of trivalent and hexavalent chromium compounds on rats measuring the transaminases (GOT and GPT), urea and creatinine levels in serum of chromium poisoned animals at different times.

  2. Anaerobic transformations of complex organic compounds in subsurface soils

    SciTech Connect

    Proctor, B.L. )

    1988-09-01

    This study was initiated following increased observations of man-made organic chemicals in groundwater. In the US, over 40% of the population depends on groundwater for drinking purposes. Soil is often the receptacle for organic chemicals, and there is a danger that they may reach the groundwater in a toxic form. Once contamination of the soil and vadose water has occurred, the compound may not be detected and/or degraded for decades. Limited, if any, information is available on the biotic-abiotic transformations of complex organic compounds in subsurface soils. The purpose of this study was to determine for each test compound (phenothiazine, 1-chloronaphthalene, 2-trifluoromethyl phenothiazine, 2-chloro-5 trifluoromethyl benzophenone and 2,2{prime},4,4{prime} tetrachlorobiphenyl) the following: (A) the soil sorption capacity for untreated subsurface soil, acid-treated, base-treated, mercuric chloride-treated, and calcium chloride treated subsurface soil; (B) transformation of the test compound in EPA soft water under anaerobic biotic and abiotic conditions; (C) transformation of the test compound in subsurface soils microcosms under anaerobic biotic and abiotic conditions; and (D) comparison of the results form the soil and water anaerobic biotic and abiotic studies.

  3. Introduction: energy and the subsurface.

    PubMed

    Christov, Ivan C; Viswanathan, Hari S

    2016-10-13

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597784

  4. Introduction: energy and the subsurface.

    PubMed

    Christov, Ivan C; Viswanathan, Hari S

    2016-10-13

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.This article is part of the themed issue 'Energy and the subsurface'.

  5. Calculation notes that support accident scenario and consequence development for the subsurface leak remaining subsurface accident

    SciTech Connect

    Ryan, G.W., Westinghouse Hanford

    1996-07-12

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Subsurface Leak Remaining Subsurface. The calculations needed to quantify the risk associated with this accident scenario are included within.

  6. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components.

    PubMed

    Julander, Anneli; Skare, Lizbet; Mulder, Marie; Grandér, Margaretha; Vahter, Marie; Lidén, Carola

    2010-04-01

    Skin exposure to nickel, cobalt, and chromium may cause sensitization and allergic contact dermatitis and it is known that many alloys and platings may release significant amounts of the metals upon contact with skin. Occupational exposure to these sensitizing metals has been studied in different settings with regards to airborne dust and different biological end points, but little is known about deposition on skin from airborne dust and direct contact with materials containing the metals. In this study, skin deposition was studied in 24 workers in an industry for development and manufacturing of gas turbines and space propulsion components. The workers were employed in three departments, representing different exposure scenarios: tools sharpening of hard metal items, production of space propulsion structures, and thermal application of different metal-containing powders. A novel acid wipe sampling technique was used to sample metals from specific skin surfaces on the hands and the forehead of the workers. Total amounts of nickel, cobalt, and chromium were measured by inductively coupled plasma mass spectrometry. The result showed that nickel, cobalt, and chromium could be detected on all skin surfaces sampled. The highest level of nickel was 15 microg cm(-2) h(-1), the highest for cobalt was 4.5 microg cm(-2) h(-1), and for chromium 0.6 microg cm(-2) h(-1). The three departments had different exposures regarding the metals. The highest levels of nickel on the skin of the workers were found in the thermal applications department, cobalt in the tools sharpening department, and chromium in the space propulsion components department. In conclusion, the workers' exposure to the metals was more likely to come from direct skin contact with items, rather than from airborne dust, based on the fact that the levels of metals were much higher on the fingers than on the back side of the hands and the forehead. The skin exposure levels of nickel and cobalt detected are judged

  7. Searching for Life in the Martian Subsurface: Results from the MARTE Astrobiological Drilling Experiment and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2007-07-01

    Drilling for subsurface life should be a goal of future Mars missions. The approach is illustrated by MARTE: A search for subsurface life in Rio Tinto, Spain explored a biosphere using reduced iron and sulfur minerals and demonstrated automated drilling, sample handling, and life detection.

  8. Chromium and its speciation in water samples by HPLC/ICP-MS--technique establishing metrological traceability: a review since 2000.

    PubMed

    Markiewicz, Barbara; Komorowicz, Izabela; Sajnóg, Adam; Belter, Magdalena; Barałkiewicz, Danuta

    2015-01-01

    Chromium holds a special position among living organisms because depending on its species it can be either essential or toxic. Cr(VI) even at very low concentrations is harmful and carcinogenic, while Cr(III) is a necessary microelement for cellular metabolism. Therefore, a simple analysis of Cr concentration in collected samples will not be able to distinguish these differences effectively: for a proper chemical analysis we need to perform a reliable detection and quantification of Cr species. Separation and detection of chromium can be accomplished with high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS) in a one-step. Our review assembles articles published since 2000 regarding chromium speciation in water samples with the use of HPLC/ICP-MS. It addresses the following issues: chromium chemistry, the possibilities of dealing with interferences, metrological aspects, analytical performance and speciated isotope dilution mass spectrometry (SIDMS) which is a definitive measurement method. The authors would like to advocate this hyphenated advanced technique as well as the metrological approach in speciation analysis of chromium.

  9. Subsurface properties of Lucus Planum, Mars, as seen by MARSIS

    NASA Astrophysics Data System (ADS)

    Orosei, Roberto; Rossi, Angelo Pio; Cantini, Federico; Caprarelli, Graziella; Carter, Lynn; Papiano, Irene

    2016-04-01

    Lucus Planum, extending for a radius of approximately 500 km around 181°E, 5°S, is part of the Medusae Fossae Formation (MFF), a set of several discontinuous deposits of fine-grained, friable material straddling across the Martian highland-lowland boundary. Parts of the MFF have been probed through radar sounding by MARSIS and SHARAD, synthetic-aperture, low-frequency radars carried respectively by ESA's Mars Express and NASA's Mars Reconnaissance Orbiter. They transmit low-frequency radar pulses that are capable of penetrating below the surface, and are reflected by any dielectric discontinuity present in the subsurface. The dielectric permittivity of the MFF material, estimated from data of both radars, is consistent with either a substantial component of water ice or a low-density, ice-poor material. There is no evidence for internal layering in SHARAD data, despite the fact that layering at scales of tens of meters has been reported in many parts of the MFF. This lack of detection can be the result of one or more factors, such as high interface roughness, low dielectric contrast between materials, or discontinuity of the layers. After more than 10 years of observations, MARSIS has acquired about 240 orbits across Lucus Planum, making it possible to map the presence and depth of subsurface interfaces to a much greater detail than in previous works. The positions and strengths of subsurface echoes were extracted manually from radargrams and mapped across Lucus Planum, converting echo time delay to apparent depth. The strongest subsurface echoes, resulting from weak internal attenuation, strong subsurface reflectivity, or both, are found within the deposits located NW of Apollinaris Patera, while no subsurface echoes could be detected in the central section of Lucus Planum, in spite of several high-SNR observations. Subsurface reflections are common in the Eastern and Northwestern sectors, in some cases to depths of more than 2000 m assuming a dielectric

  10. Distribution and activity of hydrogenase enzymes in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a

  11. Link between Surface and Subsurface Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Olesen, Folke; Goettsche, Frank; Blum, Philipp

    2016-04-01

    Urban heat islands exist in all diverse layers of modern cities, such as surface and subsurface. While both layers are typically investigated separately, the coupling of surface and subsurface urban heat islands is insufficiently understood. Hence, this study focuses on the interrelation of both zones and the influence of additional underground heat sources, such as heated basements, on this interaction. Using satellite derived land surface temperatures and interpolated groundwater temperature measurements the spatial properties of both heat islands are compared. Significant correlations of 0.5 up to more than 0.8 are found between surface and subsurface urban heat islands. If groundwater flow is considered this correlation increases by approximately 10%. Next we analyzed the dissimilarities between both heat islands in order to understand the interaction between the urban surface and subsurface. We find that local groundwater hotspots under the city center and industrial areas are not revealed in satellite derived land surface temperatures. Overall groundwater temperatures are higher than land surface temperatures in 95% of the analyzed area due to the influence of below ground anthropogenic heat sources such as sewage systems, district heating systems, and especially elevated basement temperatures. Thus, an estimation method is proposed that relates groundwater temperatures to mean annual land surface temperatures, building density, and elevated basement temperatures. Using this method regional groundwater temperatures can be accurately estimated with a mean absolute error of 0.9 K. Since land surface temperatures and building densities are available from remote sensing, this method has the potential for a large scale estimations of urban groundwater temperatures. Thus, it is feasible to detect subsurface urban heat islands on a global level and to investigate sustainable geothermal potentials using satellite derived data.

  12. Analyses of heterogeneous deformation and subsurface fatigue crack generation in alpha titanium alloy at low temperature

    SciTech Connect

    Umezawa, Osamu; Morita, Motoaki; Yuasa, Takayuki; Morooka, Satoshi; Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio

    2014-01-27

    Subsurface crack initiation in high-cycle fatigue has been detected as (0001) transgranular facet in titanium alloys at low temperature. The discussion on the subsurface crack generation was reviewed. Analyses by neutron diffraction and full constraints model under tension mode as well as crystallographic identification of the facet were focused. The accumulated tensile stress along <0001> may be responsible to initial microcracking on (0001) and the crack opening.

  13. Vensis: Venus Advanced Radar For Subsurface And Ionosphere Sounding

    NASA Astrophysics Data System (ADS)

    Biccari, D.; Gurnett, D.; Jordan, R.; Huff, R.; Marinangeli, L.; Nielsen, E.; Ori, G. G.; Picardi, G.; Plaut, J.; Provvedi, F.; Seu, R.; Zampolini, E.

    Due to optically opaque atmosphere of Venus radar is the best way to observe the surface of the planet from orbit. Magellan has obtained global SAR imaging, as well as altimetry and emissivity. As a subsurface sounder, working at low frequency and preferably in the night time, VENSIS would obtain fundamentally different kinds of geologic information than Magellan, mapping of interfaces of geologic units (e.g. tessera, plains, lava flows, impact debris) could in fact be extended into the third di- mension. A subsurface investigation of the first 1-2 Km will show the internal defor- mations of the Venusian surface and will depict the structural styles of old crust which are essential to define the crust dynamics, an improved understanding of the evolu- tion of complex Venusian features is a key to define the geological evolution of the planet. Furthermore in standard subsurface sounding mode VENSIS will be able to transmit four different bandwidth, so the possibility of multi frequency observations will allow the estimate of the material attenuation in the crust and will give significant indications on the dielectric properties of the detected interfaces. Thus the Primary Scientific Objectives of VENSIS are the following: 1-Characterize surface roughness, composition and electrical properties at long wavelengths (orders of magnitude longer than Magellan) 2-Probe the subsurface of Venus (to few km depth) to detect and map geologic materials and large scale structures at planetary level VENSIS sounder, using active sounding in a frequency range of 100 kHz to 7 MHz, would also allow detailed characterization of the Venus ionosphere while in passive mode it can be used to detect lightning, the presence of which remains both controversial and critical to understand the behavior of the atmosphere and the possibility of present day volcanism. Therefore a secondary objective is to Probe the ionosphere to characterize interactions between the solar wind and the Venusian

  14. Theoretical study of the photoabsorption spectrum of small chromium clusters

    NASA Astrophysics Data System (ADS)

    Martínez, J. I.; Alonso, J. A.

    2007-11-01

    The photoabsorption spectra of CrN (N=2-11) clusters have been calculated using the time-dependent density functional theory. Different approximations for exchange and correlation lead to a similar picture for the spectra. Small chromium clusters show a dimerization effect that controls the initial growth of the clusters up to N=11 . This effect consists in the formation of robust Cr2 dimers with a strong bond and an unusually short bond length. The dimerization effect becomes reflected in the high-energy part of the absorption spectra: An excitation peak appears at energies near 20eV , and its intensity increases each time a new Cr dimer forms in the structure as the cluster grows. However, experimental detection of this effect will be hard because of the competition from ionization.

  15. Microbial processes and subsurface contaminants

    NASA Astrophysics Data System (ADS)

    Molz, Fred J.

    A Chapman Conference entitled “Microbial Processes in the Transport, Fate, and In Situ Treatment of Subsurface Contaminants” was held in Snowbird, Utah, October 1-3, 1986. Members of the program committee and session chairmen were Lenore Clesceri (Rensselaer Polytechnic Institute, Troy, N.Y.), David Gibson (University of Texas, Austin), James Mercer (GeoTrans, Inc., Herndon , Va.), Donald Michelsen (Virginia Polytechnic Institute and State University, Blacksburg), Fred Molz (Auburn University, Auburn, Ala.), Bruce Rittman (University of Illinois, Urbana), Gary Sayler (University of Tennessee, Knoxville), and John T. Wilson (U.S. Environmental Protection Agency, Ada, Okla.). The following report attempts to highlight the six sessions that constituted the conference. For additional information, including a bound summary and abstracts, contact Fred J. Molz, Civil Engineering Department, Auburn University, AL 36849 (telephone: 205-826-4321).

  16. Subsurface Flow and Contaminant Transport

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  17. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    PubMed

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept.

  18. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    PubMed

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. PMID:20031309

  19. International strategic minerals inventory summary report; chromium

    USGS Publications Warehouse

    DeYoung, J.H.; Lee, M.P.; Lipin, B.R.

    1984-01-01

    Major world resources of chromium, a strategic mineral commodity, are described in this summary report of information in the International Strategic Minerals Inventory {ISMI}. ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, and the United States of America. This report, designed to be of benefit to policy analysts, contains two parts. Part I presents an overview of the resources and potential supply of chromium on the basis of inventory information. Part II contains tables of some of the geologic information and mineral-resource and production data that were collected by ISMI participants.

  20. Bose-Einstein condensation of chromium.

    PubMed

    Griesmaier, Axel; Werner, Jörg; Hensler, Sven; Stuhler, Jürgen; Pfau, Tilman

    2005-04-29

    We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which have an exceptionally large magnetic dipole moment and therefore underlie anisotropic long-range interactions. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T(c) approximately 700 nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. We are able to produce almost pure condensates with more than 50,000 condensed 52Cr atoms.

  1. Laser action in chromium-doped forsterite

    NASA Technical Reports Server (NTRS)

    Petricevic, V.; Gayen, S. K.; Alfano, R. R.; Yamagishi, Kiyoshi; Anzai, H.

    1988-01-01

    This paper reports on pulsed laser operation obtained in chromium-activated forsterite Cr(3+):Mg2SiO4 at room temperature. The spectrum of the free-running laser peaks at 1235 nm and a bandwidth of about 22 nm. The spectral range of the laser emission is expected to extend from 850 to 1300, provided the parasitic impurity absorption may be minimized by improved crystal growth techique.

  2. X-616 Chromium Sludge Lagoons pictorial overview, Piketon, Ohio

    SciTech Connect

    Not Available

    1992-10-01

    The Portsmouth Gaseous Diffusion Plant uses large quantities of water for process cooling. The X-616 Liquid Effluent Control Facility was placed in operation in December 1976 to treat recirculation cooling water blowdown from the process cooling system. A chromium-based corrosion inhibitor was used in the cooling water system. A chromium sludge was produced in a clarifier to control chromium levels in the water. Chromium sludge produced by this process was stored in two surface impoundments called the X-616 Chromium Sludge Lagoons. The sludge was toxic due to its chromium concentration and therefore required treatment. The sludge was treated, turning it into a sanitary waste, and buried in an Ohio EPA approved landfill. The plant's process cooling water system has changed to a more environmentally acceptable phosphate-based inhibitor. Closure activities at X-616 began in August 1990, with all construction activities completed in June 1991, at a total cost of $8.0 million.

  3. Simulation of ammonium and chromium transport in porous media using coupling scheme of a numerical algorithm and a stochastic algorithm.

    PubMed

    Palanichamy, Jegathambal; Schüttrumpf, Holger; Köngeter, Jürgen; Becker, Torsten; Palani, Sundarambal

    2009-01-01

    The migration of the species of chromium and ammonium in groundwater and their effective remediation depend on the various hydro-geological characteristics of the system. The computational modeling of the reactive transport problems is one of the most preferred tools for field engineers in groundwater studies to make decision in pollution abatement. The analytical models are less modular in nature with low computational demand where the modification is difficult during the formulation of different reactive systems. Numerical models provide more detailed information with high computational demand. Coupling of linear partial differential Equations (PDE) for the transport step with a non-linear system of ordinary differential equations (ODE) for the reactive step is the usual mode of solving a kinetically controlled reactive transport equation. This assumption is not appropriate for a system with low concentration of species such as chromium. Such reaction systems can be simulated using a stochastic algorithm. In this paper, a finite difference scheme coupled with a stochastic algorithm for the simulation of the transport of ammonium and chromium in subsurface media has been detailed.

  4. Remote sensing of subsurface water temperature by laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Guagliardo, J. L.; Hoge, F. E.

    1980-01-01

    This paper describes experimental remote sensing of subsurface water temperature using the Raman spectroscopic technique. By the use of a pulsed laser and range gating detection techniques, Raman scattering is analyzed as a function of depth in a radar-like echo mode, and thus subsurface profiles of temperature and transmission are obtained. Experiments are described in which Raman data using polarization spectroscopy has been obtained from a ship as a function of depth in ocean water near Grand Bahama Island. A spectral temperature accuracy of + or - 1 C has been obtained from this data in the first two optical attenuation lengths. Raman data obtained from ocean water using the NASA airborne oceanographic lidar is also presented.

  5. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOEpatents

    Ramirez, A.L.; Cooper, J.F.; Daily, W.D.

    1996-02-27

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.

  6. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOEpatents

    Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.

    1996-01-01

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.

  7. Contingency plans for chromium utilization. Publication NMAB-335

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The United States depends entirely on foreign sources for the critical material, chromium, making it very vulnerable to supply disruptions. The effectiveness of programs such as stockpiling, conservation, and research and development for substitutes to reduce the impact of disruption of imports of chromite and ferrochromium are discussed. Alternatives for decreasing chromium consumption also are identified for chromium-containing materials in the areas of design, processing, and substitution.

  8. Surface expressions of subsurface structures in parts of the Michigan and Illinois basins

    SciTech Connect

    Herman, J.D. )

    1991-08-01

    Study of glacial geology, stream drainage, bedrock topography, and subsurface structure maps in Isabella, Midland, Arenac, Gladwin, Clare, Ogemaw, Iosco, Mecosta, and Montcalm counties in Michigan revealed distinct correlations between patterns and types of glacial deposits and subsurface structures. Anticlinal structures associated with the Mt. Pleasant, North Buckeye, and South Buckeye, Hamilton, Deep River, Clayton, Logan, Six Lakes, and West Branch oil and gas fields occur along areas where northeast-trending glacial moraines and truncated, attenuated, or deviated. Furthermore, these anticlinal structures are associated with lacustrine sands and gravels and glacial outwash deposits nearly surrounded by glacial tills or lacustrine sands and clays. All of the anticlinal structures are associated with bedrock topography highs and alignment of streams parallel to the trends of the structures. Comparison of images of subsurface structure and surface elevation data covering the northern part of the illinois basin showed distinct correlations between glacial moraine patterns and subsurface structural trends. The Pesotum and Arcola end moraines bracket the major anticlinal structure at the Hayes oil field. The Westfield, Nevins, and Paris moraines are truncated or attenuated where they intersect the surface projections of the subsurface LaSalle anticlinal belt and the anticlinal structure associated with the Mattoon oil field. These correlations among subsurface structure, bedrock topography, and surface glacial features indicate that the subsurface structural configuration influenced glacial depositional patterns in detectable and predictable ways, even in areas blanketed by over 100 ft of Wisconsin glacial drift.

  9. [A Zeeman graphite furnace atomic absorption spectrometric method for the determination of trace copper and chromium in drinking water].

    PubMed

    Wang, Z

    1999-08-01

    The determination of trace copper and chromium in drinking water is described in this paper using transverse heated graphite atomizer (THGA) with the technique of Zeeman effect background correction without any other matrix modifiers. The method is fast, and simple with low detection limit which makes it possible to be used for routine analysis of drinking water.

  10. Seasonal Variations in Subsurface Electrical Resistivity in a Floodplain Aquifer

    NASA Astrophysics Data System (ADS)

    Esker, A.; Marshall, S. T.

    2015-12-01

    In an attempt to create a three-dimensional model of a floodplain aquifer along the New River in western North Carolina, we have collected numerous DC electrical resistivity profiles over the course of six years. Unfortunately, the electrical resistivity of geologic materials can be partially controlled by temperature and water content which both vary temporally. To determine the extent to which resistivity data is affected by temporal variations at our site, we conducted multiple DC electrical resistivity surveys collected at the same location at various times of the year to quantify changes in the resistivity patterns. We use a Wenner array that offers a large signal to noise ratio, but relatively few data points, and a Dipole-Dipole array that produces more data, but is more sensitive to noise. For each data acquisition date, we measure the depth to water at seven boreholes parallel to the survey to determine if any of the collected resistivity surveys can be independently used to detect the water table and if any changes affect subsurface resistivities. We created a stacked model of all surveys of the same array type, and compare to each survey to qualitatively and quantitatively identify changes in the subsurface patterns. Results indicate there are few major changes in the qualitative subsurface patterns with time. RMS errors between the stacked model and different surveys range from 56 to 201 Ohm-m and percent differences range from 5.84% to 21.50%. The surveys with largest RMS errors correspond to days that had a significant change of water table level from the static level. Our preliminary results suggest that so long as surveys are collected during similar water table conditions, data from multiple years should yield similar results. Furthermore, the subsurface resistivity values and GPR surveys do not clearly delineate the water table levels, suggesting that near surface geophysical methods many not be able to detect the water table at our site.

  11. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  12. Stabilization and solidification of chromium-contaminated soil

    SciTech Connect

    Cherne, C.A.; Thomson, B.M.; Conway, R.

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  13. Studies on the essentiality of chromium in ruminants

    SciTech Connect

    Samsell, L.J.; Spears, J.W.

    1986-03-01

    Although chromium has been established as an essential trace element for certain animal species, no requirement has been shown for ruminants. Sixteen female lambs (35 kg) were used in an attempt to determine if chromium is essential in the ruminant. Animals were individually housed in all plastic pens and fed twice daily either a low chromium (100 ppb) torula yeast based diet or the basal diet supplemented with 10 ppm chromium as CrCl/sub 3/. Blood samples obtained prior to the morning feeding and 2 and 6 hr post-feeding on days 28 and 56 indicated no significant treatment differences in plasma glucose or serum free fatty acids. By day 56, serum cholesterol tended to be lower in chromium supplemented lambs (60.9 vs 71.7 mg/dl). Lambs in the chromium supplemented treatment also tended to gain more efficiently through 56 days (.130 vs .118 gain/fed). On day 84, lambs were bled after a 48 hr fast, refed, then bled again at 2 and 6 hr post-feeding. Plasma glucose and serum free fatty acids were not affected by chromium at the end of the 48 hr fast or when lambs were refed following fasting. At 84 days both total serum cholesterol and HDL-cholesterol were lower in lambs receiving supplemental chromium. These results suggest that chromium may have a biological role in the ruminant.

  14. Chromium films obtained by pyrolysis of bis(arene)chromium complexes in presence of sulfur-containing additives

    SciTech Connect

    Lugin, A.S.; Polikarpov, V.B.; Dodonov, V.A.; Klement'ev, E.K.

    1988-11-20

    Sulfur and its compounds catalyze deposition of chromium during thermal decomposition of its bis(arene) complexes. In this investigation we studied the influence of diphenyl and dibenzyl sulfides on this process. The character of the dependence of the rate of chromium deposition on the dibenzyl sulfide concentration in the original mixture shows that sulfur compounds, like chlorinated additives, have a promoting effect on the autocatalytic process of pyrolysis of bis(arene) chromium complexes. Aromatic sulfides raise the rate of chromium deposition, suppress secondary processes of ligands dehydrogenation, and accordingly lower the carbon contents in the deposits during thermal decomposition of bis(arene)chromium complexes. Sulfur compounds direct the deposition process toward formation of ordered crystalline phases of chromium and its carbides.

  15. Effect of chromium on larval chironomidae as determined by the optical-fiber light-interruption biomonitoring system

    SciTech Connect

    Batac-Catalan, Z.; White, D.S.

    1981-10-01

    An optical-fiber light-interruption biomonitoring system for examining the activity of aquatic invertebrates has been developed to test potential toxicity of chromium and other compounds on tubicolous larval Diptera (Chironomidae). Chromium has been identified as a heavy metal of environmental concern, but little is known of its effect on aquatic biota at chronic or sublethal levels. When movement patterns of midge larvae, Chironomus tentans, are monitored by the system, three distinct phases are revealed: respiratory undulations, crawling-type movements, and rest or immobility. It has been shown in other studies that the rates and duration of movements are controlled by dissolved oxygen (DO) levels and temperature. Chromium alters the duration but not the rates of the three movement phases. At 0.01 ppm chromium, larval movement patterns were not altered. At 0.1 and 1.0 ppm, the duration of the respiratory phase was suppressed. Levels from 10.0 to 1000.0 ppm progressively increased the duration of this phase. The 48-h EC/sub 50/ for fourth instar larvae was calculated to be 61.0 ppm chromium, which shows that the change in respiratory movements does indicate potential lethality of the solutions. Thus, the biomonitoring system's sensitivity is apparent in detecting low-level effects of a heavy metal on this aquatic invertebrate.

  16. Device and nondestructive method to determine subsurface micro-structure in dense materials

    DOEpatents

    Sun, Jiangang

    2006-05-09

    A method and a device to detect subsurface three-dimensional micro-structure in a sample by illuminating the sample with light of a given polarization and detecting light emanating from the sample that has a different direction of polarization by means of a confocal optical system.

  17. Measurements of Dielectric Discontinuities in Planetary Subsurfaces with a Passive Instrument

    NASA Astrophysics Data System (ADS)

    Elliott, H. M.; Renno, N. O.

    2015-12-01

    Global Navigation Satellite Systems Reflectometry (GNSS-R) has shown that passive sensing that takes advantage of separate active sources can be used to infer the soil moisture, snow pack depth and other quantities of scientific interest. Here we take that concept one step further and propose a passive measurement of the sub-surface dielectric profile of Mars by taking advantage of the multipath interference between reflections off the surface and subsurface dielectric discontinuities. Previous studies have shown that this technique is capable of detecting changes in the sub-surface dielectric constant, but here we present the first experimental data showing that it can detect multilayer subsurface profiles. We have measured layered beds of sand and concrete and compared these experimental results to a numerical model of the signal reflections; showing that dielectric discontinuities in the subsurface can be measured using this passive sensing technique. The exciting thing about this technique is the ability to conduct ground penetrating radar measurements in the shallow subsurface of planetary bodies without active radar transmitters.

  18. SUBSURFACE CHARACTERIZATION AND MONITORING TECHNIQUES: A DESK REFERENCE GUIDE - VOLUME I: SOLIDS AND GROUND WATER - APPENDICES A AND B

    EPA Science Inventory

    Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to devel...

  19. Introduction: energy and the subsurface

    PubMed Central

    Viswanathan, Hari S.

    2016-01-01

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597784

  20. Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2015-11-01

    Numerical simulations of coupled gas-granular flows are used to study properties of shock formation and propagation in media, such as sand or regolith on the moon, asteroids, or comets. The simulations were performed with a multidimensional fully compressible model, GRAF, which solves two sets of coupled Navier-Stokes equations, one for the gas and one for the granular medium. The specific case discussed here is for a subsurface explosion in a granular medium initiated by an equivalent of 200g of TNT in depths ranging from 0.1m to 3m. The background conditions of 100K, 10 Pa and loose initial particle volume fraction of 25% are consistent with an event on a comet. The initial blast creates a cavity as a granular shock expands outwards. Since the gas-phase shock propagates faster than the granular shock in loose, granular material, some gas and particles are ejected before the granular shock arrives. When the granular shock reaches the surface, a cap-like structure forms. This cap breaks and may fall back on the surface and in this process, relatively dense particle clusters form. At lower temperatures, the explosion timescales are increased and entrained particles are more densely packed.

  1. Solar subsurface flows from local helioseismology

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Chen, Ruizhu

    2016-07-01

    In this article, we review recent progresses in subsurface flows obtained from two local helioseismology methods: time-distance helioseismology and ring-diagram analysis. We review results in the following four topics: flows beneath sunspots and active regions, supergranular subsurface flows, shallow meridional flow and its variations with solar cycles, and meridional circulation in the deep solar interior. Despite recent advancements in methodology, modeling, and observations, many questions are still to be answered and a few topics remain controversial. More efforts, especially in numerical modeling and accurate interpretation of acoustic wave travel-time measurements, are needed to improve the derivations of subsurface flows.

  2. Probing neutrino nature at Borexino detector with chromium neutrino source

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-10-01

    In this paper, we indicate a possibility of utilizing the intense chromium source (˜ 370 PBq) in probing the neutrino nature in low energy neutrino experiments with the ultra-low threshold and background real-time Borexino detector located near the source (˜ 8 m). We analyse the elastic scattering of electron neutrinos (Dirac or Majorana, respectively) on the unpolarised electrons in the relativistic neutrino limit. We assume that the incoming neutrino beam is the superposition of left-right chiral states produced by the chromium source. Left chiral neutrinos may be detected by the standard V - A and non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while right chiral ones partake only in the exotic V + A and S_R, P_R, T_R interactions. Our model-independent study is carried out for the flavour (current) neutrino eigenstates. We compute the expected event number for the standard V-A interaction of the left chiral neutrinos using the current experimental values of standard couplings and in the case of left-right chiral superposition. We show that the significant decrement in the event number due to the interference terms between the standard and exotic interactions for the Majorana neutrinos may appear. We also demonstrate how the presence of the exotic couplings affects the energy spectrum of outgoing electrons, both for the Dirac and Majorana cases. The 90~% C.L. sensitivity contours in the planes of corresponding exotic couplings are found. The presence of interferences in the Majorana case gives the stronger constraints than for the Dirac neutrinos, even if the neutrino source is placed outside the detector.

  3. Elevated levels of DNA-protein crosslinks and micronuclei in peripheral lymphocytes of tannery workers exposed to trivalent chromium.

    PubMed

    Medeiros, M G; Rodrigues, A S; Batoréu, M C; Laires, A; Rueff, J; Zhitkovich, A

    2003-01-01

    DNA-protein crosslinks (DPC) are a promising biomarker of exposure to hexavalent chromium, a known human carcinogen. Although trivalent chromium is considered to have much lower toxicity, the risk involved in chronic exposure is uncertain. DPC may be a useful tool in clarifying this risk, by signaling an exposure of body tissues to biologically active forms of chromium. DPC quantification was carried out in lymphocytes of a group of tannery workers exposed to trivalent chromium, a small group of manual metal arc stainless steel welders exposed to hexavalent chromium and a control group. This biomarker was compared with the frequency of micronuclei in cytokinesis blocked peripheral lymphocytes as a biomarker of cytogenetic lesions and total plasma and urine chromium levels as an index of exposure. The results indicate a significant increase in the formation of DPC in tannery workers compared with controls (0.88 +/- 0.19 versus 0.57 +/- 0.21%, P < 0.001, Mann-Whitney test) and an even higher level of DPC in welders (2.22 +/- 1.12%, P = 0.03). Tanners showed a significant increase in micronucleated cells compared with controls (6.35 +/- 2.94 versus 3.58 +/- 1.69 per thousand, P < 0.01), whereas in welders this increase was not significant (5.40 +/- 1.67 per thousand ). Urinary chromium was increased in both groups, with a greater increase observed in tanners compared with controls (2.63 +/- 1.62 versus 0.70 +/- 0.38 microg/g creatinine, P < 0.001) than in welders (1.90 +/- 0.37 microg/g creatinine, P < 0.005). Plasma chromium was also increased in both groups (tanners 2.43 +/- 2.11 microg/l, P < 0.001, welders 1.55 +/- 0.67 microg/l, P < 0.005 versus controls 0.41 +/- 0.11 microg/l). In summary, chronic occupational exposure to trivalent chromium can lead to a detectable increase in lymphocyte DNA damage which correlates with a significant exposure of the cells to the metal.

  4. COST EFFECTIVE CONTROL OF HEXAVALENT CHROMIUM AIR EMISSIONS FROM FUNCTIONAL CHROMIUM ELECTROPLATING

    EPA Science Inventory

    This paper will summrize thie pollution prevention (p2) method to control stack emissions from hard chromium plating operations performed by the USEPA's National Risk Management Research Laboratory (NRMRL) over the last four years. During literature research and user surveys, it...

  5. Electronic and magnetic structure of chromium surfaces and chromium monolayers on iron

    SciTech Connect

    Victora, R.H.; Falicov, L.M.

    1985-05-01

    Chromium surfaces and Cr monolayers atop Fe have greatly enhanced magnetizations relative to bulk. The Cr (100) surface is ferromagnetic with a spin polarization of 3.00; the (110) surface is antiferromagnetic. A Cr monolayer is ferromagnetic atop either the (100) or (110) Fe surfaces; the former has a large polarization of 3.63.

  6. Examination of chromium-chromium silicide composites and methods of improving toughness

    NASA Astrophysics Data System (ADS)

    Cruse, Terry Alan

    1998-09-01

    Crsb3Si has many desirable properties for use as a high temperature structural material: a high melting point, high stiffness and good chemical resistance. However, like many intermetallics, it suffers from a low toughness at room temperature. To overcome this limitation, ductile second phase toughening has been examined using chromium as the second phase. Specimens of Cr-Crsb3Si composites were produced by powder metallurgy techniques. The mechanical properties of these composites were evaluated using microhardness indentation to calculate a toughness value and in some cases notched three-point bend bars were also used. Examination of the Cr phase of these composites indicated that it lacked sufficient toughness itself to produce the desired toughness in the composite. Mechanical alloying was then used to create chromium alloys that were hot pressed and tested using the three-point bend method. The addition of 0.5 at. % V to Cr with 7.0 at. % Si (representative of the chromium phase of the composite) showed the largest increase in toughness, a 60% increase. Chromium with 0.5 at. % V was then used to make a composite with Crsb3Si. Mechanical alloying was also used to produce a (Cr,Mo)sb3Si material, which should have superior high temperature properties compared to Crsb3Si. This material was then used to produce composites with Cr and Cr-0.5 V. The composites had twice the toughness compared with similar composites produced with Crsb3Si.

  7. A Laboratory Procedure for the Reduction of Chromium(VI) to Chromium(III).

    ERIC Educational Resources Information Center

    Lunn, George; Sansone, Eric B.

    1989-01-01

    Chromium(VI) compounds are classified as oxidizers and must be specially packaged and transported for disposal while Cr(III) compounds are considered nonoxidizers. A process which reduces Cr(VI) to Cr(III) by adding sodium metabisulfite followed by neutralization with magnesium hydroxide is explored. (MVL)

  8. Reduction of Chromium-VI by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation

    PubMed Central

    Mishra, Ritesh; Sinha, Vartika; Kannan, Ambrose; Upreti, Raj K.

    2012-01-01

    Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr (VI) and Cr (III). Highly soluble hexavalent chromium is carcinogenic due to its oxidizing nature. It is well established that the intestinal bacteria including Lactobacilli have regulatory effect on intestinal homeostasis and a breakdown in the relationship between intestinal cells and bacteria results in the manifestation of gastrointestinal (GI) disorders. In this study Cr (VI) resistance was developed in Lactobacillus strains and the reduction of Cr (VI) was evaluated. All resistant strains showed similarities with their respective normal strains and did not acquire resistance to various antibiotics. A complete bacterial reduction of 32ppm Cr (VI) was observed within 6 to 8 hours. The presence of chromate reducing enzyme have also been established following the partial purification (2 to 5 fold) and characterization of chromate reductase in Lactobacillus strains. The chromate reductase of our strains showed optimum activity at pH 6.0 and 30°C. To our knowledge; these strains are fast in Cr (VI) reduction than any other known bacteria. The results suggest that chromate- resistant Lactobacillus strains would be useful for chromium detoxification from GI-tract as well as for bioremediation of hexavalent chromium from contaminated environment. PMID:22736899

  9. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    SciTech Connect

    Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  10. Applications of electrical resistance tomography to subsurface environmental restoration

    SciTech Connect

    Ramirez, A.L.; Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  11. Component-Based Framework for Subsurface Simulations

    SciTech Connect

    Palmer, Bruce J.; Fang, Yilin; Hammond, Glenn E.; Gurumoorthi, Vidhya

    2007-08-01

    Simulations in the subsurface environment represent a broad range of phenomena covering an equally broad range of scales. Developing modelling capabilities that can integrate models representing different phenomena acting at different scales present formidable challenges both from the algorithmic and computer science perspective. This paper will describe the development of an integrated framework that will be used to combine different models into a single simulation. Initial work has focused on creating two frameworks, one for performing smooth particle hydrodynamics (SPH) simulations of fluid systems, the other for performing grid-based continuum simulations of reactive subsurface flow. The SPH framework is based on a parallel code developed for doing pore scale simulations, the continuum grid-based framework is based on the STOMP (Subsurface Transport Over Multiple Phases) code developed at PNNL. Future work will focus on combining the frameworks together to perform multiscale, multiphysics simulations of reactive subsurface flow.

  12. Complete Subsurface Elemental Composition Measurements with PING

    NASA Astrophysics Data System (ADS)

    Parsons, A. M.

    2012-06-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars down to ~ 1 m depth without the need for contacting the surface or extracting samples.

  13. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and

  14. DOE UST interim subsurface barrier technologies workshop

    SciTech Connect

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation.

  15. MODELING CONTAMINANT TRANSPORT THROUGH SUBSURFACE SYSTEMS

    EPA Science Inventory

    Modeling of contaminant transport through soil to groundwater to a receptor requires that consideration be given to the many processes which control the transport and fate of chemical constituents in the subsurface environment. These processes include volatilization, degradation,...

  16. Lead, cadmium and chromium in raw and boiled portions of Norway lobster.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Tarasco, Renata; Amorena, Michele

    2014-01-01

    Lead, cadmium and chromium levels were determined in different raw and boiled portions of Norway lobster caught in the central Adriatic Sea (Italy). In raw specimens, the lowest concentrations were always detected in the white meat. Lead and cadmium content in the edible portion never exceeded the maximum levels set by European legislation. The highest cadmium and chromium values (0.47 ± 0.04 and 0.62 ± 0.13 mg/kg wet weight, respectively) were detected in the brown meat, while the highest lead concentrations were found in the exoskeleton (0.21 ± 0.01 mg/kg wet weight). Also, the boiled samples showed the lowest metal levels in the white meat, even if a significant increase (p < 0.01) was found for lead and cadmium compared to the corresponding raw portions. Among metals, chromium showed the highest concentrations in both raw and boiled portions, but up to now, the European legislation did not envisage any limits in seafood. PMID:24784349

  17. New observations of interstellar abundances and depletions of boron, vanadium, chromium, and cobalt

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Weiler, W. J.; Oegerle, W. R.

    1979-01-01

    New observations of interstellar lines of boron, vanadium, chromium, and cobalt in the spectra of Zeta Oph and Xi Per have been obtained with the Copernicus satellite. Chromium has been detected for the first time toward a reddened star, and cobalt has been seen for the first time in any interstellar line of sight. New limits have been obtained for boron and vanadium. These new data, along with limits on scandium and other species from the literature, have been compared with models for the depletion process. No fully conclusive test of depletion models is yet possible, but the new data on boron appear to favor the hypothesis that the depletions are dominated by accretion of gas-phase particles onto grains, rather than being due to grain condensation under pressure equilibrium. The impact of these new data on the study of grain surface properties is described.

  18. Spectrophotometric method for the determination of chromium (VI) in water samples.

    PubMed

    Nagaraj, P; Aradhana, N; Shivakumar, Anantharaman; Shrestha, Ashwinee Kumar; Gowda, Avinash K

    2009-10-01

    A simple and sensitive spectrophotometric method for the determination of chromium has been developed. The method is based on the diazotization of Dapsone in hydroxylamine hydrochloride medium and coupling with N-(1-Napthyl) Ethylene Diamine Dihydrochloride by electrophilic substitution to produce an intense pink azo-dye, which has absorption maximum at 540 nm. The Beer's law is obeyed from 0.02-1.0 microg mL(-1) and the molar absorptivity is 3.4854 L mol(-1) cm(-1). The Limits of quantification and Limit of detection of the proposed method are 0.0012 microg mL(-1) and 0.0039 microg mL(-1) respectively. The method has been successfully applied for the determination of chromium in water samples and the results were statistically evaluated with that of the reference method.

  19. Modeling the influence of subsurface topography on spatial and temporal variability of subsurface stormflow

    NASA Astrophysics Data System (ADS)

    van Verseveld, W. J.; Tromp-van Meerveld, H. J.; Weiler, M.; McDonnell, J. J.

    2003-12-01

    Recent investigations of spatial patterns of soil depth, water table and subsurface flow response at the hillslope scale suggest that the variability in depth to bedrock (or to any other low permeable layer) may be a primary control on the space-time variability of subsurface stormflow. However, simulating or even predicting subsurface flow variability is still a challenge. Even more problematic is the fact that spatially explicit soil depth information is generally lacking at hillslope and catchment scales. We investigate how soil depth variability affects the spatial and temporal response of subsurface stormflow and propose a new way forward to defining these controls on sites without soil depth data. We used long-term data of spatially explicit subsurface flow measurements from a trenched hillslope at the Panola Mountain Research Watershed, as well as soil depth and soil property information, to calibrate and verify the HillVi hillslope model. Then we generated numerous realizations of the subsurface topography using geo-statistical information of the observed soil depth in the watershed. Subsurface flow variability was simulated based on these subsurface topography realizations. The spatial-temporal properties of the modeled flow were compared with the spatial and temporal variability of the observed flow. HillVi is a quasi 3D spatially explicit saturated and unsaturated water balance model and is well suited for this approach as it captures all major subsurface runoff generation processes (matrix and macropore flow and infiltration, lateral subsurface flow and pipe flow). We discuss the potentials and drawbacks of this approach to simulate spatially variable outflow from hillslopes and the general role of subsurface topography on the spatial and temporal patterns of subsurface flow.

  20. Nickel and chromium isotopes in Allende inclusions

    NASA Technical Reports Server (NTRS)

    Birck, J. L.; Lugmair, G. W.

    1988-01-01

    High-precision nickel and chromium isotopic measurements were carried out on nine Allende inclusions. It is found that Ni-62, Ni-64, excesses are present in at least three of the samples. The results suggest that the most likely mechanism for the anomalies is a neutron-rich statistical equilibrium process. An indication of elevated Ni-60 is found in almost every inclusion measured. This effect is thought to be related to the decay of now extinct Fe-60. An upper limit of 1.6 X 10 to the -6th is calculated for the Fe-60/Fe-56 ratio at the time these Allende inclusions crystallized.

  1. Environmental durability of electroplated black chromium

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1981-01-01

    A study was undertaken to determine the durability of nickel-black chromium plated aluminum in an outdoor rural industrial, and seacoast environment. Test panels were exposed to these environments for 60, 36, and 13 months, respectively. The results of this study showed that no significant optical degradation occurred from exposure to either of these environments, although a considerable amount of corrosion occurred on the panels exposed to the seacoast environment. The rural and industrial atmosphere produced only a slight amount of corrosion on test panels.

  2. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  3. ADVANCES IN HEXAVALENT CHROMIUM REMOVAL AT HANFORD

    SciTech Connect

    NESHEM DO; RIDDELLE J

    2012-01-30

    At the Hanford Site, chromium was used as a corrosion inhibitor in the reactor cooling water and was introduced into the groundwater as a result of planned and unplanned discharges from reactors during plutonium production since 1944. Beginning in 1995, groundwater treatment methods were evaluated leading to the use of pump and treat facilities with ion exchange using Dowex 21 K, a regenerable strong base anion exchange resin. This required regeneration of the resin, which is currently performed offsite. Resin was installed in a 4 vessel train, with resin removal required from the lead vessel approximately once a month. In 2007, there were 8 trains (32 vessels) in operation. In 2008, DOE recognized that regulatory agreements would require significant expansion in the groundwater chromium treatment capacity. Previous experience from one of the DOE project managers led to identification of a possible alternative resin, and the contractor was requested to evaluate alternative resins for both cost and programmatic risk reductions. Testing was performed onsite in 2009 and 2010, using a variety of potential resins in two separate facilities with groundwater from specific remediation sites to demonstrate resin performance in the specific groundwater chemistry at each site. The testing demonstrated that a weak base anion single-use resin, ResinTech SIR-700, was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently on site, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation and return of resin for regeneration. This resin was installed in Hanford's newest groundwater treatment facility, called 100-DX, which began operations in November, 2010, and used in a sister facility, 100-HX, which started up in September of 2011. This increased chromium treatment capacity to 25 trains (100 vessels). The resin is also being tested in existing facilities that utilize Dowex 21 K for

  4. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color additive... subpart as safe and suitable for use in color additive mixtures for coloring drugs. (b)...

  5. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color additive... subpart as safe and suitable for use in color additive mixtures for coloring drugs. (b)...

  6. 21 CFR 73.1327 - Chromium oxide greens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color additive... subpart as safe and suitable for use in color additive mixtures for coloring drugs. (b)...

  7. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... area of the eye. (d) Labeling requirements. The label of the color additive and of any mixtures... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide...

  8. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... area of the eye. (d) Labeling requirements. The label of the color additive and of any mixtures... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide...

  9. 21 CFR 73.1326 - Chromium hydroxide green.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... area of the eye. (d) Labeling requirements. The label of the color additive and of any mixtures... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide...

  10. The commensurate spin excitation in chromium: A polarised neutron investigation

    SciTech Connect

    Pynn, R. ); Stirling, W.G. . Dept. of Physics); Severing, A. )

    1991-01-01

    A polarised neutron experiment with neutron energy analysis has been performed with a single-Q sample of chromium in a large magnetic field. The 4-meV commensurate'' mode is found to involve spin fluctuations parallel to the ordered chromium moments. 8 refs., 3 figs.

  11. Embryo- and fetotoxicity of chromium in pregestationally exposed mice

    SciTech Connect

    Junaid, M.; Murthy, R.C.; Saxena, D.K.

    1996-10-01

    Chromium, an essential element in the human body required for proper carbohydrate, protein, and fat metabolism, is reported to impair gestational development of offspring of workers chronically exposed to this metal in the work place. Workers in chromium based industries can be exposed to concentrations two orders of magnitude higher than the general population. Among the general population, residents living near chromate production sites may be exposed to high levels of chromium (VI) in air or to elevated levels (40 - 50,000 ppm) of chromium in effluents. Shmitova reported afterbirth and puerperal hemorrhages in women industrially exposed to this metal and observed high chromium levels in blood and urine of pregnant women and in fetal and cord blood. Chromium readily passes the placental barrier and reaches the growing fetus. Exposure of mice to chromium during various gestational periods resulted in embryo and fetotoxic effects. This study looks at the role of body chromium accumulated pregestationally on embryo and fetal development and its subsequent transfer to feto-placental sites. 25 refs., 3 tabs.

  12. IRIS Toxicological Review of Hexavalent Chromium (2010 External Review Draft)

    EPA Science Inventory

  1. Chromium allergy and dermatitis: prevalence and main findings.

    PubMed

    Bregnbak, David; Johansen, Jeanne D; Jellesen, Morten S; Zachariae, Claus; Menné, Torkil; Thyssen, Jacob P

    2015-11-01

    The history of chromium as an allergen goes back more than a century, and includes an interventional success with national legislation that led to significant changes in the epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium allergy, emphasizing that the investigation of chromium allergy is still far from complete. Our review article on chromium focuses on the allergen's chemical properties, its potential exposure sources, and the allergen's interaction with the skin, and also provides an overview of the regulations, and analyses the epidemiological pattern between nations and across continents. We provide an update on the allergen from a dermatological point of view, and conclude that much still remains to be discovered about the allergen, and that continued surveillance of exposure sources and prevalence rates is necessary.

  2. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    PubMed

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  3. Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering.

    PubMed

    Liao, Wenlin; Dai, Yifan; Liu, Zongzheng; Xie, Xuhui; Nie, Xuqing; Xu, Mingjin

    2016-02-22

    Formation of subsurface damage has an inseparable relationship with microscopic material behaviors. In this work, our research results indicate that the formation process of subsurface damage often accompanies with the local densification effect of fused silica material, which seriously influences microscopic material properties. Interestingly, we find ion beam sputtering (IBS) is very sensitive to the local densification, and this microscopic phenomenon makes IBS as a promising technique for the detection of nanoscale subsurface damages. Additionally, to control the densification effect and subsurface damage during the fabrication of high-performance optical components, a combined polishing technology integrating chemical-mechanical polishing (CMP) and ion beam figuring (IBF) is proposed. With this combined technology, fused silica without subsurface damage is obtained through the final experimental investigation, which demonstrates the feasibility of our proposed method.

  4. Determination of chromium in treated crayfish, Procambarus clarkii, by electrothermal ASS: study of chromium accumulation in different tissues

    SciTech Connect

    Hernandez, F.; Diaz, J.; Medina, J.; Del Ramo, J.; Pastor, A.

    1986-06-01

    In the present study, the authors investigated the accumulation of chromium in muscle, hepatopancreas, antennal glands, and gills of Procambarus clarkii (Girard) from Lake Albufera following Cr(VI)-exposure. Determinations of chromium were made by using Electrothermal Atomic Absorption Spectroscopy and the standard additions method.

  5. Chromium(VI) bioremediation by probiotics.

    PubMed

    Younan, Soraia; Sakita, Gabriel Z; Albuquerque, Talita R; Keller, Rogéria; Bremer-Neto, Hermann

    2016-09-01

    Chromium is a common mineral in the earth's crust and can be released into the environment from anthropogenic sources. Intake of hexavalent chromium (Cr(VI)) through drinking water and food causes toxic effects, leading to serious diseases, and is a commonly reported environmental problem. Microorganisms can mitigate or prevent the toxic effects caused by heavy metals in addition to having effective resistance mechanisms to prevent cell damage and bind to these metals, sequestering them from the cell surface and removing them from the body. Species of Lactobacillus, Streptococcus, Bacillus and Bifidobacterium present in the human mouth and gut and in fermented foods have the ability to bind and detoxify some of these substances. This review address the primary topics related to Cr(VI) poisoning in animals and humans and the use of probiotics as a way to mitigate or prevent the toxic effects caused by Cr(VI). Further advances in the genetic knowledge of such microorganisms may lead to discoveries which will clarify the most active microorganisms that act as bioprotectants in bodies exposed to Cr(VI) and are an affordable option for people and animals intoxicated by the oral route. © 2016 Society of Chemical Industry. PMID:26997541

  6. Chromium(VI) bioremediation by probiotics.

    PubMed

    Younan, Soraia; Sakita, Gabriel Z; Albuquerque, Talita R; Keller, Rogéria; Bremer-Neto, Hermann

    2016-09-01

    Chromium is a common mineral in the earth's crust and can be released into the environment from anthropogenic sources. Intake of hexavalent chromium (Cr(VI)) through drinking water and food causes toxic effects, leading to serious diseases, and is a commonly reported environmental problem. Microorganisms can mitigate or prevent the toxic effects caused by heavy metals in addition to having effective resistance mechanisms to prevent cell damage and bind to these metals, sequestering them from the cell surface and removing them from the body. Species of Lactobacillus, Streptococcus, Bacillus and Bifidobacterium present in the human mouth and gut and in fermented foods have the ability to bind and detoxify some of these substances. This review address the primary topics related to Cr(VI) poisoning in animals and humans and the use of probiotics as a way to mitigate or prevent the toxic effects caused by Cr(VI). Further advances in the genetic knowledge of such microorganisms may lead to discoveries which will clarify the most active microorganisms that act as bioprotectants in bodies exposed to Cr(VI) and are an affordable option for people and animals intoxicated by the oral route. © 2016 Society of Chemical Industry.

  7. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater.

    PubMed

    Kazakis, N; Kantiranis, N; Voudouris, K S; Mitrakas, M; Kaprara, E; Pavlou, A

    2015-05-01

    This study aims to specify the source minerals of geogenic chromium in soils and sediments and groundwater and to determine the favorable hydrogeological environment for high concentrations of Cr(VI) in groundwaters. For this reason, chromium origin and the relevant minerals were identified, the groundwater velocity was calculated and the concentrations of Cr(VI) in different aquifer types were determined. Geochemical and mineralogical analyses showed that chromium concentrations in soils and sediments range from 115 to 959 mg/kg and that serpentine prevails among the phyllosilicates. The high correlation between chromium and serpentine, amphibole and pyroxene minerals verifies the geogenic origin of chromium in soils and sediments and, therefore, in groundwater. Manganese also originates from serpentine, amphibole and pyroxene, and is strongly correlated with chromium, indicating that the oxidation of Cr(III) to Cr(VI) is performed by manganese-iron oxides located on the surface of Cr-Mn-rich minerals. Backscattered SEM images of the soils revealed the unweathered form of chromite grains and the presence of Fe-Mn-rich oxide on the outer surface of serpentine grains. Chemical analyses revealed that the highest Cr(VI) concentrations were found in shallow porous aquifers with low water velocities and their values vary from 5 to 70 μg/L. Cr(VI) concentrations in ophiolitic complex aquifers ranged between 3 and 17 μg/L, while in surface water, karst and deeper porous aquifers, Cr(VI) concentrations were lower than the detection limit of 1.4 μg/L.

  8. Worse health-related quality of life and hip function in female patients with elevated chromium levels

    PubMed Central

    Hussey, Daniel K; Madanat, Rami; Donahue, Gabrielle S; Rolfson, Ola; Muratoglu, Orhun K; Malchau, Henrik

    2016-01-01

    Background and purpose Blood metal ion levels can be an indicator for detecting implant failure in metal-on-metal (MoM) hip arthroplasties. Little is known about the effect of bilateral MoM implants on metal ion levels and patient-reported outcomes. We compared unilateral patients and bilateral patients with either an ASR hip resurfacing (HR) or an ASR XL total hip replacement (THR) and investigated whether cobalt or chromium was associated with a broad spectrum of patient outcomes. Patients and methods From a registry of 1,328 patients enrolled in a multicenter prospective follow-up of the ASR Hip System, which was recalled in 2010, we analyzed data from 659 patients (311 HR, 348 THR) who met our inclusion criteria. Cobalt and chromium blood metal ion levels were measured and a 21-item patient-reported outcome measures (PROMs) questionnaire was used mean 6 years after index surgery. Results Using a minimal threshold of ≥7 ppb, elevated chromium ion levels were found to be associated with worse health-related quality of life (HRQoL) (p < 0.05) and hip function (p < 0.05) in women. These associations were not observed in men. Patients with a unilateral ASR HR had lower levels of cobalt ions than bilateral ASR HR patients (p < 0.001) but similar levels of chromium ions (p = 0.09). Unilateral ASR XL THR patients had lower chromium and cobalt ion levels (p < 0.005) than bilateral ASR XL THR patients. Interpretation Chromium ion levels of ≥7 ppb were associated with reduced functional outcomes in female MoM patients. PMID:27459602

  9. Cross-polarization confocal imaging of subsurface flaws in silicon nitride.

    SciTech Connect

    Liu, Z.; Sun, J. G.; Pei, Z.

    2011-03-01

    A cross-polarization confocal microscopy (CPCM) method was developed to image subsurface flaws in optically translucent silicon nitride (Si{sub 3}N{sub 4}) ceramics. Unlike conventional confocal microscopy, which measures reflected light so is applicable only to transparent and semi-transparent materials, CPCM detects scattered light from subsurface while filtering out the reflected light from ceramic surface. For subsurface imaging, the refractive-index mismatch between imaging (air) and imaged (ceramic) medium may cause image distortion and reduce resolution in the depth direction. This effect, characterized by an axial scaling factor (ASF), was analyzed and experimentally determined for glass and Si{sub 3}N{sub 4} materials. The experimental CPCM system was used to image Hertzian C-cracks generated by various indentation loads in the subsurface of a Si{sub 3}N{sub 4} specimen. It was demonstrated that CPCM may provide detailed information of subsurface cracks, such as crack angle and path, and subsurface microstructural variations.

  10. On-line preconcentration and determination of chromium in parenteral solutions by flow injection-flame atomic absorption spectrometry.

    PubMed

    Wuilloud, Gustavo M; Wuilloud, Rodolfo G; de Wuilloud, Jorgelina C A; Olsina, Roberto A; Martinez, Luis D

    2003-02-01

    An on-line chromium preconcentration and determination system implemented with flame atomic absorption spectrometry (FAAS) associated to flow injection (FI) was studied. For the retention of chromium, 4-(2-Thiazolylazo)-resorcinol (TAR) and Amberlite XAD-16 were used, at pH 5.0. The Cr-TAR complex was removed from the micro-column with ethanol. An enrichment factor of 50 was obtained for the preconcentration of 50 ml of sample solution. The detection limit value for the preconcentration of 50 ml of aqueous solution of Cr was 20 ng l(-1). The precision for ten replicate determinations at the 5 microg l(-1) Cr levels was 2.9% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9997 at levels near the detection limits up to at least 100 microg l(-1). The method was successfully applied to the determination of chromium in parenteral solution samples.

  11. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    SciTech Connect

    Qiusheng, Y. Senkai, C. Jisheng, P.

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  12. Using lunar sounder imagery to distinguish surface from subsurface reflectors in lunar highlands areas

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Carter, James L.

    1993-01-01

    We have developed a method using the Apollo 17 Lunar Sounder imagery data which appears capable of filtering out off-nadir surface noise from highland area profiles, so that subsurface features may now be detected in highland areas as well as mare areas. Previously, this had been impossible because the rough topography in the highland areas created noise in the profiles which could not be distinguished from subsurface echoes. The new method is an image processing procedure involving the computerized selection of pixels which represent intermediate echo intensity values, then manually removing those pixels from the profile. Using this technique, a subsurface feature with a horizontal extent of about 150 km, at a calculated depth of approximately 3 km, has been detected beneath the crater Riccioli in the highlands near Oceanus Procellarum. This result shows that the ALSE data contain much useful information that remains to be extracted and used.

  13. Logarithmic analysis of eddy current thermography based on longitudinal heat conduction for subsurface defect evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2014-11-01

    Longitudinal heat conduction from surface to inside of solid material could be used to evaluate the subsurface defects. Considering that the skin depth of high frequency eddy current in metal is quite small, this paper proposed logarithmic analysis of eddy current thermography (ECT) to quantify the depth of subsurface defects. The proposed method was verified through numerical and experimental studies. In numerical study, ferromagnetic material and non-ferromagnetic material were both considered. Results showed that the temperature-time curve in the logarithm domain could be used to detect subsurface defects. Separation time was defined as the characteristic feature to measure the defect's depth based on their linear relationships. The thermograms reconstructed by logarithm of temperature can improve defect detectability.

  14. Mode of occurrence of chromium in four US coals

    USGS Publications Warehouse

    Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The mode of occurrence of chromium in three US bituminous coals and one US subbituminous has been examined using both X-ray absorption fine structure (XAFS) spectroscopy and a selective leaching protocol supplemented by scanning electron microscopy (SEM) and electron microprobe measurements. A synthesis of results from both methods indicates that chromium occurs principally in two forms in the bituminous coals: the major occurrence of chromium is associated with the macerals and is not readily leached by any reagent, whereas a second, lesser occurrence, which is leachable in hydrofluoric acid (HF), is associated with the clay mineral, illite. The former occurrence is believed to be a small particle oxyhydroxide phase (CrO(OH)). One coal also contained a small fraction (<5%) of the chromium in the form of a chromian magnetite, and the leaching protocol indicated the possibility of a similar small fraction of chromium in sulfide form in all three coals. There was little agreement between the two techniques on the mode of occurrence of chromium in the subbituminous coal; however, only a limited number of subbituminous coals have been analyzed by either technique. The chromium in all four coals was trivalent as no evidence was found for the Cr6+ oxidation state in any coal.

  15. Bioavailability of a potato chromium complex to the laboratory rat

    SciTech Connect

    Gilbert, H.K.

    1985-01-01

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 ..mu..g Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption.

  16. Subsurface photodisruption in scattering biological tissue

    NASA Astrophysics Data System (ADS)

    Sacks, Zachary S.; Spooner, Greg J. R.; Kurtz, Ron M.; Juhasz, Tibor; Mourou, Gerard A.

    2000-11-01

    Approximately five million people worldwide are blind due to complications from glaucoma. Current surgical techniques often fail due to infection and scarring. Both failure routes are associated with damaging surface tissues. Femtosecond lasers allow a method to create a highly precise incision beneath the surface of the tissue without damaging any of the overlying layers. However, subsurface surgery can only be performed where the beam can be focused tightly enough to cause optical breakdown. Under normal conditions, subsurface surgery is not possible since sclera is highly scattering. Using two independent methods, we show completely subsurface surgery in human sclera using a femtosecond laser. The first method is to make the sclera transparent by injecting a dehydrating agent. The second method is to choose a wavelength that is highly focusable in the sclera. Both methods may be applied in other tissues, such as skin. We show highly precise incisions in in vitro tissues. Subsurface femtosecond photodisruption may be useful for in vivo surgical technique to perform a completely subsurface surgery.

  17. Wave-Based Subsurface Guide Star

    SciTech Connect

    Lehman, S K

    2011-07-26

    Astronomical or optical guide stars are either natural or artificial point sources located above the Earth's atmosphere. When imaged from ground-based telescopes, they are distorted by atmospheric effects. Knowing the guide star is a point source, the atmospheric distortions may be estimated and, deconvolved or mitigated in subsequent imagery. Extending the guide star concept to wave-based measurement systems to include acoustic, seismo-acoustic, ultrasonic, and radar, a strong artificial scatterer (either acoustic or electromagnetic) may be buried or inserted, or a pre-existing or natural sub-surface point scatterer may be identified, imaged, and used as a guide star to determine properties of the sub-surface volume. That is, a data collection is performed on the guide star and the sub-surface environment reconstructed or imaged using an optimizer assuming the guide star is a point scatterer. The optimization parameters are the transceiver height and bulk sub-surface background refractive index. Once identified, the refractive index may be used in subsequent reconstructions of sub-surface measurements. The wave-base guide star description presented in this document is for a multimonostatic ground penetrating radar (GPR) but is applicable to acoustic, seismo-acoustic, and ultrasonic measurement systems operating in multimonostatic, multistatic, multibistatic, etc., modes.

  18. Subsurface Shielding Source Term Specification Calculation

    SciTech Connect

    S.Su

    2001-04-12

    The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M&O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations.

  19. Interactions of chromium ions with starch granules in an aqueous environment.

    PubMed

    Szczygieł, Jadwiga; Dyrek, Krystyna; Kruczała, Krzysztof; Bidzińska, Ewa; Brożek-Mucha, Zuzanna; Wenda, Elżbieta; Wieczorek, Jerzy; Szymońska, Joanna

    2014-06-26

    In this study, interactions of dichromate ions with potato starch granules in highly acidic aqueous solutions and at different temperatures were investigated. It was found that the process underwent a reduction of Cr(2)O(7)(2-) to Cr(3+) accompanied by the formation of intermediate Cr(5+) ions detected by electron paramagnetic resonance (EPR) spectroscopy. The reactions took place after the attachment of dichromate anions to the granules and resulted in a lowering of the Cr(2)O(7)(2-) initial content in the solution. The newly formed Cr(3+) ions were both accumulated by the granules or remained in the solution. It was observed for the first time that the quantity of such ions taken by the granules from the solution was noticeably higher than that delivered by trivalent chromium salt solution. It was revealed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX) that the chromium ions were not only adsorbed on the granule surface but also introduced into the granule interior and evenly distributed there. An activation energy of the reduction reaction equal to 65 kJ·mol(-1) and the optimal parameters of the process were established. The proposed mechanism could be useful for the bioremediation of industrial effluents polluted by hexavalent chromium compounds.

  20. [Experimental study on chromium in gannan navel orange by laser-induced breakdown spectroscopy].

    PubMed

    Xu, Yuan; Liu, Mu-Hua; Yao, Ming-Yin; Peng, Qiu-Mei; Chen, Tian-Bing; Zhang, Xu; Lin, Yong-Zeng

    2012-09-01

    It is a relatively new task to apply the laser induced breakdown spectroscopy (LIBS) to fruit samples. To apply LIBS technique in the field related to analysis of trace heavy metal element in fruits samples, we have done primary experiments using Gannan navel orange samples. The authors put the samples into different concentration gradient K2Cr2O7 solution and left it for 30 hours, and then we did the LIBS experiment, discriminated characteristic spectra of chromium element and recorded the peak intensity information. Weighing three grams of sample and determined chromium concentration in the samples by atomic absorption spectrophotometer using wet digestion. The calibration curve of the line intensities versus the concentrations of the Cr element was acquired by the Origin software. The authors found that the linear correlation coefficient is 0. 981 66. The calibration curve can be used for the quantitative analysis of chromium element with an unknown concentration in Gannan navel orange. The LIBS detection limit of Cr in the solution was 11.64 mg x g(-1) from the measured calibration curve. Experiment results showed that LIBS technique is a valid means for measuring and quantitatively analyzing the content of heavy metal elements in fruit samples.

  1. Development of a site-specific water quality criterion for hexavalent chromium

    SciTech Connect

    McIntyre, D.O.; Sticko, J.P.; Reash, R.J.

    1995-12-31

    The effluent of treated fly ash from a coal-fired power plant located on the Ohio River periodically exceeds its NPDES acute permit limit for hexavalent chromium of 15 {micro}g/L. The increased levels of hexavalent chromium in the effluent are a recent occurrence which are likely due to changes in coal blends burned in the generating units. Ohio EPA determined the use designation of the receiving stream (Limited Resource Water) was being attained and a one-year biomonitoring program of the effluent detected no acute toxicity to Ceriodaphnia dubia or Daphnia magna. The water-effect ratio (WER) procedure was selected to develop a site-specific criterion maximum concentration for hexavalent chromium for the effluent`s receiving stream. WER procedures followed those described in EPA`s ``Interim Guidance on Determination and Use of Water-Effect Ratios for Metals`` (1994). Site water used in the WER determinations was undiluted effluent since the receiving stream originates at the discharge point of the outfall. 48-hour acute D. magna and 96-hour acute fathead minnow toxicity tests were selected as the primary and secondary tests, respectively for use in three seasonal WER determinations. The results of the three WER determinations and the status of the regulatory process will be presented.

  2. Toxic effects of chromium acetate hydroxide on cells cultivated in vitro.

    PubMed

    Rudolf, E; Peychl, J; Cervinka, M

    2001-01-01

    Many human activities, particularly industrial ones, result in an ever-growing production of toxic waste materials. The dynamics of the toxic effects of chromium acetate hydroxide, which is found in high concentrations in a waste sediment produced in the Czech Republic, were assessed by using a battery of in vitro tests carried out on two cell lines: L-929 (mouse fibroblasts) and Hep 2 (human laryngeal cells). Various markers of cell damage were assessed by phase-contrast, video and fluorescence microscopy, fluorometry, and DNA analysis. Chromium acetate hydroxide, over a concentration range of 1-0.02mol/l induced immediate cell death by fixation, whereas, at 0.002mol/l, the treated cells died in a much slower, more discrete manner. All the detected markers of cell damage, whether immediate or slow, clearly demonstrated that the cells died by necrosis. On the other hand, test concentration of 0.001mol/l appeared to constitute a threshold at which no pathological changes of Hep 2 cells were observed over 96 hours. We conclude that chromium acetate hydroxide has a high toxic potential in vitro, which should be considered when studying the toxicity of waste materials containing it.

  3. Workshop on effects of chromium coating on Nb{sub 3}Sn superconductor strand: Proceedings

    SciTech Connect

    Not Available

    1994-04-12

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures` presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb{sub 3}Sn strand.

  4. Spectroscopic analysis of chromium bioremediation products

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Marcus, M. A.; Steefel, C.; Larsen, J. T.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Remediation of chromium contamination frequently involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to identify the biogeochemical reactions that control in situ chromium reduction in the presence of different dominant electron acceptors, i.e., NO3-, Fe(III), and SO42-. It was hypothesized that indirect, abiotic reduction of Cr(VI) by reduced metabolic products [Fe(II) and sulfides] would dominate over direct enzymatic reduction by denitrifying, iron-reducing, or sulfate-reducing bacteria. It is further hypothesized that the enzymatic reduction of Cr(VI) would produce relatively pure chromium hydroxide precipitates, whereas indirect reduction would result in mixed Cr-Fe hydroxide solid phases. Flow-through columns containing homogenized sediments from the 100H site at Hanford, WA were subjected to nitrate-, sulfate- or iron-reducing conditions in the presence of 5 µM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions from the nitrate- and sulfate-reducing columns; however only a small amount of Cr(VI) was removed under iron-reducing conditions. Preliminary analysis of micro X-ray absorption spectra indicate that the untreated and iron-reducing column sediments contained pre-existing Cr in the form of primary minerals, e.g. chromite and/or Cr-bearing micas. However, there was an increase in the relative abundance of mixed-phase Cr-Fe hydroxides, i.e., Cr1-xFex(OH)3 in the nitrate- and sulfate-treated columns. A possible explanation for the observations is that the production of Fe(II) was enhanced under the nitrate- and sulfate- reducing conditions, and was most likely sulfide-driven in the latter case. The Fe(II) was subsequently available for reduction of Cr(VI) resulting in the mixed-phase precipitates. The results from the spectroscopic analysis support the hypothesis that Fe(II)-mediated Cr reduction prevails over direct

  5. Half life of chromium in serum and urine in a former plasma cutter of stainless steel

    PubMed Central

    Petersen, R.; Thomsen, J. F.; Jorgensen, N. K.; Mikkelsen, S.

    2000-01-01

    For 8 years chromium in serum and urine has been followed up in a former plasma cutter of stainless steel who was exposed to airborne dust and fumes containing chromium during this work. After the first examination for serum chromium the exposure ended. Serum chromium concentration has been measured seven times during the period and was initially very high and has subsequently dropped slowly. The half life was 40 months in serum. Urinary chromium has been measured five times. The half life was 129 months in urine. The study shows that exposure to airborne dust and fumes containing chromium may cause accumulation of chromium in the body, and that when exposure ends, elimination of chromium is very slow. Previous studies suggest that chromium mainly accumulates in the lungs.


Keywords: chromium half life; plasma cutting; stainless steel PMID:10711283

  6. Marine sediment toxicity identification evaluation methods for the anionic metals arsenic and chromium.

    PubMed

    Burgess, Robert M; Perron, Monique M; Cantwell, Mark G; Ho, Kay T; Pelletier, Marguerite C; Serbst, Jonathan R; Ryba, Stephan A

    2007-01-01

    Marine sediments accumulate a variety of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity identification evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole-sediment TIE methods are not available for anionic metals like arsenic and chromium. In the present paper, we describe two new anion-exchange resins used in the development of whole-sediment TIE methods for arsenic and chromium. Resins were shown to reduce whole-sediment toxicity and overlying water concentrations of the anionic metals. Sediment toxicity, expressed as the median lethal concentration, was reduced by a factor of two to a factor of nearly six between amended sediment treatments containing resin and those without resin. Aqueous concentrations of arsenic and chromium in the toxicity exposures decreased to less than the detection limits or to concentrations much lower than those measured in treatments without resin. Interference studies indicated that the anion-exchange resins had no significant effect on concentrations of the representative pesticide endosulfan and minimal effects on concentrations of ammonia. However, the anion-exchange resins did significantly reduce the concentrations of a selection of cationic metals (Cd, Cu, Ni, Pb, and Zn). These data demonstrate the utility of anion-exchange resins for determining the contribution of arsenic and chromium to whole-sediment toxicity. The present results also indicate the importance of using TIE methods in a formal TIE structure to ensure that results are not misinterpreted. These methods should be useful in the performance of marine whole-sediment TIEs.

  7. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    NASA Astrophysics Data System (ADS)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  8. Laser processing of high-chromium nickel-chromium coatings deposited by various thermal spraying methods

    SciTech Connect

    Longa, Y.; Takemoto, M. . Coll. of Science and Engineering)

    1994-11-01

    High-chromium Ni-Cr coatings were deposited by thermal spraying in air and in an argon gas atmosphere. Coatings sprayed in Ar gas were free of pores and defects and of the same chemical composition as the spraying material. Following thermal spraying for each coating, laser glazing or laser gas alloying was applied to provide a protective chromium oxide film, produced by the intermediate oxidation process on top of the coatings. Five types of coatings were treated: (1) arc and (2) flame spraying in Ar, (3) arc and (4) flame spraying in air, and (5) low-pressure plasma spraying (LPPS). Oxide formation mechanisms during laser processing were studied, and the oxidation and hot-corrosion resistance of the coatings in the presence of a sulfate-vanadate fused salt at 900 C in air were examined. High-chromium Ni-Cr coatings deposited by thermal spraying, and they are used mostly to prevent ash attack of boilers and furnace tubes in power plants and oil refineries.

  9. Mutagenic and carcinogenic actions of chromium and its compounds.

    PubMed

    Mamyrbaev, Arstan Abdramanovich; Dzharkenov, Timur Agataevich; Imangazina, Zina Amangalievna; Satybaldieva, Umit Abulkhairovna

    2015-05-01

    Numerous experimental observations have been made on microorganisms and culture of the cells of mammals as well as the accounting of the chromosomal aberrations in the bone marrow cells of the mammals and of human cells displayed that the chromium and its compounds possess a pronounced mutagenic effect. Translocation test, induction record of DNA damage and repair systems in the mammalian and human cells with greater precision proves the presence of the mutagenic effect of the chromium and its compounds, which in turn is dependent on dose and time of this metal intoxication. Chromium and its compounds have pronounced mutagenic effect, on increased admission to organism of mammals and protozoa.

  10. Evolution of dispersion of high temperature chromium compounds

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Nozdrin, I. V.; Rudneva, V. V.; Galevsky, G. V.

    2016-09-01

    Chromium compound - boride Cr3B2 and carbide Cr3C2 are hard, wear-resistant, chemically inert materials, demanded for production of protective coatings of metals and cermets as components and alloying additives of tungsten free solid alloys. Future prospects for expansion of boride and chromium carbide usage are related to their production in the form of nanopowders. The researches into change of the particles shape and size of high-temperature chromium compounds in the conditions of plasma flow were carried out. There is coarsening of boride and carbonitride particles of nanoscale level at the reduction in the linear velocity of their growth.

  11. Subsurface Sampling and Sensing Using Burrowing Moles

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Richter, L.; Smith, W. H.

    2004-01-01

    Finding evidence for life on Mars will likely require accessing the subsurface since the Martian surface is both hostile to life and to preservation of biosignatures due to the cold dry conditions, the strong W environment, and the presence of strong oxidants. Systems are needed to probe beneath the sun and oxidant baked surface of Mars and return samples to the surface for analysis or to bring the instrument sensing underground. Recognizing this need, the European Space Agency incorporated a small subsurface penetrometer or Mole onto the Beagle 2 Mars lander. Had the 2003 landing been successful, the Mole would have collected samples from 1-1.5 m depth and delivered them to an organic analysis instrument on the surface. The de- vice called the Planetary Underground Tool (PLUTO), also measured soil mechanical and thermophysical properties. Constrained by the small mass and volume allowance of the Beagle lander, the PLUTO mole was a slender cylinder only 2 cm diameter and 28 cm long equipped with a small sampling device designed to collect samples and bring them to the surface for analysis by other instrument. The mass of the entire system including deployment mechanism and tether was 1/2 kg. sensor package underground to make in situ measurements. The Mars Underground Mole (MUM) is a larger Mole based on the PLUTO design but incorporating light collection optics that interface to a fiber optic cable in the tether that transmits light to a combined stimulated emission Raman Spectrometer and Short Wave Infrared (SWIR) reflectance Spectrometer with sensitivity from 0.7 to 2.5 micrometers. This instrument is called the Dual Spectral Sensor and uses a Digital Array Scanning Interferometer as the sensor technology, a type of fourier transform interferometer that uses fixed element prisms and thus is highly rugged compared to a Michaelson interferometer. Due to the size limitations of an on-Mole instrument compartment, and the availability of a tether, the sensor head

  12. Tidal response of Europa's subsurface ocean

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür; Comblen, Richard; Toubeau, Jonathan; Deleersnijder, Eric; van Hoolst, Tim; Dehant, Veronique

    2010-05-01

    Observations of Cassini and Galileo spacecrafts suggest the presence of subsurface global water oceans under the icy shells of several satellites of Jupiter and Saturn. Previous studies have shown that in the presence of subsurface oceans, time-variable tides cause large periodic surface displacements and that tidal dissipation in the icy shell becomes a major energy source that can affect long-term orbital evolution. However, in most studies so far, the dynamics of these satellite oceans have been neglected. In the present study, we investigate the tidal response of the subsurface ocean of Europa to a time-varying potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities and surface displacements will be presented.

  13. Complete Subsurface Elemental Composition Measurements With PING

    NASA Technical Reports Server (NTRS)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  14. Chromium detoxification by fixed-film bioreactors

    SciTech Connect

    Chirwa, E.M.N.; Wang, Y.T.

    1996-11-01

    In this study, completely mixed, continuous flow bioreactors were utilized to detoxify chromium. Glass beads were incorporated as a support medium for two strains of bacteria, Bacillus sp. and Pseudomonas fluorescens LB300 (LB300), growing aerobically in two separate reactors. Aerobic conditions were maintained in the reactors by continuously supplying fresh air to the liquid through gas exchange chambers installed on the recycle line of the bioreactors. Results obtained showed that near complete removal of chromate was possible for influent concentrations up to 200 mg/L for Bacillus sp., and up to 100 mg/L for LB300 at 24 hours liquid detention time. Similar results were obtained for corresponding loading rates at 12 hours and 6 hours liquid detention time.

  15. Self-Lubricating Composite Containing Chromium Oxide

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher (Inventor); Edmonds, Brian J. (Inventor)

    1999-01-01

    A self lubricating. friction and wear reducing composite material useful over a wide temperature range of from cryogenic temperature up to about 900 C. contains 60 80 wt. % of particulate Cr2O3, dispersed in a metal binder of a metal alloy containing Cr and at least 50 wt. % of Ni, Cr or a mature of Ni and Cr. It also contains 5-20 wt. % of a fluoride of at least one Group I, Group II or rare earth metal and. optionally, 5-20 wt. % of a low temperature lubricant metal, such as Ag. Au, Pt, Pd, Rh and Cu. This composite exhibits less oxidation instability and less abrasiveness than composites containing chromium carbide, is readily applied using plasma spray and can be ground and polished with a silicon carbide abrasive.

  16. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study.

    PubMed

    Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle

    2016-07-25

    Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. PMID:27178267

  17. Chromium Contamination in Leon Valley Mexico: Insights from Chromium Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Villalobos-Aragon, A.; Ellis, A. S.; Armienta, M. A.; Morton, O.; Johnson, T. M.; Glessner, J. J.

    2008-12-01

    Chromium (Cr) is a contaminant commonly found in surface and groundwater. In nature Cr commonly occurs in two valences: Cr(VI) is highly mobile, toxic and carcinogenic, while Cr(III) is less mobile. Cr was first detected in groundwater in the Leon Valley region (located in central Mexico) in 1975 (Rodriguez and Armienta, 1995). Previous work proposed an anthropogenic origin for a high concentration plume near the industrial Buenavista (BV), while the larger sub ppb plume located near San Juan de Otates (SJO) is assumed to be caused by weathering of the SJO pyroxenite. Cr stable isotopes have been shown to be useful in monitoring reduction and can also be used to infer redox and transport conditions in natural settings and the goals of our research are: 1) use stable isotope values (δ53Cr) to monitor Cr behavior in the Leon Valley, 2) identify sources (industrial vs. weathering of ultramafic rocks). Since 1975, the highly contaminated BV area is showing a decrease in groundwater Cr(VI) concentrations. Our sampling in 2007 show Cr(VI) concentrations decreasing from 0.005mg/l to 121mg/l to 0.002mg/l to 95.1mg/l. However, the Cr waste piles still exit and Cr(VI) concentrations from leachate collection ponds range from 1.2g/l to 6.8g/l. Isotopic values obtained from leaching experiments performed on the waste pile samples show enriched δ53Cr values (0.76‰ to 3.25‰) either indicating varying reduction or that the waste is fractionated during the ore processing. δ53Cr values for groundwater range from 0.33‰ to 0.46‰, indicating minimal reduction and lack of available reducing agents. The lack of variation of isotopic values seen in the groundwater plume is also consistent with the results of previous studies showing insignificant fractionation due to sorption within the plume (Villalobos-Aragon et al., 2008). The unfractionated Cr(VI) in groundwater vs. those of the waste piles, considered the contamination source, suggests that either 1) the Cr in the waste

  18. Improving the biodegradative capacity of subsurface bacteria

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  19. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  20. The Search for Subsurface Ice Caps on Mercury

    NASA Astrophysics Data System (ADS)

    Allen, R. A.; Barlow, N. G.; Vilas, F.

    1996-03-01

    Recent ground-based radar observations of Mercury have detected strong, highly depolarized echoes from the north and south polar regions which have been interpreted as possible polar ice deposits. These radar echoes have been correlated with a number of impact craters. Theoretical studies indicate that such surface ice can be stable within permanently shadowed areas, such as the floors of high latitude impact craters. One proposed hypothesis suggests that stable subsurface ice caps exist at the poles of Mercury, and that several of the impact events that created the high latitude craters exposed this subsurface ice. Thus, our study focused on the possibility of ice caps extending below the mercurian surface, down to some unknown latitude in the polar regions. We used the experiences from Mars, where the depth/diameter ratio (d/D) is smaller for ice rich areas, to investigate whether a comparable latitudinal change in d/D is detectable on Mercury. We found no significant latitudinal differences within the two polar regions of our study or between the north polar and equatorial quadrangles, but craters in the south polar region tend to have slightly lower d/D than those in the north polar region.

  1. Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells

    SciTech Connect

    M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

    2007-04-19

    Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 μMof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and

  2. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph

    1997-01-01

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.

  3. Heating systems for heating subsurface formations

    SciTech Connect

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  4. Subsurface Microbes Expanding the Tree of Life

    SciTech Connect

    Banfield, Jillian

    2015-05-11

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  5. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Bass, Ronald M.

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  6. Radar Soundings of the Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Picardi, Giovanni; Plaut, Jeffrey J.; Biccari, Daniela; Bombaci, Ornella; Calabrese, Diego; Cartacci, Marco; Cicchetti, Andrea; Clifford, Stephen M.; Edenhofer, Peter; Farrell, William M.; Federico, Costanzo; Frigeri, Alessandro; Gurnett, Donald A.; Hagfors, Tor; Heggy, Essam; Herique, Alain; Huff, Richard L.; Ivanov, Anton B.; Johnson, William T. K.; Jordan, Rolando L.; Kirchner, Donald L.; Kofman, Wlodek; Leuschen, Carlton J.; Nielsen, Erling; Orosei, Roberto

    2005-01-01

    The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.

  7. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, B.E.; May, C.P.; Rossabi, J.

    1997-06-24

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

  8. Possible adverse effect of chromium in occupational exposure of tannery workers.

    PubMed

    Kornhauser, Carlos; Wróbel, Katarzyna; Wróbel, Kazimierz; Malacara, Juan Manuel; Nava, Laura Eugenia; Gómez, Leobardo; González, Rita

    2002-04-01

    Our aim was to investigate the adverse effects of occupational exposure to trivalent chromium. We measured chromium and iron levels in serum and urine and hemoglobin levels in tannery workers and unexposed persons. We studied three groups of subjects. Group 1 included 15 non-smoking male tannery workers highly exposed to chromium from tanning and retanning departments. Group 2 included 14 non-smoking male tannery workers with moderate chromium exposure from dying, drying and finishing departments. Group 3 included 11 healthy, non-smoking male subjects without direct chromium exposure. Higher serum chromium levels were observed in groups 1 and 2 with respect to group 3 (mean values respectively: 0.43; 0.25 and 0.13 microg x l(-1)). Urine chromium levels in group 1 were higher than those in controls (mean values: 1.78 and 1.35 microg x l(-1)). In group 1 an inverse association was found between serum chromium and urine iron (-0.524), urine chromium and hemoglobin (-0.594) and between the urine chromium to iron ratio and hemoglobin (-0.693, p<0.05). The results suggest a chromium adverse effect on iron metabolism, possibly associated with excessive body chromium accumulation. In conclusion, chromium urine test could be recommended for diagnosis of chromium adverse effect on iron metabolism. Further studies are needed to quantify the relationship between urine chromium and hemoglobin metabolism.

  9. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    PubMed

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  10. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    PubMed Central

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587

  11. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...

  12. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  13. The mitigative effect of Raphanus sativus oil on chromium-induced geno- and hepatotoxicity in male rats

    PubMed Central

    Elshazly, M.O.; Morgan, Ashraf M.; Ali, Merhan E.; Abdel-mawla, Essam; Abd El-Rahman, Sahar S.

    2016-01-01

    To study the impact of radish oil on the possible genotoxic and hepatotoxic effects of hexavalent chromium, male rats were divided into 4 groups. Group 1 served as control, group 2 received radish oil at the recommended human therapeutic dose (0.07 mL/kg) by gavage, group 3 received sodium dichromate dihydrate (SDD) 520 mg/L in drinking water, and group 4 received both SDD and radish oil as previously mentioned in groups 2 and 3. All treatments were continued for six months. The results revealed that chromium exposure promoted oxidative stress with a consequently marked hepatic histopathological alterations, increased serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities, alfa fetoprotein (AFP) levels, and micronucleated erythrocytes (MNE) % in peripheral blood. Moreover, COMET assay of hepatic DNA revealed that SDD exposure significantly decreased the intact cells %, head diameter, and head DNA % compared to control, indicating DNA damage. However, radish oil co-administration with SDD resulted in marked amendment in the altered parameters as detected by improved liver function markers (ALT and ALP) and AFP level, decreased lipid peroxidation, increased antioxidant markers, inhibited hepatic DNA damage and restored the hepatic histology by preventing the appearance of the altered hepatocytes’ foci and decreasing chromium induced histopathological lesions. It could be concluded that radish oil was able to provide a convergent complete protection against the geno- and hepatotoxicity of chromium by its potent antioxidant effect. PMID:27222746

  14. The mitigative effect of Raphanus sativus oil on chromium-induced geno- and hepatotoxicity in male rats.

    PubMed

    Elshazly, M O; Morgan, Ashraf M; Ali, Merhan E; Abdel-Mawla, Essam; Abd El-Rahman, Sahar S

    2016-05-01

    To study the impact of radish oil on the possible genotoxic and hepatotoxic effects of hexavalent chromium, male rats were divided into 4 groups. Group 1 served as control, group 2 received radish oil at the recommended human therapeutic dose (0.07 mL/kg) by gavage, group 3 received sodium dichromate dihydrate (SDD) 520 mg/L in drinking water, and group 4 received both SDD and radish oil as previously mentioned in groups 2 and 3. All treatments were continued for six months. The results revealed that chromium exposure promoted oxidative stress with a consequently marked hepatic histopathological alterations, increased serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities, alfa fetoprotein (AFP) levels, and micronucleated erythrocytes (MNE) % in peripheral blood. Moreover, COMET assay of hepatic DNA revealed that SDD exposure significantly decreased the intact cells %, head diameter, and head DNA % compared to control, indicating DNA damage. However, radish oil co-administration with SDD resulted in marked amendment in the altered parameters as detected by improved liver function markers (ALT and ALP) and AFP level, decreased lipid peroxidation, increased antioxidant markers, inhibited hepatic DNA damage and restored the hepatic histology by preventing the appearance of the altered hepatocytes' foci and decreasing chromium induced histopathological lesions. It could be concluded that radish oil was able to provide a convergent complete protection against the geno- and hepatotoxicity of chromium by its potent antioxidant effect. PMID:27222746

  15. Avoiding chromium transport from stainless steel interconnects into contact layers and oxygen electrodes in intermediate temperature solid oxide electrolysis stacks

    NASA Astrophysics Data System (ADS)

    Schlupp, Meike V. F.; Kim, Ji Woo; Brevet, Aude; Rado, Cyril; Couturier, Karine; Vogt, Ulrich F.; Lefebvre-Joud, Florence; Züttel, Andreas

    2014-12-01

    We investigated the ability of (La0.8Sr0.2)(Mn0.5Co0.5)O3-δ (LSMC) and La(Ni0.6Fe0.4)O3-δ (LNF) contact coatings to avoid the transport of Cr from steel interconnects to solid oxide electrolysis electrodes, especially to the anode. The transport of chromium from commercial Crofer 22 APU (ThyssenKrupp) and K41X (AISI441, Aperam Isbergues) steels through LSMC and LNF contact coatings into adjacent (La0.8Sr0.2)MnO3-δ (LSM) oxygen electrodes was investigated in an oxygen atmosphere at 700 °C. Chromium concentrations of up to 4 atom% were detected in the contact coatings after thermal treatments for 3000 h, which also lead to the presence of chromium in adjacent LSM electrodes. Introduction of a dense (Co,Mn)3O4 coating between steel and contact coating was necessary to prevent the diffusion of chromium into contact coatings and electrodes and should lead to extended stack performance and lifetime.

  16. Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS)

    NASA Astrophysics Data System (ADS)

    Mangabeira, Pedro Antonio; Gavrilov, Konstantin L.; Almeida, Alex-Alan Furtado de; Oliveira, Arno Heeren; Severo, Maria Isabel; Rosa, Tiago Santana; Silva, Delmira da Costa; Labejof, Lise; Escaig, Françoise; Levi-Setti, Riccardo; Mielke, Marcelo Schramm; Loustalot, Florence Grenier; Galle, Pierre

    2006-03-01

    High-resolution imaging secondary ion mass spectrometry (HRI-SIMS) in combination with inductively coupled plasma mass spectrometry (ICP-MS) were utilised to determine specific sites of chromium concentration in tomato plant tissues (roots, stems and leaves). The tissues were obtained from plants grown for 2 months in hydroponic conditions with Cr added in a form chromium salt (CrCl 3·6H 2O) to concentrations of 25 and 50 mg/L. The chemical fixation procedure used permit to localize only insoluble or strongly bound Cr components in tomato plant tissue. In this work no quantitative SIMS analysis was made. HRI-SIMS analysis revealed that the transport of chromium is restricted to the vascular system of roots, stems and leaves. No Cr was detected in epidermis, palisade parenchyma and spongy parenchyma cells of the leaves. The SIMS-300 spectra obtained from the tissues confirm the HRI-SIMS observations. The roots, and especially walls of xylem vessels, were determined as the principal site of chromium accumulation in tomato plants.

  17. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size.

    PubMed

    Gheju, M; Balcu, I

    2010-10-15

    Hexavalent chromium reduction with scrap iron has the advantage that two wastes are treated simultaneously. The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using as reducing agent the following scrap iron shapes and sizes: (1) spiral fibers, (2) shavings, and (3) powder. The shape and size of scrap iron were found to have a significant influence on chromium and iron species concentration in column effluent, on column effluent pH and on Cr(VI) reduction mechanism. While for large scrap iron particles (spiral fibers) homogeneous reduction is the dominant Cr(VI) reduction process, for small scrap iron particles (powder) heterogeneous reduction appears to be the dominant reaction contributing to Cr(VI) reduction. All three shapes and sizes investigated in this work have both advantages and disadvantages. If found in sufficient quantities, scrap iron powder seem to be the optimum shape and size for the continuous reduction of Cr(VI), due to the following advantages: (1) the greatest reduction capacity, (2) the most important pH increase in column effluent (up to 6.3), (3) no chromium was detected in the column effluent during the first 60 h of the experiment, and (4) the lowest steady-state Cr(VI) concentration observed in column effluent (3.7 mg/L). But, despite of a lower reduction capacity in comparison with powder particles, spiral fibers and shavings have the advantage to result in large quantities from the mechanic processing of steel.

  18. Uptake, Distribution, and Speciation of Chromium in Brassica Juncea

    SciTech Connect

    Bluskov, S.; Arocena, J.M.; Omotoso, O.O.; Young, J.P.

    2008-06-09

    Brassica juncea (Indian mustard) has been widely used in phytoremediation because of its capacity to accumulate high levels of chromium (Cr) and other metals. The present study was conducted to investigate mechanism(s) involved in Cr binding and sequestration by B. juncea. The plants were grown under greenhouse conditions in field-moist or air-dried soils, amended with 100 mg kg{sup -1} of Cr (III or VI). The plant concentrated Cr mainly in the roots. B. juncea removed an average of 48 and 58 {micro}g Cr per plant from Cr (III) and Cr (VI)-treated soils, respectively. The uptake of Cr was not affected by the moisture status of the soils. X-ray absorption near-edge spectroscopy measurements showed only Cr (III) bound predominantly to formate and acetate ligands, in the bulk and rhizosphere soils, respectively. In the plant tissues, Cr (III) was detected, primarily as acetate in the roots and oxalate in the leaves. X-ray microprobe showed the sites of Cr localization, and probably sequestration, in epidermal and cortical cells in the roots and epidermal and spongy mesophyll cells in the leaves. These findings demonstrate the ability of B. juncea to detoxify more toxic Cr (VI), thereby making this plant a potential candidate for phytostabilization.

  19. Corrosion behavior of porous chromium carbide in supercritical water

    NASA Astrophysics Data System (ADS)

    Dong, Ziqiang; Chen, Weixing; Zheng, Wenyue; Guzonas, Dave

    2012-01-01

    The corrosion behavior of highly porous chromium carbide (Cr 3C 2) prepared by a reactive sintering process was characterized at temperatures ranging from 375 °C to 625 °C in a supercritical water environment with a pressure of 25-30 MPa. The test results show that porous chromium carbide is stable in SCW environments at temperatures under 425 °C, above which disintegration occurred. The porous carbide was also tested under hydrothermal conditions of pressures between 12 MPa and 50 MPa at constant temperatures of 400 °C and 415 °C, respectively. The pressure showed little effect on the stability of chromium carbide in the tests at those temperatures. The mechanism of disintegration of chromium carbide in SCW environments is discussed.

  20. 21 CFR 73.2326 - Chromium hydroxide green.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and... in coloring externally applied cosmetics, including those intended for use in the area of the eye,...