Sample records for detectable size range

  1. "PowerUp"!: A Tool for Calculating Minimum Detectable Effect Sizes and Minimum Required Sample Sizes for Experimental and Quasi-Experimental Design Studies

    ERIC Educational Resources Information Center

    Dong, Nianbo; Maynard, Rebecca

    2013-01-01

    This paper and the accompanying tool are intended to complement existing supports for conducting power analysis tools by offering a tool based on the framework of Minimum Detectable Effect Sizes (MDES) formulae that can be used in determining sample size requirements and in estimating minimum detectable effect sizes for a range of individual- and…

  2. Occupancy in continuous habitat

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.

    2012-01-01

    The probability that a site has at least one individual of a species ('occupancy') has come to be widely used as a state variable for animal population monitoring. The available statistical theory for estimation when detection is imperfect applies particularly to habitat patches or islands, although it is also used for arbitrary plots in continuous habitat. The probability that such a plot is occupied depends on plot size and home-range characteristics (size, shape and dispersion) as well as population density. Plot size is critical to the definition of occupancy as a state variable, but clear advice on plot size is missing from the literature on the design of occupancy studies. We describe models for the effects of varying plot size and home-range size on expected occupancy. Temporal, spatial, and species variation in average home-range size is to be expected, but information on home ranges is difficult to retrieve from species presence/absence data collected in occupancy studies. The effect of variable home-range size is negligible when plots are very large (>100 x area of home range), but large plots pose practical problems. At the other extreme, sampling of 'point' plots with cameras or other passive detectors allows the true 'proportion of area occupied' to be estimated. However, this measure equally reflects home-range size and density, and is of doubtful value for population monitoring or cross-species comparisons. Plot size is ill-defined and variable in occupancy studies that detect animals at unknown distances, the commonest example being unlimited-radius point counts of song birds. We also find that plot size is ill-defined in recent treatments of "multi-scale" occupancy; the respective scales are better interpreted as temporal (instantaneous and asymptotic) rather than spatial. Occupancy is an inadequate metric for population monitoring when it is confounded with home-range size or detection distance.

  3. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models

    USGS Publications Warehouse

    Sun, Catherine C.; Fuller, Angela K.; Royle, J. Andrew

    2014-01-01

    An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  4. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Davies, Peter R; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m(3) within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x10(2) (in particles ranging from 1.1 to 2.1 μm) to 4.3x10(5) RNA copies/m(3) in the largest particles (9.0-10.0 μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1 μm in quantities ranging from 6x10(2) (0.4-0.7 μm) to 5.1x10(4) RNA copies/m(3) (9.0-10.0 μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x10(6) (0.4-0.7 μm) to 3.5x10(8) RNA copies/m(3) (9.0-10.0 μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1 μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of particle sizes. However, virus viability is particle size dependent.

  5. The Kepler Mission: A Search for Terrestrial Planets - Development Status

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.

    2003-01-01

    We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.

  6. Analysis of Sample Size, Counting Time, and Plot Size from an Avian Point Count Survey on Hoosier National Forest, Indiana

    Treesearch

    Frank R. Thompson; Monica J. Schwalbach

    1995-01-01

    We report results of a point count survey of breeding birds on Hoosier National Forest in Indiana. We determined sample size requirements to detect differences in means and the effects of count duration and plot size on individual detection rates. Sample size requirements ranged from 100 to >1000 points with Type I and II error rates of <0.1 and 0.2. Sample...

  7. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.

  8. Substantial Expansion of Detectable Size Range in Ionic Current Sensing through Pores by Using a Microfluidic Bridge Circuit.

    PubMed

    Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu

    2017-10-11

    Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.

  9. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  10. Evaluating the influence of laser wavelength and detection stage geometry on optical detection efficiency in a single-particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Marsden, Nicholas; Flynn, Michael J.; Taylor, Jonathan W.; Allan, James D.; Coe, Hugh

    2016-12-01

    Single-particle mass spectrometry (SPMS) is a useful tool for the online study of aerosols with the ability to measure size-resolved chemical composition with a temporal resolution relevant to atmospheric processes. In SPMS, optical particle detection is used for the effective temporal alignment of an ablation laser pulse with the presence of a particle in the ion source, and it gives the option of aerodynamic sizing by measuring the offset of particle arrival times between two detection stages. The efficiency of the optical detection stage has a strong influence on the overall instrument performance. A custom detection laser system consisting of a high-powered fibre-coupled Nd:YAG solid-state laser with a collimated beam was implemented in the detection stage of a laser ablation aerosol particle time-of-flight (LAAP-TOF) single-particle mass spectrometer without major modifications to instrument geometry. The use of a collimated laser beam permitted the construction of a numerical model that predicts the effects of detection laser wavelength, output power, beam focussing characteristics, light collection angle, particle size, and refractive index on the effective detection radius (R) of the detection laser beam. We compare the model predictions with an ambient data set acquired during the Ice in Clouds Experiment - Dust (ICE-D) project. The new laser system resulted in an order-of-magnitude improvement in instrument sensitivity to spherical particles in the size range 500-800 nm compared to a focussed 405 nm laser diode system. The model demonstrates that the limit of detection in terms of particle size is determined by the scattering cross section (Csca) as predicted by Mie theory. In addition, if light is collected over a narrow collection angle, oscillations in the magnitude of Csca with respect to particle diameter result in a variation in R, resulting in large particle-size-dependent variation in detection efficiency across the particle transmission range. This detection bias is imposed on the aerodynamic size distributions measured by the instrument and accounts for some of the detection bias towards sea salt particles in the ambient data set.

  11. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  12. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Finally, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.« less

  13. Morphological and chemical analysis of bone substitutes by scanning electron microscopy and microanalysis by spectroscopy of dispersion energy.

    PubMed

    da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli

    2007-01-01

    This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.

  14. A new study of shower age distribution in near vertical showers by EAS air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Basak, D. K.; Goswami, G. C.; Ghosh, B.

    1984-01-01

    The air shower array has been developed since it started operation in 1931. The array covering an area of 900 sq m now incorporates 21 particle density sampling detectors around two muon magnetic spectrographs. The air showers are detected in the size range 10 to the 4th power to 10 to the 6th power particles. A total of 11000 showers has so far been detected. Average values of shower age have been obtained in various shower size ranges to study the dependence of shower age on shower size. The core distance dependence of shower age parameter has also been analyzed for presentation.

  15. Wavelet method for CT colonography computer-aided polyp detection.

    PubMed

    Li, Jiang; Van Uitert, Robert; Yao, Jianhua; Petrick, Nicholas; Franaszek, Marek; Huang, Adam; Summers, Ronald M

    2008-08-01

    Computed tomographic colonography (CTC) computer aided detection (CAD) is a new method to detect colon polyps. Colonic polyps are abnormal growths that may become cancerous. Detection and removal of colonic polyps, particularly larger ones, has been shown to reduce the incidence of colorectal cancer. While high sensitivities and low false positive rates are consistently achieved for the detection of polyps sized 1 cm or larger, lower sensitivities and higher false positive rates occur when the goal of CAD is to identify "medium"-sized polyps, 6-9 mm in diameter. Such medium-sized polyps may be important for clinical patient management. We have developed a wavelet-based postprocessor to reduce false positives for this polyp size range. We applied the wavelet-based postprocessor to CTC CAD findings from 44 patients in whom 45 polyps with sizes of 6-9 mm were found at segmentally unblinded optical colonoscopy and visible on retrospective review of the CT colonography images. Prior to the application of the wavelet-based postprocessor, the CTC CAD system detected 33 of the polyps (sensitivity 73.33%) with 12.4 false positives per patient, a sensitivity comparable to that of expert radiologists. Fourfold cross validation with 5000 bootstraps showed that the wavelet-based postprocessor could reduce the false positives by 56.61% (p <0.001), to 5.38 per patient (95% confidence interval [4.41, 6.34]), without significant sensitivity degradation (32/45, 71.11%, 95% confidence interval [66.39%, 75.74%], p=0.1713). We conclude that this wavelet-based postprocessor can substantially reduce the false positive rate of our CTC CAD for this important polyp size range.

  16. A phantom design for assessment of detectability in PET imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenweber, Scott D., E-mail: scott.wollenweber@g

    2016-09-15

    Purpose: The primary clinical role of positron emission tomography (PET) imaging is the detection of anomalous regions of {sup 18}F-FDG uptake, which are often indicative of malignant lesions. The goal of this work was to create a task-configurable fillable phantom for realistic measurements of detectability in PET imaging. Design goals included simplicity, adjustable feature size, realistic size and contrast levels, and inclusion of a lumpy (i.e., heterogeneous) background. Methods: The detection targets were hollow 3D-printed dodecahedral nylon features. The exostructure sphere-like features created voids in a background of small, solid non-porous plastic (acrylic) spheres inside a fillable tank. The featuresmore » filled at full concentration while the background concentration was reduced due to filling only between the solid spheres. Results: Multiple iterations of feature size and phantom construction were used to determine a configuration at the limit of detectability for a PET/CT system. A full-scale design used a 20 cm uniform cylinder (head-size) filled with a fixed pattern of features at a contrast of approximately 3:1. Known signal-present and signal-absent PET sub-images were extracted from multiple scans of the same phantom and with detectability in a challenging (i.e., useful) range. These images enabled calculation and comparison of the quantitative observer detectability metrics between scanner designs and image reconstruction methods. The phantom design has several advantages including filling simplicity, wall-less contrast features, the control of the detectability range via feature size, and a clinically realistic lumpy background. Conclusions: This phantom provides a practical method for testing and comparison of lesion detectability as a function of imaging system, acquisition parameters, and image reconstruction methods and parameters.« less

  17. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    PubMed

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  18. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  19. Underwater single beam circumferentially scanning detection system using range-gated receiver and adaptive filter

    NASA Astrophysics Data System (ADS)

    Tan, Yayun; Zhang, He; Zha, Bingting

    2017-09-01

    Underwater target detection and ranging in seawater are of interest in unmanned underwater vehicles. This study presents an underwater detection system that synchronously scans a collimated laser beam and a narrow field of view to circumferentially detect an underwater target. Hybrid methods of range-gated and variable step-size least mean squares (VSS-LMS) adaptive filter are proposed to suppress water backscattering. The range-gated receiver eliminates the backscattering of near-field water. The VSS-LMS filter extracts the target echo in the remaining backscattering and the constant fraction discriminator timing method is used to improve ranging accuracy. The optimal constant fraction is selected by analysing the jitter noise and slope of the target echo. The prototype of the underwater detection system is constructed and tested in coastal seawater, then the effectiveness of backscattering suppression and high-ranging accuracy is verified through experimental results and analysis discussed in this paper.

  20. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were obtained using spICP-MS. The use of this methodology confirms that the observed minimum detectable sizes are consistent with the calculated Dmin values. Overall, this work identifies the elements and nanoparticles to which current spICP-MS approaches can be applied, in order to enable quantification of very small nanoparticles at low concentrations in aqueous media.

  1. Survival and home-range size of Northern Spotted Owls in southwestern Oregon

    USGS Publications Warehouse

    Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.

    2013-01-01

    In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x =  576; SE  =  75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.

  2. Stochastic performance modeling and evaluation of obstacle detectability with imaging range sensors

    NASA Technical Reports Server (NTRS)

    Matthies, Larry; Grandjean, Pierrick

    1993-01-01

    Statistical modeling and evaluation of the performance of obstacle detection systems for Unmanned Ground Vehicles (UGVs) is essential for the design, evaluation, and comparison of sensor systems. In this report, we address this issue for imaging range sensors by dividing the evaluation problem into two levels: quality of the range data itself and quality of the obstacle detection algorithms applied to the range data. We review existing models of the quality of range data from stereo vision and AM-CW LADAR, then use these to derive a new model for the quality of a simple obstacle detection algorithm. This model predicts the probability of detecting obstacles and the probability of false alarms, as a function of the size and distance of the obstacle, the resolution of the sensor, and the level of noise in the range data. We evaluate these models experimentally using range data from stereo image pairs of a gravel road with known obstacles at several distances. The results show that the approach is a promising tool for predicting and evaluating the performance of obstacle detection with imaging range sensors.

  3. Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture

    NASA Technical Reports Server (NTRS)

    Bilbro, James A.

    1991-01-01

    The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.

  4. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer's patches using fluorescent organosilica particles.

    PubMed

    Awaad, Aziz; Nakamura, Michihiro; Ishimura, Kazunori

    2012-07-01

    We investigated size-dependent uptake of fluorescent thiol-organosilica particles by Peyer's patches (PPs). We performed an oral single-particle administration (95, 130, 200, 340, 695 and 1050 nm) and a simultaneous dual-particle administration using 2 kinds of particles. Histological imaging and quantitative analysis revealed that particles taken up by the PP subepithelial dome were size dependent, and there was an optimal size range for higher uptake. Quantitative analysis of simultaneous dual-particle administration revealed that the percentage of fluorescence areas for 95, 130, 200, 340, 695 and 1050 nm with respect to 110 nm area was 124.0, 89.1, 73.8, 20.2, 9.2 and 0.5%, respectively. Additionally, imaging using fluorescent thiol-organosilica particles could detect 2 novel pathways through mouse PP epithelium: the transcellular pathway and the paracellular pathway. The uptake of nanoparticles based on an optimal size range and 2 novel pathways could indicate a new approach for vaccine delivery and nanomedicine development. Studying various sizes of fluorescent organosilica particles and their uptake in Peyer's patches, this team of authors determined the optimal size range of administration. Two novel pathways through mouse Peyer's patch epithelium were detected, i.e., the transcellular pathway and the paracellular pathway. This observation may have important applications in future vaccine delivery and nano-drug delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Beam Width Robustness of a 670 GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Cooper, K. B.; Llombart, N.; Dengler, R. J.; Siegel, P. H.

    2009-01-01

    Detection of a replica bomb belt concealed on a mannequin at 4 m standoff range is achieved using a 670 GHz imaging radar. At a somewhat larger standoff range of 4.6 m, the radar's beam width increases substantially, but the through-shirt image quality remains good. This suggests that a relatively modest increase in aperture size over the current design will be sufficient to detect person-borne concealed weapons at ranges exceeding 25 meters.

  6. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  7. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  8. Extended linear detection range for optical tweezers using image-plane detection scheme

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Faegheh; Masoumeh Mousavi, S.; Khaksar, Zeinab S.; Reihani, S. Nader S.

    2014-10-01

    Ability to measure pico- and femto-Newton range forces using optical tweezers (OT) strongly relies on the sensitivity of its detection system. We show that the commonly used back-focal-plane detection method provides a linear response range which is shorter than that of the restoring force of OT for large beads. This limits measurable force range of OT. We show, both theoretically and experimentally, that utilizing a second laser beam for tracking could solve the problem. We also propose a new detection scheme in which the quadrant photodiode is positioned at the plane optically conjugate to the object plane (image plane). This method solves the problem without need for a second laser beam for the bead sizes that are commonly used in force spectroscopy applications of OT, such as biopolymer stretching.

  9. Multi-Instrument Manager Tool for Data Acquisition and Merging of Optical and Electrical Mobility Size Distributions

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.

    2015-05-01

    Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.

  10. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  11. Improved Time-Lapsed Angular Scattering Microscopy of Single Cells

    NASA Astrophysics Data System (ADS)

    Cannaday, Ashley E.

    By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.

  12. Gene flow analysis method, the D-statistic, is robust in a wide parameter space.

    PubMed

    Zheng, Yichen; Janke, Axel

    2018-01-08

    We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.

  13. Analysis of Tyman green detection system based on polarization interference

    NASA Astrophysics Data System (ADS)

    Huang, Yaolin; Wang, Min; Shao, Xiaoping; Kou, Yuanfeng

    2018-02-01

    The optical surface deviation of the lens can directly affect the quality of the optical system.In order to effectively and accurately detect the surface shape, an optical surface on-line detection system based on polarization interference technology is designed and developed. The system is based on Tyman-Green interference optical path, join the polarization interference measuring technology. Based on the theoretical derivation of the optical path and the ZEMAX software simulation, the experimental optical path is constructed. The parallel light is used to detect the concave lens. The parallel light is used as the light source, the size of the polarization splitting prism, detection radius of curvature, the relations between and among the size of the lens aperture, a detection range is given.

  14. An analysis of monthly home range size in the critically endangered California Condor Gymnogyps californianus

    USGS Publications Warehouse

    Rivers, James W.; Johnson, Matthew J.; Haig, Susan M.; Schwarz, Carl J.; Burnett, Joseph; Brandt, Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures comprise the only group of terrestrial vertebrates in the world that are obligate scavengers, and these species move widely to locate ephemeral, unpredictable, and patchily-distributed food resources. In this study, we used high-resolution GPS location data to quantify monthly home range size of the critically endangered California Condor Gymnogyps californianus throughout the annual cycle in California. We assessed whether individual-level characteristics (age, sex and breeding status) and factors related to endangered species recovery program efforts (rearing method, release site) were linked to variation in monthly home range size. We found that monthly home range size varied across the annual cycle, with the largest monthly home ranges observed during late summer and early fall (July–October), a pattern that may be linked to seasonal changes in thermals that facilitate movement. Monthly home ranges of adults were significantly larger than those of immatures, but males and females used monthly home ranges of similar size throughout the year and breeding adults did not differ from non-breeding adults in their average monthly home range size. Individuals from each of three release sites differed significantly in the size of their monthly home ranges, and no differences in monthly home range size were detected between condors reared under captive conditions relative to those reared in the wild. Our study provides an important foundation for understanding the movement ecology of the California Condor and it highlights the importance of seasonal variation in space use for effective conservation planning for this critically endangered species.

  15. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.

    PubMed

    Trappe, Kathrin; Emde, Anne-Katrin; Ehrlich, Hans-Christian; Reinert, Knut

    2014-12-15

    The landscape of structural variation (SV) including complex duplication and translocation patterns is far from resolved. SV detection tools usually exhibit low agreement, are often geared toward certain types or size ranges of variation and struggle to correctly classify the type and exact size of SVs. We present Gustaf (Generic mUlti-SpliT Alignment Finder), a sound generic multi-split SV detection tool that detects and classifies deletions, inversions, dispersed duplications and translocations of ≥ 30 bp. Our approach is based on a generic multi-split alignment strategy that can identify SV breakpoints with base pair resolution. We show that Gustaf correctly identifies SVs, especially in the range from 30 to 100 bp, which we call the next-generation sequencing (NGS) twilight zone of SVs, as well as larger SVs >500 bp. Gustaf performs better than similar tools in our benchmark and is furthermore able to correctly identify size and location of dispersed duplications and translocations, which otherwise might be wrongly classified, for example, as large deletions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Detecting personnel around UGVs using stereo vision

    NASA Astrophysics Data System (ADS)

    Bajracharya, Max; Moghaddam, Baback; Howard, Andrew; Matthies, Larry H.

    2008-04-01

    Detecting people around unmanned ground vehicles (UGVs) to facilitate safe operation of UGVs is one of the highest priority issues in the development of perception technology for autonomous navigation. Research to date has not achieved the detection ranges or reliability needed in deployed systems to detect upright pedestrians in flat, relatively uncluttered terrain, let alone in more complex environments and with people in postures that are more difficult to detect. Range data is essential to solve this problem. Combining range data with high resolution imagery may enable higher performance than range data alone because image appearance can complement shape information in range data and because cameras may offer higher angular resolution than typical range sensors. This makes stereo vision a promising approach for several reasons: image resolution is high and will continue to increase, the physical size and power dissipation of the cameras and computers will continue to decrease, and stereo cameras provide range data and imagery that are automatically spatially and temporally registered. We describe a stereo vision-based pedestrian detection system, focusing on recent improvements to a shape-based classifier applied to the range data, and present frame-level performance results that show great promise for the overall approach.

  17. Detection limit of intragenic deletions with targeted array comparative genomic hybridization

    PubMed Central

    2013-01-01

    Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered. PMID:24304607

  18. Particulate contamination spectrometer. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  19. SU-F-18C-01: Minimum Detectability Analysis for Comprehensive Sized Based Optimization of Image Quality and Radiation Dose Across CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitherman, C; Chen, B; Samei, E

    2014-06-15

    Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF),more » Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.« less

  20. New International Program to Asses the Reliability of Emerging Nondestructive Techniques (PARENT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofiev, Iouri; Cumblidge, Stephen E.; Csontos, Aladar A.

    2013-01-25

    The Nuclear Regulatory Commission (NRC) established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) to follow on from the successful Program for the Inspection of Nickel alloy Components (PINC). The goal of the PARENT is to conduct a confirmatory assessment of the reliability of nondestructive evaluation (NDE) techniques for detecting and sizing primary water stress corrosion cracks (PWSCC) and applying the lessons learned from PINC to a series of round-robin tests. These open and blind round-robin tests will comprise a new set of typical pressure boundary components including dissimilar metal welds (DMWs) and bottom-mounted instrumentation penetrations. Openmore » round-robin tests will engage research and industry teams worldwide to investigate and demonstrate the reliability of emerging NDE techniques to detect and size flaws with a wide range of lengths, depths, orientations, and locations. Blind round-robin tests will utilize various testing organizations, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from relatively easy to very difficult for detection and sizing. Blind and open round-robin testing started in late 2011 and early 2012, respectively. This paper will present the work scope with reports on progress, NDE methods evaluated, and project timeline for PARENT.« less

  1. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional andmore » phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.« less

  2. Threshold-dependent sample sizes for selenium assessment with stream fish tissue

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Smith, David R.

    2015-01-01

    Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased precision of composites for estimating mean conditions. However, low sample sizes (<5 fish) did not achieve 80% power to detect near-threshold values (i.e., <1 mg Se/kg) under any scenario we evaluated. This analysis can assist the sampling design and interpretation of Se assessments from fish tissue by accounting for natural variation in stream fish populations.

  3. Approach for measuring the chemistry of individual particles in the size range critical for cloud formation.

    PubMed

    Zauscher, Melanie D; Moore, Meagan J K; Lewis, Gregory S; Hering, Susanne V; Prather, Kimberly A

    2011-03-15

    Aerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm. The growth tube uses water to grow particles to larger sizes so they can be optically detected by the UF-ATOFMS, extending the size range to below 100 nm with no discernible changes in particle composition. To gain further insight into the temporal variability of aerosol chemistry and sources, the GT-UF-ATOFMS was used for online continuous measurements over a period of 3 days.

  4. Near-Earth-object survey progress and population of small near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Harris, A.

    2014-07-01

    Estimating the total population vs. size of NEAs and the completion of surveys is the same thing since the total population is just the number discovered divided by the estimated completion. I review the method of completion estimation based on ratio of re-detected objects to total detections (known plus new discoveries). The method is quite general and can be used for population estimations of all sorts, from wildlife to various classes of solar system bodies. Since 2001, I have been making estimates of population and survey progress approximately every two years. Plotted below, left, is my latest estimate, including NEA discoveries up to August, 2012. I plan to present an update at the meeting. All asteroids of a given size are not equally easy to detect because of specific orbital geometries. Thus a model of the orbital distribution is necessary, and computer simulations using those orbits need to establish the relation between the raw re-detection ratio and the actual completion fraction. This can be done for any sub-group population, allowing to estimate the population of a subgroup and the expected current completion. Once a reliable survey computer model has been developed and ''calibrated'' with respect to actual survey re-detections versus size, it can be extrapolated to smaller sizes to estimate completion even at very small size where re-detections are rare or even zero. I have recently investigated the subgroup of extremely low encounter velocity NEAs, the class of interest for the Asteroid Redirect Mission (ARM), recently proposed by NASA. I found that asteroids of diameter ˜ 10 m with encounter velocity with the Earth lower than 2.5 km/sec are detected by current surveys nearly 1,000 times more efficiently than the general background of NEAs of that size. Thus the current completion of these slow relative velocity objects may be around 1%, compared to 10^{-6} for that size objects of the general velocity distribution. Current surveys are nowhere near complete, but there may be fewer such objects than have been suggested. This conclusion is reinforced by the fact that at least a couple such discovered objects are known to be not real asteroids but spent rocket bodies in heliocentric orbit, of which there are only of the order of a hundred. Brown et al. (Nature 503, 238-241, 2013, below right, green squares are a re-plot of my blue circles on left plot) recently suggested that the population of small NEAs in the size range from roughly 5 to 50 meters in diameter may have been substantially under-estimated. To be sure, the greatest uncertainty in population estimates is in that range, since there are very few bolide events to use for estimation, and the surveys are extremely incomplete in that size range, so a factor of 3 or so discrepancy is not significant. However, the population estimated from surveys carried still smaller, where the bolide frequency becomes more secure, disagrees from the bolide estimate by even less than a factor of 3 and in fact intersects at about 3 m diameter. On the other hand, the shallow-sloping size-frequency distribution derived from the sparse large bolide data diverges badly from the survey estimates, in sizes where the survey estimates become ever-increasingly reliable, even by 100-200 m diameter. It appears that the bolide data provides a good "anchor" of the population in the size range up to about 5 m diameter, but above that one might do better just connecting that population with a straight line (on a log-log plot) with the survey-determined population at larger size, 50-100 m diameter or so.

  5. Multi-Parameter Scattering Sensor and Methods

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S. (Inventor); Fischer, David G. (Inventor)

    2016-01-01

    Methods, detectors and systems detect particles and/or measure particle properties. According to one embodiment, a detector for detecting particles comprises: a sensor for receiving radiation scattered by an ensemble of particles; and a processor for determining a physical parameter for the detector, or an optimal detection angle or a bound for an optimal detection angle, for measuring at least one moment or integrated moment of the ensemble of particles, the physical parameter, or detection angle, or detection angle bound being determined based on one or more of properties (a) and/or (b) and/or (c) and/or (d) or ranges for one or more of properties (a) and/or (b) and/or (c) and/or (d), wherein (a)-(d) are the following: (a) is a wavelength of light incident on the particles, (b) is a count median diameter or other characteristic size parameter of the particle size distribution, (c) is a standard deviation or other characteristic width parameter of the particle size distribution, and (d) is a refractive index of particles.

  6. Dark field imaging system for size characterization of magnetic micromarkers

    NASA Astrophysics Data System (ADS)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  7. Incidentally detected gallbladder polyps: is follow-up necessary?--Long-term clinical and US analysis of 346 patients.

    PubMed

    Corwin, Michael T; Siewert, Bettina; Sheiman, Robert G; Kane, Robert A

    2011-01-01

    To determine the natural history of gallbladder (GB) polyps incidentally detected at ultrasonography (US) and to propose management guidelines for these lesions based on polyp size. The HIPAA-compliant study was approved by the institutional review board, and informed consent was waived. A database search for "polyp" in all US examinations of the GB between January 1, 1999, and December 31, 2001, at a single institution was performed. All subsequent US reports were reviewed to determine changes in GB polyp size. The electronic medical record was searched to obtain clinical and pathologic follow-up. Three hundred forty-six patients (mean age, 51.6 years; range, 20-93 years) with GB polyps were included. There were 156 men (45%) and 190 women (55%). US follow-up (mean, 5.4 years; range, 2-11.5 years) was performed in 149 patients (43%). Polyp size was stable in 90 (60%) polyps, decreased in eight (5%), increased in one (1%), and resolved in 50 (34%). Forty-two patients (12%) underwent cholecystectomy, revealing 13 (31%) GBs with polypoid lesions, 24 (57%) with stones and no polyps, and five (12%) with neither a stone nor a polypoid lesion. Clinical follow-up (mean, 8 years; range, 5-10.4 years) was performed in 155 patients (45%). No patient had clinical evidence of GB-related disease. Overall, no cases of GB malignancy were identified in 346 patients. Mean polyp size was 5.0 mm (range, 1-18 mm). No neoplastic polyps were found at 1-6 mm, one neoplastic polyp was seen at 7-9 mm, and two neoplastic polyps were found at 10 mm or larger. The risk of GB malignancy resulting from incidentally detected polyps is extremely low. Incidentally detected GB polyps measuring 6 mm or less may require no additional follow-up. Data are inconclusive regarding polyps 7 mm or greater, and further studies are warranted. © RSNA, 2010

  8. High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging.

    PubMed

    Paul, Albert Jesuran; Bickel, Fabian; Röhm, Martina; Hospach, Lisa; Halder, Bettina; Rettich, Nina; Handrick, René; Herold, Eva Maria; Kiefer, Hans; Hesse, Friedemann

    2017-07-01

    Aggregation of therapeutic proteins is a major concern as aggregates lower the yield and can impact the efficacy of the drug as well as the patient's safety. It can occur in all production stages; thus, it is essential to perform a detailed analysis for protein aggregates. Several methods such as size exclusion high-performance liquid chromatography (SE-HPLC), light scattering, turbidity, light obscuration, and microscopy-based approaches are used to analyze aggregates. None of these methods allows determination of all types of higher molecular weight (HMW) species due to a limited size range. Furthermore, quantification and specification of different HMW species are often not possible. Moreover, automation is a perspective challenge coming up with automated robotic laboratory systems. Hence, there is a need for a fast, high-throughput-compatible method, which can detect a broad size range and enable quantification and classification. We describe a novel approach for the detection of aggregates in the size range 1 to 1000 μm combining fluorescent dyes for protein aggregate labelling and automated fluorescence microscope imaging (aFMI). After appropriate selection of the dye and method optimization, our method enabled us to detect various types of HMW species of monoclonal antibodies (mAbs). Using 10 μmol L -1 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate (Bis-ANS) in combination with aFMI allowed the analysis of mAb aggregates induced by different stresses occurring during downstream processing, storage, and administration. Validation of our results was performed by SE-HPLC, UV-Vis spectroscopy, and dynamic light scattering. With this new approach, we could not only reliably detect different HMW species but also quantify and classify them in an automated approach. Our method achieves high-throughput requirements and the selection of various fluorescent dyes enables a broad range of applications.

  9. Feature long axis size and local luminance contrast determine ship target acquisition performance: strong evidence for the TOD case

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Toet, Alexander; Kooi, Frank L.

    2016-10-01

    Visual images of a civilian target ship on a sea background were produced using a CAD model. The total set consisted of 264 images and included 3 different color schemes, 2 ship viewing aspects, 5 sun illumination conditions, 2 sea reflection values, 2 ship positions with respect to the horizon and 3 values of atmospheric contrast reduction. In a perception experiment, the images were presented on a display in a long darkened corridor. Observers were asked to indicate the range at which they were able to detect the ship and classify the following 5 ship elements: accommodation, funnel, hull, mast, and hat above the bridge. This resulted in a total of 1584 Target Acquisition (TA) range estimates for two observers. Next, the ship contour, ship elements and corresponding TA ranges were analyzed applying several feature size and contrast measures. Most data coincide on a contrast versus angular size plot using (1) the long axis as characteristic ship/ship feature size and (2) local Weber contrast as characteristic ship/ship feature contrast. Finally, the data were compared with a variety of visual performance functions assumed to be representative for Target Acquisition: the TOD (Triangle Orientation Discrimination), MRC (Minimum Resolvable Contrast), CTF (Contrast Threshold Function), TTP (Targeting Task Performance) metric and circular disc detection data for the unaided eye (Blackwell). The results provide strong evidence for the TOD case: both position and slope of the TOD curve match the ship detection and classification data without any free parameter. In contrast, the MRC and CTF are too steep, the TTP and disc detection curves are too shallow and all these curves need an overall scaling factor in order to coincide with the ship and ship feature recognition data.

  10. Endogenic craters on basaltic lava flows - Size frequency distributions

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Gault, D. E.

    1979-01-01

    Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.

  11. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  12. Aerosol sampling for the August 7th, and 9th, 1985 SAGE II validation experiment

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Pueschel, R.; Ferry, G.; Livingston, J.; Fong, W.

    1986-01-01

    Comparisons are made between aerosol size distributions measured by instrumented aircraft and the SAGE II sensor on the ERB satellite performing limb scans of the same atmospheric region. Particle radii ranging from 0.0001-200 microns were detected, with good agreement being obtained between the size distributions detected by impactors and probes at radii over 0.15 micron. The distributions were used to calculate aerosol extinction values which were compared with values from SAGE II scans.

  13. Signal detection theory applied to three visual search tasks--identification, yes/no detection and localization.

    PubMed

    Cameron, E Leslie; Tai, Joanna C; Eckstein, Miguel P; Carrasco, Marisa

    2004-01-01

    Adding distracters to a display impairs performance on visual tasks (i.e. the set-size effect). While keeping the display characteristics constant, we investigated this effect in three tasks: 2 target identification, yes-no detection with 2 targets, and 8-alternative localization. A Signal Detection Theory (SDT) model, tailored for each task, accounts for the set-size effects observed in identification and localization tasks, and slightly under-predicts the set-size effect in a detection task. Given that sensitivity varies as a function of spatial frequency (SF), we measured performance in each of these three tasks in neutral and peripheral precue conditions for each of six spatial frequencies (0.5-12 cpd). For all spatial frequencies tested, performance on the three tasks decreased as set size increased in the neutral precue condition, and the peripheral precue reduced the effect. Larger set-size effects were observed at low SFs in the identification and localization tasks. This effect can be described using the SDT model, but was not predicted by it. For each of these tasks we also established the extent to which covert attention modulates performance across a range of set sizes. A peripheral precue substantially diminished the set-size effect and improved performance, even at set size 1. These results provide support for distracter exclusion, and suggest that signal enhancement may also be a mechanism by which covert attention can impose its effect.

  14. "Silent" kidney stones in "asymptomatic" primary hyperparathyroidism-a comparison of multidetector computed tomography and ultrasound.

    PubMed

    Selberherr, Andreas; Hörmann, Marcus; Prager, Gerhard; Riss, Philipp; Scheuba, Christian; Niederle, Bruno

    2017-03-01

    The purpose of this study was to demonstrate the high number of kidney stones in primary hyperparathyroidism (PHPT) and the low number of in fact "asymptomatic" patients. Forty patients with PHPT (28 female, 12 male; median age 58 (range 33-80) years; interquartile range 17 years [51-68]) without known symptoms of kidney stones prospectively underwent multidetector computed tomography (MDCT) and ultrasound (US) examinations of the urinary tract prior to parathyroid surgery. Images were evaluated for the presence and absence of stones, as well as for the number of stones and sizes in the long axis. The MDCT and US examinations were interpreted by two experienced radiologists who were blinded to all clinical and biochemical data. Statistical analysis was performed using the Wilcoxon signed-rank test. US revealed a total of 4 kidney stones in 4 (10 %) of 40 patients (median size 6.5 mm, interquartile range 11.5 mm). MDCT showed a total of 41 stones (median size was 3 mm, interquartile range 2.25 mm) in 15 (38 %) of 40 patients. The number of kidney stones detected with MDCT was significantly higher compared to US (p = 0.00124). MDCT is a highly sensitive method for the detection of "silent" kidney stones in patients with PHPT. By widely applying this method, the number of asymptomatic courses of PHPT may be substantially reduced. MDCT should be used primarily to detect kidney stones in PHPT and to exclude asymptomatic PHPT.

  15. Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents.

    PubMed

    Krasnov, Boris R; Shenbrot, Georgy I; van der Mescht, Luther; Warburton, Elizabeth M; Khokhlova, Irina S

    2018-04-12

    To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.

  16. Fast obstacle detection based on multi-sensor information fusion

    NASA Astrophysics Data System (ADS)

    Lu, Linli; Ying, Jie

    2014-11-01

    Obstacle detection is one of the key problems in areas such as driving assistance and mobile robot navigation, which cannot meet the actual demand by using a single sensor. A method is proposed to realize the real-time access to the information of the obstacle in front of the robot and calculating the real size of the obstacle area according to the mechanism of the triangle similarity in process of imaging by fusing datum from a camera and an ultrasonic sensor, which supports the local path planning decision. In the part of image analyzing, the obstacle detection region is limited according to complementary principle. We chose ultrasonic detection range as the region for obstacle detection when the obstacle is relatively near the robot, and the travelling road area in front of the robot is the region for a relatively-long-distance detection. The obstacle detection algorithm is adapted from a powerful background subtraction algorithm ViBe: Visual Background Extractor. We extracted an obstacle free region in front of the robot in the initial frame, this region provided a reference sample set of gray scale value for obstacle detection. Experiments of detecting different obstacles at different distances respectively, give the accuracy of the obstacle detection and the error percentage between the calculated size and the actual size of the detected obstacle. Experimental results show that the detection scheme can effectively detect obstacles in front of the robot and provide size of the obstacle with relatively high dimensional accuracy.

  17. Determining Sample Size with a Given Range of Mean Effects in One-Way Heteroscedastic Analysis of Variance

    ERIC Educational Resources Information Center

    Shieh, Gwowen; Jan, Show-Li

    2013-01-01

    The authors examined 2 approaches for determining the required sample size of Welch's test for detecting equality of means when the greatest difference between any 2 group means is given. It is shown that the actual power obtained with the sample size of the suggested approach is consistently at least as great as the nominal power. However, the…

  18. Lake trout restoration in the Great Lakes: stock-size criteria for natural reproduction

    USGS Publications Warehouse

    Selgeby, James H.; Bronte, Charles R.; Brown, Edward H.; Hansen, Michael J.; Holey, Mark E.; VanAmberg, Jan P.; Muth, Kenneth M.; Makauskas, Daniel B.; Mckee, Patrick; Anderson, David M.; Ferreri, C. Paola; Schram, Stephen T.

    1995-01-01

    We examined the question of whether the lake trout restoration program in the Great Lakes has developed brood stocks of adequate size to sustain natural reproduction. Stock size criteria were developed from areas of the Great Lakes where natural reproduction has been successful (defined as detection of age-1 or older recruits by assessment fishing). We contrasted them with stocks in areas with no natural reproduction. Based on the relative abundance of spawners measured in the fall and the presence or absence of natural reproduction in 24 areas of the Great Lakes, we found three distinct sets of lake trout populations. In seven areas of successful natural reproduction, the catch-per-unit-effort (CPE) of spawners ranged from 17 to 135 fish/305 m of gillnet. Stock sizes in these areas were used as a gauge against which stocks in other areas were contrasted. We conclude that stock densities of 17-135 fish/305 m of gill net are adequate for natural reproduction, provided that all other requirements are met. No natural reproduction has been detected in seven other areas, where CPEs of spawners ranged from only 3 to 5 fish/305 m. We conclude that spawning stocks of only 3-5 fish/305 m of net are inadequate to develop measurable natural reproduction. Natural reproduction has also not been detected in ten areas where CPEs of spawners ranged from 43 to 195 fish/305 m of net. We conclude that spawning stocks in these ten areas were adequate to sustain natural reproduction, but that some factor other than parental stock size prevented recruitment of wild lake trout.

  19. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  20. Performance of laser Doppler velocimeter with polydisperse seed particles in high speed flows

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Bhattacharyya, S.; Abu-Hijleh, B. A./K.

    1988-01-01

    The flowfield behind an oblique shock wave, where the LDV measured velocities are seed particle size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV was discussed.

  1. Performance of laser Doppler velocimeter with polydisperse seed particles in high-speed flows

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Abu-Hijleh, B. A. K.

    1989-01-01

    The flowfield behind an oblique shock wave, where the LDV measured velocities are seed-particle-size dependent, was used to investigate the effects of LDV system parameters on the range of detectable polydisperse seed particles. The parameters included frequency shifting, laser power, scattered signal amplification level, and number of required fringe crossings. The results showed that with polydisperse seed particles ranging from 0.1 to 4.0 microns available in the flow, the average diameter of the detected particles could change from 0.2 to 3.0 microns by changing different LDV system parameters. The effects of this shift in the range of detectable particles on the frequency response of LDV are discussed.

  2. Sample size and power calculations for detecting changes in malaria transmission using antibody seroconversion rate.

    PubMed

    Sepúlveda, Nuno; Paulino, Carlos Daniel; Drakeley, Chris

    2015-12-30

    Several studies have highlighted the use of serological data in detecting a reduction in malaria transmission intensity. These studies have typically used serology as an adjunct measure and no formal examination of sample size calculations for this approach has been conducted. A sample size calculator is proposed for cross-sectional surveys using data simulation from a reverse catalytic model assuming a reduction in seroconversion rate (SCR) at a given change point before sampling. This calculator is based on logistic approximations for the underlying power curves to detect a reduction in SCR in relation to the hypothesis of a stable SCR for the same data. Sample sizes are illustrated for a hypothetical cross-sectional survey from an African population assuming a known or unknown change point. Overall, data simulation demonstrates that power is strongly affected by assuming a known or unknown change point. Small sample sizes are sufficient to detect strong reductions in SCR, but invariantly lead to poor precision of estimates for current SCR. In this situation, sample size is better determined by controlling the precision of SCR estimates. Conversely larger sample sizes are required for detecting more subtle reductions in malaria transmission but those invariantly increase precision whilst reducing putative estimation bias. The proposed sample size calculator, although based on data simulation, shows promise of being easily applicable to a range of populations and survey types. Since the change point is a major source of uncertainty, obtaining or assuming prior information about this parameter might reduce both the sample size and the chance of generating biased SCR estimates.

  3. Some Observations on Damage Tolerance Analyses in Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Dawicke, David S.; Hampton, Roy W.

    2017-01-01

    AIAA standards S080 and S081 are applicable for certification of metallic pressure vessels (PV) and composite overwrap pressure vessels (COPV), respectively. These standards require damage tolerance analyses with a minimum reliable detectible flaw/crack and demonstration of safe life four times the service life with these cracks at the worst-case location in the PVs and oriented perpendicular to the maximum principal tensile stress. The standards require consideration of semi-elliptical surface cracks in the range of aspect ratios (crack depth a to half of the surface length c, i.e., (a/c) of 0.2 to 1). NASA-STD-5009 provides the minimum reliably detectible standard crack sizes (90/95 probability of detection (POD) for several non-destructive evaluation (NDE) methods (eddy current (ET), penetrant (PT), radiography (RT) and ultrasonic (UT)) for the two limits of the aspect ratio range required by the AIAA standards. This paper tries to answer the questions: can the safe life analysis consider only the life for the crack sizes at the two required limits, or endpoints, of the (a/c) range for the NDE method used or does the analysis need to consider values within that range? What would be an appropriate method to interpolate 90/95 POD crack sizes at intermediate (a/c) values? Several procedures to develop combinations of a and c within the specified range are explored. A simple linear relationship between a and c is chosen to compare the effects of seven different approaches to determine combinations of aj and cj that are between the (a/c) endpoints. Two of the seven are selected for evaluation: Approach I, the simple linear relationship, and a more conservative option, Approach III. For each of these two Approaches, the lives are computed for initial semi-elliptic crack configurations in a plate subjected to remote tensile fatigue loading with an R-ratio of 0.1, for an assumed material evaluated using NASGRO (registered 4) version 8.1. These calculations demonstrate that for this loading, using Approach I and the initial detectable crack sizes at the (a/c) endpoints in 5009 specified for the ET and UT NDE methods, the smallest life is not at the two required limits of the (a/c) range, but rather is at an intermediate configuration in the range (a/c) of 0.4 to 0.6. Similar analyses using both Approach I and III with the initial detectable crack size at the (a/c) endpoints in 5009 for PT NDE showed the smallest life may be at an (a/c) endpoint or an intermediate (a/c), depending upon which Approach is used. As such, analyses that interrogate only the two (a/c) values of 0.2 and 1 may result in unconservative life predictions. The standard practice may need to be revised based on these results.

  4. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  5. Weight status and the perception of body image in men

    PubMed Central

    Gardner, Rick M

    2014-01-01

    Understanding the role of body size in relation to the accuracy of body image perception in men is an important topic because of the implications for avoiding and treating obesity, and it may serve as a potential diagnostic criterion for eating disorders. The early research on this topic produced mixed findings. About one-half of the early studies showed that obese men overestimated their body size, with the remaining half providing accurate estimates. Later, improvements in research technology and methodology provided a clearer indication of the role of weight status in body image perception. Research in our laboratory has also produced diverse findings, including that obese subjects sometimes overestimate their body size. However, when examining our findings across several studies, obese subjects had about the same level of accuracy in estimating their body size as normal-weight subjects. Studies in our laboratory also permitted the separation of sensory and nonsensory factors in body image perception. In all but one instance, no differences were found overall between the ability of obese and normal-weight subjects to detect overall changes in body size. Importantly, however, obese subjects are better at detecting changes in their body size when the image is distorted to be too thin as compared to too wide. Both obese and normal-weight men require about a 3%–7% change in the width of their body size in order to detect the change reliably. Correlations between a range of body mass index values and body size estimation accuracy indicated no relationship between these variables. Numerous studies in other laboratories asked men to place their body size into discrete categorizes, ranging from thin to obese. Researchers found that overweight and obese men underestimate their weight status, and that men are less accurate in their categorizations than are women. Cultural influences have been found to be important, with body size underestimations occurring in cultures where a larger body is found to be desirable. Methodological issues are reviewed with recommendations for future studies. PMID:25114606

  6. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  7. A high-throughput label-free nanoparticle analyser.

    PubMed

    Fraikin, Jean-Luc; Teesalu, Tambet; McKenney, Christopher M; Ruoslahti, Erkki; Cleland, Andrew N

    2011-05-01

    Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10⁻⁶ l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.

  8. Urbanization disrupts latitude-size rule in 17-year cicadas.

    PubMed

    Beasley, DeAnna E; Penick, Clint A; Boateng, Nana S; Menninger, Holly L; Dunn, Robert R

    2018-03-01

    Many ectotherms show a decrease in body size with increasing latitude due to changes in climate, a pattern termed converse Bergmann's rule. Urban conditions-particularly warmer temperatures and fragmented landscapes-may impose stresses on development that could disrupt these body size patterns. To test the impact of urbanization on development and latitudinal trends in body size, we launched a citizen science project to collect periodical cicadas ( Magicicada septendecim ) from across their latitudinal range during the 2013 emergence of Brood II. Periodical cicadas are long-lived insects whose distribution spans a broad latitudinal range covering both urban and rural habitats. We used a geometric morphometric approach to assess body size and developmental stress based on fluctuating asymmetry in wing shape. Body size of rural cicadas followed converse Bergmann's rule, but this pattern was disrupted in urban habitats. In the north, urban cicadas were larger than their rural counterparts, while southern populations showed little variation in body size between habitats. We detected no evidence of differences in developmental stress due to urbanization. To our knowledge, this is the first evidence that urbanization disrupts biogeographical trends in body size, and this pattern highlights how the effects of urbanization may differ over a species' range.

  9. Development of a magnetic solid-phase extraction coupled with high-performance liquid chromatography method for the analysis of polyaromatic hydrocarbons.

    PubMed

    Ma, Yan; Xie, Jiawen; Jin, Jing; Wang, Wei; Yao, Zhijian; Zhou, Qing; Li, Aimin; Liang, Ying

    2015-07-01

    A novel magnetic solid phase extraction coupled with high-performance liquid chromatography method was established to analyze polyaromatic hydrocarbons in environmental water samples. The extraction conditions, including the amount of extraction agent, extraction time, pH and the surface structure of the magnetic extraction agent, were optimized. The results showed that the amount of extraction agent and extraction time significantly influenced the extraction performance. The increase in the specific surface area, the enlargement of pore size, and the reduction of particle size could enhance the extraction performance of the magnetic microsphere. The optimized magnetic extraction agent possessed a high surface area of 1311 m(2) /g, a large pore size of 6-9 nm, and a small particle size of 6-9 μm. The limit of detection for phenanthrene and benzo[g,h,i]perylene in the developed analysis method was 3.2 and 10.5 ng/L, respectively. When applied to river water samples, the spiked recovery of phenanthrene and benzo[g,h,i]perylene ranged from 89.5-98.6% and 82.9-89.1%, respectively. Phenanthrene was detected over a concentration range of 89-117 ng/L in three water samples withdrawn from the midstream of the Huai River, and benzo[g,h,i]perylene was below the detection limit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    PubMed Central

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-01-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films. PMID:27090570

  11. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-04-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films.

  12. Automated sinkhole detection using a DEM subsetting technique and fill tools at Mammoth Cave National Park

    NASA Astrophysics Data System (ADS)

    Wall, J.; Bohnenstiehl, D. R.; Levine, N. S.

    2013-12-01

    An automated workflow for sinkhole detection is developed using Light Detection and Ranging (Lidar) data from Mammoth Cave National Park (MACA). While the park is known to sit within a karst formation, the generally dense canopy cover and the size of the park (~53,000 acres) creates issues for sinkhole inventorying. Lidar provides a useful remote sensing technology for peering beneath the canopy in hard to reach areas of the park. In order to detect sinkholes, a subsetting technique is used to interpolate a Digital Elevation Model (DEM) thereby reducing edge effects. For each subset, standard GIS fill tools are used to fill depressions within the DEM. The initial DEM is then subtracted from the filled DEM resulting in detected depressions or sinkholes. Resulting depressions are then described in terms of size and geospatial trend.

  13. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  14. Accumulating pyramid spatial-spectral collaborative coding divergence for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Zou, Huanxin; Zhou, Shilin

    2016-03-01

    Detection of anomalous targets of various sizes in hyperspectral data has received a lot of attention in reconnaissance and surveillance applications. Many anomaly detectors have been proposed in literature. However, current methods are susceptible to anomalies in the processing window range and often make critical assumptions about the distribution of the background data. Motivated by the fact that anomaly pixels are often distinctive from their local background, in this letter, we proposed a novel hyperspectral anomaly detection framework for real-time remote sensing applications. The proposed framework consists of four major components, sparse feature learning, pyramid grid window selection, joint spatial-spectral collaborative coding and multi-level divergence fusion. It exploits the collaborative representation difference in the feature space to locate potential anomalies and is totally unsupervised without any prior assumptions. Experimental results on airborne recorded hyperspectral data demonstrate that the proposed methods adaptive to anomalies in a large range of sizes and is well suited for parallel processing.

  15. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  16. Neutron detector using lithiated glass-scintillating particle composite

    DOEpatents

    Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  17. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study

    PubMed Central

    Le Strat, Yann

    2017-01-01

    The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489

  18. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  19. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  20. An automated and universal method for measuring mean grain size from a digital image of sediment

    USGS Publications Warehouse

    Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.

    2010-01-01

    Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.

  1. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics.

    PubMed

    Shan, Jiajia; Zhao, Junbo; Liu, Lifen; Zhang, Yituo; Wang, Xue; Wu, Fengchang

    2018-07-01

    Hyperspectral imaging technology has been investigated as a possible way to detect microplastics contamination in soil directly and efficiently in this study. Hyperspectral images with wavelength range between 400 and 1000 nm were obtained from soil samples containing different materials including microplastics, fresh leaves, wilted leaves, rocks and dry branches. Supervised classification algorithms such as support vector machine (SVM), mahalanobis distance (MD) and maximum likelihood (ML) algorithms were used to identify microplastics from the other materials in hyperspectral images. To investigate the effect of particle size and color, white polyethylene (PE) and black PE particles extracted from soil with two different particle size ranges (1-5 mm and 0.5-1 mm) were studied in this work. The results showed that SVM was the most applicable method for detecting white PE in soil, with the precision of 84% and 77% for PE particles in size ranges of 1-5 mm and 0.5-1 mm respectively. The precision of black PE detection achieved by SVM were 58% and 76% for particles of 1-5 mm and 0.5-1 mm respectively. Six kinds of household polymers including drink bottle, bottle cap, rubber, packing bag, clothes hanger and plastic clip were used to validate the developed method, and the classification precision of polymers were obtained from 79% to 100% and 86%-99% for microplastics particle 1-5 mm and 0.5-1 mm respectively. The results indicate that hyperspectral imaging technology is a potential technique to determine and visualize the microplastics with particle size from 0.5 to 5 mm on soil surface directly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Small Near-Earth Asteroids in the Palomar Transient Factory Survey: A Real-Time Streak-detection System

    NASA Astrophysics Data System (ADS)

    Waszczak, Adam; Prince, Thomas A.; Laher, Russ; Masci, Frank; Bue, Brian; Rebbapragada, Umaa; Barlow, Tom; Surace, Jason; Helou, George; Kulkarni, Shrinivas

    2017-03-01

    Near-Earth asteroids (NEAs) in the 1-100 meter size range are estimated to be ˜1,000 times more numerous than the ˜15,000 currently cataloged NEAs, most of which are in the 0.5-10 kilometer size range. Impacts from 10-100 meter size NEAs are not statistically life-threatening, but may cause significant regional damage, while 1-10 meter size NEAs with low velocities relative to Earth are compelling targets for space missions. We describe the implementation and initial results of a real-time NEA-discovery system specialized for the detection of small, high angular rate (visually streaked) NEAs in Palomar Transient Factory (PTF) images. PTF is a 1.2-m aperture, 7.3 deg2 field of view (FOV) optical survey designed primarily for the discovery of extragalactic transients (e.g., supernovae) in 60-second exposures reaching ˜20.5 visual magnitude. Our real-time NEA discovery pipeline uses a machine-learned classifier to filter a large number of false-positive streak detections, permitting a human scanner to efficiently and remotely identify real asteroid streaks during the night. Upon recognition of a streaked NEA detection (typically within an hour of the discovery exposure), the scanner triggers follow-up with the same telescope and posts the observations to the Minor Planet Center for worldwide confirmation. We describe our 11 initial confirmed discoveries, all small NEAs that passed 0.3-15 lunar distances from Earth. Lastly, we derive useful scaling laws for comparing streaked-NEA-detection capabilities of different surveys as a function of their hardware and survey-pattern characteristics. This work most directly informs estimates of the streak-detection capabilities of the Zwicky Transient Facility (ZTF, planned to succeed PTF in 2017), which will apply PTF’s current resolution and sensitivity over a 47-deg2 FOV.

  3. Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure-Property Relationships in Nucleic Acid Based Electrochemical Biosensors.

    PubMed

    Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin

    2017-04-19

    Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.

  4. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Data collection and simulation of high range resolution laser radar for surface mine detection

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Chevalier, Tomas; Larsson, Håkan

    2006-05-01

    Rapid and efficient detection of surface mines, IED's (Improvised Explosive Devices) and UXO (Unexploded Ordnance) is of high priority in military conflicts. High range resolution laser radars combined with passive hyper/multispectral sensors offer an interesting concept to help solving this problem. This paper reports on laser radar data collection of various surface mines in different types of terrain. In order to evaluate the capability of 3D imaging for detecting and classifying the objects of interest a scanning laser radar was used to scan mines and surrounding terrain with high angular and range resolution. These data were then fed into a laser radar model capable of generating range waveforms for a variety of system parameters and combinations of different targets and backgrounds. We can thus simulate a potential system by down sampling to relevant pixel sizes and laser/receiver characteristics. Data, simulations and examples will be presented.

  6. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  7. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    PubMed

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  8. Detecting larval export from marine reserves

    PubMed Central

    Pelc, R. A.; Warner, R. R.; Gaines, S. D.; Paris, C. B.

    2010-01-01

    Marine reserve theory suggests that where large, productive populations are protected within no-take marine reserves, fished areas outside reserves will benefit through the spillover of larvae produced in the reserves. However, empirical evidence for larval export has been sparse. Here we use a simple idealized coastline model to estimate the expected magnitude and spatial scale of larval export from no-take marine reserves across a range of reserve sizes and larval dispersal scales. Results suggest that, given the magnitude of increased production typically found in marine reserves, benefits from larval export are nearly always large enough to offset increased mortality outside marine reserves due to displaced fishing effort. However, the proportional increase in recruitment at sites outside reserves is typically small, particularly for species with long-distance (on the order of hundreds of kilometers) larval dispersal distances, making it very difficult to detect in field studies. Enhanced recruitment due to export may be detected by sampling several sites at an appropriate range of distances from reserves or at sites downcurrent of reserves in systems with directional dispersal. A review of existing empirical evidence confirms the model's suggestion that detecting export may be difficult without an exceptionally large differential in production, short-distance larval dispersal relative to reserve size, directional dispersal, or a sampling scheme that encompasses a broad range of distances from the reserves. PMID:20181570

  9. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    PubMed

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Age, sex, reproduction, and spatial organization of lynxes colonizing northeastern Minnesota

    USGS Publications Warehouse

    Mech, L.D.

    1980-01-01

    From 1972 through 1978, lynxes (Felis lynx) emigrating from Canada were studied in northeastern Minnesota. Fourteen individuals were radio-tracked, 8 wefe ear-tagged, and 49 carcasses were examined. Sex ratios of the samples were equal during the first years of the study, but females predominated later. At least half of the radiotagged lynxes were killed by humans; no natural mortality was detected. Home range sizes ranged from 51 to 122 km2 for females and 145 to 243 km2 for males, up to 10 times the sizes of those reported by other workers. Ranges of females tended to overlap. Males and females appeared to be segregated in the population.

  11. Effect of display size on visual attention.

    PubMed

    Chen, I-Ping; Liao, Chia-Ning; Yeh, Shih-Hao

    2011-06-01

    Attention plays an important role in the design of human-machine interfaces. However, current knowledge about attention is largely based on data obtained when using devices of moderate display size. With advancement in display technology comes the need for understanding attention behavior over a wider range of viewing sizes. The effect of display size on test participants' visual search performance was studied. The participants (N = 12) performed two types of visual search tasks, that is, parallel and serial search, under three display-size conditions (16 degrees, 32 degrees, and 60 degrees). Serial, but not parallel, search was affected by display size. In the serial task, mean reaction time for detecting a target increased with the display size.

  12. Conspicuity of renal calculi at unenhanced CT: effects of calculus composition and size and CT technique.

    PubMed

    Tublin, Mitchell E; Murphy, Michael E; Delong, David M; Tessler, Franklin N; Kliewer, Mark A

    2002-10-01

    To determine the effects of calculus size, composition, and technique (kilovolt and milliampere settings) on the conspicuity of renal calculi at unenhanced helical computed tomography (CT). The authors performed unenhanced CT of a phantom containing 188 renal calculi of varying size and chemical composition (brushite, cystine, struvite, weddellite, whewellite, and uric acid) at 24 combinations of four kilovolt (80-140 kV) and six milliampere (200-300 mA) levels. Two radiologists, who were unaware of the location and number of calculi, reviewed the CT images and recorded where stones were detected. These observations were compared with the known positions of calculi to generate true-positive and false-positive rates. Logistic regression analysis was performed to investigate the effects of stone size, composition, and technique and to generate probability estimates of detection. Interobserver agreement was estimated with kappa statistics. Interobserver agreement was high: the mean kappa value for the two observers was 0.86. The conspicuity of stone fragments increased with increasing kilovolt and milliampere levels for all stone types. At the highest settings (140 kV and 300 mA), the detection threshold size (ie, the size of calculus that had a 50% probability of being detected) ranged from 0.81 mm + 0.03 (weddellite) to 1.3 mm + 0.1 (uric acid). Detection threshold size for each type of calculus increased up to 1.17-fold at lower kilovolt settings and up to 1.08-fold at lower milliampere settings. The conspicuity of small renal calculi at CT increases with higher kilovolt and milliampere settings, with higher kilovolts being particularly important. Small uric acid calculi may be imperceptible, even with maximal CT technique.

  13. Ultrasound-assisted combined with nano-sized molecularly imprinted polymer for selective extraction and pre-concentration of amitriptyline in human plasma with gas chromatography-flame detection.

    PubMed

    Khanahmadzadeh, Salah; Tarigh, Ahmad

    2014-12-01

    A new process was developed for the selective extraction and pre-concentration of amitriptyline (AT) from human plasma using nano-sized molecularly imprinted polymer (MIP) with ultrasound-assisted extraction (UAE). The nano-sized AT imprinted polymer particles were synthesized using suspension polymerization in silicon oil and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM) methods. With the application of optimized values, linearity values in the ranges of 20-200μgmL(-1) and 35-200μgmL(-1) were obtained for AT with the correlation of determination values (r(2)) 0.998 and 0.995 in water and plasma, respectively. The limits of detections (S/N=3) for AT were found to be 0.7 and 1.2μgmL(-1) in water and plasma, respectively. The enrichment factors of AT in water and plasma were 52 and 40, respectively. The inter-day precisions (%) were in the range of 5.8-9.2%. Relative recovery rates ranged from 82.4% to 92.3%. The method was successfully applied to determine AT in the human plasma samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. From the field: Efficacy of detecting Chronic Wasting Disease via sampling hunter-killed white-tailed deer

    USGS Publications Warehouse

    Diefenbach, D.R.; Rosenberry, C.S.; Boyd, Robert C.

    2004-01-01

    Surveillance programs for Chronic Wasting Disease (CWD) in free-ranging cervids often use a standard of being able to detect 1% prevalence when determining minimum sample sizes. However, 1% prevalence may represent >10,000 infected animals in a population of 1 million, and most wildlife managers would prefer to detect the presence of CWD when far fewer infected animals exist. We wanted to detect the presence of CWD in white-tailed deer (Odocoileus virginianus) in Pennsylvania when the disease was present in only 1 of 21 wildlife management units (WMUs) statewide. We used computer simulation to estimate the probability of detecting CWD based on a sampling design to detect the presence of CWD at 0.1% and 1.0% prevalence (23-76 and 225-762 infected deer, respectively) using tissue samples collected from hunter-killed deer. The probability of detection at 0.1% prevalence was <30% with sample sizes of ???6,000 deer, and the probability of detection at 1.0% prevalence was 46-72% with statewide sample sizes of 2,000-6,000 deer. We believe that testing of hunter-killed deer is an essential part of any surveillance program for CWD, but our results demonstrated the importance of a multifaceted surveillance approach for CWD detection rather than sole reliance on testing hunter-killed deer.

  15. Turbine instabilities: Case histories

    NASA Technical Reports Server (NTRS)

    Laws, C. W.

    1985-01-01

    Several possible causes of turbine rotor instability are discussed and the related design features of a wide range of turbomachinery types and sizes are considered. The instrumentation options available for detecting rotor instability and assessing its severity are also discussed.

  16. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  17. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin, E-mail: justin.solomon@duke.edu; Wilson, Joshua; Samei, Ehsan

    2015-08-15

    Purpose: The purpose of this work was to assess the inherent image quality characteristics of a new multidetector computed tomography system in terms of noise, resolution, and detectability index as a function of image acquisition and reconstruction for a range of clinically relevant settings. Methods: A multisized image quality phantom (37, 30, 23, 18.5, and 12 cm physical diameter) was imaged on a SOMATOM Force scanner (Siemens Medical Solutions) under variable dose, kVp, and tube current modulation settings. Images were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) with iterative strengths of 3, 4, andmore » 5. Image quality was assessed in terms of the noise power spectrum (NPS), task transfer function (TTF), and detectability index for a range of detection tasks (contrasts of approximately 45, 90, 300, −900, and 1000 HU, and 2–20 mm diameter) based on a non-prewhitening matched filter model observer with eye filter. Results: Image noise magnitude decreased with decreasing phantom size, increasing dose, and increasing ADMIRE strength, offering up to 64% noise reduction relative to FBP. Noise texture in terms of the NPS was similar between FBP and ADMIRE (<5% shift in peak frequency). The resolution, based on the TTF, improved with increased ADMIRE strength by an average of 15% in the TTF 50% frequency for ADMIRE-5. The detectability index increased with increasing dose and ADMIRE strength by an average of 55%, 90%, and 163% for ADMIRE 3, 4, and 5, respectively. Assessing the impact of mA modulation for a fixed average dose over the length of the phantom, detectability was up to 49% lower in smaller phantom sections and up to 26% higher in larger phantom sections for the modulated scan compared to a fixed tube current scan. Overall, the detectability exhibited less variability with phantom size for modulated scans compared to fixed tube current scans. Conclusions: Image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose. The use of tube current modulation resulted in more consistent image quality with changing phantom size.« less

  18. Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues.

    PubMed

    Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng

    2012-09-01

    This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.

  19. Mosquito Consumption by Insectivorous Bats: Does Size Matter?

    PubMed Central

    Gonsalves, Leroy; Bicknell, Brian; Law, Brad; Webb, Cameron; Monamy, Vaughan

    2013-01-01

    Insectivorous bats have often been touted as biological control for mosquito populations. However, mosquitoes generally represent only a small proportion of bat diet. Given the small size of mosquitoes, restrictions imposed on prey detectability by low frequency echolocation, and variable field metabolic rates (FMR), mosquitoes may not be available to or profitable for all bats. This study investigated whether consumption of mosquitoes was influenced by bat size, which is negatively correlated with echolocation frequency but positively correlated with bat FMR. To assess this, we investigated diets of five eastern Australian bat species (Vespadelus vulturnus Thomas, V. pumilus Gray, Miniopterus australis Tomes, Nyctophilus gouldi Tomes and Chalinolobus gouldii Gray) ranging in size from 4-14 g in coastal forest, using molecular analysis of fecal DNA. Abundances of potential mosquito and non-mosquito prey were concurrently measured to provide data on relative prey abundance. Aedes vigilax was locally the most abundant mosquito species, while Lepidoptera the most abundant insect order. A diverse range of prey was detected in bat feces, although members of Lepidoptera dominated, reflecting relative abundance at trap sites. Consumption of mosquitoes was restricted to V. vulturnus and V. pumilus, two smaller sized bats (4 and 4.5 g). Although mosquitoes were not commonly detected in feces of V. pumilus, they were present in feces of 55 % of V. vulturnus individuals. To meet nightly FMR requirements, Vespadelus spp. would need to consume ~600-660 mosquitoes on a mosquito-only diet, or ~160-180 similar sized moths on a moth-only diet. Lower relative profitability of mosquitoes may provide an explanation for the low level of mosquito consumption among these bats and the absence of mosquitoes in feces of larger bats. Smaller sized bats, especially V. vulturnus, are likely to be those most sensitive to reductions in mosquito abundance and should be monitored during mosquito control activities. PMID:24130851

  20. Early Mode of Life and Hatchling Size in Cephalopod Molluscs: Influence on the Species Distributional Ranges

    PubMed Central

    Vidal, Erica A. G.; Fernández-Álvarez, Fernando Á.; Nabhitabhata, Jaruwat

    2016-01-01

    Cephalopods (nautiluses, cuttlefishes, squids and octopuses) exhibit direct development and display two major developmental modes: planktonic and benthic. Planktonic hatchlings are small and go through some degree of morphological changes during the planktonic phase, which can last from days to months, with ocean currents enhancing their dispersal capacity. Benthic hatchlings are usually large, miniature-like adults and have comparatively reduced dispersal potential. We examined the relationship between early developmental mode, hatchling size and species latitudinal distribution range of 110 species hatched in the laboratory, which represent 13% of the total number of live cephalopod species described to date. Results showed that species with planktonic hatchlings reach broader distributional ranges in comparison with species with benthic hatchlings. In addition, squids and octopods follow an inverse relationship between hatchling size and species latitudinal distribution. In both groups, species with smaller hatchlings have broader latitudinal distribution ranges. Thus, squid and octopod species with larger hatchlings have latitudinal distributions of comparatively minor extension. This pattern also emerges when all species are grouped by genus (n = 41), but was not detected for cuttlefishes, a group composed mainly of species with large and benthic hatchlings. However, when hatchling size was compared to adult size, it was observed that the smaller the hatchlings, the broader the latitudinal distributional range of the species for cuttlefishes, squids and octopuses. This was also valid for all cephalopod species with benthic hatchlings pooled together. Hatchling size and associated developmental mode and dispersal potential seem to be main influential factors in determining the distributional range of cephalopods. PMID:27829039

  1. Test of the ecological-constraints model on ursine colobus monkeys (Colobus vellerosus) in Ghana.

    PubMed

    Teichroeb, Julie A; Sicotte, Pascale

    2009-01-01

    For group-living mammals, the ecological-constraints model predicts that within-group feeding competition will increase as group size increases, necessitating more daily travel to find food and thereby constraining group size. It provides a useful tool for detecting scramble competition any time it is difficult to determine whether or not food is limiting. We tested the ecological-constraints model on highly folivorous ursine colobus monkeys (Colobus vellerosus) at the Boabeng-Fiema Monkey Sanctuary in Ghana. Three differently sized groups were followed for 13 months and two others were followed for 6 months each in 2004-2005 using focal-animal sampling and ranging scans; ecological plots and phenology surveys were used to determine home-range quality and food availability. There was relatively little difference in home-range quality, monthly food availability, diet, adult female ingestion rates, and rate of travel within food patches between the groups. However, home-range size, day-range length, and percent of time spent feeding all increased with group size. We performed a single large test of the ecological-constraints model by combining several separate Spearman correlations, each testing different predictions under the model, using Fisher's log-likelihood method. It showed that the ecological-constraints model was supported in this study; scramble competition in this population is manifesting in increased ranging and time spent feeding. How costly this increased energy expenditure is for individuals in larger groups remains to be determined. (c) 2008 Wiley-Liss, Inc.

  2. A Spitzer search for transits of radial velocity detected super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable massmore » estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.« less

  3. Overview and Status of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Dunham, E.; Geary, J.; Gilliland, R.; Jenkins, J.; Latham, D.; Mayer, D.; Sobeck, C.; Duren, R.

    2003-01-01

    The Kepler Mission is a search for terrestrial planets with the design optimized for detecting Earth-size planets in the habitable zone (HZ) of solar-like stars. In addition, the mission has a broad detection capability for a wide range of planetary sizes, planetary orbits and spectral types of stars. The mission is in the midst of the development phase with good progress leading to the preliminary design review later this year. Long lead procurements are well under way. An overview in all areas is presented including both the flight system (photometer and spacecraft) and the ground system. Launch is on target for 2007 on a Delta II.

  4. On the relationship of minimum detectable contrast to dose and lesion size in abdominal CT

    NASA Astrophysics Data System (ADS)

    Zhou, Yifang; Scott, Alexander, II; Allahverdian, Janet; Lee, Christina; Kightlinger, Blake; Azizyan, Avetis; Miller, Joseph

    2015-10-01

    CT dose optimization is typically guided by pixel noise or contrast-to-noise ratio that does not delineate low contrast details adequately. We utilized the statistically defined low contrast detectability to study its relationship to dose and lesion size in abdominal CT. A realistically shaped medium sized abdomen phantom was customized to contain a cylindrical void of 4 cm diameter. The void was filled with a low contrast (1% and 2%) insert containing six groups of cylindrical targets ranging from 1.2 mm to 7 mm in size. Helical CT scans were performed using a Siemens 64-slice mCT and a GE Discovery 750 HD at various doses. After the subtractions between adjacent slices, the uniform sections of the filtered backprojection reconstructed images were partitioned to matrices of square elements matching the sizes of the targets. It was verified that the mean values from all the elements in each matrix follow a Gaussian distribution. The minimum detectable contrast (MDC), quantified by the mean signal to background difference equal to the distribution’s standard deviation multiplied by 3.29, corresponding to 95% confidence level, was found to be related to the phantom specific dose and the element size by a power law (R^2  >  0.990). Independent readings on the 5 mm and 7 mm targets were compared to the measured contrast to the MDC ratios. The results showed that 93% of the cases were detectable when the measured contrast exceeds the MDC. The correlation of the MDC to the pixel noise and target size was also identified and the relationship was found to be the same for the scanners in the study. To quantify the impact of iterative reconstructions to the low contrast detectability, the noise structure was studied in a similar manner at different doses and with different ASIR blending fractions. The relationship of the dose to the blending fraction and low contrast detectability is presented.

  5. Microwave-assisted rapid preparation of monodisperse superhydrophilic resin microspheres as adsorbent for triazines in fruit juices.

    PubMed

    Zhou, Tianyu; Ding, Jie; Wang, Qiang; Xu, Yuan; Wang, Bo; Zhao, Li; Ding, Hong; Chen, Yanhua; Ding, Lan

    2018-03-01

    Monodisperse superhydrophilic melamine formaldehyde resorcinol resin (MFR) microspheres were prepared in 90min at 85°C via a microwave-assisted method with a yield of 60.6%. The obtained MFR microspheres exhibited narrow size distribution with the average particle size of about 2.5µm. The MFR microspheres were used as absorbents to detect triazines in juices followed by high performance liquid chromatography tandem mass spectrometry. Various factors affecting the extraction efficiency were investigated. Under the optimized conditions, the built method exhibited excellent linearity in the range of 1-250μgL -1 (R 2 ≥ 0.9994) and lower detection limits (0.3-0.65μgL -1 ). The relative standard deviations of intra- and inter-day analyses ranged from 3% to 7% and from 2% to 7%, respectively. The method was applied to determine six triazines in three juice samples. At the spiked level of 3μgL -1 , the recoveries were in the range of 90-99% with the relative standard deviations ≤ 8%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Method for measuring the size distribution of airborne rhinovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber.more » Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.« less

  7. An object-based classification method for automatic detection of lunar impact craters from topographic data

    NASA Astrophysics Data System (ADS)

    Vamshi, Gasiganti T.; Martha, Tapas R.; Vinod Kumar, K.

    2016-05-01

    Identification of impact craters is a primary requirement to study past geological processes such as impact history. They are also used as proxies for measuring relative ages of various planetary or satellite bodies and help to understand the evolution of planetary surfaces. In this paper, we present a new method using object-based image analysis (OBIA) technique to detect impact craters of wide range of sizes from topographic data. Multiresolution image segmentation of digital terrain models (DTMs) available from the NASA's LRO mission was carried out to create objects. Subsequently, objects were classified into impact craters using shape and morphometric criteria resulting in 95% detection accuracy. The methodology developed in a training area in parts of Mare Imbrium in the form of a knowledge-based ruleset when applied in another area, detected impact craters with 90% accuracy. The minimum and maximum sizes (diameters) of impact craters detected in parts of Mare Imbrium by our method are 29 m and 1.5 km, respectively. Diameters of automatically detected impact craters show good correlation (R2 > 0.85) with the diameters of manually detected impact craters.

  8. Sources of variation in detection of wading birds from aerial surveys in the Florida Everglades

    USGS Publications Warehouse

    Conroy, M.J.; Peterson, J.T.; Bass, O.L.; Fonnesbeck, C.J.; Howell, J.E.; Moore, C.T.; Runge, J.P.

    2008-01-01

    We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from <0.2 to similar to 0.75 and varied according to species, group size, observer, and the observer's position in the aircraft (front or rear seat). Aerial-survey simulations indicated that incomplete detection can have a substantial effect oil assessment of population trends, particularly river relatively short intervals (<= 3 years) and small annual changes in population size (<= 3%). We conclude that detection bias is an important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of dual-observer or other calibratior methods as part of survey design (e.g., using double sampling).

  9. A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1996-02-01

    The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.

  10. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature.

    PubMed

    Szucs, Denes; Ioannidis, John P A

    2017-03-01

    We have empirically assessed the distribution of published effect sizes and estimated power by analyzing 26,841 statistical records from 3,801 cognitive neuroscience and psychology papers published recently. The reported median effect size was D = 0.93 (interquartile range: 0.64-1.46) for nominally statistically significant results and D = 0.24 (0.11-0.42) for nonsignificant results. Median power to detect small, medium, and large effects was 0.12, 0.44, and 0.73, reflecting no improvement through the past half-century. This is so because sample sizes have remained small. Assuming similar true effect sizes in both disciplines, power was lower in cognitive neuroscience than in psychology. Journal impact factors negatively correlated with power. Assuming a realistic range of prior probabilities for null hypotheses, false report probability is likely to exceed 50% for the whole literature. In light of our findings, the recently reported low replication success in psychology is realistic, and worse performance may be expected for cognitive neuroscience.

  11. Changes in tropical precipitation cluster size distributions under global warming

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.; Quinn, K. M.

    2016-12-01

    The total amount of precipitation integrated across a tropical storm or other precipitation feature (contiguous clusters of precipitation exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance. To establish baseline behavior in current climate, the probability distribution of cluster sizes from multiple satellite retrievals and National Center for Environmental Prediction (NCEP) reanalysis is compared to those from Coupled Model Intercomparison Project (CMIP5) models and the Geophysical Fluid Dynamics Laboratory high-resolution atmospheric model (HIRAM-360 and -180). With the caveat that a minimum rain rate threshold is important in the models (which tend to overproduce low rain rates), the models agree well with observations in leading properties. In particular, scale-free power law ranges in which the probability drops slowly with increasing cluster size are well modeled, followed by a rapid drop in probability of the largest clusters above a cutoff scale. Under the RCP 8.5 global warming scenario, the models indicate substantial increases in probability (up to an order of magnitude) of the largest clusters by the end of century. For models with continuous time series of high resolution output, there is substantial spread on when these probability increases for the largest precipitation clusters should be detectable, ranging from detectable within the observational period to statistically significant trends emerging only in the second half of the century. Examination of NCEP reanalysis and SSMI/SSMIS series of satellite retrievals from 1979 to present does not yield reliable evidence of trends at this time. The results suggest improvements in inter-satellite calibration of the SSMI/SSMIS retrievals could aid future detection.

  12. NELIOTA: First temperature measurement of lunar impact flashes

    NASA Astrophysics Data System (ADS)

    Bonanos, A. Z.; Avdellidou, C.; Liakos, A.; Xilouris, E. M.; Dapergolas, A.; Koschny, D.; Bellas-Velidis, I.; Boumis, P.; Charmandaris, V.; Fytsilis, A.; Maroussis, A.

    2018-04-01

    We report the first scientific results from the NELIOTA (NEO Lunar Impacts and Optical TrAnsients) project, which has recently begun lunar monitoring observations with the 1.2-m Kryoneri telescope. NELIOTA aims to detect faint impact flashes produced by near-Earth meteoroids and asteroids and thereby help constrain the size-frequency distribution of near-Earth objects in the decimeter to meter range. The NELIOTA setup, consisting of two fast-frame cameras observing simultaneously in the R and I bands, enables - for the first time - direct analytical calculation of the flash temperatures. We present the first ten flashes detected, for which we find temperatures in the range 1600 to 3100 K, in agreement with theoretical values. Two of these flashes were detected on multiple frames in both filters and therefore yield the first measurements of the temperature drop for lunar flashes. In addition, we compute the impactor masses, which range between 100 g and 50 kg.

  13. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    USGS Publications Warehouse

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  14. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA.

    PubMed

    Karthikeyan, K G; Meyer, Michael T

    2006-05-15

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H(2)O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%)>sulfamethoxazole (70%)>erythromycin-H(2)O (45%)>ciprofloxacin (40%)>sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (

  15. Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement

    PubMed Central

    Kulkarni, Pramod; Qi, Chaolong; Fukushima, Nobuhiko

    2017-01-01

    We describe development of a Portable Aerosol Mobility Spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5 × 22.5 × 15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10–855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15–855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6–436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution, which took approximately 1–2 minutes, depending on the configuration. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments (NIOSH 2012). Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurements of ultrafine and nanoparticle aerosol. PMID:28413241

  16. Average Likelihood Methods for Code Division Multiple Access (CDMA)

    DTIC Science & Technology

    2014-05-01

    lengths in the range of 22 to 213 and possibly higher. Keywords: DS / CDMA signals, classification, balanced CDMA load, synchronous CDMA , decision...likelihood ratio test (ALRT). We begin this classification problem by finding the size of the spreading matrix that generated the DS - CDMA signal. As...Theoretical Background The classification of DS / CDMA signals should not be confused with the problem of multiuser detection. The multiuser detection deals

  17. Comparison of three-view thoracic radiography and computed tomography for detection of pulmonary nodules in dogs with neoplasia.

    PubMed

    Armbrust, Laura J; Biller, David S; Bamford, Aubrey; Chun, Ruthanne; Garrett, Laura D; Sanderson, Michael W

    2012-05-01

    To compare the detection of pulmonary nodules by use of 3-view thoracic radiography and CT in dogs with confirmed neoplasia. Prospective case series. 33 dogs of various breeds. 3 interpreters independently evaluated 3-view thoracic radiography images. The location and size of pulmonary nodules were recorded. Computed tomographic scans of the thorax were obtained and evaluated by a single interpreter. The location, size, margin, internal architecture, and density of pulmonary nodules were recorded. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for thoracic radiography (with CT as the gold standard). 21 of 33 (64%) dogs had pulmonary nodules or masses detected on CT. Of the dogs that had positive CT findings, 17 of 21 (81%) had pulmonary nodules or masses detected on radiographs by at least 1 interpreter. Sensitivity of radiography ranged from 71% to 95%, and specificity ranged from 67% to 92%. Radiography had a positive predictive value of 83% to 94% and a negative predictive value of 65% to 89%. The 4 dogs that were negative for nodules on thoracic radiography but positive on CT were all large-breed to giant-breed dogs with osteosarcoma. CT was more sensitive than radiography for detection of pulmonary nodules. This was particularly evident in large-breed to giant-breed dogs. Thoracic CT is recommended in large-breed to giant-breed dogs with osteosarcoma if the detection of pulmonary nodules will change treatment.

  18. Design considerations for eye-safe single-aperture laser radars

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Volfson, L.

    2015-05-01

    The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.

  19. Buried Object Detection Method Using Optimum Frequency Range in Extremely Shallow Underground

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Abe, Touma

    2011-07-01

    We propose a new detection method for buried objects using the optimum frequency response range of the corresponding vibration velocity. Flat speakers and a scanning laser Doppler vibrometer (SLDV) are used for noncontact acoustic imaging in the extremely shallow underground. The exploration depth depends on the sound pressure, but it is usually less than 10 cm. Styrofoam, wood (silver fir), and acrylic boards of the same size, different size styrofoam boards, a hollow toy duck, a hollow plastic container, a plastic container filled with sand, a hollow steel can and an unglazed pot are used as buried objects which are buried in sand to about 2 cm depth. The imaging procedure of buried objects using the optimum frequency range is given below. First, the standardized difference from the average vibration velocity is calculated for all scan points. Next, using this result, underground images are made using a constant frequency width to search for the frequency response range of the buried object. After choosing an approximate frequency response range, the difference between the average vibration velocity for all points and that for several points that showed a clear response is calculated for the final confirmation of the optimum frequency range. Using this optimum frequency range, we can obtain the clearest image of the buried object. From the experimental results, we confirmed the effectiveness of our proposed method. In particular, a clear image of the buried object was obtained when the SLDV image was unclear.

  20. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets.

    PubMed

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin

    2017-03-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.

  1. Back-focal-plane position detection with extended linear range for photonic force microscopy.

    PubMed

    Martínez, Ignacio A; Petrov, Dmitri

    2012-09-01

    In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.

  2. 2024 Unmanned Undersea Warfare Concept

    DTIC Science & Technology

    2013-06-01

    mine. Assumptions are that the high-tech mine would have a 400 - meter range that spans 360 degrees, a 90% probability of detecting a HVU, and a 30...motor volume – The electric propulsion motor is assumed to be 0.127 cubic meters . A common figure of 24” x 18” x 18” is assumed. This size will allow...regard to propagation loss is assumed to be 400 HZ. Using Excel spreadsheet modeling, the maximum range is determined by finding that range resulting in

  3. Mesoscale spatial variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment

    USGS Publications Warehouse

    Gebler, J.B.

    2004-01-01

    The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.

  4. A sightability model for mountain goats

    USGS Publications Warehouse

    Rice, C.G.; Jenkins, K.J.; Chang, W.-Y.

    2009-01-01

    Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 20042007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n 84), Global Positioning System (GPS) telemetry (n 115), or both (n 6). Aerial survey crews detected 77 and 79 of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied HorvitzThompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85 but ranged 0.750.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.

  5. Size Distribution and First Flush Effects of Mercury Containing Particles in Highway Runoff Water

    NASA Astrophysics Data System (ADS)

    Ferguson, K.; Green, P.

    2007-12-01

    Human and environmental health concerns have recently prompted many California water quality control boards to lower the Total Maximum Daily Loads (TMDL) of Mercury into their water systems. A size distribution study of mercury containing particles was conducted in order to begin to understand the possible sources of the contamination in highway storm water runoff. Four storms were studied from a monitoring site in the Los Angeles area near the crossing of highways 605 and 91. Storm water ran through an extended detention basin made of earthen material with a maximum water depth of 1.17m. Grab samples were collected manually starting at the beginning of the runoff, continuing at every fifteen minutes for the first hour, followed by a collection every hour after that for the duration of the storm. The particle sizes were separated into five size ranges (larger than 100um, 20-100um, 8-20um, 0.45-8um, and 0-0.45um) by sequential filtration. The samples were then acid digested for further analysis. Five standard Mercury solutions ranging from 5 to 100 parts per trillion were prepared in nitric acid immediately before analysis. Samples were analyzed for both the Hg-199 and the Hg-202 isotopes using an Agilent 7500i Inductively Coupled Plasma Mass Spectrometer. Substantial sub-micron concentrations of mercury were detected from all four storms, and in all five particle size ranges studied. The total amount of Mercury detected from each of the storms ranged from 8.5 to 35.5 pptr. Bursts of rain correlate well with increases of influent Hg concentration. Although a First Flush effect can be seen in the first storm, it is not as strong and/or not shown at all in the remaining three. The detention basin used at the site was shown to be an efficient BMP, reducing the amount of Hg in the effluent runoff as much as 30 pptr and down to as little as 2 pptr. The majority of Hg was found in either the 8-20um or the 0-0.45um particle size ranges. Mitigation of either portion will be challenging, but necessary to meet proposed 50 percent reductions.

  6. Cobble cam: Grain-size measurements of sand to boulder from digital photographs and autocorrelation analyses

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.; Ruggiero, P.; Harney, J.N.; Draut, A.E.; Buscombe, D.

    2009-01-01

    A new application of the autocorrelation grain size analysis technique for mixed to coarse sediment settings has been investigated. Photographs of sand- to boulder-sized sediment along the Elwha River delta beach were taken from approximately 1??2 m above the ground surface, and detailed grain size measurements were made from 32 of these sites for calibration and validation. Digital photographs were found to provide accurate estimates of the long and intermediate axes of the surface sediment (r2 > 0??98), but poor estimates of the short axes (r2 = 0??68), suggesting that these short axes were naturally oriented in the vertical dimension. The autocorrelation method was successfully applied resulting in total irreducible error of 14% over a range of mean grain sizes of 1 to 200 mm. Compared with reported edge and object-detection results, it is noted that the autocorrelation method presented here has lower error and can be applied to a much broader range of mean grain sizes without altering the physical set-up of the camera (~200-fold versus ~6-fold). The approach is considerably less sensitive to lighting conditions than object-detection methods, although autocorrelation estimates do improve when measures are taken to shade sediments from direct sunlight. The effects of wet and dry conditions are also evaluated and discussed. The technique provides an estimate of grain size sorting from the easily calculated autocorrelation standard error, which is correlated with the graphical standard deviation at an r2 of 0??69. The technique is transferable to other sites when calibrated with linear corrections based on photo-based measurements, as shown by excellent grain-size analysis results (r2 = 0??97, irreducible error = 16%) from samples from the mixed grain size beaches of Kachemak Bay, Alaska. Thus, a method has been developed to measure mean grain size and sorting properties of coarse sediments. ?? 2009 John Wiley & Sons, Ltd.

  7. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    PubMed Central

    Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin

    2016-01-01

    With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way. PMID:27563902

  8. Performing target specific band reduction using artificial neural networks and assessment of its efficacy using various target detection algorithms

    NASA Astrophysics Data System (ADS)

    Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.

    2016-04-01

    Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.

  9. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  10. Got power? A systematic review of sample size adequacy in health professions education research.

    PubMed

    Cook, David A; Hatala, Rose

    2015-03-01

    Many education research studies employ small samples, which in turn lowers statistical power. We re-analyzed the results of a meta-analysis of simulation-based education to determine study power across a range of effect sizes, and the smallest effect that could be plausibly excluded. We systematically searched multiple databases through May 2011, and included all studies evaluating simulation-based education for health professionals in comparison with no intervention or another simulation intervention. Reviewers working in duplicate abstracted information to calculate standardized mean differences (SMD's). We included 897 original research studies. Among the 627 no-intervention-comparison studies the median sample size was 25. Only two studies (0.3%) had ≥80% power to detect a small difference (SMD > 0.2 standard deviations) and 136 (22%) had power to detect a large difference (SMD > 0.8). 110 no-intervention-comparison studies failed to find a statistically significant difference, but none excluded a small difference and only 47 (43%) excluded a large difference. Among 297 studies comparing alternate simulation approaches the median sample size was 30. Only one study (0.3%) had ≥80% power to detect a small difference and 79 (27%) had power to detect a large difference. Of the 128 studies that did not detect a statistically significant effect, 4 (3%) excluded a small difference and 91 (71%) excluded a large difference. In conclusion, most education research studies are powered only to detect effects of large magnitude. For most studies that do not reach statistical significance, the possibility of large and important differences still exists.

  11. Missile Defense in the 21st Century Acquisition Environment: Exploring a BMD-Capable LCS Mission Package

    DTIC Science & Technology

    2013-09-01

    75 Figure 25: Swing Weight Analysis....................................................................................76 Figure 26...AN/SPY-1D radar “can track golf ball-sized targets at ranges in excess of 165 kilometers” (Robinson, 2004). Given the radar cross section (RCS) of a... golf ball (calculated as a simple metallic sphere), it was determined that this would correspond to a maximum detection range beyond the Launch

  12. The Effective Dynamic Ranges for Glaucomatous Visual Field Progression With Standard Automated Perimetry and Stimulus Sizes III and V.

    PubMed

    Wall, Michael; Zamba, Gideon K D; Artes, Paul H

    2018-01-01

    It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on "censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher.

  13. Breast Microcalcification Detection Using Super-Resolution Ultrasound Image Reconstruction

    DTIC Science & Technology

    2010-09-01

    microcalcifications often occur as one of two types: calcium oxalate dihydrate or calcium hydroxyapatite. Their sizes range approximately from 0.1 mm to 0.5 mm...super-resolution imaging, ultrasound imaging, wave equation. 1. INTRODUCTION Microcalcifications, tiny specks of mineral deposits ( calcium ), are the

  14. An inventory of terrestrial mammals at national parks in the Northeast Temperate Network and Sagamore Hill National Historic Site

    USGS Publications Warehouse

    Gilbert, Andrew T.; O'Connell, Allan F.; Annand, Elizabeth M.; Talancy, Neil W.; Sauer, John R.; Nichols, James D.

    2008-01-01

    An inventory of mammals was conducted during 2004 at nine national park sites in the Northeast Temperate Network (NETN): Acadia National Park (NP), Marsh-Billings-Rockefeller National Historical Park (NHP), Minute Man NHP, Morristown NHP, Roosevelt-Vanderbilt National Historic Site (NHS), Saint-Gaudens NHS, Saugus Iron Works NHS, Saratoga NHP, and Weir Farm NHS. Sagamore Hill NHS, part of the Northeast Coastal and Barrier Network (NCBN), was also surveyed. Each park except Acadia NP was sampled twice, once in the winter/spring and again in the summer/fall. During the winter/spring visit, indirect measure (IM) sampling arrays were employed at 2 to 16 stations and included sampling by remote cameras, cubby boxes (covered trackplates), and hair traps. IM stations were established and re-used during the summer/fall sampling period. Trapping was conducted at 2 to 12 stations at all parks except Acadia NP during the summer/fall period and consisted of arrays of small-mammal traps, squirrel-sized live traps, and some fox-sized live traps. We used estimation-based procedures and probabilistic sampling techniques to design this inventory. A total of 38 species was detected by IM sampling, trapping, and field observations. Species diversity (number of species) varied among parks, ranging from 8 to 24, with Minute Man NHP having the most species detected. Raccoon (Procyon lotor), Virginia Opossum (Didelphis virginiana), Fisher (Martes pennanti), and Domestic Cat (Felis silvestris) were the most common medium-sized mammals detected in this study and White-footed Mouse (Peromyscus leucopus), Northern Short-tailed Shrew (Blarina brevicauda), Deer Mouse (P. maniculatus), and Meadow Vole (Microtus pennsylvanicus) the most common small mammals detected. All species detected are considered fairly common throughout their range including the Fisher, which has been reintroduced in several New England states. We did not detect any state or federal endangered or threatened species.

  15. Tactile Imaging of an Imbedded Palpable Structure for Breast Cancer Screening

    PubMed Central

    2015-01-01

    Apart from texture, the human finger can sense palpation. The detection of an imbedded structure is a fine balance between the relative stiffness of the matrix, the object, and the device. If the device is too soft, its high responsiveness will limit the depth to which the imbedded structure can be detected. The sensation of palpation is an effective procedure for a physician to examine irregularities. In a clinical breast examination (CBE), by pressing over 1 cm2 area, at a contact pressure in the 70–90 kPa range, the physician feels cancerous lumps that are 8- to 18-fold stiffer than surrounding tissue. Early detection of a lump in the 5–10 mm range leads to an excellent prognosis. We describe a thin-film tactile device that emulates human touch to quantify CBE by imaging the size and shape of 5–10 mm objects at 20 mm depth in a breast model using ∼80 kPa pressure. The linear response of the device allows quantification where the greyscale corresponds to the relative local stiffness. The (background) signal from <2.5-fold stiffer objects at a size below 2 mm is minimal. PMID:25148477

  16. Control range: a controllability-based index for node significance in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-04-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks.

  17. Coaxial EMI Sensor for UXO Detection and Discrimination

    DTIC Science & Technology

    2008-05-01

    Raleigh, North Carolina. Geophex has a 10 m x 10 m test bed in which 21 metal pipes of various sizes, some ferrous (steel) and some nonferrous (3...spectral matching was expected to lower the FAR, but with the wide range of anticipated UXO in terms of size and metal content, the corresponding wide...warrant further investigation.” Grid squares with a response stage below the stated noise threshold are declared empty (neither UXO nor metallic

  18. Investigation of the detection of shallow tunnels using electromagnetic and seismic waves

    NASA Astrophysics Data System (ADS)

    Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.

    2007-04-01

    Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.

  19. Water Detection Based on Color Variation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.

    2012-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.

  20. The Genome Sizes of Ostracod Crustaceans Correlate with Body Size and Evolutionary History, but not Environment.

    PubMed

    Jeffery, Nicholas W; Ellis, Emily A; Oakley, Todd H; Gregory, T Ryan

    2017-09-01

    Within animals, a positive correlation between genome size and body size has been detected in several taxa but not in others, such that it remains unknown how pervasive this pattern may be. Here, we provide another example of a positive relationship in a group of crustaceans whose genome sizes have not previously been investigated. We analyze genome size estimates for 46 species across the 2 most diverse orders of Class Ostracoda, commonly known as seed shrimps, including 29 new estimates made using Feulgen image analysis densitometry and flow cytometry. Genome sizes in this group range ~80-fold, a level of variability that is otherwise not seen in crustaceans with the exception of some malacostracan orders. We find a strong positive correlation between genome size and body size across all species, including after phylogenetic correction. We additionally detect evidence of XX/XO sex determination in 3 species of marine ostracods where male and female genome sizes were estimated. On average, genome sizes are larger but less variable in Order Myodocopida than in Order Podocopida, and marine ostracods have larger genomes than freshwater species, but this appears to be explained by phylogenetic inertia. The relationship between phylogeny, genome size, body size, and habitat is complex in this system and provides a baseline for future studies examining the interactions of these biological traits. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. On-chip photonic particle sensor

    NASA Astrophysics Data System (ADS)

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  2. Visual body size norms and the under‐detection of overweight and obesity

    PubMed Central

    Robinson, E.

    2017-01-01

    Summary Objectives The weight status of men with overweight and obesity tends to be visually underestimated, but visual recognition of female overweight and obesity has not been formally examined. The aims of the present studies were to test whether people can accurately recognize both male and female overweight and obesity and to examine a visual norm‐based explanation for why weight status is underestimated. Methods The present studies examine whether both male and female overweight and obesity are visually underestimated (Study 1), whether body size norms predict when underestimation of weight status occurs (Study 2) and whether visual exposure to heavier body weights adjusts visual body size norms and results in underestimation of weight status (Study 3). Results The weight status of men and women with overweight and obesity was consistently visually underestimated (Study 1). Body size norms predicted underestimation of weight status (Study 2) and in part explained why visual exposure to heavier body weights caused underestimation of overweight (Study 3). Conclusions The under‐detection of overweight and obesity may have been in part caused by exposure to larger body sizes resulting in an upwards shift in the range of body sizes that are perceived as being visually ‘normal’. PMID:29479462

  3. ENIJA : Search for life with a high-resolution TOF-MS for in-situ compositonal analysis of nano- and micron-sized dust particles

    NASA Astrophysics Data System (ADS)

    Srama, Ralf; Postberg, Frank; Henkel, Hartmut; Klopfer, Tobias; Li, Yanwei; Reviol, Rene; Khawaja, Nozair; Klenner, Fabian; Moragas-Klostermeyer, Georg; Nölle, Lenz; Soja, Rachel; Sternovsky, Zoltan; Kempf, Sascha; Trieloff, Mario

    2015-04-01

    ENIJA was developed to search for the prebiotic molecules and biogenic key compounds like amino acids in the plumes of Saturn's moon Enceladus. ENIJA records time-of-flight mass spectra in the range between 1 and 2000 u produced by high-velocity impacts of individual grains onto a metal target. The spectrometer has a measurement mode for cations or anions formed upon impact, with concurrent determination of the mass of the detected grains. Detection of elemental and molecular species over such a wide mass range permits clear characterization of particle chemistry, simultaneously covering individual ions like H+, C-, O- and complex organics with masses of many hundred u. ENIJA is sensitive to water ice, minerals, metals, organic particles, and mixtures of these components. The instrument is based on the principle of impact ionization and optimized for the analysis of high dust fluxes and number densities as typically occur during Enceladus plume crossings or in cometary comae. The mass resolution is m/dm > 950 for typical plume particles in the size range 0.01 to 100 µm. The instrument mass and peak power is 2.5 kg and 12.5 W, respectively.

  4. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    PubMed Central

    Xiang, Yu; Lu, Yi

    2012-01-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 μM detection limit) to an important biological cofactor (adenosine, 18 μM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA–invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers DNAzymes or aptazymes). PMID:21860458

  5. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Lu, Yi

    2011-09-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 µM detection limit) to an important biological cofactor (adenosine, 18 µM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA-invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers, DNAzymes or aptazymes).

  6. Microcystin distribution in physical size class separations of natural plankton communities

    USGS Publications Warehouse

    Graham, J.L.; Jones, J.R.

    2007-01-01

    Phytoplankton communities in 30 northern Missouri and Iowa lakes were physically separated into 5 size classes (>100 ??m, 53-100 ??m, 35-53 ??m, 10-35 ??m, 1-10 ??m) during 15-21 August 2004 to determine the distribution of microcystin (MC) in size fractionated lake samples and assess how net collections influence estimates of MC concentration. MC was detected in whole water (total) from 83% of takes sampled, and total MC values ranged from 0.1-7.0 ??g/L (mean = 0.8 ??g/L). On average, MC in the > 100 ??m size class comprised ???40% of total MC, while other individual size classes contributed 9-20% to total MC. MC values decreased with size class and were significantly greater in the >100 ??m size class (mean = 0.5 ??g /L) than the 35-53 ??m (mean = 0.1 ??g/L), 10-35 ??m (mean = 0.0 ??g/L), and 1-10 ??m (mean = 0.0 ??g/L) size classes (p < 0.01). MC values in nets with 100-??m, 53-??m, 35-??m, and 10-??m mesh were cumulatively summed to simulate the potential bias of measuring MC with various size plankton nets. On average, a 100-??m net underestimated total MC by 51%, compared to 37% for a 53-??m net, 28% for a 35-??m net, and 17% for a 10-??m net. While plankton nets consistently underestimated total MC, concentration of algae with net sieves allowed detection of MC at low levels (???0.01 ??/L); 93% of lakes had detectable levels of MC in concentrated samples. Thus, small mesh plankton nets are an option for documenting MC occurrence, but whole water samples should be collected to characterize total MC concentrations. ?? Copyright by the North American Lake Management Society 2007.

  7. UXO Detection and Characterization using new Berkeley UXO Discriminator (BUD)

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Morrison, H. F.; Smith, J. T.; Becker, A.

    2006-05-01

    An optimally designed active electromagnetic system (AEM), Berkeley UXO Discriminator, BUD, has been developed for detection and characterization of UXO in the 20 mm to 150 mm size range. The system incorporates three orthogonal transmitters, and eight pairs of differenced receivers. The transmitter-receiver assembly together with the acquisition box, as well as the battery power and GPS receiver, is mounted on a small cart to assure system mobility. BUD not only detects the object itself but also quantitatively determines its size, shape, orientation, and metal content (ferrous or non-ferrous, mixed metals). Moreover, the principal polarizabilities and size of a metallic target can be determined from a single position of the BUD platform. The search for UXO is a two-step process. The object must first be detected and its location determined then the parameters of the object must be defined. A satisfactory classification scheme is one that determines the principal dipole polarizabilities of a target. While UXO objects have a single major polarizability (principal moment) coincident with the long axis of the object and two equal transverse polarizabilities, the scrap metal has all three principal moments entirely different. This description of the inherent polarizabilities of a target is a major advance in discriminating UXO from irregular scrap metal. Our results clearly show that BUD can resolve the intrinsic polarizabilities of a target and that there are very clear distinctions between symmetric intact UXO and irregular scrap metal. Target properties are determined by an inversion algorithm, which at any given time inverts the response to yield the location (x, y, z) of the target, its attitude and its principal polarizabilities (yielding an apparent aspect ratio). Signal-to-noise estimates (or measurements) are interpreted in this inversion to yield error estimates on the location, attitude and polarizabilities. This inversion at a succession of times provides the polarizabilities as a function of time, which can in turn yield the size, true aspect ratio and estimates of the conductivity and permeability of the target. The accuracy of these property estimates depends on the time window over which the polarizability measurements, and their accuracies, are known. Initial tests at a local site over a variety of test objects and inert UXOs showed excellent detection and characterization results within the predicted size-depth range. This research was funded by the U.S. Department of Defense under ESTCP Project # UX-0437.

  8. Stress dependence of microstructures in experimentally deformed calcite

    NASA Astrophysics Data System (ADS)

    Platt, John P.; De Bresser, J. H. P.

    2017-12-01

    Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Lρ), and the maximum scale length for surface-energy driven grain-boundary migration (Lγ). Taken together with previously published data Dr defines a paleopiezometer over the range 15-291 MPa and temperature over the range 500-1000 °C, with a stress exponent of -1.09 (CI -1.27 to -0.95), showing no detectable dependence on temperature. Sg and Dr measured in the same samples are closely similar in size, suggesting that the new grains did not grow significantly after nucleation. Lρ and Lγ measured on each sample define a relationship to stress with an exponent of approximately -1.6, which helps define the boundary between a region of dominant strain-energy-driven grain-boundary migration at high stress, from a region of dominant surface-energy-driven grain-boundary migration at low stress.

  9. Molecular size and molecular size distribution affecting traditional balsamic vinegar aging.

    PubMed

    Falcone, Pasquale Massimiliano; Giudici, Paolo

    2008-08-27

    A first attempt at a semiquantitative study of molecular weight (MW) and molecular weight distribution (MWD) in cooked grape must and traditional balsamic vinegar (TBV) with increasing well-defined age was performed by high-performance liquid size exclusion chromatography (SEC) using dual detection, that is, differential refractive index (DRI) and absorbance (UV-vis) based detectors. With this aim, MW and MWD, including number- and weight-average MW and polydispersity, were determined with respect to a secondary standard and then analyzed. All investigated vinegar samples were recognized as compositionally and structurally heterogeneous blends of copolymers (melanoidins) spreading over a wide range of molecular sizes: the relative MW ranged from 2 to >2000 kDa. The extent of the polymerization reactions was in agreement with the TBV browning kinetics. MWD parameters varied asymptotically toward either upper or lower limits during aging, reflecting a nonequilibrium status of the balance between polymerization and depolymerization reactions in TBV. MWD parameters were proposed as potential aging markers of TBV.

  10. Electrochemical Detection of Dopamine via Assisted Ion Transfer at Nanopipet Electrode Using Cyclic Voltammetry.

    PubMed

    Colombo, Michelle L; McNeil, Swami; Iwai, Nicholas; Chang, Albert; Shen, Mei

    2016-01-01

    We present here the detection of dopamine (DA) at nanopipet electrodes with radii of hundreds of nanometers ranging from 160 nm to 480 nm. Dibenzo-18-crown-6 (DB18C6) was employed as an ionophore to facilitate DA transfer, resulting in a half-wave transfer potential, E 1/2, DA , of -0.322 (±0.020) V vs. E 1/2, TBA . Well-defined steady-state sigmoidal cyclic voltammograms were observed for the transfer of DA. High resolution scanning electron microscopy was used to measure the size and taper angle of the nanopipet electrodes. The detection is linear with concentration of DA ranging from 0.25 mM to 2 mM; calculated diffusion coefficient at nanopipet electrodes with above mentioned sizes is 4.87 (±0.28) × 10 -10 m 2 /s. The effect of the common interferent ascorbic acid on DA detection with nanopipet electrodes was evaluated, where DA detection still shows linear behavior with well-defined sigmoidal CVs with E 1/2, DA being -0.328 (±0.029) V vs. E 1/2, TBA . The diffusion coefficient for DA transfer in MgCl 2 with the presence of 2 mM AA was measured to be 1.93 (±0.59) × 10 -10 m 2 /s on nanoelectrodes with radii from 161 nm to 263 nm, but the physiological concentration of 0.1 mM AA had no effect on DA's diffusion coefficient.

  11. The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma.

    PubMed

    Khemani, S; Lingam, R K; Kalan, A; Singh, A

    2011-08-01

    To evaluate the diagnostic performance of half-Fourier-acquisition single-shot turbo-spin-echo (HASTE) diffusion-weighted magnetic resonance imaging in the detection, localisation and prediction of extent of cholesteatoma following canal wall up mastoid surgery. Prospective blinded observational study. University affiliated teaching hospital. Forty-eight patients undergoing second-look surgery after previous canal wall up mastoid surgery for primary acquired cholesteatoma. All patients underwent non-echo planar HASTE diffusion-weighted imaging prior to being offered 'second-look' surgery. Radiological findings were correlated with second-look intra-operative findings in 38 cases with regard to presence, location and maximum dimensions of cholesteatoma. Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging accurately predicted the presence of cholesteatoma in 23 of 28 cases, and it correctly excluded in nine of 10 cases. Five false negatives were caused by keratin pearls of <2 mm and in one case 5 mm. Overall sensitivity and specificity for detection of cholesteatoma were 82% (95% confidence interval [CI] 62-94%) and 90% (CI 55-100%), respectively. Positive predictive value and negative predictive value were 96% (CI 79-100%) and 64% (CI 35-87%), respectively. Overall accuracy for detection of cholesteatoma was 84% (CI 69-94%). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging has good performance in localising cholesteatoma to a number of anatomical sub-sites within the middle ear and mastoid (sensitivity ranging from 75% to 88% and specificity ranging from 94% to 100%). There was no statistically significant difference in the size of cholesteatoma detected radiologically and that found during surgery (paired t-test, P = 0.16). However, analysis of size agreement suggests possible radiological underestimation of size when using HASTE diffusion-weighted imaging (mean difference -0.6 mm, CI -5.3 to 4.6 mm). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging performs reasonably well in predicting the presence and location of postoperative cholesteatoma but may miss small foci of disease and may underestimate the true size of cholesteatoma. © 2011 Blackwell Publishing Ltd.

  12. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature

    PubMed Central

    Szucs, Denes; Ioannidis, John P. A.

    2017-01-01

    We have empirically assessed the distribution of published effect sizes and estimated power by analyzing 26,841 statistical records from 3,801 cognitive neuroscience and psychology papers published recently. The reported median effect size was D = 0.93 (interquartile range: 0.64–1.46) for nominally statistically significant results and D = 0.24 (0.11–0.42) for nonsignificant results. Median power to detect small, medium, and large effects was 0.12, 0.44, and 0.73, reflecting no improvement through the past half-century. This is so because sample sizes have remained small. Assuming similar true effect sizes in both disciplines, power was lower in cognitive neuroscience than in psychology. Journal impact factors negatively correlated with power. Assuming a realistic range of prior probabilities for null hypotheses, false report probability is likely to exceed 50% for the whole literature. In light of our findings, the recently reported low replication success in psychology is realistic, and worse performance may be expected for cognitive neuroscience. PMID:28253258

  13. Detection of IDH1 mutation in the plasma of patients with glioma.

    PubMed

    Boisselier, Blandine; Gállego Pérez-Larraya, Jaime; Rossetto, Marta; Labussière, Marianne; Ciccarino, Pietro; Marie, Yannick; Delattre, Jean-Yves; Sanson, Marc

    2012-10-16

    The IDH1(R132H) mutation is both a strong prognostic predictor and a diagnostic hallmark of gliomas and therefore has major clinical relevance. Here, we developed a new technique to detect the IDH1(R132H) mutation in the plasma of patients with glioma. Small-size DNA (150-250 base pairs) was extracted from the plasma of 31 controls and 80 patients with glioma with known IDH1(R132H) status and correlated with MRI data. The IDH1(R132H) mutation was detected by a combination of coamplification at lower denaturation temperature and digital PCR. The small size DNA concentration was 1.2 ng/mL (range 0.1-6.6) in controls vs 1.2 ng/mL (range 0.1-50.3) in patients with glioma (p = not significant) and 0.9 ng/mL (0.0-3.0) in low-grade gliomas vs 1.5 ng/mL in high-grade gliomas (p < 0.01). The small size DNA concentration correlated with enhancing tumor volume (1.6 ng/mL [0.4-24.9] when <10 cm(3) and 14.0 ng/mL [0.6-50.3] when ≥10 cm(3)). The IDH1(R132H) mutation was detected in 15 out of 25 plasma DNA mixtures (60%) from patients with mutated tumors and in none of the 14 patients with a nonmutated tumor. The sensitivity increased with enhancing tumor volume (3/9 in nonenhancing tumors, 6/10 for enhancing volume <10 cm(3), and 6/6 for enhancing volume ≥10 cm(3)). With a specificity of 100% and a sensitivity related to the tumor volume and contrast enhancement, IDH1(R132H) identification has a valuable diagnostic accuracy in patients not amenable to biopsy.

  14. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography.

    PubMed

    Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja

    2016-01-01

    To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  15. Platinum Nanocatalyst Amplification: Redefining the Gold Standard for Lateral Flow Immunoassays with Ultrabroad Dynamic Range

    PubMed Central

    2017-01-01

    Paper-based lateral flow immunoassays (LFIAs) are one of the most widely used point-of-care (PoC) devices; however, their application in early disease diagnostics is often limited due to insufficient sensitivity for the requisite sample sizes and the short time frames of PoC testing. To address this, we developed a serum-stable, nanoparticle catalyst-labeled LFIA with a sensitivity surpassing that of both current commercial and published sensitivities for paper-based detection of p24, one of the earliest and most conserved biomarkers of HIV. We report the synthesis and characterization of porous platinum core–shell nanocatalysts (PtNCs), which show high catalytic activity when exposed to complex human blood serum samples. We explored the application of antibody-functionalized PtNCs with strategically and orthogonally modified nanobodies with high affinity and specificity toward p24 and established the key larger nanoparticle size regimes needed for efficient amplification and performance in LFIA. Harnessing the catalytic amplification of PtNCs enabled naked-eye detection of p24 spiked into sera in the low femtomolar range (ca. 0.8 pg·mL–1) and the detection of acute-phase HIV in clinical human plasma samples in under 20 min. This provides a versatile absorbance-based and rapid LFIA with sensitivity capable of significantly reducing the HIV acute phase detection window. This diagnostic may be readily adapted for detection of other biomolecules as an ultrasensitive screening tool for infectious and noncommunicable diseases and can be capitalized upon in PoC settings for early disease detection. PMID:29215864

  16. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  17. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangasluoma, J.; Junninen, H.; Sipilae, M.

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of themore » PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.« less

  18. Characterization of sintered SiC by using NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1988-01-01

    Capabilities of projection microfocus X-radiography and of ultrasonic velocity and attenuation for characterizing silicon carbide specimens were assessed. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room-temperature, four-point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined. Radiography proved useful in detecting high-density inclusions and isolated voids, but failed in detecting surface and subsurface agglomerates and large grains as fracture origins. Ultrasonic velocity dependency on density was evident. Attenuation dependency on density and mean pore size was clearly demonstrated. Understanding attenuation as a function of toughness was limited by shortcomings in K sub IC determination.

  19. Vision based object pose estimation for mobile robots

    NASA Technical Reports Server (NTRS)

    Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry

    1994-01-01

    Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.

  20. Contrast-detail curves in chest radiography

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Scalzetti, Ernest; Huda, Walter; Saluja, Jasjeet; Lavallee, Robert

    2005-04-01

    We investigated how size and lesion location affect detection of simulated mass lesions in chest radiography. Simulated lesions were added to the center of 10 cm x 10 cm regions of digital chest radiographs, and used in 4-Alternative Forced-Choice (4-AFC) experiments. We determined the lesion contrast required to achieve a 92% correct detection rate I(92%). The mass size was manipulated to range from 1 to 10 mm, and we investigated lesion detection in the lung apex, hilar region, and in the sub-diaphragmatic region. In these experiments, the observer obtained I(92%) from randomized repeats obtained at each of seven lesion sizes, with the results plotted as I(92%) versus lesion size. In addition we investigated the effect of using the same background in the four 4-AFC experiments (twinned) and random backgrounds from the same anatomical region taken from 20 different radiographs. In all three anatomical regions investigated, the slopes of the contrast detail curve for the random background experiments were negative for lesion sizes less than 2.5, 3.5, and 5.5 mm in the hilar (slope of -0.26), apex (slope of -0.54), and sub-diaphragmatic (slope of -0.53) regions, respectively. For lesion sizes greater than these, the slopes were 0.34, 0.23, and 0.40 in the hilar, apex, and sub-diaphragmatic regions, respectively. The positive slopes for portions of the contrast-detail curves in chest radiography are a result of the anatomical background, and show that larger lesions require more contrast for visualization.

  1. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    PubMed

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  2. Laboratory evaluation of the Sequoia Scientific LISST-ABS acoustic backscatter sediment sensor

    USGS Publications Warehouse

    Snazelle, Teri T.

    2017-12-18

    Sequoia Scientific’s LISST-ABS is an acoustic backscatter sensor designed to measure suspended-sediment concentration at a point source. Three LISST-ABS were evaluated at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF). Serial numbers 6010, 6039, and 6058 were assessed for accuracy in solutions with varying particle-size distributions and for the effect of temperature on sensor accuracy. Certified sediment samples composed of different ranges of particle size were purchased from Powder Technology Inc. These sediment samples were 30–80-micron (µm) Arizona Test Dust; less than 22-µm ISO 12103-1, A1 Ultrafine Test Dust; and 149-µm MIL-STD 810E Silica Dust. The sensor was able to accurately measure suspended-sediment concentration when calibrated with sediment of the same particle-size distribution as the measured. Overall testing demonstrated that sensors calibrated with finer sized sediments overdetect sediment concentrations with coarser sized sediments, and sensors calibrated with coarser sized sediments do not detect increases in sediment concentrations from small and fine sediments. These test results are not unexpected for an acoustic-backscatter device and stress the need for using accurate site-specific particle-size distributions during sensor calibration. When calibrated for ultrafine dust with a less than 22-µm particle size (silt) and with the Arizona Test Dust with a 30–80-µm range, the data from sensor 6039 were biased high when fractions of the coarser (149-µm) Silica Dust were added. Data from sensor 6058 showed similar results with an elevated response to coarser material when calibrated with a finer particle-size distribution and a lack of detection when subjected to finer particle-size sediment. Sensor 6010 was also tested for the effect of dissimilar particle size during the calibration and showed little effect. Subsequent testing revealed problems with this sensor, including an inadequate temperature compensation, making this data questionable. The sensor was replaced by Sequoia Scientific with serial number 6039. Results from the extended temperature testing showed proper temperature compensation for sensor 6039, and results from the dissimilar calibration/testing particle-size distribution closely corroborated the results from sensor 6058.

  3. The relationship between mammal faunas and climatic instability since the Last Glacial Maximum: A Nearctic vs. Western Palearctic comparison

    NASA Astrophysics Data System (ADS)

    Torres-Romero, Erik Joaquín; Varela, Sara; Fisher, Jason T.; Olalla-Tárraga, Miguel Á.

    2017-07-01

    Climate has played a key role in shaping the geographic patterns of biodiversity. The imprint of Quaternary climatic fluctuations is particularly evident on the geographic distribution of Holarctic faunas, which dramatically shifted their ranges following the alternation of glacial-interglacial cycles during the Pleistocene. Here, we evaluate the existence of differences between climatically stable and unstable regions - defined on the basis of climatic change velocity since the Last Glacial Maximum - in the geographic distribution of several biological attributes of extant terrestrial mammals of the Nearctic and Western Palearctic regions. Specifically, we use a macroecological approach to assess the dissimilarities in species richness, range size, body size, longevity and litter size of species that inhabit regions with contrasting histories of climatic stability. While several studies have documented how the distributional ranges of animals can be affected by long-term historic climatic fluctuations, there is less evidence on the species-specific traits that determine their responsiveness under such climatic instability. We find that climatically unstable areas have more widespread species and lower mammal richness than stable regions in both continents. We detected stronger signatures of historical climatic instability on the geographic distribution of body size in the Nearctic region, possibly reflecting lagged responses to recolonize deglaciated regions. However, the way that animals respond to climatic fluctuations varies widely among species and we were unable to find a relationship between climatic instability and other mammal life-history traits (longevity and litter size) in any of the two biogeographic regions. We, therefore, conclude that beyond some biological traits typical of macroecological analyses such as geographic range size and body size, it is difficult to infer the responsiveness of species distributions to climate change solely based on particular life-history traits.

  4. Cerium Oxide Nanoparticle Nose-Only Inhalation Exposures Using a Low-Sample-Consumption String Generator

    EPA Science Inventory

    There is a critical need to assess the health effects associated with exposure of commercially produced NPs across the size ranges reflective of that detected in the industrial sectors that are generating, as well as incorporating, NPs into products. Generation of stable and low ...

  5. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.

    PubMed

    Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans

    2014-07-09

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.

  6. The Effective Dynamic Ranges for Glaucomatous Visual Field Progression With Standard Automated Perimetry and Stimulus Sizes III and V

    PubMed Central

    Zamba, Gideon K. D.; Artes, Paul H.

    2018-01-01

    Purpose It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). Methods In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on “censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Results Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Conclusions Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher. PMID:29356822

  7. Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles.

    PubMed

    Lafond, Maxime; Watanabe, Akiko; Yoshizawa, Shin; Umemura, Shin-Ichiro; Tachibana, Katsuro

    2018-05-10

    Nanobubbles (NBs) are of high interest for ultrasound (US) imaging as contrast agents and therapy as cavitation nuclei. Because of their instability (Laplace pressure bubble catastrophe) and low sensitivity to US, reducing the size of commonly used microbubbles to submicron-size is not trivial. We introduce stabilized NBs in the 100-250-nm size range, manufactured by agitating human serum albumin and perfluoro-propane. These NBs were exposed to 3.34- and 5.39-MHz US, and their sensitivity to US was proven by detecting inertial cavitation. The cavitation-threshold information was used to run a numerical parametric study based on a modified Rayleigh-Plesset equation (with a Newtonian rheology model). The determined values of surface tension ranged from 0 N/m to 0.06 N/m. The corresponding values of dilatational viscosity ranged from 5.10 -10 Ns/m to 1.10 -9 Ns/m. These parameters were reported to be 0.6 N/m and 1.10 -8 Ns/m for the reference microbubble contrast agent. This result suggests the possibility of using albumin as a stabilizer for the nanobubbles that could be maintained in circulation and presenting satisfying US sensitivity, even in the 3-5-MHz range.

  8. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  9. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE PAGES

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...

    2017-06-08

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  10. Quantitative characterization of gold nanoparticles by size-exclusion and hydrodynamic chromatography, coupled to inductively coupled plasma mass spectrometry and quasi-elastic light scattering.

    PubMed

    Pitkänen, Leena; Montoro Bustos, Antonio R; Murphy, Karen E; Winchester, Michael R; Striegel, André M

    2017-08-18

    The physicochemical characterization of nanoparticles (NPs) is of paramount importance for tailoring and optimizing the properties of these materials as well as for evaluating the environmental fate and impact of the NPs. Characterizing the size and chemical identity of disperse NP sample populations can be accomplished by coupling size-based separation methods to physical and chemical detection methods. Informed decisions regarding the NPs can only be made, however, if the separations themselves are quantitative, i.e., if all or most of the analyte elutes from the column within the course of the experiment. We undertake here the size-exclusion chromatographic characterization of Au NPs spanning a six-fold range in mean size. The main problem which has plagued the size-exclusion chromatography (SEC) analysis of Au NPs, namely lack of quantitation accountability due to generally poor NP recovery from the columns, is overcome by carefully matching eluent formulation with the appropriate stationary phase chemistry, and by the use of on-line inductively coupled plasma mass spectrometry (ICP-MS) detection. Here, for the first time, we demonstrate the quantitative analysis of Au NPs by SEC/ICP-MS, including the analysis of a ternary NP blend. The SEC separations are contrasted to HDC/ICP-MS (HDC: hydrodynamic chromatography) separations employing the same stationary phase chemistry. Additionally, analysis of Au NPs by HDC with on-line quasi-elastic light scattering (QELS) allowed for continuous determination of NP size across the chromatographic profiles, circumventing issues related to the shedding of fines from the SEC columns. The use of chemically homogeneous reference materials with well-defined size range allowed for better assessment of the accuracy and precision of the analyses, and for a more direct interpretation of results, than would be possible employing less rigorously characterized analytes. Published by Elsevier B.V.

  11. An ultra-small, multi-point, and multi-color photo-detection system with high sensitivity and high dynamic range.

    PubMed

    Anazawa, Takashi; Yamazaki, Motohiro

    2017-12-05

    Although multi-point, multi-color fluorescence-detection systems are widely used in various sciences, they would find wider applications if they are miniaturized. Accordingly, an ultra-small, four-emission-point and four-color fluorescence-detection system was developed. Its size (space between emission points and a detection plane) is 15 × 10 × 12 mm, which is three-orders-of-magnitude smaller than that of a conventional system. Fluorescence from four emission points with an interval of 1 mm on the same plane was respectively collimated by four lenses and split into four color fluxes by four dichroic mirrors. Then, a total of sixteen parallel color fluxes were directly input into an image sensor and simultaneously detected. The emission-point plane and the detection plane (the image-sensor surface) were parallel and separated by a distance of only 12 mm. The developed system was applied to four-capillary array electrophoresis and successfully achieved Sanger DNA sequencing. Moreover, compared with a conventional system, the developed system had equivalent high fluorescence-detection sensitivity (lower detection limit of 17 pM dROX) and 1.6-orders-of-magnitude higher dynamic range (4.3 orders of magnitude).

  12. VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shu; Jiang, B. W.; Li, Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: wanshu@missouri.edu, E-mail: lia@missouri.edu

    The sizes of interstellar grains are widely distributed, ranging from a few angstroms to a few micrometers. The ultraviolet (UV) and optical extinction constrains the dust in the size range of a couple hundredths of micrometers to several submicrometers. The near and mid infrared (IR) emission constrains the nanometer-sized grains and angstrom-sized very large molecules. However, the quantity and size distribution of micrometer-sized grains remain unknown because they are gray in the UV/optical extinction and they are too cold and emit too little in the IR to be detected by IRAS, Spitzer, or Herschel. In this work, we employ themore » ∼3–8 μm mid-IR extinction, which is flat in both diffuse and dense regions to constrain the quantity, size, and composition of the μm-sized grain component. We find that, together with nano- and submicron-sized silicate and graphite (as well as polycyclic aromatic hydrocarbons), μm-sized graphite grains with C/H ≈ 137 ppm and a mean size of ∼1.2 μm closely fit the observed interstellar extinction of the Galactic diffuse interstellar medium from the far-UV to the mid-IR, as well as the near-IR to millimeter thermal emission obtained by COBE/DIRBE, COBE/FIRAS, and Planck up to λ ≲ 1000 μm. The μm-sized graphite component accounts for ∼14.6% of the total dust mass and ∼2.5% of the total IR emission.« less

  13. Passive Optical Link Budget for LEO Space Surveillance

    NASA Astrophysics Data System (ADS)

    Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.

    The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.

  14. Automatic thermographic image defect detection of composites

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liebenberg, Bjorn; Raymont, Jeff; Santospirito, SP

    2011-05-01

    Detecting defects, and especially reliably measuring defect sizes, are critical objectives in automatic NDT defect detection applications. In this work, the Sentence software is proposed for the analysis of pulsed thermography and near IR images of composite materials. Furthermore, the Sentence software delivers an end-to-end, user friendly platform for engineers to perform complete manual inspections, as well as tools that allow senior engineers to develop inspection templates and profiles, reducing the requisite thermographic skill level of the operating engineer. Finally, the Sentence software can also offer complete independence of operator decisions by the fully automated "Beep on Defect" detection functionality. The end-to-end automatic inspection system includes sub-systems for defining a panel profile, generating an inspection plan, controlling a robot-arm and capturing thermographic images to detect defects. A statistical model has been built to analyze the entire image, evaluate grey-scale ranges, import sentencing criteria and automatically detect impact damage defects. A full width half maximum algorithm has been used to quantify the flaw sizes. The identified defects are imported into the sentencing engine which then sentences (automatically compares analysis results against acceptance criteria) the inspection by comparing the most significant defect or group of defects against the inspection standards.

  15. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony

    2011-12-13

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  16. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large African carnivores.

    PubMed

    Clements, Hayley S; Tambling, Craig J; Hayward, Matt W; Kerley, Graham I H

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed "accessible prey". Accessible prey weight ranges were found to be 14-135 kg for cheetah Acinonyx jubatus, 1-45 kg for leopard Panthera pardus, 32-632 kg for lion Panthera leo, 15-1600 kg for spotted hyaena Crocuta crocuta and 10-289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species.

  17. Location of Biomarkers and Reagents within Agarose Beads of a Programmable Bio-nano-chip

    PubMed Central

    Jokerst, Jesse V.; Chou, Jie; Camp, James P.; Wong, Jorge; Lennart, Alexis; Pollard, Amanda A.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; Zhou, Yanjie; Ali, Mehnaaz F.

    2012-01-01

    The slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose “nanonets” that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein-capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead-bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered. PMID:21290601

  18. Flux of Kilogram-Sized Meteoroids from Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Suggs, Ron; Cooke, William; McNamara, Heather; Diekmann, Anne; Moser, Danielle; Swift, Wesley

    2008-01-01

    Routine lunar impact monitoring has harvested over 110 impacts in 2 years of observations using 0.25, 0.36 and 0.5 m telescopes and low-light-level video cameras. The night side of the lunar surface provides a large collecting area for detecting these impacts and allows estimation of the flux of meteoroids down to a limiting luminous energy. In order to determine the limiting mass for these observations, models of the sporadic meteoroid environment were used to determine the velocity distribution and new measurements of luminous efficiency were made at the Ames Vertical Gun Range. The flux of meteoroids in this size range has implications for Near Earth Object populations as well as for estimating impact ejecta risk for future lunar missions.

  19. In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities.

    PubMed

    Schindler, Torben; Walter, Johannes; Peukert, Wolfgang; Segets, Doris; Unruh, Tobias

    2015-12-10

    Properties of small semiconductor nanoparticles (NPs) are strongly governed by their size. Precise characterization is a key requirement for tailored dispersities and thus for high-quality devices. Results of a careful analysis of particle size distributions (PSDs) of ZnO are presented combining advantages of UV/vis absorption spectroscopy, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Our study reveals that careful cross-validation of these different methods is mandatory to end up with reliable resolution. PSDs of ZnO NPs are multimodal on a size range of 2-8 nm, a finding that is not yet sufficiently addressed. In the second part of our work the evolution of PSDs was studied using in situ SAXS. General principles for the appearance of multimodalities covering a temperature range between 15 and 45 °C were found which are solely determined by the aging state indicated by the size of the medium-sized fraction. Whenever this fraction exceeds a critical diameter, a new multimodality is identified, independent of the particular time-temperature combination. A fraction of larger particles aggregates first before a fraction of smaller particles is detected. Fixed multimodalities have not yet been addressed adequately and could only be evidenced due to careful size analysis.

  20. Changepoint detection in base-resolution methylome data reveals a robust signature of methylated domain landscape.

    PubMed

    Yokoyama, Takao; Miura, Fumihito; Araki, Hiromitsu; Okamura, Kohji; Ito, Takashi

    2015-08-12

    Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome. We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome. Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.

  1. Drosophila Females Undergo Genome Expansion after Interspecific Hybridization

    PubMed Central

    Romero-Soriano, Valèria; Burlet, Nelly; Vela, Doris; Fontdevila, Antonio; Vieira, Cristina; García Guerreiro, María Pilar

    2016-01-01

    Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants. These massive transposition episodes can lead to considerable genome expansions that could ultimately be involved in hybrid speciation processes. Here, we describe the effects of hybridization and introgression on genome size of Drosophila hybrids. We measured the genome size of two close Drosophila species, Drosophila buzzatii and Drosophila koepferae, their F1 offspring and the offspring from three generations of backcrossed hybrids; where mobilization of up to 28 different TEs was previously detected. We show that hybrid females indeed present a genome expansion, especially in the first backcross, which could likely be explained by transposition events. Hybrid males, which exhibit more variable C-values among individuals of the same generation, do not present an increased genome size. Thus, we demonstrate that the impact of hybridization on genome size can be detected through flow cytometry and is sex-dependent. PMID:26872773

  2. Water cluster fragmentation probed by pickup experiments

    NASA Astrophysics Data System (ADS)

    Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal

    2016-09-01

    Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.

  3. The single mirror small sized telescope for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Heller, M.; Schioppa, E., Jr.; Porcelli, A.; Pujadas, I. Troyano; Ziętara, K.; Della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J. A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Miranda, L. D. Medina; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Walter, R.; Więcek, M.; Zagdański, A.; CTA Consortium

    2017-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offiers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of the first telescope prototype are presented.

  4. Human Detection from a Mobile Robot Using Fusion of Laser and Vision Information

    PubMed Central

    Fotiadis, Efstathios P.; Garzón, Mario; Barrientos, Antonio

    2013-01-01

    This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method. PMID:24008280

  5. Human detection from a mobile robot using fusion of laser and vision information.

    PubMed

    Fotiadis, Efstathios P; Garzón, Mario; Barrientos, Antonio

    2013-09-04

    This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method.

  6. Sensitive fluorescence detection of mercury(ii) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots.

    PubMed

    Srinivasan, K; Subramanian, K; Murugan, K; Dinakaran, K

    2016-10-24

    A rapid and sensitive fluorescent sensor based on the MoS 2 nanosheet/DNA/carbon dot nanoassembly has been developed towards the detection of mercury(ii) present in environmental samples. Bio-carbon dots (CDs) having strong fluorescence maxima at 451 nm were synthesized via one-step treatment with honey under low temperature carbonization. These CDs were nearly spherical with good size distribution and excellent monodispersity, and the average sizes of CD were around 2-4 nm as evidenced from transmission electron microscopy. The conjugation of DNA strands on the surface of the carbon dots provided an efficient fluorescent probe. The fluorescence of the MoS 2 nanosheet/DNA/carbon dot nanoassembly enhanced gradually with the increase in the concentration of Hg 2+ ions and the detection limit was found to be 1.02 nM. Furthermore, the fluorescence intensity was found to be linear with the concentration of Hg 2+ ions in the range from 0 to 10 nM and their respective coefficient of determination was found to be 0.93676 and 0.98178. The present MoS 2 nanosheet/DNA/carbon dot nanoassembly is highly selective toward Hg 2+ ions over a wide range of metal ions tested.

  7. Of Detection Limits and Effective Mitigation: The Use of Infrared Cameras for Methane Leak Detection

    NASA Astrophysics Data System (ADS)

    Ravikumar, A. P.; Wang, J.; McGuire, M.; Bell, C.; Brandt, A. R.

    2017-12-01

    Mitigating methane emissions, a short-lived and potent greenhouse gas, is critical to limiting global temperature rise to two degree Celsius as outlined in the Paris Agreement. A major source of anthropogenic methane emissions in the United States is the oil and gas sector. To this effect, state and federal governments have recommended the use of optical gas imaging systems in periodic leak detection and repair (LDAR) surveys to detect for fugitive emissions or leaks. The most commonly used optical gas imaging systems (OGI) are infrared cameras. In this work, we systematically evaluate the limits of infrared (IR) camera based OGI system for use in methane leak detection programs. We analyze the effect of various parameters that influence the minimum detectable leak rates of infrared cameras. Blind leak detection tests were carried out at the Department of Energy's MONITOR natural gas test-facility in Fort Collins, CO. Leak sources included natural gas wellheads, separators, and tanks. With an EPA mandated 60 g/hr leak detection threshold for IR cameras, we test leak rates ranging from 4 g/hr to over 350 g/hr at imaging distances between 5 ft and 70 ft from the leak source. We perform these experiments over the course of a week, encompassing a wide range of wind and weather conditions. Using repeated measurements at a given leak rate and imaging distance, we generate detection probability curves as a function of leak-size for various imaging distances, and measurement conditions. In addition, we estimate the median detection threshold - leak-size at which the probability of detection is 50% - under various scenarios to reduce uncertainty in mitigation effectiveness. Preliminary analysis shows that the median detection threshold varies from 3 g/hr at an imaging distance of 5 ft to over 150 g/hr at 50 ft (ambient temperature: 80 F, winds < 4 m/s). Results from this study can be directly used to improve OGI based LDAR protocols and reduce uncertainty in estimated mitigation effectiveness. Furthermore, detection limits determined in this study can be used as standards to compare new detection technologies.

  8. Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet-visible (UV-Vis) spectroscopy methodology.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-06-01

    Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.

  9. Evaluation of a laser scanning sensor on detection of complex shaped targets for variable-rate sprayer development

    USDA-ARS?s Scientific Manuscript database

    Sensors that can accurately measure canopy structures are prerequisites for development of advanced variable-rate sprayers. A 270° radial range laser sensor was evaluated for its accuracy to measure dimensions of target surfaces with complex shapes and sizes. An algorithm for data acquisition and 3-...

  10. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    PubMed

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H 2 O 2 , substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H 2 O 2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H 2 O 2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Correlated evolution between hearing sensitivity and social calls in bats

    PubMed Central

    Bohn, Kirsten M; Moss, Cynthia F; Wilkinson, Gerald S

    2006-01-01

    Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches. PMID:17148288

  12. Spacewatch discovery of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1992-01-01

    Our overall scientific goal is to survey the solar system to completion - that is, to find the various populations and to study their statistics, interrelations, and origins. The practical benefit to SERC is that we are finding Earth-approaching asteroids that are accessible for mining. Our system can detect Earth-approachers in the 1-km size range even when they are far away, and can detect smaller objects when they are moving rapidly past Earth. Until Spacewatch, the size range of 6-300 meters in diameter for the near-Earth asteroids was unexplored. This important region represents the transition between the meteorites and the larger observed near-Earth asteroids. One of our Spacewatch discoveries, 1991 VG, may be representative of a new orbital class of object. If it is really a natural object, and not man-made, its orbital parameters are closer to those of the Earth than we have seen before; its delta V is the lowest of all objects known thus far. We may expect new discoveries as we continue our surveying, with fine-tuning of the techniques.

  13. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gerakis, Alexandros; Yeh, Yao-Wen; Shneider, Mikhail N.; Mitrani, James M.; Stratton, Brentley C.; Raitses, Yevgeny

    2018-01-01

    We report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 1010 cm-3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of the growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.

  14. The molecular content of the Rosette's teardrops

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alfonso, E.; Cernicharo, J.

    1994-08-01

    We report the detection of the J = 1 to 0 and J = 2 to 1 lines of (12)CO and (13)CO, and of the J = 2 to 1 and J = 3 to 2 lines of CS, in the direction of the small teardrops of the Rosette nebula. These objects appear in the optical as dark patches of 3 arcseconds - 30 arcseconds diameter against the bright H II region of the Rosette nebula. The CO lines were detected in all the observed globules. One of the observed teardrops is still connected to a large elephant trunk by a tenuous filament, which has also been detected in (12)CO. The sizes of the (12)CO J = 2 to 1 emitting regions are found to be similar to the optical sizes. The kinetic temperature of the globules is 15-20 K, and the beam-averaged molecular hydrogen densities inferred fron the (13)CO lines range from 2 x 103 to 7 x 103 per cu cm. CS J = 2 to 1 emission was detected toward two small teardrops and marginally toward another one. The CS J = 3 to 2 line was detected in one of the above globules. Analysis of these lines yields to an upper limit of the density of (1-3) x 104 per cu cm for this teardrop. The masses range from approximately 0.02 solar mass for a well-isolated and defined teardrop to approximately 0.5 solar mass for one which is still connected to a larger globule. Visual extinctions are also very low with typical values of approximately 1-3 mag.

  15. Development of a high-throughput enzyme-linked immunosorbent assay for the routine detection of the carcinogen acrylamide in food, via rapid derivatisation pre-analysis.

    PubMed

    Preston, Andrew; Fodey, Terence; Elliott, Christopher

    2008-02-11

    The spontaneous formation of the neurotoxic carcinogen acrylamide in a wide range of cooked foods has recently been discovered. These foods include bread and other bakery products, crisps, chips, breakfast cereals, and coffee. To date, the diminutive size of acrylamide (71.08 Da) has prevented the development of screening immunoassays for this chemical. In this study, a polyclonal antibody capable of binding the carcinogen was produced by the synthesis of an immunogen comprising acrylamide derivatised with 3-mercaptobenzoic acid (3-MBA), and its conjugation to the carrier protein bovine thyroglobulin. Antiserum from the immunised rabbit was harvested and fully characterised. It displayed no binding affinity for acrylamide or 3-MBA but had a high affinity for 3-MBA-derivitised acrylamide. The antisera produced was utilised in the development of an ELISA based detection system for acrylamide. Spiked water samples were assayed for acrylamide content using a previously published extraction method validated for coffee, crispbread, potato, milk chocolate and potato crisp matrices. Extracted acrylamide was then subjected to a rapid 1-h derivatisation with 3-MBA, pre-analysis. The ELISA was shown to have a high specificity for acrylamide, with a limit of detection in water samples of 65.7 microgkg(-1), i.e. potentially suitable for acrylamide detection in a wide range of food commodities. Future development of this assay will increase sensitivity further. This is the first report of an immunoassay capable of detecting the carcinogen, as its small size has necessitated current analytical detection via expensive, slower, physico-chemical techniques such as Gas or Liquid Chromatography coupled to Mass Spectrometry.

  16. Acoustical nanometre-scale vibrations of live cells detected by a near-field optical setup

    NASA Astrophysics Data System (ADS)

    Piga, Rosaria; Micheletto, Ruggero; Kawakami, Yoichi

    2007-04-01

    The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s life, such as cell cycle and cell death, on rat pheochromocytoma line PC12. Working in culture medium with alive and unperturbed samples, we could detect nanometer-sized movements; Fourier components revealed a clear distinct behavior associated to regulation of neurite outgrowth and changes on morphology after necrotic stimulus.

  17. Characterization of linear accelerator X-ray source size using a laminated beam-spot camera.

    PubMed

    Yeboah, Collins

    2011-05-10

    A laminated beam-spot camera of length 20 cm and effective cross-sectional area 2.5 cm × 3 cm was designed and constructed for the measurement of X-ray beam-spot sizes on different models of Siemens accelerators. With the accelerator gantry at 180° and camera positioned on an accessory tray holder, an XV film placed in contact with the camera at the distal end of it detected those X-rays that were transmitted through the camera. The FWHM of the detected X-ray intensity profile in the gun-target (G-T) direction or the orthogonal A-B direction was used as a measure of the beam-spot size in that direction. Siemens Mevatron MXEs exhibited a beam-spot size of 1.7 ± 0.2 mm in both the in-plane and cross-plane directions for 6 MV photon beams. The beam-spot size observed for a Mevatron MDX-2 was larger by up to 1 mm, and also was different for the in-plane and cross-plane directions. For Siemens PRIMUS accelerators, the beam-spot size in the in-plane direction was found to fall in the range 2.0-2.2 ± 0.2 mm, whereas the beam-spot size in the cross-plane direction fell within 1.7-1.9 ± 0.2 mm for 6, 10, and 18 MV photon beams. Assessment of long-term stability of the beam-spot size shows the spot size remains fairly stable over time.

  18. Lymph node detection in IASLC-defined zones on PET/CT images

    NASA Astrophysics Data System (ADS)

    Song, Yihua; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2016-03-01

    Lymph node detection is challenging due to the low contrast between lymph nodes as well as surrounding soft tissues and the variation in nodal size and shape. In this paper, we propose several novel ideas which are combined into a system to operate on positron emission tomography/ computed tomography (PET/CT) images to detect abnormal thoracic nodes. First, our previous Automatic Anatomy Recognition (AAR) approach is modified where lymph node zones predominantly following International Association for the Study of Lung Cancer (IASLC) specifications are modeled as objects arranged in a hierarchy along with key anatomic anchor objects. This fuzzy anatomy model built from diagnostic CT images is then deployed on PET/CT images for automatically recognizing the zones. A novel globular filter (g-filter) to detect blob-like objects over a specified range of sizes is designed to detect the most likely locations and sizes of diseased nodes. Abnormal nodes within each automatically localized zone are subsequently detected via combined use of different items of information at various scales: lymph node zone model poses found at recognition indicating the geographic layout at the global level of node clusters, g-filter response which hones in on and carefully selects node-like globular objects at the node level, and CT and PET gray value but within only the most plausible nodal regions for node presence at the voxel level. The models are built from 25 diagnostic CT scans and refined for an object hierarchy based on a separate set of 20 diagnostic CT scans. Node detection is tested on an additional set of 20 PET/CT scans. Our preliminary results indicate node detection sensitivity and specificity at around 90% and 85%, respectively.

  19. Estimation of the tumor size at cure threshold among aggressive non-small cell lung cancers (NSCLCs): evidence from the surveillance, epidemiology, and end results (SEER) program and the national lung screening trial (NLST).

    PubMed

    Goldwasser, Deborah L

    2017-03-15

    The National Lung Screening Trial (NLST) demonstrated that non-small cell lung cancer (NSCLC) mortality can be reduced by a program of annual CT screening in high-risk individuals. However, CT screening regimens and adherence vary, potentially impacting the lung cancer mortality benefit. We defined the NSCLC cure threshold as the maximum tumor size at which a given NSCLC would be curable due to early detection. We obtained data from 518,234 NSCLCs documented in the U.S. SEER cancer registry between 1988 and 2012 and 1769 NSCLCs detected in the NLST. We demonstrated mathematically that the distribution function governing the cure threshold for the most aggressive NSCLCs, G(x|Φ = 1), was embedded in the probability function governing detection of SEER-documented NSCLCs. We determined the resulting probability functions governing detection over a range of G(x|Φ = 1) scenarios and compared them with their expected functional forms. We constructed a simulation framework to determine the cure threshold models most consistent with tumor sizes and outcomes documented in SEER and the NLST. Whereas the median tumor size for lethal NSCLCs documented in SEER is 43 mm (males) and 40 mm (females), a simulation model in which the median cure threshold for the most aggressive NSCLCs is 10 mm (males) and 15 mm (females) best fit the SEER and NLST data. The majority of NSCLCs in the NLST were treated at sizes greater than our median cure threshold estimates. New technology is needed to better distinguish and treat the most aggressive NSCLCs when they are small (i.e., 5-15 mm). © 2016 UICC.

  20. Seventy years of stream‐fish collections reveal invasions and native range contractions in an Appalachian (USA) watershed

    USGS Publications Warehouse

    Buckwalter, Joseph D.; Frimpong, Emmanuel A.; Angermeier, Paul L.; Barney, Jacob N.

    2018-01-01

    AimKnowledge of expanding and contracting ranges is critical for monitoring invasions and assessing conservation status, yet reliable data on distributional trends are lacking for most freshwater species. We developed a quantitative technique to detect the sign (expansion or contraction) and functional form of range‐size changes for freshwater species based on collections data, while accounting for possible biases due to variable collection effort. We applied this technique to quantify stream‐fish range expansions and contractions in a highly invaded river system.LocationUpper and middle New River (UMNR) basin, Appalachian Mountains, USA.MethodsWe compiled a 77‐year stream‐fish collections dataset partitioned into ten time periods. To account for variable collection effort among time periods, we aggregated the collections into 100 watersheds and expressed a species’ range size as detections per watershed (HUC) sampled (DPHS). We regressed DPHS against time by species and used an information‐theoretic approach to compare linear and nonlinear functional forms fitted to the data points and to classify each species as spreader, stable or decliner.ResultsWe analysed changes in range size for 74 UMNR fishes, including 35 native and 39 established introduced species. We classified the majority (51%) of introduced species as spreaders, compared to 31% of natives. An exponential functional form fits best for 84% of spreaders. Three natives were among the most rapid spreaders. All four decliners were New River natives.Main conclusionsOur DPHS‐based approach facilitated quantitative analyses of distributional trends for stream fishes based on collections data. Partitioning the dataset into multiple time periods allowed us to distinguish long‐term trends from population fluctuations and to examine nonlinear forms of spread. Our framework sets the stage for further study of drivers of stream‐fish invasions and declines in the UMNR and is widely transferable to other freshwater taxa and geographic regions.

  1. Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project

    NASA Astrophysics Data System (ADS)

    Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.

    2018-07-01

    The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.

  2. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    PubMed Central

    Tehrani, Farshad; Bavarian, Behzad

    2016-01-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat. PMID:27306706

  3. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    NASA Astrophysics Data System (ADS)

    Tehrani, Farshad; Bavarian, Behzad

    2016-06-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM-4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.

  4. Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohseni, Naimeh; Bahram, Morteza

    2018-03-01

    Herein, a rapid, sensitive and selective approach for the colorimetric detection of dopamine (DA) was developed utilizing unmodified gold nanoparticles (AuNPs). This assay relied upon the size-dependent aggregation behavior of DA and three other structurally similar catecholamines (CAs), offering highly specific and accurate detection of DA. By means of this study, we attempted to overcome the tedious procedures of surface premodifications and achieve selectivity through tuning the particle size of AuNPs. DA could induce the aggregation of the AuNPs via hydrogen-bonding interactions, resulting in a color change from pink to blue which can be monitored by spectrophotometry or even the naked-eye. The proposed colorimetric probe works over the 0.1 to 4 μM DA concentration range, with a lower detection limit (LOD) of 22 nM, which is much lower than the therapeutic lowest abnormal concentrations of DA in urine (0.57 μM) and blood (16 μM) samples. Furthermore, the selectivity and potential applicability of the developed method in spiked actual biological (human plasma and urine) specimens were investigated, suggesting that the present assay could satisfy the requirements for clinical diagnostics and biosensors.

  5. Study of cosmic dust particles on board LDEF: The FRECOPA experiments AO138-1 and AO138-2

    NASA Technical Reports Server (NTRS)

    Mandeville, J. C.; Borg, Janet

    1992-01-01

    Two experiments, within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust, were flown on the LDEF. A variety of sensors and collecting devices have made possible the study of impact processes on materials of technological interest. Preliminary examination of hypervelocity impact features gives valuable data on size distribution and nature of interplanetary dust particles in low earth orbit, within the 0.5 to 300 micrometer size range. Most of the events detected on the trailing face of LDEF are expected to be the result of impacts of meteoritic particles only. So far, chemical analysis of craters by EDS clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. Systematic occurrence of C and O in crater residues is an important result, to be compared with the existence of CHON particles detected in P-Halley comet nucleus. Crater size distribution is in good agreement with results from other dust experiments flown on LDEF. However, no crater smaller than 1.5 micron was observed, thus suggesting a cutoff in the near earth particle distribution. Possible origin and orbital evolution of micrometeoroids is discussed.

  6. Automatic photointerpretation for land use management in Minnesota

    NASA Technical Reports Server (NTRS)

    Swanlund, G. D. (Principal Investigator); Pile, D. R.

    1973-01-01

    The author has identified the following significant results. Primary conclusions from the lake acreage study are: (1) The ERTS-1 band 7 density range of 0-5 reliably indicates open water down to 2 acre size. (2) The density range 6-9 identifies swamps. (3) The depth of the water could not be determined. (4) Cloud shadows can be misread as lakes unless the clouds are detected. (5) ERTS-1 data would provide the information for classifying lakes and for monitoring fluctuations in lake area.

  7. Model studies of laser absorption computed tomography for remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Wolfe, D. C., Jr.; Byer, R. L.

    1982-01-01

    Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.

  8. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed for both tasks and analyzed using ROC and LROC analysis methodologies. The results of this study suggest that collimators with somewhat poorer resolution and higher sensitivity than those of a typical low-energy high-resolution (LEHR) collimator were optimal for both defect detection and joint detection and localization tasks in myocardial perfusion SPECT for the range of defect sizes investigated. This study also indicates that optimizing instrumentation for a detection task may provide near-optimal performance on the more challenging detection-localization task.

  9. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion.

    PubMed

    Krittayavathananon, Atiweena; Srimuk, Pattarachai; Luanwuthi, Santamon; Sawangphruk, Montree

    2014-12-16

    Although metal nanoparticle/graphene composites have been widely used as the electrode in electrochemical sensors, two effects, consisting of the particle size of the nanoparticles and the hydrodynamic diffusion of analytes to the electrodes, are not yet fully understood. In this work, palladium nanoparticles/reduced graphene oxide (PdNPs/rGO) composites were synthesized using an in situ polyol method. Palladium(II) ions and graphene oxide were reduced together with a reducing agent, ethylene glycol. By varying the concentration of palladium(II) nitrate, PdNPs with different sizes were decorated on the surface of rGO sheets. The as-fabricated PdNPs/rGO rotating disk electrodes (RDEs) were investigated toward hydrazine detection. Overall, a 3.7 ± 1.4 nm diameter PdNPs/rGO RDE exhibits high performance with a rather low limit of detection of about 7 nM at a rotation speed of 6000 rpm and provides a wide linear range of 0.1-1000 μM with R(2) = 0.995 at 2000 rpm. This electrode is highly selective to hydrazine without interference from uric acid, glucose, ammonia, caffeine, methylamine, ethylenediamine, hydroxylamine, n-butylamine, adenosine, cytosine, guanine, thymine, and l-arginine. The PdNPs/rGO RDEs with larger sizes show lower detection performance. Interestingly, the detection performance of the electrodes is sensitive to the hydrodynamic diffusion of hydrazine. The as-fabricated electrode can detect trace hydrazine in wastewater with high stability, demonstrating its practical use as an electrochemical sensor. These findings may lead to an awareness of the effect of the hydrodynamic diffusion of analyte that has been previously ignored, and the 3.7 ± 1.4 nm PdNPs/rGO RDE may be useful toward trace hydrazine detection, especially in wastewater from related chemical industries.

  10. Automated detection of geological landforms on Mars using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Palafox, Leon F.; Hamilton, Christopher W.; Scheidt, Stephen P.; Alvarez, Alexander M.

    2017-04-01

    The large volume of high-resolution images acquired by the Mars Reconnaissance Orbiter has opened a new frontier for developing automated approaches to detecting landforms on the surface of Mars. However, most landform classifiers focus on crater detection, which represents only one of many geological landforms of scientific interest. In this work, we use Convolutional Neural Networks (ConvNets) to detect both volcanic rootless cones and transverse aeolian ridges. Our system, named MarsNet, consists of five networks, each of which is trained to detect landforms of different sizes. We compare our detection algorithm with a widely used method for image recognition, Support Vector Machines (SVMs) using Histogram of Oriented Gradients (HOG) features. We show that ConvNets can detect a wide range of landforms and has better accuracy and recall in testing data than traditional classifiers based on SVMs.

  11. Automated detection of geological landforms on Mars using Convolutional Neural Networks.

    PubMed

    Palafox, Leon F; Hamilton, Christopher W; Scheidt, Stephen P; Alvarez, Alexander M

    2017-04-01

    The large volume of high-resolution images acquired by the Mars Reconnaissance Orbiter has opened a new frontier for developing automated approaches to detecting landforms on the surface of Mars. However, most landform classifiers focus on crater detection, which represents only one of many geological landforms of scientific interest. In this work, we use Convolutional Neural Networks (ConvNets) to detect both volcanic rootless cones and transverse aeolian ridges. Our system, named MarsNet, consists of five networks, each of which is trained to detect landforms of different sizes. We compare our detection algorithm with a widely used method for image recognition, Support Vector Machines (SVMs) using Histogram of Oriented Gradients (HOG) features. We show that ConvNets can detect a wide range of landforms and has better accuracy and recall in testing data than traditional classifiers based on SVMs.

  12. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy.

    PubMed Central

    Viles, C L; Sieracki, M E

    1992-01-01

    Accurate measurement of the biomass and size distribution of picoplankton cells (0.2 to 2.0 microns) is paramount in characterizing their contribution to the oceanic food web and global biogeochemical cycling. Image-analyzed fluorescence microscopy, usually based on video camera technology, allows detailed measurements of individual cells to be taken. The application of an imaging system employing a cooled, slow-scan charge-coupled device (CCD) camera to automated counting and sizing of individual picoplankton cells from natural marine samples is described. A slow-scan CCD-based camera was compared to a video camera and was superior for detecting and sizing very small, dim particles such as fluorochrome-stained bacteria. Several edge detection methods for accurately measuring picoplankton cells were evaluated. Standard fluorescent microspheres and a Sargasso Sea surface water picoplankton population were used in the evaluation. Global thresholding was inappropriate for these samples. Methods used previously in image analysis of nanoplankton cells (2 to 20 microns) also did not work well with the smaller picoplankton cells. A method combining an edge detector and an adaptive edge strength operator worked best for rapidly generating accurate cell sizes. A complete sample analysis of more than 1,000 cells averages about 50 min and yields size, shape, and fluorescence data for each cell. With this system, the entire size range of picoplankton can be counted and measured. Images PMID:1610183

  13. A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material

    NASA Astrophysics Data System (ADS)

    Healy, David A.; O'Connor, David J.; Burke, Aoife M.; Sodeau, John R.

    2012-12-01

    A Bioaerosol sensing instrument referred to as WIBS-4, designed to continuously monitor ambient bioaerosols on-line, has been used to record a multiparameter “signature” from each of a number of Primary Biological Aerosol Particulate (PBAP) samples found in air. These signatures were obtained in a controlled laboratory environment and are based on the size, asymmetry (“shape”) and auto-fluorescence of the particles. Fifteen samples from two separate taxonomic ranks (kingdoms), Plantae (×8) and Fungi (×7) were individually introduced to the WIBS-4 for measurement along with two non-fluorescing chemical solids, common salt and chalk. Over 2000 individual-particle measurements were recorded for each sample type and the ability of the WIBS spectroscopic technique to distinguish between chemicals, pollen and fungal spore material was examined by identifying individual PBAP signatures. The results obtained show that WIBS-4 could potentially be a very useful analytical tool for distinguishing between natural airborne PBAP samples, such as the fungal spores and may potentially play an important role in detecting and discriminating the toxic fungal spore, Aspergillus fumigatus, from others in real-time. If the sizing range of the commercial instrument was customarily increased and permitted to operate simultaneously in its two sizing ranges, pollen and spores could potentially be discriminated between. The data also suggest that the gain setting sensitivity on the detector would also have to be reduced by a factor >5, to routinely detect, in-range fluorescence measurements for pollen samples.

  14. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, Richard L.

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF)more » has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.« less

  15. Fast camera imaging of dust in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.

    2009-06-01

    Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.

  16. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi

    2018-03-01

    Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.

  17. Introducing depolarisation into an inexpensive, simple cloud sensor for standoff aerosol detection

    NASA Astrophysics Data System (ADS)

    Hopkins, Rebecca J.; Jones, Joseph W.; Barrington, Stephen J.; Foot, Virginia; Baxter, Karen L.

    2008-04-01

    Light detection and ranging (LIDAR) has potential to be a successful technique for remote detection of airborne biological warfare agents (BWA) that pose a health hazard. Potential techniques for detecting BWA often use spectroscopy to probe molecular structure properties (e.g. UV-fluorescence, Raman and differential absorption spectroscopy). An alternative approach is to differentiate BWA from background interferents by their differing morphology; depolarisation offers one such method. Here, we investigate the feasibility of introducing depolarisation into a short range (approximately 10 m) LIDAR designed to be a simple, inexpensive, low power consumption, portable instrument. T-matrix calculations are presented for a randomly oriented, polydisperse size distribution of Bacillus atrophaeus spheroids. The relationship between backscatter depolarisation and particle aspect ratio is investigated at several incident wavelengths corresponding to those produced by low cost, commercially available laser sources. Through a series of simulations, we determine the best combination of wavelengths for a multi-wavelength instrument design that exploits the concept of normalised depolarisation to determine particle aspect ratio, with the possibility of facilitating BWA detection.

  18. A reference aerosol for a radon reference chamber

    NASA Astrophysics Data System (ADS)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  19. Hollow-fiber flow field-flow fractionation with multi-angle laser scattering detection for aggregation studies of therapeutic proteins.

    PubMed

    Reschiglian, P; Roda, B; Zattoni, A; Tanase, M; Marassi, V; Serani, S

    2014-02-01

    The rapid development of protein-based pharmaceuticals highlights the need for robust analytical methods to ensure their quality and stability. Among proteins used in pharmaceutical applications, an important and ever increasing role is represented by monoclonal antibodies and large proteins, which are often modified to enhance their activity or stability when used as drugs. The bioactivity and the stability of those proteins are closely related to the maintenance of their complex structure, which however are influenced by many external factors that can cause degradation and/or aggregation. The presence of aggregates in these drugs could reduce their bioactivity and bioavailability, and induce immunogenicity. The choice of the proper analytical method for the analysis of aggregates is fundamental to understand their (size) dimensional range, their amount, and if they are present in the sample as generated by an aggregation or as an artifact due to the method itself. Size exclusion chromatography is one of the most important techniques for the quality control of pharmaceutical proteins; however, its application is limited to relatively low molar mass aggregates. Among the techniques for the size characterization of proteins, field-flow fractionation (FFF) represents a competitive choice because of its soft mechanism due to the absence of a stationary phase and application in a broader size range, from nanometer- to micrometer-sized analytes. In this paper, the microcolumn variant of FFF, the hollow-fiber flow FFF, was online coupled with multi-angle light scattering, and a method for the characterization of aggregates with high reproducibility and low limit of detection was demonstrated employing an avidin derivate as sample model.

  20. A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection.

    PubMed

    Yan, Jun-Chao; Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling

    2018-03-08

    Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection.

  1. A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection

    PubMed Central

    Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling

    2018-01-01

    Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection. PMID:29518059

  2. Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, David G.; Basri, Gibor; Batalha, Natalie; Brown, Timothy M.; Bryson, Stephen T.; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; Gautier, Thomas N., III; Geary, John C.; Gilliland, Ronald; Gould, Alan; Howell, Steve B.; Jenkins, Jon M.; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Rowe, Jason; Sasselov, Dimitar; Boss, Alan; Charbonneau, David; Ciardi, David; Doyle, Laurance; Dupree, Andrea K.; Ford, Eric B.; Fortney, Jonathan; Holman, Matthew J.; Seager, Sara; Steffen, Jason H.; Tarter, Jill; Welsh, William F.; Allen, Christopher; Buchhave, Lars A.; Christiansen, Jessie L.; Clarke, Bruce D.; Das, Santanu; Désert, Jean-Michel; Endl, Michael; Fabrycky, Daniel; Fressin, Francois; Haas, Michael; Horch, Elliott; Howard, Andrew; Isaacson, Howard; Kjeldsen, Hans; Kolodziejczak, Jeffery; Kulesa, Craig; Li, Jie; Lucas, Philip W.; Machalek, Pavel; McCarthy, Donald; MacQueen, Phillip; Meibom, Søren; Miquel, Thibaut; Prsa, Andrej; Quinn, Samuel N.; Quintana, Elisa V.; Ragozzine, Darin; Sherry, William; Shporer, Avi; Tenenbaum, Peter; Torres, Guillermo; Twicken, Joseph D.; Van Cleve, Jeffrey; Walkowicz, Lucianne; Witteborn, Fred C.; Still, Martin

    2011-07-01

    On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R p < 1.25 R ⊕), 288 super-Earth-size (1.25 R ⊕ <= R p < 2 R ⊕), 662 Neptune-size (2 R ⊕ <= R p < 6 R ⊕), 165 Jupiter-size (6 R ⊕ <= R p < 15 R ⊕), and 19 up to twice the size of Jupiter (15 R ⊕ <= R p < 22 R ⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

  3. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography

    PubMed Central

    Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja

    2016-01-01

    Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time. PMID:27578931

  4. Chemical and seismological constraints on mantle heterogeneity.

    PubMed

    Helffrich, George

    2002-11-15

    Recent seismological studies that use scattered waves to detect heterogeneities in the mantle reveal the presence of a small, distributed elastic heterogeneity in the lower mantle which does not appear to be thermal in nature. The characteristic size of these heterogeneities appears to be ca. 8 km, suggesting that they represent subducted recycled oceanic crust. With this stimulus, old ideas that the mantle is heterogeneous in structure, rather than stratified, are reinterpreted and a simple, end-member model for the heterogeneity structure is proposed. The volumetrically largest components in the model are recycled oceanic crust, which contains the heat-producing elements, and mantle depleted of these and other incompatible trace elements. About 10% of the mantle's mass is made up of recycled oceanic crust, which is associated with the observed small-scale seismic heterogeneity. The way this heterogeneity is distributed is in convectively stretched and thinned bodies ranging downwards in size from 8 km. With the present techniques to detect small bodies through scattering, only ca. 55% of the mantle's small-scale heterogeneities are detectable seismically.

  5. A new spectroscopic imager for X-rays from 0.5 keV to 150 keV combining a pnCCD and a columnar CsI(Tl) scintillator

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.

    2017-04-01

    By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.

  6. Signal detection in power-law noise: effect of spectrum exponents.

    PubMed

    Burgess, Arthur E; Judy, Philip F

    2007-12-01

    Many natural backgrounds have approximately isotropic power spectra of the power-law form, P(f)=K/f(beta), where f is radial frequency. For natural scenes and mammograms, the values of the exponent, beta, range from 1.5 to 3.5. The ideal observer model predicts that for signals with certain properties and backgrounds that can be treated as random noise, a plot of log (contrast threshold) versus log (signal size) will be linear with slope, m, given by: m=(beta-2)/2. This plot is referred to as a contrast-detail (CD) diagram. It is interesting that this predicts a detection threshold that is independent of signal size for beta equal to 2. We present two-alternative forced-choice (2AFC) detection results for human and channelized model observers of a simple signal in filtered noise with exponents from 1.5 to 3.5. The CD diagram results are in good agreement with the prediction of this equation.

  7. Sampling efficacy for the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae).

    PubMed

    Stringer, Lloyd D; Suckling, David Maxwell; Baird, David; Vander Meer, Robert K; Christian, Sheree J; Lester, Philip J

    2011-10-01

    Cost-effective detection of invasive ant colonies before establishment in new ranges is imperative for the protection of national borders and reducing their global impact. We examined the sampling efficiency of food-baits and pitfall traps (baited and nonbaited) in detecting isolated red imported fire ant (Solenopsis invicta Buren) nests in multiple environments in Gainesville, FL. Fire ants demonstrated a significantly higher preference for a mixed protein food type (hotdog or ground meat combined with sweet peanut butter) than for the sugar or water baits offered. Foraging distance success was a function of colony size, detection trap used, and surveillance duration. Colony gyne number did not influence detection success. Workers from small nests (0- to 15-cm mound diameter) traveled no >3 m to a food source, whereas large colonies (>30-cm mound diameter) traveled up to 17 m. Baited pitfall traps performed best at detecting incipient ant colonies followed by nonbaited pitfall traps then food baits, whereas food baits performed well when trying to detect large colonies. These results were used to create an interactive model in Microsoft Excel, whereby surveillance managers can alter trap type, density, and duration parameters to estimate the probability of detecting specified or unknown S. invicta colony sizes. This model will support decision makers who need to balance the sampling cost and risk of failure to detect fire ant colonies.

  8. Intraoperative evaluation of renal blood flow during laparoscopic partial nephrectomy with a novel Doppler system.

    PubMed

    Mues, Adam C; Okhunov, Zhamshid; Badani, Ketan; Gupta, Mantu; Landman, Jaime

    2010-12-01

    Hemostasis remains a major challenge associated with laparoscopic renal surgery. We evaluated a cost-effective novel Doppler probe (DP) for assessment of vascular control during laparoscopic partial nephrectomy (LPN). We prospectively collected data during LPN procedures. We documented tumor location and size as well as subjective quality of the hilar dissection. The DP was compared with our standard intraoperative ultrasound system (SUS) for the ability to detect blood flow during hilar dissection and to determine parenchymal ischemia around the tumor after clamping of the renal vessels. Twenty patients underwent LPN by a single surgeon. The mean tumor size was 3.0 cm (range: 1.2-6.3 cm). The times to assess the kidney using the SUS and DP were 68.6 seconds (range: 20-155) and 44.5 seconds (range: 15-180), respectively. Evaluation prior to renal hilar clamping demonstrated the presence of blood flow in all 20 patients (100%) using the SUS and in 17 of 20 (85%) using the DP. Similarly, cessation of blood flow with clamping was documented in 100% of cases with SUS and 85% with DP. Persistent flow was detected by both SUS and DP in two patients requiring further dissection and reclamping. Then, both systems detected the absence of flow before tumor resection. With blood flow interruption confirmation, no patient had significant bleeding at the time of renal parenchymal transection. Intraoperative Doppler ultrasound technologies minimize the risk of significant bleeding during LPN. The DP is a small, simple, effective probe that can be used to assess blood flow interruption to the kidney during laparoscopic renal surgery.

  9. Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest

    Treesearch

    Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina

    2015-01-01

    Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...

  10. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles

    PubMed Central

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently. PMID:28255297

  11. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.

    PubMed

    Ni, Jianjun; Wu, Liuying; Shi, Pengfei; Yang, Simon X

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.

  12. A sub-Mercury-sized exoplanet.

    PubMed

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  13. Evaluation of Sampling Recommendations From the Influenza Virologic Surveillance Right Size Roadmap for Idaho.

    PubMed

    Rosenthal, Mariana; Anderson, Katey; Tengelsen, Leslie; Carter, Kris; Hahn, Christine; Ball, Christopher

    2017-08-24

    The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. The aim of this study was to compare Roadmap sampling recommendations with Idaho's influenza virologic surveillance to determine implementation feasibility. We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho's influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients' tested specimens to census estimates by age, sex, and health district residence. Among outpatients surveilled, Idaho's mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Insufficient numbers of respiratory specimens are submitted to IBL for influenza laboratory testing. Increased specimen submission would facilitate meeting Roadmap sample size recommendations. ©Mariana Rosenthal, Katey Anderson, Leslie Tengelsen, Kris Carter, Christine Hahn, Christopher Ball. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 24.08.2017.

  14. Evaluation of Sampling Recommendations From the Influenza Virologic Surveillance Right Size Roadmap for Idaho

    PubMed Central

    2017-01-01

    Background The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. Objective The aim of this study was to compare Roadmap sampling recommendations with Idaho’s influenza virologic surveillance to determine implementation feasibility. Methods We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho’s influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients’ tested specimens to census estimates by age, sex, and health district residence. Results Among outpatients surveilled, Idaho’s mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Conclusions Insufficient numbers of respiratory specimens are submitted to IBL for influenza laboratory testing. Increased specimen submission would facilitate meeting Roadmap sample size recommendations. PMID:28838883

  15. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  16. Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer

    DOE PAGES

    Wang, Yang; Pinterich, Tamara; Wang, Jian

    2018-03-30

    We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less

  17. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  19. Directed evolution of cell size in Escherichia coli.

    PubMed

    Yoshida, Mari; Tsuru, Saburo; Hirata, Naoko; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen; Yomo, Tetsuya

    2014-12-17

    In bacteria, cell size affects chromosome replication, the assembly of division machinery, cell wall synthesis, membrane synthesis and ultimately growth rate. In addition, cell size can also be a target for Darwinian evolution for protection from predators. This strong coupling of cell size and growth, however, could lead to the introduction of growth defects after size evolution. An important question remains: can bacterial cell size change and/or evolve without imposing a growth burden? The directed evolution of particular cell sizes, without a growth burden, was tested with a laboratory Escherichia coli strain. Cells of defined size ranges were collected by a cell sorter and were subsequently cultured. This selection-propagation cycle was repeated, and significant changes in cell size were detected within 400 generations. In addition, the width of the size distribution was altered. The changes in cell size were unaccompanied by a growth burden. Whole genome sequencing revealed that only a few mutations in genes related to membrane synthesis conferred the size evolution. In conclusion, bacterial cell size could evolve, through a few mutations, without growth reduction. The size evolution without growth reduction suggests a rapid evolutionary change to diverse cell sizes in bacterial survival strategies.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Mulchaey, John S.

    We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β -modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-raymore » center similar to previous studies. We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.« less

  1. New Particle Formation in the Tropical UTLS Near Costa Rica: Contrast January and February with June and August

    NASA Astrophysics Data System (ADS)

    Wilson, J. C.; Saad, M. S.; Axisa, D.

    2017-12-01

    Aerosol size distributions were measured in the 4 nm to 1000 nm diameter range from the NASA WB-57 aircraft based in Costa Rica from 2004 through 2007. The measurements were made with the Nuclei Mode Aerosol Size Spectrometer (NMASS) and the Focused Cavity Aerosol Spectrometer (FCAS). The NMASS consists of 5 condensation particle counters (CPCs) each operated with a different supersaturation of the working fluid (FC-43). Therefore each CPC has a different lower size cut off. The size cutoffs are near 4nm 8nm, 16 nm, 32nm and 50nm in diameter. The FCAS is an optical particle counter that detects and sizes particles in the 100 to 1000 nm diameter range. By considering counting statistics, it is possible to identify those time intervals during which the counts in the 4 nm channel exceeded the counts in the 8 nm channel. Thus it is possible to clearly identify when there are particles in the 4 to 8 nm diameter range present in the size distribution. These particles have a short lifetime due to coagulation and their presence is taken to be evidence of recent new particle formation (NPF). The measurements made in January-February are contrasted with measurements made in June and August and differences are seen in the frequency with which NPF occurred. We examine the roles of air mass origin as determined by back trajectories, pre-existing aerosol surface area, atmospheric motions and trace gas concentrations in contributing to this difference.

  2. Validation of a particle tracking analysis method for the size determination of nano- and microparticles

    NASA Astrophysics Data System (ADS)

    Kestens, Vikram; Bozatzidis, Vassili; De Temmerman, Pieter-Jan; Ramaye, Yannic; Roebben, Gert

    2017-08-01

    Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.

  3. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerakis, Alexandros; Yeh, Yao -Wen; Shneider, Mikhail N.

    Here, we report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 10 10 cm –3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of themore » growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.« less

  4. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  5. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles

    DOE PAGES

    Gerakis, Alexandros; Yeh, Yao -Wen; Shneider, Mikhail N.; ...

    2018-01-29

    Here, we report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 10 10 cm –3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of themore » growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.« less

  6. Dielectrophoretic separation of Bacillus subtilis spores from environmental diesel particles.

    PubMed

    Fatoyinbo, Henry O; Hughes, Michael P; Martin, Stacey P; Pashby, Paul; Labeed, Fatima H

    2007-01-01

    Isolation of pathogenic bacteria from non-biological material of similar size is a vital sample preparation step in the identification of such organisms, particularly in the context of detecting bio-terrorist attacks. However, many detection methods are impeded by particulate contamination from the environment such as those from engine exhausts. In this paper we use dielectrophoresis--the induced motion of particles in non-uniform fields--to successfully remove over 99% of diesel particulates acquired from environmental samples, whilst letting bacterial spores of B. subtilis pass through the chamber largely unimpeded. We believe that such a device has tremendous potential as a precursor to a range of detection methods, improving the signal-to-noise ratio and ultimately improving detection rates.

  7. Development of the Small Package Single Particle Soot Photometer with extended range (SP2-XR) and black carbon detection efficiency compared to its predecessor, the SP2

    NASA Astrophysics Data System (ADS)

    Schulz, H.; Kok, G. L.; Zanatta, M.; Schwarz, J. P.; Herber, A. B.

    2016-12-01

    Black carbon (BC) aerosol is an important contributor to climate change due to its ability to very efficiently absorb solar radiation. The Single Particle Soot Photometer (SP2) is an instrument that quantifies the refractory mass of individual BC-containing particles with a laser-induced incandescence method. The SP2 has been deployed on ships, at ground based sites, and on research aircraft to quantify BC's mass loadings and microphysical properties. However, the SP2's particle detection range is generally limited to 70-700 nm volume-equivalent diameter for ambient BC. Ambient air typically contains substantial number concentrations below and mass concentrations above the limits of this range. To account for the unquantified particles, it is common to fit a log-normal distribution to the measured size distributions — an approach that leaves the BC community with uncertain results, and a need to learn about the occurrence of very small particles or very large BC aggregates. The SP2 is also large and heavy enough to limit its usability for aircraft and unmanned or towed airborne vehicles. We have developed a miniaturized SP2 to dramatically extend the range of applications for which the SP2 technique can be used. This new instrument, with the additional target of an extended measurement range, has been named the SP2-XR, and incorporates a newly designed optical block with updated electronics for signal recording and on-the-fly processing (gain stitching and peak analysis). The optical block improves the light-collection of both scattered and incandescent light from sampled particles. The target measurement range is 40-1000 nm. At the same time, the SP2-XR weighs less than half of an SP2 (15 kg for the complete system), and about 1/4 the volume ( 20 cm x 20 cm x 40 cm). The instrument software is designed to produce ready to use particle mass and binned size distributions or full particle trace records, according to different scientific needs. Thus, an SP2-XR may produce a much slimmer data set while deployed in the field, compared to the SP2. We have compared the size-resolved detection efficiency and performance of the SP2-XR to two classic SP2 system using a DMA/CPC system. Measurements covered different BC standards (Aquadag and Fullerene Soot), PSL particles, and ambient aerosol. Test results will be presented.

  8. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    PubMed

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  9. A New Optical Aerosol Spectrometer

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)

    1998-01-01

    An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.

  10. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments - An indication for the catalytic nature of their interactions.

    PubMed

    Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard

    2015-01-01

    Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.

  11. PM4 crystalline silica emission factors and ambient concentrations at aggregate-producing sources in California.

    PubMed

    Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John

    2009-11-01

    The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3. The measured ambient concentrations in the PM4 size range are consistent with previously published ambient crystalline silica data applicable to the PM2.5 and PM of aerodynamic diameter of 10 microm or less (PM10) size ranges.

  12. Designing image segmentation studies: Statistical power, sample size and reference standard quality.

    PubMed

    Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C

    2017-12-01

    Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Combining nanofluidics and plasmonics for single molecule detection

    NASA Astrophysics Data System (ADS)

    West, Melanie M.

    Single molecule detection is limited by the small scattering cross-section of molecules which leads to weak optical signals that can be obscured by background noise. The combination of plasmonics and nanofluidics in an integrated nano-device has the potential to provide the signal enhancement necessary for the detection of single molecules. The purpose of this investigation was to optimize the fabrication of an optofluidic device that integrates a nanochannel with a plasmonic bowtie antenna. The fluidic structure of the device was fabricated using UV-nanoimprint lithography, and the gold plasmonic antennas were fabricated using a shadow evaporation and lift-off process. The effect of electron beam lithography doses on the resolution of antenna-nanochannel configurations was studied to minimize antenna gap size while maintaining the integrity of the imprinted features. The smallest antenna gap size that was achieved was 46 nm. The antennas were characterized using dark field spectroscopy to find the resonance shift, which indicated the appropriate range for optical signal enhancement. The dark field scattering results showed antennas with a broad and well-defined resonance shift that ranged from 650--800 nm. The Raman scattering results showed the highest enhancement factor (EF = 2) for antennas with an "inverted configuration," which involved having the triangles of the antenna facing back-to-back rather than the more conventional tip-to-tip bowtie arrangement.

  14. Integrated OCT-US catheter for detection of cancer in the gastrointestinal tract

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Cummins, Thomas; Shung, K. Kirk; Van Dam, Jacques; Zhou, Qifa; Chen, Zhongping

    2015-03-01

    Gastrointestinal tract cancer, the most common type of cancer, has a very low survival rate, especially for pancreatic cancer (five year survival rate of 5%) and bile duct cancer (five year survival rate of 12%). Here, we propose to use an integrated OCT-US catheter for cancer detection. OCT is targeted to acquire detailed information, such as dysplasia and neoplasia, for early detection of tumors. US is used for staging cancers according to the size of the primary tumor and whether or not it has invaded lymph nodes and other parts of the body. Considering the lumen size of the GI tract, an OCT system with a long image range (>10mm) and a US imaging system with a center frequency at 40MHz (penetration depth > 5mm) were used. The OCT probe was also designed for long-range imaging. The side-view OCT and US probes were sealed inside one probe cap piece and one torque coil and became an integrated probe. This probe was then inserted into a catheter sheath which fits in the channel of a duodenoscope and is able to be navigated smoothly into the bile duct by the elevator of the duodenoscope. We have imaged 5 healthy and 2 diseased bile ducts. In the OCT images, disorganized layer structures and heterogeneous regions demonstrated the existence of tumors. Micro-calcification can be observed in the corresponding US images.

  15. Population variability complicates the accurate detection of climate change responses.

    PubMed

    McCain, Christy; Szewczyk, Tim; Bracy Knight, Kevin

    2016-06-01

    The rush to assess species' responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species' range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate 'canaries in the coal mine' for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses. © 2016 John Wiley & Sons Ltd.

  16. Population and movement characteristics of radio-collared striped skunks in North Dakota during an epizootic of rabies

    USGS Publications Warehouse

    Greenwood, Raymond J.; Newton, Wesley E.; Pearson, Gary L.; Schamber, George J.

    1997-01-01

    We observed a total of 102 striped skunks (Mephitis mephitis) from March to July of both 1991 and 1992 in Stutsman County, North Dakota (USA) during an experiment with food supplementation. Twenty-three apparently healthy skunks in 1991 and 56 in 1992 were equipped with radio-collars. In 1991, one of the 23 was tested and found to be rabid. In 1992, 50 of 56 were tested; 35 (70%) were rabid. Of skunks with ages estimated, 19 (66%) of 29 were first year animals in 1991 compared with nine (22%) of 41 first year animals in 1992. All 18 females captured in 1991 were pregnant or parous compared with 21 (60%) of 35 in 1992. The estimated survival rate of skunks was 0.85 during April to June 1991, but only 0.17 during April to July 1992. In 1992, the survival rate of first year skunks was 0.08, compared with 0.35 for older animals. Eleven (31%) of 36 skunks found dead of rabies or in late clinical stage were located below ground. We detected no differences in 1992 between healthy and rabid skunks in estimated mean (±SE) rate of travel (232 ± 14 m/hr), distance traveled (2,047 ± 141 m/night), or home range size (1.6 ± 0.4 km2) during half-month periods from April through June. Among rabid skunks, mean rate of travel tended to decrease from 298 ± 48 m/hr during the 14 days preceding the clinical period of rabies (pre-clinical) to 174 ± 48 m/hr during the clinical period of rabies (14 days immediately before death). Similar decrease occurred in distance traveled in a night (2,318 ± 281 m, pre-clinical; 1,497 ± 281 m, clinical). Mean home range size of males (2.8 ± 0.4) was greater than of females (1.2 ± 0.4) during the pre-clinical period, but during the clinical period home range sizes of males (1.8 ± 0.4) and females (1.8 ± 0.4) were similar. Mean home range size of females did not differ between pre-clinical (1.2 ± 0.4) and clinical (1.8 ± 0.4) periods (P= 0.22). Deaths of skunks from rabies in 1992 tended to be more spatially clumped than expected had they been random, mostly due to deaths detected before 8 May. We detected no correlation between locations of animals found dead of rabies and dates of death.

  17. Solar-blind ultraviolet optical system design for missile warning

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2015-03-01

    Solar-blind region of Ultraviolet (UV) spectrum has very important application in military field. The spectrum range is from 240nm to 280nm, which can be applied to detect the tail flame from approaching missile. A solar-blind UV optical system is designed to detect the UV radiation, which is an energy system. iKon-L 936 from ANDOR company is selected as the UV detector, which has pixel size 13.5μm x 13.5 μm and active image area 27.6mm x 27.6 mm. CaF2 and F_silica are the chosen materials. The original structure is composed of 6 elements. To reduce the system structure and improve image quality, two aspheric surfaces and one diffractive optical element are adopted in this paper. After optimization and normalization, the designed system is composed of five elements with the maximum spot size 11.988μ m, which is less than the pixel size of the selected CCD detector. Application of aspheric surface and diffractive optical element makes each FOV have similar spot size, which shows the system almost meets the requirements of isoplanatic condition. If the focal length can be decreased, the FOV of the system can be enlarged further.

  18. Fracture analysis of radial scientific instrument module registration fittings of the space telescope

    NASA Technical Reports Server (NTRS)

    Springfield, C. W., Jr.

    1986-01-01

    Various pieces of the registration fittings for the Radial Scientific instrument (SI) module of the Space Telescope were examined from a fracture mechanics point of view and deemed to be fail-safe or else have had maximum allowable flaw sizes specified for them. The results of these analyses are summarized in tabular form. In many instances the applied stress levels were so low that the threshold stress intensity factor range was never reached. In most of the others the allowable flaw sizes were large enough to be detected by visual inspection. However, for some parts, such as the flexures connecting the aluminum cover to the ball retainer in the fitting at point A, the flaw sizes were rather small. Eddy current tests are capable of detecting flaws of this size (0.022 inches x 0.1 inches), so for those which have been so tested these small flaws should represent no danger of going undetected. In every instance approximations were made to err on the conservative side. These were pointed out in the discussions of the analyses for each fitting. One conservative approximation that was not mentioned, however, is the fact that retardation was not included in the crack propagation computations.

  19. Hearing ability in three clownfish species.

    PubMed

    Parmentier, Eric; Colleye, Orphal; Mann, David

    2009-07-01

    Clownfish live in social groups in which there is a size-based dominance hierarchy. In such a context, sonic cues could play a role in social organisation because dominant frequency and pulse length of sounds are strongly correlated with fish size. Data on the hearing ability of these fish are, however, needed to show that they have the sensory ability to detect the frequencies in their sounds. The present study determines the hearing sensitivity in three different anemonefish species (Amphiprion frenatus, Amphiprion ocellaris and Amphiprion clarkii), and compares it with the frequencies in their calls. The frequency range over which the three species can detect sounds was between 75 and 1800 Hz, and they were most sensitive to frequencies below 200 Hz. During sound production, dominant frequency is clearly related (R=0.95) to the fish size, whatever the species. Dominant frequency extends from 370 to 900 Hz for specimens having a size between 55 and 130 mm. The best hearing sensitivity of small specimens were found to be lower than the dominant frequency of their own calls. However, they were found to be close to the dominant frequency of larger fish calls. The interest of juveniles lies in localising the adults and thus their location on the reef.

  20. Optical monitoring of thermal effects in RPE during heating

    NASA Astrophysics Data System (ADS)

    Schuele, G.; Huie, Ph.; Yellachich, D.; Molnar, F. E.; O'Conell-Rodwell, C.; Vitkin, E.; Perelman, L. T.; Palanker, D.

    2005-04-01

    Fast and non-invasive detection of cellular stress is useful for fundamental research and practical applications in medicine and biology. Using Light Scattering Spectroscopy we extract information about changes in refractive index and size of the cellular organelles. Particle sizes down to 50nm in diameter can be detected using light within the spectral range of 450-850 nm. We monitor the heat-induced sub-cellular structural changes in human RPE cells and, for comparison, in transfected NIH-3T3 cells which express luciferase linked to the heat shock protein (HSP). Using inverse light scattering fitting algorithm, we reconstruct the size distribution of the sub-micron organelles from the light scattering spectrum. The most significant (up to 70%) and rapid (20sec) temperature-related changes can be linked to an increase of refractive index of the 160nm sized mitochondria. The start of this effect coincides with the onset of HSP expression. This technique provides an insight into metabolic processes within organelles larger than 50nm without exogenous staining and opens doors for non-invasive real-time assessment of cellular stress, which can be used for monitoring of retinal laser treatments like transpupillary thermo therapy or PDT.

  1. One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content.

    PubMed

    Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M

    2010-03-08

    The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.

  2. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles.

    PubMed

    Maiolo, Daniele; Paolini, Lucia; Di Noto, Giuseppe; Zendrini, Andrea; Berti, Debora; Bergese, Paolo; Ricotta, Doris

    2015-04-21

    Extracellular Vesicles (EVs) - cell secreted vesicles that carry rich molecular information of the parental cell and constitute an important mode of intercellular communication - are becoming a primary topic in translational medicine. EVs (that comprise exosomes and microvesicles/microparticles) have a size ranging from 40 nm to 1 μm and share several physicochemical proprieties, including size, density, surface charge, and light interaction, with other nano-objects present in body fluids, such as single and aggregated proteins. This makes separation, titration, and characterization of EVs challenging and time-consuming. Here we present a cost-effective and fast colorimetric assay for probing by eye protein contaminants and determine the concentration of EV preparations, which exploits the synergy between colloidal gold nanoplasmonics, nanoparticle-protein corona, and nanoparticle-membrane interaction. The assay hits a limit of detection of protein contaminants of 5 ng/μL and has a dynamic range of EV concentration ranging from 35 fM to 35 pM, which matches the typical range of EV concentration in body fluids. This work provides the first example of the exploitation of the nanoparticle-protein corona in analytical chemistry.

  3. Micro-spec: an Integrated Direct-detection Spectrometer for Far-infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements.Micro-Spec (µ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 (micrometers) wavelength range which will enable a wide range of flight missions that would otherwise be challenging due tothe large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 sq cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for micro-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance.Two point designs with resolving power of 260 and 520 and an RMS phase error less than approximately 0.004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  4. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  5. Micro-Spec: an integrated direct-detection spectrometer for far-infrared space telescopes

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Hseih, Wen-Ting; Huang, Wei-Chung; Moseley, S. H.; Stevenson, Thomas R.; Wollack, Edward J.

    2014-08-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (μ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 μm wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a ~10 cm2 silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for μ-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. Two point designs with resolving power of 260 and 520 and an RMS phase error less than ~0:004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  6. Analysis of toxic effluents released from PVC carpet under different fire conditions.

    PubMed

    Stec, A A; Readman, J; Blomqvist, P; Gylestam, D; Karlsson, D; Wojtalewicz, D; Dlugogorski, B Z

    2013-01-01

    A large number of investigations have been reported on minimising the PAH and PCDD/F yields during controlled combustion, such as incineration. This study is an attempt to quantify acute and chronic toxicants including PAH and PCDD/F in conditions relating to unwanted fires. This paper investigates distribution patterns of fire effluents between gas and aerosol phase, and the different particle size-ranges produced under different fire conditions. PVC carpet was selected as the fuel as a precursor for both PAH and PCDD/F. In order to generate fire effluents under controlled fire conditions, the steady-state tube furnace, was chosen as the physical fire model. Fire scenarios included oxidative pyrolysis, well-ventilated and under-ventilated fires. Fire effluent measurements included: carbon monoxide, carbon dioxide, hydrogen chloride, polycyclic aromatic hydrocarbons, chlorinated dibenzo-dioxins and furans and soot. The distribution patterns between gas and particle phase, and the size-ranges of the particles produced in these fires together with their chemical composition is also reported. Significant quantities of respirable submicron particles were detected, together with a range of PAHs. Lower levels of halogenated dioxins were detected in the fire residue compared with those found in other studies. Nevertheless, the findings do have implications for the health and safety of fire and rescue personnel, fire investigators, and other individuals exposed to the residue from unwanted fires. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An Objective Approach to Determining the Weight Ranges of Prey Preferred by and Accessible to the Five Large African Carnivores

    PubMed Central

    Clements, Hayley S.; Tambling, Craig J.; Hayward, Matt W.; Kerley, Graham I. H.

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed “accessible prey”. Accessible prey weight ranges were found to be 14–135 kg for cheetah Acinonyx jubatus, 1–45 kg for leopard Panthera pardus, 32–632 kg for lion Panthera leo, 15–1600 kg for spotted hyaena Crocuta crocuta and 10–289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species. PMID:24988433

  8. Ocelot Population Status in Protected Brazilian Atlantic Forest.

    PubMed

    Massara, Rodrigo Lima; Paschoal, Ana Maria de Oliveira; Doherty, Paul Francis; Hirsch, André; Chiarello, Adriano Garcia

    2015-01-01

    Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators.

  9. Ocelot Population Status in Protected Brazilian Atlantic Forest

    PubMed Central

    Massara, Rodrigo Lima; Paschoal, Ana Maria de Oliveira; Doherty, Paul Francis; Hirsch, André; Chiarello, Adriano Garcia

    2015-01-01

    Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators. PMID:26560347

  10. Can Lasers Play a Rôle in Planetary Defense?

    NASA Astrophysics Data System (ADS)

    Phipps, Claude

    2010-10-01

    It is now well-established that a Near-Earth Object (NEO) in the 5 to 10-km size range extinguished the dinosaurs. Although such events have an impact interval on the order of 100 M years, a method of rapid response to such a threat is crucial, since warning time is short. Objects in the 0.1 to 1 km size range may not be detected before approaching within 1 to 10 astronomical units (AU) of Earth and, since their approach velocity may be 30-60 km/s, that situation leaves 100-300 days to respond. Although the most frequently suggested response to such a threat is a standoff nuclear detonation, physically delivered to the NEO, this paper finds significant advantages in retargeting, probability of success and even precise target location are possible with a high power laser alternative. Assuming a momentum coupling coefficient Cm = 3.5 dyn-s/J and detection at 6.3 AU, a 770 kW repetitive pulse 355 nm laser (f = 1.7 ppm with 27 MJ, 10 ps pulses) will deflect a 200-m-diameter icy NEO sufficiently to avoid collision. The focusing mirror would need to be manufactured on the Moon.

  11. Real-time multisensor data fusion for target detection, classification, tracking, counting, and range estimates

    NASA Astrophysics Data System (ADS)

    Tsui, Eddy K.; Thomas, Russell L.

    2004-09-01

    As part of the Commanding General of Army Material Command's Research, Development & Engineering Command (RDECOM), the U.S. Army Research Development and Engineering Center (ARDEC), Picatinny funded a joint development effort with McQ Associates, Inc. to develop an Advanced Minefield Sensor (AMS) as a technology evaluation prototype for the Anti-Personnel Landmine Alternatives (APLA) Track III program. This effort laid the fundamental groundwork of smart sensors for detection and classification of targets, identification of combatant or noncombatant, target location and tracking at and between sensors, fusion of information across targets and sensors, and automatic situation awareness to the 1st responder. The efforts have culminated in developing a performance oriented architecture meeting the requirements of size, weight, and power (SWAP). The integrated digital signal processor (DSP) paradigm is capable of computing signals from sensor modalities to extract needed information within either a 360° or fixed field of view with acceptable false alarm rate. This paper discusses the challenges in the developments of such a sensor, focusing on achieving reasonable operating ranges, achieving low power, small size and low cost, and applications for extensions of this technology.

  12. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.

    2001-06-01

    Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.

  13. Visual-search models for location-known detection tasks

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.

    2017-03-01

    Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

  14. Pectin characterisation using size exclusion chromatography: A comparison of ELS and RI detection.

    PubMed

    Muñoz-Almagro, Nerea; Rico-Rodriguez, Fabián; Villamiel, Mar; Montilla, Antonia

    2018-06-30

    A high-performance size-exclusion chromatography (HPSEC) method coupled to Evaporative Light Scattering (ELS) and Refractive Index (RI) detectors were evaluated and compared for the molecular mass (Mw) estimation of pectin in a wide range (0.342-805 kDa). Instrumental parameters of the ELSD were optimised by Response Surface Methodology (RSM) being 73 °C the evaporator temperature and 0.9 mL/min the air flow rate. The linear range for the ELSD concentration response was wider (10-2250 mg/L) and better (R 2  = 0.985) than RID (10-1500 mg/L; R 2  = 0.875). The limits of detection (LOD) and quantitation (LOQ) for all pullulans hardly changed in ELSD (LOD: 1.22-1.99 mg/L; LOQ: 4.07-6.63 mg/L); however, RID showed huge variations (LOD: 0.49-10.41 mg/L; LOQ: 1.64-34.70 mg/L), which increased with the Mw. In general, responses of both detectors were similar for the Mw estimation, although pectin characterisation with HPSEC-ELSD exhibited better results in the lowest Mw compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  16. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    NASA Astrophysics Data System (ADS)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  17. The size distribution of the earth-approaching asteroids

    NASA Technical Reports Server (NTRS)

    Rabinowitz, D. L.

    1993-01-01

    The discovery circumstances of the first asteroids ever observed outside the earth's atmosphere but within the neighborhood of the earth-moon system are described. Four natural objects with diameters in the range 5-50 m were detected during a search for earth-approaching asteroids conducted each month at the 0.91-m Spacewatch Telescope at Kitt Peak. An additional 19 earth approachers with sizes in the range 50 m to 5 km were discovered. These obervations determine the cumulative flux of asteroids near earth as a function of absolute magnitude. For asteroids larger than about 100 m, a power-law dependence with exponent of about 0.9 is observed, consistent with their evolution from the main-belt population. At about 10 m, the flux is more than two orders of magnitude greater than this power-law extrapolation.

  18. Potential for adult-based epidemiological studies to characterize overall cancer risks associated with a lifetime of CT scans.

    PubMed

    Shuryak, Igor; Lubin, Jay H; Brenner, David J

    2014-06-01

    Recent epidemiological studies have suggested that radiation exposure from pediatric CT scanning is associated with small excess cancer risks. However, the majority of CT scans are performed on adults, and most radiation-induced cancers appear during middle or old age, in the same age range as background cancers. Consequently, a logical next step is to investigate the effects of CT scanning in adulthood on lifetime cancer risks by conducting adult-based, appropriately designed epidemiological studies. Here we estimate the sample size required for such studies to detect CT-associated risks. This was achieved by incorporating different age-, sex-, time- and cancer type-dependent models of radiation carcinogenesis into an in silico simulation of a population-based cohort study. This approach simulated individual histories of chest and abdominal CT exposures, deaths and cancer diagnoses. The resultant sample sizes suggest that epidemiological studies of realistically sized cohorts can detect excess lifetime cancer risks from adult CT exposures. For example, retrospective analysis of CT exposure and cancer incidence data from a population-based cohort of 0.4 to 1.3 million (depending on the carcinogenic model) CT-exposed UK adults, aged 25-65 in 1980 and followed until 2015, provides 80% power for detecting cancer risks from chest and abdominal CT scans.

  19. Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.

    2010-01-01

    The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm objects are an empirical extension from larger debris. The extension takes into account the results of micro-debris (from 10 micron to 1 mm) population modeling that is based on shuttle impact data, in the hope of making a smooth transition between micron and millimeter size regimes. This paper also includes a brief discussion on issues and potential future work concerning the analysis and interpretation of Goldstone radar data.

  20. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  1. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1986-01-01

    The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  2. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1985-01-01

    The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  3. Effect of Thermal Diffusivity on the Detectability of TNDE

    NASA Technical Reports Server (NTRS)

    Zhao, Junduo; Chu, Tsuchin; Russell, Samuel S.

    2000-01-01

    The effect of thermal diffusively on the defect detectability in Carbon/Epoxy composite panels by transient thermography is presented in this paper. A series of Finite Element Models were constructed and analyzed to simulate the transient heat transfer phenomenon during Thermographic Non-destructive Evaluation (TNDE) of composite panels with square defects. Six common carbon fibers were considered. The models were built for composites with various combinations of fibers and volumetric ratios. Finite Element Analysis of these models showed the trends of the detectable range and the maximum thermal contrast versus the thermal diffusivity of various composites. Additionally, the trends of defect size to depth ratio and the thermal contrast has been investigated.

  4. Range contraction in large pelagic predators

    PubMed Central

    Worm, Boris; Tittensor, Derek P.

    2011-01-01

    Large reductions in the abundance of exploited land predators have led to significant range contractions for those species. This pattern can be formalized as the range–abundance relationship, a general macroecological pattern that has important implications for the conservation of threatened species. Here we ask whether similar responses may have occurred in highly mobile pelagic predators, specifically 13 species of tuna and billfish. We analyzed two multidecadal global data sets on the spatial distribution of catches and fishing effort targeting these species and compared these with available abundance time series from stock assessments. We calculated the effort needed to reliably detect the presence of a species and then computed observed range sizes in each decade from 1960 to 2000. Results suggest significant range contractions in 9 of the 13 species considered here (between 2% and 46% loss of observed range) and significant range expansions in two species (11–29% increase). Species that have undergone the largest declines in abundance and are of particular conservation concern tended to show the largest range contractions. These include all three species of bluefin tuna and several marlin species. In contrast, skipjack tuna, which may have increased its abundance in the Pacific, has also expanded its range size. These results mirror patterns described for many land predators, despite considerable differences in habitat, mobility, and dispersal, and imply ecological extirpation of heavily exploited species across parts of their range. PMID:21693644

  5. Contributed review: quantum cascade laser based photoacoustic detection of explosives.

    PubMed

    Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P

    2015-03-01

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  6. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B.; Fischer, H.

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacousticmore » spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.« less

  7. Software error detection

    NASA Technical Reports Server (NTRS)

    Buechler, W.; Tucker, A. G.

    1981-01-01

    Several methods were employed to detect both the occurrence and source of errors in the operational software of the AN/SLQ-32. A large embedded real time electronic warfare command and control system for the ROLM 1606 computer are presented. The ROLM computer provides information about invalid addressing, improper use of privileged instructions, stack overflows, and unimplemented instructions. Additionally, software techniques were developed to detect invalid jumps, indices out of range, infinte loops, stack underflows, and field size errors. Finally, data are saved to provide information about the status of the system when an error is detected. This information includes I/O buffers, interrupt counts, stack contents, and recently passed locations. The various errors detected, techniques to assist in debugging problems, and segment simulation on a nontarget computer are discussed. These error detection techniques were a major factor in the success of finding the primary cause of error in 98% of over 500 system dumps.

  8. Optimal egg size in a suboptimal environment: reproductive ecology of female Sonora mud turtles (Kinosternon sonoriense) in central Arizona, USA

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Madrak, Sheila V.; Drost, Charles A.; Monatesti, Anthony J.; Casper, Dennis; Znari, Mohammed

    2012-01-01

    We studied the reproductive ecology of female Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, a chemically-challenging natural wetland in central Arizona, USA. Females matured between 115.5 and 125 mm carapace length (CL) and 36-54% produced eggs each year. Eggs were detected in X-radiographs from 23 April-28 September (2007-2008) and the highest proportion (56%) of adult females with eggs occurred in June and July. Clutch frequency was rarely more than once per year. Clutch size was weakly correlated with body size, ranged from 1-8 (mean = 4.96) and did not differ significantly between years. X-ray egg width ranged from 17.8-21.7 mm (mean 19.4 mm) and varied more among clutches than within. Mean X-ray egg width of a clutch did not vary significantly with CL of females, although X-ray pelvic aperture width increased with CL. We observed no evidence of a morphological constraint on egg width. In addition, greater variation in clutch size, relative to egg width, suggests that egg size is optimized in this hydrologically stable but chemically-challenging habitat. We suggest that the diversity of architectures exhibited by the turtle pelvis, and their associated lack of correspondence to taxonomic or behavioral groupings, explains some of the variation observed in egg size of turtles.

  9. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size

    PubMed Central

    Richman, Julie D.; Livi, Kenneth J.T.; Geyh, Alison S.

    2011-01-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was −0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected. PMID:21625364

  10. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size.

    PubMed

    Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S

    2011-06-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.

  11. Methodology for the passive detection and discrimination of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin

    2013-05-01

    The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.

  12. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays

    PubMed Central

    Yeh, Yin-Ting; Tang, Yi; Sebastian, Aswathy; Dasgupta, Archi; Perea-Lopez, Nestor; Albert, Istvan; Lu, Huaguang; Terrones, Mauricio; Zheng, Si-Yang

    2016-01-01

    Viral infectious diseases can erupt unpredictably, spread rapidly, and ravage mass populations. Although established methods, such as polymerase chain reaction, virus isolation, and next-generation sequencing have been used to detect viruses, field samples with low virus count pose major challenges in virus surveillance and discovery. We report a unique carbon nanotube size-tunable enrichment microdevice (CNT-STEM) that efficiently enriches and concentrates viruses collected from field samples. The channel sidewall in the microdevice was made by growing arrays of vertically aligned nitrogen-doped multiwalled CNTs, where the intertubular distance between CNTs could be engineered in the range of 17 to 325 nm to accurately match the size of different viruses. The CNT-STEM significantly improves detection limits and virus isolation rates by at least 100 times. Using this device, we successfully identified an emerging avian influenza virus strain [A/duck/PA/02099/2012(H11N9)] and a novel virus strain (IBDV/turkey/PA/00924/14). Our unique method demonstrates the early detection of emerging viruses and the discovery of new viruses directly from field samples, thus creating a universal platform for effectively remediating viral infectious diseases. PMID:27730213

  13. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  14. Spatial filtering precedes motion detection.

    PubMed

    Morgan, M J

    1992-01-23

    When we perceive motion on a television or cinema screen, there must be some process that allows us to track moving objects over time: if not, the result would be a conflicting mass of motion signals in all directions. A possible mechanism, suggested by studies of motion displacement in spatially random patterns, is that low-level motion detectors have a limited spatial range, which ensures that they tend to be stimulated over time by the same object. This model predicts that the direction of displacement of random patterns cannot be detected reliably above a critical absolute displacement value (Dmax) that is independent of the size or density of elements in the display. It has been inferred that Dmax is a measure of the size of motion detectors in the visual pathway. Other studies, however, have shown that Dmax increases with element size, in which case the most likely interpretation is that Dmax depends on the probability of false matches between pattern elements following a displacement. These conflicting accounts are reconciled here by showing that Dmax is indeed determined by the spacing between the elements in the pattern, but only after fine detail has been removed by a physiological prefiltering stage: the filter required to explain the data has a similar size to the receptive field of neurons in the primate magnocellular pathway. The model explains why Dmax can be increased by removing high spatial frequencies from random patterns, and simplifies our view of early motion detection.

  15. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  16. Detection of microparticles in dynamic processes

    NASA Astrophysics Data System (ADS)

    Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.; Rubtsov, I. A.; Shechtman, L. I.; Zhulanov, V. V.; Tolochko, B. P.; Rykovanov, G. N.; Muzyrya, A. K.; Smirnov, E. B.; Stolbikov, M. Yu; Prosvirnin, K. M.

    2016-11-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μs. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μs in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded.

  17. Estimating numbers of greater prairie-chickens using mark-resight techniques

    USGS Publications Warehouse

    Clifton, A.M.; Krementz, D.G.

    2006-01-01

    Current monitoring efforts for greater prairie-chicken (Tympanuchus cupido pinnatus) populations indicate that populations are declining across their range. Monitoring the population status of greater prairie-chickens is based on traditional lek surveys (TLS) that provide an index without considering detectability. Estimators, such as immigration-emigration joint maximum-likelihood estimator from a hypergeometric distribution (IEJHE), can account for detectability and provide reliable population estimates based on resightings. We evaluated the use of mark-resight methods using radiotelemetry to estimate population size and density of greater prairie-chickens on 2 sites at a tallgrass prairie in the Flint Hills of Kansas, USA. We used average distances traveled from lek of capture to estimate density. Population estimates and confidence intervals at the 2 sites were 54 (CI 50-59) on 52.9 km 2 and 87 (CI 82-94) on 73.6 km2. The TLS performed at the same sites resulted in population ranges of 7-34 and 36-63 and always produced a lower population index than the mark-resight population estimate with a larger range. Mark-resight simulations with varying male:female ratios of marks indicated that this ratio was important in designing a population study on prairie-chickens. Confidence intervals for estimates when no marks were placed on females at the 2 sites (CI 46-50, 76-84) did not overlap confidence intervals when 40% of marks were placed on females (CI 54-64, 91-109). Population estimates derived using this mark-resight technique were apparently more accurate than traditional methods and would be more effective in detecting changes in prairie-chicken populations. Our technique could improve prairie-chicken management by providing wildlife biologists and land managers with a tool to estimate the population size and trends of lekking bird species, such as greater prairie-chickens.

  18. The single mirror small size telescope (SST-1M) of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; WiÈ©cek, M.; Zagdański, A.

    2016-07-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). The CTA south array will be composed of about 100 telescopes, out of which about 70 are of SST class, which are optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV. The SST-1M implements a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light produced in atmospheric showers is focused onto a 88 cm wide hexagonal photo-detection plane, composed of 1296 custom designed large area hexagonal silicon photomultipliers (SiPM) and a fully digital readout and trigger system. The SST-1M camera has been designed to provide high performance in a robust as well as compact and lightweight design. In this contribution, we review the different steps that led to the realization of the telescope prototype and its innovative camera.

  19. DNA-based species detection capabilities using laser transmission spectroscopy

    PubMed Central

    Mahon, A. R.; Barnes, M. A.; Li, F.; Egan, S. P.; Tanner, C. E.; Ruggiero, S. T.; Feder, J. L.; Lodge, D. M.

    2013-01-01

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications. PMID:23015524

  20. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  1. [Study on transformation mechanism of SOA from biogenic VOC under UV-B condition].

    PubMed

    Li, Ying-Ying; Li, Xiang; Chen, Jian-Min

    2011-12-01

    A laboratory study was carried out to investigate the biogenic volatile organic compounds (BVOC) in a lab-made glass chamber. The secondary organic aerosol (SOA) products can be detected under the UV photooxidation of BVOC. Pelargonium x Citrenella was chosen as the target plant in this research because it can release a large amount of BVOCs. The predominant 7 alkene and ketol compounds were detected by using solid phase microextraction (SPME) sampling and gas chromatography/mass spectrometry (GC/MS) analysis. The photochemical experiment indicated that these BVOC can be rapidly oxidized into SOA under UV-B irradiation. A tandem differential mobility analyzer (TDMA) was used to measure the size distribution and the hygroscopicity of the SOA. The particle diameter was in the range of 50 nm to 320 nm. The high hygroscopicity of SOA was also obtained and the size increased from 1.05 to 1.11 during the wet experiment.

  2. Methodology and apparatus for diffuse photon imaging

    DOEpatents

    Feng, S.C.; Zeng, F.; Zhao, H.L.

    1997-12-09

    Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue. 58 figs.

  3. Methodology and apparatus for diffuse photon mimaging

    DOEpatents

    Feng, Shechao C.; Zeng, Fanan; Zhao, Hui-Lin

    1997-12-09

    Non-invasive near infrared optical medical imaging devices for both hematoma detection in the brain and early tumor detection in the breast is achieved using image reconstruction which allows a mapping of the position dependent contrast diffusive propagation constants, which are related to the optical absorption coefficient and scattering coefficient in the tissue, at near infrared wavelengths. Spatial resolutions in the range of 5 mm for adult brain sizes and breast sizes can be achieved. The image reconstruction utilizes WKB approximation on most probable diffusion paths which has as lowest order approximation the straight line-of-sight between the plurality of sources and the plurality of detectors. The WKB approximation yields a set of linear equations in which the contrast optical absorption coefficients are the unknowns and for which signals can be generated to produce a pixel map of the contrast optical resolution of the scanned tissue.

  4. A computer controlled television detector for light, X-rays and particles

    NASA Technical Reports Server (NTRS)

    Kalata, K.

    1981-01-01

    A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.

  5. The MUSE-Wide survey: detection of a clustering signal from Lyman α emitters in the range 3 < z < 6

    NASA Astrophysics Data System (ADS)

    Diener, C.; Wisotzki, L.; Schmidt, K. B.; Herenz, E. C.; Urrutia, T.; Garel, T.; Kerutt, J.; Saust, R. L.; Bacon, R.; Cantalupo, S.; Contini, T.; Guiderdoni, B.; Marino, R. A.; Richard, J.; Schaye, J.; Soucail, G.; Weilbacher, P. M.

    2017-11-01

    We present a clustering analysis of a sample of 238 Ly α emitters at redshift 3 ≲ z ≲ 6 from the MUSE-Wide survey. This survey mosaics extragalactic legacy fields with 1h MUSE pointings to detect statistically relevant samples of emission line galaxies. We analysed the first year observations from MUSE-Wide making use of the clustering signal in the line-of-sight direction. This method relies on comparing pair-counts at close redshifts for a fixed transverse distance and thus exploits the full potential of the redshift range covered by our sample. A clear clustering signal with a correlation length of r0=2.9^{+1.0}_{-1.1} Mpc (comoving) is detected. Whilst this result is based on only about a quarter of the full survey size, it already shows the immense potential of MUSE for efficiently observing and studying the clustering of Ly α emitters.

  6. Single-particle characterization of the High Arctic summertime aerosol

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS and its low hit rate. To our knowledge, this study reports on the first in-situ single-particle mass spectrometric measurements in the marine boundary layer of the High-Arctic pack-ice region.

  7. Single-particle characterization of the high-Arctic summertime aerosol

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.

  8. Detection methods and performance criteria for genetically modified organisms.

    PubMed

    Bertheau, Yves; Diolez, Annick; Kobilinsky, André; Magin, Kimberly

    2002-01-01

    Detection methods for genetically modified organisms (GMOs) are necessary for many applications, from seed purity assessment to compliance of food labeling in several countries. Numerous analytical methods are currently used or under development to support these needs. The currently used methods are bioassays and protein- and DNA-based detection protocols. To avoid discrepancy of results between such largely different methods and, for instance, the potential resulting legal actions, compatibility of the methods is urgently needed. Performance criteria of methods allow evaluation against a common standard. The more-common performance criteria for detection methods are precision, accuracy, sensitivity, and specificity, which together specifically address other terms used to describe the performance of a method, such as applicability, selectivity, calibration, trueness, precision, recovery, operating range, limit of quantitation, limit of detection, and ruggedness. Performance criteria should provide objective tools to accept or reject specific methods, to validate them, to ensure compatibility between validated methods, and be used on a routine basis to reject data outside an acceptable range of variability. When selecting a method of detection, it is also important to consider its applicability, its field of applications, and its limitations, by including factors such as its ability to detect the target analyte in a given matrix, the duration of the analyses, its cost effectiveness, and the necessary sample sizes for testing. Thus, the current GMO detection methods should be evaluated against a common set of performance criteria.

  9. Measurement of cervical flexor endurance following whiplash.

    PubMed

    Kumbhare, Dinesh A; Balsor, Brad; Parkinson, William L; Harding Bsckin, Peter; Bedard, Michel; Papaioannou, Alexandra; Adachi, Jonathan D

    2005-07-22

    To investigate measurement properties of a practical test of cervical flexor endurance (CFE) in whiplash patients including inter-rater reliability, sensitivity to clinical change, criterion related validity against the Neck Disability Index (NDI), and discriminant validity for injured versus uninjured populations. Two samples were recruited, 81 whiplash patients, and a convenience sample of 160 subjects who were not seeking treatment and met criteria for normal pain and range of motion. CFE was measured using a stopwatch while the subject, in crook lying, held their head against gravity to fatigue. Inter-rater reliability in whiplash patients was in a range considered 'almost perfect' (Intraclass Correlation=0.96). CFE had greater inter-subject variability than the NDI or range of motion in any of three planes. However, the effect size for improvement in CFE over treatment was as large as the effect sizes for all of those measures. In multivariate regression, CFE changes accounted for changes on the NDI better than the three ranges of motion. CFE discriminated whiplash patients who were within six months of injury (n=71) from age and gender matched normals with high effect size (ES=1.5). These findings provide evidence of reliability and validity for CFE measurement, and demonstrate that CFE detects clinical improvements. Variance on CFE emphasizes the need to consider inter-, and intra-subject standard deviations to interpret scores.

  10. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM samples. Some of the day to night difference may have been caused also by differing wind directions transporting air masses from different emission sources during the day and the night. The present findings indicate the important role of the local particle sources and atmospheric processes on the health related toxicological properties of the PM. The varying toxicological responses evoked by the PM samples showed the importance of examining various particle sizes. Especially the detected considerable toxicological activity by PM0.2 size range suggests they're attributable to combustion sources, new particle formation and atmospheric processes.

  11. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    NASA Astrophysics Data System (ADS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2000-03-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.

  12. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  13. Many-body localization in a long range XXZ model with random-field

    NASA Astrophysics Data System (ADS)

    Li, Bo

    2016-12-01

    Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.

  14. A simplified guide for charged aerosol detection of non-chromophoric compounds-Analytical method development and validation for the HPLC assay of aerosol particle size distribution for amikacin.

    PubMed

    Soliven, Arianne; Haidar Ahmad, Imad A; Tam, James; Kadrichu, Nani; Challoner, Pete; Markovich, Robert; Blasko, Andrei

    2017-09-05

    Amikacin, an aminoglycoside antibiotic lacking a UV chromophore, was developed into a drug product for delivery by inhalation. A robust method for amikacin assay analysis and aerosol particle size distribution (aPSD) determination, with comparable performance to the conventional UV detector was developed using a charged aerosol detector (CAD). The CAD approach involved more parameters for optimization than UV detection due to its sensitivity to trace impurities, non-linear response and narrow dynamic range of signal versus concentration. Through careful selection of the power transformation function value and evaporation temperature, a wider linear dynamic range, improved signal-to-noise ratio and high repeatability were obtained. The influences of mobile phase grade and glassware binding of amikacin during sample preparation were addressed. A weighed (1/X 2 ) least square regression was used for the calibration curve. The limit of quantitation (LOQ) and limit of detection (LOD) for this method were determined to be 5μg/mL and 2μg/mL, respectively. The method was validated over a concentration range of 0.05-2mg/mL. The correlation coefficient for the peak area versus concentration was 1.00 and the y-intercept was 0.2%. The recovery accuracies of triplicate preparations at 0.05, 1.0, and 2.0mg/mL were in the range of 100-101%. The relative standard deviation (S rel ) of six replicates at 1.0mg/mL was 1%, and S rel of five injections at the limit of quantitation was 4%. A robust HPLC-CAD method was developed and validated for the determination of the aPSD for amikacin. The CAD method development produced a simplified procedure with minimal variability in results during: routine operation, transfer from one instrument to another, and between different analysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The extraction and measurement of bone morphogenetic protein 7 from bovine cortical bone as a function of particle size.

    PubMed

    Pietrzak, William S; Ali, Saba N

    2015-01-01

    Bone morphogenetic proteins (BMPs), present in parts per billion in bone, endow demineralized bone matrix (DBM) with osteoinductive properties suitable for clinical use. Although BMPs are mainly associated with bone matrix, they also associate with other bone compartments as well, including the mineral phase. The purpose of this study was to gain a more complete understanding of the distribution of BMPs in undemineralized bone. Eleven discrete particle size ranges of bovine cortical bone were prepared, ranging between less than 25 μm and 600 to 710 μm for the smallest and largest sizes, respectively. The bone was extracted with 4-M guanidine-HCl/0.05-M Tris-HCl, and the amount of BMP-7 released was measured with enzyme-linked immunosorbant assay. In addition, 106- to 710-μm bone particles were demineralized and similarly extracted for comparison. The measured BMP-7 content of the DBM was 24.6 ± 1.56 ng/g. The values for bone increased nonlinearly with decreasing particle size, ranging from 1.13 ± 0.50 ng/g for the 600- to 710-μm particles to 4.18 ± 1.14 ng/g for the less than 25-μm particles (P < 0.001). However, modeling the bone particles as solid spheres to estimate total surface area showed that the extracted BMP-7 per unit area was greater for larger particle sizes. These seemingly opposing results suggest that BMPs may become proportionally damaged or altered in response to the increased forces required to generate smaller particles and, as such, may not be detectable with enzyme-linked immunosorbant assay. In addition, minimization of bone particle size is not an effective strategy to approach the BMP availability of DBM.

  16. Ice fog and light snow measurements using a high resolution camera system

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-04-01

    In this presentation, measurements collected by the ice crystal imaging (ICI) probe employed during FRAM (Fog Remote Sensing and Modeling) project for the Winter of 2010-2011 in Yellowknife, NWT, Canada are analysed to study small ice crystal impact on aviation operations. Ice fog, diamond dust, and light snow form during cold weather conditions and they affect aviation operations through visibility and deposition over the surfaces. In addition, these events influence the local heat budget through radiative cooling. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges. These phenomena need to be better represented in forecast and climate models and this can only be done using accurate measurements from ground-based instrumentation. Imaging of ice particles' properties can complement other in-situ measurements being collected routinely. The newly developed ICI probe, aimed at measuring ice fog and light snow particles, is presented here. The ICI probe samples ice particles through a vertical inlet, where a laser beam and photodetector detect ice crystals contained in the flow. The detected particles are then imaged with high optical resolution between 10 to 1000 micron size range. An illuminating LED flash and image capturing for measurements are triggered by the photodetector. The results suggested that the majority of ice particles during the two-month long campaign were small with sizes between 300 μm and 800 μm. During ice fog events, the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm. In this presentation, challenges and issues related to small ice crystals are described and their importance for aviation operations and climate change are discussed.

  17. Detection of airborne respiratory syncytial virus in a pediatric acute care clinic.

    PubMed

    Grayson, Stephanie A; Griffiths, Pamela S; Perez, Miriam K; Piedimonte, Giovanni

    2017-05-01

    Respiratory syncytial virus (RSV) is the most common cause of respiratory illness in infants and young children, but this virus is also capable of re-infecting adults throughout life. Universal precautions to prevent its transmission consist of gown and glove use, but masks and goggles are not routinely required because it is believed that RSV is unlikely to be transmitted by the airborne route. Our hypothesis was that RSV is present in respirable-size particles aerosolized by patients seen in a pediatric acute care setting. RSV-laden particles were captured using stationary 2-stage bioaerosol cyclone samplers. Aerosol particles were separated into three size fractions (<1, 1-4.1, and ≥4.1 μm) and were tested for the presence of RSV RNA by real-time PCR. Samplers were set 152 cm ("upper") and 102 cm ("lower") above the floor in each of two examination rooms. Of the total, 554 samples collected over 48 days, only 13 (or 2.3%) were positive for RSV. More than 90% of the RSV-laden aerosol particles were in the ≥4.1 μm size range, which typically settle to the ground within minutes, whereas only one sample (or 8%) was positive for particles in the 1-4.1 μm respirable size range. Our data indicate that airborne RSV-laden particles can be detected in pediatric outpatient clinics during the epidemic peak. However, RSV airborne transmission is highly inefficient. Thus, the logistical and financial implications of mandating the use of masks and goggles to prevent RSV spread seem unwarranted in this setting. Pediatr Pulmonol. 2017;52:684-688. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  19. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Harwit, Martin O.; Jucks, Kenneth W.; Kasting, James F.; Lin, Douglas N C.; Lunine, Jonathan I.; Schneider, Jean; Seager, Sara; Traub, Wesley A.; Woolf, Neville J.

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  20. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets.

    PubMed

    Des Marais, David J; Harwit, Martin O; Jucks, Kenneth W; Kasting, James F; Lin, Douglas N C; Lunine, Jonathan I; Schneider, Jean; Seager, Sara; Traub, Wesley A; Woolf, Neville J

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  1. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species.

    PubMed

    Schmelzle, Molly C; Kinziger, Andrew P

    2016-07-01

    Environmental DNA (eDNA) monitoring approaches promise to greatly improve detection of rare, endangered and invasive species in comparison with traditional field approaches. Herein, eDNA approaches and traditional seining methods were applied at 29 research locations to compare method-specific estimates of detection and occupancy probabilities for endangered tidewater goby (Eucyclogobius newberryi). At each location, multiple paired seine hauls and water samples for eDNA analysis were taken, ranging from two to 23 samples per site, depending upon habitat size. Analysis using a multimethod occupancy modelling framework indicated that the probability of detection using eDNA was nearly double (0.74) the rate of detection for seining (0.39). The higher detection rates afforded by eDNA allowed determination of tidewater goby occupancy at two locations where they have not been previously detected and at one location considered to be locally extirpated. Additionally, eDNA concentration was positively related to tidewater goby catch per unit effort, suggesting eDNA could potentially be used as a proxy for local tidewater goby abundance. Compared to traditional field sampling, eDNA provided improved occupancy parameter estimates and can be applied to increase management efficiency across a broad spatial range and within a diversity of habitats. © 2015 John Wiley & Sons Ltd.

  2. Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range.

    PubMed

    Iglio, Rossella; Mariani, Stefano; Robbiano, Valentina; Strambini, Lucanos; Barillaro, Giuseppe

    2018-04-25

    Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm 2 ) in compression mode, coupled with a large working range (i.e., up to 60% for strain-6 mm in displacement-and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm 3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm 3 , for which a maximum change of the material resistivity (e.g., ρ 0 /ρ 50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm 3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm 2 ), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams pave the way toward breakthrough applications for personalized health care, though not limited to these, which have not been fully addressed to date with flexible strain/stress sensors.

  3. Estimating indices of range shifts in birds using dynamic models when detection is imperfect

    USGS Publications Warehouse

    Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.

    2016-01-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  4. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders

    PubMed Central

    Pfundt, Rolph; del Rosario, Marisol; Vissers, Lisenka E.L.M.; Kwint, Michael P.; Janssen, Irene M.; de Leeuw, Nicole; Yntema, Helger G.; Nelen, Marcel R.; Lugtenberg, Dorien; Kamsteeg, Erik-Jan; Wieskamp, Nienke; Stegmann, Alexander P.A.; Stevens, Servi J.C.; Rodenburg, Richard J.T.; Simons, Annet; Mensenkamp, Arjen R.; Rinne, Tuula; Gilissen, Christian; Scheffer, Hans; Veltman, Joris A.; Hehir-Kwa, Jayne Y.

    2017-01-01

    Purpose: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10–20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. Methods: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. Results: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to –5.8% per disorder). Conclusions: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics. Genet Med advance online publication 27 October 2016 PMID:28574513

  5. Selection of regularization parameter for l1-regularized damage detection

    NASA Astrophysics Data System (ADS)

    Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing

    2018-06-01

    The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.

  6. Evaluation of three read-depth based CNV detection tools using whole-exome sequencing data.

    PubMed

    Yao, Ruen; Zhang, Cheng; Yu, Tingting; Li, Niu; Hu, Xuyun; Wang, Xiumin; Wang, Jian; Shen, Yiping

    2017-01-01

    Whole exome sequencing (WES) has been widely accepted as a robust and cost-effective approach for clinical genetic testing of small sequence variants. Detection of copy number variants (CNV) within WES data have become possible through the development of various algorithms and software programs that utilize read-depth as the main information. The aim of this study was to evaluate three commonly used, WES read-depth based CNV detection programs using high-resolution chromosomal microarray analysis (CMA) as a standard. Paired CMA and WES data were acquired for 45 samples. A total of 219 CNVs (size ranged from 2.3 kb - 35 mb) identified on three CMA platforms (Affymetrix, Agilent and Illumina) were used as standards. CNVs were called from WES data using XHMM, CoNIFER, and CNVnator with modified settings. All three software packages detected an elevated proportion of small variants (< 20 kb) compared to CMA. XHMM and CoNIFER had poor detection sensitivity (22.2 and 14.6%), which correlated with the number of capturing probes involved. CNVnator detected most variants and had better sensitivity (87.7%); however, suffered from an overwhelming detection of small CNVs below 20 kb, which required further confirmation. Size estimation of variants was exaggerated by CNVnator and understated by XHMM and CoNIFER. Low concordances of CNV, detected by three different read-depth based programs, indicate the immature status of WES-based CNV detection. Low sensitivity and uncertain specificity of WES-based CNV detection in comparison with CMA based CNV detection suggests that CMA will continue to play an important role in detecting clinical grade CNV in the NGS era, which is largely based on WES.

  7. Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April-May 2010

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Vergoz, Julien; Le Pichon, Alexis; Ceranna, Lars; Green, David N.; Evers, Läslo G.; Ripepe, Maurizio; Campus, Paola; Liszka, Ludwik; Kvaerna, Tormod; Kjartansson, Einar; Höskuldsson, Ármann

    2011-03-01

    The April-May 2010 summit eruption of Eyjafjallajökull, Iceland, was recorded by 14 atmospheric infrasound sensor arrays at ranges between 1,700 and 3,700 km, indicating that infrasound from modest-size eruptions can propagate for thousands of kilometers in atmospheric waveguides. Although variations in both atmospheric propagation conditions and background noise levels at the sensors generate fluctuations in signal-to-noise ratios and signal detectability, array processing techniques successfully discriminate between volcanic infrasound and ambient coherent and incoherent noise. The current global infrasound network is significantly more dense and sensitive than any previously operated network and signals from large volcanic explosions are routinely recorded. Because volcanic infrasound is generated during the explosive release of fluid into the atmosphere, it is a strong indicator that an eruption has occurred. Therefore, long-range infrasonic monitoring may aid volcanic explosion detection by complementing other monitoring technologies, especially in remote regions with sparse ground-based instrument networks.

  8. Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-μm sized cosmochemical analogues

    NASA Astrophysics Data System (ADS)

    Rousseau, B.; Érard, S.; Beck, P.; Quirico, É.; Schmitt, B.; Brissaud, O.; Montes-Hernandez, G.; Capaccioni, F.; Filacchione, G.; Bockelée-Morvan, D.; Leyrat, C.; Ciarniello, M.; Raponi, A.; Kappel, D.; Arnold, G.; Moroz, L. V.; Palomba, E.; Tosi, F.; Virtis Team

    2018-05-01

    Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 μm, excluding the organics band centred at 3.2 μm. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role.

  9. Development of device for quantifying magnetic nanoparticle tracers accumulating in sentinel lymph nodes

    NASA Astrophysics Data System (ADS)

    Kuwahata, Akihiro; Kaneko, Miki; Chikaki, Shinichi; Kusakabe, Moriaki; Sekino, Masaki

    2018-05-01

    The developed device with electromagnetic coils and small permanent magnets quantifies the iron contents of superparamagnetic iron oxide nanoparticles for sentinel lymph node (SLN) biopsy. To remove diamagnetic and paramagnetic components and detect only superparamagnetic components, a 2nd harmonics signal is detected by a gradiometer under a moderate AC magnetic field (1-2 mT) with the fundamental frequency (2.944 kHz) of the coils and DC magnetic field (1-2 mT) of the magnets. The detection limit with a signal-to-noise ratio of 5 is approximately 0.28 μg of iron, and the device has a wide dynamic range of 104, 0.28 μg-2.8 mg. Additional coils and permanent magnets play an important role producing the optimum distribution of AC/DC magnetic fields for an iron distribution-independent and SLN size-independent quantification. We demonstrated the quantification of the iron in phantoms, which have a size of 3-20 mm with varied iron distributions and contain magnetic nanoparticles numerically. These results indicate that the developed device is useful for quantifying the magnetic nanoparticles accumulating in SLNs.

  10. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

    PubMed Central

    2014-01-01

    The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356

  11. MAGID-II: a next-generation magnetic unattended ground sensor (UGS)

    NASA Astrophysics Data System (ADS)

    Walter, Paul A.; Mauriello, Fred; Huber, Philip

    2012-06-01

    A next generation magnetic sensor is being developed at L-3 Communications, Communication Systems East to enhance the ability of Army and Marine Corps unattended ground sensor (UGS) systems to detect and track targets on the battlefield. This paper describes a magnetic sensor that provides superior detection range for both armed personnel and vehicle targets, at a reduced size, weight, and level of power consumption (SWAP) over currently available magnetic sensors. The design integrates the proven technology of a flux gate magnetometer combined with advanced digital signal processing algorithms to provide the warfighter with a rapidly deployable, extremely low false-alarm-rate sensor. This new sensor improves on currently available magnetic UGS systems by providing not only target detection and direction information, but also a magnetic disturbance readout, indicating the size of the target. The sensor integrates with Government Off-the-Shelf (GOTS) systems such as the United States Army's Battlefield Anti-Intrusion System (BAIS) and the United States Marine Corps Tactical Remote Sensor System (TRSS). The system has undergone testing by the US Marine Corps, as well as extensive company testing. Results from these field tests are given.

  12. Quiescent and Eruptive Prominences at Solar Minimum: A Statistical Study via an Automated Tracking System

    NASA Astrophysics Data System (ADS)

    Loboda, I. P.; Bogachev, S. A.

    2015-07-01

    We employ an automated detection algorithm to perform a global study of solar prominence characteristics. We process four months of TESIS observations in the He II 304Å line taken close to the solar minimum of 2008-2009 and mainly focus on quiescent and quiescent-eruptive prominences. We detect a total of 389 individual features ranging from 25×25 to 150×500 Mm2 in size and obtain distributions of many of their spatial characteristics, such as latitudinal position, height, size, and shape. To study their dynamics, we classify prominences as either stable or eruptive and calculate their average centroid velocities, which are found to rarely exceed 3 km/s. In addition, we give rough estimates of mass and gravitational energy for every detected prominence and use these values to estimate the total mass and gravitational energy of all simultaneously existing prominences (1012 - 1014 kg and 1029 - 1031 erg). Finally, we investigate the form of the gravitational energy spectrum of prominences and derive it to be a power-law of index -1.1 ± 0.2.

  13. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    NASA Astrophysics Data System (ADS)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  14. Berkeley UXO Discriminator (BUD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank

    2007-01-01

    The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve.more » Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.« less

  15. Anti-Idiotype Probes for Toxin Detection

    DTIC Science & Technology

    1991-09-13

    NMurine macrophage activation by staphylococcal exotoxins. Gordo,, Conference .)n Staphylococcal Diseases . Salve Regina Univ. Newport. RI. 16 I I...multisystem disease , toxic shock syndrome. The toxins are serologically distinct, single polypeptide chains, with sizes ranging from 22 kDa to approximately...pleotropic effects on the immune system and in the pathogenesis of disease (21,22,66). Glucocorticoids were reported to be potent inhibitors of the LPS

  16. Handheld Broadband Electromagnetic UXO Sensor

    DTIC Science & Technology

    2006-12-01

    metal pipes of various sizes, some ferrous (steel) and some nonferrous (3 aluminum, 2 copper), have been buried at depths ranging from 10 to 110cm...Cart- or Sled-Mounted, and Pushed or Towed ......4 Figure 4. Example of Metallic Target Spectra for Sensor Axis...1 1.0 EXECUTIVE SUMMARY 1.1 BACKGROUND Detection of unexploded ordnance (UXO) and discrimination between UXO and metallic clutter pose challenges

  17. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.

    PubMed

    Cao, Qian; Sisniega, Alejandro; Brehler, Michael; Stayman, J Webster; Yorkston, John; Siewerdsen, Jeffrey H; Zbijewski, Wojciech

    2018-01-01

    Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution. A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was <0.1 mm for a CMOS, compared to ~0.14 mm for an a-Si:H FPD. For this fine pixel pitch, detectability of fine features could be improved by using a thinner scintillator to reduce light spread blur. A 22% increase in detectability of 0.06 mm features was found for the C400 configuration compared to C700. An improvement in the frequency at 50% modulation (f 50 ) of MTF was measured, increasing from 1.8 lp/mm for C700 to 2.5 lp/mm for C400. The C400 configuration also achieved equivalent or better DQE as C700 for frequencies above ~2 mm -1 . Images of cadaver specimens confirmed improved visualization of trabeculae with the C400 sensor. The small pixel size of CMOS detectors yields improved performance in high-resolution extremity CBCT compared to a-Si:H FPDs, particularly when coupled with a custom 0.4 mm thick scintillator. The results indicate that adoption of a CMOS detector in extremity CBCT can benefit applications in quantitative imaging of trabecular microstructure in humans. © 2017 American Association of Physicists in Medicine.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olawoyin, L.

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research,more » a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.« less

  19. Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Lei; Huang, Youju; Wang, Jingyun; Rong, Yun; Lai, Weihua; Zhang, Jiawei; Chen, Tao

    2015-05-19

    Gold nanoparticles (AuNPs) labeled lateral-flow test strip immunoassay (LFTS) has been widely used in biomedical, feed/food, and environmental analysis fields. Conventional ILFS assay usually uses spherical AuNPs as labeled probes and shows low detection sensitivity, which further limits its widespread practical application. Unlike spherical AuNP used as labeled probe in conventional ILFS, in our present study, a hierarchical flowerlike AuNP specific probe was designed for LFTS and further used to detect Escherichia coli O157:H7 (E. coli O157:H7). Three types of hierarchical flowerlike AuNPs, such as tipped flowerlike, popcornlike, and large-sized flowerlike AuNPs were synthesized in a one-step method. Compared with other two kinds of Au particles, tipped flowerlike AuNPs probes for LFTS particularly exhibited highly sensitive detection of E. coli O157:H7. The remarkable improvement of detection sensitivity of tipped flowerlike AuNPs probes can be achieved even as low as 10(3) colony-forming units (CFU)/mL by taking advantages of its appropriate size and hierarchical structures, which is superior over the detection performance of conventional LFTS. Using this novel tipped flower AuNPs probes, quantitative detection of E. coli O157:H7 can be obtained partially in a wide concentration range with good repeatability. This hierarchical tipped flower-shaped AuNPs probe for LFTS is promising for the practical applications in widespread analysis fields.

  20. Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration.

    PubMed

    Laabs, Claudia N; Amy, Gary L; Jekel, Martin

    2006-07-15

    Stirred cell tests with microfiltration (MF) and ultrafiltration (UF) membranes show high flux decline for WWTP effluents. For the MF membrane, for example, the flux declines within 15 min to 70-80% of the initial flux (J0 is in the range of 1000 L/m2h to 1500 L/m2h). This time corresponds to the filtration of a cumulative volume of 110 L/m2. Feed and permeate samples of the stirred cell tests are analyzed by size-exclusion chromatography (SEC) with on-line organic carbon and UVA254 detection. The resulting chromatograms exhibit a clear difference between the feed and permeate samples in the so-called polysaccharide (PS) peak. The substances eluting in the PS peak (organic colloids, polysaccharides, and proteins) are retained completely by UF membranes and partly by MF membranes, and are responsible for the observed fouling. By sequential filtration experiments the sizes of these macromolecules are determined to be in the range of 10 to 100 nm.

  1. Characterization of ions at Alpine waterfalls

    NASA Astrophysics Data System (ADS)

    Kolarž, P.; Gaisberger, M.; Madl, P.; Hofmann, W.; Ritter, M.; Hartl, A.

    2012-04-01

    During a three-year field campaign of measuring waterfall generated ions, we monitored five different waterfalls in the Austrian Alps. Most measurements were performed at the Krimml waterfall (Salzburg, Austria), which is the biggest waterfall in Europe, and the Gartl waterfall (Mölltal, Austria). We characterized spatial, time and size distributions of waterfall-generated ions under the influence of surrounding topography. The smallest ions with boundary diameters of 0.9, 1.5 and 2 nm, were measured with a cylindrical air ion detector (CDI-06), while ion sizes from 5.5 to 350 nm were measured using a modified Grimm SMPS aerosol spectrometer. High negative ion concentration gradients are detected in the vicinity of the waterfalls, whereas the increase of positive ions was only moderate. Ions in the nano range were the most abundant at 2 nm, and at 120 nm in the sub-micrometer range.

  2. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Morfill, G.; Gruen, E.

    1993-01-01

    The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.

  3. Large format geiger-mode avalanche photodiode LADAR camera

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison

    2013-05-01

    Recently Spectrolab has successfully demonstrated a compact 32x32 Laser Detection and Range (LADAR) camera with single photo-level sensitivity with small size, weight, and power (SWAP) budget for threedimensional (3D) topographic imaging at 1064 nm on various platforms. With 20-kHz frame rate and 500- ps timing uncertainty, this LADAR system provides coverage down to inch-level fidelity and allows for effective wide-area terrain mapping. At a 10 mph forward speed and 1000 feet above ground level (AGL), it covers 0.5 square-mile per hour with a resolution of 25 in2/pixel after data averaging. In order to increase the forward speed to fit for more platforms and survey a large area more effectively, Spectrolab is developing 32x128 Geiger-mode LADAR camera with 43 frame rate. With the increase in both frame rate and array size, the data collection rate is improved by 10 times. With a programmable bin size from 0.3 ps to 0.5 ns and 14-bit timing dynamic range, LADAR developers will have more freedom in system integration for various applications. Most of the special features of Spectrolab 32x32 LADAR camera, such as non-uniform bias correction, variable range gate width, windowing for smaller arrays, and short pixel protection, are implemented in this camera.

  4. Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation.

    PubMed

    Ghani, Milad; Font Picó, Maria Francesca; Salehinia, Shima; Palomino Cabello, Carlos; Maya, Fernando; Berlier, Gloria; Saraji, Mohammad; Cerdà, Víctor; Turnes Palomino, Gemma

    2017-03-10

    We present for the first time the application of metal-organic framework (MOF) mixed-matrix disks (MMD) for the automated flow-through solid-phase extraction (SPE) of environmental pollutants. Zirconium terephthalate UiO-66 and UiO-66-NH 2 MOFs with different size (90, 200 and 300nm) have been incorporated into mechanically stable polyvinylidene difluoride (PVDF) disks. The performance of the MOF-MMDs for automated SPE of seven substituted phenols prior to HPLC analysis has been evaluated using the sequential injection analysis technique. MOF-MMDs enabled the simultaneous extraction of phenols with the concomitant size exclusion of molecules of larger size. The best extraction performance was obtained using a MOF-MMD containing 90nm UiO-66-NH 2 crystals. Using the selected MOF-MMD, detection limits ranging from 0.1 to 0.2μgL -1 were obtained. Relative standard deviations ranged from 3.9 to 5.3% intra-day, and 4.7-5.7% inter-day. Membrane batch-to-batch reproducibility was from 5.2 to 6.4%. Three different groundwater samples were analyzed with the proposed method using MOF-MMDs, obtaining recoveries ranging from 90 to 98% for all tested analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Percolation under noise: Detecting explosive percolation using the second-largest component

    NASA Astrophysics Data System (ADS)

    Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.

    2016-05-01

    We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.

  6. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  7. Wide size range fast integrated mobility spectrometer

    DOEpatents

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  8. Rapid and Highly Sensitive Detection of Lead Ions in Drinking Water Based on a Strip Immunosensor

    PubMed Central

    Kuang, Hua; Xing, Changrui; Hao, Changlong; Liu, Liqiang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    In this study, we have first developed a rapid and sensitive strip immunosensor based on two heterogeneously-sized gold nanoparticles (Au NPs) probes for the detection of trace lead ions in drinking water. The sensitivity was 4-fold higher than that of the conventional LFA under the optimized conditions. The visual limit of detection (LOD) of the amplified method for qualitative detection lead ions was 2 ng/mL and the LOD for semi-quantitative detection could go down to 0.19 ng/mL using a scanning reader. The method suffered from no interference from other metal ions and could be used to detect trace lead ions in drinking water without sample enrichment. The recovery of the test samples ranged from 96% to 103%. As the detection method could be accomplished within 15 min, this method could be used as a potential tool for preliminary monitoring of lead contamination in drinking water. PMID:23539028

  9. Lesion detectability in 2D-mammography and digital breast tomosynthesis using different targets and observers

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2018-05-01

    This work investigates the detection performance of specialist and non-specialist observers for different targets in 2D-mammography and digital breast tomosynthesis (DBT) using the OPTIMAM virtual clinical trials (VCT) Toolbox and a 4-alternative forced choice (4AFC) assessment paradigm. Using 2D-mammography and DBT images of virtual breast phantoms, we compare the detection limits of simple uniform spherical targets and irregular solid masses. Target diameters of 4 mm and 6 mm have been chosen to represent target sizes close to the minimum detectable size found in breast screening, across a range of controlled contrast levels. The images were viewed by a set of specialist observers (five medical physicists and six experienced clinical readers) and five non-specialists. Combined results from both observer groups indicate that DBT has a significantly lower detectable threshold contrast than 2D-mammography for small masses (4 mm: 2.1% [DBT] versus 6.9% [2D]; 6 mm: 0.7% [DBT] versus 3.9% [2D]) and spheres (4 mm: 2.9% [DBT] versus 5.3% [2D]; 6 mm: 0.3% [DBT] versus 2.2% [2D]) (p  <  0.0001). Both observer groups found spheres significantly easier to detect than irregular solid masses for both sizes and modalities (p  <  0.0001) (except 4 mm DBT). The detection performances of specialist and non-specialist observers were generally found to be comparable, where each group marginally outperformed the other in particular detection tasks. Within the specialist group, the clinical readers performed better than the medical physicists with irregular masses (p  <  0.0001). The results indicate that using spherical targets in such studies may produce over-optimistic detection thresholds compared to more complex masses, and that the superiority of DBT for detecting masses over 2D-mammography has been quantified. The results also suggest specialist observers may be supplemented by non-specialist observers (with training) in some types of 4AFC studies.

  10. Phytoestrogens and mycotoxins in Iowa streams: An examination of underinvestigated compounds in agricultural basins

    USGS Publications Warehouse

    Kolpin, Dana W.; Hoerger, Corinne C.; Meyer, Michael T.; Wettstein, Felix E.; Hubbard, Laura E.; Bucheli, Thomas D.

    2010-01-01

    This study provides the first broad-scale investigation on the spatial and temporal occurrence of phytoestrogens and mycotoxins in streams in the United States. Fifteen stream sites across Iowa were sampled five times throughout the 2008 growing season to capture a range of climatic and crop-growth conditions. Basin size upstream from sampling sites ranged from 7 km2 to >836,000 km2 Atrazine (herbicide) also was measured in all samples as a frame-of-reference agriculturally derived contaminant. Target compounds were frequently detected in stream samples: atrazine (100%), formononetin (80%), equol (45%), deoxynivalenol (43%), daidzein (32%), biochanin A (23%), zearalenone (13%), and genistein (11%). The nearly ubiquitous detection of formononetin (isoflavone) suggests a widespread agricultural source, as one would expect with the intense row crop and livestock production present across Iowa. Conversely, the less spatially widespread detections of deoxynivalenol (mycotoxin) suggest a more variable source due to the required combination of proper host and proper temperature and moisture conditions necessary to promote Fusarium spp. infections. Although atrazine concentrations commonly exceeded 100 ng L-1 (42/75 measurements), only deoxynivalenol (6/56 measurements) had concentrations that occasionally exceeded this level. Temporal patterns in concentrations varied substantially between atrazine, formononetin, and deoxynivalenol, as one would expect for contaminants with different source inputs and processes of formation and degradation. The greatest phytoestrogen and mycotoxin concentrations were observed during spring snowmelt conditions. Phytoestrogens and mycotoxins were detected at all sampling sites regardless of basin size. The ecotoxicological effects from long-term, low-level exposures to phytoestrogens and mycotoxins or complex chemicals mixtures including these compounds that commonly take place in surface water are poorly understood and have yet to be systematically investigated in environmental studies.

  11. Phytoestrogens and mycotoxins in Iowa streams: An examination of underinvestigated compounds in agricultural basins

    USGS Publications Warehouse

    Kolpin, D.W.; Hoerger, C.C.; Meyer, M.T.; Wettstein, F.E.; Hubbard, L.E.; Bucheli, T.D.

    2010-01-01

    This study provides the first broad-scale investigation on the spatial and temporal occurrence of phytoestrogens and mycotoxins in streams in the United States. Fifteen stream sites across Iowa were sampled five times throughout the 2008 growing season to capture a range of climatic and crop-growth conditions. Basin size upstream from sampling sites ranged from 7 km2 to >836,000 km2. Atrazine (herbicide) also was measured in all samples as a frame-ofreference agriculturally derived contaminant. Target compounds were frequently detected in stream samples: atrazine (100%), formononetin (80%), equol (45%), deoxynivalenol (43%), daidzein (32%), biochanin A (23%), zearalenone (13%), and genistein (11%). Th e nearly ubiquitous detection of formononetin (isoflavone) suggests a widespread agricultural source, as one would expect with the intense row crop and livestock production present across Iowa. Conversely, the less spatially widespread detections of deoxynivalenol (mycotoxin) suggest a more variable source due to the required combination of proper host and proper temperature and moisture conditions necessary to promote Fusarium spp. infections. Although atrazine concentrations commonly exceeded 100 ng L-1 (42/75 measurements), only deoxynivalenol (6/56 measurements) had concentrations that occasionally exceeded this level. Temporal patterns in concentrations varied substantially between atrazine, formononetin, and deoxynivalenol, as one would expect for contaminants with different source inputs and processes of formation and degradation. The greatest phytoestrogen and mycotoxin concentrations were observed during spring snowmelt conditions. Phytoestrogens and mycotoxins were detected at all sampling sites regardless of basin size. The ecotoxicological effects from long-term, low-level exposures to phytoestrogens and mycotoxins or complex chemicals mixtures including these compounds that commonly take place in surface water are poorly understood and have yet to be systematically investigated in environmental studies. Copyright ?? 2010 by the American Society of Agronomy.

  12. Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun

    2012-01-01

    A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.

  13. Body Size as a Driver of Scavenging in Theropod Dinosaurs.

    PubMed

    Kane, Adam; Healy, Kevin; Ruxton, Graeme D; Jackson, Andrew L

    2016-06-01

    Theropod dinosaurs dominated Earth's terrestrial ecosystem as a diverse group of predators for more than 160 million years, yet little is known about their foraging ecology. Maintaining a balanced energy budget presented a major challenge for therapods, which ranged from the chicken-sized Microraptor up to the whale-sized Giganotosaurus, in the face of intense competition and the demands of ontogenetic growth. Facultative scavenging, a behavior present in almost all modern predators, may have been important in supplementing energetically expensive lifestyles. By using agent-based models based on the allometric relationship between size and foraging behaviors, we show that theropods between 27 and 1,044 kg would have gained a significant energetic advantage over individuals at both the small and large extremes of theropod body mass through their scavenging efficiency. These results were robust to rate of competition, primary productivity, and detection distance. Our models demonstrate the potential importance of facultative scavenging in theropods and the role of body size in defining its prevalence in Mesozoic terrestrial systems.

  14. Speckle pattern sequential extraction metric for estimating the focus spot size on a remote diffuse target.

    PubMed

    Yu, Zhan; Li, Yuanyang; Liu, Lisheng; Guo, Jin; Wang, Tingfeng; Yang, Guoqing

    2017-11-10

    The speckle pattern (line by line) sequential extraction (SPSE) metric is proposed by the one-dimensional speckle intensity level crossing theory. Through the sequential extraction of received speckle information, the speckle metrics for estimating the variation of focusing spot size on a remote diffuse target are obtained. Based on the simulation, we will give some discussions about the SPSE metric range of application under the theoretical conditions, and the aperture size will affect the metric performance of the observation system. The results of the analyses are verified by the experiment. This method is applied to the detection of relative static target (speckled jitter frequency is less than the CCD sampling frequency). The SPSE metric can determine the variation of the focusing spot size over a long distance, moreover, the metric will estimate the spot size under some conditions. Therefore, the monitoring and the feedback of far-field spot will be implemented laser focusing system applications and help the system to optimize the focusing performance.

  15. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

    NASA Astrophysics Data System (ADS)

    El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.

    2018-05-01

    The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sambit Bikas; Haldar, Arijit; Roy, Basudev

    A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe-however, this mode has problems of low S/N due to the small backscattering cross sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors, it would help if the detector size matched with the detection beam radius after the condenser lens (which for backscattered detection would be the trappingmore » objective itself). To suit this condition, we have used a miniature displacement sensor whose dimensions makes it ideal to work with 1:1 images of micrometer-sized trapped probes in the backscattering detection mode. The detector is based on the quadrant photo-integrated chip in the optical pick-up head of a compact disc player. Using this detector, we measured absolute displacements of an optically trapped 1.1 {mu}m probe with a resolution of {approx}10 nm for a bandwidth of 10 Hz at 95% significance without any sample or laser stabilization. We characterized our optical trap for different sized probes by measuring the power spectrum for each probe to 1% accuracy, and found that for 1.1 {mu}m diameter probes, the noise in our position measurement matched the thermal resolution limit for averaging times up to 10 ms. We also achieved a linear response range of around 385 nm with cross talk between axes {approx_equal}4% for 1.1 {mu}m diameter probes. The detector has extremely high bandwidth (few MHz) and low optical power threshold-other factors that can lead to its widespread use in photonic force microscopy.« less

  17. Long-term effect of oncoplastic breast-conserving surgery using latissimus dorsi miniflaps on mammographic surveillance and the detection of local recurrence.

    PubMed

    Mele, S; Wright, D; Paramanathan, N; Laws, S; Peiris, L; Rainsbury, R

    2017-09-01

    Latissimus dorsi miniflap is a breast-conserving volume replacement technique for the reconstruction of large breast defects. While mammographic features of miniflap reconstruction have been described, little is known about the incidence, mode of presentation and size of local recurrence after this procedure. This study aimed to investigate the impact of latissimus dorsi miniflap reconstruction on the frequency, presentation and detection of local recurrence. Clinical, radiological and pathological data were reviewed in 261 patients. Complete records were available for 11 patients developing local recurrence, including mode, time of presentation and size of the recurrent tumours. All mammograms before and after local recurrence were assessed in relation to a range of specific characteristics including parenchymal density, flap visibility, architectural distortion, mass, calcifications, fat necrosis, skin thickening and breast oedema. Twenty-one patients developed local recurrence at 10.4 years following reconstruction (mean age 49 years, resection weight 182 g and tumour size 33 mm). Following radiotherapy, 0.5% of patients developed local recurrence each year, which increased five-fold when radiotherapy was omitted (HR 4.99). Local recurrences were diagnosed in five patients by mammography alone, in three by mammography and palpable lump, and in three by palpable lump alone. They were detected when small (15 mm) and were associated with new mammographic abnormalities in 10 patients. Long follow-up demonstrates that latissimus dorsi miniflap reconstruction allows oncologically safe breast conservation when combined with postoperative radiotherapy. Local recurrences are detected early, either by mammography, clinical examination or both, and detection is not compromised by the presence of a flap. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Detection of metronidazole in honey and metronidazole tablets using carbon dots-based sensor via the inner filter effect.

    PubMed

    Zhao, Jianru; Pan, Xiaohua; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping

    2018-06-01

    In this work, carbon dots (CDs) with a high quantum yield (22.3%) were easily prepared by hydrothermal pyrolysis of acid fuchsin 6B and hydrogen peroxide at 180°C for 10 h. The resultant CDs possess a narrow size distribution in the range of 2.6 to 3.2 nm and emit blue fluorescence. Interestingly, the absorption band of metronidazole (MTZ) centered at 318 nm can complementary overlap with the excitation band of the as-prepared CDs centered at 320 nm, resulting in an inner filter effect (IFE) in high efficiency. In fact, the fluorescence quenching of the CDs depends on the concentration of MTZ. Therefore, a simple method for the detection of MTZ can be established using the CDs-based sensor via the IFE. The linear range of the proposed method was 0-10 μg mL -1 with the limit of detection as low as 0.257 μg mL -1 . This CDs-based sensor had been applied for the detection of MTZ in honey and MTZ tablets with the recoveries in the range of 98.0% to 105.1% and 95.7% to 106.5%, respectively. Therefore, the as-prepared CDs have a potential to be developed as a MTZ sensor with high selectivity, sensitivity and accuracy. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Performance status of a small robot-mounted or hand-held, solar-blind, standoff chemical, biological, and explosives (CBE) sensor

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.

    2009-05-01

    Photon Systems and JPL are continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels CBE materials on surfaces. This deep ultraviolet CBE sensor is the result of ongoing Army STTR and DTRA programs. The evolving 6 lb, 15W, lantern-size sensor can discriminate CBE from background clutter materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where RR and LINF emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no spectral overlap or interference of LINF over RR or RR over LINF. The new eye-safe targeted ultraviolet chemical, biological, and explosives (TUCBE) sensor can detect and identify less than 1 μg/cm2 of explosives or 104 bacterial spores at 10 meters standoff, or 10 ng/cm2 of explosives or 102 bacterial spores/cm2 at 1 meter standoff. Detection and identification requires less than 1 ms and has a sample rate up to 20 Hz. Lower concentrations of contamination can be detected and identified as closer ranges and higher concentrations at longer ranges. The sensor is solar blind and can be operated in full daylight conditions as a result of excitation and detection in the deep UV and the use of a gated detection system.

  20. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis.

    PubMed

    Szarka, Mate; Guttman, Andras

    2017-10-17

    We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.

  1. Does raising type 1 error rate improve power to detect interactions in linear regression models? A simulation study.

    PubMed

    Durand, Casey P

    2013-01-01

    Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.

  2. The 1996 Leonid shower as studied with a potassium lidar: Observations and inferred meteoroid sizes

    NASA Astrophysics Data System (ADS)

    Höffner, Josef; von Zahn, Ulf; McNeil, William J.; Murad, Edmond

    1999-02-01

    We report on the observation and analysis of meteor trails that are detected by ground-based lidar tuned to the D1 fine structure line of K. The lidar is located at Kühlungsborn, Germany. The echo profiles are analyzed with a temporal resolution of about 1 s and altitude resolution of 200 m. Identification of meteor trails in the large archive of raw data is performed with help of an automated computer search code. During the peak of the Lenoid meteor shower on the morning of November 17, 1996, we observed seven meteor trails between 0245 and 0445 UT. Their mean altitude was 89.0 km. The duration of observation of individual trails ranges from 3 s to ~30 min. We model the probability of observing a meteor trail by ground-based lidar as a function of both altitude distribution and duration of the trails. These distributions depend on the mass distribution, entry velocity, and entry angle of the meteoroids, on the altitude-dependent chemical and dynamical lifetimes of the released K atom, and on the absolute detection sensitivity of our lidar experiment. From the modeling, we derive the statistical likelihood of detection of trails from meteoroids of a particular size. These bracket quite well the observed trails. The model also gives estimates of the probable size of the meteoroids based on characteristics of individual trails.

  3. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    NASA Astrophysics Data System (ADS)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  4. Reversed-phase HPLC analysis of levetiracetam in tablets using monolithic and conventional C18 silica columns.

    PubMed

    Can, Nafiz O; Arli, Goksel

    2010-01-01

    Development and validation of an RP-HPLC method for determination of levetiracetam in pharmaceutical tablets is described. The separation and quantification of levetiracetam and caffeine (internal standard) were performed using a single analytical procedure with two different types of stationary phases, conventional Phenomenex Gemini C18 (100 x 4.6 mm, 5 microm) and Merck Chromolith Performance RP18e (100 x 4.6 mm, macropore size 2 mm, micropore size 13 nm) monolithic silica. Five-microliter aliquots of samples were injected into the system and eluted using water-acetonitrile (90 + 10, v/v) mobile phase pumped at the rate of 1 mL/min. The analyte peaks were detected at 200 nm using a diode array detector with adequate resolution. Validation studies were performed using the method recommended by the International Conference on Harmonization, the U.S. Pharmacopeia, and AOAC INTERNATIONAL, which includes accuracy, precision, range, limits, robustness, and system suitability parameters. Levetiracetam and caffeine were detected in about 7 min using the conventional column, whereas less than 5 min was required when the monolithic column was used. Calibration plots had r values close to unity in the range of 0.8-8.0 microg/mL. Assay of levetiracetam in a tablet formulation was demonstrated as an application to real samples.

  5. Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Yu, Xiawei; Wang, Zhibin; Zhang, Minghui; Kuhn, Uwe; Xie, Zhouqing; Cheng, Yafang; Pöschl, Ulrich; Su, Hang

    2016-09-01

    Fluorescence characteristics of aerosol particles in a polluted atmosphere were studied using a wideband integrated bioaerosol spectrometer (WIBS-4A) in Nanjing, Yangtze River Delta area of China. We observed strong diurnal and day-to-day variations of fluorescent aerosol particles (FAPs). The average number concentrations of FAPs (1-15 µm) detected in the three WIBS measurement channels (FL1: 0.6 cm-3, FL2: 3.4 cm-3, FL3: 2.1 cm-3) were much higher than those observed in forests and rural areas, suggesting that FAPs other than bioaerosols were detected. We found that the number fractions of FAPs were positively correlated with the black carbon mass fraction, especially for the FL1 channel, indicating a large contribution of combustion-related aerosols. To distinguish bioaerosols from combustion-related FAPs, we investigated two classification schemes for use with WIBS data. Our analysis suggests a strong size dependence for the fractional contributions of different types of FAPs. In the FL3 channel, combustion-related particles seem to dominate the 1-2 µm size range while bioaerosols dominate the 2-5 µm range. The number fractions of combustion-related particles and non-combustion-related particles to total aerosol particles were ˜ 11 and ˜ 5 %, respectively.

  6. A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III)

    PubMed Central

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-01-01

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests. PMID:24608007

  7. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).

    PubMed

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-03-07

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGory, K. E.; Walston, L. J.; Goulet, C

    The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Airmore » Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 {+-} 14.7 ha) was similar to that reported in other parts of the species range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.« less

  9. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. D.; Jogler, T.; Dumm, J.

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  10. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  11. A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Yang, Liu; Yuan, Yusheng; Pan, Shuang; Yang, Jidong; Yan, Jingjing; Zhang, Hui; Sun, Qianqian; Hu, Xiaoli

    2018-01-01

    In this work, a simple and facile hydrothermal method for synthesis of water-soluble carbon dots (CDs) with malic acid and urea, and were then employed as a high-performance fluorescent probe for selective and sensitive determination of chlorogenic acid (CGA) based on inner filter effect. The as-synthesized CDs was systematically characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Energy disperse spectroscopy (EDS), UV-vis absorption spectroscopy, spectrofluorophotometry, and the results indicated that the sizes of CDs were mainly distributed in the range of 1.0 nm-3.0 nm with an average diameter of 2.1 nm. More significantly, the as-prepared CDs possessed remarkable selectivity and sensitivity towards CGA with the linear range of 0.15 μmol L- 1-60 μmol L- 1 and the detection limit for CGA was 45 nmol L- 1 (3σ/k). The practical applications of CDs for detection of CGA have already been successfully demonstrated in Honeysuckle. This sensitive, selective method has a great application prospect in the pharmaceutical and biological analysis field owing to its simplicity and rapidity for the detection of CGA.

  12. Highly sensitive protein detection using a plasmonic field effect transistor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shokri-Kojori, Hossein; Ji, Yiwen; Han, Xu; Paik, Younghun; Braunschweig, Adam; Kim, Sung Jin

    2016-03-01

    Localized surface Plasmon Resonance (LSPR) is a nanoscale phenomenon which presents strong resonance associated with noble metal nanostructures. This plasmon resonance based technology enables highly sensitive detection for chemical and biological applications. Recently, we have developed a plasmon field effect transistor (FET) that enables direct plasmonic-to-electric signal conversion with signal amplification. The plasmon FET consists of back-gated field effect transistor incorporated with gold nanoparticles on top of the FET channel. The gold nanostructures are physically separated from transistor electrodes and can be functionalized for a specific biological application. In this presentation, we report a successful demonstration of a model system to detect Con A proteins using Carbohydrate linkers as a capture molecule. The plasmon FET detected a very low concentration of Con A (0.006 mg/L) while it offers a wide dynamic range of 0.006-50 mg/L. In this demonstration, we used two-color light sources instead of a bulky spectrometer to achieve high sensitivity and wide dynamic range. The details of two-color based differential measurement method will be discussed. This novel protein-based sensor has several advantages such as extremely small size for point-of-care system, multiplexing capability, no need of complex optical geometry.

  13. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  14. Identification of Balanced Chromosomal Rearrangements Previously Unknown Among Participants in the 1000 Genomes Project: Implications for Interpretation of Structural Variation in Genomes and the Future of Clinical Cytogenetics

    PubMed Central

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huangming; Leung, Tak Yeung; Morton, Cynthia C.; Cheung, Sau Wai; Choy, Kwong Wai

    2017-01-01

    Purpose Recent studies demonstrate that whole-genome sequencing (WGS) enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in The 1000 Genomes Project without knowing affected bands. Methods The 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparently BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold). Results Our approach detected four reciprocal balanced translocations and four inversions ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and PCR studies. One of DNAs has a subtle translocation that is not readily identified by chromosome analysis due to similar banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene. Conclusions Our study demonstrates the extension of utilizing low-coverage WGS for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project. PMID:29095815

  15. Correlation analysis of fracture arrangement in space

    NASA Astrophysics Data System (ADS)

    Marrett, Randall; Gale, Julia F. W.; Gómez, Leonel A.; Laubach, Stephen E.

    2018-03-01

    We present new techniques that overcome limitations of standard approaches to documenting spatial arrangement. The new techniques directly quantify spatial arrangement by normalizing to expected values for randomly arranged fractures. The techniques differ in terms of computational intensity, robustness of results, ability to detect anti-correlation, and use of fracture size data. Variation of spatial arrangement across a broad range of length scales facilitates distinguishing clustered and periodic arrangements-opposite forms of organization-from random arrangements. Moreover, self-organized arrangements can be distinguished from arrangements due to extrinsic organization. Traditional techniques for analysis of fracture spacing are hamstrung because they account neither for the sequence of fracture spacings nor for possible coordination between fracture size and position, attributes accounted for by our methods. All of the new techniques reveal fractal clustering in a test case of veins, or cement-filled opening-mode fractures, in Pennsylvanian Marble Falls Limestone. The observed arrangement is readily distinguishable from random and periodic arrangements. Comparison of results that account for fracture size with results that ignore fracture size demonstrates that spatial arrangement is dominated by the sequence of fracture spacings, rather than coordination of fracture size with position. Fracture size and position are not completely independent in this example, however, because large fractures are more clustered than small fractures. Both spatial and size organization of veins here probably emerged from fracture interaction during growth. The new approaches described here, along with freely available software to implement the techniques, can be applied with effect to a wide range of structures, or indeed many other phenomena such as drilling response, where spatial heterogeneity is an issue.

  16. Optical droplet vaporization of micron-sized perfluorocarbon droplets and their photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Rui, Min; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2011-03-01

    An acoustic and photoacoustic characterization of micron-sized perfluorocarbon (PFC) droplets is presented. PFC droplets are currently being investigated as acoustic and photoacoustic contrast agents and as cancer therapy agents. Pulse echo measurements at 375 MHz were used to determine the diameter, ranging from 3.2 to 6.5 μm, and the sound velocity, ranging from 311 to 406 m/s of nine droplets. An average sound velocity of 379 +/- 18 m/s was calculated for droplets larger than the ultrasound beam width of 4.0 μm. Optical droplet vaporization, where vaporization of a single droplet occurred upon laser irradiation of sufficient intensity, was verified using pulse echo acoustic methods. The ultrasonic backscatter amplitude, acoustic impedance and attenuation increased after vaporization, consistent with a phase change from a liquid to gas core. Photoacoustic measurements were used to compare the spectra of three droplets ranging in diameter from 3.0 to 6.2 μm to a theoretical model. Good agreement in the spectral features was observed over the bandwidth of the 375 MHz transducer.

  17. A few good reasons why species-area relationships do not work for parasites.

    PubMed

    Strona, Giovanni; Fattorini, Simone

    2014-01-01

    Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, results from meta-analyses should not discourage researchers from investigating the reasons for the lack of clear patterns, thus proposing a few tentative explanations to the fact that species-area relationships are infrequent or at least difficult to be detected in most host-parasite systems. The peculiar structure of host-parasite networks, the enemy release hypothesis, the possible discrepancy between host and parasite ranges, and the evolutionary tendency of parasites towards specialization may explain why the observed patterns often do not fit those predicted by species-area relationships.

  18. Fish movement and habitat use depends on water body size and shape

    USGS Publications Warehouse

    Woolnough, D.A.; Downing, J.A.; Newton, T.J.

    2009-01-01

    Home ranges are central to understanding habitat diversity, effects of fragmentation and conservation. The distance that an organism moves yields information on life history, genetics and interactions with other organisms. Present theory suggests that home range is set by body size of individuals. Here, we analyse estimates of home ranges in lakes and rivers to show that body size of fish and water body size and shape influence home range size. Using 71 studies including 66 fish species on five continents, we show that home range estimates increased with increasing water body size across water body shapes. This contrasts with past studies concluding that body size sets home range. We show that water body size was a consistently significant predictor of home range. In conjunction, body size and water body size can provide improved estimates of home range than just body size alone. As habitat patches are decreasing in size worldwide, our findings have implications for ecology, conservation and genetics of populations in fragmented ecosystems. ?? 2008 Blackwell Munksgaard.

  19. Extended Millimeter Emission in the HD 141569 Circumstellar Disk Detected with ALMA

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.

    2018-06-01

    We present archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data sets that the system’s morphology is described well by a two-component disk model. The inner disk ranges from approximately 16–45 au with a spectral index of 1.81 (q = 2.95), and the outer disk ranges from 95 to 300 au with a spectral index of 2.28 (q = 3.21). Azimuthally averaged radial emission profiles derived from the continuum images at each frequency show potential emission that is consistent with the visibility modeling. The analysis presented here shows that at ∼5 Myr, HD 141569's grain size distribution is steeper and therefore possibly evolved in the outer disk than in the inner disk.

  20. An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P.

    Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experimentsmore » are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.« less

  1. Surface morphology of titanium dioxide (TiO{sub 2}) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.

    2016-07-06

    Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive,more » label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less

  2. Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC

    NASA Astrophysics Data System (ADS)

    Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.

    2018-06-01

    We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.

  3. The demographic response of bank-dwelling beavers to flow regulation: A comparison on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, S.W.; Wilson, K.R.; Andersen, D.C.

    2001-01-01

    We assessed the effects of flow regulation on the demography of beavers (Castor canadensis) by comparing the density, home-range size, and body size of bank-dwelling beavers on two sixth-order alluvial river systems, the flow-regulated Green River and the free-flowing Yampa River, from 1997 to 2000. Flow regulation on the Green River has altered fluvial geomorphic processes, influencing the availability of willow and cottonwood, which, in turn, has influenced the demography of beavers. Beaver density was higher on the Green River (0.5–0.6 colonies per kilometre of river) than on the Yampa River (0.35 colonies per kilometre of river). Adult and subadult beavers on the Green River were in better condition, as indicated by larger body mass and tail size. There was no detectable difference in home-range size, though there were areas on the Yampa River that no beavers used. We attribute the improved habitat quality on the Green River to a greater availability of willow. We suggest that the sandy flats and sandbars that form during base flows and the ice cover that forms over winter on the Yampa River increase the energy expended by the beavers to obtain food and increase predation risk and thus lowers the availability of woody forage.

  4. Sample size, power calculations, and their implications for the cost of thorough studies of drug induced QT interval prolongation.

    PubMed

    Malik, Marek; Hnatkova, Katerina; Batchvarov, Velislav; Gang, Yi; Smetana, Peter; Camm, A John

    2004-12-01

    Regulatory authorities require new drugs to be investigated using a so-called "thorough QT/QTc study" to identify compounds with a potential of influencing cardiac repolarization in man. Presently drafted regulatory consensus requires these studies to be powered for the statistical detection of QTc interval changes as small as 5 ms. Since this translates into a noticeable drug development burden, strategies need to be identified allowing the size and thus the cost of thorough QT/QTc studies to be minimized. This study investigated the influence of QT and RR interval data quality and the precision of heart rate correction on the sample sizes of thorough QT/QTc studies. In 57 healthy subjects (26 women, age range 19-42 years), a total of 4,195 drug-free digital electrocardiograms (ECG) were obtained (65-84 ECGs per subject). All ECG parameters were measured manually using the most accurate approach with reconciliation of measurement differences between different cardiologists and aligning the measurements of corresponding ECG patterns. From the data derived in this measurement process, seven different levels of QT/RR data quality were obtained, ranging from the simplest approach of measuring 3 beats in one ECG lead to the most exact approach. Each of these QT/RR data-sets was processed with eight different heart rate corrections ranging from Bazett and Fridericia corrections to the individual QT/RR regression modelling with optimization of QT/RR curvature. For each combination of data quality and heart rate correction, standard deviation of individual mean QTc values and mean of individual standard deviations of QTc values were calculated and used to derive the size of thorough QT/QTc studies with an 80% power to detect 5 ms QTc changes at the significance level of 0.05. Irrespective of data quality and heart rate corrections, the necessary sample sizes of studies based on between-subject comparisons (e.g., parallel studies) are very substantial requiring >140 subjects per group. However, the required study size may be substantially reduced in investigations based on within-subject comparisons (e.g., crossover studies or studies of several parallel groups each crossing over an active treatment with placebo). While simple measurement approaches with ad-hoc heart rate correction still lead to requirements of >150 subjects, the combination of best data quality with most accurate individualized heart rate correction decreases the variability of QTc measurements in each individual very substantially. In the data of this study, the average of standard deviations of QTc values calculated separately in each individual was only 5.2 ms. Such a variability in QTc data translates to only 18 subjects per study group (e.g., the size of a complete one-group crossover study) to detect 5 ms QTc change with an 80% power. Cost calculations show that by involving the most stringent ECG handling and measurement, the cost of a thorough QT/QTc study may be reduced to approximately 25%-30% of the cost imposed by the simple ECG reading (e.g., three complexes in one lead only).

  5. Advanced wide-field surface plasmon microscopy of single adsorbing nanoparticles

    NASA Astrophysics Data System (ADS)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    In-situ detection and characterization of nanoparticles in biological media as well as in food or other complex samples is still a big challenge for existing analytical methods. Here we describe a label-free and cost-effective analytical method for detection of nanoparticles in the concentration range 106 -1010 NPs/ml. The proposed method is based on the surface plasmon resonance microscopy (SPRM) with a large field of view ( 1.3mm2 ). It is able to detect and count adsorbing nanoparticles individually, totally up to the hundreds of thousands of NPs on the sensor surface. At constant diffusion conditions the detection rate is proportional to the number concentration of NPs, this provides an approach to determine the NPs concentration. The adsorption of nanoparticle can be manipulated by the surface functionalization, pH and electrolyte concentration of suspensions. Images of detected nanoparticles can be quantified in order to characterize them individually. The image intensity grows quasi-linearly with nanoparticle size for the given material. However, the size and material of nanoparticle cannot be resolved directly from the image. For determination of chemical composition, SPRM can be assisted by electrochemical analysis. In this case, the gold sensor surface is used both as a resonant media for plasmon microscopy and as a working electrode. Under potential sweep, the adsorbed NPs can be subjected to electrochemical dissolution, which is detected optically. The potential of this conversion characterizes the material of NPs.

  6. Behavioral Characteristics and CO+CO2 Production Rates of Halley-Type Comets Observed by NEOWISE

    NASA Astrophysics Data System (ADS)

    Rosser, Joshua David; Bauer, James M.; Mainzer, Amy K.; Kramer, Emily A.; Masiero, Joseph R.; Nugent, Carrie; Sonnett, Sarah M.; Fernandez, Yanga R.; Wright, Edward L.; WISE, NEOWISE

    2017-10-01

    From the NEOWISE dataset of comet images, 11 different Halley-Type Comets (HTCs) were identified and analyzed for dust production rates (Afρ), CO+CO2 production rates (QCO2), and nucleus size. The objects considered ranged in heliocentric distance from 1.21 AU to 2.66 AU and were only considered when showing signs of reasonable activity. When multiple epochs were included and when combined with data from previous WISE and NEOWISE studies, our dataset totaled to 21 observations; 13 of which included active comets, and 7 for which we calculated upper limits of production. Comet P/2010 JC81 was removed from consideration due to clear inactivity. For this study, active comets are defined as those which exhibit excess signal of at least 3σ in the 4.6 μm detection band, while comets for which upper limits were calculated demonstrated excess signal of 1σ in the 4.6 μm detection band. Furthermore, we confirmed the nucleus size of 27P, P/2006 HR30, C/2010 L5, P/2012 NJ, C/2016 S1. We found that given the range in heliocentric distance for this sample of HTCs, Afρ ranged from 0.790 ± 0.036 to 2.64 ± 0.14, and QCO2 ranged from 25.08 ± 0.08 to 26.71 ± 0.12. No significant correlation between dust production and heliocentric distance, nor CO+CO2 production with heliocentric distance was found for this population. This poster will display production rates and other physical properties of these HTCs, as well as place the ensemble of HTC production rate properties into context.

  7. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    PubMed

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  8. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  9. Micrometeoroid and Lunar Secondary Ejecta Flux Measurements: Comparison of Three Acoustic Systems

    NASA Technical Reports Server (NTRS)

    Corsaro, R. D.; Giovane, F.; Liou, Jer-Chyi; Burtchell, M.; Pisacane, V.; Lagakos, N.; Williams, E.; Stansbery, E.

    2010-01-01

    This report examines the inherent capability of three large-area acoustic sensor systems and their applicability for micrometeoroids (MM) and lunar secondary ejecta (SE) detection and characterization for future lunar exploration activities. Discussion is limited to instruments that can be fabricated and deployed with low resource requirements. Previously deployed impact detection probes typically have instrumented capture areas less than 0.2 square meters. Since the particle flux decreases rapidly with increased particle size, such small-area sensors rarely encounter particles in the size range above 50 microns, and even their sampling the population above 10 microns is typically limited. Characterizing the sparse dust population in the size range above 50 microns requires a very large-area capture instrument. However it is also important that such an instrument simultaneously measures the population of the smaller particles, so as to provide a complete instantaneous snapshot of the population. For lunar or planetary surface studies, the system constraints are significant. The instrument must be as large as possible to sample the population of the largest MM. This is needed to reliably assess the particle impact risks and to develop cost-effective shielding designs for habitats, astronauts, and critical instrument. The instrument should also have very high sensitivity to measure the flux of small and slow SE particles. is the SE environment is currently poorly characterized, and possess a contamination risk to machinery and personnel involved in exploration. Deployment also requires that the instrument add very little additional mass to the spacecraft. Three acoustic systems are being explored for this application.

  10. Testing for post-copulatory selection for major histocompatibility complex genotype in a semi-free-ranging primate population.

    PubMed

    Setchell, Joanna M; Abbott, Kristin M; Gonzalez, Jean-Paul; Knapp, Leslie A

    2013-10-01

    A large body of evidence suggests that major histocompatibility complex (MHC) genotype influences mate choice. However, few studies have investigated MHC-mediated post-copulatory mate choice under natural, or even semi-natural, conditions. We set out to explore this question in a large semi-free-ranging population of mandrills (Mandrillus sphinx) using MHC-DRB genotypes for 127 parent-offspring triads. First, we showed that offspring MHC heterozygosity correlates positively with parental MHC dissimilarity suggesting that mating among MHC dissimilar mates is efficient in increasing offspring MHC diversity. Second, we compared the haplotypes of the parental dyad with those of the offspring to test whether post-copulatory sexual selection favored offspring with two different MHC haplotypes, more diverse gamete combinations, or greater within-haplotype diversity. Limited statistical power meant that we could only detect medium or large effect sizes. Nevertheless, we found no evidence for selection for heterozygous offspring when parents share a haplotype (large effect size), genetic dissimilarity between parental haplotypes (we could detect an odds ratio of ≥1.86), or within-haplotype diversity (medium-large effect). These findings suggest that comparing parental and offspring haplotypes may be a useful approach to test for post-copulatory selection when matings cannot be observed, as is the case in many study systems. However, it will be extremely difficult to determine conclusively whether post-copulatory selection mechanisms for MHC genotype exist, particularly if the effect sizes are small, due to the difficulty in obtaining a sufficiently large sample. © 2013 Wiley Periodicals, Inc.

  11. Responses of Tree Growths to Tree Size, Competition, and Topographic Conditions in Sierra Nevada Forests Using Bi-temporal Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Su, Y.; Tao, S.; Guo, Q.

    2016-12-01

    Trees in the Sierra Nevada (SN) forests are experiencing rapid changes due to human disturbances and climatic changes. An improved monitoring of tree growth and understanding of how tree growth responses to different impact factors, such as tree competition, forest density, topographic and hydrologic conditions, are urgently needed in tree growth modeling. Traditional tree growth modeling mainly relied on field survey, which was highly time-consuming and labor-intensive. Airborne Light detection and ranging System (ALS) is increasingly used in forest survey, due to its high efficiency and accuracy in three-dimensional tree structure delineation and terrain characterization. This study successfully detected individual tree growth in height (ΔH), crown area (ΔA), and crown volume (ΔV) over a five-year period (2007-2012) using bi-temporal ALS data in two conifer forest areas in SN. We further analyzed their responses to original tree size, competition indices, forest structure indices, and topographic environmental parameters at individual tree and forest stand scales. Our results indicated ΔH was strongly sensitive to topographic wetness index; whereas ΔA and ΔV were highly responsive to forest density and original tree sizes. These ALS based findings in ΔH were consistent with field measurements. Our study demonstrated the promising potential of using bi-temporal ALS data in forest growth measurements and analysis. A more comprehensive study over a longer temporal period and a wider range of forest stands would give better insights into tree growth in the SN, and provide useful guides for forest growth monitoring, modeling, and management.

  12. Detection of over 100 selenium metabolites in selenized yeast by liquid chromatography electrospray time-of-flight mass spectrometry.

    PubMed

    Gilbert-López, Bienvenida; Dernovics, Mihaly; Moreno-González, David; Molina-Díaz, Antonio; García-Reyes, Juan F

    2017-08-15

    The characterization of the selenometabolome of Selenized(Se)-yeast, that is the fraction of water soluble low-molecular weight Se-metabolites produced in Se-yeast is of paramount interest to expand the knowledge on the composition of this food supplement. In this work, we have applied liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) to search for Se-species from the low molecular weight range fraction of the selenized yeast used for food supplements. Prior to LC-TOFMS, sample treatment consisted of ultrasound assisted water extraction followed by size exclusion fractionation assisted with off-line inductively coupled plasma mass spectrometry detection of isotope 82 Se. The fraction corresponding to low-molecular weight species was subjected to LC-TOFMS using electrospray ionization in the positive ion mode. The detection of the suspected selenized species has been based on the information obtained from accurate mass measurements of both the protonated molecules and fragments from in-source CID fragmentation; along with the characteristic isotope pattern exhibited by the presence of Se. The approach enables the detection of 103 selenized species, most of them not previously reported, in the range from ca. 300-650Da. Besides the detection of selenium species, related sulphur derivate metabolites were detected based on the accurate mass shift due to the substitution of sulphur and selenium. Copyright © 2017. Published by Elsevier B.V.

  13. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.

    PubMed

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-07-19

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

  14. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    PubMed Central

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-01-01

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631

  15. SU-E-T-662: Quick and Efficient Daily QA for Compact PBS Proton Therapy Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B; Syh, J; Ding, X

    2015-06-15

    Purpose: As proton therapy machines become widespread the need for a quick simple routine daily QA like that for linear accelerators becomes more important. Willis-Knighton has developed an accurate and efficient daily QA that can be performed in 15 minutes. Methods: A holder for a 2D ionization chamber array (MatriXX PT) was created that is indexed to the couch to allow for quick setup, lasers accuracy with respect to beam isocenter, and couch reproducibility. Image position/reposition was performed to check Isocentricity accuracy by placing BBs on the MatriXX. The couch coordinates are compared to that of commissioning. Laser positions weremore » confirmed with the MatriXX isocenter. After IGRT, three beams were separately delivered according to setup. For the first beam, range shifter was inserted and dose at R90, field size, flatness and symmetry in X and Y direction was measured. R90 was used so any minor changes in the range shifter can be detected. For the open beam, dose at center of SOBP, flatness and symmetry in X and Y direction was measured. Field size was measured in ±X and ±Y direction at FWHM. This is measured so any variation in spot size will be detected. For the third beam additional solid water was added and dose at R50 was measured so that any variation in beam energy will be detected. Basic mechanical and safety checks were also performed. Results: Medical physicists were able to complete the daily QA and reduce the time by half to two-third from initial daily QA procedure. All the values measured were within tolerance of that of the baseline which was established from water tank and initial MatriXX measurements. Conclusion: The change in daily QA procedure resulted in quick and easy setup and was able to measure all the basic functionality of the proton therapy PBS.« less

  16. Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier (3)

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Kagami, Manabu

    2013-05-01

    We have developed a LIDAR system with a sensor head which, although it includes a scanning mechanism, is less than 20 cc in size. The system is not only small, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enable us to exceed the detection limit set by thermal noise. In conventional LIDAR systems the detection limit is determined by the thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, the received signal is amplified by an optical fiber amplifier before reaching the photo diode and the TIA. Therefore, our LIDAR system boosts the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gains of the optical fiber amplifier and the TIA in our LIDAR system such that it would be capable of detecting a single photon. As a result, the detection limit of our system is determined by shot noise. We have previously demonstrated scanning up to a range of 80 m with this LIDAR system with a 2 mm diameter of receiving lens. We improved the optical amplifier and the peak output power of LIDAR was over 10KW. We redesigned the sensor-head and improved coupling efficiency. As a result, we succeeded in scanning over a range of 100 m. This small and highly sensitive measurement technology shows great potential for use in LIDAR.

  17. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.

  18. Development of neutron measurement in high gamma field using new nuclear emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14more » MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)« less

  19. Optimization and application of octadecyl-modified monolithic silica for solid-phase extraction of drugs in whole blood samples.

    PubMed

    Namera, Akira; Saito, Takeshi; Ota, Shigenori; Miyazaki, Shota; Oikawa, Hiroshi; Murata, Kazuhiro; Nagao, Masataka

    2017-09-29

    Monolithic silica in MonoSpin for solid-phase extraction of drugs from whole blood samples was developed to facilitate high-throughput analysis. Monolithic silica of various pore sizes and octadecyl contents were synthesized, and their effects on recovery rates were evaluated. The silica monolith M18-200 (20μm through-pore size, 10.4nm mesopore size, and 17.3% carbon content) achieved the best recovery of the target analytes in whole blood samples. The extraction proceeded with centrifugal force at 1000rpm for 2min, and the eluate was directly injected into the liquid chromatography-mass spectrometry system without any tedious steps such as evaporation of extraction solvents. Under the optimized condition, low detection limits of 0.5-2.0ngmL -1 and calibration ranges up to 1000ngmL -1 were obtained. The recoveries of the target drugs in the whole blood were 76-108% with relative standard deviation of less than 14.3%. These results indicate that the developed method based on monolithic silica is convenient, highly efficient, and applicable for detecting drugs in whole blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Approach range and velocity determination using laser sensors and retroreflector targets

    NASA Technical Reports Server (NTRS)

    Donovan, William J.

    1991-01-01

    A laser docking sensor study is currently in the third year of development. The design concept is considered to be validated. The concept is based on using standard radar techniques to provide range, velocity, and bearing information. Multiple targets are utilized to provide relative attitude data. The design requirements were to utilize existing space-qualifiable technology and require low system power, weight, and size yet, operate from 0.3 to 150 meters with a range accuracy greater than 3 millimeters and a range rate accuracy greater than 3 mm per second. The field of regard for the system is +/- 20 deg. The transmitter and receiver design features a diode laser, microlens beam steering, and power control as a function of range. The target design consists of five target sets, each having seven 3-inch retroreflectors, arranged around the docking port. The target map is stored in the sensor memory. Phase detection is used for ranging, with the frequency range-optimized. Coarse bearing measurement is provided by the scanning system (one set of binary optics) angle. Fine bearing measurement is provided by a quad detector. A MIL-STD-1750 A/B computer is used for processing. Initial test results indicate a probability of detection greater than 99 percent and a probability of false alarm less than 0.0001. The functional system is currently at the MIT/Lincoln Lab for demonstration.

  1. Joint detection and tracking of size-varying infrared targets based on block-wise sparse decomposition

    NASA Astrophysics Data System (ADS)

    Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu

    2016-05-01

    The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.

  2. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies.

    PubMed

    McCauley, Shannon J; Davis, Christopher J; Werner, Earl E; Robeson, Michael S

    2014-07-01

    Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  3. Array size and area impact on nanorectenna performance properties

    NASA Astrophysics Data System (ADS)

    Arsoy, Elif Gul; Durmaz, Emre Can; Shafique, Atia; Ozcan, Meric; Gurbuz, Yasar

    2017-02-01

    The metal-insulator-metal (MIM) diodes have high speed and compatibility with integrated circuits (IC's) making MIM diodes very attractive to detect and harvest energy for infrared (IR) regime of the electromagnetic spectrum. Due to the fact that small size of the MIM diodes, it is possible to obtain large volume of devices in same unit area. Hence, MIM diodes offer a feasible solution for nanorectennas (nano rectifiying antenna) in IR regime. The aim of this study is to design and develop MIM diodes as array format coupled with antennas for energy harvesting and IR detection. Moreover, varying number of elements which are 4x4, and 40x30 has been fabricated in parallel having 0.040, 0.065 and 0.080 μm2 diode area. For this work we have studied given type of material; Ti-HfO2-Ni, is used for fabricating MIM diodes as a part of rectenna. The effect of the diode array size is investigated. Furthermore, the effect of the array size is also investigated for larger arrays by applying given type of material set; Cr-HfO2-Ni. The fabrication processes in physical vapor deposition (PVD) systems for the MIM diodes resulted in the devices having high non-linearity and responsivity. Also, to achieve uniform and very thin insulator layer atomic layer deposition (ALD) was used. The nonlinearity 1.5 mA/V2 and responsivity 3 A/W are achieved for Ti-HfO2-Ni MIM diodes under low applied bias of 400 mV. The responsivity and nonlinearity of Cr-HfO2-Ni are found to be 5 A/W and 65 μA/V2, respectively. The current level of Cr-HfO2-Ni and Ti-HfO2-Ni is around μA range therefore corresponding resistance values are in 1-10 kΩ range. The comparison of single and 4x4 elements revealed that 4x4 elements have higher current level hence lower resistance value is obtained for 4x4 elements. The array size is 40x30 elements for Cr-HfO2-Ni type of MIM diodes with 40, 65 nm2 diode areas. By increasing the diode area, the current level increases for same size of array. The current level is increased from10 μA to100 μA with increasing the diode area. Therefore resistance decreased in the range of 10 kΩ and nonlinearity is increased from 58 μA/V2 to 65 μA/V2.

  4. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J. (Inventor); Kline-Schoder, Robert (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  5. Detection of extrasolar planets by the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Takahashi, T.

    1984-01-01

    The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.

  6. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  7. Home ranges of lions in the Kalahari, Botswana exhibit vast sizes and high temporal variability.

    PubMed

    Zehnder, André; Henley, Stephen; Weibel, Robert

    2018-06-01

    The central Kalahari region in Botswana is one of the few remaining ecosystems with a stable lion population. Yet, relatively little is known about the ecology of the lions there. As an entry point, home range estimations provide information about the space utilization of the studied animals. The home ranges of eight lions in this region were determined to investigate their spatial overlaps and spatiotemporal variations. We found that, except for MCP, all home range estimators yielded comparable results regarding size and shape. The home ranges of all individuals were located predominantly inside the protected reserves. Their areas were among the largest known for lions with 1131 - 4314km 2 (95%), with no significant differences between males and females. Numerous overlaps between lions of different sexes were detected, although these originate from different groups. A distance chart confirmed that most of these lions directly encountered each other once or several times. Strong temporal variations of the home ranges were observed that did not match a seasonal pattern. The exceptionally large home ranges are likely to be caused by the sparse and dynamic prey populations. Since the ungulates in the study area move in an opportunistic way, too, strong spatiotemporal home range variations emerge. This can lead to misleading home ranges. We therefore recommend clarifying the stability of the home ranges by applying several levels of temporal aggregation. The lack of strict territoriality is likely an adaptation to the variable prey base and the high energetic costs associated with defending a large area. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles.

    PubMed

    Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D; Gupta, Rani; Sharma, Enakshi Khular

    2017-10-01

    A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5  nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    PubMed

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  10. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    PubMed Central

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation. PMID:22163580

  11. Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Baliyan, Anjli; Usha, Sruthi Prasood; Gupta, Banshi D.; Gupta, Rani; Sharma, Enakshi Khular

    2017-10-01

    A label-free technique for the detection of triacylglycerides by a localized surface plasmon resonance (LSPR)-based biosensor is demonstrated. An LSPR-based fiber-optic sensor probe is fabricated by immobilizing lipase enzyme on silver nanoparticles (Ag-NPs) coated on an unclad segment of a plastic clad optical fiber. The size and shape of nanoparticles were characterized by high-resolution transmission electron microscopy and UV-visible spectroscopy. The peak absorbance wavelength changes with concentration of triacylglycerides surrounding the sensor probe, and sensitivity is estimated from shift in the peak absorbance wavelength as a function of concentration. The fabricated sensor was characterized for the concentration of triacylglyceride solution in the range 0 to 7 mM. The sensor shows the best sensitivity at a temperature of 37°C and pH 7.4 of the triacylglycerides emulsion with a response time of 40 s. A sensitivity of 28.5 nm/mM of triacylglyceride solution is obtained with a limit of detection of 0.016 mM in the entire range of triacylglycerides. This compact biosensor shows good selectivity, stability, and reproducibility in the entire physiological range of triacylglycerides and is well-suited to real-time online monitoring and remote sensing.

  12. Life on the edge: carnivore body size variation is all over the place

    PubMed Central

    Meiri, Shai; Dayan, Tamar; Simberloff, Daniel; Grenyer, Richard

    2009-01-01

    Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way. PMID:19324818

  13. Derivative Analysis of AVIRIS Data for Crop Stress Detection

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Carter, Gregory A.; Berglund, Judith

    2003-01-01

    Low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery of a cornfield in Nebraska was used to determine whether derivative analysis methods provided enhanced plant stress detection compared with narrow-band ratios. The field was divided into 20 plots representing 4 replicates each of 5 nitrogen (N) fertilization treatments that ranged from 0 to 200 kg N/ha in 50 kg/ha increments. The imagery yielded a 3 m ground pixel size for 224 spectral bands. Derivative analysis provided no advantage in stress detection compared with the performance of narrow-band indices derived from the literature. This result was attributed to a high leaf area index at the time of overflight (LAI approx. equal to 5 to 6t) and the high signal-to-noise character of the narrow AVIRIS bands.

  14. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  15. Positron emission mammography (PEM): Effect of activity concentration, object size, and object contrast on phantom lesion detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Lawrence R.; Wang, Carolyn L.; Eissa, Marna

    2012-10-15

    Purpose: To characterize the relationship between lesion detection sensitivity and injected activity as a function of lesion size and contrast on the PEM (positron emission mammography) Flex Solo II scanner using phantom experiments. Methods: Phantom lesions (spheres 4, 8, 12, 16, and 20 mm diameter) were randomly located in uniform background. Sphere activity concentrations were 3 to 21 times the background activity concentration (BGc). BGc was a surrogate for injected activity; BGc ranged from 0.44-4.1 kBq/mL, corresponding to 46-400 MBq injections. Seven radiologists read 108 images containing zero, one, or two spheres. Readers used a 5-point confidence scale to scoremore » the presence of spheres. Results: Sensitivity was 100% for lesions {>=}12 mm under all conditions except for one 12 mm sphere with the lowest contrast and lowest BGc (60% sensitivity). Sensitivity was 100% for 8 mm spheres when either contrast or BGc was high, and 100% for 4 mm spheres only when both contrast and BGc were highest. Sphere contrast recovery coefficients (CRC) were 49%, 34%, 26%, 14%, and 2.8% for the largest to smallest spheres. Cumulative specificity was 98%. Conclusions: Phantom lesion detection sensitivity depends more on sphere size and contrast than on BGc. Detection sensitivity remained {>=}90% for injected activities as low as 100 MBq, for lesions {>=}8 mm. Low CRC in 4 mm objects results in moderate detection sensitivity even for 400 MBq injected activity, making it impractical to optimize injected activity for such lesions. Low CRC indicates that when lesions <8 mm are observed on PEM images they are highly tracer avid with greater potential of clinical significance. High specificity (98%) suggests that image statistical noise does not lead to false positive findings. These results apply to the 85 mm thick object used to obtain them; lesion detectability should be better (worse) for thinner (thicker) objects based on the reduced (increased) influence of photon attenuation.« less

  16. Reliably detectable flaw size for NDE methods that use calibration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  17. Reliably Detectable Flaw Size for NDE Methods that Use Calibration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh1823 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  18. Divergence Measures Tool:An Introduction with Brief Tutorial

    DTIC Science & Technology

    2014-03-01

    in detecting differences across a wide range of Arabic -language text files (they varied by genre, domain, spelling variation, size, etc.), our...other. 2 These measures have been put to many uses in natural language processing ( NLP ). In the evaluation of machine translation (MT...files uploaded into the tool must be .txt files in ASCII or UTF-8 format. • This tool has been tested on English and Arabic script**, but should

  19. Design and demonstration of an acoustic right-angle bend.

    PubMed

    Lu, Wenjia; Jia, Han; Bi, Yafeng; Yang, Yuzhen; Yang, Jun

    2017-07-01

    In this paper, a broadband acoustic right-angle bend device in air is designed, fabricated and experimentally characterized. Perforated panels with various hole-sizes are used to construct the bend structure. Both the simulated and experimental results verify that the acoustic beam can be rotated effectively through the acoustic bend in a wide frequency range. This model may have potential applications in some areas such as sound absorption and acoustic detection in elbow pipes.

  20. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2010-09-30

    inhabited by microphytobenthos and seagrass . 2) To quantify the size range and composition of the gas bubbles in the sediment and the overlying water...characteristics of bubble ebullition in a shallow coastal environment with strong benthic photosynthesis (May 26-28). The goal was to determine the spatial and...each 50 μL air injection. Detection of small bubbles produced by benthic photosynthesis The goal was to assess whether the small bubbles

  1. 1ST International Workshop on Managing Interactions in Smart Environments (MANSE 99)

    DTIC Science & Technology

    1999-12-01

    having diverse functionality. It seems likely that eventually the functionality of PDA’s and mobile phones will be integrated into similar sized devices ...The O’Reilly institute is soon to be wired with sensors and detection devices which will allow wireless communication and interaction with the...on wireless short-range communication. The prototypes are functionally self- contained mobile devices that do not rely on any further infrastructure

  2. Microbial detection method based on sensing molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.

    1974-01-01

    A simple method for detecting bacteria, based on the time of hydrogen evolution, was developed and tested against various members of the Enterobacteriaceae group. The test system consisted of (1) two electrodes, platinum and a reference electrode, (2) a buffer amplifier, and (3) a strip-chart recorder. Hydrogen evolution was measured by an increase in voltage in the negative (cathodic) direction. A linear relationship was established between inoculum size and the time hydrogen was detected (lag period). Lag times ranged from 1 h for 1 million cells/ml to 7 h for 1 cell/ml. For each 10-fold decrease in inoculum, length of the lag period increased 60 to 70 min. Based on the linear relationship between inoculum and lag period, these results indicate the potential application of the hydrogen-sensing method for rapidly detecting coliforms and other gas-producing microorganisms in a variety of clinical, food, and other samples.

  3. Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees

    NASA Astrophysics Data System (ADS)

    Khryashchev, V. V.; Lebedev, A. A.; Priorov, A. L.

    2017-05-01

    Face detection algorithm based on a cascade of ensembles of decision trees (CEDT) is presented. The new approach allows detecting faces other than the front position through the use of multiple classifiers. Each classifier is trained for a specific range of angles of the rotation head. The results showed a high rate of productivity for CEDT on images with standard size. The algorithm increases the area under the ROC-curve of 13% compared to a standard Viola-Jones face detection algorithm. Final realization of given algorithm consist of 5 different cascades for frontal/non-frontal faces. One more thing which we take from the simulation results is a low computational complexity of CEDT algorithm in comparison with standard Viola-Jones approach. This could prove important in the embedded system and mobile device industries because it can reduce the cost of hardware and make battery life longer.

  4. Detection of Diverse and High Molecular Weight Nesprin-1 and Nesprin-2 Isoforms Using Western Blotting.

    PubMed

    Carthew, James; Karakesisoglou, Iakowos

    2016-01-01

    Heavily utilized in cell and molecular biology, western blotting is considered a crucial technique for the detection and quantification of proteins within complex mixtures. In particular, the detection of members of the nesprin (nuclear envelope spectrin repeat protein) family has proven difficult to analyze due to their substantial isoform diversity, molecular weight variation, and the sheer size of both nesprin-1 and nesprin-2 giant protein variants (>800 kDa). Nesprin isoforms contain distinct domain signatures, perform differential cytoskeletal associations, occupy different subcellular compartments, and vary in their tissue expression profiles. This structural and functional variance highlights the need to distinguish between the full range of proteins within the nesprin protein family, allowing for greater understanding of their specific roles in cell biology and disease. Herein, we describe a western blotting protocol modified for the detection of low to high molecular weight (50-1000 kDa) nesprin proteins.

  5. Applications of optically detected MRI for enhanced contrast and penetration in metal

    NASA Astrophysics Data System (ADS)

    Ruangchaithaweesuk, Songtham; Yu, Dindi S.; Garcia, Nissa C.; Yao, Li; Xu, Shoujun

    2012-10-01

    We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6 s-1 mM-1 per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T1 relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.

  6. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  7. Comparison of using single- or multi-polarimetric TerraSAR-X images for segmentation and classification of man-made maritime objects

    NASA Astrophysics Data System (ADS)

    Teutsch, Michael; Saur, Günter

    2011-11-01

    Spaceborne SAR imagery offers high capability for wide-ranging maritime surveillance especially in situations, where AIS (Automatic Identification System) data is not available. Therefore, maritime objects have to be detected and optional information such as size, orientation, or object/ship class is desired. In recent research work, we proposed a SAR processing chain consisting of pre-processing, detection, segmentation, and classification for single-polarimetric (HH) TerraSAR-X StripMap images to finally assign detection hypotheses to class "clutter", "non-ship", "unstructured ship", or "ship structure 1" (bulk carrier appearance) respectively "ship structure 2" (oil tanker appearance). In this work, we extend the existing processing chain and are now able to handle full-polarimetric (HH, HV, VH, VV) TerraSAR-X data. With the possibility of better noise suppression using the different polarizations, we slightly improve both the segmentation and the classification process. In several experiments we demonstrate the potential benefit for segmentation and classification. Precision of size and orientation estimation as well as correct classification rates are calculated individually for single- and quad-polarization and compared to each other.

  8. Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.

    2012-03-01

    Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.

  9. Image quality of a pixellated GaAs X-ray detector

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Makham, S.; Bourgoin, J. C.; Mauger, A.

    2007-02-01

    X-ray detection requires materials with large atomic numbers Z in order to absorb the radiation efficiently. In case of X-ray imaging, fluorescence is a limiting factor for the spatial resolution and contrast at energies above the kα threshold. Since both the energy and yield of the fluorescence of a given material increase with the atomic number, there is an optimum value of Z. GaAs, which can now be epitaxially grown as self-supported thick layers to fulfil the requirements for imaging (good homogeneity of the electronic properties) corresponds to this optimum. Image performances obtained with this material are evaluated in terms of line spread function and modulation transfer function, and a comparison with CsI is made. We evaluate the image contrast obtained for a given object contrast with GaAs and CsI detectors, in the photon energy range of medical applications. Finally, we discuss the minimum object size, which can be detected by these detectors in of mammography conditions. This demonstrates that an object of a given size can be detected using a GaAs detector with a dose at least 100 times lower than using a CsI detector.

  10. Resonant efficiency improvement design of piezoelectric biosensor for bacteria gravimetric sensing.

    PubMed

    Tsai, Jang-Zern; Chen, Ching-Jung; Shie, Dung-Ting; Liu, Jen-Tsai

    2014-01-01

    The piezoelectric biosensor have been widely used in ultra-small mass detection of biomolecular, based on PZT piezoelectric material can create a variety of compositions geometrically; it could widely develop a high-frequency resonator and measure the change of the slightest mass while improve the limited detection simultaneously. Therefore, the piezoelectric biosensor of this study was fabricated by a spin-coating method and backside etching process for improving the characteristic of piezoelectric biosensor. The result exhibited that the 250 μm × 250 μm working size has the most favorable piezoelectric characteristic. The tunability was approximately 38.56 % and it showed that reducing the substrate thickness could obtain a clear resonance signal in a range of 60 to 380 MHz. In theory calculated for gravimetric sensing, it could achieve 0.1 ng sensing sensitivity. In gravimetric sensing, the sensing range was between 50,000~100,000 CFU/ml. Sensing range was lower in clinical urinary tract infection (100,000 CFU/ml), thus demonstrating its usefulness for preventive medicine. It can understand the piezoelectric sensor of this study has potential application in the future for biomedical gravimetric sensing.

  11. Determination of the absolute molecular weight averages and molecular weight distributions of alginates used as ice cream stabilizers by using multiangle laser light scattering measurements.

    PubMed

    Turquois, T; Gloria, H

    2000-11-01

    High-performance size exclusion chromatography with multiangle laser light scattering detection (HPSEC-MALLS) was used for characterizing complete molecular weight distributions for a range of commercial alginates used as ice cream stabilizers. For the samples investigated, molecular weight averages were found to vary between 115 000 and 321 700 g/mol and polydispersity indexes varied from 1. 53 to 3.25. These samples displayed a high content of low molecular weights. Thus, the weight percentage of material below 100 000 g/mol ranged between 6.9 and 54.4%.

  12. Monitoring the impact of Bt maize on butterflies in the field: estimation of required sample sizes.

    PubMed

    Lang, Andreas

    2004-01-01

    The monitoring of genetically modified organisms (GMOs) after deliberate release is important in order to assess and evaluate possible environmental effects. Concerns have been raised that the transgenic crop, Bt maize, may affect butterflies occurring in field margins. Therefore, a monitoring of butterflies was suggested accompanying the commercial cultivation of Bt maize. In this study, baseline data on the butterfly species and their abundance in maize field margins is presented together with implications for butterfly monitoring. The study was conducted in Bavaria, South Germany, between 2000-2002. A total of 33 butterfly species was recorded in field margins. A small number of species dominated the community, and butterflies observed were mostly common species. Observation duration was the most important factor influencing the monitoring results. Field margin size affected the butterfly abundance, and habitat diversity had a tendency to influence species richness. Sample size and statistical power analyses indicated that a sample size in the range of 75 to 150 field margins for treatment (transgenic maize) and control (conventional maize) would detect (power of 80%) effects larger than 15% in species richness and the butterfly abundance pooled across species. However, a much higher number of field margins must be sampled in order to achieve a higher statistical power, to detect smaller effects, and to monitor single butterfly species.

  13. UWB based low-cost and non-invasive practical breast cancer early detection

    NASA Astrophysics Data System (ADS)

    Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Jusoh, M.; Ali, S.

    2017-03-01

    Breast cancer is one of the main causes of women death worldwide. Breast tumor is an early stage of cancer that locates in cells of a human breast. As there is no remedy, early detection is crucial. Towards this, Ultra-Wideband (UWB) is a prominent candidate. It is a wireless communication technology which can achieve high bandwidth with low power utilization. UWB is suitable to be used for short range communication systems including breast cancer detection since it is secure, non-invasive and human health friendly. This paper presents the low-cost and non-invasive early breast cancer detection strategy using UWB sensor (or antenna). Emphasis is given here to detect breast tumor in 2D and 3D environments. The developed system consisted of hardware and software. Hardware included UWB transceiver and a pair of home-made directional sensor/antenna. The software included feed-forward back propagation Neural Network (NN) module to detect the tumor existence, size and location along with soft interface between software and hardware. Forward scattering technique was used by placing two sensors diagonally opposite sides of a breast phantom. UWB pulses were transmitted from one side of phantom and received from other side, controlled by the software interface in PC environment. Collected received signals were then fed into the NN module for training, testing and validation. The system exhibited detection efficiency on tumor existence, location (x, y, z), and size were approximately 100%, (78.17%, 70.66%, 92.46%), 85.86% respectively. The proposed UWB based early breast cancer detection system could be more practical with low-cost, user friendly and non-harmful features. This project may help users to monitor their breast health regularly at their home.

  14. Variability in echolocation call intensity in a community of horseshoe bats: a role for resource partitioning or communication?

    PubMed

    Schuchmann, Maike; Siemers, Björn M

    2010-09-17

    Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure.

  15. Variability in Echolocation Call Intensity in a Community of Horseshoe Bats: A Role for Resource Partitioning or Communication?

    PubMed Central

    Schuchmann, Maike; Siemers, Björn M.

    2010-01-01

    Background Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. Methodology/Principal Findings We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Conclusions/Significance Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure. PMID:20862252

  16. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters.

    PubMed

    Tanaka, Kosuke; Takada, Hideshige

    2016-09-30

    We investigated microplastics in the digestive tracts of 64 Japanese anchovy (Engraulis japonicus) sampled in Tokyo Bay. Plastic was detected in 49 out of 64 fish (77%), with 2.3 pieces on average and up to 15 pieces per individual. All of the plastics were identified by Fourier transform infrared spectroscopy. Most were polyethylene (52.0%) or polypropylene (43.3%). Most of the plastics were fragments (86.0%), but 7.3% were beads, some of which were microbeads, similar to those found in facial cleansers. Eighty percent of the plastics ranged in size from 150 μm to 1000 μm, smaller than the reported size range of floating microplastics on the sea surface, possibly because the subsurface foraging behavior of the anchovy reflected the different size distribution of plastics between surface waters and subsurface waters. Engraulis spp. are important food for many humans and other organisms around the world. Our observations further confirm that microplastics have infiltrated the marine ecosystem, and that humans may be exposed to them. Because microplastics retain hazardous chemicals, increase in fish chemical exposure by the ingested plastics is of concern. Such exposure should be studied and compared with that in the natural diet.

  17. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters

    NASA Astrophysics Data System (ADS)

    Tanaka, Kosuke; Takada, Hideshige

    2016-09-01

    We investigated microplastics in the digestive tracts of 64 Japanese anchovy (Engraulis japonicus) sampled in Tokyo Bay. Plastic was detected in 49 out of 64 fish (77%), with 2.3 pieces on average and up to 15 pieces per individual. All of the plastics were identified by Fourier transform infrared spectroscopy. Most were polyethylene (52.0%) or polypropylene (43.3%). Most of the plastics were fragments (86.0%), but 7.3% were beads, some of which were microbeads, similar to those found in facial cleansers. Eighty percent of the plastics ranged in size from 150 μm to 1000 μm, smaller than the reported size range of floating microplastics on the sea surface, possibly because the subsurface foraging behavior of the anchovy reflected the different size distribution of plastics between surface waters and subsurface waters. Engraulis spp. are important food for many humans and other organisms around the world. Our observations further confirm that microplastics have infiltrated the marine ecosystem, and that humans may be exposed to them. Because microplastics retain hazardous chemicals, increase in fish chemical exposure by the ingested plastics is of concern. Such exposure should be studied and compared with that in the natural diet.

  18. On prediction of crack in different orientations in pipe using frequency based approach

    NASA Astrophysics Data System (ADS)

    Naniwadekar, M. R.; Naik, S. S.; Maiti, S. K.

    2008-04-01

    A technique based on measurement of change in natural frequencies and modeling of crack by rotational spring is employed to detect a crack with straight front in different orientations in a section of straight horizontal steel hollow pipe (outer diameter 0.0378 m and inner diameter 0.0278 m). Crack orientations in the range 0-60° with the vertical have been examined and sizes/depths in the range 1-4 mm through the wall of thickness 5 mm have been studied. Variation of rotational spring stiffness with crack size and orientation has been obtained experimentally by deflection and vibration methods. The spring stiffness reduces as expected, with an increase in crack size; it increases with an increase in the crack orientation angle. The crack location has been predicted with a maximum error of 7.29%. The sensitivity of the method for prediction of crack location on variations in experimental data has been examined by changing the difference between the frequencies of pipes with and without crack by ±10%. The method is found to be very robust; the maximum variation in location is 2.68%, which is much less than the change in frequency difference introduced.

  19. Kinematic parameter estimation using close range photogrammetry for sport applications

    NASA Astrophysics Data System (ADS)

    Magre Colorado, Luz Alejandra; Martínez Santos, Juan Carlos

    2015-12-01

    In this article, we show the development of a low-cost hardware/software system based on close range photogrammetry to track the movement of a person performing weightlifting. The goal is to reduce the costs to the trainers and athletes dedicated to this sport when it comes to analyze the performance of the sportsman and avoid injuries or accidents. We used a web-cam as the data acquisition hardware and develop the software stack in Processing using the OpenCV library. Our algorithm extracts size, position, velocity, and acceleration measurements of the bar along the course of the exercise. We present detailed characteristics of the system with their results in a controlled setting. The current work improves the detection and tracking capabilities from a previous version of this system by using HSV color model instead of RGB. Preliminary results show that the system is able to profile the movement of the bar as well as determine the size, position, velocity, and acceleration values of a marker/target in scene. The average error finding the size of object at four meters of distance is less than 4%, and the error of the acceleration value is 1.01% in average.

  20. Thermal barriers constrain microbial elevational range size via climate variability.

    PubMed

    Wang, Jianjun; Soininen, Janne

    2017-08-01

    Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Comparing the sensitivity of linear and volumetric MRI measurements to detect changes in the size of vestibular schwannomas in patients with neurofibromatosis type 2 on bevacizumab treatment.

    PubMed

    Morris, Katrina A; Parry, Allyson; Pretorius, Pieter M

    2016-09-01

    To compare the sensitivity of linear and volumetric measurements on MRI in detecting schwannoma progression in patients with neurofibromatosis type 2 on bevacizumab treatment as well as the extent to which this depends on the size of the tumour. We compared retrospectively, changes in linear tumour dimensions at a range of thresholds to volumetric tumour measurements performed using Brainlab iPlan(®) software (Feldkirchen, Germany) and classified for tumour progression according to the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) criteria. Assessment of 61 schwannomas in 46 patients with a median follow-up of 20 months (range 3-43 months) was performed. There was a mean of 7 time points per tumour (range 2-12 time points). Using the volumetric REiNS criteria as the gold standard, a sensitivity of 86% was achieved for linear measurement using a 2-mm threshold to define progression. We propose that a change in linear measurement by 2 mm (particularly in tumours with starting diameters 20-30 mm, the majority of this cohort) could be used as a filter to identify cases of possible progression requiring volumetric analysis. This pragmatic approach can be used if stabilization of a previously growing schwannoma is sufficient for a patient to continue treatment in such a circumstance. We demonstrate the real-world limitations of linear vs volumetric measurement in tumour response assessment and identify limited circumstances where linear measurements can be used to determine which patients require the more resource-intensive volumetric measurements.

  2. Single-Particle Measurements of Midlatitude Black Carbon and Light-Scattering Aerosols from the Boundary Layer to the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Schwartz, J. P.; Gao, R. S.; Fahey, D. W.; Thomson, D. S.; Watts, L. A.; Wilson, J. C.; Reeves, J. M.; Darbeheshti, M.; Baumgardner, D. G.; Kok, G. L.; hide

    2006-01-01

    A single-particle soot photometer (SP2) was flown on a NASA WB-57F high-altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser-induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of approx.3-300 fg (approx.0.15-0.7 microns volume equivalent diameter). Scattered light is used to size the remaining non-BC aerosols in the range of approx.0.17-0.7 microns diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory-generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT-INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.

  3. Sample size and allocation of effort in point count sampling of birds in bottomland hardwood forests

    USGS Publications Warehouse

    Smith, W.P.; Twedt, D.J.; Cooper, R.J.; Wiedenfeld, D.A.; Hamel, P.B.; Ford, R.P.; Ralph, C. John; Sauer, John R.; Droege, Sam

    1995-01-01

    To examine sample size requirements and optimum allocation of effort in point count sampling of bottomland hardwood forests, we computed minimum sample sizes from variation recorded during 82 point counts (May 7-May 16, 1992) from three localities containing three habitat types across three regions of the Mississippi Alluvial Valley (MAV). Also, we estimated the effect of increasing the number of points or visits by comparing results of 150 four-minute point counts obtained from each of four stands on Delta Experimental Forest (DEF) during May 8-May 21, 1991 and May 30-June 12, 1992. For each stand, we obtained bootstrap estimates of mean cumulative number of species each year from all possible combinations of six points and six visits. ANOVA was used to model cumulative species as a function of number of points visited, number of visits to each point, and interaction of points and visits. There was significant variation in numbers of birds and species between regions and localities (nested within region); neither habitat, nor the interaction between region and habitat, was significant. For a = 0.05 and a = 0.10, minimum sample size estimates (per factor level) varied by orders of magnitude depending upon the observed or specified range of desired detectable difference. For observed regional variation, 20 and 40 point counts were required to accommodate variability in total individuals (MSE = 9.28) and species (MSE = 3.79), respectively, whereas ? 25 percent of the mean could be achieved with five counts per factor level. Sample size sufficient to detect actual differences of Wood Thrush (Hylocichla mustelina) was >200, whereas the Prothonotary Warbler (Protonotaria citrea) required <10 counts. Differences in mean cumulative species were detected among number of points visited and among number of visits to a point. In the lower MAV, mean cumulative species increased with each added point through five points and with each additional visit through four visits. Although no interaction was detected between number of points and number of visits, when paired reciprocals were compared, more points invariably yielded a significantly greater cumulative number of species than more visits to a point. Still, 36 point counts per stand during each of two breeding seasons detected only 52 percent of the known available species pool in DEF.

  4. Particle Number Concentrations for HI-SCALE Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hering, Susanne V

    In support of the Holistic Interactions of Shallow Clouds, Aerosols, and Ecosystems (HI-SCALE) project to study new particle formation in the atmosphere, a pair of custom water condensation particle counters were provided to the second intensive field campaign, from mid-August through mid-September 2017, at the U.S. Department of Energy Southern Great Plains Atmospheric Radiation Measurement (ARM) Climate Research Facility observatory. These custom instruments were developed by Aerosol Dynamics, Inc. (Hering et al. 2017) to detect particles into the nanometer size range. Referred to as “versatile water condensation particle counter (vWCPC)”, they are water-based, laminar-flow condensational growth instruments whose lower particlemore » size threshold can be set based on user-selected operating temperatures. For HI-SCALE, the vWCPCs were configured to measure airborne particle number concentrations in the size range from approximately 2nm to 2μm. Both were installed in the particle sizing system operated by Chongai Kuang of Brookhaven National Laboratory (BNL). One of these was operated in parallel to a TSI Model 3776, upstream of the mobility particle sizing system, to measure total ambient particle concentrations. The airborne particle concentration data from this “total particle number vWCPC” (Ntot-vWCPC) system has been reported to the ARM database. The data are reported with one-second resolution. The second vWCPC was operated in parallel with the BNL diethylene glycol instrument to count particles downstream of a separate differential mobility size analyzer. Data from this “DMA-vWCPC” system was logged by BNL, and will eventually be provided by that laboratory.« less

  5. Space vehicle approach velocity judgments under simulated visual space conditions

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1989-01-01

    There were 35 volunteers who responded when they first perceived an increase in apparent size of a collimated, two-dimensional perspective image of an Orbiter vehicle. The variables of interest included the presence (or absence) of a fixed reticle within the field of view (FOV), background starfield velocity, initial range to the vehicle and vehicle closure velocity. It was found that: 1) increasing vehicle approach velocity yielded a very small (but significant) effect of faster detection of vehicle movement, nevertheless, response variability was relatively large; 2) including the fixed reticle in the FOV produced significantly slower detection of vehicle radial movement, however this occurred only at the largest range and the magnitude of the effect was only about 15% of the one sigma value; and 3) increasing background star velocity during this judgment led to slower detection of vehicle movement. While statistically significant, this effect was small and occurred primarily at the largest range. A possible explanation for the last two findings is that other static and dynamic objects within the visual field may compete for available attention which otherwise would be available for judging image expansion; thus, the target's retinal image has to expand more than otherwise for its movement to be detected. This study also showed that the Proximity Operations Research Mockup at NASA/Ames can be used effectively to investigate a variety of visual judgment questions related to future space operations. These findings are discussed in relation to previous research and possible underlying mechanisms.

  6. Electrospun fibrous thin film microextraction coupled with desorption corona beam ionization-mass spectrometry for rapid analysis of antidepressants in human plasma.

    PubMed

    Chen, Di; Hu, Yu-Ning; Hussain, Dilshad; Zhu, Gang-Tian; Huang, Yun-Qing; Feng, Yu-Qi

    2016-05-15

    Appropriate sample preparations prior to analysis can significantly enhance the sensitivity of ambient ionization techniques, especially during the enrichment or purification of analytes in the presence of complex biological matrix. Here in, we developed a rapid analysis method by the combination of thin film microextraction (TFME) and desorption corona beam ionization (DCBI) for the determination of antidepressants in human plasma. Thin films used for extraction consisted of sub-micron sized highly ordered mesoporous silica-carbon composite fibers (OMSCFs), simply prepared by electrospinning and subsequent carbonization. Typically, OMSCFs thin film was immersed into the diluted plasma for extraction of target analytes and then directly subjected to the DCBI-MS for detection. Size-exclusion effect of mesopores contributed to avoid of the protein precipitation step prior to extraction. Mass transfer was benefited from high surface-to-volume ratio which is attributed to macroporous network and ordered mesostructures. Moreover, the OMSCFs provided mixed-mode hydrophobic/ion-exchange interactions towards target analytes. Thus, the detection sensitivity was greatly improved due to effective enrichment of the target analytes and elimination of matrix interferences. After optimization of several parameters related to extraction performance, the proposed method was eventually applied for the determination of three antidepressants in human plasma. The calibration curves were plotted in the range of 5-1000 ng/mL with acceptable linearity (R(2) >0.983). The limits of detection (S/N=3) of three antidepressants were in ranges of 0.3-1 ng/mL. Reproducibility was achieved with RSD less than 17.6% and the relative recoveries were in ranges of 83.6-116.9%. Taken together, TFME-DCBI-MS method offers a powerful capacity for rapid analysis to achieve much-improved sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Quantitation of free polyethylene glycol in PEGylated protein conjugate by size exclusion HPLC with refractive index (RI) detection.

    PubMed

    Li, Ning; Ziegemeier, Daisy; Bass, Laura; Wang, Wei

    2008-12-15

    In this study, size exclusion high performance liquid chromatography was evaluated for its application in separation and quantitation of free polyethylene glycol (PEG) and its PEGylated-protein-conjugate (PEG-conjugate). Although the large mass of the free PEG (2-fold greater than the protein) made separation difficult, chromatographic conditions were identified enabling resolution and quantitation of the free PEG, PEG-conjugate and non-PEGylated protein with Shodex Protein KW803 and KW804 columns in series and refractive index detection. The optimum resolution of 1.7 and 2.0 was achieved for the free PEG and PEG-conjugate as well as the free PEG and non-PEGylated protein using 20mM HEPES buffer at pH 6.5. Under this condition, the plot of log(10)MW of all the pertinent analytes against retention time showed a linear relationship with a correlation coefficient of 1. Limited assay performance evaluation demonstrated that the method was linear in the concentration range of 10 to 250 microg/mL of free PEG with correlation coefficients of > or = 0.99. When free PEG in this concentration range was spiked into PEG-conjugate samples at 1mg/mL, the recovery was in the range of 78%-120%. Detection and quantitation limits were determined to be, respectively, 10 and 25 microg/mL for free PEG. The R.S.D. for intra- and inter-day precision was 0.09% or less for retention time measurements and 2.9% or less for area count measurements. Robustness testing was performed by deliberately deviating +/-0.2 pH units away from the desired pH as well as by increasing the flow rate. These deviations resulted in no significant impact on area percent distribution of all species. However, separation was found to be sensitive to high ionic strength and buffer species.

  8. A fast and reliable method for daily quality assurance in spot scanning proton therapy with a compact and inexpensive phantom.

    PubMed

    Bizzocchi, Nicola; Fracchiolla, Francesco; Schwarz, Marco; Algranati, Carlo

    2017-01-01

    In a radiotherapy center, daily quality assurance (QA) measurements are performed to ensure that the equipment can be safely used for patient treatment on that day. In a pencil beam scanning (PBS) proton therapy center, spot positioning, spot size, range, and dose output are usually verified every day before treatments. We designed, built, and tested a new, reliable, sensitive, and inexpensive phantom, coupled with an array of ionization chambers, for daily QA that reduces the execution times while preserving the reliability of the test. The phantom is provided with 2 pairs of wedges to sample the Bragg peak at different depths to have a transposition on the transverse plane of the depth dose. Three "boxes" are used to check spot positioning and delivered dose. The box thickness helps spread the single spot and to fit a Gaussian profile on a low resolution detector. We tested whether our new QA solution could detect errors larger than our action levels: 1 mm in spot positioning, 2 mm in range, and 10% in spot size. Execution time was also investigated. Our method is able to correctly detect 98% of spots that are actually in tolerance for spot positioning and 99% of spots out of 1 mm tolerance. All range variations greater than the threshold (2 mm) were correctly detected. The analysis performed over 1 month showed a very good repeatability of spot characteristics. The time taken to perform the daily quality assurance is 20 minutes, a half of the execution time of the former multidevice procedure. This "in-house build" phantom substitutes 2 very expensive detectors (a multilayer ionization chamber [MLIC] and a strip chamber, reducing by 5 times the cost of the equipment. We designed, built, and validated a phantom that allows for accurate, sensitive, fast, and inexpensive daily QA procedures in proton therapy with PBS. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. Paroxysmal nocturnal hemoglobinuria clones in severe aplastic anemia patients treated with horse anti-thymocyte globulin plus cyclosporine

    PubMed Central

    Scheinberg, Phillip; Marte, Michael; Nunez, Olga; Young, Neal S.

    2010-01-01

    Background Clones of glycosylphosphatidylinositol-anchor protein-deficient cells are characteristic in paroxysmal nocturnal hemoglobinuria and are present in about 40–50% of patients with severe aplastic anemia. Flow cytometry has allowed for sensitive and precise measurement of glycosylphosphatidylinositol-anchor protein-deficient red blood cells and neutrophils in severe aplastic anemia. Design and Methods We conducted a retrospective analysis of paroxysmal nocturnal hemoglobinuria clones measured by flow cytometry in 207 consecutive severe aplastic anemia patients who received immunosuppressive therapy with a horse anti-thymocyte globulin plus cyclosporine regimen from 2000 to 2008. Results The presence of a glycosylphosphatidylinositol-anchor protein-deficient clone was detected in 83 (40%) patients pre-treatment, and the median clone size was 9.7% (interquartile range 3.5–29). In patients without a detectable clone pre-treatment, the appearance of a clone after immunosuppressive therapy was infrequent, and in most with a clone pre-treatment, clone size often decreased after immunosuppressive therapy. However, in 30 patients, an increase in clone size was observed after immunosuppressive therapy. The majority of patients with a paroxysmal nocturnal hemoglobinuria clone detected after immunosuppressive therapy did not have an elevated lactate dehydrogenase, nor did they experience hemolysis or thrombosis, and they did not require specific interventions with anticoagulation and/or eculizumab. Of the 7 patients who did require therapy for clinical paroxysmal nocturnal hemoglobinuria symptoms and signs, all had an elevated lactate dehydrogenase and a clone size greater than 50%. In all, 18 (8.6%) patients had a clone greater than 50% at any given time of sampling. Conclusions The presence of a paroxysmal nocturnal hemoglobinuria clone in severe aplastic anemia is associated with low morbidity and mortality, and specific measures to address clinical paroxysmal nocturnal hemoglobinuria are seldom required. PMID:20595102

  10. In Vivo Tracking of Copper-64 Radiolabeled Nanoparticles in Lactuca sativa.

    PubMed

    Davis, Ryan A; Rippner, Devin A; Hausner, Sven H; Parikh, Sanjai J; McElrone, Andrew J; Sutcliffe, Julie L

    2017-11-07

    Engineered nanoparticles (NPs) are increasingly used in commercial products including automotive lubricants, clothing, deodorants, sunscreens, and cosmetics and can potentially accumulate in our food supply. Given their size it is difficult to detect and visualize the presence of NPs in environmental samples, including crop plants. New analytical tools are needed to fill the void for detection and visualization of NPs in complex biological and environmental matrices. We aimed to determine whether radiolabeled NPs could be used as a noninvasive, highly sensitive analytical tool to quantitatively track and visualize NP transport and accumulation in vivo in lettuce (Lactuca sativa) and to investigate the effect of NP size on transport and distribution over time using a combination of autoradiography, positron emission tomography (PET)/computed tomography (CT), scanning electron microscopy (SEM), and transition electron microscopy (TEM). Azide functionalized NPs were radiolabeled via a "click" reaction with copper-64 ( 64 Cu)-1,4,7-triazacyclononane triacetic acid (NOTA) azadibenzocyclooctyne (ADIBO) conjugate ([ 64 Cu]-ADIBO-NOTA) via copper-free Huisgen-1,3-dipolar cycloaddition reaction. This yielded radiolabeled [ 64 Cu]-NPs of uniform shape and size with a high radiochemical purity (>99%), specific activity of  2.2 mCi/mg of NP, and high stability (i.e., no detectable dissolution) over 24 h across a pH range of 5-9. Both PET/CT and autoradiography showed that [ 64 Cu]-NPs entered the lettuce seedling roots and were rapidly transported to the cotyledons with the majority of the accumulation inside the roots. Uptake and transport of intact NPs was size-dependent, and in combination with the accumulation within the roots suggests a filtering effect of the plant cell walls at various points along the water transport pathway.

  11. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1985-01-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  12. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    1985-03-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  13. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    PubMed Central

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant results. PMID:27537079

  14. Ultrasonic flaw detection in a monorail box beam

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2009-03-01

    A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid-coupled transducers, and angle-beam (wedge) transducers; from that comparison we made the design decision to use wedges, which beam the wave to increase the scattering from flaws. We also compared the performance of wired transducers using fluid coupling to that of wireless (inductively coupled) transducers mounted permanently. Although the wireless transducers achieved flaw detection, the necessary spacing (determined experimentally) would have required an impractical number of transducers. Therefore, we made the design decision to use wedge transducers with fluid coupling. In a third research task we developed and tested a rolling system with a water channel for acoustic coupling, including a study of its sensitivity to misalignment, and in a fourth task we devised a data display to create a pattern of reflections or shadows that could be easily interpreted as evidence of a flaw. Finally, we conducted a field test on the full-size system in a region containing bolt holes, which act as a physical simulation of a flaw, and show successful detection of reflections and shadows from those holes.

  15. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.

  16. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

    PubMed Central

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-01-01

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection. PMID:28914766

  17. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    PubMed Central

    Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M

    2008-01-01

    A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780

  18. The population biology and genetics of the deep-sea spider crab, Encephaloides armstrongi Wood-Mason 1891 (Decapoda: Majidae)

    PubMed Central

    Creasey, S.; Rogers, A. D.; Tyler, P.; Young, C.; Gage, J.

    1997-01-01

    Numerous specimens of the majid spider crab, Encephaloides armstrongi, were sampled from six stations (populations) between 150 and 650 m depth, on the continental slope off the coast of Oman. This extended the known geographic and bathymetric range of E. armstrongi, which is now known to occur along the continental margins of the northern Indian Ocean from the western coast of Burma to the coast of Oman. This band-like distribution is contiguous to the oxygen minimum zone in this region. The biology and genetics of populations of Encephaloides armstrongi separated by depth were studied. The overall sex ratio of the E. armstrongi sampled was male-biased (p less than 0.01; 3.3 males: 1 female; So = 0.538). However, sex ratio varied both between populations (p less than 0.01) and between size classes of crabs. Size frequency analysis indicated that the male and female crabs consisted of at least two instars, one between 6 and 16mm carapace length and one between 16 and 29 mm carapace length, which probably represented the terminal (pubertal) moult for most individuals. Accumulation of female crabs in the terminal instar probably caused the variation of sex ratio with size classes. Some male crabs grew to a larger size (up to 38 mm carapace length), possibly as a result of maturity at later instars. Length frequency distribution was significantly different between sexes (one-way ANOVA p less than 0.001). Within sexes, length frequency distributions varied between different populations. In both male and female Encephaloides armstrongi the individuals from a single population located at 150 m depth were significantly smaller than individuals at all other stations and were considered to represent a juvenile cohort. For female crabs no other significant differences were detected in length frequency between populations from 300 m to 650 m depth. Significant differences in length frequency were detected between male crabs from populations between 300 and 650 m depth. Horizontal starch gel electrophoresis was used to detect six enzyme systems coding for eight loci for individuals sampled from each population of Encephaloides armstrongi. Genetic identity (I) values between populations of E. armstrongi (I = 0.98-1.00) were within the normal range for conspecific populations. Observed heterozygosity (Ho = 0.080-0.146) was lower than expected heterozygosity (He = 0.111-0.160), but in the normal range detected for eukaryotic organisms. F-statistics were used to analyse between population (FST) and within population (F ) genetic structure. For both male and female E. armstrongi significant genetic differentiation was detected between the population located at 150 m depth and all other populations. Analyses of FIS and FST, excluding the 150 m population indicated that for female E. armstrongi there was no significant structuring within or between populations. For male E. armstrongi significant heterozygote deficiencies were detected within populations and significant genetic differentiation between populations. The most likely explanations for the observations of the present study are: the population of Encephaloides armstrongi located at 150 m depth represented a juvenile cohort that is genetically distinct from deeper populations; female E. armstrongi formed a single population between 300 m and 650 m depth in the sampling area; male E. armstrongi were from two or more genetically distinct populations which are represented by different numbers of individuals at stations between 300 m and 650 m depth. This caused the observed significant differences in morphology (size distribition) and allele frequencies of male populations. It is likely that E. armstrongi exhibits gender-biased dispersal and that the crabs collected between 300 m and 650 m depth formed spawning aggressions. This also explains the bias in sex ratio of individuals sampled in the present study.

  19. Occurrence of Legacy and New Persistent Organic Pollutants in Avian Tissues from King George Island, Antarctica.

    PubMed

    Kim, Jun-Tae; Son, Min-Hui; Kang, Jung-Ho; Kim, Jeong-Hoon; Jung, Jin-Woo; Chang, Yoon-Seok

    2015-11-17

    Legacy and new persistent organic pollutants (POPs), including polychlorinated naphthalenes (PCNs), Dechlorane Plus (DPs) and related compounds (Dechloranes), hexabromocyclododecanes (HBCDs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs), were analyzed in avian tissue samples from King George Island, Antarctica. The avian species consisted of the Gentoo penguin (Pygoscelis papua), the Adelie penguin (Pygoscelis adeliae), the South polar skua (Stercorarius maccormicki), and the Brown skua (Stercorarius antarcticus). HBCDs were detected in all samples and ranged from 1.67-713 pg/g-lipid. In the penguin samples, the concentrations of PCNs ranged from 0.69-2.07 ng/g-lipid, whereas those in the skua samples ranged from 7.41-175 ng/g-lipid. The levels of Dechloranes ranged from 0.60-1.30 ng/g-lipid in the penguin samples and from 6.57-47.4 ng/g-lipid in the skua samples. The concentrations and congener distributions of OCPs and PCBs were similar to the results of previous reports. The three new POPs were detected in all samples, and this study was one of the first reports on the occurrence of these pollutants in the Antarctic biota. Because Antarctica is one of the most pristine places on Earth, the detection of new POPs in the Antarctic birds, especially penguins, is direct evidence of the long-range transport of pollutants. Furthermore, the concentration ratios of the penguin to the skua samples (BMFs-p) were greater than 1 in most legacy and new POPs, and the BMFs-p values of the new POPs were comparable to those of some OCPs, suggesting a possibility of biomagnification. Despite the small sample size, the results of this study identified POP contamination of the Antarctic avian species and long-range transport and biomagnification of HBCDs, Dechloranes, and PCNs.

  20. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking.

    PubMed

    Saito, E; Tanaka, N; Miyazaki, A; Tsuzaki, M

    2014-06-15

    The concentration and particle size distribution of 19 major polycyclic aromatic hydrocarbons (PAHs) emitted by thermal cooking were investigated. Corn, trout, beef, prawns, and pork were selected for grilling. The PAHs in the oil mist emitted when the food was grilled were collected according to particle size range and analysed by GC/MS. Much higher concentrations of PAHs were detected in the oil mist emitted by grilled pork, trout, and beef samples, which were rich in fat. The main components of the cooking exhaust were 3- and 4-ring PAHs, regardless of food type. The particle size distribution showed that almost all the PAHs were concentrated in particles with diameters of <0.43 μm. For pork, the toxic equivalent of benzo[a]pyrene accounted for 50% of the PAHs in particles with diameters of <0.43 μm. From these results, we estimated that >90% of the PAHs would reach the alveolar region of the lungs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Dependence of the forward light scattering on the refractive index of particles

    NASA Astrophysics Data System (ADS)

    Guo, Lufang; Shen, Jianqi

    2018-05-01

    In particle sizing technique based on forward light scattering, the scattered light signal (SLS) is closely related to the relative refractive index (RRI) of the particles to the surrounding, especially when the particles are transparent (or weakly absorbent) and the particles are small in size. The interference between the diffraction (Diff) and the multiple internal reflections (MIR) of scattered light can lead to the oscillation of the SLS on RRI and the abnormal intervals, especially for narrowly-distributed small particle systems. This makes the inverse problem more difficult. In order to improve the inverse results, Tikhonov regularization algorithm with B-spline functions is proposed, in which the matrix element is calculated for a range of particle sizes instead using the mean particle diameter of size fractions. In this way, the influence of abnormal intervals on the inverse results can be eliminated. In addition, for measurements on narrowly distributed small particles, it is suggested to detect the SLS in a wider scattering angle to include more information.

  2. Formation, habitability, and detection of extrasolar moons.

    PubMed

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  3. Ultra trace determination of 31 pesticides in water samples by direct injection-rapid resolution liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Díaz, Laura; Llorca-Pórcel, Julio; Valor, Ignacio

    2008-08-22

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 microL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm x 50 mm, 1.8 microm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L(-1) and correlation coefficients for the calibration curves in the range of 30-2000 ng L(-1) were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.

  4. Land-based infrared imagery for marine mammal detection

    NASA Astrophysics Data System (ADS)

    Graber, Joseph; Thomson, Jim; Polagye, Brian; Jessup, Andrew

    2011-09-01

    A land-based infrared (IR) camera is used to detect endangered Southern Resident killer whales in Puget Sound, Washington, USA. The observations are motivated by a proposed tidal energy pilot project, which will be required to monitor for environmental effects. Potential monitoring methods also include visual observation, passive acoustics, and active acoustics. The effectiveness of observations in the infrared spectrum is compared to observations in the visible spectrum to assess the viability of infrared imagery for cetacean detection and classification. Imagery was obtained at Lime Kiln Park, Washington from 7/6/10-7/9/10 using a FLIR Thermovision A40M infrared camera (7.5-14μm, 37°HFOV, 320x240 pixels) under ideal atmospheric conditions (clear skies, calm seas, and wind speed 0-4 m/s). Whales were detected during both day (9 detections) and night (75 detections) at distances ranging from 42 to 162 m. The temperature contrast between dorsal fins and the sea surface ranged from 0.5 to 4.6 °C. Differences in emissivity from sea surface to dorsal fin are shown to aid detection at high incidence angles (near grazing). A comparison to theory is presented, and observed deviations from theory are investigated. A guide for infrared camera selection based on site geometry and desired target size is presented, with specific considerations regarding marine mammal detection. Atmospheric conditions required to use visible and infrared cameras for marine mammal detection are established and compared with 2008 meteorological data for the proposed tidal energy site. Using conservative assumptions, infrared observations are predicted to provide a 74% increase in hours of possible detection, compared with visual observations.

  5. Multi-Angle Snowflake Camera Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Martin; Bailey, J.

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASCmore » cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.« less

  6. Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland

    NASA Astrophysics Data System (ADS)

    Szuszkiewicz, Marcin; Magiera, Tadeusz; Kapička, Aleš; Petrovský, Eduard; Grison, Hanna; Gołuchowska, Beata

    2015-05-01

    Dust emission and deposition in topsoil have negative effect on individual components of the ecosystem. In addition to routine geochemical analyses, magnetic measurements may provide useful complementary information related to the type, concentration and grain-size distribution of the technogenic magnetic particles (TMPs) and thus the degree of contamination of the environment. The aim of this contribution is to use magnetic parameters in distinguishing dust from a wide range of sources of air pollution (power industry, cement, coke, ceramic industries and biomass combustion). We measured magnetic susceptibility, hysteresis parameters and thermomagnetic curves. Our results suggest that predominant component in tested samples is magnetite, only dust from coking plant and the combustion of lignite contained also maghemite and/or hematite. Mixture of sizes, ranging from fine single-domain to coarse multi-domain grains, was detected. Our results indicate that industrial dusts from various sources of emissions have different specific magnetic properties and magnetic measurements may provide very helpful information.

  7. Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey.

    PubMed

    Duncan, Christopher A J; Heymans, Catherine; Heavens, Alan F; Joachimi, Benjamin

    2016-03-21

    We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than the shear measurements.

  8. A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations.

    PubMed

    de Hoop, Bartjan; Gietema, Hester; van Ginneken, Bram; Zanen, Pieter; Groenewegen, Gerard; Prokop, Mathias

    2009-04-01

    We compared interexamination variability of CT lung nodule volumetry with six currently available semi-automated software packages to determine the minimum change needed to detect the growth of solid lung nodules. We had ethics committee approval. To simulate a follow-up examination with zero growth, we performed two low-dose unenhanced CT scans in 20 patients referred for pulmonary metastases. Between examinations, patients got off and on the table. Volumes of all pulmonary nodules were determined on both examinations using six nodule evaluation software packages. Variability (upper limit of the 95% confidence interval of the Bland-Altman plot) was calculated for nodules for which segmentation was visually rated as adequate. We evaluated 214 nodules (mean diameter 10.9 mm, range 3.3 mm-30.0 mm). Software packages provided adequate segmentation in 71% to 86% of nodules (p < 0.001). In case of adequate segmentation, variability in volumetry between scans ranged from 16.4% to 22.3% for the various software packages. Variability with five to six software packages was significantly less for nodules >or=8 mm in diameter (range 12.9%-17.1%) than for nodules <8 mm (range 18.5%-25.6%). Segmented volumes of each package were compared to each of the other packages. Systematic volume differences were detected in 11/15 comparisons. This hampers comparison of nodule volumes between software packages.

  9. Design and application of a structured phantom for detection performance comparison between breast tomosynthesis and digital mammography

    NASA Astrophysics Data System (ADS)

    Cockmartin, L.; Marshall, N. W.; Zhang, G.; Lemmens, K.; Shaheen, E.; Van Ongeval, C.; Fredenberg, E.; Dance, D. R.; Salvagnini, E.; Michielsen, K.; Bosmans, H.

    2017-02-01

    This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p  =  0.0001 and p  =  0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability differences between FFDM and DBT modes for five commercial systems. This phantom has potential for application in task-based assessment at acceptance and commissioning testing of DBT systems.

  10. Enhanced photo-response of porous silicon photo-detectors by embeddingTitanium-dioxide nano-particles

    NASA Astrophysics Data System (ADS)

    Ali, Hiba M.; Makki, Sameer A.; Abd, Ahmed N.

    2018-05-01

    Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA / cm2), in 15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs. It has been detected that through XRD measurement, (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range.The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.

  11. A comparison of the sensitivity, specificity, and molecular weight accuracy of three different commercially available Hyaluronan ELISA-like assays.

    PubMed

    Haserodt, Sarah; Aytekin, Metin; Dweik, Raed A

    2011-02-01

    Hyaluronan (HA) is a glycosaminoglycan found in the extracellular matrix and ranges from several thousand to millions of daltons in size. HA has importance in various pathological conditions and is known to be elevated in several diseases. Three commonly used, commercially available HA enzyme-linked immunosorbent assay (ELISA)-like assays (from Corgenix, Echelon and R&D) were compared on the basis of accuracy, sample variability and ability to measure a range of HA sizes. The Corgenix HA ELISA-like assay displayed the lowest intra-assay variability [coefficient of variation (CV) = 11.7 ± 3.6%], followed by R&D (CV = 12.3 ± 4.6%) and Echelon (CV = 18.9 ± 9.2%). Interassay variability was also lowest for the Corgenix assay (CV = 6.0%), intermediate for the Echelon assay (9.5%) and highest for the R&D assay (CV = 34.1%). The high interassay variability seen for the R&D assay may have been due to the effect of dilution, since the dilution-independent interassay variability was 15.5%. The concentration of the standard HA was overestimated by the Echelon assay by 85% and underestimated by the R&D and Corgenix assays by 34 and 32%, respectively. The Echelon HA ELISA-like assay was the most effective at measuring all sizes of HA tested (2 MDa and 132, 66 and 6.4 kDa), whereas the Corgenix and R&D assays were unable to detect 6.4 kDa HA. These findings suggest that the Echelon HA ELISA-like assay is better suited for size-sensitive HA measurements but has a relatively high variability. The Corgenix and R&D HA ELISA-like assays have low variability and high accuracy but are not suitable for detecting low-molecular-weight HA.

  12. An Accurate Co-registration Method for Airborne Repeat-pass InSAR

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Zhao, Y. H.; Yue, X. J.; Han, C. M.

    2017-10-01

    Interferometric Synthetic Aperture Radar (InSAR) technology plays a significant role in topographic mapping and surface deformation detection. Comparing with spaceborne repeat-pass InSAR, airborne repeat-pass InSAR solves the problems of long revisit time and low-resolution images. Due to the advantages of flexible, accurate, and fast obtaining abundant information, airborne repeat-pass InSAR is significant in deformation monitoring of shallow ground. In order to getting precise ground elevation information and interferometric coherence of deformation monitoring from master and slave images, accurate co-registration must be promised. Because of side looking, repeat observing path and long baseline, there are very different initial slant ranges and flight heights between repeat flight paths. The differences of initial slant ranges and flight height lead to the pixels, located identical coordinates on master and slave images, correspond to different size of ground resolution cells. The mismatching phenomenon performs very obvious on the long slant range parts of master image and slave image. In order to resolving the different sizes of pixels and getting accurate co-registration results, a new method is proposed based on Range-Doppler (RD) imaging model. VV-Polarization C-band airborne repeat-pass InSAR images were used in experiment. The experiment result shows that the proposed method leads to superior co-registration accuracy.

  13. Radio for hidden-photon dark matter detection

    DOE PAGES

    Chaudhuri, Saptarshi; Graham, Peter W.; Irwin, Kent; ...

    2015-10-08

    We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled “hidden electric field,” oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that the observable effect of the hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to couple to this magnetic field. Ourmore » “straw man” setups take into consideration resonator design, readout architecture and noise estimates. At high frequencies, there is an upper limit to the useful size of a single resonator set by 1/ν. However, many resonators may be multiplexed within a hidden-photon coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous range of possible frequencies, but current experiments search only over a few narrow pieces of that range. As a result, we find the potential sensitivity of our proposal is many orders of magnitude beyond current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially higher.« less

  14. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  15. Competitor internal standards for quantitative detection of mycoplasma DNA.

    PubMed

    Sidhu, M K; Rashidbaigi, A; Testa, D; Liao, M J

    1995-05-01

    Homologous internal controls were used as competitor DNA in the polymerase chain reaction for the quantitative detection of mycoplasma DNA. PCR primer sets were designed on the basis of the most conserved nucleotide sequences of the 16S rRNA gene of mycoplasma species. Amplification of this gene was examined in five different mycoplasma species: Mycoplasma orale, M. hyorhinus, M. synoviae, M. gallisepticum and M. pneumoniae. To evaluate the primers, a number of different cell lines were assayed for the detection of mycoplasma infections. All positive cell lines showed a distinct product on agarose gels while uninfected cells showed no DNA amplification. Neither bacterial nor eukaryotic DNA produced any cross-reaction with the primers used, thus confirming their specificity. Internal control DNA to be used for quantitation was constructed by modifying the sizes of the wild-type amplified products and cloning them in plasmid vectors. These controls used the same primer binding sites as the wild-type and the amplified products were differentiated by a size difference. The detection limits for all the mycoplasma species by competitive quantitative PCR were estimated to range from 4 to 60 genome copies per assay as determined by ethidium bromide-stained agarose gels. These internal standards also serve as positive controls in PCR-based detection of mycoplasma DNA, and therefore accidental contamination of test samples with wild-type positive controls can be eliminated. The quantitative PCR method developed will be useful in monitoring the progression and significance of mycoplasma in the disease process.

  16. Real-time non-invasive detection of inhalable particulates delivered into live mouse airways.

    PubMed

    Donnelley, Martin; Morgan, Kaye S; Fouras, Andreas; Skinner, William; Uesugi, Kentaro; Yagi, Naoto; Siu, Karen K W; Parsons, David W

    2009-07-01

    Fine non-biological particles small enough to be suspended in the air are continually inhaled as we breathe. These particles deposit on airway surfaces where they are either cleared by airway defences or can remain and affect lung health. Pollutant particles from vehicles, building processes and mineral and industrial dusts have the potential to cause both immediate and delayed health problems. Because of their small size, it has not been possible to non-invasively examine how individual particles deposit on live airways, or to consider how they behave on the airway surface after deposition. In this study, synchrotron phase-contrast X-ray imaging (PCXI) has been utilized to detect and monitor individual particle deposition. The in vitro detectability of a range of potentially respirable particulates was first determined. Of the particulates tested, only asbestos, quarry dust, fibreglass and galena (lead sulfate) were visible in vitro. These particulates were then examined after delivery into the nasal airway of live anaesthetized mice; all were detectable in vivo but each exhibited different surface appearances and behaviour along the airway surface. The two fibrous particulates appeared as agglomerations enveloped by fluid, while the non-fibrous particulates were present as individual particles. Synchrotron PCXI provides the unique ability to non-invasively detect and track deposition of individual particulates in live mouse airways. With further refinement of particulate sizing and delivery techniques, PCXI should provide a novel approach for live animal monitoring of airway particulates relevant to lung health.

  17. The Power of Low Back Pain Trials: A Systematic Review of Power, Sample Size, and Reporting of Sample Size Calculations Over Time, in Trials Published Between 1980 and 2012.

    PubMed

    Froud, Robert; Rajendran, Dévan; Patel, Shilpa; Bright, Philip; Bjørkli, Tom; Eldridge, Sandra; Buchbinder, Rachelle; Underwood, Martin

    2017-06-01

    A systematic review of nonspecific low back pain trials published between 1980 and 2012. To explore what proportion of trials have been powered to detect different bands of effect size; whether there is evidence that sample size in low back pain trials has been increasing; what proportion of trial reports include a sample size calculation; and whether likelihood of reporting sample size calculations has increased. Clinical trials should have a sample size sufficient to detect a minimally important difference for a given power and type I error rate. An underpowered trial is one within which probability of type II error is too high. Meta-analyses do not mitigate underpowered trials. Reviewers independently abstracted data on sample size at point of analysis, whether a sample size calculation was reported, and year of publication. Descriptive analyses were used to explore ability to detect effect sizes, and regression analyses to explore the relationship between sample size, or reporting sample size calculations, and time. We included 383 trials. One-third were powered to detect a standardized mean difference of less than 0.5, and 5% were powered to detect less than 0.3. The average sample size was 153 people, which increased only slightly (∼4 people/yr) from 1980 to 2000, and declined slightly (∼4.5 people/yr) from 2005 to 2011 (P < 0.00005). Sample size calculations were reported in 41% of trials. The odds of reporting a sample size calculation (compared to not reporting one) increased until 2005 and then declined (Equation is included in full-text article.). Sample sizes in back pain trials and the reporting of sample size calculations may need to be increased. It may be justifiable to power a trial to detect only large effects in the case of novel interventions. 3.

  18. Dual-frequency ultrasound for detecting and sizing bubbles.

    PubMed

    Buckey, Jay C; Knaus, Darin A; Alvarenga, Donna L; Kenton, Marc A; Magari, Patrick J

    2005-01-01

    ISS construction and Mars exploration require extensive extravehicular activity (EVA), exposing crewmembers to increased decompression sickness risk. Improved bubble detection technologies could help increase EVA efficiency and safety. Creare Inc. has developed a bubble detection and sizing instrument using dual-frequency ultrasound. The device emits "pump" and "image" signals at two frequencies. The low-frequency pump signal causes an appropriately-sized bubble to resonate. When the image frequency hits a resonating bubble, mixing signals are returned at the sum and difference of the two frequencies. To test the feasibility of transcutaneous intravascular detection, intravascular bubbles in anesthetized swine were produced using agitated saline and decompression stress. Ultrasonic transducers on the chest provided the two frequencies. Mixing signals were detected transthoracically in the right atrium using both methods. A histogram of estimated bubble sizes could be constructed. Bubbles can be detected and sized transthoracically in the right atrium using dual-frequency ultrasound. c2005 Elsevier Ltd. All rights reserved.

  19. Grain-size considerations for optoelectronic multistage interconnection networks.

    PubMed

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C

    1992-09-10

    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.

  20. Natural history of diminutive colorectal polyps: long-term prospective observation by colonoscopy.

    PubMed

    Mizuno, Ken-Ichi; Suzuki, Yutaka; Takeuchi, Manabu; Kobayashi, Masaaki; Aoyagi, Yutaka

    2014-04-01

    Endoscopic removal of colorectal adenomatous polyps effectively prevents cancer. However, the treatment strategy for diminutive polyps (diameter ≤ 5 mm) remains controversial. Understanding the natural history of diminutive polyps is a prerequisite to their effective management. We prospectively examined the natural history of diminutive polyps by long-term surveillance colonoscopy. A total of 207 polyps detected in 112 patients from December 1991 through March 2002 were studied. To avoid potential effects on size and morphological characteristics, all polyps were selected randomly and were followed without biopsy. Polyp size was estimated by comparing the lesion with the diameter of a biopsy forceps. Mean follow up was 7.8 years (SD, 4.8; range, 1.0-18.6; median, 7.5; interquartile range 3.4-11.2). Twenty-four polyps were resected endoscopically, and the histopathological diagnosis was mucosal high-grade neoplasia (Category 4) for one polyp, and mucosal low-grade neoplasia (Category 3) for 23 polyps. Mean linear size of the polyps was 3.2 mm (SD, 1.0; range, 1.3-5.0) at initial colonoscopy and 3.8 mm (SD 1.6; range 1.3-10.0) at final colonoscopy (P<0.01). Left-sided polyps showed a higher growth rate than right-sided polyps, and a type IIIL2 pit pattern was associated with a lower growth rate than a type IIIL1 pattern. We clarified the natural history of diminutive polyps by long-term follow-up colonoscopy. The benign course of diminutive polyps should be considered in the design of treatment strategies. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  1. Ways to be different: foraging adaptations that facilitate higher intake rates in a northerly-wintering shorebird compared to a low-latitude conspecific

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; van Gils, Jan A.; Piersma, Theunis

    2015-01-01

    At what phenotypic level do closely related subspecies that live in different environments differ with respect to food detection, ingestion, and processing? This question motivated an experimental study on rock sandpipers (Calidris ptilocnemis). The species' nonbreeding range spans 20 degrees of latitude, the extremes of which are inhabited by two subspecies: Calidris p. ptilocnemis that winters primarily in upper Cook Inlet, Alaska (61°N), and C. p. tschuktschorum that overlaps slightly with C. p. ptilocnemis but whose range extends much farther south (~40°N). In view of the strongly contrasting energetic demands of their distinct nonbreeding distributions, we conducted experiments to assess the behavioural, physiological, and sensory aspects of foraging, and we used the bivalve Macoma balthica for all trials. Ptilocnemis consumed a wider range of prey sizes, had higher maximum rates of energy intake, processed shell waste at higher maximum rates, and handled prey more quickly. Notably, however, the two subspecies did not differ in their abilities to find buried prey. The subspecies were similar in size and had equally sized gizzards, but the more northern ptilocnemis individuals were 10-14% heavier than their same-sex tschuktschorum counterparts. The higher body mass in ptilocnemis likely resulted from hypertrophy of digestive organs (e.g. intestine, liver) related to digestion and nutrient assimilation. Given the previously established equality of the two subspecies' metabolic capacities, we propose that the high-latitude nonbreeding range of ptilocnemis rock sandpipers is primarily facilitated by digestive (i.e. physiological) aspects of their foraging ecology rather than behavioural or sensory aspects.

  2. An optimized video system for augmented reality in endodontics: a feasibility study.

    PubMed

    Bruellmann, D D; Tjaden, H; Schwanecke, U; Barth, P

    2013-03-01

    We propose an augmented reality system for the reliable detection of root canals in video sequences based on a k-nearest neighbor color classification and introduce a simple geometric criterion for teeth. The new software was implemented using C++, Qt, and the image processing library OpenCV. Teeth are detected in video images to restrict the segmentation of the root canal orifices by using a k-nearest neighbor algorithm. The location of the root canal orifices were determined using Euclidean distance-based image segmentation. A set of 126 human teeth with known and verified locations of the root canal orifices was used for evaluation. The software detects root canals orifices for automatic classification of the teeth in video images and stores location and size of the found structures. Overall 287 of 305 root canals were correctly detected. The overall sensitivity was about 94 %. Classification accuracy for molars ranged from 65.0 to 81.2 % and from 85.7 to 96.7 % for premolars. The realized software shows that observations made in anatomical studies can be exploited to automate real-time detection of root canal orifices and tooth classification with a software system. Automatic storage of location, size, and orientation of the found structures with this software can be used for future anatomical studies. Thus, statistical tables with canal locations will be derived, which can improve anatomical knowledge of the teeth to alleviate root canal detection in the future. For this purpose the software is freely available at: http://www.dental-imaging.zahnmedizin.uni-mainz.de/.

  3. Dark matter repulsion could thwart direct detection

    DOE PAGES

    Davoudiasl, Hooman

    2017-11-20

    We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less

  4. Dark matter repulsion could thwart direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, Hooman

    We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less

  5. Sample size requirements for indirect association studies of gene-environment interactions (G x E).

    PubMed

    Hein, Rebecca; Beckmann, Lars; Chang-Claude, Jenny

    2008-04-01

    Association studies accounting for gene-environment interactions (G x E) may be useful for detecting genetic effects. Although current technology enables very dense marker spacing in genetic association studies, the true disease variants may not be genotyped. Thus, causal genes are searched for by indirect association using genetic markers in linkage disequilibrium (LD) with the true disease variants. Sample sizes needed to detect G x E effects in indirect case-control association studies depend on the true genetic main effects, disease allele frequencies, whether marker and disease allele frequencies match, LD between loci, main effects and prevalence of environmental exposures, and the magnitude of interactions. We explored variables influencing sample sizes needed to detect G x E, compared these sample sizes with those required to detect genetic marginal effects, and provide an algorithm for power and sample size estimations. Required sample sizes may be heavily inflated if LD between marker and disease loci decreases. More than 10,000 case-control pairs may be required to detect G x E. However, given weak true genetic main effects, moderate prevalence of environmental exposures, as well as strong interactions, G x E effects may be detected with smaller sample sizes than those needed for the detection of genetic marginal effects. Moreover, in this scenario, rare disease variants may only be detectable when G x E is included in the analyses. Thus, the analysis of G x E appears to be an attractive option for the detection of weak genetic main effects of rare variants that may not be detectable in the analysis of genetic marginal effects only.

  6. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science.

    PubMed

    Fikiet, Marisia A; Khandasammy, Shelby R; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K

    2018-05-15

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The interstellar depletion mystery, or where have all those atoms gone. [cosmic abundance as grain model evidence

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The observed depletion of intermediate-weight elements O, C, and N from the interstellar medium is shown to be significantly greater than can be accounted for by accretion on interstellar dust. A number of possible explanations are presented, ranging from the existence in interstellar space of many 'snowballs' intermediate in size between dust grains and comets to the existence of many far more complicated interstellar molecules than have been detected.

  8. Physics based performance model of a UV missile seeker

    NASA Astrophysics Data System (ADS)

    James, I.

    2017-10-01

    Electro-optically (EO) guided surface to air missiles (SAM) have developed to use Ultraviolet (UV) wavebands supplementary to the more common Infrared (IR) wavebands. Missiles such as the US Stinger have been around for some time, these have been joined recently by Chinese FN-16 and Russian SA-29 (Verba) and there is a much higher potential proliferation risk. The purpose of this paper is to introduce a first-principles, physics based, model of a typical seeker arrangement. The model is constructed from various calculations that aim to characterise the physical effects that will affect the performance of the system. Data has been gathered from a number of sources to provide realism to the variables within the model. It will be demonstrated that many of the variables have the power to dramatically alter the performance of the system as a whole. Further, data will be shown to illustrate the expected performance of a typical UV detector within a SAM in detection range against a variety of target sizes. The trend for the detection range against aircraft size and skin reflectivity will be shown to be non-linear, this should have been expected owing to the exponential decay of a signal through atmosphere. Future work will validate the performance of the model against real world performance data for cameras (when this is available) to ensure that it is operates within acceptable errors.

  9. Mineralogy and geochemistry of atmospheric particulates in western Iran

    NASA Astrophysics Data System (ADS)

    Ahmady-Birgani, Hesam; Mirnejad, Hassan; Feiznia, Sadat; McQueen, Ken G.

    2015-10-01

    This study investigates the mineralogy and physico-chemical properties of atmospheric particulates collected at Abadan (southwestern Iran) near the Persian Gulf coast and Urmia (northwestern Iran) during ambient and dust events over 6 months (winter 2011; spring 2012). Particle sizes collected were: TSP (total suspended particulates); PM10 (particulates <10 μm); and PM2.5 (particulates <2.5 μm). Minerals were identified using X-ray diffraction (XRD); particle morphology and composition were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX). Major minerals detected are calcite, quartz, clay minerals and gypsum, with relative abundance related to sampling site, collection period, wind direction, sampling head, and total sample amount. The anomalously high calcite content appears a characteristic feature originated from calcareous soils of the region. SEM observations indicated a wide range of particle morphologies over the 1-50 μm size range, with spherical, platy, cubic, elongate and prismatic shapes and rounding from angular to rounded. Energy dispersive X-ray analysis of TSP samples from both sites for non-dusty periods indicated that the sampled mineral suite contained Al, Mg, Na, Cl, P, S, Ca, K, Fe, Ti, and Si, mostly reflecting calcite, quartz, aluminosilicates, clays, gypsum and halite. Additionally, As, Pb, Zn, Mn, Sc, Nd, W, Ce, La, Ba and Ni were detected in TSP, PM10 and PM2.5 samples collected during dust events.

  10. Breast cancer tumour growth modelling for studying the association of body size with tumour growth rate and symptomatic detection using case-control data.

    PubMed

    Abrahamsson, Linda; Czene, Kamila; Hall, Per; Humphreys, Keith

    2015-08-21

    A large body size is associated with larger breast cancer tumours at diagnosis. Standard regression models for tumour size at diagnosis are not sufficient for unravelling the mechanisms behind the association. Using Swedish case-control data, we identified 1352 postmenopausal women with incident invasive breast cancer diagnosed between 1993 and 1995. We used a novel continuous tumour growth model, which models tumour sizes at diagnosis through three submodels: for tumour growth, time to symptomatic detection, and screening sensitivity. Tumour size at other time points is thought of as a latent variable. We quantified the relationship between body size with tumour growth and time to symptomatic detection. High body mass index and large breast size are, respectively, significantly associated with fast tumour growth rate and delayed time to symptomatic detection (combined P value = 5.0 × 10(-5) and individual P values = 0.089 and 0.022). We also quantified the role of mammographic density in screening sensitivity. The times at which tumours will be symptomatically detected may vary substantially between women with different breast sizes. The proposed tumour growth model represents a novel and useful approach for quantifying the effects of breast cancer risk factors on tumour growth and detection.

  11. Population size influences amphibian detection probability: implications for biodiversity monitoring programs.

    PubMed

    Tanadini, Lorenzo G; Schmidt, Benedikt R

    2011-01-01

    Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size). The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the conservation of imperiled species.

  12. Does Mentoring Matter? A Multidisciplinary Meta-Analysis Comparing Mentored and Non-Mentored Individuals

    PubMed Central

    Eby, Lillian T.; Allen, Tammy D.; Evans, Sarah C.; Ng, Thomas; DuBois, David

    2008-01-01

    The study of mentoring has generally been conducted within disciplinary silos with a specific type of mentoring relationship as a focus. The purpose of this article is to quantitatively review the three major areas of mentoring research (youth, academic, workplace) to determine the overall effect size associated with mentoring outcomes for protégés. We also explored whether the relationship between mentoring and protégé outcomes varied by the type of mentoring relationship (youth, academic, workplace). Results demonstrate that mentoring is associated with a wide range of favorable behavioral, attitudinal, health-related, relational, motivational, and career outcomes, although the effect size is generally small. Some differences were also found across type of mentoring. Generally, larger effect sizes were detected for academic and workplace mentoring compared to youth mentoring. Implications for future research, theory, and applied practice are provided. PMID:19343074

  13. Size controlled hydroxyapatite and calcium carbonate particles: synthesis and their application as templates for SERS platform.

    PubMed

    Parakhonskiy, B V; Svenskaya, Yu I; Yashchenok, A М; Fattah, H A; Inozemtseva, O A; Tessarolo, F; Antolini, R; Gorin, D A

    2014-06-01

    An elegant route for hydroxyapatite (HA) particle synthesis via ionic exchange reaction is reported. Calcium carbonate particles (CaCO3) were recrystallized into HA beads in water solution with phosphate ions. The size of initial CaCO3 particles was controlled upon the synthesis by varying the amount of ethylene glycol (EG) in aqueous solution. The average size of HA beads ranged from 0.6±0.1 to 4.3±1.1μm. Silver nanoparticles were deposited on the surface of HA and CaCO3 particles via silver mirror reaction. Surface enhanced Raman scattering of silver functionalized beads was demonstrated by detecting Rhodamine B. CaCO3 and HA particles have a great potential for design of carrier which can provide diagnostic and therapeutic functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. In-situ detection of micron-sized dust particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  15. Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.

    1975-01-01

    Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.

  16. Occurrence and removal of microbial indicators from municipal wastewaters by nine different MBR systems.

    PubMed

    Hirani, Zakir M; Decarolis, James F; Lehman, Geno; Adham, Samer S; Jacangelo, Joseph G

    2012-01-01

    Nine different membrane bioreactor (MBR) systems with different process configurations (submerged and external), membrane geometries (hollow-fiber, flat-sheet, and tubular), membrane materials (polyethersulfone (PES), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE)) and membrane nominal pore sizes (0.03-0.2 μm) were evaluated to assess the impact of influent microbial concentration, membrane pore size and membrane material and geometries on removal of microbial indicators by MBR technology. The log removal values (LRVs) for microbial indicators increased as the influent concentrations increased. Among the wide range of MBR systems evaluated, the total and fecal coliform bacteria and indigenous MS-2 coliphage were detected in 32, 9 and 15% of the samples, respectively; the 50th percentile LRVs were measured at 6.6, 5.9 and 4.5 logs, respectively. The nominal pore sizes of the membranes, membrane materials and geometries did not show a strong correlation with the LRVs.

  17. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2017-12-01

    Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine amines (Ʃamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters < 3 μm. More than 80% of Ʃamines were found in particles with diameters <1.5 μm, indicating that amines are mainly enriched in fine particles. All amines exhibited a bimodal distribution with a fine mode at 0.49-1.5 μm and a coarse mode at 7.2-10 μm. The maximum contributions of amines to particles (0.21%) and amines-N to water-soluble organic nitrogen (WSON) (3.1%) were found at the sizes < 0.49 μm. The maximum contribution of amines-C to water-soluble organic carbon (WSOC) was 1.6% over the size range of 0.95-1.5 μm. The molar ratio of Ʃamines to ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.

  18. Synthesis and characterization of cellulose and hydroxyapatite-carbon electrode composite for trace plumbum ions detection and its validation in blood serum.

    PubMed

    Ajab, Huma; Dennis, John Ojur; Abdullah, Mohd Azmuddin

    2018-07-01

    A novel synthesis and characterization of cellulose, hydroxyapatite and chemically-modified carbon electrode (Cellulose-HAp-CME) composite was reported for the analysis of trace Pb(II) ions detection and its validation in blood serum. The Field Emission Scanning Electron Microscopy (FESEM) analyses showed that the composite retained the orderly porous structure but with scattered particle size agglomeration. The Fourier Transform Infrared Spectroscopy (FTIR) spectra suggested the presence of functional groups associated with the bending and stretching of carbon bonds and intermolecular H-bonding. X-ray Diffraction (XRD) analyses further elucidated that the crystallite size could have influenced the properties of the electrode. Based on Thermo-gravimetric Analysis (TGA/DTG), the composites showed thermal stability with more than 60% residual content at 700°C. The sensor was successfully developed for trace Pb(II) ions detection in complex medium such as blood serum, in the physiologically relevant range of 10-60ppb, with resulting Limit of Detection (LOD) of 0.11±0.36ppb and Limit of Quantification (LOQ) of 0.36±0.36ppb. The newly fabricated electrode could be advantageous as a sensing platform with favourable electrochemical characteristics for robust, in situ and rapid environmental and clinical analyses of heavy metal ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Integrated ZnO nanoparticles on paper-based microfluidic: toward efficient analytical device for glucose detection based on impedance and FTIR measurement

    NASA Astrophysics Data System (ADS)

    Yuwono, Rio Akbar; Izdiharruddin, Mokhammad Fahmi; Wahyuono, Ruri Agung

    2016-11-01

    Microfluidic paper-based analytical devices decorated with ZnO nanospherical (nanoSPs) aggregates (ZnO-μPAD) for glucose detection have been fabricated. ZnO nanoSPs were prepared by wet chemical synthesis and integrated on the optimized geometry of ZnO-μPAD has 0.2 and 0.4 mm of channel width and length, respectively. Glucose detection measurements were based on electrochemical and infrared transmission measurements. The glucose concentrations were adjusted as 5, 6.5, and 9 mmol, i.e. typical glucose level for normal, pre-diabetes and diabetes, in a mixture of ringer lactate as simulated biological fluid and red blood cells. ZnO nanoSPs in this study possess an average aggregate size of 160 nm formed by clustered 18 nm crystallite size and ordered porous matrix as well as a surface area of 15 m2·g-1.The separation process of the glucose sample on ZnO-μPAD requires approximately 45 s. The glucose detection results show that both electrochemical-based and FTIR-based measurements perform a linear measurement system (R2 of 0.81 to 0.99) with a relatively high sensitivity. A linearly decreasing impedance spanning from 2.2 - 0.6 Ohm and linearly increasing ΔIR transmission spanning from 3 - 19% are obtained for glucose level ranging from 5 - 9 mmol.

  20. Freezing of gait and fall detection in Parkinson's disease using wearable sensors: a systematic review.

    PubMed

    Silva de Lima, Ana Lígia; Evers, Luc J W; Hahn, Tim; Bataille, Lauren; Hamilton, Jamie L; Little, Max A; Okuma, Yasuyuki; Bloem, Bastiaan R; Faber, Marjan J

    2017-08-01

    Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson's disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73-100% for sensitivity and 67-100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets.

Top