Sample records for detecting columnar deformations

  1. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebensohn, Ricardo A; Montagnat, Maurine; Mansuy, Philippe

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals.more » The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.« less

  2. Retaining {1 0 0} texture from initial columnar grains in 6.5 wt% Si electrical steels

    NASA Astrophysics Data System (ADS)

    Liang, Ruiyang; Yang, Ping; Mao, Weimin

    2017-11-01

    6.5 wt% Si electrical steel is a superior soft magnetic material with excellent magnetic properties which highly depends on texture. In this study, based on the heredity of 〈0 0 1〉 orientation in columnar grains, columnar grains are used as the initial material to prepare non-oriented 6.5 wt% Si electrical steel with excellent magnetic properties. EBSD and XRD techniques are adopted to explore the structure and texture evolution during hot rolling, warm rolling, cold rolling and annealing. The results show that, due to the heredity of "structure and texture" from the initial strong {1 0 0} columnar grains, annealed sheet with {1 0 0}〈0 0 1〉 texture had better magnetic properties, which can be used as non-oriented high-silicon electrical steel. Both preferred cube grain nucleation in deformed {1 1 3}〈3 6 1〉 grains in subsurface and coarse {1 0 0}〈0 0 1〉 deformed grains in center layer show the effect of initial columnar grains with {1 0 0} texture.

  3. Deformation Twins in Nanocrystalline Body-Centered Cubic Mo as Predicted by Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tonks; Bulent biner; Yongfeng Zhang

    2012-10-01

    This work studies deformation twins in nanocrystalline body-centered cubic Mo, including the nucleation and growth mechanisms as well as their effects on ductility, through molecular dynamics simulations. The deformation processes of nanocrystalline Mo are simulated using a columnar grain model with three different orientations. The deformation mechanisms identified, including dislocation slip, grain-boundary-mediated plasticity, deformation twins and martensitic transformation, are in agreement with previous studies. In (1 1 0) columnar grains, the deformation is dominated by twinning, which nucleates primarily from the grain boundaries by successive emission of twinning partials and thickens by jog nucleation in the grain interiors. Upon arrestmore » by a grain boundary, the twin may either produce continuous plastic strain across the grain boundary by activating compatible twinning/slip systems or result in intergranular failure in the absence of compatible twinning/slip systems in the neighboring grain. Multiple twinning systems can be activated in the same grain, and the competition between them favors those capable of producing continuous deformation across the grain boundary.« less

  4. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  5. Yield surface evolution for columnar ice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  6. Colorimetric Method of Loop-Mediated Isothermal Amplification with the Pre-Addition of Calcein for Detecting Flavobacterium columnare and its Assessment in Tilapia Farms.

    PubMed

    Suebsing, Rungkarn; Kampeera, Jantana; Sirithammajak, Sarawut; Withyachumnarnkul, Boonsirm; Turner, Warren; Kiatpathomchai, Wansika

    2015-03-01

    Flavobacterium columnare, the causative agent of columnaris disease in fish, affects many economically important freshwater fish species. A colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein (LAMP-calcein) was developed and used to detect the presence of F. columnare in farmed tilapia (Nile Tilapia Oreochromis niloticus and red tilapia [Nile Tilapia × Mozambique Tilapia O. mossambicus]) and rearing water. The detection method, based on a change in color from orange to green, could be performed within 45 min at 63°C. The method was highly specific, as it had no cross-detections with 14 other bacterial species, including other fish pathogens and two Flavobacterium species. The method has a minimum detection limit of 2.2 × 10(2) F. columnare CFU; thus, it is about 10 times more sensitive than conventional PCR. With this method, F. columnare was detected in gonad, gill, and blood samples from apparently healthy tilapia broodstock as well as in samples of fertilized eggs, newly hatched fry, and rearing water. The bacteria isolated from the blood were further characterized biochemically and found to be phenotypically identical to F. columnare. The amplified products from the LAMP-calcein method had 97% homology with the DNA sequence of F. columnare.

  7. Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Jordan, E. H.

    1985-01-01

    A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.

  8. Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations

    DOE PAGES

    Tucker, Garritt J.; Foiles, Stephen Martin

    2014-09-22

    Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of <100> columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized tomore » compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension–compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression.« less

  9. Objective measurements for grading the nasal esthetics on Basal view in individuals with secondary cleft nasal deformity.

    PubMed

    He, Xing; Li, Hua; Shao, Yan; Shi, Bing

    2015-01-01

    The purpose of this study is to ascertain objective nasal measurements from the basal view that are predictive of nasal esthetics in individuals with secondary cleft nasal deformity. Thirty-three patients who had undergone unilateral cleft lip repair were retrospectively reviewed in this study. The degree of nasal deformity was subjectively ranked by seven surgeons using standardized basal-view measurements. Nine physical objective parameters including angles and ratios were measured. Correlations and regressions between these objective and subjective measurements were then analyzed. There was high concordance in subjective measurements by different surgeons (Kendall's harmonious coefficient = W = .825, P = .006). The strongest predictive factors for nasal aesthetics were the ratio of length of nasal alar (r = .370, P = .034) and the degree of deviation of the columnar axis (r = .451, P = .008). The columellar angle had a more powerful effect in rating nasal esthetics. There was reliable concordance in subjective ranking of nasal esthetics by surgeons. Measurement of the columnar angle may serve as an independent, objective predictor of esthetics of the nose.

  10. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  11. Comparative challenge model of Flavobacterium columnare using abraded and unabraded channel catfish, Ictalurus punctatus (Rafinesque).

    PubMed

    Bader, J A; Nusbaum, K E; Shoemaker, C A

    2003-08-01

    The early entry of the fish pathogen Flavobacterium columnare and enhancement by abrasion was studied in channel catfish, Ictalurus punctatus (Rafinesque), using the polymerase chain reaction and a species-specific primer set for a bacterial 16S rRNA gene product. Evaluations were conducted following an abrasion bath immersion challenge with F. columnare. Abrasion, a practice which has historically been used prior to bacterial challenge, had significant effects on the early entry of the pathogen and on cumulative percent survival (CPS). The FvpF1-FvpR1 primer set was useful in detecting the early entry of F. columnare in mucus, skin, gill, blood, liver and trunk kidney tissues in both abraded and unabraded fish following immersion challenge at 29 +/- 2 degrees C. Bacteria were detected earlier in all tissues in abraded fish, except in the trunk kidney. These differences were not significant, except in the case of blood. Mucus, skin and gill tissues were positive for F. columnare earliest regardless of treatment (after 5 min in abraded fish and after 15 min in unabraded fish). CPS following challenge with F. columnare was significantly affected by abrasion, which supports the use of abrasion for the F. columnare challenge model for channel catfish.

  12. Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains

    NASA Astrophysics Data System (ADS)

    Ding, Zong-ye; Hu, Qiao-dan; Zeng, Long; Li, Jian-guo

    2016-11-01

    Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ•mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate ( θ)-flow stress ( σ) and -∂ θ/∂ σ-σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.

  13. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-03-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  14. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-06-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  15. Roles of microstructures on deformation response of 316 stainless steel made by 3D printing

    NASA Astrophysics Data System (ADS)

    Pham, Minh-Son; Hooper, Paul

    2017-10-01

    One of the main challenges in additive manufacturing (AM) of metals is to manufacture high quality materials and ensure the performance of AM materials in service duties. This challenge can only be solved when the relationships between build process parameters, microstructure and deformation behaviour are understood. This present study is part of holistic efforts at Imperial College to reveal such relationships. In this study, we present our study of porosity condition, grain morphology, texture and metastable phases in AM stainless steel 316. To provide samples for mechanical and microstructural study, cylindrical samples of stainless steel 316 were printed by powder-bed laser melting with a bi-directional hatch pattern. Scanning electron microscopy and electron backscattered diffraction were used to investigate fine microstructures (such as grain morphology, texture and crystal phases) after 3D printing and deformation. Subsequently, a detailed 3D structure of columnar grains in as-printed 316 steel is constructed thanks to microscopic observation. Most of grains in as-built samples have a spherical bowl morphology, and being stacked on others to form the columnar structure. Examinations on microstructures show that the small sub-grains in as-printed samples is likely responsible for high yield strength at room temperature (significantly higher than that of conventional steel). In addition, residual stresses after rapid cooling probably promote the deformation-induced twinning that assists the plasticity during deformation, leading to a good ductility of the AM steel (almost as same as that of conventional 316 steel). Currently, a more detailed study is being undertaken to confirm this hypothesis.

  16. Columnar metaplasia in a surgical mouse model of gastro-esophageal reflux disease is not derived from bone marrow-derived cell.

    PubMed

    Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo

    2013-09-01

    The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.

  17. Strengthening Effect of Incremental Shear Deformation on Ti Alloy Clad Plate with a Ni-Based Alloy Laser-Clad Layer

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zha, G. C.; Kong, F. X.; Wu, M. L.; Feng, X.; Gao, S. Y.

    2017-05-01

    A Ti-6Al-4V alloy clad plate with a Tribaloy 700 alloy laser-clad layer is subjected to incremental shear deformation, and we evaluate the structural evolution and mechanical properties of the specimens. Results indicate the significance of the incremental shear deformation on the strengthening effect. The wear resistance and Vickers hardness of the laser-clad layer are enhanced due to increased dislocation density. The incremental shear deformation can increase the bonding strength of the laser-clad layer and the corresponding substrate and can break the columnar crystals in the laser-clad layer near the interface. These phenomena suggest that shear deformation eliminates the defects on the interface of the laser-clad layer and the substrate. Substrate hardness is evidently improved, and the strengthening effect is caused by the increased dislocation density and shear deformation. This deformation can then transform the α- and β-phases in the substrate into a high-intensity ω-phase.

  18. Abiotic tooth enamel

    NASA Astrophysics Data System (ADS)

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M.; Arruda, Ellen M.; Kotov, Nicholas A.

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability—especially when juxtaposed with the diversity of other tissues—suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels—we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth’s normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  19. Effect of Pseudomonas sp. MT5 baths on Flavobacterium columnare infection of rainbow trout and on microbial diversity on fish skin and gills.

    PubMed

    Suomalainen, L R; Tiirola, M A; Valtonen, E T

    2005-01-25

    Use of Pseudomonas sp. strain MT5 to prevent and treat Flavobacterium columnare infection was studied in 2 experiments with fingerling rainbow trout Oncorhynchus mykiss. In the first experiment, length heterogeneity analysis of PCR-amplified DNA fragments (LH-PCR) was used to assess the effect of antagonistic baths on the microbial diversity of healthy and experimentally infected fish. In the 148 samples studied, no difference was found between bathed and unbathed fish, and 3 fragment lengths were detected most frequently: 500 (in 75.7% of the samples), 523 (62.2%) and 517 bp (40.5%). The species contributing to these fragment sizes were Pseudomonas sp., Rhodococcus sp. and F. columnare, respectively. A specific PCR for detection of Pseudomonas sp. MT5 was designed, but none of the tissue samples were found to be positive, most likely indicating poor adhesion of the strain during bathing. LH-PCR was found to be a more powerful tool for detecting F. columnare in fish tissue than traditional culture methods (chi2 = 3.9, df = 1, p < 0.05). Antagonistic baths had no effect on the outbreak of infection or on fish mortality. F. columnare was also detected in healthy fish prior to and after experimental infection, indicating that these fish were carriers of the disease. In the second experiment, intensive Pseudomonas sp. MT5 antagonistic baths were given daily to rainbow trout suffering from a natural columnaris infection. Again, the antagonistic bacteria had no effect on fish mortality, which reached 95 % in both control and antagonist-treated groups in 7 d.

  20. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0.0005 to 0.2 mm/min, respectively. Pressure and relative humidity were set to room conditions. Tourmaline was chosen for testing (as representative of columnar accessory minerals embedded within metamorphic tectonites) because this is the only mineral for which crystals are available of sufficient size and quality. A total of 120 prism-shaped tourmaline test pieces (dimensions, 2×2×12 mm) were prepared from a single tourmaline block collected from Minas Gerais, Brazil. The flexural strength of tourmaline shows a clear decrease with decreasing crosshead speed at ambient temperature (with n ≈ 15 as the static fatigue parameter); however, this trend weakens with increasing temperature (n > 50); that is, the influence of static fatigue on the strength of tourmaline decreases with increasing temperature. A comparable result has been reported for glass materials because of difficulties in the absorption of moisture on sample surfaces under high-temperature conditions. The fabric pattern of fracture planes developed in tourmaline specimens in the present study, which show rectilinear scratches, arrests, or Wallner lines on smooth surfaces, is similar to that observed for glass materials. 3. Fractography of naturally deformed minerals A ‘striation-like' pattern resulting from cyclic fatigue fracture was observed by scanning electron microscope (SEM) analysis of a natural fracture plane developed within marble-hosted amphibole. The sample was collected from the eastern flank of the Red River shear zone (Luc Yen district), northern Vietnam. The brittle fracturing of amphibole (open fractures were filled by calcite, which deforms plastically) is considered to have occurred at 6 km depth at 25 Ma, based on geological criteria. 4. Order of stress magnitude in continental crust at the depth of the brittle-plastic transition zone Assuming that the fracture behaviour of columnar accessory minerals during the development of microboudinage is independent of the mineral species, the above results raise the possibility that the fracturing of columnar accessory minerals at deep crustal levels is governed by cyclic fatigue, possibly attributed to mechanical degradation rather than stress corrosion associated with water molecules, and that the fracture behaviour of columnar accessory minerals is similar to that of glass materials. Thus, cyclic fatigue studies of glass materials are expected to provide a good reference for approximate estimates of the fatigue limit of columnar accessory minerals. According to the literature, the fatigue limit for many glass materials is approximately 10% of the ultimate tensile strength. Taking into account the influence of fatigue fracture, the obtained magnitudes of palaeodifferential stress at crustal depths of 10-20 km, as estimated using the microboudinage technique, are in the low tens of megapascals (e.g., 10 MPa at 9 km depth, as obtained from metacherts within high-pressure rocks in Japan; 25 MPa at 12 km depth, as obtained from metachert within a metamorphic sole in the UAE; 9 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in China; and 14 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in Turkey). These values are much lower than those obtained from laboratory measurements.

  1. A new spectroscopic imager for X-rays from 0.5 keV to 150 keV combining a pnCCD and a columnar CsI(Tl) scintillator

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.

    2017-04-01

    By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.

  2. Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores

    NASA Astrophysics Data System (ADS)

    Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick

    2018-02-01

    Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

  3. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  4. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  5. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.

    PubMed

    Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D

    2017-02-13

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  6. Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD

    PubMed Central

    Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.

    2017-01-01

    Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=−5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the ‘parent’ ones suggests the possibility of ‘spontaneous’ nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025294

  7. Columnar jointing - the mechanics of thermal contraction in cooling lavas

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.

    2014-12-01

    Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio between strain-to-failure and expansion coefficient suggests that 400 °C of cooling (from the solidus) is require to achieve tensile failure by thermal contraction, supporting the first suite of experiments. We conclude that columnar jointing is not a phenomenon that takes place in molten lava, but rather occurs well within the solid state of volcanic rocks.

  8. [Effects of Guilin Watermelon Frost on the mRNA expressions of basic fibroblast growth factor in patients with uterine cervical columnar ectopy].

    PubMed

    Qiu-Yan, Jiang; Jin-Ling, Song; Hai-Xia, Mo

    2012-01-01

    To study the molecular biological effects of Guilin Watermelon Frost (GWF) on the mRNA expressions of basic fibroblast growth factor (bFGF) in patients with uterine uterine cervical columnar ectopy. One hundred and sixty patients with uterine cervical columnar ectopy were assigned to two groups by the random digit table. Patients in the treatment group were treated with local spray of GWF, while those in the control group were local applied with bFGF-collagen sponge. The mRNA expressions of bFGF of the uterine tissue were detected in the two groups before and after treatment using RT-PCR. Before treatment the mRNA expression of bFGF in the uterine cervical columnar ectopy was 0.55 +/- 0.10 in the treatment group and 0.58 +/- 0.13 in the control group, without insignificant difference (P > 0.05). After treatment it significantly increased in the two groups, being 0.82 +/- 0.17 and 0.78 +/- 0.15 respectively, showing statistical difference from before treatment (P < 0.01). But no statistical difference existed between the two groups after treatment (P > 0.05). GWF showed enhancement on the mRNA expressions of bFGF in patients with uterine cervical columnar ectopy.

  9. Influence of Grain Structure and Doping on the Deformation and Fracture of Polycrystalline Silicon for MEMS and NEMS

    DTIC Science & Technology

    2012-09-03

    described in previous reports [32]. In this experimental technique, the specimen ends are gripped to loadcell and PZT actuator mounted on three dimensional...shown in Figure 3. This was due to the random distribution of columnar grains with different texture where KIC was dependent on one particular grain...Engineering: A, 268 (1-2), pp. 116-126, 1999 [19] C.P. Chen, and M.H. Leipold, "Fracture toughness of silicon", American Ceramics Society Bulletin

  10. Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes--an improved model for nanocrystalline thin films and a review of experimental data.

    PubMed

    Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J

    2014-11-28

    A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The modified interface transport in group (i) is most probably caused by strain effects, misfit dislocations or disordered transition regions.

  11. Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    NASA Astrophysics Data System (ADS)

    Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.

    2017-08-01

    During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

  12. Does flat epithelial atypia have rounder nuclei than columnar cell change/hyperplasia? A morphometric approach to columnar cell lesions of the breast.

    PubMed

    Yamashita, Yoshiko; Ichihara, Shu; Moritani, Suzuko; Yoon, Han-Seung; Yamaguchi, Masahiro

    2016-06-01

    Columnar cell lesions of the breast encompass columnar cell change/hyperplasia (CCC/CCH) and flat epithelial atypia (FEA). These have attracted researchers because emerging data suggest that FEA may represent the earliest histologically detectable non-obligate precursor of breast cancer. However, it is occasionally difficult to distinguish FEA from CCC/CCH because of similar histology. Although the nuclei of FEA are frequently described as relatively round compared with those of CCC/CCH, there are few morphometric studies to support this statement. The aim of this study was to provide objective data as to the nuclear shape in columnar cell lesions. As a shape descriptor, we adopted ellipticity that is defined by the formula 2b/2a, where a is the length of the long axis of the ellipse and b is the length of the short axis. Contrary to circularity, ellipticity reflects the overall configuration of an ellipse irrespective of surface irregularity. Our image analysis included generating whole slide images, extracting glandular cell nuclei, measuring nuclear ellipticity, and superimposing graded colors based on execution of results on the captured images. A total of 7917 nuclei extracted from 22 FEA images and 5010 nuclei extracted from 13 CCC/CCH images were analyzed. There was a significant difference in nuclear roundness between FEA and CCC/CCH with mean ellipticity values of 0.723 and 0.679, respectively (p < 0.001, Welch's t test). Furthermore, FEA with malignancy had significantly rounder nuclei than FEA without malignancy (p < 0.001). Our preliminary results suggest that nuclear ellipticity is a key parameter in reproducibly classifying columnar cell lesions of the breast.

  13. Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease.

    PubMed

    Prasad, Yogendra; Arpana; Kumar, Dinesh; Sharma, A K

    2011-03-01

    This investigation was aimed to find out appropriate strategy against antibiotic resistant bacterial fish pathogen, F. columnare. This pathogen was found persistently associated with fishes causing columnaris disease and ensuing mass mortality in hatchery and culture system of Sub - Himalayan region. Nine lytic F. columnare phages (FCP1 - FCP9) specific to its fifteen isolates were isolated from the water and bottom sediments of various geo-climatic regions of North India. The F. columnare phage FCP1 (made of hexagonal head and non contractile long tail belonging to family Podovariedae, a member of DNA virus) exhibited broader host range to lyse 9 out of 15 isolates of F. columnare. Therapeutic ability of FCP1 phage was assessed in C. batrachus inoculated intramuscularly (im) with virulent bacterial isolate FC8 and post inoculated (PI) with FCP1 phage (@ 10(8) : 10(6):: cfu : pfu) through intramuscular (im), immersion (bath) and oral (phage impregnated feed) treatment. Significant (p < 0.001) reduction (less than 10(-3) cfu ml(-1)) in host bacterium in the sera, gill, liver and kidney of challenged fishes was noted after 6 hr of phage treatment. Quantum of phage played a significant role in bringing down bacterial population as in the sera of dose 1 (@ 4.55 x 10(6) pfu ml(-1)) and dose 2 (@ 9.15 x 10(6) pfu ml(-1)) treated fishes mean log10 cfu value reduced by 3 logs (58.39%) and 5 logs (73.77%) at 96 hr, respectively. Phage treatment led to disappearance of gross symptoms, negative bacteriological test, detectable phage and 100% survival in experimentally infected C. batrachus. Result of this study provides evidence of profound lytic impact of FCP1 phage and represents its interesting therapeutic importance against antibiotic resistant F. columnare.

  14. Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain.

    PubMed

    Welsh, F A; Vannucci, R C; Brierley, J B

    1982-01-01

    Cerebral hypoxia-ischemia was produced in 7-day postnatal rats by unilateral carotid artery ligation combined with systemic hypoxia (8% O2). Levels of high energy phosphates, which were only slightly altered in the contralateral hemisphere, were nearly depleted in the ipsilateral hemisphere during the 3-h hypoxic insult. With hypoxia of between 1 and 3 hours' duration, columnar alterations of cortical NADH fluorescence occurred in the same location and regional pattern as did histologic damage demonstrated previously (Rice et al., 1981). In regions exhibiting columns of NADH fluorescence, there was no evidence of a columnar reduction of high energy phosphates as levels of ATP and phosphocreatine were nearly zero. Recovery from 3 h of hypoxia was accompanied by partial and regionally heterogeneous restoration of ATP within the ipsilateral hemisphere. Columnar variations of NADH fluorescence were not detected in the recovery period; rather, regions with impaired restitution of high energy phosphates exhibited NADH fluorescence that was diminished diffusely compared to the contralateral hemisphere. The correlation between depressed NADH fluorescence and depleted ATP, present as cortical columns during hypoxia and as larger regions during recovery, suggests that decreased formation of NADH may be limiting the resynthesis of high energy phosphates.

  15. Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei

    2018-05-01

    The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the < c + a > edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the < c + a > edge dislocations can cut through the basal SFs although the interactions between the < c + a > dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.

  16. Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains

    NASA Astrophysics Data System (ADS)

    Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi

    2013-03-01

    We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.

  17. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  18. Quantification of topographic changes in the surface of back of young patients monitored for idiopathic scoliosis: correlation with radiographic variables

    NASA Astrophysics Data System (ADS)

    Pino-Almero, Laura; Mínguez-Rey, María Fe; Sentamans-Segarra, Salvador; Salvador-Palmer, María Rosario; Anda, Rosa María Cibrián-Ortiz de; La O, Javier López-de

    2016-11-01

    Idiopathic scoliosis requires a close follow-up while the patient is skeletally immature to detect early progression. Patients who are monitored by radiographs are exposed to high doses of ionizing radiation. The purpose of this study is to evaluate if an optic noninvasive method of back surface topography based on structured light would be clinically useful in the follow-up of young patients with idiopathic scoliosis. This could reduce the number of radiographs made on these children. Thirty-one patients with idiopathic scoliosis were submitted twice to radiograph and our topographic method at intervals of 6 months to 1 year. Three topographical variables were applied horizontal plane deformity index (DHOPI), posterior trunk symmetry index (POTSI), and columnar profile (PC). A statistically significant correlation was found between variations of Cobb angle with DHOPI (r=0.720, p<0.01) and POTSI (r=0.753, p<0.01) during the monitoring period. Hence, this topographic method could be useful in clinical practice as an objective adjuvant tool in routine follow-up of scoliosis.

  19. Possibility of heliotropical response from inclination of columnar stromatolites, Socheong island, Korea

    NASA Astrophysics Data System (ADS)

    KONG, Dal Yong; LEE, Seong Joo; Golubic, Stjepko

    2014-05-01

    Socheong island is a unique island containing Precambrian stromatolites in South Korea. Most of Socheong stromatolites are domes and columns, occurring as 10 cm to 1 meter thick stromatolite beds. Lower parts of stromatolite beds are predominantly composed of domal stromatolites, while columns increase toward the upper level of stromatolite beds. In many of stromatolite beds, inclined columns are easily identifiable, which is generally considered as a result of heliotropism. From general lithology, sedimentary structures, inclined angles and distributional pattern, and structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. However, at this moment, we do not clearly reject heliotropism interpretation for inclined columns of Socheong stromatolites. This is because the original position of stromatolite columns were also lost if structural deformation would have affected throughout the whole sedimentary rocks of Socheong island. [Acknowledgments] This research was financially supported by the National Research Institute of Cultural Heritage.

  20. Impact deformation behavior of duplex and superaustenitic stainless steels welds by split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin

    2009-12-01

    A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.

  1. Relationship between columnar cell changes and low-grade carcinoma in situ of the breast--a cytogenetic study.

    PubMed

    Go, Edna May L; Tsang, Julia Y S; Ni, Yun-Bi; Yu, Alex M; Mendoza, Paulo; Chan, Siu-Ki; Lam, Christopher C; Lui, Philip C; Tan, Puay-Hoon; Tse, Gary M

    2012-11-01

    Columnar cell lesions of the breast include columnar cell changes without atypia and columnar cell changes with atypia. The latter frequently coexist and share molecular changes with low-grade carcinoma in situ and invasive carcinoma, suggesting that columnar cell changes may be precursors to progression of low-grade advanced lesions. In this study, we assessed chromosomal aberrations at 16q, hallmark for low-grade lesions, in columnar cell changes with or without atypia and their adjacent carcinoma in situ by fluorescent in situ hybridization using 3 region-specific probes spanning the entire chromosomal arm. The results were correlated with the histomorphological features of the corresponding lesions. Forty-four percent of low-grade carcinoma in situ and 31% of high-grade carcinoma in situ were associated with columnar cell changes with atypia, suggesting a link between columnar cell changes with atypia and low-grade carcinoma in situ. For the genetic aberrations, heterozygous deletion of 16q was present in 56% of low-grade carcinoma in situ but only in 19% of high-grade carcinoma in situ. Conversely, aneuploidy was found mostly in high-grade carcinoma in situ (88%). Twenty percent of columnar cell changes with atypia but none of the columnar cell changes without atypia showed heterozygous deletion of 16q. Interestingly, the same changes in 16q were observed in the columnar cell changes and their associated low-grade carcinoma in situ lesions. These findings demonstrated a genetic commonality between columnar cell changes with atypia and low-grade carcinoma in situ and substantiated the precursor role of columnar cell changes with atypia for low-grade carcinoma in situ but not high-grade carcinoma in situ of the breast. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Evaluation of modified crystal violet chromoendoscopy procedure using new mucosal pit pattern classification for detection of Barrett's dysplastic lesions.

    PubMed

    Yuki, T; Amano, Y; Kushiyama, Y; Takahashi, Y; Ose, T; Moriyama, I; Fukuhara, H; Ishimura, N; Koshino, K; Furuta, K; Ishihara, S; Adachi, K; Kinoshita, Y

    2006-05-01

    Pit pattern diagnosis is important for endoscopic detection of dysplastic Barrett's lesions, though using magnification endoscopy can be difficult and laborious. We investigated the usefulness of a modified crystal violet chromoendoscopy procedure and utilised a new pit pattern classification for diagnosis of dysplastic Barrett's lesions. A total of 1,030 patients suspected of having a columnar lined oesophagus were examined, of whom 816 demonstrated a crystal violet-stained columnar lined oesophagus. The early group of patients underwent 0.05% crystal violet chromoendoscopy, while the later group was examined using 0.03% crystal violet with 3.0% acetate. A targeted biopsy of the columnar lined oesophagus was performed using crystal violet staining after making a diagnosis of closed or open type pit pattern with a newly proposed system of classification. The relationship between type of pit pattern and histologically identified dysplastic Barrett's lesions was evaluated. Dysplastic Barrett's lesions were identified in biopsy samples with an open type pit pattern with a sensitivity of 96.0%. Further, Barrett's mucosa with the intestinal predominant mucin phenotype was closely associated with the open type pit pattern (sensitivity 81.9%, specificity 95.6%). The new pit pattern classification for diagnosis of Barrett's mucosa was found to be useful for identification of cases with dysplastic lesions and possible malignant potential using a crystal violet chromoendoscopic procedure.

  3. The role of basal cells in adhesion of columnar epithelium to airway basement membrane.

    PubMed

    Evans, M J; Plopper, C G

    1988-08-01

    In this report, we present a new concept of the role of the basal cell in airway epithelium. Previously, the basal cell was thought to be the progenitor cell for the columnar epithelium. However, several studies have shown that this concept may not be correct. The morphologic aspects of the basal cell suggest that it could play a role in adhesion of the columnar epithelium to the basement membrane. Basal cells form attachments with columnar cells (desmosomes) and with the basement membrane (hemidesmosomes). Columnar cells do not form hemidesmosome attachments with the basement membrane. Basal cells could strengthen the adhesion of columnar cells to the basement membrane by forming hemidesmosome attachments to the basement membrane and desmosome attachments with adjacent columnar cells. Incidental evidence from 2 existing publications concerning airway microanatomy support this concept. As columnar cells grow taller, the proportion of the cell surface in contact with the basement membrane becomes progressively smaller, and thus the cell surface area related to adhesion also becomes smaller. It was found that the number of basal cells per millimeter of basement membrane was closely related to the height of the columnar cell epithelium (r = 0.98), but not to the number of columnar cells (r = 0.42). The consistency of the relationship between increased columnar cell height (and thus decreased surface area for adhesion) and the number of basal cells present (r = 0.98) supports the concept that the basal cell plays a role in adhesion of columnar cells to the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Comparative analysis of the Flavobacterium columnare genomovar I and II genomes

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease caused by Gram-negative rod Flavobacterium columnare is one of the most common diseases of catfish. F. columnare is also a common problem in other cultured fish species worldwide. F. columnare has three major genomovars; we have sequenced a representative strain from genomovar I (...

  5. Microstructural analysis of the thermal annealing of ice-Ih using EBSD

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-04-01

    Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period up to 2 hours, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intra-granular misorientations and its kinetics fits the parabolic growth law. Deformation-induced microstructures (tilt boundaries and kink bands) are stable features during early stages of static recrystallization and locally slow down grain boundary migration, pinning grain growth. REFERENCES 1. Duval, P., Ashby, M.F., Anderman, I., 1983. Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry 87, 4066-4074. 2. Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet, P., Duval, P., 2012. Experimental characterization of the intragranular strain field in columnar ice during transient creep. Acta Materialia 60, 3655-3666. 3. Chauve, T., Montagnat, M., Vacher, P., 2015. Strain field evolution during dynamic recrystallization nucleation: A case study on ice. Acta Materialia 101, 116-124. Funding: Research leading to these results was funded by the EU-FP7 Marie Curie postdoctoral grant PIEF-GA-2012-327226 to K.H.

  6. Residual stress in obliquely deposited MgF2 thin films.

    PubMed

    Jaing, Cheng-Chung; Liu, Ming-Chung; Lee, Cheng-Chung; Cho, Wen-Hao; Shen, Wei-Ting; Tang, Chien-Jen; Liao, Bo-Huei

    2008-05-01

    MgF(2) films with a columnar microstructure are obliquely deposited on glass substrates by resistive heating evaporation. The columnar angles of the films increases with the deposition angle. Anisotropic stress does not develop in the films with tilted columns. The residual stresses in the films depend on the deposition and columnar angles in a columnar microstructure.

  7. Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy Under an Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Xuan, Weidong; Xie, Xinliang; Li, Chuanjun; Wang, Jiang; Yu, Jianbo; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2017-09-01

    The effect of an axial magnetic field on the solidification structure in directionally solidified Ni-21.5Al-0.4Zr-0.1B (at. pct) alloy was investigated. The experimental results indicated that the application of a high magnetic field caused the deformation of dendrites and the occurrence of columnar-to-equiaxed transition (CET). The magnetic field tended to orient the 〈001〉 crystal direction of the equiaxed grains along the magnetic field direction. The bulk solidification experiment under a high magnetic field showed that the crystal exhibited magnetic crystalline anisotropy. Further, the thermoelectric (TE) magnetic force and TE magnetic convention were analyzed by three-dimensional (3-D) numerical simulations. The results showed that the maximum value of TE magnetic force localized in the vicinity of the secondary dendrite arm root, which should be responsible for the dendrite break and CET. Based on the high-temperature creep mechanism, a simple model was proposed to describe the magnetic field intensity needed for CET: B ≥ kG^{ - 1.5} R^{1.25} . The model is in good agreement with the experiment results. The experimental results should be attributed to the combined action of TE magnetic effects and the magnetic moment.

  8. Evaluation of the hormonal state of columnar apple trees (Malus x domestica) based on high throughput gene expression studies.

    PubMed

    Krost, Clemens; Petersen, Romina; Lokan, Stefanie; Brauksiepe, Bastienne; Braun, Peter; Schmidt, Erwin R

    2013-02-01

    The columnar phenotype of apple trees (Malus x domestica) is characterized by a compact growth habit with fruit spurs instead of lateral branches. These properties provide significant economic advantages by enabling high density plantings. The columnar growth results from the presence of a dominant allele of the gene Columnar (Co) located on chromosome 10 which can appear in a heterozygous (Co/co) or homozygous (Co/Co) state. Although two deep sequencing approaches could shed some light on the transcriptome of columnar shoot apical meristems (SAMs), the molecular mechanisms of columnar growth are not yet elaborated. Since the influence of phytohormones is believed to have a pivotal role in the establishment of the phenotype, we performed RNA-Seq experiments to study genes associated with hormone homeostasis and clearly affected by the presence of Co. Our results provide a molecular explanation for earlier findings on the hormonal state of columnar apple trees. Additionally, they allow hypotheses on how the columnar phenotype might develop. Furthermore, we show a statistically approved enrichment of differentially regulated genes on chromosome 10 in the course of validating RNA-Seq results using additional gene expression studies.

  9. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    PubMed

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  10. Self-assembled pentacenequinone derivative for trace detection of picric acid.

    PubMed

    Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj; Rao, D S Shankar; Prasad, S Krishna

    2013-02-01

    Pentacenequinone derivative 3 forms luminescent supramolecular aggregates both in bulk as well as in solution phase. In bulk phase at high temperature, long-range stacking of columns leads to formation of stable and ordered columnar mesophase. Further, derivative 3 works as sensitive chemosensor for picric acid (PA) and gel-coated paper strips detect PA at nanomolar level and provide a simple, portable, and low-cost method for detection of PA in aqueous solution, vapor phase, and in contact mode.

  11. Incorporation of fragmentation into a volume average solidification model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.

    2018-01-01

    In this study, a volume average solidification model was extended to consider fragmentation as a source of equiaxed crystals during mixed columnar-equiaxed solidification. The formulation suggested for fragmentation is based on two hypotheses: the solute-driven remelting is the dominant mechanism; and the transport of solute-enriched melt through an interdendritic flow in the columnar growth direction is favorable for solute-driven remelting and is the necessary condition for fragment transportation. Furthermore, a test case with Sn-10 wt%Pb melt solidifying vertically downward in a 2D domain (50 × 60 mm2) was calculated to demonstrate the model’s features. Solidification started from the top boundary, and a columnar structure developed initially with its tip growing downward. Furthermore, thermo-solutal convection led to fragmentation in the mushy zone near the columnar tip front. The fragments transported out of the columnar region continued to grow and sink, and finally settled down and piled up in the bottom domain. The growing columnar structure from the top and pile-up of equiaxed crystals from the bottom finally led to a mixed columnar-equiaxed structure, in turn leading to a columnar-to-equiaxed transition (CET). A special macrosegregation pattern was also predicted, in which negative segregation occurred in both columnar and equiaxed regions and a relatively strong positive segregation occurred in the middle domain near the CET line. A parameter study was performed to verify the model capability, and the uncertainty of the model assumption and parameter was discussed.

  12. Discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia-Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas. ?? 2009 The Geological Society of America.

  13. The discovery of columnar jointing on Mars

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.; ,

    2009-01-01

    We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia–Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas.

  14. Digital mammography: more microcalcifications, more columnar cell lesions without atypia.

    PubMed

    Verschuur-Maes, Anoek H J; van Gils, Carla H; van den Bosch, Maurice A A J; De Bruin, Peter C; van Diest, Paul J

    2011-09-01

    The incidence of columnar cell lesions in breast core needle biopsies since full-field digital mammography in comparison with screen-filmed mammography was analyzed. As tiny microcalcifications characterize columnar cell lesions at mammography, we hypothesized that more columnar cell lesions are diagnosed since full-field digital mammography due to its higher sensitivity for microcalcifications. In all, 3437 breast core needle biopsies performed in three hospitals and resulting from in total 55 159 mammographies were revised: 1424 taken in the screen-filmed mammography and 2013 in the full-field digital mammography period. Between the screen-filmed mammography and full-field digital mammography periods, we compared the proportion of mammographies that led to core needle biopsies, the mammographic indication for core needle biopsies (density, microcalcifications, or both) and the proportion of columnar cell lesions with or without atypia. The columnar cell lesions were graded according to Schnitt, and we included atypical ductal hyperplasia arising in the context of columnar cell lesions. Proportions were compared using χ(2) tests and prevalence ratios were adjusted for age and hospital. We found that more core needle biopsies per mammogram were taken in the full-field digital mammography period (7.6%) compared with the screen-filmed mammography period (5.0%, P<0.0001). Microcalcifications were more often diagnosed with full-field digital mammography than with screen-filmed mammography (adjusted prevalence ratio: 1.14, confidence interval 95%: 1.01-1.28). Core needle biopsies from the full-field digital mammography era showed more columnar cell lesions (10.8%) than those from the screen-filmed mammography era (4.9%; adjusted prevalence ratio: 1.93, confidence interval 95%: 1.48-2.51), particularly due to more columnar cell lesions without atypia (8.2% respectively 2.8%) while the proportion of columnar cell lesions with atypia remained nearly constant (2.0 vs 2.6%). In conclusion, since the implementation of full-field digital mammography, more microcalcifications are seen at mammography, more often resulting in core needle biopsies, which especially yields more columnar cell lesions without atypia.

  15. Columnar joint morphology and cooling rate: A starch-water mixture experiment

    NASA Astrophysics Data System (ADS)

    Toramaru, A.; Matsumoto, T.

    2004-02-01

    An analogue experiment using a starch-water mixture has been carried out in order to understand the effect of cooling rate on the morphological characteristics of a basalt columnar joint. If the contraction of material is essential for the formation of columnar joint structure, the water loss rate by desiccation (hereafter referred to as desiccation rate) in the experiment is analogous to the cooling rate in solidifying basalt. In the experiment the desiccation rate is controlled by varying the distance between the starch-water mixture and a lamp used as the heat source. We find that there are three regimes in the relation between joint formation and desiccation rate: (1) At desiccation rates higher than ˜1.4 × 10-2 (g cm-2 h-1) (normal columnar joint regime), the average cross-sectional area S of a column is inversely proportional to the average desiccation rate, (i.e., S ∝ -δ, with δ = 1). (2) Between that desiccation rate and a critical desiccation rate, 0.8 × 10-2 (g/cm2h), S approaches infinity as decreases close to a critical desiccation rate (i.e., exponent δ monotonically increases from unity to infinity) (critical regime). (3) Below the critical desiccation rate, no columnar structure forms (no columnar joint regime forms). Applying the present experimental result to the formation of basalt column, the basalt columnar cross-sectional area is inversely proportional to the cooling rate with factors including elasticity, crack growth coefficient, thermal expansion, glass transition temperature, and crack density ratio at stress maximum. Also, it can be predicted that there exists a critical cooling rate below which the columnar joint does not form; the presence of a critical regime between the normal columnar jointing and no columnar jointing during a certain cooling rate range can also be predicted. We find that at higher cooling rate the preferred column shape is a pentagon, whereas at lower cooling rate it is a hexagon.

  16. Morphology of the epithelium of the lower rectum and the anal canal in the adult human.

    PubMed

    Tanaka, Eiichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Akashi, Yuichi; Kawahara, Katsunobu; Shimada, Tatsuo

    2012-06-01

    The anal canal is an important body part clinically. However, there is no agreement about the epithelium of the anal canal, the anal transitional zone (ATZ) epithelium in particular. The aim of this study is to clarify the structure of the epithelium of the human lower rectum and anal canal. Intact rectum and anus obtained from patients who underwent surgery for rectal carcinoma were examined by light and scanning electron microscopy (LM and SEM). By LM, three types of epithelium were observed in the anal canal: simple columnar epithelium, stratified squamous epithelium, and stratified columnar epithelium. The lower rectum was composed of simple columnar epithelium. SEM findings showed stratified squamous epithelium that consisted of squamous cells with microridges, changing to simple columnar epithelium consisting of columnar cells with short microvilli at the anorectal line. LM and SEM observations in a one-to-one ratio revealed that the area of stratified columnar epithelium based on LM corresponded to the anal crypt and sinus. In conclusion, the epithelium of the human anal canal was fundamentally composed of simple columnar epithelium and stratified squamous epithelium. We found no evidence of the ATZ.

  17. Columnar to Nematic Mesophase Transition: Binary Mixtures of Copper Soaps with Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-09-01

    Copper (II) soaps are known to produce columnar mesophases at high temperatures. The polar groups of the soap molecules are stacked over one another within columns surrounded by the paraffin chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. Upon addition of a hydrocarbon, the mesophases swell homogeneously. The hydrocarbon molecules locate themselves among the disordered chains of the soap molecules, the columnar cores remain perfectly unchanged, keeping a constant intra-columnar stacking period, and the hexagonal lattice expands in proportion to the amount of hydrocarbon added to the system. Beyond a certain degree of swelling, the columnar mesophases suddenly turn into a nematic mesophase through a first-order phase transition. The structural elements that align parallel to the nematic director are the very same molecular columns that are involved in the columnar mesophases. The columnar to nematic mesophase transition was studied systematically as a function of the molecular size of the soaps and hydrocarbons used as diluents and discussed on a molecular level, emphasizing such aspects as the persistence length of the paraffin chains and the location of the solvent molecules among the columns.

  18. Fish mucus alters the Flavobacterium columnare transcriptome

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease which is caused by Flavobacterium columnare severely impacts the production of freshwater finfish species. Due to the impact on the aquaculture industry, research efforts to better understand the biological processes of F. columnare including the formation of biofilms and their co...

  19. Cassini Radio Occultation by Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Kliore, A.; Armstrong, J.; Flasar, F.; French, R.; Marouf, E.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Aguilar, R.; Rochblatt, D.

    2006-12-01

    A fortuitous Cassini radio occultation by Enceladus plume occurs on September 15, 2006. The occultation track (the spacecraft trajectory in the plane of the sky as viewed from the Earth) has been designed to pass behind the plume (to pass above the south polar region of Enceladus) in a roughly symmetrical geometry centered on a minimum altitude above the surface of about 20 km. The minimum altitude was selected primarily to ensure probing much of the plume with good confidence given the uncertainty in the spacecraft trajectory. Three nearly-pure sinusoidal signals of 0.94, 3.6, and 13 cm-wavelength (Ka-, X-, and S-band, respectively) are simultaneously transmitted from Cassini and are monitored at two 34-m Earth receiving stations of the Deep Space Network (DSN) in Madrid, Spain (DSS-55 and DSS-65). The occultation of the visible plume is extremely fast, lasting less than about two minutes. The actual observation time extends over a much longer time interval, however, to provide a good reference baseline for potential detection of signal perturbations introduced by the tenuous neutral and ionized plume environment. Given the likely very small fraction of optical depth due to neutral particles of sizes larger than about 1 mm, detectable changes in signal intensity is perhaps unlikely. Detection of plume plasma along the radio path as perturbations in the signals frequency/phase is more likely and the magnitude will depend on the electron columnar density probed. The occultation time occurs not far from solar conjunction time (Sun-Earth-probe angle of about 33 degrees), causing phase scintillations due to the solar wind to be the primary limiting noise source. We estimate a delectability limit of about 1 to 3E16 electrons per square meter columnar density assuming about 100 seconds integration time. Potential measurement of the profile of electron columnar density along the occultation track is an exciting prospect at this time.

  20. A statistical model to predict total column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2016-03-01

    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  1. Inertial Wave Turbulence Driven by Elliptical Instability.

    PubMed

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J; Le Bars, Michael

    2017-07-21

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  2. Inertial Wave Turbulence Driven by Elliptical Instability

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J.; Le Bars, Michael

    2017-07-01

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  3. Spacer length controlled lamello-columnar to oblique-columnar mesophase transition in liquid crystalline DNA - discotic cationic lipid complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Cui, Li; Miao, Jianjun

    2006-03-01

    A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.

  4. Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films

    NASA Astrophysics Data System (ADS)

    Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva

    2017-11-01

    Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.

  5. Disclosing the temperature of columnar jointing in lavas.

    PubMed

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  6. Microseismic monitoring of columnar jointed basalt fracture activity: a trial at the Baihetan Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Rui; Li, Qing-Peng; Feng, Xia-Ting; Xiao, Ya-Xun; Feng, Guang-Liang; Hu, Lian-Xing

    2014-10-01

    Severe stress release has occurred to the surrounding rocks of the typically columnar jointed basalt after excavation at the Baihetan Hydropower Station, Jinsha River, China, where cracking, collapse, and other types of failure may take place occasionally due to relaxation fracture. In order to understand the relaxation fracture characteristics of the columnar jointed basalt in the entire excavation process at the diversion tunnel of the Baihetan Hydropower Station, real-time microseismic monitoring tests were performed. First, the applicability of a geophone and accelerometer was analyzed in the columnar jointed basalt tunnel, and the results show that the accelerometer was more applicable to the cracking monitoring of the columnar jointed basalt. Next, the waveform characteristics of the microseismic signals were analyzed, and the microseismic signals were identified as follows: rock fracture signal, drilling signal, electrical signal, heavy vehicle passing signal, and blast signal. Then, the attenuation characteristics of the microseismic signals in the columnar jointed basalt tunnel were studied, as well as the types and characteristics of the columnar jointed basalt fracture. Finally, location analysis was conducted on the strong rock fracture events, in which four or more sensors were triggered, to obtain the temporal and spatial evolution characteristics and laws of the columnar jointed basalt relaxation fracture after excavation. The test results are not only of important reference value to the excavation and support of diversion tunnel at the Baihetan Hydropower Station, but also of great referential significance and value to the conduction of similar tests.

  7. Isolation and characterization of Flavobacterium columnare strains infecting fishes inhabiting the Laurentian Great Lakes basin

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the etiological agent of columnaris disease, causes significant losses in fish worldwide. In this study, F. columnare infection prevalence was assessed in representative Great Lakes fish species. Over 2,000 wild, feral, and hatchery-propagated salmonids, percids, centrarc...

  8. Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp. in Thailand

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...

  9. VIRULENCE OF Flavobacterium columnare GENOMOVARS IN RAINBOW TROUT (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the causative agent of columnaris disease and is responsible for significant economic losses in aquaculture. F. columnare is a Gram-negative bacterium, and five genetic types or genomovars have been described based on restriction fragment length polymorphism of the 16S rR...

  10. Identification of four distinct phylogenetic groups in Flavobacterium columnare with fish host associations

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the Gram-negative bacterium Flavobacterium columnare, is one of the most prevalent fish diseases worldwide. An exceptionally high level of genetic diversity among isolates of F. columnare has long been recognized, whereby six established genomovars have been described t...

  11. Evaluation of potassium permanganate against an experimental subacute infection of Flavobacterium columnare in channel catfish, Icatlurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) as a prophylactic and therapeutic treatment for subacute infection of Flavobacterium columnare was demonstrated in experimentally infected channel catfish, Ictalurus punctatus. Catfish experimentally infected with F. columnare to mimic a subacute infec...

  12. Submucosal glands in the columnar-lined oesophagus: evidence of an association with metaplasia and neosquamous epithelium.

    PubMed

    Lörinc, Ester; Öberg, Stefan

    2012-07-01

    A multipotential stem cell, possibly located in the submucosal gland ducts, has been suggested as the origin of metaplastic mucosa in the oesophagus. The topographic distribution of these glands and their excretory ducts (SMG) within the columnar lined oesophagus (CLO) is largely unknown. The aim of this study was to examine the distribution of SMG in relation to the type of overlying epithelium in patients with CLO. Seven oesophageal resection specimens were examined histologically in toto. The median frequency of SMG was similar in the metaplastic segments (0.12 SMG/mm) and the normal squamous segments (0.10 SMG/mm). Within the metaplastic segments, the median frequency of SMG beneath the squamous islands was significantly higher than that observed under the columnar lined parts (0.22 versus 0.08 SMG/mm, P = 0.046), There was a strong accumulation of SMG at the squamo-columnar transition zones (0.53 SMG/mm), which was significantly greater than that found in the columnar and squamous parts (P = 0.001 and 0.002, respectively). The relative accumulation of SMG beneath squamous islands and the squamo-columnar junctions within the metaplastic segment supports the hypothesis that both metaplastic columnar mucosa and neosquamous epithelium originate from a progenitor in the SMG. © 2012 Blackwell Publishing Ltd.

  13. Growing large columnar grains of CH3NH3PbI3 using the solid-state reaction method enhanced by less-crystallized nanoporous PbI2 films

    NASA Astrophysics Data System (ADS)

    Zheng, Huifeng; Wang, Weiqi; Liu, Yangqiao; Sun, Jing

    2017-03-01

    Compact, pinhole-free and PbI2-free perovskite films, are desirable for high-performance perovskite solar cells (PSCs), especially if large columnar grains are obtained in which the adverse effects of grain boundaries will be minimized. However, the conventional solid-state reaction methods, originated from the two-step method, failed to grow columnar grains of CH3NH3PbI3 in a facile way. Here, we demonstrate a strategy for growing large columnar grains of CH3NH3PbI3, by less-crystallized nanoporous PbI2 (ln-PbI2) film enhanced solid-state reaction method. We demonstrated columnar grains were obtainable only when ln-PbI2 films were applied. Therefore, the replacement of compact PbI2 by ln-PbI2 in the solid-sate reaction, leads to higher power conversion efficiency, better reproducibility, better stability and less hysteresis. Furthermore, by systematically investigating the effects of annealing temperature and duration, we found that an annealing temperature ≥120 °C was also critical for growing columnar grains. With the optimal process, a champion efficiency of 16.4% was obtained and the average efficiency reached 14.2%. Finally, the mechanism of growing columnar grains was investigated, in which a VPb″ -assisted hooping model was proposed. This work reveals the origins of grain growth in the solid-state reaction method, which will contribute to preparing high quality perovskite films with much larger columnar grains.

  14. Flavobacterium columnare isolated from red tilapia (Oreochromis sp.): emphasis on genetic characterization and virulence of rhizoid and non-rhizoid morphotypes

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the causative agent of columnaris disease and severely affects various freshwater fish species worldwide. Here, we described the phenotypic and genetic characterization of F. columnare isolates isolated from farmed red tilapia in Thailand. Additionally, the virulence as w...

  15. Complete genome sequence of the fish pathogen Flavobacterium columnare strain C#2

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is a Gram-negative bacterial pathogen that causes columnaris disease of freshwater fish. Flavobacterium columnare strain C#2 was isolated from a diseased warm water fish and is typed as genomovar II. The genome consists of a single 3.33 Mb circular chromosome with 2,689 pred...

  16. Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase.

    PubMed

    Wolters, Pieter J; Schouten, Henk J; Velasco, Riccardo; Si-Ammour, Azeddine; Baldi, Paolo

    2013-12-01

    Understanding the genetic mechanisms controlling columnar-type growth in the apple mutant 'Wijcik' will provide insights on how tree architecture and growth are regulated in fruit trees. In apple, columnar-type growth is controlled by a single major gene at the Columnar (Co) locus. By comparing the genomic sequence of the Co region of 'Wijcik' with its wild-type 'McIntosh', a novel non-coding DNA element of 1956 bp specific to Pyreae was found to be inserted in an intergenic region of 'Wijcik'. Expression analysis of selected genes located in the vicinity of the insertion revealed the upregulation of the MdCo31 gene encoding a putative 2OG-Fe(II) oxygenase in axillary buds of 'Wijcik'. Constitutive expression of MdCo31 in Arabidopsis thaliana resulted in compact plants with shortened floral internodes, a phenotype reminiscent of the one observed in columnar apple trees. We conclude that MdCo31 is a strong candidate gene for the control of columnar growth in 'Wijcik'. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.

  17. Immunohistochemical analysis of metaplastic non-goblet columnar lined oesophagus shows phenotypic similarities to Barrett's oesophagus: a study in an Asian population.

    PubMed

    Srivastava, Supriya; Liew, Mei Shan; McKeon, Frank; Xian, Wa; Yeoh, Khay Guan; Ho, Khek Yu; Teh, Ming

    2014-02-01

    Barrett's oesophagus is a premalignant condition, predisposing to oesophageal adenocarcinoma. However, some adenocarcinoma may arise in columnar lined oesophagus without goblet cells. Our aim was to evaluate the biological properties of non-goblet columnar lined oesophagus only and elucidate its relationship with Barrett's oesophagus and associated neoplasia. Endoscopic biopsies from patients with Barrett's oesophagus (n=30), non-goblet columnar lined oesophagus (n=14), Barrett's oesophagus associated high grade dysplasia (n=6) and adenocarcinoma (n=4) were selected. Immunostaining for villin, claudin 3 and MUC4 was performed. Statistical analysis was performed and a p value <0.05 was considered significant. Villin and MUC4 were positive in 42%, 100% each and 50% in non-goblet columnar lined oesophagus, Barrett's oesophagus, high grade dysplasia and adenocarcinoma respectively, while claudin 3 was 100% positive in all the groups. In non-goblet columnar lined oesophagus, six cases that were villin immunopositive, showed positive expression for claudin 3 and/or MUC4 and there was no difference from the high grade dysplasia or adenocarcinoma (p>0.05). Our results indicate that a subset of non-goblet columnar lined oesophagus shows an intestinal phenotype representing an early stage of Barrett's oesophagus. This subset probably harbours the potential to change into adenocarcinoma in the long term. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Impact of oral and waterborne administration of rhamnolipids on the susceptibility of channel catfish (Ictalurus punctatus) to Flavobacterium columnare infection

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is the causative agent of columnaris disease and causes tremendous morbidity and mortality of farmed fish globally. Previously, we identified a potential lectin-mediator (a rhamnose-binding lectin; RBL1a) of F. columnare adhesion and showed higher RBL1a expression in suscept...

  19. Evaluation of the therapeutic effect of potassium permanganate at early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    The efficacy of potassium permanganate (KMnO4) against early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus) was evaluated. Fish were experimentally challenged, by waterborne exposure for 2 h to F. columnare after cutaneous abrasion, an...

  20. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    PubMed

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  1. Strain hardening and fracture behavior during tension of directionally solidified high-nitrogen austenitic steel

    NASA Astrophysics Data System (ADS)

    Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina

    2017-12-01

    The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.

  2. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information covering the period from July 1, 2005 to September 30, 2005; and available in the NASA Aeronautics and Space Database. Contents include: Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing; Actively Controlling Buffet-Induced Excitations; Modelling and Simulation to Address NATO's New and Existing Military Requirements; Latency in Visionic Systems: Test Methods and Requirements; Personal Hearing Protection including Active Noise Reduction; Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies; A Method to Analyze Tail Buffet Loads of Aircraft; Particle Image Velocimetry Measurements to Evaluate the Effectiveness of Deck-Edge Columnar Vortex Generators on Aircraft Carriers; Introduction to Flight Test Engineering, Volume 14; Pathological Aspects and Associated Biodynamics in Aircraft Accident Investigation;

  3. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil

    PubMed Central

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426

  4. Mucinous breast carcinoma with tall columnar cells.

    PubMed

    Tsoukalas, N; Kiakou, M; Tolia, M; Kostakis, I D; Galanopoulos, M; Nakos, G; Tryfonopoulos, D; Kyrgias, G; Koumakis, G

    2018-05-01

    Mucinous carcinoma of the breast represents 1%-4% of all breast cancers. The World Health Organization classification divides this type of tumour into three different subtypes: mucinous carcinoma, mucinous carcinoma with tall columnar cells (mucinous cystadenocarcinoma and columnar cell mucinous carcinoma) and signet ring cell carcinoma. A 74-year-old woman presented a tumour with inflammatory features in the upper outer quadrant of her left breast, 7 cm in diameter. The core biopsy showed infiltrating ductal carcinoma of no specific type. The tumour-node-metastasis clinical staging was T4cN3M0 (Stage IIIC). She received neoadjuvant chemotherapy, underwent left mastectomy with radical axillary resection and subsequently received radiotherapy and chemotherapy. The histological examination of the surgical specimen revealed two solid tumors in the tail of Spence, which corresponded to adenocarcinoma with high columnar cells. The patient died 16 months after the diagnosis, suffering from pulmonary metastases and anterior chest wall infiltration. A review of the literature revealed only 21 reports of mucinous carcinoma of the breast with tall columnar cells, including our case. This is only the third time that the specific histological type of columnar cell mucinous carcinoma has been reported in the literature.

  5. Radiating columnar joints in Gyeongju, Korea as a educational site

    NASA Astrophysics Data System (ADS)

    Woo, H.; Kim, J. H.; Jang, Y. D.

    2015-12-01

    Gyeongju is located in the central eastern part of South Korea. There are various directional columnar joint sets in Tertiary trachytic basalt formation along the shore. In particular, rare radiating columnar joints occur in this area. Columnar joints are parallel, prismatic columns that are formed as a result of contraction during the rapid cooling of lava flow, forming a three dimensional fracture network. In general, the radius and direction of the rock column represent the cooling rate and surface respectively. Radiating direction of columns here indicates that dome- or lobe-shaped lava was cooled from its surface to the core during the viscous lava flow. The fact that the trachytic textures of plagioclase laths are indistinct suggests that the radiating columnar joints are equivalent to the frontal end of the lava lobes. This area is currently has a shore trail course, which is being developed into a picturesque educational park. There are corresponding information boards on the trail near each type of columnar joints to explain not only the forming process and geological mechanisms but the importance of nature conservation to visitors, especially students. A variety of educational materials and educational programs linked to regular school curriculum are also being developed.

  6. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes.

    PubMed

    Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li

    2017-10-01

    We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett's oesophagus.

    PubMed

    Lavery, Danielle L; Martinez, Pierre; Gay, Laura J; Cereser, Biancastella; Novelli, Marco R; Rodriguez-Justo, Manuel; Meijer, Sybren L; Graham, Trevor A; McDonald, Stuart A C; Wright, Nicholas A; Jansen, Marnix

    2016-06-01

    Barrett's oesophagus commonly presents as a patchwork of columnar metaplasia with and without goblet cells in the distal oesophagus. The presence of metaplastic columnar epithelium with goblet cells on oesophageal biopsy is a marker of cancer progression risk, but it is unclear whether clonal expansion and progression in Barrett's oesophagus is exclusive to columnar epithelium with goblet cells. We developed a novel method to trace the clonal ancestry of an oesophageal adenocarcinoma across an entire Barrett's segment. Clonal expansions in Barrett's mucosa were identified using cytochrome c oxidase enzyme histochemistry. Somatic mutations were identified through mitochondrial DNA sequencing and single gland whole exome sequencing. By tracing the clonal origin of an oesophageal adenocarcinoma across an entire Barrett's segment through a combination of histopathological spatial mapping and clonal ordering, we find that this cancer developed from a premalignant clonal expansion in non-dysplastic ('cardia-type') columnar metaplasia without goblet cells. Our data demonstrate the premalignant potential of metaplastic columnar epithelium without goblet cells in the context of Barrett's oesophagus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Morphology of the non-sensory tissue components in rat aging vomeronasal organ.

    PubMed

    Eltony, S A; Elgayar, S A

    2011-08-01

    With 30 figures, 3 histograms and 3 tables The vomeronasal organ (VNO) is a chemosensory organ that detects environmental pheromones. The morphology of the 'non-sensory' epithelium (NSE) of the VNO and its lamina propria, as well as how it relates to ageing has received little attention. Histological, histochemical, morphometric and ultrastructural techniques were used to study the morphological structure of the rat NSE in five adult (3 months old) and five aged (2-2.5 years old) male albino rats. In adult rats, the NSE contained dark and light columnar cells with predominance of the latter. The surface of the epithelial cells was covered with microvilli and/or cilia. The lamina propria contained serous vomeronasal glands (VNGs), smooth muscles with numerous variable-sized mitochondria, vessels including lymphatic capillaries and nerve bundles. The following changes were detected in aged rats. The NSE exhibited an increase in number of dark columnar cells. Some cells revealed a prominent cell coat, dense aggregation of filaments in the luminal cytoplasm and appearance of multinucleated cells. Their surface revealed malformed configuration. Large mitochondria (2 μm), formed by fusion, were frequently observed in the smooth muscle cells of the lamina propria. Lipid droplets were frequently detected both in the VNGs acini and in the lymphatic endothelium. Ageing affected both the cells of the tissues and the extracellular matrix. © 2011 Blackwell Verlag GmbH.

  9. Thermal Cycling Behavior of Thermal Barrier Coatings with MCrAlY Bond Coat Irradiated by High-Current Pulsed Electron Beam.

    PubMed

    Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong

    2016-11-30

    Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al 2 O 3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

  10. Research on non-direct reflection columnar microstructure

    NASA Astrophysics Data System (ADS)

    Wu, B. Q.; Wang, X. Z.; Dong, L. H.

    2015-10-01

    To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.

  11. Direct comparison of Viking 2.3-GHz signal phase fluctuation and columnar electron density between 2 and 160 solar radii

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.; Hietzke, W. H.

    1982-01-01

    The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.

  12. Columnar organization of orientation domains in V1

    NASA Astrophysics Data System (ADS)

    Liedtke, Joscha; Wolf, Fred

    In the primary visual cortex (V1) of primates and carnivores, the functional architecture of basic stimulus selectivities appears similar across cortical layers (Hubel & Wiesel, 1962) justifying the use of two-dimensional cortical models and disregarding organization in the third dimension. Here we show theoretically that already small deviations from an exact columnar organization lead to non-trivial three-dimensional functional structures. We extend two-dimensional random field models (Schnabel et al., 2007) to a three-dimensional cortex by keeping a typical scale in each layer and introducing a correlation length in the third, columnar dimension. We examine in detail the three-dimensional functional architecture for different cortical geometries with different columnar correlation lengths. We find that (i) topological defect lines are generally curved and (ii) for large cortical curvatures closed loops and reconnecting topological defect lines appear. This theory extends the class of random field models by introducing a columnar dimension and provides a systematic statistical assessment of the three-dimensional functional architecture of V1 (see also (Tanaka et al., 2011)).

  13. Simulation of the as-cast structure of Al-4.0wt.%Cu ingots with a 5-phase mixed columnar-equiaxed solidification model

    NASA Astrophysics Data System (ADS)

    Wu, M.; Ahmadein, M.; Kharicha, A.; Ludwig, A.; Li, J. H.; Schumacher, P.

    2012-07-01

    Empirical knowledge about the formation of the as-cast structure, mostly obtained before 1980s, has revealed two critical issues: one is the origin of the equiaxed crystals; one is the competing growth of the columnar and equiaxed structures, and the columnar-to-equiaxed transition (CET). Unfortunately, the application of empirical knowledge to predict and control the as-cast structure was very limited, as the flow and crystal transport were not considered. Therefore, a 5-phase mixed columnar-equiaxed solidification model was recently proposed by the current authors based on modeling the multiphase transport phenomena. The motivation of the recent work is to determine and evaluate the necessary modeling parameters, and to validate the mixed columnar-equiaxed solidification model by comparison with laboratory castings. In this regard an experimental method was recommended for in-situ determination of the nucleation parameters. Additionally, some classical experiments of the Al-Cu ingots were conducted and the as-cast structural information including distinct columnar and equiaxed zones, macrosegregation, and grain size distribution were analysed. The final simulation results exhibited good agreement with experiments in the case of high pouring temperature, whereas disagreement in the case of low pouring temperature. The reasons for the disagreement are discussed.

  14. Role of microstructure and doping on the mechanical strength and toughness of polysilicon thin films

    DOE PAGES

    Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis

    2015-03-24

    We investigated the role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm ×more » 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Moreover, the removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.« less

  15. Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica).

    PubMed

    Petersen, Romina; Krost, Clemens

    2013-07-01

    Plant architecture is regulated by a complex interplay of some key players (often transcription factors), phytohormones and other signaling molecules such as microRNAs. The columnar growth habit of apple trees is a unique form of plant architecture characterized by thick and upright stems showing a compaction of internodes and carrying short fruit spurs instead of lateral branches. The molecular basis for columnar growth is a single dominant allele of the gene Columnar, whose identity, function and gene product are unknown. As a result of marker analyses, this gene has recently been fine-mapped to chromosome 10 at 18.51-19.09 Mb [according to the annotation of the apple genome by Velasco (2010)], a region containing a cluster of quantitative trait loci associated with plant architecture, but no homologs to the well-known key regulators of plant architecture. Columnar apple trees have a higher auxin/cytokinin ratio and lower levels of gibberellins and abscisic acid than normal apple trees. Transcriptome analyses corroborate these results and additionally show differences in cell membrane and cell wall function. It can be expected that within the next year or two, an integration of these different research methodologies will reveal the identity of the Columnar gene. Besides enabling breeders to efficiently create new apple (and maybe related pear, peach, cherry, etc.) cultivars which combine desirable characteristics of commercial cultivars with the advantageous columnar growth habit using gene technology, this will also provide new insights into an elevated level of plant growth regulation.

  16. Columnar cell lesions and pseudoangiomatous hyperplasia like stroma: is there an epithelial-stromal interaction?

    PubMed

    Recavarren, Rosemary A; Chivukula, Mamatha; Carter, Gloria; Dabbs, David J

    2009-10-10

    The significance of association between cancer and its microenvironment has been increasingly recognized. It has been shown in animal models that interaction between neoplastic epithelial cells and adjacent stroma can modulate tumor behavior. Carcinoma associated stromal cells can transform normal epithelial cells into neoplastic cells. In breast, columnar cell lesions are non-obligate precursors of low grade ductal carcinoma in situ. Columnar cell lesions can be seen intimately associated with PASH-like-stroma, a lesion we termed as CCPLS. Our aim is to investigate epithelial-stromal interactions in CCPLS and compare them to PASH without columnar cell lesions in breast core needle biopsies. Normal terminal duct lobular unit (TDLU) epithelium was seen in association with columnar cell lesions as well as PASH. Eight (8) cases of each category were examined by a panel of immunostains: CD117 (C-kit), CD34, CD105, bFGF, AR, ER-beta, MIB-1. We observed a markedly decreased expression of c-kit in columnar cell lesions compared to TDLU-epithelium. CD105 showed a quantitative increase in activated vessels in CCPLS compared to PASH. A subset of CCPLS and PASH were androgen receptor positive. A strong nuclear positivity for ER-beta is observed in the epithelium and stroma of all CCPLS cases. We conclude that (1) activated blood vessels predominate in CCPLS; (2) A molecular alteration is signified by c-kit loss in columnar cell lesions; (3) ER-beta and androgen receptor positivity indicate CCPLS are hormonally responsive lesions. Our study suggests an intimate vascular and hormone dependent epithelial-stromal interaction exists in CCPLS lesions.

  17. Multilayered epithelium in a rat model and human Barrett's esophagus: Similar expression patterns of transcription factors and differentiation markers

    PubMed Central

    Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J

    2008-01-01

    Background In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753–765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Methods Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. Results We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1α, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. Conclusion These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE. PMID:18190713

  18. Multilayered epithelium in a rat model and human Barrett's esophagus: similar expression patterns of transcription factors and differentiation markers.

    PubMed

    Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J

    2008-01-11

    In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753-765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1alpha, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE.

  19. Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Li, Nan; Qin, Ting; Huang, Bei; Nie, Pin

    2017-11-01

    Flavobacterium columnare is the pathogenic agent of columnaris disease in aquaculture. Using a recently developed gene deletion strategy, two genes that encode the Glyco_hydro_19 domain (GH19 domain) containing proteins, ghd-1 and ghd-2, were deleted separately and together from the F. columnare G4 wild type strain. Surprisingly, the single-, Δ ghd-1 and Δ ghd-2, and double-gene mutants, Δ ghd-1 Δghd -2, all had rhizoid and non-rhizoid colony morphotypes, which we named Δ ghd-1, Δ ghd-2, Δ ghd-1 Δ ghd-2, and NΔ ghd-1, NΔ ghd-2, and NΔ ghd-1 Δ ghd-2. However, chitin utilization was not detected in either these mutants or in the wild type. Instead, skimmed milk degradation was observed for the mutants and the wild type; the non-rhizoid strain NΔ ghd-2 exhibited higher degradation activity as revealed by the larger transparent circle on the skimmed milk plate. Using zebrafish as the model organism, we found that non-rhizoid mutants had higher LD50 values and were less virulent because zebrafish infected with these survived longer. Transcriptome analysis between the non-rhizoid and rhizoid colony morphotypes of each mutant, i.e., NΔ ghd -1 versus (vs) Δ ghd-1, NΔ ghd-2 vs Δ ghd-2, and NΔ ghd-1 Δ ghd-2 vs Δ ghd-1 Δ ghd-2, revealed a large number of differentially expressed genes, among which 39 genes were common in three of the pairs compared. Although most of these genes encode hypothetical proteins, a few molecules such as phage tail protein, rhs element Vgr protein, thiol-activated cytolysin, and TonB-dependent outer membrane receptor precursor, expression of which was down-regulated in non-rhizoid mutants but up-regulated in rhizoid mutants, may play a role F. columnare virulence.

  20. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    NASA Astrophysics Data System (ADS)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-11-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes ( IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon ( IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  1. Petrofabrics of high-pressure rocks exhumed at the slab-mantle interface from the "point of no return" in a subduction zone (Sivrihisar, Turkey)

    NASA Astrophysics Data System (ADS)

    Whitney, Donna L.; Teyssier, Christian; Seaton, Nicholas C. A.; Fornash, Katherine F.

    2014-12-01

    The highest pressure recorded by metamorphic rocks exhumed from oceanic subduction zones is 2.5 GPa, corresponding to the maximum decoupling depth (MDD) (80 ± 10 km) identified in active subduction zones; beyond the MDD (the "point of no return") exhumation is unlikely. The Sivrihisar massif (Turkey) is a coherent terrane of lawsonite eclogite and blueschist facies rocks in which assemblages and fabrics record P-T-fluid-deformation conditions during exhumation from 80 to 45 km. Crystallographic fabrics and other features of high-pressure metasedimentary and metabasaltic rocks record transitions during exhumation. In quartzite, microstructures and crystallographic fabrics record deformation in the dislocation creep regime, including dynamic recrystallization during decompression, and a transition from prism slip to activation of rhomb and basal slip that may be related to a decrease in water fugacity during decompression ( 2.5 to 1.5 GPa). Phengite, lawsonite, and omphacite or glaucophane in quartzite and metabasalt remained stable during deformation, and omphacite developed an L-type crystallographic fabric. In marble, aragonite developed columnar textures with strong crystallographic fabrics that persisted during partial to complete dynamic recrystallization that was likely achieved in the stability field of aragonite (P > 1.2 GPa). Results of kinematic vorticity analysis based on lawsonite shape fabrics are consistent with shear criteria in quartzite and metabasalt and indicate a large component of coaxial deformation in the exhuming channel beneath a simple shear dominated interface. This large coaxial component may have multiplied the exhuming power of the subduction channel and forced deeply subducted rocks to flow back from the point of no return.

  2. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  3. hybrid\\scriptsize{{MANTIS}}: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators

    NASA Astrophysics Data System (ADS)

    Sharma, Diksha; Badal, Andreu; Badano, Aldo

    2012-04-01

    The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.

  4. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  5. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  6. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less

  7. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    DOE PAGES

    Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...

    2017-02-12

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less

  8. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  9. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti.

    PubMed

    Williams, David G; Hultine, Kevin R; Dettman, David L

    2014-07-01

    Columnar cacti occur naturally in many habitats and environments in the Americas but are conspicuously dominant in very dry desert regions. These majestic plants are widely regarded for their cultural, economic, and ecological value and, in many ecosystems, support highly diverse communities of pollinators, seed dispersers, and frugivores. Massive amounts of water and other resources stored in the succulent photosynthetic stems of these species confer a remarkable ability to grow and reproduce during intensely hot and dry periods. Yet many columnar cacti are potentially under severe threat from environmental global changes, including climate change and loss of habitat. Stems in columnar cacti and other cylindrical-stemmed cacti are morphologically diverse; stem volume-to-surface area ratio (V:S) across these taxa varies by almost two orders of magnitude. Intrinsic functional trade-offs are examined here across a broad range of V:S in species of columnar cacti. It is proposed that variation in photosynthetic gas exchange, growth, and response to stress is highly constrained by stem V:S, establishing a mechanistic framework for understanding the sensitivity of columnar cacti to climate change and drought. Specifically, species that develop stems with low V:S, and thus have little storage capacity, are expected to express high mass specific photosynthesis and growth rates under favourable conditions compared with species with high V:S. But the trade-off of having little storage capacity is that low V:S species are likely to be less tolerant of intense or long-duration drought compared with high V:S species. The application of stable isotope measurements of cactus spines as recorders of growth, water relations, and metabolic responses to the environment across species of columnar cacti that vary in V:S is also reviewed. Taken together, our approach provides a coherent theory and required set of observations needed for predicting the responses of columnar cacti to climate change. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling

    2018-02-01

    A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.

  11. Role of intragastric and intraoesophageal alkalinisation in the genesis of complications in Barrett's columnar lined lower oesophagus.

    PubMed Central

    Attwood, S E; Ball, C S; Barlow, A P; Jenkinson, L; Norris, T L; Watson, A

    1993-01-01

    Patients with Barrett's columnar lined lower oesophagus have severe acid gastrooesophageal reflux and may develop complications, including ulceration, stricture, and carcinoma. The aim of this study was to establish if a relationship exists between the pH profile in the oesophagus and stomach and the development of complications in patients with Barrett's columnar lined lower oesophagus. Twenty four hour ambulatory oesophageal pH monitoring was performed in 26 patients with Barrett's columnar lined lower oesophagus and combined with 24 hour ambulatory gastric pH monitoring in 16. Ten of the 26 with Barrett's columnar lined lower oesophagus had complications including stricture (eight), deep ulceration (one), and carcinoma (one). Oesophageal acid exposure (% time < pH 4) was similar in patients with or without complications (19.2% v 19.3% p > 0.05). Oesophageal alkaline exposure (% time > pH 7) was greater in patients with complications (24.2% v 8.4% p > 0.05). Of the 16 patients who underwent gastric pH monitoring there was a clear relationship between gastric and oesophageal alkalinisation in 13. These results support the hypothesis that complications in Barrett's columnar lined lower oesophagus develop in association with increased exposure of the oesophagus to an alkaline environment which appears to be secondary to duodenogastric reflux. The routine use of 24 hour ambulatory gastric pH monitoring in conjunction with oesophageal pH monitoring can help identify those patients at risk. PMID:8432439

  12. Columnar Self-Assembly of Electron-Deficient Dendronized Bay-Annulated Perylene Bisimides.

    PubMed

    Gupta, Ravindra Kumar; Shankar Rao, Doddamane S; Prasad, S Krishna; Achalkumar, Ammathnadu S

    2018-03-07

    Three new heteroatom bay-annulated perylene bisimides (PBIs) have been synthesized by microwave-assisted synthesis in excellent yield. N-annulated and S-annulated perylene bisimides exhibited columnar hexagonal phase, whereas Se-annulated perylene bisimide exhibited low temperature columnar oblique phase in addition to the high temperature columnar hexagonal phase. The cup shaped bay-annulated PBIs pack into columns with enhanced intermolecular interactions. In comparison to PBI, these molecules exhibited lower melting and clearing temperature, with good solubility. A small red shift in the absorption was seen in the case of N-annulated PBI, whereas S- and Se-annulated PBIs exhibited blue-shifted absorption spectra. Bay-annulation increased the HOMO and LUMO levels of the N-annulated perylene bisimide, whereas a slight increase in the LUMO level and a decrease in the HOMO levels were observed in the case of S- and Se-annulated perylene bisimides, in comparison to the simple perylene bisimide. The band gaps of PBI and PBI-N were almost same, whereas an increase in the band gaps were observed in the case of S- and Se-annulated PBIs. The tendency to freeze in the ordered glassy columnar phase for PBI-N and PBI-S will help to overcome the charge traps due to crystallization, which are detrimental to one-dimensional charge carrier mobility. These solution processable electron deficient columnar semiconductors possessing good thermal stability may form an easily accessible promising class of n-type materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mucosal polyamine metabolism in the columnar lined oesophagus.

    PubMed Central

    Gray, M R; Wallace, H M; Goulding, H; Hoffman, J; Kenyon, W E; Kingsnorth, A N

    1993-01-01

    Mucosal ornithine decarboxylase activity and polyamine content has been proposed as a possible marker for malignant potential in gastrointestinal mucosa. Polyamine content and histological findings were examined in 107 pairs of endoscopic biopsy specimens taken from gastric fundus, fundic and specialised Barrett's oesophagus and Barrett's adenocarcinoma. The content of putrescine (median nmol/mg protein, range) the primary product of ornithine decarboxylase showed a progressive increase from gastric fundus (0.41, 0.15-1.5); fundic (0.45, 0.01-4.08); specialised Barrett's oesophagus (0.54, 0.01-2.0); dysplastic columnar lined oesophagus (0.56, 0.31-3.1) to adenocarcinoma (1.23, 0.29-8.98). Adenocarcinoma putrescine content was significantly greater than gastric fundus (p < 0.018) and fundic (p < 0.03). Mucosal spermine, spermidine, and total polyamine values were greater in gastric fundus than fundic, specialised Barrett's oesophagus, and dysplastic columnar lined oesophagus (all p < 0.001) suggesting failure to further metabolise putrescine to its higher polyamines in the metaplastic epithelium. Although metaplastic columnar lined oesophagus shows significant differences in polyamine metabolic activity from the stomach the important distinction between specialised and dysplastic columnar lined oesophagus cannot be made by measuring the polyamine content. PMID:8504955

  14. Columnar to Nematic Mesophase Transition: Binary Mixtures of Unlike Copper Soaps

    NASA Astrophysics Data System (ADS)

    Seghrouchni, R.; Skoulios, A.

    1995-10-01

    Copper (II) soaps are known to produce columnar mesophases at high temperature. The polar groups of the soap molecules are stacked over one another within columns surrounded by the alkyl chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. The present work studies the mesomorphic behaviour of binary mixtures of copper soaps using differential scanning calorimetry, polarizing microscopy, and X-ray diffraction. When the soaps are of comparable molecular sizes the mixtures are homogeneous and columnar at all compositions. The columns of the two soaps, remaining intact in the mixture, are distributed randomly on the nodes of a hexagonal Bravais lattice. Crystallographic homogeneity is obtained by transfer of methylene groups from cell to cell. When, on the other hand, the soaps are different enough in molecular sizes, the columnar structure of the mixtures is interrupted in the middle range of compositions for the benefit of a nematic one. The transfer of methylene groups gets indeed harder to achieve and the distortion of the hexagonal units cells becomes important. The columnar to nematic phase transition is discussed on a molecular and a topological level.

  15. The immunophenotypic relationship between the submucosal gland unit, columnar metaplasia and squamous islands in the columnar-lined oesophagus.

    PubMed

    Lörinc, Ester; Mellblom, Lennart; Öberg, Stefan

    2015-12-01

    To characterize the immunophenotypic relationship between the squamous and the glandular compartments in the oesophagus of patients with columnar-lined oesophagus (CLO). Eight tissue blocks from three oesophageal resection specimens from patients who underwent oesophagectomy for adenocarcinoma of the oesophagus were selected for immunohistochemical analysis. The markers of intestinal differentiation [CK20, CDX2 and MUC2] were all expressed in the expected pattern, solely in the glandular compartment of the resection specimens. CK4, CK17 and lysozyme were expressed in both the glandular and the squamous compartments. In addition, CK17 expression was found on both the squamous and glandular margins of the squamocolumnar transformation zones and in the submucosal gland (SMG) intraglandular and excretory ducts. There is an immunophenotypic relationship between the squamous and the glandular compartments of the CLO, with expression of lysozyme, CK4 and CK17 in both squamous and columnar cells. These overlapping immunophenotypes indicate similar differentiation paths, and link the SMG unit with the columnar metaplasia and the neosquamous islands in CLO. Our findings support the theory of a cellular origin of CLO and neosquamous islands from the SMG unit. © 2015 John Wiley & Sons Ltd.

  16. Multifunctional Parylene-C Microfibrous Thin Films

    NASA Astrophysics Data System (ADS)

    Chindam, Chandraprakash

    Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all columnar muFTFs and bulk films. The static hydrophobicity of columnar muFTFs was found to be anisotropic and can be maximized by a proper choice of monomer deposition angle. In contrast, the hydrophobicity of bulk film is isotropic. 2. Mechanical properties: Dynamic storage and loss moduli of columnar muFTFs were determined in the 1 to 80 Hz frequency range for temperatures between -40 °C and 125 °C in one of two orthogonal directions lying wholly in the substrate plane: either (i) normal or (ii) parallel to the morphologically significant plane of the muFTF. The storage and loss moduli for normal loading did not exceed their counterparts for parallel loading. All columnar muFTFs were found to be softer than a bulk film. In both bulk and columnar forms, Parylene C was found to be rheologically not simple. 3. Relative permittivity: The charge-storage and absorption properties measured for the columnar muFTFs in the 100 Hz-1 MHz frequency range over temperatures between -40 °C and 125 °C were lower than the bulk film. Internal surfaces of the columnar muFTFs were found to increase the charge-storage capacity. The lower charge-storage capability of columnar muFTFs suggests their possible applications as interlayer dielectrics. The frequency dependence of the relative permittivity of the columnar muFTFs was identified in terms of the Hashin-Shrtikmann model. The elastodynamic bandgaps of Parylene-C muFTFs as phononic crystals were computationally determined for the columnar, chevronic, and chiral muFTFs. Microfibers were arranged either on a square or a hexagonal lattice with the host medium as either water or air. Following are the significant findings: 1. All bandgaps were observed to lie in the 0.01-162.9-MHz regime. The upper limit of the frequency of bandgaps was the highest for the columnar muFTFs and the lowest for the chiral muFTFs. More bandgaps were found to exist when the host medium is water than air. The presence of complete bandgaps suggests their use as bulk-acoustic-wave and surface-acoustic-wave filters. The softness of the Parylene-C muFTFs makes them mechanically tunable, and their bandgaps can be exploited in multiband ultrasonic filters. An investigation was made to demonstrate Parylene-C muFTFs as circular-polarization filters. 1. The relative permittivity of bulk Parylene C was determined as a function of frequency between 15 THz and 149 THz. Potential application of chiral muFTFs as reflectors of thermal energy was identified. The circular Bragg regime for chiral muFTFs of Parylene C was identified as 31.8-35.2 THz, making them useful as circular-polarization band-rejection filters.

  17. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.

    PubMed

    Ching, W Y; Rulis, Paul; Misra, A

    2009-10-01

    We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.

  18. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  19. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.

  20. Shape-Persistent, Sterically Crowded Star Mesogens: From Exceptional Columnar Dimer Stacks to Supermesogens.

    PubMed

    Lehmann, Matthias; Maier, Philipp

    2015-08-10

    Hexasubstituted C3 -symmetric benzenes with three oligophenylenevinylene (OPV) arms and three pyridyl or phenyl substituents are shape-persistent star mesogens that are sterically crowded in the center. Such molecular structures possess large void spaces between their arms, which have to be filled in condensed phases. For the neat materials, this is accomplished by an exceptional formation of dimers and short-range helical packing in columnar mesophases. The mesophase is thermodynamically stable for the pyridyl compound. Only this derivative forms filled star-shaped supermesogens in the presence of various carboxylic acids. The latter do not arrange as dimers, but as monomers along the columnar stacks. In this liquid crystal (LC) phase, the guests are completely enclosed by the hosts. Therefore, the host can be regarded as a new LC endoreceptor, which allows the design of columnar functional structures in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. ISS-Experiments of Columnar-to-Equiaxed Transition in Solidification Processing

    NASA Technical Reports Server (NTRS)

    Sturz, Laszlo; Zimmermann, Gerhard; Gandin, Charles, Andre; Billia, Bernard; Magelinck, Nathalie; Nguyen-Thi, Henry; Browne, David John; Mirihanage, Wajira U.; Voss, Daniela; Beckermann, Christoph; hide

    2012-01-01

    The main topic of the research project CETSOL in the framework of the Microgravity Application Promotion (MAP) programme of the European Space Agency (ESA) is the investigation of the transition from columnar to equiaxed grain growth during solidification. Microgravity environment allows for suppression of buoyancy-driven melt flow and for growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution will present first experimental results obtained in microgravity using hypo-eutectic AlSi alloys in the Materials Science Laboratory (MSL) on-board the International Space Station (ISS). The analysis of the experiments confirms the existence of a columnar to equiaxed transition, especially in the refined alloy. Temperature evolution and grain structure analysis provide critical values for the position, the temperature gradient and the solidification velocity at the columnar to equiaxed transition. These data will be used to improve modeling of solidification microstructures and grain structure on different lengths scales.

  2. Frequency preference and attention effects across cortical depths in the human primary auditory cortex.

    PubMed

    De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2015-12-29

    Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that-in this highly columnar cortex-task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.

  3. Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel

    NASA Astrophysics Data System (ADS)

    Hao, Xian-Jie; Feng, Xia-Ting; Yang, Cheng-Xiang; Jiang, Quan; Li, Shao-Jun

    2016-04-01

    Due to the time dependency of the crack propagation, columnar jointed rock masses exhibit marked time-dependent behaviour. In this study, in situ measurements, scanning electron microscope (SEM), back-analysis method and numerical simulations are presented to study the time-dependent development of the excavation damaged zone (EDZ) around underground diversion tunnels in a columnar jointed rock mass. Through in situ measurements of crack propagation and EDZ development, their extent is seen to have increased over time, despite the fact that the advancing face has passed. Similar to creep behaviour, the time-dependent EDZ development curve also consists of three stages: a deceleration stage, a stabilization stage, and an acceleration stage. A corresponding constitutive model of columnar jointed rock mass considering time-dependent behaviour is proposed. The time-dependent degradation coefficient of the roughness coefficient and residual friction angle in the Barton-Bandis strength criterion are taken into account. An intelligent back-analysis method is adopted to obtain the unknown time-dependent degradation coefficients for the proposed constitutive model. The numerical modelling results are in good agreement with the measured EDZ. Not only that, the failure pattern simulated by this time-dependent constitutive model is consistent with that observed in the scanning electron microscope (SEM) and in situ observation, indicating that this model could accurately simulate the failure pattern and time-dependent EDZ development of columnar joints. Moreover, the effects of the support system provided and the in situ stress on the time-dependent coefficients are studied. Finally, the long-term stability analysis of diversion tunnels excavated in columnar jointed rock masses is performed.

  4. Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus × domestica).

    PubMed

    Okada, Kazuma; Wada, Masato; Moriya, Shigeki; Katayose, Yuichi; Fujisawa, Hiroko; Wu, Jianzhong; Kanamori, Hiroyuki; Kurita, Kanako; Sasaki, Harumi; Fujii, Hiroshi; Terakami, Shingo; Iwanami, Hiroshi; Yamamoto, Toshiya; Abe, Kazuyuki

    2016-11-01

    Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant 'McIntosh Wijcik', which was discovered as a bud mutation from 'McIntosh', exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in 'McIntosh Wijcik' but not in 'McIntosh'. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in 'McIntosh Wijcik' is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.

  5. Columnar lined Barrett's oesophagus.

    PubMed

    Sharma, Neel; Ho, Khek Yu

    2015-12-01

    Over the past few years, the definition of Barrett's oesophagus has altered with no real agreement on histological understanding. This article highlights the increasing confusion regarding Barrett's oesophagus with a focus on the all-too-frequently ignored aspect of the columnar lined oesophagus.

  6. Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection.

    PubMed

    Wibowo, Arief C; Malliakas, Christos D; Liu, Zhifu; Peters, John A; Sebastian, Maria; Chung, Duck Young; Wessels, Bruce W; Kanatzidis, Mercouri G

    2013-06-17

    We investigated an antimony chalcohalide compound, SbSeI, as a potential semiconductor material for X-ray and γ-ray detection. SbSeI has a wide band gap of 1.70 eV with a density of 5.80 g/cm(3), and it crystallizes in the orthorhombic Pnma space group with a one-dimensional chain structure comprised of infinite zigzag chains of dimers [Sb2Se4I8]n running along the crystallographic b axis. In this study, we investigate conditions for vertical Bridgman crystal growth using combinations of the peak temperature and temperature gradients as well as translation rate set in a three-zone furnace. SbSeI samples grown at 495 °C peak temperature and 19 °C/cm temperature gradient with 2.5 mm/h translation rate produced a single phase of columnar needlelike crystals aligned along the translational direction of the growth. The ingot sample exhibited an n-type semiconductor with resistivity of ∼10(8) Ω·cm. Photoconductivity measurements on these specimens allowed us to determine mobility-lifetime (μτ) products for electron and hole carriers that were found to be of similar order of magnitude (∼10(-4) cm(2)/V). Further, the SbSeI ingot with well-aligned, one-dimensional columnar needlelike crystals shows an appreciable response of Ag Kα X-ray.

  7. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    NASA Astrophysics Data System (ADS)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  8. Vapor and liquid optical monitoring with sculptured Bragg microcavities

    NASA Astrophysics Data System (ADS)

    Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria C.; González-Elipe, Agustín. R.; Yubero, Francisco

    2017-08-01

    Sculptured porous Bragg Microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength dependent optical retarders. This optical behavior is attributed to a self-structuration mechanism involving a fence-bundling association of nanocolumns as observed by Focused Ion Beam Scanning Electron Microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems have been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. This type of self-associated nanostructures has been incorporated to microfluidic chips for free label vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical characterization of vapor and liquids of different refractive index and aqueous solutions of glucose flowing through the microfluidic chips are described.

  9. Water hardness influences Flavobacterium columnare pathogenesis in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to determine aspects of water chemistry responsible for large differences in pathogenesis and mortality rates in challenges of channel catfish Ictalurus punctatus with Flavobacterium columnare; challenges were conducted in water supplying the Stuttgart National Aquaculture Res...

  10. Formalin treatment of Trichondina sp. reduced Flavobacterium columnare infection in tilapia

    USDA-ARS?s Scientific Manuscript database

    Bacterium Flavobacterium columnare and protozoan Trichodina spp. are common pathogens of cultured fish. Recent studies on parasite-bacterium interaction show evidence that concurrent infections increase severity of some infectious diseases, especially bacterial diseases. The effect of parasite treat...

  11. Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei

    2008-09-01

    YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.

  12. Gene expression analysis between planktonic and biofilm states of Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...

  13. Sickeningly sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...

  14. The carbohydrate L-rhamnose promotes biofilm formation which enhances Flavobacterium columnare virulence

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry, continual efforts to better understand basic mechanisms that contribute to disease...

  15. Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus.

    PubMed

    Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A; Wang, Timothy C; Sepulveda, Antonia R; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen

    2017-10-26

    In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63 + KRT5 + KRT7 + ) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63 + KRT5 + KRT7 + basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.

  16. The avian prechordal head region: a morphological study.

    PubMed Central

    Seifert, R; Jacob, M; Jacob, H J

    1993-01-01

    The axial mesoderm of the anterior head region was investigated in young chick and quail embryos by light and electron microscopy. Semithin sections showed that the axial head mesoderm consists of the head process and prechordal mesoderm. At the anterior end of the prechordal mesoderm, a group of columnar epithelial cells formed a pit-like structure. The bases of these columnar cells extended to the neural plate, thus limiting the prechordal mesoderm anteriorly. The cells lining the pit-like structure at its anterior end joined a cell accumulation made up of cells of mesenchymal character. Electron microscopy revealed that the columnar cells forming the pit-like structure were covered by a basal lamina which was discontinuous on its anterior aspect. No basal lamina was recognisable between the columnar epithelial cells and mesenchymal cells joining them anteriorly. The columnar epithelial cells bordering the prechordal mesoderm anteriorly were therefore assumed to be part of the endodermal germ layer. In agreement with the findings of other authors, it is proposed to term these axially located columnar cells of the endoderm the prechordal plate and to distinguish them from the prechordal mesoderm arising during gastrulation. For the mesenchymal cell accumulation anterior to the prechordal plate, participation in the formation of the prosencephalic mesenchyme is assumed. This implies that the definitive endodermal germ layer, like the ectodermal one represented by the neural crest, may also be able to contribute to mesenchyme formation in the head. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 PMID:8270478

  17. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.

    Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less

  18. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting

    DOE PAGES

    Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.; ...

    2017-09-11

    Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less

  19. Anisotropic imaging performance in breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Jennings, Robert J.

    We describe the anisotropy in imaging performance caused by oblique x-ray incidence in indirect detectors for breast tomosynthesis based on columnar scintillator screens. We use MANTIS, a freely available combined x-ray, electron, and optical Monte Carlo transport package which models the indirect detection processes in columnar screens, interaction by interaction. The code has been previously validated against published optical distributions. In this article, initial validation results are provided concerning the blur for particular designs of phosphor screens for which some details with respect to the columnar geometry are available from scanning electron microscopy. The polyenergetic x-ray spectrum utilized comes frommore » a database of experimental data for three different anode/filter/kVp combinations: Mo/Mo at 28 kVp, Rh/Rh at 28 kVp, and W/Al at 42 kVp. The x-ray spectra were then filtered with breast tissue (3, 4, and 6 cm thickness), compression paddle, and support base, according to the oblique paths determined by the incidence angle. The composition of the breast tissue was 50%/50% adipose/glandular tissue mass ratio. Results are reported on the pulse-height statistics of the light output and on spatial blur, expressed as the response of the detector to a pencil beam with a certain incidence angle. Results suggest that the response is nonsymmetrical and that the resolution properties of a tomosynthesis system vary significantly with the angle of x-ray incidence. In contrast, it is found that the noise due to the variability in the number of light photons detected per primary x-ray interaction changes only a few percent. The anisotropy in the response is not less in screens with absorptive backings while the noise introduced by variations in the depth-dependent light output and optical transport is larger. The results suggest that anisotropic imaging performance across the detector area can be incorporated into reconstruction algorithms for improving the image quality of breast tomosynthesis. This study also demonstrates that the assessment of image quality of breast tomosynthesis systems requires a more complete description of the detector response beyond local, center measurements of resolution and noise that assume some degree of symmetry in the detector performance.« less

  20. Nuclear medicine and esophageal surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taillefer, R.; Beauchamp, G.; Duranceau, A.C.

    1986-06-01

    The principal radionuclide procedures involved in the evaluation of esophageal disorders that are amenable to surgery are illustrated and briefly described. The role of the radionuclide esophagogram (RE) in the diagnosis and management of achalasia, oculopharyngeal muscular dystrophy and its complications, tracheoesophageal fistulae, pharyngeal and esophageal diverticulae, gastric transposition, and fundoplication is discussed. Detection of columnar-lined esophagus by Tc-99m pertechnetate imaging and of esophageal carcinoma by Ga-67 citrate and Tc-99m glucoheptonate studies also is presented. 37 references.

  1. Antibacterial activity of acylglucinol derivatives against Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease is one of the most common bacterial diseases of pond-raised channel catfish (Ictalurus punctatus) in the southeastern United States of America. The Gram-negative, rod-shaped bacterium Flavobacterium columnare is the cause of columnaris disease. Direct economic losses to catfish pr...

  2. Ungeremine and its hemisynthetic analogues as bactericides against Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    The Gram-negative bacterium Flavobacterium columunare is the cause of colmunaris disease in channel catfish (Ictalurus punctatus). In a previous study, the betaine-type alkaloid ungeremine, 1 obtained from Pancratium maritimum L. was found to have strong antibacterial activity against F. columnare. ...

  3. Assessment of Flavobacterium columnare from golden shiners Notemingonus crysoleucas subject to crowding stress

    USDA-ARS?s Scientific Manuscript database

    Intensive aquaculture practices and exposure to environmental stressors can trigger outbreaks of Flavobacterium columnare, a bacterial pathogen that causes columnaris disease in commercially important fish including Golden Shiners. A rapid assessment of the bacterial load is essential to prevent out...

  4. Method for fabricating high aspect ratio structures in perovskite material

    DOEpatents

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  5. Influence of native catfish mucus on Flavobacterium columnare growth and proteolytic activity

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to 1) characterize the terminal glycosylation pattern (TGP) of catfish mucus, 2) determine t...

  6. Kaolinitic clay protects against Flavobacterium columnare infection in channel catfish Ictalurus punctatus (Rafinesque)

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, continues to be a major problem worldwide in aquaculture settings. Despite the far-reaching negative impacts of columnaris disease, safe and efficacious preventatives and curatives for this disease remain limited. In th...

  7. More than just antibodies: protective mechanisms of a mucosal vaccine against fish pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    A recently developed attenuated vaccine (17-23) for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates. First, we were interested in elucidating the host responses generated by a viru...

  8. Evaluation of the antibody response to the LV-359-01 strain of flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, the causative agent of columnaris disease produces substantial mortality worldwide among numerous freshwater farmed finfish species. As aquaculture production continues to increase the frequency of columnaris disease will only continue to rise. Add to this an increase in re...

  9. Wireless sensor networks for heritage object deformation detection and tracking algorithm.

    PubMed

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-10-31

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  10. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    PubMed Central

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-01-01

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458

  11. Development of epithelial and mesenchymal regionalization of the human fetal utero-vaginal anlagen

    PubMed Central

    Fritsch, Helga; Hoermann, Romed; Bitsche, Mario; Pechriggl, Elisabeth; Reich, Olaf

    2013-01-01

    Literature on the development of the human vagina is abundant; however, contributions concerning the prenatal development of the entire utero-vaginal anlagen (UVA) are rare or carried out in rodents. The primary epithelial characteristics in the adult vagina and uterus are determined during prenatal development and depend on epithelio-mesenchymal stroma interaction; thus an investigation summarizing the spatiotemporal distribution of relevant molecular markers in the entire human UVA will be of current interest. We phenotyped epithelial and mesenchymal characteristics in sagittal sections from 24 female fetuses of 14–34 weeks of gestation and two female newborns by immunostaining with cytokeratins 8, 13, 14 and 17, p63, bcl-2, bmp4, HOX A13, CD31, VEGF, SMA, Pax2 and vimentin. Epithelial differentiation followed a caudal-to-cranial direction in the UVA. Due to the cytokeratin profile of cytokeratins 8, 13 and 14, the characteristics of the different epithelial zones in the UVA could already be recognized in middle-age fetuses. Vaginal epithelium originated from the urogenital sinus in the lower portion and initiated the transformation of vimentin-positive Müllerian epithelium in the upper vaginal portion. During prenatal development the original squamo-columnar junction was clearly detectable from week 24 onwards and was always found in the cervical canal. Early blc-2 positivity within the surrounding mesenchyme of the entire vagina including the portio region pointed to an organ-specific mesenchymal influence. Prenatal findings in human specimens clearly show that fornix epithelium up to the squamo-columnar junction is of vaginal Müllerian origin, and the cervical epithelium cranial to the squamo-columnar junction is of uterine Müllerian origin and includes cells with enough plasticity to transform into squamous epithelium. PMID:23406280

  12. Multilayered epithelium in mucosal biopsy specimens from the gastroesophageal junction region is a histologic marker of gastroesophageal reflux disease.

    PubMed

    Glickman, Jonathan N; Spechler, Stuart J; Souza, Rhonda F; Lunsford, Tisha; Lee, Edward; Odze, Robert D

    2009-06-01

    Barrett esophagus (BE) is defined as a columnar metaplasia of the distal esophagus that develops as a result of chronic gastroesophageal reflux disease (GERD). A distinctive type of multilayered epithelium (ME) that exhibits features of both squamous and columnar epithelium has been hypothesized to represent an early, or intermediate, phase in the development of BE. The aim of this prospective study was to evaluate the prevalence and specificity of ME in mucosal biopsies of the squamocolumnar junction (SCJ) from patients who had GERD, either with or without BE. During endoscopic examination of the esophagus, 2 biopsy specimens were obtained from across the SCJ from 27 patients with BE, 12 patients who had GERD without BE, and 14 controls who had no symptoms or endoscopic or histologic signs of GERD. ME was present at the SCJ in 33%, 33%, and 0% of BE, GERD, and control patients, respectively. Compared with control subjects, the prevalence of ME was significantly higher in both GERD and BE patients (P<0.05). In GERD patients without BE, ME was always detected adjacent to areas of cardia-type mucosa composed of mucous glands. ME from GERD patients and BE patients had a similar immunophenotype, showing expression of the intestinal markers MUC2 and cdx-2 in 38% and 77% of cases, respectively. The prevalence of expression of these markers in ME was significantly different from nongoblet epithelium in control patients. Our results provide further evidence that ME may represent an early, transitional form of columnar metaplasia, and that ME may be used as a histologic marker of reflux disease in mucosal biopsies from the gastroesophageal junction region.

  13. Extremophile extracts and enhancement techniques show promise for the development of a live vaccine against Flavobacterium columnare

    USGS Publications Warehouse

    Powell, D.B.; Palm, R.C.; MacKenzie, A.P.; Winton, J.R.

    2009-01-01

    The effects of temperature, ionic strength, and new cryopreservatives derived from polar ice bacteria were investigated to help accelerate the development of economical, live attenuated vaccines for aquaculture. Extracts of the extremophile Gelidibacter algens functioned very well as part of a lyophilization cryoprotectant formulation in a 15-week storage trial. The bacterial extract and trehalose additives resulted in significantly higher colony counts of columnaris bacteria (Flavobacterium columnare) compared to nonfat milk or physiological saline at all time points measured. The bacterial extract combined with trehalose appeared to enhance the relative efficiency of recovery and growth potential of columnaris in flask culture compared to saline, nonfat milk, or trehalose-only controls. Pre-lyophilization temperature treatments significantly affected F. columnare survival following rehydration. A 30-min exposure at 0 ??C resulted in a 10-fold increase in bacterial survival following rehydration compared to mid-range temperature treatments. The brief 30 and 35 ??C pre-lyophilization exposures appeared to be detrimental to the rehydration survival of the bacteria. The survival of F. columnare through the lyophilization process was also strongly affected by changes in ionic strength of the bacterial suspension. Changes in rehydration constituents were also found to be important in promoting increased survival and growth. As the sodium chloride concentration increased, the viability of rehydrated F. columnare decreased. ?? 2009 Elsevier Inc.

  14. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  15. Compounds from Terminalli brownii extracts with toxicity against the fish pathogenic bacterium Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    The pond-raised channel catfish (Ictalurus punctatus) industry in the United States of America can incur losses of over a $100 million annually due to bacterial diseases including columnaris disease caused by Flavobacterium columnare. One management approach available to catfish producers is the use...

  16. Columnaris (Flavobacterium columnare) challenge using fathead minnows (Pimephales promelas) in an ultra-low flow system

    USDA-ARS?s Scientific Manuscript database

    Arkansas baitfish farms routinely struggle with columnaris disease, which is caused by Flavobacterium columnare. Columnaris is ubiquitous in fathead minnows (Pimephales promelas) especially after harvest while they are being held in vats and during the transport prior to being sold. Columnaris disea...

  17. The stress hormone cortisol: a (co)regulator of biofilm formation in Flavobacterum columnare?

    USDA-ARS?s Scientific Manuscript database

    Previously, we demonstrated a direct effect of cortisol on Flavobacterium columnare, a notorious fish pathogenic bacterium, engendering a new perspective to bacteria-host communication in aquaculture. As stressed fish harbour increased cortisol levels in the skin and gill mucus, highly virulent F. c...

  18. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  19. In vitro comparisons of the inhibitory activity of florfenicol copper sulfate and potassium permanganate towards Aeromonas hydrophila and Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Aeromonas hydrophila and Flavobacterium columnare, the etiological agents of motile aeromonas septicemia (MAS) and columnaris disease, respectively, have been recently causing crippling moralities to the sunshine bass, Morone chrysops female X Morone saxatilis male (Percichthyidae), industry in the ...

  20. Effectiveness of copper sulfate and potassium permanganate on channel catfish infected with Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...

  1. Quality control ranges for testing broth microdilution susceptibility of Flavobacterium columnare and F. psychrophilium to nine antimicrobials

    USDA-ARS?s Scientific Manuscript database

    A multi-laboratory broth microdilution method trial was performed to standardize the specialized test conditions required for fish pathogens Flavobacterium columnare and F. pyschrophilum. Nine laboratories tested the quality control (QC) strains Escherichia coli ATCC 25922 and Aeromonas salmonicid...

  2. More than just antibodies: protective mechanisms of a muscosal vaccine against fish pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    A recently developed attenuated vaccine (17-23) for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates (Mohammed et al. 2013). We were interested in examining the mechanisms of this p...

  3. Evaluating innate resistance to Flavobacterium Columnare in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare (Fc) is the causative agent for columnaris disease and a problem for several fish species. Recently, columnaris has been recognized as an emerging problem in farmed trout cultured within the Hagerman valley of Idaho. A long term breeding program at the NCCCWA has produced ...

  4. Method for detecting austenite grains in low-carbon steel after hot deformation

    NASA Astrophysics Data System (ADS)

    Ferdian, D.; Ariati, M.; Norman, A.

    2013-09-01

    The structure of low-carbon steel after hot deformation at 1060 and 960°C with different degrees is studied. A procedure is developed for specimen etching in a reagent based on picric acid making it possible to detect clear austenite grain boundaries and sub-boundaries after hot deformation.

  5. Microstructural evolution during thermal annealing of ice-Ih

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-06-01

    We studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice pre-deformed in uniaxial compression at temperature of -7 °C to macroscopic strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This initial evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period ≥1.5 h, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intragranular misorientations, consuming first the most misorientated parts of primary grains. Grain growth kinetics fits the parabolic growth law with grain growth exponents in the range of 2.4-4.0. Deformation-induced tilt boundaries and kink bands may slow down grain boundary migration. They are stable features during early stages of static recrystallization, only erased by normal growth, which starts after >24 h of annealing.

  6. Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor.

    PubMed

    Yang, Zhanjun; Tang, Yan; Li, Juan; Zhang, Yongcai; Hu, Xiaoya

    2014-04-15

    A tetragonal columnar-shaped TiO2 (TCS-TiO2) nanorods are synthesized via a facile route for the immobilization of glucose oxidase (GOx). A novel electrochemical glucose biosensor is constructed based on the direct electrochemistry of GOx at TCS-TiO2 modified glassy carbon electrode. The fabricated biosensor is characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, electrochemical impedance spectra and cyclic voltammetry. The immobilized enzyme molecules on TCS-TiO2 nanorods retain its native structure and bioactivity and show a surface controlled, quasi-reversible and fast electron transfer process. The TCS-TiO2 nanorods have large surface area and provide a favorable microenvironment for enhancing the electron transfer between enzyme and electrode surface. The constructed glucose biosensor shows wide linear range from 5.0×10(-6) to 1.32×10(-3) M with a high sensitivity of 23.2 mA M(-1) cm(-2). The detection limit is calculated to be 2.0×10(-6) M at signal-to-noise of 3. The proposed glucose biosensor also exhibits excellent selectivity, good reproducibility, and acceptable operational stability. Furthermore, the biosensor can be successfully applied in the detection of glucose in serum sample at the applied potential of -0.50 V. The TCS-TiO2 nanorods provide an efficient and promising platform for the immobilization of proteins and development of excellent biosensors. © 2013 Published by Elsevier B.V.

  7. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    NASA Astrophysics Data System (ADS)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  8. Image-Based 3D Face Modeling System

    NASA Astrophysics Data System (ADS)

    Park, In Kyu; Zhang, Hui; Vezhnevets, Vladimir

    2005-12-01

    This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2[InlineEquation not available: see fulltext.]3 minutes.

  9. Monitoring of precursor landslide surface deformation using InSAR image in Kuchi-Sakamoto, Shizuoka Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Sato, H. P.; Nakajima, H.; Nakano, T.; Daimaru, H.

    2014-12-01

    Synthetic Aperture Radar (SAR) is the technique to obtain ground surface images using microwave that is emitted from and received on the antenna. The Kuchi-Sakamoto area, 2.2 km2 in precipitous mountains, central Japan, has suffered from frequent landslides, and slow landslide surface deformation has been monitored by on-site extensometer; however, such the monitoring method cannot detect the deformation in the whole area. Because satellite InSAR is effective tool to monitor slow landslide suface deformation, it is a promising tool for detecting precursor deformation and preparing effective measures against serious landslide disasters. In this study Advanced Land Observing Satellite (ALOS) / Phased Array type L-band SAR (PALSAR) data were used, and InSAR images were produced from the PALSAR data that were observed between 5 Sep 2008 and 21 Oct 2008 (from descending orbit) and between 20 Jul 2008 and 7 Sep 2009 (from ascending orbit). InSAR image from descending orbit was found to detect clear precursor landslide surface deformation on a slope; however, InSAR image on ascending orbit did not always detect clear precursor deformation. It is thought to be related with atmospheric moisture condition, length of observation baseline and so on. Furthermore, after phase unwrapping on InSAR images, 2.5-dimensional deformation was analized. This analysis needed both ascending and descending InSAR images and culculated quasi east-west deformation component (Figs. (a) and (b)) and quasi up-down deformation component (Figs. (c) and (d)). The resulting 2.5D calculation gave westward deformation and mixture of upward and downward deformations on the precursor landslide surface deformation slope (blue circles in Figs. (c) and (d)), where remarkable disrupted deep landslide occurred during Nov 2012 and 25 Jun 2013, judging from result of airborne LiDAR survey and field survey; the occurrence date is not precisely identified. The figure remains the issue that eliminating "real" precursor deformation from other candidate deformations. Preparation of this paper was supported by part of Individual Research Fund in College of Humanities and Sciences, Nihon University and part of Grants-in-Aid for Scientific Research, Challenging Exploratory (#25560185, Principal Investigator: Dr. Hiromu Daimaru).

  10. Bioassay-directed isolation and evaluation of Harmine from the terrestrial plant Peganum harmala L. for antibacterial activity against Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activities of crude extracts obtained from the aerial portions and roots of Peganum harmala L. were evaluated against the common fish pathogenic bacteria species Edwardsiella ictaluri, Flavobacterium columnare, and Streptococcus iniae using a rapid bioassay. Enteric septicemia of c...

  11. The effect of high total ammonia concentration on the survival of channel catfish experimentally infected with Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Although it is generally accepted that elevated ammonia levels in the water increase mortalities of Flavobacterium columnare infected fish, recent observation at our laboratory indicated otherwise. Two trials were conducted to determine the effect of a single immersion flush treatment of total ammo...

  12. Development of sequence-tagged site markers linked to the pillar growth type in peach (Prunus persica)

    USDA-ARS?s Scientific Manuscript database

    In peach [Prunus persica (L.) Batsch], trees showing columnar [also termed pillar or broomy] growth habit are of interest for high density production systems. While the selection of the columnar homozygote (pillar) phenotype (brbr) can be carried out prior to field planting, the intermediate hetero...

  13. There must be something in the water (for F. columnare pathogenesis)

    USDA-ARS?s Scientific Manuscript database

    Why can we routinely produce columnaris infections in our lab, while the lab on the other side of the ditch can't? Anecdotal reports suggest that tannins may inhibit F. columnare. Do tannins in their water prevent this, or are other water chemistry parameters involved? In the first experiment, tw...

  14. Identification of genes encoding the type IX secretion system and secreted proteins in Flavobacterium columnare IA-S-4

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  15. Comparative effects of copper sulfate or potassium permanganate on channel catfish concurrently infected with Flavobacterium columnare and Ichthyobodo necator

    USDA-ARS?s Scientific Manuscript database

    An opportunistic study was conducted to determine the effects of two chemical therapeutants on channel catfish (CCF) Ictalurus punctatus concurrently infected Flavobacterium columnare and Ichthyobodo necator. Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were investigated for their abil...

  16. Characterization of tlr-4 in fathead minnow challenged with columnaris (flavobacterium columnare) in an ultra-low flow system

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease, caused by the bacteria Flavobacterium columnare, is one of the most serious bacterial infections affecting the aquaculture industry today. Columnaris is transmitted horizontally from fish to fish. The disease is highly contagious and may be spread through contaminated nets, speci...

  17. Monte Carlo random walk simulation of electron transport in confined porous TiO{sub 2} as a promising candidate for photo-electrode of nano-crystalline solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir

    2015-08-14

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, wemore » demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.« less

  18. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    NASA Astrophysics Data System (ADS)

    Javadi, M.; Abdi, Y.

    2015-08-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  19. Efficacy of a modified live Flavobacterium columnare vaccine in fish.

    PubMed

    Shoemaker, Craig A; Klesius, Phillip H; Drennan, John D; Evans, Joyce J

    2011-01-01

    Flavobacterium columnare is an aquatic bacterium that is responsible for columnaris disease. This aquatic pathogen has a worldwide distribution and is highly infectious to both warm and cold water fish. A modified live F. columnare vaccine was developed by repeated passage of a virulent strain on increasing concentrations of rifampicin that resulted in attenuation. Here we report vaccination/challenge trials to evaluate efficacy and safety. In separate laboratory trials, immersion vaccination of channel catfish (Ictalurus punctatus) fry between 10 to 48 days post hatch (DPH) with experimental vaccine or licensed product resulted in relative percent survival (RPS) between 57-94% following challenge. Similarly, a vaccination/challenge trial using largemouth bass (Micropterus salmoides) fry at 10 DPH was performed using various doses of licensed product under laboratory conditions. Results demonstrated safety of the vaccine and significant protection following challenge with RPS values between 74-94%, depending on vaccine dose. Together, these trials demonstrate the vaccine administered to early life-stage channel catfish and largemouth bass is safe and reduces mortality following challenge with F. columnare. Published by Elsevier Ltd.

  20. Enhancement of ductility and improvement of abnormal Goss grain growth of magnetostrictive Fe-Ga rolled alloys

    NASA Astrophysics Data System (ADS)

    Li, Ji-heng; Yuan, Chao; Mu, Xing; Bao, Xiao-qian; Gao, Xue-xu

    2018-04-01

    The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1at% NbC-doped Fe83Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300°C and 12.0% at 500°C of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300°C and 46.6% at 500°C. In the slabs for rolling, the introduction of <001>-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.

  1. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy.

    PubMed

    Yang, Shuo; Du, Dong; Chang, Baohua

    2018-02-04

    In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  2. New hosts and genetic diversity of Flavobacterium columnare isolated from Brazilian native species and Nile tilapia.

    PubMed

    Barony, G M; Tavares, G C; Assis, G B N; Luz, R K; Figueiredo, H C P; Leal, C A G

    2015-11-17

    Flavobacterium columnare is responsible for disease outbreaks in freshwater fish farms. Several Brazilian native fish have been commercially exploited or studied for aquaculture purposes, including Amazon catfish Leiarius marmoratus × Pseudoplatystoma fasciatum and pacamã Lophiosilurus alexandri. This study aimed to identify the aetiology of disease outbreaks in Amazon catfish and pacamã hatcheries and to address the genetic diversity of F. columnare isolates obtained from diseased fish. Two outbreaks in Amazon catfish and pacamã hatcheries took place in 2010 and 2011. Four F. columnare strains were isolated from these fish and identified by PCR. The disease was successfully reproduced under experimental conditions for both fish species, fulfilling Koch's postulates. The genomovar of these 4 isolates and of an additional 11 isolates from Nile tilapia Oreochromis niloticus was determined by 16S rRNA restriction fragment length polymorphism PCR. The genetic diversity was evaluated by phylogenetic analysis of the 16S rRNA gene and repetitive extragenic palindromic PCR (REP-PCR). Most isolates (n = 13) belonged to genomovar II; the remaining 2 isolates (both from Nile tilapia) were assigned to genomovar I. Phylogenetic analysis and REP-PCR were able to demonstrate intragenomovar diversity. This is the first report of columnaris in Brazilian native Amazon catfish and pacamã. The Brazilian F. columnare isolates showed moderate diversity, and REP-PCR was demonstrated to be a feasible method to evaluate genetic variability in this bacterium.

  3. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    PubMed Central

    Yang, Shuo; Du, Dong

    2018-01-01

    In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains. PMID:29401715

  4. Prediction of the As-Cast Structure of Al-4.0 Wt Pct Cu Ingots

    NASA Astrophysics Data System (ADS)

    Ahmadein, Mahmoud; Wu, M.; Li, J. H.; Schumacher, P.; Ludwig, A.

    2013-06-01

    A two-stage simulation strategy is proposed to predict the as-cast structure. During the first stage, a 3-phase model is used to simulate the mold-filling process by considering the nucleation, the initial growth of globular equiaxed crystals and the transport of the crystals. The three considered phases are the melt, air and globular equiaxed crystals. In the second stage, a 5-phase mixed columnar-equiaxed solidification model is used to simulate the formation of the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition, grain size distribution, macrosegregation, etc. The five considered phases are the extradendritic melt, the solid dendrite, the interdendritic melt inside the equiaxed grains, the solid dendrite, and the interdendritic melt inside the columnar grains. The extra- and interdendritic melts are treated as separate phases. In order to validate the above strategy, laboratory ingots (Al-4.0 wt pct Cu) are poured and analyzed, and a good agreement with the numerical predictions is achieved. The origin of the equiaxed crystals by the "big-bang" theory is verified to play a key role in the formation of the as-cast structure, especially for the castings poured at a low pouring temperature. A single-stage approach that only uses the 5-phase mixed columnar-equiaxed solidification model and ignores the mold filling can predict satisfactory results for a casting poured at high temperature, but it delivers false results for the casting poured at low temperature.

  5. InSAR-detected Local Ground Inflation Prior to Small Phreatic Eruption

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Morishita, Y.

    2017-12-01

    Phreatic eruptions may be related to transient pressure changes in subsurface regions of hydrothermal systems. It means that crustal deformation presumably proceeds with the pressure increase under the ground, which can be a kind of precursor. In this context, Mt. Hakone volcano is a good study target. This is because the crustal deformation has been successfully detected two months before small phreatic eruptions at an active geothermal area, called Owaku-dani. The anomalous activity such as an increase of seismicity started in the end of April, 2015. With this anomalous activity, SAR (ALOS-2) observations was conducted, and small but significant crustal deformation was detected in a local area with a diameter of 200 m with a displacement of 5 cm. The amount of deformation has increased with time although the spatial size has not changed, and resultantly the amount reached up to 60 cm. Finally, in the end of June, eruptions occurred just at the local crustal deformation area. It should be noted that the eruption started from the InSAR-detected inflational area. This is an excellent case that we were able to identify the location of small phreatic eruption in advance by detecting anomalous ground inflation. Further, we investigated whether or not the inflational deformation preceded the anomalous activity observed since the end of April. Applying InSAR time series analysis incorporating the phase linking method to C-band SAR data of RADARSAT-2 (RS2) and Sentinel-1A (S1), we successfully detected small but significant inflational ground deformation that has already proceeded since the end of 2014 at the latest. The amount of deformation reaches up to 3 cm during 4 months. The most striking point is that the spatial distribution is quite similar to the deformation detected by ALOS-2. It strongly suggests that the pressure increase in subsurface have already started before the anomalous activities such as seismic swarm and widely-distributed deformation have been identified. Acknowledgements: ALOS-2 and RS2 data were provided from JAXA under a cooperative research contract between GSI and JAXA, and in addition, for RS2 under a contract between JAXA and CSA. The ownership of ALOS-2 and RS2 data belong to JAXA and MDA, respectively. This study was supported by JSPS KAKENHI Grant Numbers JP16K1779.

  6. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  7. Volumetric and x-ray investigations of the crystalline and columnar phases of copper (II) soaps under pressure

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.

    1992-12-01

    Binuclear copper (II) carboxylates, Cu2(CnH2n+1O2)4, crystallize at room temperature in layered systems in which planes of polar cores are separated by a double layer of alkyl chains. These compounds are mesomorphic in nature above ca. 100 °C. Pseudopolymeric chains of regularly stacked binuclear cores are located at the nodes of a two-dimensional hexagonal lattice and are surrounded by disordered aliphatic chains. The transition from the crystal to the columnar mesophase is characterized by a change in the repeat distance of the binuclear cores along the pseudopolymeric axis. In the crystalline phase, these cores are all oriented in the same direction with a repeat distance of 5.2 Å in the columnar mesophase, the polar cores are perpendicular to the columnar axis and superposed in a fourfold helicoidal fashion, at least on a local scale, with a repeat distance of 4.7 Å. We present here the effect of pressure on these anisotropic systems in a direction parallel to the columnar axis, and in the plane of the two-dimensional lattice. In a first part, we report the pressure-volume-temperature (P-V-T) relationship of these compounds (n=12, 18, and 24) in the temperature range from 30 to 200 °C, and in the pressure range from 1 to 2000 bars. Isothermal compressibility and isobaric expansion are determined in the crystalline and mesomorphic phases. In the mesophase, pressure-volume isotherms can be described by the Tait equation, as in most liquids or molten polymers. In a second part, we discuss the x-ray-diffraction experiments performed under pressure. In the mesophase, the area of the two-dimensional lattice decreases with increasing pressure and, at sufficiently high pressure, the columnar mesophase transforms into a crystalline lamellar phase. By combining P-V-T and x-ray results, we deduce an increase of the stacking period of the binuclear cores as a function of increasing pressure.

  8. Vapor and liquid optical monitoring with sculptured Bragg microcavities

    NASA Astrophysics Data System (ADS)

    Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria Carmen; González-Elipe, Agustín R.; Yubero, Francisco

    2017-10-01

    Sculptured porous Bragg microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with a zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength-dependent optical retarders. This optical behavior is attributed to a self-structuration of the stacked layers involving the lateral association of nanocolumns in the direction perpendicular to the main flux of particles during the multilayer film growth, as observed by focused ion beam scanning electron microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids, or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems has been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. The sculptured BMs have been incorporated as microfluidic chips for optical transduction for label-free vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical monitoring of vapor and liquids of different refractive indices and aqueous solutions of glucose flowing through the microfluidic chips are described.

  9. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  10. Detection and Classification of Transformer Winding Mechanical Faults Using UWB Sensors and Bayesian Classifier

    NASA Astrophysics Data System (ADS)

    Alehosseini, Ali; A. Hejazi, Maryam; Mokhtari, Ghassem; B. Gharehpetian, Gevork; Mohammadi, Mohammad

    2015-06-01

    In this paper, the Bayesian classifier is used to detect and classify the radial deformation and axial displacement of transformer windings. The proposed method is tested on a model of transformer for different volumes of radial deformation and axial displacement. In this method, ultra-wideband (UWB) signal is sent to the simplified model of the transformer winding. The received signal from the winding model is recorded and used for training and testing of Bayesian classifier in different axial displacement and radial deformation states of the winding. It is shown that the proposed method has a good accuracy to detect and classify the axial displacement and radial deformation of the winding.

  11. Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda

    2003-08-01

    Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.

  12. Suppression of Shear Banding and Transition to Necking and Homogeneous Flow in Nanoglass Nanopillars

    NASA Astrophysics Data System (ADS)

    Adibi, Sara; Branicio, Paulo S.; Joshi, Shailendra P.

    2015-10-01

    In order to improve the properties of metallic glasses (MG) a new type of MG structure, composed of nanoscale grains, referred to as nanoglass (NG), has been recently proposed. Here, we use large-scale molecular dynamics (MD) simulations of tensile loading to investigate the deformation and failure mechanisms of Cu64Zr36 NG nanopillars with large, experimentally accessible, 50 nm diameter. Our results reveal NG ductility and failure by necking below the average glassy grain size of 20 nm, in contrast to brittle failure by shear band propagation in MG nanopillars. Moreover, the results predict substantially larger ductility in NG nanopillars compared with previous predictions of MD simulations of bulk NG models with columnar grains. The results, in excellent agreement with experimental data, highlight the substantial enhancement of plasticity induced in experimentally relevant MG samples by the use of nanoglass architectures and point out to exciting novel applications of these materials.

  13. Study on Elastic Helical TDR Sensing Cable for Distributed Deformation Detection

    PubMed Central

    Tong, Renyuan; Li, Ming; Li, Qing

    2012-01-01

    In order to detect distributed ground surface deformation, an elastic helical structure Time Domain Reflectometry (TDR) sensing cable is shown in this paper. This special sensing cable consists of three parts: a silicone rubber rope in the center; a couple of parallel wires coiling around the rope; a silicone rubber pipe covering the sensing cable. By analyzing the relationship between the impedance and the structure of the sensing cable, the impedance model shows that the sensing cable impedance will increase when the cable is stretched. This specific characteristic is verified in the cable stretching experiment which is the base of TDR sensing technology. The TDR experiment shows that a positive reflected signal is created at the stretching deformation point on the sensing cable. The results show that the deformation section length and the stretching elongation will both affect the amplitude of the reflected signal. Finally, the deformation locating experiments show that the sensing cable can accurately detect the deformation point position on the sensing cable. PMID:23012560

  14. Micrographic detection of plastic deformation in nickel base alloys

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  15. Micrographic detection of plastic deformation in nickel-base alloys

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    1980-09-20

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  16. DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.

    PubMed

    Ouyang, Wanli; Zeng, Xingyu; Wang, Xiaogang; Qiu, Shi; Luo, Ping; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Li, Hongyang; Loy, Chen Change; Wang, Kun; Yan, Junjie; Tang, Xiaoou

    2016-07-07

    In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object detection pipeline.

  17. Influence of columnar defects on the thermodynamic properties of BSCCO

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-03-01

    Amorphous columnar defects strongly affect the reversible magnetization of Bi2Sr2CaCu2O8+δ single crystals both in the vortex solid, where the change reflects the change in vortex energy due to pinning, and in the vortex liquid, where the randomly positioned columns disrupt the interaction between superconducting fluctuations.

  18. Spleen size and plasma levels of mannose binding lectin in channel catfish Ictalurus punctatus families exhibiting different susceptibilities to Flavobacterium columnare and Edwardsiella ictaluri

    USDA-ARS?s Scientific Manuscript database

    Two major problems in the channel catfish (Ictalurus punctatus) aquaculture industry have been high disease losses to enteric septicemia of catfish (ESC), caused by the bacterium Edwardsiella ictaluri and columnaris disease, caused by the bacterium Flavobacterium columnare. Methods to control these...

  19. Missing the target: DNAk is a dominant epitope in the humoral immune response of channel catfish (Ictalurus punctatus) to Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Vaccination remains a viable alternative for bacterial disease protection in fish; however additional work is required to understand the mechanisms of adaptive immunity in the channel catfish. To assess the humoral immune response to Flavobacterium columnare; a group of channel catfish were first im...

  20. Draft genome sequence of the fish pathogen Flavobacterium columnare strain CSF-298-10

    USDA-ARS?s Scientific Manuscript database

    We announce the genome assembly of Flavobacterium columnare strain CSF-298-10, a strain isolated from an outbreak of Columnaris disease at a commercial trout farm in Snake River Valley Idaho, USA. The complete genome consists of 13 contigs totaling 3,284,579 bp, average G+C content of 31.5% and 2933...

  1. Improved Automatic Detection of New T2 Lesions in Multiple Sclerosis Using Deformation Fields.

    PubMed

    Cabezas, M; Corral, J F; Oliver, A; Díez, Y; Tintoré, M; Auger, C; Montalban, X; Lladó, M; Pareto, D; Rovira, À

    2016-06-09

    Detection of disease activity, defined as new/enlarging T2 lesions on brain MR imaging, has been proposed as a biomarker in MS. However, detection of new/enlarging T2 lesions can be hindered by several factors that can be overcome with image subtraction. The purpose of this study was to improve automated detection of new T2 lesions and reduce user interaction to eliminate inter- and intraobserver variability. Multiparametric brain MR imaging was performed at 2 time points in 36 patients with new T2 lesions. Images were registered by using an affine transformation and the Demons algorithm to obtain a deformation field. After affine registration, images were subtracted and a threshold was applied to obtain a lesion mask, which was then refined by using the deformation field, intensity, and local information. This pipeline was compared with only applying a threshold, and with a state-of-the-art approach relying only on image intensities. To assess improvements, we compared the results of the different pipelines with the expert visual detection. The multichannel pipeline based on the deformation field obtained a detection Dice similarity coefficient close to 0.70, with a false-positive detection of 17.8% and a true-positive detection of 70.9%. A statistically significant correlation (r = 0.81, P value = 2.2688e-09) was found between visual detection and automated detection by using our approach. The deformation field-based approach proposed in this study for detecting new/enlarging T2 lesions resulted in significantly fewer false-positives while maintaining most true-positives and showed a good correlation with visual detection annotations. This approach could reduce user interaction and inter- and intraobserver variability. © 2016 American Society of Neuroradiology.

  2. Collision detection and modeling of rigid and deformable objects in laparoscopic simulator

    NASA Astrophysics Data System (ADS)

    Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru

    2015-03-01

    Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.

  3. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation.

    PubMed

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (∼9  nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. Environmental stresses and skeletal deformities in fish from the Willamette River, Oregon

    USGS Publications Warehouse

    Villeneuve, Daniel L.; Curtis, Lawrence R.; Jenkins, Jeffrey J.; Warner, Kara E.; Tilton, Fred; Kent, Michael L.; Watral, Virginia G.; Cunningham, Michael E.; Markle, Douglas F.; Sethajintanin, Doolalai; Krissanakriangkrai, Oraphin; Johnson, Eugene R.; Grove, Robert

    2005-01-01

    The Willamette River, one of 14 American Heritage Rivers, flows through the most densely populated and agriculturally productive region of Oregon. Previous biological monitoring of the Willamette River detected elevated frequencies of skeletal deformities in fish from certain areas of the lower (Newberg pool [NP], rivermile [RM] 26−55) and middle (Wheatland Ferry [WF], RM 72−74) river, relative to those in the upper river (Corvallis [CV], RM 125−138). The objective of this study was to determine the likely cause of these skeletal deformities. In 2002 and 2003, deformity loads in Willamette River fishes were 2−3 times greater at the NP and WF locations than at the CV location. There were some differences in water quality parameters between the NP and CV sites, but they did not readily explain the difference in deformity loads. Concentrations of bioavailable metals were below detection limits (0.6−1 μg/L). Concentrations of bioavailable polychlorinated biphenyls (PCBs) and chlorinated pesticides were generally below 0.25 ng/L. Concentrations of bioavailable polycyclic aromatic hydrocarbons were generally less than 5 ng/L. Concentrations of most persistent organic pollutants were below detection limits in ovary/oocyte tissue samples and sediments, and those that were detected were not significantly different among sites. Bioassay of Willamette River water extracts provided no evidence that unidentified compounds or the complex mixture of compounds present in the extracts could induce skeletal deformities in cyprinid fish. However, metacercariae of a digenean trematode were directly associated with a large percentage of deformities detected in two Willamette River fishes, and similar deformities were reproduced in laboratory fathead minnows exposed to cercariae extracted from Willamette River snails. Thus, the weight of evidence suggests that parasitic infection, not chemical contaminants, was the primary cause of skeletal deformities observed in Willamette River fish.

  5. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.

    PubMed

    Kang, Yang Jun; Ha, Young-Ran; Lee, Sang-Joon

    2016-01-07

    Red blood cell (RBC) deformability has been considered a potential biomarker for monitoring pathological disorders. High throughput and detection of subpopulations in RBCs are essential in the measurement of RBC deformability. In this paper, we propose a new method to measure RBC deformability by evaluating temporal variations in the average velocity of blood flow and image intensity of successively clogged RBCs in the microfluidic channel array for specific time durations. In addition, to effectively detect differences in subpopulations of RBCs, an air compliance effect is employed by adding an air cavity into a disposable syringe. The syringe was equally filled with a blood sample (V(blood) = 0.3 mL, hematocrit = 50%) and air (V(air) = 0.3 mL). Owing to the air compliance effect, blood flow in the microfluidic device behaved transiently depending on the fluidic resistance in the microfluidic device. Based on the transient behaviors of blood flows, the deformability of RBCs is quantified by evaluating three representative parameters, namely, minimum value of the average velocity of blood flow, clogging index, and delivered blood volume. The proposed method was applied to measure the deformability of blood samples consisting of homogeneous RBCs fixed with four different concentrations of glutaraldehyde solution (0%-0.23%). The proposed method was also employed to evaluate the deformability of blood samples partially mixed with normal RBCs and hardened RBCs. Thereafter, the deformability of RBCs infected by human malaria parasite Plasmodium falciparum was measured. As a result, the three parameters significantly varied, depending on the degree of deformability. In addition, the deformability measurement of blood samples was successfully completed in a short time (∼10 min). Therefore, the proposed method has significant potential in deformability measurement of blood samples containing hematological diseases with high throughput and precise detection of subpopulations in RBCs.

  6. Detecting seismic anisotropy across the 410 km discontinuity through polarity and amplitude variations of the underside reflections

    NASA Astrophysics Data System (ADS)

    Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James

    2017-04-01

    We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.

  7. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these patterns appears to be tied to the relative free energy costs of splay and bend deformations in the precursor nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. This work provides first examples of quasi-2D micropatterning of LC films in the columnar phase and the first micropatterning of lyotropic LC films in general, as well as demonstrating alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties.

  8. Simulation and observation of line-slip structures in columnar structures of soft spheres

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  9. Simulation and observation of line-slip structures in columnar structures of soft spheres.

    PubMed

    Winkelmann, J; Haffner, B; Weaire, D; Mughal, A; Hutzler, S

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  10. Draft Genome Sequence of the Fish Pathogen Flavobacterium columnare Genomovar III Strain PH-97028 (=CIP 109753).

    PubMed

    Criscuolo, Alexis; Chesneau, Olivier; Clermont, Dominique; Bizet, Chantal

    2018-04-05

    Flavobacterium columnare strain PH-97028 (=CIP 109753) is a genomovar III reference strain that was isolated from a diseased Ayu fish in Japan. We report here the analysis of the first available genomovar III sequence of this species to aid in identification, epidemiological tracking, and virulence studies. Copyright © 2018 Criscuolo et al.

  11. Assessment of Aquaflor (c), copper sulfate and potassium permanganate for control of Aeromonas hydrophila and Flavobacterium columnare infection in sunshine bass, Morone chrysops female x Morone saxatilis male

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to assess different therapeutants against a mixed infection of Aeromonas hydrophila and Flavobacterium columnare in sunshine bass (SB) (Morone chrysops female x Morone saxatilis male). Experiment 1 assessed the efficacy of copper sulfate (CuSO4), florfenicol-medicated...

  12. Phase behavior and transitions of self-assembling nano-structured materials

    NASA Astrophysics Data System (ADS)

    Duan, Hu

    Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.

  13. Monitoring on Xi'an ground fissures deformation with TerraSAR-X data

    USGS Publications Warehouse

    Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.

    2012-01-01

    Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.

  14. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-01

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  15. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  16. The structures of the crystalline phase and columnar mesophase of rhodium (II) heptanoate and of its binary mixture with copper (II) heptanoate probed by EXAFS

    NASA Astrophysics Data System (ADS)

    Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.

    1992-12-01

    EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.

  17. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility.

    PubMed

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-07

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  18. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-01-01

    The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  19. Determination of accuracy of winding deformation method using kNN based classifier used for 3 MVA transformer

    NASA Astrophysics Data System (ADS)

    Ahmed, Mustafa Wasir; Baishya, Manash Jyoti; Sharma, Sasanka Sekhor; Hazarika, Manash

    2018-04-01

    This paper presents a detecting system on power transformer in transformer winding, core and on load tap changer (OLTC). Accuracy of winding deformation is determined using kNN based classifier. Winding deformation in power transformer can be measured using sweep frequency response analysis (SFRA), which can enhance the diagnosis accuracy to a large degree. It is suggested that in the results minor deformation faults can be detected at frequency range of 1 mHz to 2 MHz. The values of RCL parameters are changed when faults occur and hence frequency response of the winding will change accordingly. The SFRA data of tested transformer is compared with reference trace. The difference between two graphs indicate faults in the transformer. The deformation between 1 mHz to 1kHz gives winding deformation, 1 kHz to 100 kHz gives core deformation and 100 kHz to 2 MHz gives OLTC deformation.

  20. Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.

    2016-06-01

    Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.

  1. Geodetic Observations Using GNSS, Tiltmeter, and DInSAR, at Tokachi-dake Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, Y.

    2017-12-01

    Tokachi-dake volcano is located in central Hokkaido, Japan. Middle sized eruptions occurred in 1926, 1962, and 1988-1989, and several small phreatic eruptions also occurred in the meanwhile. After the latest eruption in 1988-1989, many volcanic tremor and active seismicity were revealed. Active fumarolic activities from Taisho crater and 62-2 crater have been observed. In recent years, Tokachi-dake volcano has been observed by using several geodetic techniques, including DInSAR, GNSS, tiltmeter, and gravimeter, to detect regional and local signals associated with volcanic activities. Continuous GNSS stations in summit area operated by Geological Survey of Hokkaido and Hokkaido University [Okazaki et al., 2015] and DInSAR observations using ALOS-2 and TerraSAR-X data have revealed long-term small deformation after 2006 and transient large deformation in May, 2015. We found that these are quite local deformation, because regional GNSS and tiltmeter network did not detect any obvious signals in same period. The remarkable deformation detected by GNSS and DInSAR in the summit area between May and July, 2015, indicates that horizontal displacements are larger than vertical displacements, and westward displacement are much larger than eastward displacement. First, we try to model the deformation pattern using a simple spherical source model [Mogi, 1958] and a dike source model [Okada, 1985]. However, they cannot explain observed deformation because they do not take into consideration a topographic effect in the deformation area. Kawguchi & Miyagi [2016] tried to model the deformation using a boundary element method considering the topographic effect. Consequently, a deformation source which is vertically prolate spheroid beneath the summit shows a better fit between observed and simulated deformation. Annual campaign gravity observations have carried out by several Japanese university and institutes since 2010 [Takahashi et al., 2016]. These reveal that gravity value detected in summit area has decreased more than 0.15mgal up to 2017, which is larger than the gravity value expected from vertical displacements [Okazaki et al., 2017]. In this study, we introduce recent deformation observed by DInSAR, and try to understand the relationship between the deformation and gravity change.

  2. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus

    PubMed Central

    Jiang, Ming; Li, Haiyan; Zhang, Yongchun; Yang, Ying; Lu, Rong; Liu, Kuancan; Lin, Sijie; Lan, Xiaopeng; Wang, Haikun; Wu, Han; Zhu, Jian; Zhou, Zhongren; Xu, Jianming; Lee, Dong-Kee; Zhang, Lanjing; Lee, Yuan-Cho; Yuan, Jingsong; Abrams, Julian A.; Wang, Timothy G.; Sepulveda, Antonia R.; Wu, Qi; Chen, Huaiyong; Sun, Xin; She, Junjun; Chen, Xiaoxin; Que, Jianwen

    2017-01-01

    In several organ systems the transitional zone between different types of epithelia is a hotspot for pre-neoplastic metaplasia and malignancy1–3. However, the cell-of-origin for the metaplastic epithelium and subsequent malignancy, remains obscure1–3. In the case of Barrett’s oesophagus (BE), intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells4. Based on different experimental models, several alternative cell types have been proposed as the source of the metaplasia, but in all cases the evidence is inconclusive and no model completely mimics BE with the presence of intestinal goblet cells5–8. Here, we describe a novel transitional columnar epithelium with distinct basal progenitor cells (p63+ KRT5+ KRT7+) in the squamous-columnar junction (SCJ) in the upper gastrointestinal tract of the mouse. We use multiple models and lineage tracing strategies to show that this unique SCJ basal cell population serves as a source of progenitors for the transitional epithelium. Moreover, upon ectopic expression of CDX2 these transitional basal progenitors differentiate into intestinal-like epithelium including goblet cells, thus reproducing Barrett’s metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues, including the anorectal junction, and, importantly, at the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (MLE) believed to be a precursor of BE are both characterized by the expansion of the transitional basal progenitor cells. Taken together our findings reveal the presence of a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+ KRT7+ basal cells in this zone are the cell-of-origin for MLE and BE. PMID:29019984

  3. Differentiation of anchoring junctions in tracheal basal cells in the growing rat.

    PubMed

    Evans, M J; Cox, R A; Burke, A S; Moller, P C

    1992-02-01

    A function of airway basal cells is to attach ciliated and nonciliated columnar cells to the basal lamina. The significance of the basal cell in attachment is related to the height of the columnar epithelium. In taller epithelia, basal cells are more numerous and differentiated with respect to anchoring junctional adhesion mechanisms (desmosomes, hemidesmosomes, and the cytoskeleton) than in shorter epithelia. In this study, we determined if basal cell anchoring junctional adhesion mechanisms differentiated during growth of the airway. Tracheas from five 3-day-old, five 30-day-old, and five 90-day-old rats were prepared for electron microscopy and morphometrically studied by standard techniques. The circumference of the trachea increased from 2.5 +/- 0.2 to 7.5 +/- 0.4 mm during growth. The height of the columnar cell increased from 13.4 +/- 1.5 to 24.6 +/- 3.9 microns, and the number of basal cells per millimeter increased from 3.2 +/- 0.7 to 9.6 +/- 1.8 during growth. The number of desmosomes per basal cell profile increased significantly from 1.5 +/- 0.1 to 2.1 +/- 0.1, as did keratin filament volume density from 0.046 +/- 0.05 to 0.098 +/- 0.032. The amount of hemidesmosome attachment per basal cell did not increase significantly during growth of the airway. These data demonstrate that as tracheas grow in circumference, the columnar cells increase in height, basal cells increase in number, and anchoring junctional adhesion mechanisms differentiate in the basal cells. These changes are closely related to the height of the epithelium and result in maintaining a constant amount of attachment between the columnar epithelium and the basal lamina as the epithelium increases in height.

  4. Anisotropic imaging performance in indirect x-ray imaging detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep

    We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less

  5. Columnaris disease in fish: a review with emphasis on bacterium-host interactions

    PubMed Central

    2013-01-01

    Flavobacterium columnare (F. columnare) is the causative agent of columnaris disease. This bacterium affects both cultured and wild freshwater fish including many susceptible commercially important fish species. F. columnare infections may result in skin lesions, fin erosion and gill necrosis, with a high degree of mortality, leading to severe economic losses. Especially in the last decade, various research groups have performed studies aimed at elucidating the pathogenesis of columnaris disease, leading to significant progress in defining the complex interactions between the organism and its host. Despite these efforts, the pathogenesis of columnaris disease hitherto largely remains unclear, compromising the further development of efficient curative and preventive measures to combat this disease. Besides elaborating on the agent and the disease it causes, this review aims to summarize these pathogenesis data emphasizing the areas meriting further investigation. PMID:23617544

  6. Orientation decoding depends on maps, not columns

    PubMed Central

    Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.

    2011-01-01

    The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017

  7. [Clinical and endoscopic findings and magnitude of gastric and duodenal reflux in patients with cardial intestinal metaplasia, short Barrett esophagus, compared with controls].

    PubMed

    Csendes, A; Burdiles, P; Smok, G; Rojas, J; Flores, N; Domic, S; Quiroz, J; Henríquez, A

    1999-11-01

    The diagnosis of patients with short segments of intestinal metaplasia in the distal esophagus, has increased in recent years. To assess the clinical, pathological and functional features of patients with esophageal intestinal metaplasia. A prospective study was performed in 95 control subjects, 115 patients with cardial intestinal metaplasia and 89 patients with short Barret esophagus with intestinal metaplasia. All had clinical and endoscopic assessments, esophageal manometry and determination of 24 h esophageal exposure to acid and duodenal content. Control patients were younger and, in this group, the pathological findings in the mucosa distal to the squamous-columnar change, showed a preponderance of fundic over cardial mucosa. In patients with intestinal metaplasia and short Barret esophagus, there was only cardial mucosa, that is the place where intestinal metaplasia implants. Low grade dysplasia was only seen in the presence of intestinal metaplasia. Gastroesophageal sphincter pressure decreased and gastric and duodenal reflux increased along with increases in the extension of intestinal metaplasia. These findings confirm the need to obtain multiple biopsies from the squamous-columnar mucosal junction in all patients with gastroesophageal reflux symptoms, for the detection of early pathological changes of Barret esophagus and eventual dysplasia.

  8. Maplike representation of celestial E-vector orientations in the brain of an insect.

    PubMed

    Heinze, Stanley; Homberg, Uwe

    2007-02-16

    For many insects, the polarization pattern of the blue sky serves as a compass cue for spatial navigation. E-vector orientations are detected by photoreceptors in a dorsal rim area of the eye. Polarized-light signals from both eyes are finally integrated in the central complex, a brain area consisting of two subunits, the protocerebral bridge and the central body. Here we show that a topographic representation of zenithal E-vector orientations underlies the columnar organization of the protocerebral bridge in a locust. The maplike arrangement is highly suited to signal head orientation under the open sky.

  9. Corrected Article: Simulation and observation of line-slip structures in columnar structures of soft spheres [Phys. Rev. E 96, 012610 (2017)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  10. Efficacy of florfenicol, copper sulfate and potassium permanganate in controlling a natural infection of Aeromonas hydrophila and Flavobacterium columnare in sunshine bass, Morone chrysops female x Morone saxatilis male

    USDA-ARS?s Scientific Manuscript database

    Sunshine bass (Morone chrysops female ' Morone saxatilis male) naturally infected with Aeromonas hydrophila and Flavobacterium columnare were randomly assigned to six treatments: 1) two treatments of waterborne exposures to copper sulfate (CuSO4), at 2.1 and at 4.2 mg/L (approximately one and two pe...

  11. Do breast columnar cell lesions with atypia need to be excised?

    PubMed

    Datrice, Nicole; Narula, Navneet; Maggard, Melinda; Butler, John; Hsiang, David; Baick, Choong; Lane, Karen

    2007-10-01

    Columnar cell lesion with atypia (CCLA) is a newly recognized pathologic entity seen in breast specimens. The breast cancer risk associated with this finding is unclear, although CCLA had been found adjacent to both in situ and invasive carcinomas, but the incidence is unknown. Breast specimens from patients with a columnar cell lesion were reviewed by a pathologist for atypia. Twenty-one specimens with CCLA were identified [core biopsy (8), excisional biopsy (11), and simple mastectomy (2)]. Six of eight specimens with CCLA on core had adjacent abnormal pathology: infiltrating ductal carcinoma (IDC)/lobular carcinoma in situ (LCIS) (1), ductal carcinoma in situ (DCIS)/LCIS (1), DCIS (1), LCIS (1), and papillomatosis (2). Five of 11 specimens with CCLA on excisional biopsy had adjacent abnormal pathology: IDC (3), DCIS/LCIS (1), and atypical ductal hyperplasia/papilloma (1). Two of two simple mastectomy specimens had CCLA associated with IDC (1) and DCIS (1). Overall, abnormal pathology was found adjacent to CCLA in 62 per cent of specimens (13/21). Breast pathologic specimens containing a columnar cell lesion should be carefully examined for atypia. Surgical excision is warranted for CCLA found on core biopsy. The future risk of breast cancer based on the finding of CCLA alone requires further investigation.

  12. Methylation of DAPK and THBS1 genes in esophageal gastric-type columnar metaplasia

    PubMed Central

    Herrera-Goepfert, Roberto; Oñate-Ocaña, Luis F; Mosqueda-Vargas, José Luis; Herrera, Luis A; Castro, Clementina; Mendoza, Julia; González-Barrios, Rodrigo

    2016-01-01

    AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori (H. pylori) status in individuals harboring esophageal columnar metaplasia. METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type (non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of death-associated protein kinase (DAPK), thrombospondin-1 (THBS1), cadherin-1 (CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction (MS-PCR) and sodium bisulfite modification protocol. H. pylori cagA status was determined by PCR. RESULTS: In total, 68 subjects (33 females and 35 males), with a mean age of 52 years, were included. H. pylori cagA positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40 (58.8%), 33 (48.5%), 46 (67.6%), and 23 (33.8%) cases of the 68 esophageal samples. H. pylori status was associated with methylation of DAPK (P = 0.003) and THBS1 (P = 0.019). CONCLUSION: DNA methylation occurs in cases of gastric-type (non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cagA positive infection. PMID:27182166

  13. Orientation Dependence of Columnar Dendritic Growth with Sidebranching Behaviors in Directional Solidification: Insights from Phase-Field Simulations

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Dong, Xianglei; Wang, Jianyuan; Jin, Kexin

    2018-04-01

    In this study, a thin-interface phase-field model was employed to study the orientation dependence of the columnar dendritic growth with sidebranching behaviors in directional solidification. It was found that the dimensionless tip undercooling increases with the increase of misorientation angle for three pulling velocities. The primary spacing is found to be a function of misorientation angle, and the dimensionless primary spacing with respect to the misorientation angle follows the orientation correction given by Gandin and Rappaz (Acta. Metall. 42:2233-2246, 1994). For the analysis of the dendritic tip, the two-dimensional (2-D) form of the nonaxisymmetric needle crystal was used to determine the radius of the tilted columnar dendrite. Based on the definitions of open side and constrained side of the dendrite, the analysis of the width active sidebranches and the dendritic area in 2-D with respect to the distance from the dendritic tip was carried out to investigate the asymmetrical dendrite envelop and sidebranching behaviors on the two sides in directional solidification. The obtained prefactor and exponent with respect to misorientation angle are discussed, showing that the sidebranching behaviors of a tilted columnar dendritic array obey a similar power-law relationship with that of a free dendritic growth.

  14. Immunohistochemical/histochemical double staining method in the study of the columnar metaplasia of the oesophagus.

    PubMed

    Cabibi, D; Giannone, A G; Mascarella, C; Guarnotta, C; Castiglia, M; Pantuso, G; Fiorentino, E

    2014-03-05

    Intestinal metaplasia in Barrett's oesophagus (BO) represents an important risk factor for oesophageal adenocarcinoma. Instead, few and controversial data are reported about the progression risk of columnar-lined oesophagus without intestinal metaplasia (CLO), posing an issue about its clinical management. The aim was to evaluate if some immunophenotypic changes were present in CLO independently of the presence of the goblet cells. We studied a series of oesophageal biopsies from patients with endoscopic finding of columnar metaplasia, by performing some immunohistochemical stainings (CK7, p53, AuroraA) combined with histochemistry (Alcian-blue and Alcian/PAS), with the aim of simultaneously assess the histochemical features in cells that shows an aberrant expression of such antigens. We evidenced a cytoplasmic expression of CK7 and a nuclear expression of Aurora A and p53,  both in goblet cells of BO and in non-goblet cells of CLO, some of which showing mild dysplasia. These findings suggest that some immunophenotypic changes are present in CLO and they can precede the appearance of the goblet cells or can be present independently of them, confirming the conception of BO as the condition characterized by any extention of columnar epithelium. This is the first study in which a combined immunohistochemical/histochemical method has been applied to Barrett pathology.

  15. Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Martinez, E.; Gaytan, S. M.; Ramirez, D. A.; Machado, B. I.; Shindo, P. W.; Martinez, J. L.; Medina, F.; Wooten, J.; Ciscel, D.; Ackelid, U.; Wicker, R. B.

    2011-11-01

    Microstructures and a microstructural, columnar architecture as well as mechanical behavior of as-fabricated and processed INCONEL alloy 625 components produced by additive manufacturing using electron beam melting (EBM) of prealloyed precursor powder are examined in this study. As-fabricated and hot-isostatically pressed ("hipped") [at 1393 K (1120 °C)] cylinders examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive (X-ray) spectrometry (EDS), and X-ray diffraction (XRD) exhibited an initial EBM-developed γ″ (bct) Ni3Nb precipitate platelet columnar architecture within columnar [200] textured γ (fcc) Ni-Cr grains aligned in the cylinder axis, parallel to the EBM build direction. Upon annealing at 1393 K (1120 °C) (hot-isostatic press (HIP)), these precipitate columns dissolve and the columnar, γ, grains recrystallized forming generally equiaxed grains (with coherent {111} annealing twins), containing NbCr2 laves precipitates. Microindentation hardnesses decreased from 2.7 to 2.2 GPa following hot-isostatic pressing ("hipping"), and the corresponding engineering (0.2 pct) offset yield stress decreased from 0.41 to 0.33 GPa, while the UTS increased from 0.75 to 0.77 GPa. However, the corresponding elongation increased from 44 to 69 pct for the hipped components.

  16. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  17. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  18. Growth and dislocation studies of β-HMX.

    PubMed

    Gallagher, Hugh G; Sherwood, John N; Vrcelj, Ranko M

    2014-01-01

    The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in "hot-spot" detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]. Graphical abstractEtch pits on the twinned (010) face of β-HMX.

  19. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    PubMed

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dynamic deformation inspection of a human arm by using a line-scan imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Eryi

    2009-11-01

    A line-scan imaging system is used in the dynamic deformation measurement of a human arm when the muscle is contracting and relaxing. The measurement principle is based on the projection grating profilometry, and the measuring system is consisted of a line-scan CCD camera, a projector, optical lens and a personal computer. The detected human arm is put upon a reference plane, and a sinusoidal grating is projected onto the object surface and reference plane at an incidence angle, respectively. The deformed fringe pattern in the same line of the dynamic detected arm is captured by the line-scan CCD camera with free trigger model, and the deformed fringe pattern is recorded in the personal computer for processing. A fast Fourier transform combining with a filtering and spectrum shifting method is used to extract the phase information caused by the profile of the detected object. Thus, the object surface profile can be obtained following the geometric relationship between the fringe deformation and the object surface height. Furthermore, the deformation procedure can be obtained line by line. Some experimental results are presented to prove the feasibility of the inspection system.

  1. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  2. Flat epithelial atypia of the breast: characteristics and behaviors.

    PubMed

    Sudarshan, Monisha; Meguerditchian, Ari-Nareg; Mesurolle, Benoit; Meterissian, Sarkis

    2011-02-01

    Flat epithelial atypia (FEA) increasingly is being recognized as a pathologic entity on core needle biopsies. However, definitive management of this columnar cell lesion remains debatable because its malignant potential is unknown. A PubMed search for "flat epithelial atypia" and "columnar cell lesions" was performed. FEA commonly was encountered in the background of higher-grade lesions such as atypical ductal hyperplasia, ductal carcinoma in situ, and tubular and lobular carcinomas. Its molecular and cytogenetic profile revealed some alterations similar to precancerous lesions. Pure FEA on core needle biopsies was upgraded to higher-grade lesions on subsequent surgical excision. Current management of FEA is best achieved through a multidisciplinary review considering various factors to determine if surgical excision is warranted. Further studies are required to elucidate the malignant potential of this columnar cell lesion. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  4. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE PAGES

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...

    2017-10-04

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  5. Columnar to nematic mesophase transition in mixtures of rhodium or copper soaps with hydrocarbon solvents

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.; Giroud-Godquin, A. M.; Marchon, J.-C.

    1992-12-01

    This paper describes observations of the mesomorphic behaviour of mixtures of rhodium eicosanoate or copper dodecanoate with solvents such as toluene, decahydronaphthalene, and (+) camphene. The mesophase found with these compounds at high temperatures turns from columnar to nematic when the weight fraction of the solvent (toluene, decahydronaphthalene is increased beyond a value of about 50%. The binary phase diagram of the copper compound with toluene was experimentally determined using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. The novel feature of the nematic phase is that the basic physical object which align parallel to the nematic director are not individual molecules, but columns of molecules (one-dimensional supramolecular assemblies) which have lost the long-range lateral positional order characteristic of the columnar mesophase. These observations are discussed on the grounds of recent theoretical calculations. Cholesteric-like textures are observed for mixtures of rhodium eicosanoate with the chiral solvent (+) camphene.

  6. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  7. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.

  8. κ-deformed Dirac oscillator in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Chargui, Y.; Dhahbi, A.; Cherif, B.

    2018-04-01

    We study the solutions of the (2 + 1)-dimensional κ-deformed Dirac oscillator in the presence of a constant transverse magnetic field. We demonstrate how the deformation parameter affects the energy eigenvalues of the system and the corresponding eigenfunctions. Our findings suggest that this system could be used to detect experimentally the effect of the deformation. We also show that the hidden supersymmetry of the non-deformed system reduces to a hidden pseudo-supersymmetry having the same algebraic structure as a result of the κ-deformation.

  9. Preliminary analysis of columnar aerosol properties in relation to surface PM measurements in the DAMOCLES 2006 field campaign (Spain)

    NASA Astrophysics Data System (ADS)

    Estelles, V.; Esteve, A.; Pey, J.; Martinez-Lozano, J. A.; Utrillas, M. P.; Querol, X.; de La Rosa, J.; Gonzalez-Castanedo, Y.; Alastuey, A.; Gangoiti, G.

    2009-04-01

    The DAMOCLES network is a Spanish thematic network, started in 2004, whose main objective is the establishment of a link among the different groups that perform research on atmospheric aerosols in Spain. Under the DAMOCLES coordination, a field campaign was held in summer 2006 at the INTA installations (El Arenosillo, Huelva) for the intercomparison of different kind of instruments devoted to in - situ and columnar aerosol measurement. During this field campaign, two daily meteorological soundings were carried out at noon and midnight for characterization of the atmospheric condition. A plane was also flown by the National Institute of Aerospace Technology (INTA) to carry airborne sensors for measuring different atmospheric factors: meteorological parameters, ozone with a 2BTech analyzer, and aerosol particle size distributions in the range (0.01-2) microns, by using a PCASP probe. The columnar aerosol properties were measured by seven CIMEL CE318 sun photometers. For in situ aerosol characterization, high volume collectors (DIGITEL and MCV) with DIGITEL for PM10, PM2.5 and PM1 measurement were used, with two cascade impactors for particulate matter measurement in 7 -8 granulometric fractions. For the PM10, PM2.5 and PM1 measurement, quartz fibre filters of 150 mm diameter were adapted. Other in situ deployed instruments were a Scanning Mobility Particle Sizer (SMPS, Model 3936), two Aerodynamic Particle Sizer (APS Model 3321) and one Grimm Spectrometer (Model #190). For characterization of the aerosol scattering at ground level, three integrating nephelometers TSI-3563 were used. For the columnar profiling we deployed five LIDAR instruments. In this study we have related the columnar aerosol measurements retrieved with one CE318 sun photometer to the surface PM measurements, mainly in some interesting situations where nearby pollution sources were influencing the local atmosphere. For the sun photometric analysis, we have applied the EuroSkyRad package (ESR.pack) to the data from the CE318 serial number #430, from the University of Valencia at Burjassot (Spain). This package is a quite new open source package composed of scripts and inversion algorithms for the processing of both Prede POM and Cimel CE318 instruments. The chemical analysis and source apportionment of the PM data was previously presented. Mean levels recorded during the campaign reached 23, 15 and 12 µg m-3 for PM10, PM2.5 and PM1, respectively. These values fell in the usual range of rural background sites of Southern Spain. Two kind of PM episodes were detected: short episodes recorded at midnight to early morning or at midday, coinciding with transitory hours when the land-sea breeze changed and stagnation conditions occurred, with pollution coming from the Huelva area; and a longer PM episode starting on 30th June 2006 and ending at the end of 1st July 2006, probably associated with the mid to long range transport of polluted air masses from Western Iberia and the Gulf of Cadiz.

  10. Depth-of-interaction estimates in pixelated scintillator sensors using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Sharma, Diksha; Sze, Christina; Bhandari, Harish; Nagarkar, Vivek; Badano, Aldo

    2017-01-01

    Image quality in thick scintillator detectors can be improved by minimizing parallax errors through depth-of-interaction (DOI) estimation. A novel sensor for low-energy single photon imaging having a thick, transparent, crystalline pixelated micro-columnar CsI:Tl scintillator structure has been described, with possible future application in small-animal single photon emission computed tomography (SPECT) imaging when using thicker structures under development. In order to understand the fundamental limits of this new structure, we introduce cartesianDETECT2, an open-source optical transport package that uses Monte Carlo methods to obtain estimates of DOI for improving spatial resolution of nuclear imaging applications. Optical photon paths are calculated as a function of varying simulation parameters such as columnar surface roughness, bulk, and top-surface absorption. We use scanning electron microscope images to estimate appropriate surface roughness coefficients. Simulation results are analyzed to model and establish patterns between DOI and photon scattering. The effect of varying starting locations of optical photons on the spatial response is studied. Bulk and top-surface absorption fractions were varied to investigate their effect on spatial response as a function of DOI. We investigated the accuracy of our DOI estimation model for a particular screen with various training and testing sets, and for all cases the percent error between the estimated and actual DOI over the majority of the detector thickness was ±5% with a maximum error of up to ±10% at deeper DOIs. In addition, we found that cartesianDETECT2 is computationally five times more efficient than MANTIS. Findings indicate that DOI estimates can be extracted from a double-Gaussian model of the detector response. We observed that our model predicts DOI in pixelated scintillator detectors reasonably well.

  11. Mechanical Characterization of Polysilicon MEMS: A Hybrid TMCMC/POD-Kriging Approach.

    PubMed

    Mirzazadeh, Ramin; Eftekhar Azam, Saeed; Mariani, Stefano

    2018-04-17

    Microscale uncertainties related to the geometry and morphology of polycrystalline silicon films, constituting the movable structures of micro electro-mechanical systems (MEMS), were investigated through a joint numerical/experimental approach. An on-chip testing device was designed and fabricated to deform a compliant polysilicon beam. In previous studies, we showed that the scattering in the input–output characteristics of the device can be properly described only if statistical features related to the morphology of the columnar polysilicon film and to the etching process adopted to release the movable structure are taken into account. In this work, a high fidelity finite element model of the device was used to feed a transitional Markov chain Monte Carlo (TMCMC) algorithm for the estimation of the unknown parameters governing the aforementioned statistical features. To reduce the computational cost of the stochastic analysis, a synergy of proper orthogonal decomposition (POD) and kriging interpolation was adopted. Results are reported for a batch of nominally identical tested devices, in terms of measurement error-affected probability distributions of the overall Young’s modulus of the polysilicon film and of the overetch depth.

  12. Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance.

    PubMed

    Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T

    2018-01-22

    Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.

  13. Magnetic-Particle-Sensing Based Diagnostic Protocols and Applications

    PubMed Central

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-01-01

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized “columnar particles” by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or “magnetic washing”). PMID:26053747

  14. Using InSAR to Observe Sinkhole Activity in Central Florida

    NASA Astrophysics Data System (ADS)

    Oliver-Cabrera, T.; Wdowinski, S.; Kruse, S.; Kiflu, H. G.

    2017-12-01

    Sinkhole collapse in Florida is a major geologic hazard, threatening human life and causing substantial damage to property. Detecting sinkhole deformation before a collapse is an important but difficult task; most techniques used to monitor sinkholes are spatially constrained to relatively small areas (tens to hundred meters). To overcome this limitation, we use Interferometric Synthetic Aperture Radar (InSAR), which is a very useful technique for detecting localized deformation while covering vast areas. InSAR results show localized deformation at several houses and commercial buildings in different locations along the study sites. We use a subsurface imaging technique, ground penetrating radar, to verify sinkhole existence beneath the observed deforming areas.

  15. Changes in solidified microstructures

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1984-01-01

    The properties and casting behavior of metals are significantly affected by their cast structure. This structure is optimized by producing columnar versus equiaxed grains and coarse versus fine grains by controlling solidification conditions. The transition from columnar to equiaxed grains is favored by: constitutional supercooling with effective nucleation of free dendrites; melting off and transport of dendrite tips and arms; mechanical vibration; falling down of free dendrites from a chilled top surface; and induced flow in the solidifying structure by oscillation of rotation.

  16. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    NASA Astrophysics Data System (ADS)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  17. Micron-sized columnar grains of CH3NH3PbI3 grown by solvent-vapor assisted low-temperature (75 °C) solid-state reaction: The role of non-coordinating solvent-vapor

    NASA Astrophysics Data System (ADS)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2018-04-01

    The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (<100 °C). Here, we comprehensively investigated the effects of non-coordinating solvent vapor on the properties of perovskite film, and obtained micron-sized columnar grains (with an average grain size of 1.4 μm) of CH3NH3PbI3 even at a low temperature of 75 °C when annealed with benzyl alcohol vapor. The perovskite solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.

  18. Development of Columnar Topography in the Excitatory Layer 4 to Layer 2/3 Projection in Rat Barrel Cortex

    PubMed Central

    Bender, Kevin J.; Rangel, Juliana; Feldman, Daniel E.

    2011-01-01

    The excitatory feedforward projection from layer (L) 4 to L2/3 in rat primary somatosensory (S1) cortex exhibits precise, columnar topography that is critical for columnar processing of whisker inputs. Here, we characterize the development of axonal topography in this projection using single-cell reconstructions in S1 slices. In the mature projection [postnatal day (P) 14 –26], axons of L4 cells extending into L2/3 were confined almost entirely to the home barrel column, consistent with previous results. At younger ages (P8 –11), however, axonal topography was significantly less columnar, with a large proportion of branches innervating neighboring barrel columns representing adjacent whisker rows. Mature topography developed from this initial state by targeted axonal growth within the home column and by growth of barrel columns themselves. Raising rats with all or a subset of whiskers plucked from P8 –9, manipulations that induce reorganization of functional whisker maps and synaptic depression at L4 to L2/3 synapses, did not alter normal anatomical development of L4 to L2/3 axons. Thus, development of this projection does not require normal sensory experience after P8, and deprivation-induced reorganization of whisker maps at this age is unlikely to involve physical remodeling of L4 to L2/3 axons. PMID:14507976

  19. Hierarchical self-assembly, coassembly, and self-organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer.

    PubMed

    Percec, Virgil; Bera, Tushar K; Glodde, Martin; Fu, Qiongying; Balagurusamy, Venkatachalapathy S K; Heiney, Paul A

    2003-02-17

    The synthesis and structural analysis of the twin-dendritic benzamide 10, based on the first-generation, self-assembling, tapered dendrons 3,4,5-tris(4'-dodecyloxybenzyloxy)benzoic acid and 3,4,5-tris(4'-dodecyloxybenzyloxy)-1-aminobenzene, and the polymethacrylate, 20, which contains 10 as side groups, are presented. Benzamide 10 self-assembles into a supramolecular cylindrical dendrimer that self-organizes into a columnar hexagonal (Phi(h)) liquid crystalline (LC) phase. Polymer 20 self-assembles into an imperfect four-cylinder-bundle supramolecular dendrimer, and creates a giant vesicular supercylinder that self-organizes into a columnar nematic (N(c)) LC phase which displays short-range hexagonal order. In mixtures of 20 and 10, 10 acts as a guest and 20 as a host to create a perfect four-cylinder-bundle host-guest supramolecular dendrimer that coorganizes with 10. A diversity of Phi(h), simple rectangular columnar (Phi(r-s)) and centered rectangular columnar (Phi(r-c)), superlattices are produced at different ratios between 20 and 10. This diversity of LC lattices and superlattices is facilitated by the architecture of the twin-dendritic building block, polymethacrylate, the host-guest supramolecular assembly, and by hydrogen bonding along the center of the supramolecular cylinders generated from 10 and 20.

  20. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    PubMed

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  1. Stability of smectic phases in hard-rod mixtures

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis

    2005-09-01

    Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some approximations, have shown to become thermodynamically stable prior to crystallization. Specifically we focus on the relative stability between smectic and columnar phases, a question not fully addressed in previous work. Our analysis is based on two complementary perspectives: on the one hand, an extended Onsager theory, which includes the full orientational degrees of freedom but with spatial and orientational correlations being treated in an approximate manner; on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate that the restricted-orientation approximation enhances the stability of columnar phases so as to preempt smectic order completely while, in the framework of the extended Onsager model, with full orientational degrees of freedom taken into account, columnar phases may preempt a large region of smectic stability in some mixtures, but some smectic order still persists.

  2. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  3. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps.

    PubMed

    Kobayashi, Tatsuya; Chung, Ung-Il; Schipani, Ernestina; Starbuck, Michael; Karsenty, Gerard; Katagiri, Takenobu; Goad, Dale L; Lanske, Beate; Kronenberg, Henry M

    2002-06-01

    In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.

  4. Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy

    NASA Astrophysics Data System (ADS)

    Liu, Ji-li; Huang, Hai-you; Xie, Jian-xin

    2016-10-01

    The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol-1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%-9%) and high martensitic transformation critical stress (443-677 MPa) is obtained through the application of the appropriate aging treatments.

  5. [What was found in deformities of leprosy patients from the view-point of orthopedics?].

    PubMed

    Obara, Akiko

    2003-08-01

    No more deformities which are the cause of social stigma by early detection and chemotherapy! Let patients learn how to avoid getting deformed to keep normal ADL & QOL. Fight against the nerve damage and stop the progressive deformities by organizing the team approach. Instead of intense efforts of taking care by well organized team work, deformities are resulted inevitably in some cases. Let their deformities be out of the way of their keeping normal community lives without any prejudice, respecting their human rights and dignity.

  6. Scales of columnar jointing in igneous rocks: field measurements and controlling factors

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Taisne, Benoît; Garel, Fanny; Médard, Étienne; Bosshard, Sonja; Mattsson, Hannes B.

    2012-03-01

    Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons' average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava flows), chemistry plays the major role, resulting in stouter columns in felsic lavas and slenderer columns in mafic lavas.

  7. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    PubMed

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  8. Results from a model-independent method of monitoring a geodetic network for patterns of transient deformation

    NASA Technical Reports Server (NTRS)

    Hurst, Kenneth; Granat, Robert

    2005-01-01

    We have implmented two multi-station detectors for transient crustal deformation within the Southern California Integrated GPS (SCGIN). One the the primary goals of SCIGN is to detect transient deformation associated with the earthquake cycle in Southern California.

  9. Architecture of Columnar Nacre, and Implications for Its Formation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Rebecca A.; Olabisi, Ronke M.; Coppersmith, Susan N.

    2007-06-29

    We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronchi, C.; Sari, C.

    Lenticular pore migration rates in oxide nuclear fuels were measured in out-of-pile heating experiments. It is deduced that those pores which are in part responsible for the formation of columnar grains, are only produced in the absence of relevant amourts of filling gas. Specimens containing important concentrations of He, produced by Pu alpha decay, show columnar grain restructuring by grain boundary migration. Some consequences are drawn concerning the possible role played by lenticular pores in the mechanisms of fission gas release from nuclear fuels. (5 figures) (auth)

  11. Detection of surface deformation and ionospheric perturbation by the North Korea nuclear test

    NASA Astrophysics Data System (ADS)

    Park, S. C.; Lee, W. J.; Sohn, D. H.; Lee, D. K.; Jung, H. S.

    2017-12-01

    We used remote sensing data to detect the changes on surface and ionosphere due to the North Korea nuclear test. To analyze the surface deformation before and after the 6th North Korea (NK) nuclear test, we used Satellite Aperture Radar (SAR) images. It was reported that there were some surface deformation with about 10 cm by the 4th test (Wei, 2017) and the 5th test (Jo, 2017) using Interferometric SAR (InSAR) technique. However we could not obtain surface deformation by the 6th test using InSAR with Advanced Land Observation Satellite 2 (ALOS-2) data because of low coherence in the area close to the epicenter. Although the low coherence can be occurred due to several reasons, the main reason may be large deformation in this particular case. Therefore we applied pixel offset method to measure the amount of surface deformation in the area with low coherence. Pixel offset method calculates the deformation in the directions along track and Line-of-Sight (LOS) using cross correlation of intensity of two SAR images before and after the event for a pixel and is used frequently to obtain large deformation of glacier (e.g. Lee et al., 2015). Applying pixel offset method to the area of the 6th NK nuclear test, we obtained about 3 m surface deformation in maximum. It seems that the larger deformation occurs as the mountain slope is steeper.We then analyzed ionospheric perturbation using Global Navigation Satellite System (GNSS) data. If acoustic wave by a nuclear test goes up to the ionosphere and disturbs electron density, then the changes in slant total electron content (STEC) may be detected by GNSS satellites. STEC perturbation has been reported in the previous NK nuclear tests (e.g. Park et al., 2011). We analyzed the third order derivatives of STEC for 51 GNSS stations in South Korea and found that some perturbation were appeared at 4 stations about 20 40 minutes after the test.

  12. Locally distributed crustal deformation in potential areas of phreatic eruptions, detected by InSAR analyses

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu

    2017-04-01

    Phreatic eruptions may be related to transient pressure changes in subsurface regions of hydrothermal systems attributing a heating of shallow aquifers from magma. It means that crustal deformation presumably proceeds with the pressure increase under the ground, which can be a kind of precursor if it would be detected. One of the most difficult points is that as the eruption size becomes smaller, the precursor signal should be more local, suggesting that it is rather hard to identify the anomaly using conventional ground-based observation tools. To mitigate disaster on phreatic eruptions, an effective proactive monitoring method is desired. One of the tools to overcome the drawbacks is SAR observation. I here report several observation results in which locally distributed crustal deformation has been detected in geothermal areas where phreatic eruptions has occurred recently or historically. One of the most important studies is the case of Mt. Hakone where the crustal deformation has been successfully detected two months before small phreatic eruptions. Mt. Hakone holds an active geothermal area, called Owaku-dani, with active fumaroles although no eruption has been known since 12-13 centuries. However, the anomalous activity such as an increase of seismicity started in the end of April, 2015. With this anomalous activity, SAR (ALOS-2) observations have been conducted, and small but significant crustal deformation has been detected in a local area with a diameter of 200 m with a displacement of 5 cm. The amount of deformation has increased with time although the spatial size has not changed, and resultantly the amount reached up to 60 cm. Finally, in the end of June, eruptions occurred just at the local crustal deformation area. It should be noted that the eruption started from the InSAR-detected inflational area. This is an excellent case that we were able to identify the location of small phreatic eruption in advance by detecting anomalous ground inflation. It is also noted that the detection of the precursory signal has contributed to the administrative decision making such as setting up no-go area. In this presentation, in addition to this case, I will show some local ground inflational signals observed in geothermal areas where eruptions have not occurred as yet. Acknowledgements: ALOS-2 data were provided under a cooperative contract with JAXA (Japan Aerospace Exploration Agency). The ownership of ALOS-2 data belongs to JAXA. This study was supported by JSPS KAKENHI Grant Numbers JP16K17797 and JP25350494.

  13. Analysis of surface deformation during the eruptive process of El Hierro Island (Canary Islands, Spain): Detection, Evolution and Forecasting.

    NASA Astrophysics Data System (ADS)

    Berrocoso, M.; Fernandez-Ros, A.; Prates, G.; Martin, M.; Hurtado, R.; Pereda, J.; Garcia, M. J.; Garcia-Cañada, L.; Ortiz, R.; Garcia, A.

    2012-04-01

    The surface deformation has been an essential parameter for the onset and evolution of the eruptive process of the island of El Hierro (October 2011) as well as for forecasting changes in seismic and volcanic activity during the crisis period. From GNSS-GPS observations the reactivation is early detected by analizing the change in the deformation of the El Hierro Island regional geodynamics. It is found that the surface deformation changes are detected before the occurrence of seismic activity using the station FRON (GRAFCAN). The evolution of the process has been studied by the analysis of time series of topocentric coordinates and the variation of the distance between stations on the island of El Hierro (GRAFCAN station;IGN network; and UCA-CSIC points) and LPAL-IGS station on the island of La Palma. In this work the main methodologies and their results are shown: •The location (and its changes) of the litospheric pressure source obtained by applying the Mogi model. •Kalman filtering technique for high frequency time series, used to make the forecasts issued for volcanic emergency management. •Correlations between deformation of the different GPS stations and their relationship with seismovolcanic settings.

  14. A New Columnar CsI(Tl) Scintillator for iQID detectors

    PubMed Central

    Han, Ling; Miller, Brian W.; Barber, H. Bradford; Nagarkar, Vivek V.; Furenlid, Lars R.

    2015-01-01

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation. PMID:26146444

  15. A New Columnar CsI(Tl) Scintillator for iQID detectors.

    PubMed

    Han, Ling; Miller, Brian W; Barber, H Bradford; Nagarkar, Vivek V; Furenlid, Lars R

    2014-09-12

    A 1650 μm thick columnar CsI(Tl) scintillator for upgrading iQID detectors, which is a high-resolution photon-counting gamma-ray and x-ray detector recently developed at the Center for Gamma-Ray Imaging (CGRI), has been studied in terms of sensitivity, spatial resolution and depth-of-interaction effects. To facilitate these studies, a new frame-parsing algorithm for processing raw event data is also proposed that has more degrees of freedom in data processing and can discriminate against a special kind of noise present in some low-cost intensifiers. The results show that in comparison with a 450 μm-thickness columnar CsI(Tl) scintillator, the 1650 μm thick CsI(Tl) scintillator provides more than twice the sensitivity at the expense of some spatial resolution degradation. The depth-of-interaction study also shows that event size and amplitude vary with scintillator thickness, which can assist in future detector simulations and 3D-interaction-position estimation.

  16. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  17. Fabrication of field-effect transistor utilizing oriented thin film of octahexyl-substituted phthalocyanine and its electrical anisotropy based on columnar structure

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Nakatani, Mitsuhiro; Kajii, Hirotake; Miyamoto, Ayano; Yoneya, Makoto; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Field-effect transistors with molecularly oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which characteristically form a columnar structure, have been fabricated, and the electrical anisotropy of C6PcH2 has been investigated. The molecularly oriented thin films of C6PcH2 were prepared by the bar-coating technique, and the uniform orientation in a large area and the surface roughness at a molecular level were observed by polarized spectroscopy and atomic force microscopy, respectively. The field effect mobilities parallel and perpendicular to the column axis of C6PcH2 were estimated to be (1.54 ± 0.24) × 10-2 and (2.10 ± 0.23) × 10-3 cm2 V-1 s-1, respectively. The electrical anisotropy based on the columnar structure has been discussed by taking the simulated results obtained by density functional theory calculation into consideration.

  18. Vortex Escape from Columnar Defect in a Current-Loaded Superconductor

    NASA Astrophysics Data System (ADS)

    Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.

    2018-06-01

    The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.

  19. Comparison of the columnar-thin-film and vacuum-metal-deposition techniques to develop sebaceous fingermarks on nonporous substrates.

    PubMed

    Williams, Stephanie F; Pulsifer, Drew P; Shaler, Robert C; Ramotowski, Robert S; Brazelle, Shelly; Lakhtakia, Akhlesh

    2015-03-01

    Both the columnar-thin-film (CTF) and the vacuum-metal-deposition (VMD) techniques for visualizing sebaceous fingermarks require the deposition of a material thereon in a vacuum chamber. Despite that similarity, there are many differences between the two techniques. The film deposited with the CTF technique has a columnar morphology, but the film deposited with the VMD technique comprises discrete islands. A split-print methodology on a variety of fingermarked substrates was used to determine that the CTF technique is superior for developing fingermarks on clear sandwich bags and partial bloody fingermarks on stainless steel. Both techniques are similar in their ability to develop fingermarks on glass but the CTF technique yields higher contrast. The VMD technique is superior for developing fingermarks on white grocery bags and the smooth side of Gloss Finish Scotch Multitask(™) tape. Neither technique worked well for fingermarks on black garbage bags. © 2014 American Academy of Forensic Sciences.

  20. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Airplane wing deformation and flight flutter detection method by using three-dimensional speckle image correlation technology.

    PubMed

    Wu, Jun; Yu, Zhijing; Wang, Tao; Zhuge, Jingchang; Ji, Yue; Xue, Bin

    2017-06-01

    Airplane wing deformation is an important element of aerodynamic characteristics, structure design, and fatigue analysis for aircraft manufacturing, as well as a main test content of certification regarding flutter for airplanes. This paper presents a novel real-time detection method for wing deformation and flight flutter detection by using three-dimensional speckle image correlation technology. Speckle patterns whose positions are determined through the vibration characteristic of the aircraft are coated on the wing; then the speckle patterns are imaged by CCD cameras which are mounted inside the aircraft cabin. In order to reduce the computation, a matching technique based on Geodetic Systems Incorporated coded points combined with the classical epipolar constraint is proposed, and a displacement vector map for the aircraft wing can be obtained through comparing the coordinates of speckle points before and after deformation. Finally, verification experiments containing static and dynamic tests by using an aircraft wing model demonstrate the accuracy and effectiveness of the proposed method.

  2. T1ρ MRI detects cartilage damage in asymptomatic individuals with a cam deformity.

    PubMed

    Anwander, Helen; Melkus, Gerd; Rakhra, Kawan S; Beaulé, Paul E

    2016-06-01

    Hips with a cam deformity are at risk for early cartilage degeneration, mainly in the anterolateral region of the joint. T1ρ MRI is a described technique for assessment of proteoglycan content in hyaline cartilage and subsequently early cartilage damage. In this study, 1.5 Tesla T1ρ MRI was performed on 20 asymptomatic hips with a cam deformity and compared to 16 healthy control hips. Cam deformity was defined as an alpha angle at 1:30 o'clock position over 60° and/or at 3:00 o'clock position over 50.5°. Hip cartilage was segmented and divided into four regions of interest (ROIs): anterolateral, anteromedial, posterolateral, and posteromedial quadrants. Mean T1ρ value of the entire weight bearing cartilage in hips with a cam deformity (34.0 ± 4.6 ms) was significantly higher compared to control hips (31.3 ± 3.2 ms, p = 0.050). This difference reached significance in the anterolateral (p = 0.042) and posteromedial quadrants (p = 0.041). No significant correlation between the alpha angle and T1ρ values was detected. The results indicate cartilage damage occurs in hips with a cam deformity before symptoms occur. A significant difference in T1ρ values was found in the anterolateral quadrant, the area of direct engagement of the deformity, and in the posteromedial quadrant. To conclude, T1ρ MRI can detect early chondral damage in asymptomatic hips with a cam deformity. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1004-1009, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2013-08-01

    use 2007-2011 Advanced Land Observing Satellite (ALOS) data to perform an arc-wide interferometric synthetic aperture radar (InSAR) time series survey of the Trans-Mexican Volcanic Belt (TMVB) and to study time-dependent ground deformation of four Indonesian volcanoes selected following the 2007-2009 study of Chaussard and Amelung (2012). Our objectives are to examine whether arc volcanoes exhibit long-term edifice-wide cyclic deformation patterns that can be used to characterize open and closed volcanic systems and to better constrain in which cases precursory inflation is expected. We reveal deformation cycles at both regularly active and previously inactive Indonesian volcanoes, but we do not detect deformation in the TMVB, reflecting a lower activity level. We identify three types of relationships between deformation and activity: inflation prior to eruption and associated with or followed by deflation (Kerinci and Sinabung), inflation without eruption and followed by slow deflation (Agung), and eruption without precursory deformation (Merapi, Colima, and Popocatépetl; at Merapi, no significant deformation is detected even during eruption). The first two cases correspond to closed volcanic systems and suggest that the traditional model of magmatic systems and eruptive cycles do apply to andesitic volcanoes (i.e., inflation and deflation episodes associated with magma accumulation or volatile exsolution in a crustal reservoir followed by eruptions or in situ cooling). In contrast, the last case corresponds to open volcanic systems where no significant pressurization of the magmatic reservoirs is taking place prior to eruptions and thus no long-term edifice-wide ground deformation can be detected. We discuss these results in terms of InSAR's potential for forecasting volcanic unrest.

  4. Detection of precursory deformation using a TLS. Application to spatial prediction of rockfalls.

    NASA Astrophysics Data System (ADS)

    Abellán, Antonio; Vilaplana, Joan Manuel; Calvet, Jaume; Rodriguez, Xavier

    2010-05-01

    Different applications on the use of Terrestrial Laser Scanner (TLS) on rock slopes are undergoing rapid development, mainly in the characterization of 3D discontinuities and the monitoring of rock slopes. The emphasis of this research is on detection of precursory deformation and its application to spatial prediction of rockfalls. The pilot study area corresponds to the main scarp of an old slide located at Puigcercós (Catalonia, Spain). 3D temporal variations of the terrain were analyzed by comparing sequential TLS datasets. Five areas characterized by centimetric precursory deformations were detected in the study area. Of these deformations, (a) growing deformation across three areas culminated in a rockfall occurrence; and (b) another growing deformation across two areas was detected, making a subsequent rockfall likely. The areas with precursory deformations detected in Puigcercós showed the following characteristics: (a) a sub-vertical fracture delimiting the moving part from the rest of the slope; (b) an increase in the horizontal displacement upwards, typical of a toppling failure mechanism (Muller 1968; Goodman and Bray, 1976). In addition, decimetric-scale rockfalls were observed in the upper part of the moving areas, which is consistent with the observations of Rosser et al., (2007). TLS ILRIS 3D technical characteristics are as follows: high accuracy (7.2 mm at a range of 50 meters), high angular resolution (e.g. 1 point every few cm), fast data acquisition: 2,500 points/second; broad coverage; high maximum range on natural slopes: ~600m. The single point distances between the surface of reference and the successive data point clouds were computed using a conventional methodology (data vs. reference comparison). The direction of comparison was defined as the normal vector of the rock face at its central part. We focused in the study of the small scale displacements towards the origin of coordinates, which reflect the pre-failure deformation on part of the slope. A nearest neighbour (NN) filtering technique was applied to the RAW datasets (Abellán et al., 2009), enabling the accurate detection of centimetric displacements. The parameters of the precursory deformation correlated with the failure mechanism, lithology and volume of the rockfall: higher values of length and duration of the precursory deformation were found in the toppling failure mechanism, ductile materials and rockfalls that involved considerable volumes. These results are consistent with observations in the literature regarding rockfalls of higher magnitude and lower frequency (e.g.: Zvelebil and Moser, 2001; Crosta and Agliardi, 2004; Hungr et al., 2007). It is also important to mention that no precursory indicators were detected prior to each rockfall that occurred in the study areas. This could simply be due to infrequent data acquisition or insufficient instrument accuracy. The application of TLS for the spatial prediction of rockfalls should be validated through: (a) the continuation of the TLS monitoring campaign at the areas which currently show ongoing deformation; (b) the selection of new case studies at different geomorphological sites with different lithologies; and (c) the selection of new case studies with different failure mechanisms (e.g. fall, slide). These tasks are of paramount importance to understand the pre-failure behaviour of rockfalls and to implement these findings in an early warning system.

  5. Estimation of columnar concentrations of absorbing and scattering fine mode aerosol components using AERONET data

    NASA Astrophysics Data System (ADS)

    Choi, Yongjoo; Ghim, Young Sung

    2016-11-01

    Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.

  6. Efficacy of oxytetracycline hydrochloride bath immersion to control external columnaris disease on walleye and channel catfish fingerlings

    USGS Publications Warehouse

    Rach, J.J.; Johnson, Aaron H.; Rudacille, J.B.; Schleis, S.M.

    2008-01-01

    The efficacy of oxytetracycline hydrochloride (OTC-HCl) in controlling external columnaris disease caused by Flavobacterium columnare on fingerling walleyes Sander vitreus and channel catfish Ictalurus punctatus was evaluated in two on-site hatchery trials. Microscopic examination of skin scrapings before treatment confirmed the presence of bacteria with characteristics indicative of F. columnare.in separate trials, walleyes (4.4 g) and channel catfish (1.5 g) were exposed to 60-min static bath treatments of OTC-HCl at 0, 10, and 20 mg/L (walleyes) or 0, 10, 20, and 40 mg/L (channel catfish) on three consecutive days. Each treatment regimen was tested in triplicate, and each replicate contained either 30 walleyes or 55 channel catfish. Posttreatment presumptive disease diagnosis indicated that F. columnare was the disease agent causing the mortality in both species of fish. Walleye survival at 10 d posttreatment was greater in the 10- and 20-mg/L treatment groups than in the control group; however, only the 10-mg/L treatment significantly (P < 0.05) increased walleye survival in comparison with controls. In the channel catfish trial, survival at 10 d posttreatment was significantly (P < 0.05) greater for all OTC-HCl treatment groups relative to controls. Results from these trials indicated that OTC-HCl treatments effectively reduced mortality in walleyes (10 mg/L only) and channel catfish infected with F. columnare. ?? Copyright by the American Fisheries Society 2008.

  7. Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland

    PubMed Central

    Pulkkinen, K.; Suomalainen, L.-R.; Read, A. F.; Ebert, D.; Rintamäki, P.; Valtonen, E. T.

    2010-01-01

    Ecological changes affect pathogen epidemiology and evolution and may trigger the emergence of novel diseases. Aquaculture radically alters the ecology of fish and their pathogens. Here we show an increase in the occurrence of the bacterial fish disease Flavobacterium columnare in salmon fingerlings at a fish farm in northern Finland over 23 years. We hypothesize that this emergence was owing to evolutionary changes in bacterial virulence. We base this argument on several observations. First, the emergence was associated with increased severity of symptoms. Second, F. columnare strains vary in virulence, with more lethal strains inducing more severe symptoms prior to death. Third, more virulent strains have greater infectivity, higher tissue-degrading capacity and higher growth rates. Fourth, pathogen strains co-occur, so that strains compete. Fifth, F. columnare can transmit efficiently from dead fish, and maintain infectivity in sterilized water for months, strongly reducing the fitness cost of host death likely experienced by the pathogen in nature. Moreover, this saprophytic infectiousness means that chemotherapy strongly select for strains that rapidly kill their hosts: dead fish remain infectious; treated fish do not. Finally, high stocking densities of homogeneous subsets of fish greatly enhance transmission opportunities. We suggest that fish farms provide an environment that promotes the circulation of more virulent strains of F. columnare. This effect is intensified by the recent increases in summer water temperature. More generally, we predict that intensive fish farming will lead to the evolution of more virulent pathogens. PMID:19864284

  8. Anomalous columnar order of charged colloidal platelets

    NASA Astrophysics Data System (ADS)

    Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.

    2012-01-01

    Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.

  9. Detection of structural changes and mechanical properties of light alloys after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.

    2017-11-01

    Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.

  10. Crustal Deformation in the Eastern Snake River Plain and Yellowstone Plateau Observed by SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Aly, M. H.; Hughes, S. S.; Rodgers, D. W.; Glenn, N. F.; Thackray, G. D.

    2007-12-01

    The Snake River Plain-Yellowstone tectono-volcanic province was created when North America migrated over a fixed hotspot in the mantle. Synthetic Aperture Radar Interferometry (InSAR) has been applied in this study to address the recent tectono-volcanic activity in the Eastern Snake River Plain (ESRP) and the southwestern part of Yellowstone Plateau. InSAR results show that crustal deformation across the tectono-volcanic province is episodic. An episode of uplift (about 1 cm/yr) along the ESRP axial volcanic zone, directly southwest of Island Park, has been detected from a time-series of independent differential interferograms created for the 1993-2000 period. Episodes of subsidence (1 cm/yr) during 1997-2000 and uplift (3 cm/yr) during 2004-2006 have been also detected in the active Yellowstone caldera, just northeast of Island Park. The detected interferometric signals indicate that deformation across the axial volcanic zone near Island Park is inversely linked to deformation in the active Yellowstone caldera. One explanation is that the inverse motions reflect a flexure response of the ESRP crust to magma chamber activity beneath the active caldera, although other interpretations are possible. The time-series of differential interferograms shows that no regional deformation has occurred across the central part of ESRP during the periods of observations, but local surface displacements of 1-3 cm magnitude have been detected in the adjacent Basin-Range province. Differential surface movements of varying rates have been also detected along Centennial, Madison, and Hebgen faults between 1993 and 2006.

  11. Design and Synthesis of Novel Discotic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kayal, Himadri Sekhar

    Columnar mesophases of discotic liquid crystals (DLCs) have attracted much attention as organic semiconductors and have been tested as active materials in light-emitting diodes, photovoltaic solar cells, and field-effect transistors. However, devices based on DLCs have shown lower performance than devices based on polymeric and small molecule glass semiconductors, despite their superior charge conducting and advantages self-organizing properties. Most DLCs also require relatively complex processing conditions for the preparation of electronic devices, which is another significant disadvantage. Consequently, new types of DLCs are sought-after to overcome these limitations and described in this thesis are new types of discotic materials and their synthesis. Chapters 2 and 3 describe star-shaped discotic molecules for donor-acceptor columnar structures and as novel flexible core discotic molecules. Presented are the first examples of star-shaped heptamers of donor and acceptor discotic molecules which have six hexaalkoxy triphenylene ligands and a hexaazatriphenylene hexacarboxylate core or a hexaazatriphenylene hexaamide core. The hexaazatriphenylene cores were chosen because of their electron deficient character while the hexaalkoxy triphenylenes are known to be electron rich. Envisioned is the formation of super-columns in which the heptamers stack on top of each other and generate a material with electron acceptor and electron donor channels separated by aliphatic chains. This is an important difference to previously reported donor-acceptor star-shaped structures that were connected via conjugated linkers and do not form separate columnar stacks. Star-shaped DLCs based on small aromatic groups linked together by short flexible spacers may represent a novel type of discotic core structure that does not require peripheral flexible chains. Softening of the core by the spacer group is expected to sufficiently lower melting points and not interfere with the columnar stacking as long as a disc-shaped structure can be adopted. Presented here are synthetic approaches towards novel hexa(thiophen-2-yl)alkyl)benzene derivatives as star-shaped hetero-heptamer discotic cores. New ionic and polymerizable discotic liquid crystals based on the commercial dye tetraazaporphyrin are presented in Chapters 4 and 5. Both areas have been given little attention despite their importance for the preparation of stable films for devices. Tetraazaporphyrins containing azide and acetylene groups at the end of aliphatic spacers have been prepared and cross-linked by cycloaddition (click chemistry). Some derivatives form columnar mesophases and could be thermally cross-linked in their columnar mesophase and their copper catalyzed cross-linking in Langmuir and Langmuir-Blodgett layers was also successful.

  12. Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis

    NASA Astrophysics Data System (ADS)

    Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad

    2017-11-01

    Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.

  13. Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p-) in association with congenital hypospadias and foot deformity

    PubMed Central

    Aslan, Halil; Karaca, Nilay; Basaran, Seher; Ermis, Hayri; Ceylan, Yavuz

    2003-01-01

    Background Wolf-Hirschhorn syndrome is caused by distal deletion of the short arm of chromosome 4 (4p-). We report a case in which intrauterine growth restriction, hypospadias and foot deformity were detected by prenatal ultrasound examination at 29 weeks of gestation. Case Presentation A 31-year-old gravida 2 partus 1 woman was referred at 29 weeks' gestation with suspicion of intrauterine growth restriction. Sonographic examination revealed deformity of the right lower limb and undescended testes with an irregular distal penis. A cordocentesis was performed and chromosome analysis revealed a 46,XY,del(4)(p14) karyotype. Conclusion The prenatal detection of intrauterine growth restriction, hypospadias and foot deformity should lead doctors to suspect the presence of Wolf-Hirschhorn syndrome. PMID:12546710

  14. Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p-) in association with congenital hypospadias and foot deformity.

    PubMed

    Aslan, Halil; Karaca, Nilay; Basaran, Seher; Ermis, Hayri; Ceylan, Yavuz

    2003-01-24

    BACKGROUND: Wolf-Hirschhorn syndrome is caused by distal deletion of the short arm of chromosome 4 (4p-). We report a case in which intrauterine growth restriction, hypospadias and foot deformity were detected by prenatal ultrasound examination at 29 weeks of gestation. CASE PRESENTATION: A 31-year-old gravida 2 partus 1 woman was referred at 29 weeks' gestation with suspicion of intrauterine growth restriction. Sonographic examination revealed deformity of the right lower limb and undescended testes with an irregular distal penis. A cordocentesis was performed and chromosome analysis revealed a 46,XY,del(4)(p14) karyotype. CONCLUSION: The prenatal detection of intrauterine growth restriction, hypospadias and foot deformity should lead doctors to suspect the presence of Wolf-Hirschhorn syndrome.

  15. Optical Deformability as New Diagnostic Cell Marker

    NASA Astrophysics Data System (ADS)

    Guck, Jochen; Lincoln, Bryan; Schinkinger, Stefan; Wottawah, Falk; Moore, Samantha; Ananthakrishnan, Revathi; Kas, Josef

    2002-03-01

    The optical stretcher is a novel laser tool that can deform individual cells in rapid succession. When a cell is trapped between two counterpropagating laser beams the optically induced surface forces stretch the cell along the laser axis. The degree of stretching depends on the optical properties, which determine the forces, as well as the mechanical properties, which govern the response of the cell to the forces. Our results show that different cells can be distinguished based on their optical deformability, which naturally suggests using the optical deformability of cells as a novel cell marker. Many diseases are reflected in an altered cytoskeleton, which leads to a different optical deformability. An important example is the malignant transformation of cells, which is accompanied by a decrease in cytoskeletal integrity and, consequently, cell elasticity. Using optical deformability as cell marker holds the promise of earlier detection and improved diagnosis of cancer. In this context, the optical stretcher can be used as a diagnostic device to detect and sort abnormal cells. Future applications in the study of the normal differentiation of cells from stem cells to mature cells are envisioned.

  16. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  17. VHF/UHF technique for the determination of the columnar electron contents of the plasmasphere and of the protonosphere using geostationary satellite transmission: Observations during magnetic storms

    NASA Technical Reports Server (NTRS)

    Almeida, O. G.

    1972-01-01

    Measurements of the total electron content of the plasmasphere up to geostationary heights were made using the beacon transmitters aboard the satellite ATS-3. The technique employed is a combination of the phase-path length difference and the Faraday rotation angle methods. Such a combination permits very accurate determination of the integration constant necessary to convert phase-path length difference data into information about the absolute value of the columnar content.

  18. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.

  19. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  20. A computer vision system for diagnosing scoliosis using moiré images.

    PubMed

    Batouche, M; Benlamri, R; Kholladi, M K

    1996-07-01

    For young people, scoliosis deformities are an evolving process which must be detected and treated as early as possible. The moiré technique is simple, inexpensive, not aggressive and especially convenient for detecting spinal deformations. Doctors make their diagnosis by analysing the symmetry of fringes obtained by such techniques. In this paper, we present a computer vision system for help diagnosing spinal deformations using noisy moiré images of the human back. The approach adopted in this paper consists of extracting fringe contours from moiré images, then localizing some anatomical features (the spinal column, lumbar hollow and shoulder blades) which are crucial for 3D surface generation carried out using Mota's relaxation operator. Finally, rules furnished by doctors are used to derive the kind of spinal deformation and to yield the diagnosis. The proposed system has been tested on a set of noisy moiré images, and the experimental result have shown its robustness and reliability for the recognition of most scoliosis deformities.

  1. Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships.

    PubMed

    Perrone, M R; Romano, S; Orza, J A G

    2015-11-01

    Columnar and ground-level aerosol optical properties co-located in space and time and retrieved from sun/sky photometer and nephelometer measurements, respectively, have been analyzed to investigate the impact of local and transboundary pollution, to analyze their relationships, and hence to contribute to the aerosol load characterization over the Central Mediterranean. The aerosol optical depth (AOD) at 440 nm, the Ångström exponent (Å) calculated from the AOD at 440 and 675 nm, and the asymmetry parameter (g col ) at 440 nm represent the investigated columnar aerosol parameters. The scattering coefficient (σ p) at 450 nm, the scattering Ångström exponent (å) calculated from σ p at 450 and 635 nm, and the asymmetry parameter (g) at 450 nm are the corresponding ground-level parameters. It is shown that the columnar and ground-level aerosol properties were significantly and similarly affected by the main airflows identified with backtrajectory cluster analysis. The yearly averaged daily evolution of σ p, å, and g was fairly correlated to the one of the AOD, Å, and g col , respectively. These results indicate that the aerosol particles were on average characterized by similar yearly averaged optical properties up to the ground level. In particular, the yearly means of columnar and ground-level Ångström exponents, 1.3 ± 0.4 and 1.1 ± 0.4, respectively, which are close to one, reveal a coarse-mode aerosol contribution in addition to the fine-mode particle contribution up to the ground level. Hourly means, day-by-day, and seasonal daily patterns of ground-level parameters were, however, very weakly correlated with the corresponding columnar parameters. The large impact of the local meteorology on the daily evolution of the ground-level aerosol properties, which makes the impact of long-range transported particles less apparent, was mainly responsible for these last results. It has also been found that columnar Ångström exponents much smaller than one may not be linked to å values smaller than 1. This may occurs when coarse-mode particle plumes, advected at high altitudes, do not penetrate inside the planetary boundary layer. Ångström exponents smaller than 1 are due to a significant contribution of coarse-mode particles as dust particles. Therefore, it is shown that å represents one of the best parameters to infer the contribution of coarse-mode particles at the ground level. The daily evolution of the aerosol properties referring to working days (Monday to Friday) and Sunday and the weekly cycle have suggested that the aerosol source contributions varied during the weekends. In particular, the AOD was characterized by a negative weekly cycle (higher AOD values during the weekend than during the weekdays), the Sunday σ p daily mean was 11 % larger than the Monday value, and å reached the highest value on Sunday. The impact up to the ground level of the weekdays' transboundary pollution, which reaches the monitoring site during the weekends, has likely contributed to these results.

  2. Genome-wide detection of CNVs associated with beak deformity in chickens using high-density 600K SNP arrays.

    PubMed

    Bai, H; Sun, Y; Liu, N; Liu, Y; Xue, F; Li, Y; Xu, S; Ni, A; Ye, J; Chen, Y; Chen, J

    2018-06-01

    Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing-You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome-wide CNV detection using Affymetrix chicken high-density 600K data on 48 deformed-beak and 48 normal birds using penncnv. As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed-beak and normal birds respectively. Further RT-qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed-beak and normal birds (P < 0.01). Within these six regions, three and 21 known genes were identified in deformed-beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT-qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (P < 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens. © 2018 Stichting International Foundation for Animal Genetics.

  3. Influence of chirality on the thermal and electric properties of the columnar mesophase exhibited by homomeric dipeptides

    NASA Astrophysics Data System (ADS)

    Parthasarathi, Srividhya; Shankar Rao, D. S.; Prabhu, Rashmi; Yelamaggad, C. V.; Krishna Prasad, S.

    2017-10-01

    We present the first investigation of the influence of chirality on the thermal and electric properties in a biologically important homomeric dipeptide that exhibits a hexagonal columnar liquid crystal mesophase. The peptide employed has two chiral centres, and thus the two possible enantiopures are the (R,R) and (S,S) forms having opposite chirality. The measurements reported the span of the binary phase space between these two enantiopures. Any point in the binary diagram is identified by the enantiomeric excess Xee (the excess content of the R,R enantiopure over its S,S counterpart). We observe that the magnitude of Xee plays a pivotal role in governing the properties as evidenced by X-ray diffraction (XRD), electric polarization (Ps), dielectric relaxation spectroscopy (DRS) measurements, and the isotropic-columnar transition temperature. For example, XRD shows that while other features pointing to a hexagonal columnar phase remain the same, additional short-range ordering, indicating correlated discs within the column, is present for the enantiopures (Xee = ±1) but not for the racemate (Xee = 0). Similarly, an electric-field driven switching whose profile suggests the phase structure to be antiferroelectric is seen over the entire binary space, but the magnitude is dependent on Xee; interestingly the polarization direction is axial, i.e., along the column axis. DRS studies display two dielectric modes over a limited temperature range and one mode (mode 2) connected with the antiferroelectric nature of the columnar structure covering the entire mesophase. The relaxation frequency and the thermal behaviour of mode 2 are strongly influenced by Xee. The most attractive effect of chirality is its influence on the polar order, a measure of which is the magnitude of the axial polarization. This result can be taken to be a direct evidence of the manifestation of molecular recognition and the delicate interplay between chiral perturbations and the magnitude of the polar order, a feature attractive from the viewpoint of devices based on, e.g., remnant polarization—a currently hot topic. To add further dimension to the work, the DRS measurements are also extended to elevated pressures.

  4. Striped Data Server for Scalable Parallel Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jin; Gutsche, Oliver; Mandrichenko, Igor

    A columnar data representation is known to be an efficient way for data storage, specifically in cases when the analysis is often done based only on a small fragment of the available data structures. A data representation like Apache Parquet is a step forward from a columnar representation, which splits data horizontally to allow for easy parallelization of data analysis. Based on the general idea of columnar data storage, working on the [LDRD Project], we have developed a striped data representation, which, we believe, is better suited to the needs of High Energy Physics data analysis. A traditional columnar approachmore » allows for efficient data analysis of complex structures. While keeping all the benefits of columnar data representations, the striped mechanism goes further by enabling easy parallelization of computations without requiring special hardware. We will present an implementation and some performance characteristics of such a data representation mechanism using a distributed no-SQL database or a local file system, unified under the same API and data representation model. The representation is efficient and at the same time simple so that it allows for a common data model and APIs for wide range of underlying storage mechanisms such as distributed no-SQL databases and local file systems. Striped storage adopts Numpy arrays as its basic data representation format, which makes it easy and efficient to use in Python applications. The Striped Data Server is a web service, which allows to hide the server implementation details from the end user, easily exposes data to WAN users, and allows to utilize well known and developed data caching solutions to further increase data access efficiency. We are considering the Striped Data Server as the core of an enterprise scale data analysis platform for High Energy Physics and similar areas of data processing. We have been testing this architecture with a 2TB dataset from a CMS dark matter search and plan to expand it to multiple 100 TB or even PB scale. We will present the striped format, Striped Data Server architecture and performance test results.« less

  5. Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems

    NASA Astrophysics Data System (ADS)

    Shen, Benlan; Chang, Jun; Niu, Yajun; Chen, Weilin; Ji, Zhongye

    2018-07-01

    This paper presents a dynamic local athermalisation method for longwave infrared (LWIR) optical systems; the proposed design uses a deformable mirror and is based on active optics theory. A local athermal LWIR optical system is designed as an example. The deformable mirror is tilted by 45° near the exit pupil of the system. The thermal aberrations are corrected by the deformable mirror for the local athermal field of view (FOV) that ranges from -40 °C to 80 °C. The types of thermal aberrations are analysed. Simulated results show that the local athermal LWIR optical system can effectively detect targets in the region of interest within a large FOV and correct thermal aberrations in actual working environments in real time. The system has numerous potential applications in infrared detection and tracking, surveillance and remote sensing.

  6. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    NASA Astrophysics Data System (ADS)

    Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  7. Columnar cell lesions without atypia initially diagnosed on breast needle biopsies: is imaging follow-up enough?

    PubMed

    Seo, Mirinae; Chang, Jung Min; Kim, Won Hwa; Park, In-Ae; Lee, Su Hyun; Cho, Nariya; Moon, Woo Kyung

    2013-10-01

    The purpose of this study was to evaluate the underestimation rate and predictive factor of underestimation of columnar cell lesions (CCLs) without atypia diagnosed through breast core needle biopsies (CNBs). From January 2007 through December 2011, 141 CCLs without atypia, including columnar cell change and columnar cell hyperplasia, were diagnosed in 138 women by CNB. Excisional (n = 16) or imaging follow-up (n = 125) findings were available in all cases. On a per-lesion basis, the underestimation rate and predictive factor of underestimation were evaluated. Among the 16 surgically excised lesions, there were two malignancies (one ductal carcinoma in situ and one invasive ductal carcinoma) and one lobular carcinoma in situ. Overall, the pooled underestimation rate of malignancy was 1.4% (2/141). With regard to lesion variables, the mean lesion size was significantly larger in the underestimation group of CCLs (p = 0.007). Fine pleomorphic morphology of microcalcifications (p < 0.001), the distribution of the microcalcifications (p = 0.007), BI-RADS final assessment (p = 0.001), and imaging-pathologic correlation (p < 0.001) were significantly associated with underestimation. Multivariate analysis showed that fine pleomorphic morphology of microcalcifications (p < 0.0001) was an independent predictor of underestimation in 58 lesions with microcalcifications on mammography. The overall underestimation rate of malignancy was 1.4%. Imaging follow-up is reasonable for CCLs without atypia at CNB, especially in small lesions with less suspicious imaging findings. Fine pleomorphic microcalcifications and higher BI-RADS category might be helpful in the prediction of underestimation of a high-risk lesion or malignancy.

  8. Aberrant Epithelial-Mesenchymal Hedgehog Signaling Characterizes Barrett's Metaplasia

    PubMed Central

    Wang, David H.; Clemons, Nicholas J.; Miyashita, Tomoharu; Dupuy, Adam J.; Zhang, Wei; Szczepny, Anette; Corcoran-Schwartz, Ian M.; Wilburn, Daniel L.; Montgomery, Elizabeth A.; Wang, Jean S.; Jenkins, Nancy A.; Copeland, Neal A.; Harmon, John W.; Phillips, Wayne A.; Watkins, D. Neil

    2010-01-01

    Background & Aims The molecular mechanism underlying epithelial metaplasia in Barrett's esophagus remains unknown. Recognizing that Hedgehog signaling is required for early esophageal development, we sought to determine if the Hedgehog pathway is reactivated in Barrett's esophagus, and if genes downstream of the pathway could promote columnar differentiation of esophageal epithelium. Methods Immunohistochemistry, immunofluorescence, and quantitative real-time PCR were used to analyze clinical specimens, human esophageal cell lines, and mouse esophagi. Human esophageal squamous epithelial (HET-1A) and adenocarcinoma (OE33) cells were subjected to acid treatment and used in transfection experiments. Swiss Webster mice were used in a surgical model of bile reflux injury. An in vivo transplant culture system was created using esophageal epithelium from Sonic hedgehog transgenic mice. Results Marked upregulation of Hedgehog ligand expression, which can be induced by acid or bile exposure, occurs frequently in Barrett's epithelium and is associated with stromal expression of the Hedgehog target genes PTCH1 and BMP4. BMP4 signaling induces expression of SOX9, an intestinal crypt transcription factor, which is highly expressed in Barrett's epithelium. We further show that expression of DMBT1, the human homologue of the columnar cell factor Hensin, occurs in Barrett's epithelium and is induced by SOX9. Finally, transgenic expression of Sonic hedgehog in mouse esophageal epithelium induces expression of stromal Bmp4, epithelial Sox9 and columnar cytokeratins. Conclusions Epithelial Hedgehog ligand expression may contribute to the initiation of Barrett's esophagus through induction of stromal BMP4, which triggers reprogramming of esophageal epithelium in favor of a columnar phenotype. PMID:20138038

  9. Development of Similar Broth Microdilution Methods to Determine the Antimicrobial Susceptibility of Flavobacterium columnare and F. psychrophilum.

    PubMed

    Gieseker, Charles M; Crosby, Tina C; Mayer, Tamara D; Bodeis, Sonya M; Stine, Cynthia B

    2016-03-01

    Flavobacterium columnare and F. psychrophilum are major fish pathogens that cause diseases that may require antimicrobial therapy. Choice of appropriate treatment is dependent upon determining the antimicrobial susceptibility of isolates. Therefore we optimized methods for broth microdilution testing of F. columnare and F. psychrophilum to facilitate standardizing an antimicrobial susceptibility test. We developed adaptations to make reproducible broth inoculums and confirmed the proper incubation time and media composition. We tested the stability of potential quality-control bacteria and compared test results between different operators. Log phase occurred at 48 h for F. columnare and 72-96 h for F. psychrophilum, confirming the test should be incubated at 28°C for approximately 48 h and at 18°C for approximately 96 h, respectively. The most consistent susceptibility results were achieved with plain, 4-g/L, dilute Mueller-Hinton broth supplemented with dilute calcium and magnesium. Supplementing the broth with horse serum did not improve growth. The quality-control strains, Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658, yielded stable minimal inhibitory concentrations (MIC) against all seven antimicrobials tested after 30 passes at 28°C and 15 passes at 18°C. In comparison tests, most MICs of the isolates agreed 100% within one drug dilution for ampicillin, florfenicol, and oxytetracycline. The agreement was lower with the ormetoprim-sulfdimethoxine combination, but there was at least 75% agreement for all but one isolate. These experiments have provided methods to help standardize antimicrobial susceptibility testing of these nutritionally fastidious aquatic bacteria. Received June 24, 2015; accepted October 2, 2015.

  10. Multi-phase back contacts for CIS solar cells

    DOEpatents

    Rockett, A.A.; Yang, L.C.

    1995-12-19

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe{sub 2} where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor. 15 figs.

  11. Multi-phase back contacts for CIS solar cells

    DOEpatents

    Rockett, Angus A.; Yang, Li-Chung

    1995-01-01

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe.sub.2 where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor.

  12. Neurenteric Cyst or Neuroendodermal Cyst? Immunohistochemical Study and Pathogenesis.

    PubMed

    Chen, Chun-Ting; Lai, Hung-Yi; Jung, Shih-Ming; Lee, Ching-Yi; Wu, Chieh-Tsai; Lee, Shih-Tseng

    2016-12-01

    Neurenteric cysts are rare central nervous system lesions derived from an endodermal origin. There is no consensus concerning pathogenesis because of the paucity of occurrences. We report an immunohistochemical study of 10 cases with neurenteric cysts and postulate its pathogenesis. Ten patients underwent surgical treatment for neurenteric cysts from 1995 to 2015. We retrospectively reviewed clinical, radiologic, operative, and pathologic findings for these patients. Immunohistochemical stains were completed in all cases to distinguish cell type and origin. Three cell types were identified: pseudostratified-ciliated, goblet-columnar, and simple cuboidal cells. All cases were positive for cytokeratin 7, and negative for cytokeratin 20, caudal-type homeobox 2, mucin 2, thyroid transcription factor 1, human chorionic gonadotropin, placental alkaline phosphatase, and cluster of differentiation 31. Four of them had positive staining for mucin 5AC, with expression only in goblet-columnar cells. According to the immunohistochemical results, the cells resembled the respiratory tract (pseudostratified-ciliated), stomach (goblet-columnar), and respiratory bronchioles (simple cuboidal). Seventy-five percent of cases with recurrence had a goblet-columnar component, emphasizing the importance of total resection of the cyst and complete pathologic examination. We postulate that the cystic tumor was derived from multipotent endodermal cells that migrated and traveled along the neuroectoderm, with incomplete differentiation into various cell types as a result of an unsuitable microenvironment. Because the neurenteric canal was only the channel of migration rather than a component of the cysts, the term neuroendodermal cysts is more precise in presenting the embryopathogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    PubMed

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  14. Cascaded image analysis for dynamic crack detection in material testing

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Maas, H.-G.

    Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.

  15. Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometers, other networks, and satellite observations

    NASA Astrophysics Data System (ADS)

    Zerefos, Christos S.; Eleftheratos, Kostas; Kapsomenakis, John; Solomos, Stavros; Inness, Antje; Balis, Dimitris; Redondas, Alberto; Eskes, Henk; Allaart, Marc; Amiridis, Vassilis; Dahlback, Arne; De Bock, Veerle; Diémoz, Henri; Engelmann, Ronny; Eriksen, Paul; Fioletov, Vitali; Gröbner, Julian; Heikkilä, Anu; Petropavlovskikh, Irina; Jarosławski, Janusz; Josefsson, Weine; Karppinen, Tomi; Köhler, Ulf; Meleti, Charoula; Repapis, Christos; Rimmer, John; Savinykh, Vladimir; Shirotov, Vadim; Siani, Anna Maria; Smedley, Andrew R. D.; Stanek, Martin; Stübi, René

    2017-01-01

    This study examines the adequacy of the existing Brewer network to supplement other networks from the ground and space to detect SO2 plumes of volcanic origin. It was found that large volcanic eruptions of the last decade in the Northern Hemisphere have a positive columnar SO2 signal seen by the Brewer instruments located under the plume. It is shown that a few days after the eruption the Brewer instrument is capable of detecting significant columnar SO2 increases, exceeding on average 2 DU relative to an unperturbed pre-volcanic 10-day baseline, with a mean close to 0 and σ = 0.46, as calculated from the 32 Brewer stations under study. Intercomparisons with independent measurements from the ground and space as well as theoretical calculations corroborate the capability of the Brewer network to detect volcanic plumes. For instance, the comparison with OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment-2) SO2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses in the case of the Kasatochi eruption. Unfortunately, due to sparsity of satellite data, the significant positive departures seen in the Brewer and other ground networks following the Eyjafjallajökull, Bárðarbunga and Nabro eruptions could not be statistically confirmed by the data from satellite overpasses. A model exercise from the MACC (Monitoring Atmospheric Composition and Climate) project shows that the large increases in SO2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local pollution sources or ship emissions but were clearly linked to the volcanic eruption. Sulfur dioxide positive departures in Europe following Bárðarbunga could be traced by other networks from the free troposphere down to the surface (AirBase (European air quality database) and EARLINET (European Aerosol Research Lidar Network)). We propose that by combining Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modelling could be created which can also be used to forecast high SO2 values both at ground level and in air flight corridors following future eruptions.

  16. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium

    PubMed Central

    Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V

    2016-01-01

    Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.12034.001 PMID:26809587

  17. The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2017-09-01

    The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire are investigated for nuclear power plants. Experimental results indicate that the incomplete fusion forms as the deposited metals do not completely cover the groove during multipass laser welding. The dendritic morphologies are observed on the inner surface of the porosity in the fusion zone. Many small cellular are found in the zones near the fusion boundary. With solidification preceding, cellular gradually turn into columnar dendrites and symmetrical columnar dendrites are exhibited in the weld center of the fusion zone. The fine equiaxed grains form and columnar dendrites disappear in the remelted zone of two passes. The dendrite arm spacing in the fusion zone becomes widened with increasing welding heat input. Nb-rich carbides/carbonitrides are preferentially precipitated in the fusion zone of multipass laser welded joints. In respect to high cooling rate during multipass laser welding, element segregation could be insufficient to achieve the component of Laves phase.

  18. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  19. Who knows not where an anemone does wear his sting? Could polypeptides released from the columnar vesicles of Bunodosoma cangicum induce apoptosis in the ZF-L cell line?

    PubMed

    Bastos, Claudio L Q; Varela, Antonio Sergio; Ferreira, Shana Pires; Nornberg, Bruna Felix; Boyle, Robert Tew

    2016-12-15

    We provide ultrastructural and cytological evidence that the tentacles of the sea anemone Bunodosoma cangicum does not contain cytotoxic venom. However, we show that the stimulated secretion of an apparent mixture of biomolecules containing polypeptides from the columnar vesicles of Bunodosoma cangicum is apparently a potent inducer of apoptosis in the zebrafish cell line, ZF-L. Microscopic fluorescence, cell morphology and flow cytometric assays confirm the apoptotic activity. Crude vesicle venom was partially purified by size exclusion chromatography. PAGE analysis shows that this venom contains low weight polypeptides but no measurable protein. The apoptotic activity is heat labile, and the observed peptides concurrent with this activity have a molecular weight of approximately 2000 Da. This manuscript is the first report of biologically active molecules and peptides associated with columnar vesicles of anemones, and the first to confirm that the tentacles of B. cangicum do not contain cytotoxic venom, and express spirocytes exclusively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Strategy for Texture Management in Metals Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.

    Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less

  1. Columnar domains and anisotropic growth laws in dipolar systems.

    PubMed

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2017-06-01

    Magnetic and dielectric solids are well-represented by the Ising model with dipolar interactions (IM+DI). The latter are long-ranged, fluctuating in sign, and anisotropic. Equilibrium studies have revealed novel consequences of these complicated interactions, but their effect on nonequilibrium behavior is not explored. We perform a deep temperature quench to study the kinetics of domain growth in the d=3 IM+DI. Our main observations are (i) the emergence of columnar domains along the z axis (Ising axis) with a transient periodicity in the xy plane; (ii) anisotropic growth laws: ℓ_{ρ}(t)∼t^{ϕ}; ℓ_{z}(t)∼t^{ψ}, where ρ[over ⃗]=(x,y) and ℓ is the characteristic length scale; (iii) generalized dynamical scaling for the correlation function: C(ρ,z;t)=g(ρ/ℓ_{ρ},z/ℓ_{z}); and (iv) an asymptotic Porod tail in the corresponding structure factor: S(k_{ρ},0;t)∼k_{ρ}^{-3}; S(0,k_{z};t)∼k_{z}^{-2}. Our results explain the experimentally observed columnar morphologies in a wide range of dipolar systems, and they have important technological implications.

  2. Effect of grain-boundary flux pinning in MgB 2 with columnar structure

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Hwang, T. J.; Cha, Y. J.; Seong, W. K.; Kang, W. N.

    2009-10-01

    We studied the flux pinning properties by grain boundaries in MgB 2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities ( Jcs) and reduced resistances when an external magnetic field ( B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.

  3. Strategy for Texture Management in Metals Additive Manufacturing

    DOE PAGES

    Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.; ...

    2017-01-31

    Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less

  4. Influence of the liquid crystal behaviour on the Langmuir and Langmuir-Blodgett film supramolecular architecture of an ionic liquid crystal.

    PubMed

    Pérez-Gregorio, Víctor; Giner, Ignacio; López, M Carmen; Gascón, Ignacio; Cavero, Emma; Giménez, Raquel

    2012-06-01

    A new luminescent ionic liquid crystal, called Ipz-2, has been synthesised and its mesophase behaviour and also at the air-liquid interface has been studied and compared with Ipz, another ionic pyrazole derivative, with a similar molecular structure, previously studied. The X-ray diffraction pattern shows that Ipz-2 exhibits hexagonal columnar mesomorphism, while Ipz adopts lamellar mesophases. Langmuir films of both compounds are flat and homogeneous at large areas per molecule, but create different supramolecular structures under further compression. Ipz-2 Langmuir films have been transferred onto solid substrates, and Atomic Force Microscopy (AFM) images of the Langmuir-Blodgett films have shown that large columnar structures hundreds of nm in diameter are formed on top of the initial monolayer, in contrast with well-defined trilayer LB films obtained for Ipz. Our results show that Ipz-2 has a tendency to stack in columnar arrangements both in liquid crystalline bulk and in Langmuir and Langmuir-Blodgett films. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effect of diffusion annealing regimes on the structure of Nb3Sn layers in ITER-type bronze-processed wires

    NASA Astrophysics Data System (ADS)

    Valova-Zaharevskaya, E. G.; Popova, E. N.; Deryagina, I. L.; Abdyukhanov, I. M.; Tsapleva, A. S.

    2018-03-01

    The goal of the present study is to characterize the growth kinetics and structural parameters of the Nb3Sn layers formed under various regimes of the diffusion annealing of bronze-processed Nb/Cu-Sn composites. The structure of the superconducting layers is characterized by their thickness, average size of equiaxed grains and by the ratio of fractions of columnar and equiaxed grains. It was found that at higher diffusion annealing temperatures (above 650°C) thicker superconducting layers are obtained, but the average sizes of equiaxed Nb3Sn grains even under short exposures (10 h) are much larger than after the long low-temperature annealing. At the low-temperature (575 °C) annealing the relative fraction of columnar grains increases with increasing annealing time. Based on the data obtained, optimal regimes of the diffusion annealing can be chosen, which would on the one hand ensure complete transformation of Nb into Nb3Sn of close to the stoichiometric composition, and on the other hand prevent the formation of coarse and columnar grains.

  6. ICCD: interactive continuous collision detection between deformable models using connectivity-based culling.

    PubMed

    Tang, Min; Curtis, Sean; Yoon, Sung-Eui; Manocha, Dinesh

    2009-01-01

    We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of "procedural representative triangles" to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of "orphan sets" to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.

  7. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE PAGES

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; ...

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  8. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219

    NASA Astrophysics Data System (ADS)

    Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan

    2017-11-01

    This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.

  9. [Diagnosis of flat epithelial atypia (FEA) after stereotactic vacuum-assisted biopsy (VAB) of the breast: What is the best management: systematic surgery for all or follow-up?].

    PubMed

    David, N; Labbe-Devilliers, C; Moreau, D; Loussouarn, D; Campion, L

    2006-11-01

    FEA lesions group two histological types: columnar cell hyperplasia with atypia (CCHA) and columnar cell change with atypia (CCA). The increasing use of VAB has resulted in increased detection of isolated FEA lesions. The aim of this study was to define the best management possible for these patients: which cases may not need excision? From our database of 780 VABs carried out from 2000 to 2004, 59 patients with FEA were diagnosed. Cases in which no surgery was performed or all features were not available were excluded, thus excluding 19 cases. Forty patients with FEA were included. We reviewed clinical and mammographic characteristics, histological biopsy, and the corresponding surgically excised tissue features. VAB yielded 25 cases of CCHA and 15 cases of CCA. Surgery revealed seven ductal carcinoma cases (four invasive, three in situ); nine benign lesions, and 24 with atypia (19 FEA and six atypical ductal hyperplasia). We found two features related to the risk of cancer: the presence and the size of hyperplasia. All carcinomas were found within the CCHA lesions. No cancer was yielded when size was less than 10 mm within CCA lesions and lesions that were totally removed. We recommend surgical excision when CCHA greater than 10 mm is found on the VAB or it is incompletely removed. CCA lesions or CCHA less than 10 mm or totally removed may obviate systematic surgery.

  10. Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation

    NASA Astrophysics Data System (ADS)

    Yao, Guisheng; Li, Yong; Jiang, Peng; Jin, Xiuming; Long, Menglong; Qin, Haixia; Kumar, R. Vasant

    2017-04-01

    Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.

  11. Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2014-07-01

    A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.

  12. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    NASA Astrophysics Data System (ADS)

    Ingber, Lester

    1984-06-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.

  13. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    NASA Astrophysics Data System (ADS)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  14. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  15. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition, after investigating various methods, a Smoothed Particle Hydrodynamics Model (SPH Model) was developed to model wire feeding process. Its computational efficiency and simple architecture makes it more robust and flexible than other models. More research on material properties may be needed to realistically model the AAM processes. A microscale model was developed to investigate heterogeneous nucleation, dendritic grain growth, epitaxial growth of columnar grains, columnar-to-equiaxed transition, grain transport in melt, and other properties. The orientations of the columnar grains were almost perpendicular to the laser motion's direction. Compared to the similar studies in the literature, the multiple grain morphology modeling result is in the same order of magnitude as optical morphologies in the experiment. Experimental work was conducted to validate different models. An infrared camera was incorporated as a process monitoring and validating tool to identify the solidus and mushy zones during deposition. The images were successfully processed to identify these regions. This research project has investigated multiscale and multiphysics of the complex AAM processes thus leading to advanced understanding of these processes. The project has also developed several modeling tools and experimental validation tools that will be very critical in the future of AAM process qualification and certification.

  16. Risk factors associated with deforming oral habits in children aged 5 to 11: a case-control study.

    PubMed

    Reyes Romagosa, Daniel Enrique; Paneque Gamboa, María Rosa; Almeida Muñiz, Yamilka; Quesada Oliva, Leticia María; Escalona Oliva, Damiana; Torres Naranjo, Sonia

    2014-03-31

    Dental and maxillofacial anomalies have multiple and complex causes. Most frequent among these are poor oral habits. A large number of children present with oral malocclusions, most of which are caused by deforming oral habits. It is important to learn about risk factors for this condition in order to institute preventive measures, early detection and treatment, and identification of low- and high-risk groups. To identify risk factors associated with deforming oral habits, which, if maintained over time, are responsible for occlusion defects, speech disorders, and can affect physical and emotional child development. A case-control study of children presenting with deforming oral habits in the municipality of Manzanillo in Granma province was conducted between January and August 2013. 540 children aged 5 to 11 were included of which 180 had deforming oral habits and were asked to fill out a survey to identify specific type of habits leading to malocclusion. The case group was composed of children with deforming habits, and the remaining 360 children without poor oral habits were the control group. Each case was randomly matched to two control cases. The children mothers were also surveyed to gather supplemental information. Children with deforming oral habits were mostly female. At age 10, onychophagia was the predominant oral deforming habit. Risk factors detected for these habits were sociobiological maternal and child variables such as low and high birth weight, maternal breastfeeding inexperience, and discord in the family. The study identified likely risk factors associated with deforming oral habits. These are discord in the family, birth weight, and lack of breastfeeding experience.

  17. Occurrence of oral deformities in larval anurans

    USGS Publications Warehouse

    Drake, D.L.; Altig, R.; Grace, J.B.; Walls, S.C.

    2007-01-01

    We quantified deformities in the marginal papillae, tooth rows, and jaw sheaths of tadpoles from 13 population samples representing three families and 11 sites in the southeastern United States. Oral deformities were observed in all samples and in 13.5-98% of the specimens per sample. Batrachochytrium dendrobatidis (chytrid) infections were detected in three samples. There was high variability among samples in the pattern and number of discovered deformities. Pairwise associations between oral structures containing deformities were nonrandom for several populations, especially those with B. dendrobatidis infections or high total numbers of deformities. Comparisons of deformities among samples using multivariate analyses revealed that tadpole samples grouped together by family. Analyses of ordination indicated that three variables, the number of deformities, the number of significant associations among deformity types within populations, and whether populations were infected with B. dendrobatidis, were significantly correlated with the pattern of deformities. Our data indicate that the incidence of oral deformities can be high in natural populations and that phylogeny and B. dendrobatidis infection exert a strong influence on the occurrence and type of oral deformities in tadpoles. ?? by the American Society of Ichthyologists and Herperologists.

  18. Characterization of Climate Change and Variability with GPS

    NASA Technical Reports Server (NTRS)

    Kursinski, R.

    1999-01-01

    We compared zonal mean specific humidity derived from the 21 June-4 July 1995 Global Positioning System (GPS)/MET occultation observations with that derived from the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The GPS/MET results indicate a drier troposphere, especially near the subtropical tradewind inversion. A small, moist bias in the GPS/MET upper northern-hemisphere troposphere compared to ECMWF may be due to a small radiosonde temperature bias. A diagram shows the difference (g/kg) between the GPS/MET zonal mean specific humidity and that for June-August derived from 1963-1973 radiosondes. Although the observing period is short, GPS and ECMWF results both indicate a significantly wetter boundary layer at most latitudes consistent with decadal trends observed in radiosonde data. GPS/MET results exhibit higher tropical convective available potential energy (CAPE), suggesting a more vigorous tropical Hadley circulation. Drier, free troposphere air in the descending branches of the Hadley circulation is due in part to a moist radiosonde bias but may also reflect some negative moisture feedback. Using 1992-1997 ground GPS observations and recent advancements in GPS technology, we removed an apparent altimetric drift (-1.2 +/- 0.4 mm/yr) due to columnar water vapor from the Topography (Ocean) Experiment (TOPEX) microwave radiometer, which brought the TOPEX mean sea level change estimates into better agreement with historical tide gauge records, suggesting global mean sea level is rising at a rate of 1.5-2.0 mm/yr. We can also discern a statistically significant increase of 0.2 +/- 0.1 kg/square m/yr in mean columnar water vapor over the ocean from 1992-1997. Optimal fingerprinting can be used for the detection and attribution of tropospheric warming due to an anthropogenic greenhouse. Optimal fingerprinting distinguishes between different types of signals according to their spatial and temporal patterns, while minimizing the influence of natural climate variability. S. Leroy concludes that the signal-to-noise ratio of global warming detection increases by unity approximately every 10 years if a single oceanic region is chosen. Less time for detection is likely when many global regions are considered simultaneously. GPS occultation constellations allow the possibility of detecting small changes in upper air temperature with inconsequential calibration errors, making occultation an ideal data type for global warming detection studies. Our initial study of a 22-GHz satellite-satellite occultation system predicts upper troposphere moisture sensitivities of 3-5 ppmv and 1-2 percent in the middle and lower troposphere. Additional information contained in original.

  19. Spline curve matching with sparse knot sets: applications to deformable shape detection and recognition

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2003-01-01

    Splines can be used to approximate noisy data with a few control points. This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of...

  20. Poster — Thur Eve — 70: Automatic lung bronchial and vessel bifurcations detection algorithm for deformable image registration assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labine, Alexandre; Carrier, Jean-François; Bedwani, Stéphane

    2014-08-15

    Purpose: To investigate an automatic bronchial and vessel bifurcations detection algorithm for deformable image registration (DIR) assessment to improve lung cancer radiation treatment. Methods: 4DCT datasets were acquired and exported to Varian treatment planning system (TPS) EclipseTM for contouring. The lungs TPS contour was used as the prior shape for a segmentation algorithm based on hierarchical surface deformation that identifies the deformed lungs volumes of the 10 breathing phases. Hounsfield unit (HU) threshold filter was applied within the segmented lung volumes to identify blood vessels and airways. Segmented blood vessels and airways were skeletonised using a hierarchical curve-skeleton algorithm basedmore » on a generalized potential field approach. A graph representation of the computed skeleton was generated to assign one of three labels to each node: the termination node, the continuation node or the branching node. Results: 320 ± 51 bifurcations were detected in the right lung of a patient for the 10 breathing phases. The bifurcations were visually analyzed. 92 ± 10 bifurcations were found in the upper half of the lung and 228 ± 45 bifurcations were found in the lower half of the lung. Discrepancies between ten vessel trees were mainly ascribed to large deformation and in regions where the HU varies. Conclusions: We established an automatic method for DIR assessment using the morphological information of the patient anatomy. This approach allows a description of the lung's internal structure movement, which is needed to validate the DIR deformation fields for accurate 4D cancer treatment planning.« less

  1. Transient deformation from daily GPS displacement time series: postseismic deformation, ETS and evolving strain rates

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Fang, P.; Moore, A. W.; Kedar, S.; Liu, Z.; Owen, S. E.; Glasscoe, M. T.

    2016-12-01

    Detection of time-dependent crustal deformation relies on the availability of accurate surface displacements, proper time series analysis to correct for secular motion, coseismic and non-tectonic instrument offsets, periodic signatures at different frequencies, and a realistic estimate of uncertainties for the parameters of interest. As part of the NASA Solid Earth Science ESDR System (SESES) project, daily displacement time series are estimated for about 2500 stations, focused on tectonic plate boundaries and having a global distribution for accessing the terrestrial reference frame. The "combined" time series are optimally estimated from independent JPL GIPSY and SIO GAMIT solutions, using a consistent set of input epoch-date coordinates and metadata. The longest time series began in 1992; more than 30% of the stations have experienced one or more of 35 major earthquakes with significant postseismic deformation. Here we present three examples of time-dependent deformation that have been detected in the SESES displacement time series. (1) Postseismic deformation is a fundamental time-dependent signal that indicates a viscoelastic response of the crust/mantle lithosphere, afterslip, or poroelastic effects at different spatial and temporal scales. It is critical to identify and estimate the extent of postseismic deformation in both space and time not only for insight into the crustal deformation and earthquake cycles and their underlying physical processes, but also to reveal other time-dependent signals. We report on our database of characterized postseismic motions using a principal component analysis to isolate different postseismic processes. (2) Starting with the SESES combined time series and applying a time-dependent Kalman filter, we examine episodic tremor and slow slip (ETS) in the Cascadia subduction zone. We report on subtle slip details, allowing investigation of the spatiotemporal relationship between slow slip transients and tremor and their underlying physical mechanisms. (3) We present evolving strain dilatation and shear rates based on the SESES velocities for regional subnetworks as a metric for assigning earthquake probabilities and detection of possible time-dependent deformation related to underlying physical processes.

  2. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    NASA Astrophysics Data System (ADS)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  3. Pollybeak Deformity in Middle Eastern Rhinoplasty: Prevention and Treatment.

    PubMed

    Hussein, Wael K A; Foda, Hossam M T

    2016-08-01

    The pollybeak deformity is one of the commonest causes of revision rhinoplasty. The Middle Eastern nose has certain criteria that predispose to the development of pollybeak deformity. The aim of this study is to detect the factors contributing to the development of pollybeak deformity in the Middle Eastern nose and methods used to prevent as well as to treat such deformity. Out of the 1,160 revision patients included in this study, 720 (62%) patients had a pollybeak deformity. The commonest contributing factors included underprojected tip with poor support in 490 (68%) patients, excessive supratip scarring in 259 (36%) patients, overresected bony dorsum in 202 (28%) patients, and high anterior septal angle in 173 (24%) patients. The methods used by the authors to treat the pollybeak deformity are described, along with the local steroid injection protocol used to guard against the recurrence of pollybeak deformity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, William H.; Nandwana, Peeyush; Kirka, Michael M.

    In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powdermore » bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.« less

  5. Water availability and the competitive effect of a columnar cactus on its nurse plant

    NASA Astrophysics Data System (ADS)

    Flores-Martínez, Arturo; Ezcurra, Exequiel; Sánchez-Colón, Salvador

    1998-02-01

    A field study was conducted in a semi-arid tropical ecosystem in Mexico to test whether competition for soil water is the causal mechanism underlying the negative effect of the columnar cactus Neobuxbaumia tetetzo on its nurse plant Mimosa luisana and to examine how this relationship varies over time. The effect of irrigation was evaluated by recording the production of leaves, modules (i.e. internodes with an axillary bud), inflorescences and fruits in shrubs growing either isolated or associated with juvenile or adult columnar cacti. 4 001 of water, in five doses of 801 each every 15 d, were added to the treatment plants; no water other than rainfall was added to control plants. Additionally, to evaluate how the effect of the columnar cacti on the shrubs may vary among years we made a comparison of the production of plant structures between 2 years of contrasting rainfall. The irrigation treatment increased the production of modules, inflorescences and fruits, but not of leaves. Shrub response to watering was also dependent on class of association: those associated with juvenile cacti showed a higher response to irrigation than any other treatment. Our results show that water addition increases the production of structures and partially reduces the negative effect of the cactus on nurse shrub, thus supporting the hypothesis of competition for water. The negative effect of the cacti on their nurse plants was present during both years of observations, but the intensity of the negative effect varies from relatively wet to dry years. The results are discussed in relation to how temporal changes in resource availability affect the results of competitive interactions and the importance of this mechanism in the structure and dynamics of this dryland community.

  6. Columnar Metaplasia in Three Types of Surgical Mouse Models of Esophageal Reflux.

    PubMed

    Terabe, Fabio; Aikou, Susumu; Aida, Junko; Yamamichi, Nobutake; Kaminishi, Michio; Takubo, Kaiyo; Seto, Yasuyuki; Nomura, Sachiyo

    2017-07-01

    Esophageal adenocarcinoma develops in the setting of gastroesophageal reflux and columnar metaplasia in distal esophagus. Columnar metaplasia arising in gastroesophageal reflux models has developed in rat; however, gastroesophageal reflux models in mice have not been well-characterized. One hundred thirty-five C57Bl/6J mice aged 8 weeks old were divided into the following operations: esophagogastrojejunostomy (side-to-side) (EGJ), esophageal separation and esophagojejunostomy (end-to-side) (EJ), and EJ and gastrectomy (end-to-side) (EJ/TG). The animals were euthanized after 40 weeks and the histology of the junction was examined. Immunohistochemistry for p53, PDX-1, and CDX-2 was performed. Metaplasia developed in 15/33 (45.5%) of EGJ, 0/38 (0%) of EJ, and 6/39 (15.4%) of EJ/TG ( P < .05) and dysplasia developed 7/33 (21.2%) of EGJ, 0% of EJ, and 1/39 (2.6%) of EJ/TG. p53 was positive in all of the dysplastic regions, 12/15 (80%) metaplasias in the EGJ model, and 1/6 (16.7%) metaplasia in the EJ/TG model. CDX-2 was positive in all cases of metaplasias, but decreased in some cases of dysplasia. PDX-1 was positive in 7/8 (88%) cases of dysplasia and in 15/21 (71%) cases of metaplasia ( P < .05). The EGJ model, which causes reflux of gastric acid and duodenal content, developed metaplasia and dysplasia most frequently. No metaplasia developed in the EJ model in which gastric juice and duodenal content mixed before reflux. Thus, duodenal contents alone can induce columnar metaplasia and dysplasia; however, the combination of gastric acid with duodenal content reflux can cause metaplasia and dysplasia more efficiently.

  7. Interactive collision detection for deformable models using streaming AABBs.

    PubMed

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  8. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    NASA Astrophysics Data System (ADS)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under development nowadays.

  9. Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Ying, Guobing; Dong, Chaofang; Li, Xiaogang

    2017-12-01

    The effect of cold deformation on the microstructure and electrochemical corrosion behaviour of 304L stainless steel in contaminated sulfuric acid solutions (simulated proton exchange membrane fuel cells environments) were evaluated using electron backscatter diffraction analyses, electrochemical measurements, and surface analyses. The internal microstructure,including the grain sizes, angles of the grain boundaries, low coincidence site lattice boundaries, and phase transformations, was changed due to the cold deformation. No noticeable modifications of the pitting corrosion potential were observed during the various deformations, except for a slight enhancement in the passive current density with an increase in the deformation. The CrO3 and metal Ni species in the passive film were investigated after deformation. After heavy deformation (greater than 60%), nickel oxides were detected. Moreover, the Cr/Fe and O2-/OH- ratios in the passive film were higher before deformation, and they decreased with an increase in the deformation level.

  10. System for near real-time crustal deformation monitoring

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F. (Inventor)

    1979-01-01

    A system is described for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the Earth can be detected.

  11. Motions in the interiors and atmospheres of Jupiter and Saturn. II - Barotropic instabilities and normal modes of an adiabatic planet

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Miller, R. L.

    1986-01-01

    A rotating and adiabatic inviscid fluid planet possesses low frequency motions that are barotropic, quasi-geostrophic and quasi-columnar. The limiting curvature at which flow becomes unstable upon projection onto the planetary surface is negative, with an amplitude that is 3-4 times that for thin atmospheres, in planets in which density linearly decreases to zero at the surface. This result is shown to hold for all quasi-columnar perturbations. Both the phase speed of the normal mode oscillations and the barotropic stability criterion have features in common with Saturn and Jupiter oscillations.

  12. Dielectrophoretic columnar focusing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D; Galambos, Paul C; Derzon, Mark S

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting,more » and for separations in material control.« less

  13. A technique for evaluating the influence of spatial sampling on the determination of global mean total columnar ozone

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.

    1981-01-01

    A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.

  14. Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.

  15. Immunohistochemical expression of CK7, CK5/6, CK19, and p63 in Warthin tumor.

    PubMed

    Dăguci, Luminiţa; Stepan, A; Mercuţ, Veronica; Dăguci, C; Bătăiosu, Marilena; Florescu, Alma

    2012-01-01

    Our study included a number of 24 cases with Warthin tumor, diagnosed between 2007-2011, which were analyzed in terms of clinical, histopathological and immunohistochemistry point of view, using CK7, CK5/6, CK19, and p63 antibodies. Warthin tumor is most often a tumor with a slow evolution, painless, usually affecting males (M/F 3.2/1) in the seventh decade of life. Histopathologically, it is distinguished the predominance of the typical forms of the tumor, with a balanced ratio epithelium/stroma. The immunostaining for CK7 showed positivity in all the investigated cases both in the columnar luminal cells and basal cells. The immunostaining for CK5/6 was positive in all the investigated cases in bilayer epithelial basal cells, both in the structure of the cysts and the papillae. In the case of the immunostaining for p63 we noticed limited nuclear positivity in the basal cells, while the columnar cells' nucleus were negative. The immunohistochemical study of the bilayer epithelial component of Warthin tumor showed different immunstaining of the two types of epithelia, the oncocytary columnar and the basal on, similar to those found in the salivary gland ducts.

  16. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  17. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  18. Columnar recombination for X-ray generated electron-holes in amorphous selenium and its significance in a-Se x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubon, O.; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, P7A 7T1; Jandieri, K.

    Although amorphous selenium (a-Se) has a long and successful history of application in optical and X-ray imaging, some of its fundamental properties are still puzzling. In particularly, the mechanism of carrier recombination following x-ray excitation and electric field and temperature dependences of the electron-hole pair creation energy (W{sub ehp}) remain unclear. Using the combination of X-ray photocurrent and pulse height spectroscopy measurements, we measure W{sub ehp} in a wide range of temperatures (218–320 K) and electric fields (10–100 V/µm) and show that the conventional columnar recombination model which assumes Langevin recombination within a column (a primary electron track) fails to explain experimentalmore » results in a wide range of electric fields and temperatures. The reason for the failure of the conventional model is revealed in this work, and the theory of the columnar recombination is modified to include the saturation of the recombination rate at high electric field in order to account for the experimental results in the entire range of fields and temperatures.« less

  19. Analysis of the Microstructure and Thermal Shock Resistance of Laser Glazed Nanostructured Zirconia TBCs

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie

    2010-03-01

    Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.

  20. Stable Isotopic Variations in Columnar Cacti: are Responses to Climate Recorded in Spines?

    NASA Astrophysics Data System (ADS)

    English, N. B.; Dettman, D. L.; Williams, D. G.

    2004-12-01

    The behavior of the North American monsoon (NAM), particularly with respect to times of continental drought and its relationship to the Pacific-North American (PNA) teleconnection pattern and the El Nino/Southern Oscillation (ENSO) is of great interest to paleoclimatologists and water managers. Long-term instrumental precipitation and tree ring records in the southwestern United States and northwestern Mexico at low elevations are sparse and this has hindered research on NAM variability at interannual timescales. Saguaro cacti (Carnegiea gigantea) and other columnar cacti in North and South America are long-lived and have the potential to record climate variability on land with high temporal and spatial resolution. The vertical sequence of spines on the saguaro's exterior represents a high resolution (4 to 6 per year), and long (over 150 years) record of environmental change. We present results from an experiment where we tracked the oxygen isotopic values in the source waters, stem tissue waters and spine tissue for three treatments over the course of three months. These data are then compared to a previously developed mechanistic model of isotopic variation that reflects the physiological responses of Saguaro to climate variation over seasonal to century long time-scales. We also present the rationale for a new method to determine the growth rate of columnar cacti using the radiocarbon bomb spike. Our measurements reveal that oxygen and hydrogen isotopic variation among the sequentially produced and persistent spines covering the saguaro body record fluctuations in saguaro water balance. The model successfully predicts isotopic variation in spines and constrains controlling variables, yielding a powerful and high-resolution stable isotope index of water stress in the low desert. The development and refinement of an isotopic model for saguaro will serve as the basis for models applied to other species of columnar cacti in North and South America. The role of the tropics in global climate change is poorly understood and precise chronologies of tropical climate change are needed to place empirical constraints on competing theories and models. In particular, the use of continental records from columnar cacti in South America could identify ENSO periods in the last century and provide empirical constraints on the inputs of Atlantic (monsoonal) versus Pacific (winter) moisture to the Altiplano during ENSO and other important climatological phenomena.

  1. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to assess components of myocardial systolic and diastolic function. Myocardial deformation analysis is based on either Doppler or a non-Doppler technique, called speckle-tracking echocardiography. Myocardial deformation analysis provides quantitative measures of global and regional myocardial function for use in the perioperative care of the surgical patient. For example, coronary graft occlusion after coronary artery bypass grafting is detected by an acute reduction in strain in the affected coronary artery territory. In addition, assessment of left ventricular mechanics detects underlying myocardial pathology before abnormalities become apparent on conventional echocardiography. Certainly, patients with aortic regurgitation demonstrate reduced longitudinal strain before reduction in LVEF occurs, which allows detection of subclinical left ventricular dysfunction and predicts increased risk for heart failure and impaired myocardial function after surgical repair. In this review we describe the principles, techniques, and clinical application of myocardial deformation analysis. PMID:24557101

  2. Deformation Invariant Attribute Vector for Deformable Registration of Longitudinal Brain MR Images

    PubMed Central

    Li, Gang; Guo, Lei; Liu, Tianming

    2009-01-01

    This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for each voxel in 3D brain image for the purpose of anatomic correspondence detection. The DIAV method is validated by using synthesized deformation in 3D brain MRI images. Both theoretic analysis and experimental studies demonstrate that the proposed DIAV is invariant to general nonlinear deformation. Moreover, our experimental results show that the DIAV is able to capture rich anatomic information around the voxels and exhibit strong discriminative ability. The DIAV has been integrated into a deformable registration algorithm for longitudinal brain MR images, and the results on both simulated and real brain images are provided to demonstrate the good performance of the proposed registration algorithm based on matching of DIAVs. PMID:19369031

  3. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Ates, O; Li, X

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed withmore » CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.« less

  4. Radiology of Cleft Lip and Palate: Imaging for the Prenatal Period and throughout Life.

    PubMed

    Abramson, Zachary R; Peacock, Zachary S; Cohen, Harris L; Choudhri, Asim F

    2015-01-01

    Recent advances in prenatal imaging have made possible the in utero diagnosis of cleft lip and palate and associated deformities. Postnatal diagnosis of cleft lip is made clinically, but imaging still plays a role in detection of associated abnormalities, surgical treatment planning, and screening for or surveillance of secondary deformities. This article describes the clinical entities of cleft lip with or without cleft palate (CLP) and isolated cleft palate and documents their prenatal and postnatal appearances at radiography, ultrasonography (US), magnetic resonance (MR) imaging, and computed tomography (CT). Imaging protocols and findings for prenatal screening, detection of associated anomalies, and evaluation of secondary deformities throughout life are described and illustrated. CLP and isolated cleft palate are distinct entities with shared radiologic appearances. Prenatal US and MR imaging can depict clefting of the lip or palate and associated anomalies. While two- and three-dimensional US often can depict cleft lip, visualization of cleft palate is more difficult, and repeat US or fetal MR imaging should be performed if cleft palate is suspected. Postnatal imaging can assist in identifying associated abnormalities and dentofacial deformities. Dentofacial sequelae of cleft lip and palate include missing and supernumerary teeth, oronasal fistulas, velopharyngeal insufficiency, hearing loss, maxillary growth restriction, and airway abnormalities. Secondary deformities can often be found incidentally at imaging performed for other purposes, but detection is necessary because they may have considerable implications for the patient. (©)RSNA, 2015.

  5. Tidal Deformability from GW170817 as a Direct Probe of the Neutron Star Radius

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2018-04-01

    Gravitational waves from the coalescence of two neutron stars were recently detected for the first time by the LIGO–Virgo Collaboration, in event GW170817. This detection placed an upper limit on the effective tidal deformability of the two neutron stars and tightly constrained the chirp mass of the system. We report here on a new simplification that arises in the effective tidal deformability of the binary, when the chirp mass is specified. We find that, in this case, the effective tidal deformability of the binary is surprisingly independent of the component masses of the individual neutron stars, and instead depends primarily on the ratio of the chirp mass to the neutron star radius. Thus, a measurement of the effective tidal deformability can be used to directly measure the neutron star radius. We find that the upper limit on the effective tidal deformability from GW170817 implies that the radius cannot be larger than ∼13 km, at the 90% level, independent of the assumed masses for the component stars. The result can be applied generally, to probe the stellar radii in any neutron star–neutron star merger with a measured chirp mass. The approximate mass independence disappears for neutron star–black hole mergers. Finally, we discuss a Bayesian inference of the equation of state that uses the measured chirp mass and tidal deformability from GW170817 combined with nuclear and astrophysical priors and discuss possible statistical biases in this inference.

  6. Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique-case study of Xingyuan landslide, Shaanxi, China

    NASA Astrophysics Data System (ADS)

    Zhao, Chaoying; Zhang, Qin; He, Yang; Peng, Jianbing; Yang, Chengsheng; Kang, Ya

    2016-04-01

    Small baseline subsets interferometric synthetic aperture radar technique is analyzed to detect and monitor the loess landslide in the southern bank of the Jinghe River, Shaanxi province, China. Aiming to achieve the accurate preslide time-series deformation results over small spatial scale and abrupt temporal deformation loess landslide, digital elevation model error, coherence threshold for phase unwrapping, and quality of unwrapping interferograms must be carefully checked in advance. In this experience, land subsidence accompanying a landslide with the distance <1 km is obtained, which gives a sound precursor for small-scale loess landslide detection. Moreover, the longer and continuous land subsidence has been monitored while deformation starting point for the landslide is successfully inverted, which is key to monitoring the similar loess landslide. In addition, the accelerated landslide deformation from one to two months before the landslide can provide a critical clue to early warning of this kind of landslide.

  7. Large deformation image classification using generalized locality-constrained linear coding.

    PubMed

    Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.

  8. Significance of grain sliding mechanisms for ductile deformation of rocks

    NASA Astrophysics Data System (ADS)

    Dimanov, A.; Bourcier, M.; Gaye, A.; Héripré, E.; Bornert, M.; Raphanel, J.; Ludwig, W.

    2013-12-01

    Ductile shear zones at depth present polyphase and heterogeneous rocks and multi-scale strain localization patterns. Most strain concentrates in ultramylonitic layers, which exhibit microstructural signatures of several concomitant deformation mechanisms. The latter are either active in volume (dislocation creep), or in the vicinity and along interfaces (grain sliding and solution mass transfer). Because their chronology of appearance and interactions are unclear, inference of the overall rheology seems illusory. We have therefore characterized over a decade the rheology of synthetic lower crustal materials with different compositions and fluid contents, and for various microstructures. Non-Newtonian flow clearly related to dominant dislocation creep. Conversely, Newtonian behavior involved grain sliding mechanisms, but crystal plasticity could be identified as well. In order to clarify the respective roles of these mechanisms we underwent a multi-scale investigation of the ductile deformation of rock analog synthetic halite with controlled microstructures. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X ray computed tomography, allowing for digital image correlation (DIC) techniques and retrieval of full strain field. Crystal plasticity dominated, as evidenced by physical slip lines and DIC computed slip bands. Crystal orientation mapping allowed to identify strongly active easy glide {110} <110> systems. But, all other slip systems were observed as well, and especially near interfaces, where their activity is necessary to accommodate for the plastic strain incompatibilities between neighboring grains. We also evidenced grain boundary sliding (GBS), which clearly occurred as a secondary, but necessary, accommodation mechanism. The DIC technique allowed the quantification of the relative contribution of each mechanism. The amount of GBS clearly increased with decreasing grain size. Finite element (FE) modeling of the viscoplastic polycrystalline behavior was started on the basis of our experimental data for coarse grained microstructures (c.a. 400 microns, with < 10 % GBS activity), considering an extruded columnar structure in depth and single crystal flow laws from literature. The results show that the computed strain fields do not sufficiently match the experimentally measured ones. The reasons for the discrepancies are likely related to the activity of GBS (which was not accounted for) and to the influence of the real microstructure at depth (underlying grains and orientations of interfaces), which strongly condition the surface response. Our major conclusion about ductile deformation of rocks is that crystal plasticity and GBS are not really dissociable. They appear as co-operative mechanisms, due to pronounced plastic anisotropy of minerals.

  9. Full-field Deformation Measurement Techniques for a Rotating Composite Shaft

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.

    2012-01-01

    Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.

  10. The prevalence of gastric heterotopia of the proximal esophagus is underestimated, but preneoplasia is rare - correlation with Barrett's esophagus.

    PubMed

    Peitz, Ulrich; Vieth, Michael; Evert, Matthias; Arand, Jovana; Roessner, Albert; Malfertheiner, Peter

    2017-07-12

    The previously reported prevalence of gastric heterotopia in the cervical esophagus, also termed inlet patch (IP), varies substantially, ranging from 0.18 to 14%. Regarding cases with adenocarcinoma within IP, some experts recommend to routinely obtain biopsies from IP for histopathology. Another concern is the reported relation to Barrett's esophagus. The objectives of the study were to prospectively determine the prevalence of IP and of preneoplasia within IP, and to investigate the association between IP and Barrett's esophagus. 372 consecutive patients undergoing esophagogastroduodenoscopy were carefully searched for the presence of IP. Biopsies for histopathology were targeted to the IP, columnar metaplasia of the lower esophagus, gastric corpus and antrum. Different definitions of Barrett's esophagus were tested for an association with IP. At least one IP was endoscopically identified in 53 patients (14.5%). Histopathology, performed in 46 patients, confirmed columnar epithelium in 87% of cases, which essentially presented corpus and/or cardia-type mucosa. Intestinal metaplasia was detected in two cases, but no neoplasia. A previously reported association of IP with Barrett's esophagus was weak, statistically significant only when short segments of cardia-type mucosa of the lower esophagus were included in the definition of Barrett's esophagus. The prevalence of IP seems to be underestimated, but preneoplasia within IP is rare, which does not support the recommendation to regularly obtain biopsies for histopathology. Biopsies should be targeted to any irregularities within the heterotopic mucosa. The correlation of IP with Barrett's esophagus hints to a partly common pathogenesis.

  11. Health Sensing Functions in Thermal Barrier Coatings Incorporating Rare-Earth-Doped Luminescent Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Singh, J.; Wolfe, D. E.

    2004-01-01

    Great effort has been directed towards developing techniques to monitor the health of thermal barrier coatings (TBCs) that would detect the approach of safety-threatening conditions. An unconventional approach is presented here where health sensing functionality is integrated into the TBC itself by the incorporation of rare-earth-doped luminescent sublayers to monitor erosion as well as whether the TBC is maintaining the underlying substrate at a sufficiently low temperature. Erosion indication is demonstrated in electron-beam physical vapor deposited (EB-PVD) TBCs consisting of 7wt% yttria-stabilized zirconia (7YSZ) with europium-doped and terbium-doped sublayers. Multiple ingot deposition produced sharp boundaries between the doped sublayers without interrupting the columnar growth of the TBC. The TBC-coated specimens were subjected to alumina particle jet erosion, and the erosion depth was then indicated under ultraviolet illumination that excited easily visible luminescence characteristic of sublayer that was exposed by erosion. In addition, temperature measurements from a bottom-lying europium-doped sublayer in a TBC produced by multiple ingot EB-PVD were accomplished by measuring the temperature-dependent decay time from the 606 nm wavelength emission excited in that sublayer with a 532 nm wavelength laser that was selected for its close match to one of the europium excitation wavelengths as well as being at a wavelength where the TBC is relatively transparent. It is proposed the low dopant levels and absence of interruption of the TBC columnar growth allow the addition of the erosion and temperature sensing functions with minimal effects on TBC performance.

  12. Optimization of deformation monitoring networks using finite element strain analysis

    NASA Astrophysics Data System (ADS)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  13. Large effect of columnar defects on the thermodynamic properties of Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Konczykowski, M.; Li, T. W.; Kes, P. H.; Benoit, W.

    1996-07-01

    The introduction of columnar defects by irradiation with 5.8-GeV Pb ions is shown to affect significantly the reversible magnetic properties of Bi2Sr2CaCu2O8+δ single crystals. Notably, the suppression of superconducting fluctuations on length scales greater than the separation between columns leads to the disappearance of the ``crossing point'' in the critical fluctuation regime. At lower temperatures, the strong modification of the vortex energy due to pinning leads to an important change of the reversible magnetization. The analysis of the latter permits the direct determination of the pinning energy.

  14. ["Vestigial cells" of the transitional area of the uterine-cervix. Comparative morphological study with the subcylindrical-reserve-cells (author's transl)].

    PubMed

    Minh, H N; Smadja, A; Lecomte, D; Orcel, L; Coupez, F

    1982-01-01

    The squamo-cylindrical junction represents a transitional area of unstable epithelium. It consists of slightly differentiated cells which disclosed resemblance in morphological pattern with germinal cells of the basal layer in the exocervical squamous epithelium. These unstable cells, according to the authors, may be derived from the cranial, most cephalic extend of the sinusal vaginal plate which had formed the epithelium of the entire vagina and the vaginal portion of the cervix up to the squamo-columnar junction. Ultrastructural analysis disclosed no similarities between cells of the squamo-columnar junction and subcylindrical reserve cells which exhibited sometimes resemblance to the "mesenchymal cells" found within the surrounding stroma.

  15. Morphology-Dependent Hardness of Cr7C3-Ni-Rich Alloy Composite vs Orientation Independent Hardness of Cr7C3 Primary Phase in a Laser Clad Microstructure

    NASA Astrophysics Data System (ADS)

    Venkatesh, Lakshmi Narayanan; Suresh Babu, Pitchuka; Gundakaram, Ravi Chandra; Doherty, Roger D.; Joshi, Shrikant V.; Samajdar, Indradev

    2017-04-01

    Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of <0001> direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/ a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.

  16. Simultaneous observations of reaction kinetics, creep behavior, and AE activities during syndeformational antigorite dehydration at high pressures

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Iwasato, T.; Higo, Y.; Kato, T.; Kaneshima, S.; Uehara, S.; Koizumi, S.; Imamura, M.; Tange, Y.

    2015-12-01

    Intermediate-depth earthquakes are seismic activities in Wadati-Benioff zone at depths from 60 km to 300 km, where subducting plates deform plastically rather than brittle failure. Although it has been reported that unstable faulting occurred during antigorite dehydration even at higher pressures than ~2 GPa (e.g., Jung et al., 2009), the recent study by Chernak and Hirth (2011) revealed that the syndefromational antigorite dehydration does not produces stick-slip instabilities but stable fault slip. In the present study, we newly developed an AE monitoring system for high-pressure reaction-deformation processes combined with D-DIA and synchrotron monochromatic X-ray to observe reaction kinetics, creep behaviors, and AE activities simultaneously. We applied this technique to investigate shear instability during syndeformational antigorite dehydration. High-pressure deformation experiments were conducted up to ~8 GPa, ~1050 K, and strain rates of 3.4-9.2 x 10-5 s-1 in compression using a D-DIA type apparatus installed at BL-04B1, SPring-8. 50 keV mono X-ray were used to measure reaction kinetics and stress-strain data. To monitor shear instabilities by detecting AEs, six piezoelectric devices were positioned between first and second stage anvils of MA 6-6 type system. We used three kinds of starting materials of polycrystalline antigorite, fine-grained forsterite polycrystal, and two-phase mixtures of antigorite and San Carlos olivine (10%, 30%, and 50%atg). Clear contrasts were observed in AE activities between forsterite and antigorite samples. AE activities detected within the forsterite polycrystal suggested (semi) brittle behaviors at low pressures during the cold compression stage.
Almost no AEs were detected within the antigorite samples during any stages of cold compression, ramping, deformation, and syndeformational dehydration although localized deformation textures were observed in recovered samples. Instead, we detected some AEs outside the sample, indicating the stick slipping at the boundaries of cylindrical parts. Our results suggest that localized deformation and dehydration of antigorite do not enhance shear instability at high pressures at least in compression under drained condition.

  17. Detection of deformation time-series in Miyake-jima using PALSAR/InSAR

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Ueda, H.

    2010-12-01

    Volcano deformation is often complicated temporally and spatially. Then deformation mapping by InSAR is useful to understand it in detail. However, InSAR is affected by the atmospheric, the ionospheric and other noises, and then we sometimes miss an important temporal change of deformation with a few cm. So we want to develop InSAR time-series analysis which detects volcano deformation precisely. Generally, the area of 10×10km which covers general volcano size is included in several SAR scenes obtained from different orbits or observation modes. First, interferograms are generated for each orbit path. In InSAR processing, the atmospheric noise reduction using the simulation from numerical weather model is used. Long wavelength noise due to orbit error and the ionospheric disturbance is corrected by adjusting to GPS deformation time-series, assuming it to be a plane. Next, we estimate deformation time-series from obtained interferograms. Radar incidence directions for each orbit path are different, but those for observation modes with 34.3° and 41.5° offnadir angles are almost included in one plane. Then slant-range change for all orbit paths can be described by the horizontal and the vertical components of its co-plane. Inversely, we estimate them for all epochs with the constraint that temporal change of deformation is smooth. Simultaneously, we estimate DEM error. As one of case studies, we present an application in Miyake-jima. Miyake-jima is a volcanic island located to 200km south of Tokyo, and a large amount of volcanic gas has been ejecting since the 2000 eruption. Crustal deformation associated with such volcanic activity has been observed by continuous GPS observations. However, its distribution is complicated, and therefore we applied this method to detect precise deformation time-series. In the most of GPS sites, obtained time-series were good agreement with GPS time-series, and the root-mean-square of residuals was less than 1cm. However, the temporal step of deformation was estimated in 2008, and it is not consistent with GPS time-series. We think that the effect of an orbit maneuver in 2008 has appeared. An improvement for such noise is one of next subjects. In the obtained deformation map, contraction around the caldera and uplift along the north-west-south coast were found. It is obvious that this deformation pattern cannot be explained by simple one inflation or deflation source, and its interpretation is also one of next subjects. In the caldera bottom, subsidence with 14cm/yr was found. Though its subsidence speed was constant until 2008, it decelerated to 20cm/yr from 2009. Furthermore subsidence speed in 2010 was 3cm/yr. Around the same time, low-frequency earthquakes increased just under the caldera. Then we speculate that deceleration of subsidence may directly relate with the volcanic activity. Although the result shows volcano deformation in detail, some mis-estimations were obtained. We believe that this InSAR time-series analysis is useful, but more improvements are necessary.

  18. Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V

    NASA Astrophysics Data System (ADS)

    Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.

    2010-02-01

    Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.

  19. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, V.D., E-mail: dv272@cam.ac.uk; Muñoz-Moreno, R.; Messé, O.M.D.M.

    2016-04-15

    The selective laser melting of high temperature alloys is of great interest to the aerospace industry as it offers the prospect of producing more complex geometries than can be achieved with other manufacturing methods. In this study, the microstructure of the nickel-based superalloy, CM247LC, has been characterised following selective laser melting and after a post deposition heat treatment below the γ′ solvus temperature. In the as-deposited state, scanning electron microscopy with electron backscatter diffraction revealed a fine, cellular microstructure with preferential alignment of 〈001〉 along the build direction. A high dislocation density was seen at the periphery of the cells,more » indicating substantial localised deformation of the material. Fine primary MC carbides were also observed in the inter-cellular regions. High-resolution transmission electron microscopy identified the occurrence of very fine γ′ precipitates, approximately 5 nm in diameter, dispersed within the gamma phase. After heat treatment, the elongated cell colonies were observed to partially coalesce, accompanied by a decrease in dislocation density, producing columnar grains along the build direction. Cuboidal γ′ precipitates approximately 500 nm in diameter were observed to form in the recrystallised grains, accompanied by larger γ′ precipitates on the grain boundaries.« less

  20. Finite element method analysis of cold forging for deformation and densification of Mo alloyed sintered steel

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Nishida, S.; Kanbe, K.; Shohji, I.

    2017-10-01

    In recent years, powder metallurgy (P/M) materials have been expected to be applied to automobile products. Then, not only high cost performance but also more strength, wear resistance, long-life and so on are required for P/M materials. As an improvement method of mechanical properties of P/M materials, a densification is expected to be one of effective processes. In this study, to examine behaviours of the densification of Mo-alloyed sintered steel in a cold-forging process, finite element method (FEM) analysis was performed. Firstly, a columnar specimen was cut out from the inner part of a sintered specimen and a load-stroke diagram was obtained by the compression test. 2D FEM analysis was performed using the obtained load-stroke diagram. To correct the errors of stress between the porous mode and the rigid-elastic mode of analysis software, the analysis of a polynominal approximation was performed. As a result, the modified true stress-true strain diagram was obtained for the sintered steel with the densification. Afterwards, 3D FEM analysis of backward extrusion was carried out using the modified true stress-true strain diagram. It was confirmed that both the shape and density of the sintered steel analyzed by new FEM analysis that we suggest correspond well with experimental ones.

  1. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  2. The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles

    PubMed Central

    Berezhnoy, Nikolay V.; Liu, Ying; Allahverdi, Abdollah; Yang, Renliang; Su, Chun-Jen; Liu, Chuan-Fa; Korolev, Nikolay; Nordenskiöld, Lars

    2016-01-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed. PMID:27119633

  3. Study of the Formation Mechanism of A-Segregation Based on Microstructural Morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Bao, Yuchong; Liu, Lin; Pian, Song; Li, Ri

    2018-04-01

    A model that combines a cellular automaton (CA) and lattice Boltzmann method (LBM) is presented. The mechanism of A-segregation in an Fe-0.34 wt pct C alloy ingot is analyzed on the basis of microstructural morphology calculations. The CA is used to capture the solid/liquid interface, while the LBM is used to calculate the transport phenomena. (1) The solidification of global columnar dendrites was simulated, and two obvious A-segregation bands appeared in the middle-radius region between the ingot wall surface and the centerline. In addition, the angle of deflection to the centerline increased with the increasing heat dissipation rate of the wall surface. When natural convection was ignored, the A-segregation disappeared, and only positive segregation was present in the center and bottom corner of the ingot. (2) Mixed columnar-equiaxed solidification was simulated. Many A-segregation bands appeared in the ingot. (3) Global equiaxed solidification was simulated, and no A-segregation bands were found. The results show that the upward movement of the high-concentration melt is the key to the formation of A-segregation bands, and remelting and the emergence of equiaxed grains are not necessary conditions to develop these bands. However, the appearance of equiaxed grains accelerates the formation of vortexes; thus, many A-segregation bands appear during columnar-equiaxed solidification.

  4. Wong-Type Dermatomyositis Showing Porokeratosis-Like Changes (Columnar Dyskeratosis): A Case Report and Review of the Literature

    PubMed Central

    Umanoff, Nicole; Fisher, Ari; Carlson, J. Andrew

    2015-01-01

    Background Wong-type dermatomyositis (DM) exhibits simultaneous pityriasis rubra pilaris (PRP) features. Case Report A 50-year-old woman presented with a heliotrope rash, Gottron's papules, and a poikilodermic, erythematous rash in shawl distribution without evidence of muscle weakness. Despite topical corticosteroids, the eruption progressed 9 months later to include generalized hyperkeratotic follicular papules, islands of sparing, and atrophic macules with a collarette of scale suggestive of porokeratosis. Mild dysphonia was the only sign of muscle weakness. Serology showed positive ANA. Histopathology revealed interface dermatitis with dermal mucin and melanophages, irregular psoriasiform hyperplasia, alternating mounds of para- and orthokeratosis, and tiers of dyskeratotic cells (columnar dyskeratosis). Systemic corticosteroid therapy was not tolerated; acitretin diminished the hyperkeratosis. While hyperpigmentation persisted, no progression of cutaneous or muscular symptoms has occurred after 22 months of follow-up and cessation of the therapy. Overall, her course did not differ from the natural history documented in the literature review of Wong-type DM. The most similar case also exhibited pseudocornoid lamella changes. Conclusion Wong-type DM is a clinicopathologic DM-PRP hybrid that can also exhibit porokeratosis-like features best described as columnar dyskeratosis. Recognizing these types of lesions in DM is warranted in order to make an accurate assessment of their prognostic significance. PMID:27047930

  5. Structural and optical properties of glancing angle deposited In2O3 columnar arrays and Si/In2O3 photodetector

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Shougaijam, B.; Goswami, T.; Dhar, J. C.; Singh, N. K.; Choudhury, S.; Chattopadhay, K. K.

    2014-04-01

    Ordered and perpendicular columnar arrays of In2O3 were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In2O3 columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ˜400 nm and ˜100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In2O3 columns have a high band to band transition at ˜3.75 eV. The ultraviolet and green emissions were obtained from the In2O3 columnar arrays. The P-N junction was formed between In2O3 and P-type Si substrate. The GLAD synthesized In2O3 film exhibits low current conduction compared to In2O3 TF. However, the Si/GLAD-In2O3 detector shows ˜1.5 times enhanced photoresponsivity than that of Si/In2O3 TF.

  6. Pressure sensor for sealed containers

    DOEpatents

    Hodges, Franklin R.

    2001-01-01

    A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

  7. Structure for identifying, locating and quantifying physical phenomena

    DOEpatents

    Richardson, John G.

    2006-10-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  8. Method and apparatus for identifying, locating and quantifying physical phenomena and structure including same

    DOEpatents

    Richardson, John G.

    2006-01-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  9. Deformation relief induced by scratch testing on the surface of Hadfield steel

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    The paper is devoted to deformation relief formed on the surface of Hadfield steel while scratching under a linearly increasing load. The deformation relief is analyzed to detect regions with microfracture of the surface layer of Hadfield steel. Crack generation regions coincide with regions of the most intense acoustic emission (AE) signal. Single and multiple slip bands are observed in various grains of the material. As the load increases, slip bands thicken and grains with multiple slip are more frequent.

  10. Vertical distribution of total carbon, nitrogen and phosphorus in sediments of Drug Spring Lake, Wudalianchi

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Yang, Chen

    2018-02-01

    The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.

  11. Inter-observer variability between general pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast

    PubMed Central

    2014-01-01

    Background This study aimed to assess inter-observer variability between the original diagnostic reports and later review by a specialist in breast pathology considering lobular neoplasias (LN), columnar cell lesions (CCL), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) of the breast. Methods A retrospective, observational, cross-sectional study was conducted. A total of 610 breast specimens that had been formally sent for consultation and/or second opinions to the Breast Pathology Laboratory of Federal University of Minas Gerais were analysed between January 2005 and December 2010. The inter-observer variability between the original report and later review was compared regarding the diagnoses of LN, CCL, ADH, and DCIS. Statistical analyses were conducted using the Kappa index. Results Weak correlations were observed for the diagnoses of columnar cell change (CCC; Kappa = 0.38), columnar cell hyperplasia (CCH; Kappa = 0.32), while a moderate agreement (Kappa = 0.47) was observed for the diagnoses of flat epithelial atypia (FEA). Good agreement was observed in the diagnoses of atypical lobular hyperplasia (ALH; Kappa = 0.62) and lobular carcinoma in situ (LCIS; Kappa = 0.66). However, poor agreement was observed for the diagnoses of pleomorphic LCIS (Kappa = 0.22). Moderate agreement was observed for the diagnoses of ADH (Kappa = 0.44), low-grade DCIS (Kappa = 0.47), intermediate-grade DCIS (Kappa = 0.45), and DCIS with microinvasion (Kappa = 0.56). Good agreement was observed between the diagnoses of high-grade DCIS (Kappa = 0.68). Conclusions According to our data, the best diagnostic agreements were observed for high-grade DCIS, ALH, and LCIS. CCL without atypia and pleomorphic LCIS had the worst agreement indices. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1640072350119725. PMID:24948027

  12. 3D topology of orientation columns in visual cortex revealed by functional optical coherence tomography.

    PubMed

    Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu

    2018-04-01

    Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.

  13. Columnar characteristics of aerosols by spectroradiometer measurements in the maritime area of the Cadiz Gulf (Spain)

    NASA Astrophysics Data System (ADS)

    Vergaz, Ricardo; Cachorro, Victoria E.; de Frutos, Ángel M.; Vilaplana, José M.; de La Morena, Benito A.

    2005-11-01

    Atmospheric aerosol characteristics represented by the spectral aerosol optical depth AOD) and the Ångström turbidity parameter were determined in the coastal area of the Gulf of Cádiz, (southwest of Spain). The columnar aerosol properties presented here correspond to the 1996-1999 period, and were obtained by solar direct irradiance measurements carried out by a Licor1800 spectroradiometer. The performance of this type of medium-spectral resolution radiometric system is analysed over the measured period. The detailed spectral information of these irradiance measurements enabled the use of selected non-absorption gases spectral windows to determine the columnar spectral AOD that was modelled by Ångström formula to obtain the coefficient. Temporal evolutions of instantaneous values together with a general statistical analysis represented by seasonal values, frequency distributions and some representative correlations for the AOD and the derived Ångström coefficient gave us the first insight of aerosol characteristics in this coastal area. Special attention was paid to the analysis of these aerosol properties at the nominal wavelengths of 440 nm, 670 nm, 870 nm and 1020 nm for the near-future comparisons with the Cimel sun-photometer data. However, taking the most representative aerosol wavelength of 500 nm, the variability of the AOD ranges from 0.005 to 0.53, with a mean of 0.12 (s.d = 0.07) and that of the parameter is given by a mean value of 0.93 (s.d. = 0.58) falling inside the range of marine aerosols. A quantitative discrimination of aerosol types was conducted on the basis of the spectral aerosol properties and air mass back trajectory analysis, which resulted in a mixed type because of the specificity of this area, given by very frequent desert dust episodes, continental and polluted local influences. This study represents the first extended data characterization about columnar properties of aerosols in Spain which has been continued by Cimel-AERONET data. Copyright

  14. Impact of oral and waterborne administration of rhamnolipids on the susceptibility of channel catfish (Ictalurus punctatus) to Flavobacterium columnare infection.

    PubMed

    Zhang, Dongdong; Beck, Benjamin H; Lange, Miles; Zhao, Honggang; Thongda, Wilawan; Ye, Zhi; Li, Chao; Peatman, Eric

    2017-01-01

    Flavobacterium columnare is the causative agent of columnaris disease and causes tremendous morbidity and mortality of farmed fish globally. Previously, we identified a potential lectin-mediator (a rhamnose-binding lectin; RBL1a) of F. columnare adhesion and showed higher RBL1a expression in susceptible channel catfish under basal conditions and following infection. Exposure of challenged fish to the carbohydrate ligand l-rhamnose just prior to a challenge substantially decreased columnaris mortality and pathogen adherence via the down-regulation of RBL1a. While highly effective in protecting fish from columnaris, l-rhamnose is prohibitively expensive, underscoring the need for alternative cost-effective sources of rhamnose for disease control. One such alternative may be microbially produced glycolipid compounds termed rhamnolipids (RLs), which feature abundant l-rhamnose moieties and are readily available from commercial sources. In the present study, we examined whether commercially available RLs (administered either by immersion or via feed) would function similarly to l-rhamnose in affording host protection against F. columnare. A four-week feeding trial with basal and RL top-coated diets (basal diet + RLs) was conducted in channel catfish fingerlings. Surprisingly, columnaris challenges revealed significantly lower survival following the 10 d challenge period in RL diet fed fish when compared with the basal treatment group (p < 0.001). In fish fed RLs, we observed a rapid and large-scale upregulation of RBL1a immediately after challenge combined with a suppression of mucin and lysozyme transcripts. Similarly, fish that were briefly pre-exposed to RLs by immersion and then challenged exhibited lower survival as compared to unexposed fish during a 4 d trial. In conclusion, RLs do not represent an alternative to rhamnose as an experimental treatment for protecting catfish from columnaris mortality. Further research is needed to find other affordable and efficacious alternative sources of l-rhamnose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inter-observer variability between general pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast.

    PubMed

    Gomes, Douglas S; Porto, Simone S; Balabram, Débora; Gobbi, Helenice

    2014-06-19

    This study aimed to assess inter-observer variability between the original diagnostic reports and later review by a specialist in breast pathology considering lobular neoplasias (LN), columnar cell lesions (CCL), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) of the breast. A retrospective, observational, cross-sectional study was conducted. A total of 610 breast specimens that had been formally sent for consultation and/or second opinions to the Breast Pathology Laboratory of Federal University of Minas Gerais were analysed between January 2005 and December 2010. The inter-observer variability between the original report and later review was compared regarding the diagnoses of LN, CCL, ADH, and DCIS. Statistical analyses were conducted using the Kappa index. Weak correlations were observed for the diagnoses of columnar cell change (CCC; Kappa=0.38), columnar cell hyperplasia (CCH; Kappa=0.32), while a moderate agreement (Kappa=0.47) was observed for the diagnoses of flat epithelial atypia (FEA). Good agreement was observed in the diagnoses of atypical lobular hyperplasia (ALH; Kappa=0.62) and lobular carcinoma in situ (LCIS; Kappa=0.66). However, poor agreement was observed for the diagnoses of pleomorphic LCIS (Kappa=0.22). Moderate agreement was observed for the diagnoses of ADH (Kappa=0.44), low-grade DCIS (Kappa=0.47), intermediate-grade DCIS (Kappa=0.45), and DCIS with microinvasion (Kappa=0.56). Good agreement was observed between the diagnoses of high-grade DCIS (Kappa=0.68). According to our data, the best diagnostic agreements were observed for high-grade DCIS, ALH, and LCIS. CCL without atypia and pleomorphic LCIS had the worst agreement indices. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1640072350119725.

  16. Evaluation of Barrett esophagus by multiphoton microscopy.

    PubMed

    Chen, Jianxin; Wong, Serena; Nathanson, Michael H; Jain, Dhanpat

    2014-02-01

    Multiphoton microscopy (MPM) based on 2-photon excitation fluorescence and second-harmonic generation allows simultaneous visualization of cellular details and extracellular matrix components of fresh, unfixed, and unstained tissue. Portable multiphoton microscopes, which could be placed in endoscopy suites, and multiphoton endomicroscopes are in development, but their clinical utility is unknown. To examine fresh, unfixed endoscopic biopsies obtained from the distal esophagus and gastroesophageal junction to (1) define the MPM characteristics of normal esophageal squamous mucosa and gastric columnar mucosa, and (2) evaluate whether diagnosis of intestinal metaplasia/Barrett esophagus (BE) could be made reliably with MPM. The study examined 35 untreated, fresh biopsy specimens from 25 patients who underwent routine upper endoscopy. A Zeiss LSM 710 Duo microscope (Carl Zeiss, Thornwood, New York) coupled to a Spectra-Physics (Mountain View, California) Tsunami Ti:sapphire laser was used to obtain a MPM image within 4 hours of fresh specimen collection. After obtaining MPM images, the biopsy specimens were placed in 10% buffered formalin and submitted for routine histopathologic examination. Then, the MPM images were compared with the findings in the hematoxylin-eosin-stained, formalin-fixed, paraffin-embedded sections. The MPM characteristics of the squamous, gastric-type columnar and intestinal-type columnar epithelium were analyzed. In biopsies with discrepancy between MPM imaging and hematoxylin-eosin-stained sections, the entire tissue block was serially sectioned and reevaluated. A diagnosis of BE was made when endoscopic and histologic criteria were satisfied. Based on effective 2-photon excitation fluorescence of cellular reduced pyridine nucleotides and flavin adenine dinucleotide and lack of 2-photon excitation fluorescence of mucin and cellular nuclei, MPM could readily identify and distinguish among squamous epithelial cells, goblet cells, gastric foveolar-type mucous cells, and parietal cells in the area of gastroesophageal junction. Based on the cell types identified, the mucosa was defined as squamous, columnar gastric type (cardia/fundic-type), and metaplastic columnar intestinal-type/BE. Various types of mucosa seen in the study of 35 biopsies included normal squamous mucosa only (n = 14; 40%), gastric cardia-type mucosa only (n = 2; 6%), gastric fundic mucosa (n = 6; 17%), and both squamous and gastric mucosa (n = 13; 37%). Intestinal metaplasia was identified by the presence of goblet cells in 10 of 25 cases (40%) leading to a diagnosis of BE on MPM imaging and only in 7 cases (28%) by histopathology. In 3 of 35 biopsies (9%), clear-cut goblet cells were seen by MPM imaging but not by histopathology, even after the entire tissue block was sectioned. Based on effective 2-photon excitation fluorescence of elastin and second-harmonic generation of collagen, connective tissue in the lamina propria and the basement membrane was also visualized with MPM. Multiphoton microscopy has the ability to accurately distinguish squamous epithelium and different cellular elements of the columnar mucosa obtained from biopsies around the gastroesophageal junction, including goblet cells that are important for the diagnosis of BE. Thus, use of MPM in the endoscopy suite might provide immediate microscopic images during endoscopy, improving screening and surveillance of patients with BE.

  17. Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data

    PubMed Central

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao

    2014-01-01

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454

  18. Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.

    PubMed

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao

    2014-10-22

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.

  19. Precursory deformation and depths of magma storage revealed by regional InSAR time series surveys: example of the Indonesian and Mexican volcanic arcs

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2012-12-01

    Despite the threat posed to millions of people living in the vicinity of volcanoes, only a fraction of the worldwide ~800 potentially active arc volcanoes have geodetic monitoring. Indonesian and Mexican volcanoes are sparsely monitored with ground-based methods but especially dangerous, emphasizing the need for remote sensing monitoring. In this study we take advantage of over 1200 ALOS InSAR images to survey the entire west Sunda and Mexican volcanic arcs, covering a total of 500 000 km2. We use 2 years of data to monitor the background activity of the Indonesian arc, and 4 years of data at four volcanic edifices (Sinabung, Kerinci, Merapi, and Agung), as well as 4 years of data to survey the Mexican arc. We derive time-dependent ground deformation data using the Small Baseline technique with DEM error correction. We detect seven volcanoes with significant deformation in the west-Sunda arc: six inflating volcanoes (Sinabung, Kerinci, Slamet, Lawu, Lamongan, and Agung) and one deflating volcano (Anak Krakatau). Three of the six inflating centers erupted during or after the observation period. We detect inflation prior to Sinabung's first Holocene eruption in September 2010, followed by a small deflation of the summit area. A similar signal is observed at Kerinci before and after its April 2009 eruption. We also detect uplift prior to Slamet's eruption in April 2009. Agung, in Bali, whose last eruption was in 1964, has been inflating steadily between mid 2007 and early 2009, followed by a period with little deformation until mid-2011. Inflation not followed by eruption is also observed at Lamongan and Lawu, both historically active centers. The close relation between periods of activity and observed deformation suggests that edifice inflation is of magmatic origin and represents the pressurization of reservoirs caused by ascent of new magma. We model the observed deformation and show that the seven deforming Indonesian volcanoes have shallow magma reservoirs at ~1-3 km depth below the average regional elevation. We compare the deformation-activity relationship observed in the west-Sunda arc with results from the Mexican arc. We also compare the depths of magma storage estimated in each arc and use a global data-set of reservoir depths at arc volcanoes to try to explain the observed regional trends in magma storage depths.

  20. Ductile deformation mechanisms of synthetic halite: a full field measurement approach

    NASA Astrophysics Data System (ADS)

    Dimanov, Alexandre; Bourcier, Mathieu; Héripré, Eva; Bornert, Michel; Raphanel, Jean

    2013-04-01

    Halite is a commonly used analog polycristalline material. Compared to most rock forming minerals, halite exhibits extensively ductile behavior at even low temperatures and fast deformation rates. Therefore, it allows an easier study of the fundamental mechanisms of crystal plasticity, recrystallization, grain growth and texture development than any other mineral. Its high solubility also makes it an ideal candidate for investigating pressure solution creep. Most importantly, halite is very convenient to study the interactions of simultaneously occurring deformation mechanisms. We investigated uniaxial deformation of pure synthetic NaCl polycrystals with controlled grain sizes and grain size distributions at room and moderate temperatures (400°C). The mechanical tests were combined with "in-situ" optical and scanning electron microscopy, in order to perform 2D digital image correlation (2D-DIC) and to obtain the full surface strain fields at the sample scale and at the scales of the microstructure. We observed dominantly intracrystalline plasticity, as revealed by the occurrence of physical slip lines on the surface of individual grains and of deformation bands at the microstructure (aggregate) scale, as revealed by DIC. Crystal orientation mapping (performed by EBSD) allowed relating the latter to the traces of crystallographic slip planes and inferring the active slip systems considering the macroscopic stress state and computing Schmid factors. The strain heterogeneities are more pronounced at low temperature, at both the aggregate scale and within individual grains. The local activity of slip systems strongly depends on the relative crystallographic and interfacial orientations of the adjacent grains with respect to the loading direction. The easy glide {110} <110> systems are not the only active ones. We could identify the activity of all slip systems, especially near grain boundaries, which indicates local variations of the stress state. But, we also clearly evidenced grain boundary sliding (GBS), which occurred as a secondary but necessary mechanism for accommodation of local strain incompatibilities between neighboring grains, related to the anisotropy of crystal plasticity. The DIC technique allowed the precise quantification of the relative contribution of each mechanism. The latter clearly depends on the microstructure (i.e. grain size and its distribution): the smaller is the grain size and the stronger is the GBS contribution. Finite element modeling of the viscoplastic polycrystalline behavior was started on the basis of our experimental microstructures with large grains (where GBS activity is limited to < 10 %), considering an extruded columnar structure in depth and single crystal flow laws from literature. The results show that the computed strain fields do not sufficiently match the experimentally measured ones. The reasons for the discrepancies are likely related to the activity of GBS, which was not accounted for, and to the influence of the real microstructure at depth (underlying grains and orientations of interfaces), which strongly condition the surface response.

  1. Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2012-10-01

    In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.

  2. Plant Natural compounds with antibacterial activity towards common pathogens of pond-cultured channel catfish (Ictalurus punctatus).

    PubMed

    Schrader, Kevin K

    2010-07-01

    The bacteria Edwardsiella ictaluri and Flavobacterium columnare cause enteric septicemia and columnaris disease, respectively, in channel catfish (Ictalurus punctatus). Natural therapeutants may provide an alternative to current management approaches used by producers. In this study, a rapid bioassay identified plant compounds as potential therapeutants. Chelerythrine chloride and ellagic acid were the most toxic toward E. ictaluri, with 24-h IC50 of 7.3 mg/L and 15.1 mg/L, respectively, and MIC of 2.1 mg/L and 6.5 mg/L, respectively. Chelerythrine chloride, ellagic acid, β-glycyrrhetinic acid, sorgoleone, and wogonin were the most toxic towards two genomovars of F. columnare, and wogonin had the strongest antibacterial activity (MIC = 0.3 mg/L).

  3. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    NASA Astrophysics Data System (ADS)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the vicinity of the southern margin. As a result, some of the cGPS stations in the vicinity of the OVC are more important for measuring deformation related to volcanic processes than others. The results have important implications for how any future observed deformation at the OVC is observed and interpreted.

  4. Study of the crater deformation of the CODELCO/Andina mine using the satellite and ground data

    NASA Astrophysics Data System (ADS)

    Caverlotti-Silva, M. A.; Arellano-Baeza, A. A.

    2011-12-01

    The correct monitoring of the subsidence of the craters related to the underground mine exploitation is one of the most important endeavors of the satellite remote sensing. The ASTER and LANDSAT satellite images have been used to study the deformation of the crater of the CODELCO/Andina mine, Valparaiso Region, Chile. The high-resolution satellite images were used to detect changes in the lineament patterns related to the subsidence. These results were compared with the ground deformation extracted from the GPS and topography station networks. It was found that sudden changes in the lineament patterns appear when the ground deformation overcomes a definite threshold.

  5. Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Hashimoto, M.

    2015-12-01

    Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.

  6. Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu

    2018-05-01

    Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.

  7. Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR)

    NASA Astrophysics Data System (ADS)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Righini, Gaia; Sani, Federico; Luzi, Guido; Feyzullayev, Akper A.; Aliyev, Chingiz S.

    2014-12-01

    Mud volcanism is a process that leads to the extrusion of subsurface mud, fragments of country rocks, saline waters and gases. This mechanism is typically linked to hydrocarbon traps, and the extrusion of this material builds up a variety of conical edifices with a similar morphology to those of magmatic volcanoes, though smaller in size. The Differential Interferometry Synthetic Aperture Radar (DInSAR) technique has been used to investigate the ground deformation related to the activity of the mud volcanoes of Azerbaijan. The analysis of a set of wrapped and unwrapped interferograms, selected according to their coherence, allowed the detection of significant superficial deformation related to the activity of four mud volcanoes. The ground displacement patterns observed during the period spanning from October 2003 to November 2005 are dominated by uplift, which reach a cumulative value of up to 20 and 10 cm at the Ayaz-Akhtarma and Khara-Zira Island mud volcanoes, respectively. However, some sectors of the mud volcano edifices are affected by subsidence, which might correspond to deflation zones that coexist with the inflation zones characterized by the dominant uplift. Important deformation events, caused by fluid pressure and volume variations, have been observed both (1) in connection with main eruptive events in the form of pre-eruptive uplift, and (2) in the form of short-lived deformation pulses that interrupt a period of quiescence. Both deformation patterns show important similarities to those identified in some magmatic systems. The pre-eruptive uplift has been observed in many magmatic volcanoes as a consequence of magma intrusion or hydrothermal fluid injection. Moreover, discrete short-duration pulses of deformation are also experienced by magmatic volcanoes and are repeated over time as multiple inflation and deflation events.

  8. Monitoring of Deformation in Ground Before and After Tunnel Excavation

    NASA Astrophysics Data System (ADS)

    Eren, Mehmet; Hilmi Erkoç, Muharrem

    2017-04-01

    As population increase in metropolitan city, we need transportation and transmission tunnel. In this context, the engineers and administors attach impotance to building and planning underground-tunnel. Moreover, we must at regular intervals monitoring to deformation in underground-tunnel for quality and safety. Firstly, a deformation monitoring network is designed as perpendicular to the tunnel main axis. Secondly, the prescribed number of deformation measurements must be made. Finally, the deformation analysis is evaluated and its results is interpreted. This study investigates how deformation in monitoring network during and after tunnel excavate change.For this purpose, a deformation monitoring network of 18 object point and 4 reference point was established. Object points networks was designed steeply to the tunnel main axis as 3 cross section. Each cross section consisted of 3 point left, 2 point right and 1 point at the flowing line. Initial conditional measurement was made before tunnel excavation. Then the deformation measurement was made 5 period (1 period measured after tunnel excavate). All data sets were adjusted according to free adjustment method. The results from the investigation considering the tunnel line, a symmetrical subsidence was observed. The following day of tunnel excavation, we were observed %68 per of the total deformation. At the end of the last period measurements, %99 per of the total deformation was detected. Keywords: Tunnel, Deformation, Subsidence, Excavation

  9. Using LiCSAR as a fast-response system for the detection and the monitoring of volcanic unrest

    NASA Astrophysics Data System (ADS)

    Albino, F.; Biggs, J.; Hatton, E. L.; Spaans, K.; Gaddes, M.; McDougall, A.

    2017-12-01

    Based on the Smithsonian Institution volcano database, a total of 13256 volcanoes exist on Earth with 1273 having evidence of eruptive or unrest activity during the Holocene. InSAR techniques have proven their ability to detect and to quantify volcanic ground deformation on a case-by-case basis. However, the use of InSAR for the daily monitoring of every active volcano requires the development of automatic processing that can provide information in a couple of hours after a new radar acquisition. The LiCSAR system (http://comet.nerc.ac.uk/COMET-LiCS-portal/) answers this requirement by processing the vast amounts of data generated daily by the EU's Sentinel-1 satellite constellation. It provides now high-resolution deformation data for the entire Alpine-Himalayan seismic belt. The aim of our study is to extend LiCSAR system to the purpose of volcano monitoring. For each active volcano, the last Sentinel products calculated (phase, coherence and amplitude) will be available online in the COMET Volcano Deformation Database. To analyse this large amount of InSAR products, we develop an algorithm to automatically detect ground deformation signals as well as changes in coherence and amplitude in the time series. This toolbox could be a powerful fast-response system for helping volcanological observatories to manage new or ongoing volcanic crisis. Important information regarding the spatial and the temporal evolution of each ground deformation signal will also be added to the COMET database. This will benefit to better understand the conditions in which volcanic unrest leads to an eruption. Such worldwide survey enables us to establish a large catalogue of InSAR products, which will also be suitable for further studies (mapping of new lava flows, modelling of magmatic sources, evaluation of stress interactions).

  10. An acoustic emission study of plastic deformation in polycrystalline aluminium

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  11. CUDA-based real time surgery simulation.

    PubMed

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  12. Nano-sculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensing.

    PubMed

    Pedrosa, Paulo; Ferreira, Armando; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain; Lanceros-Mendez, Senentxu; Vaz, Filipe

    2018-06-11

    Inclined, zigzag and spiral TiAg films were prepared by GLancing Angle Deposition (GLAD), using two distinct Ti and Ag targets with a particle incident angle of 80º and Ag contents ranging from 20 to 75 at. %. The effect of increasing Ag incorporation and columnar architecture change on the morphological, structural and electrical properties of the films was investigated. It is shown that inclined columnar features (β = 47º) with high porosity were obtained for 20 at. % Ag, with the column angle sharply decreasing (β = 21º) for 50 at. % Ag, and steeply increasing afterwards until 37º for the film with 75 at. % Ag. The sputtered films exhibit a rather well-crystallized structure for Ag contents ≥ 50 at. %, with a TiAg (111) preferential growth. No significant oxidation was detected in all films, except for the one with 20 at. % Ag, after two 298-473-298 K temperature cycles in air. The calculated temperature coefficient of resistivity (TCR) values vary between 1.4 and 5.5×10-4 K-1. Nano-sculptured spiral films exhibit consistently higher resistivity (ρ = 1.5×10-6 Ω m) and TCR values (2.9×10-4 K-1) than the inclined one with the same Ag content (ρ = 1.2×10-6 Ω m and TCR = 2.0×10-4 K-1). No significant changes are observed in the zigzag films concerning these properties. The effective anisotropy Aeff at 473 K changes from 1.3 to 1.7 for the inclined films. Spiral films exhibit an almost completely isotropic behavior with Aeff = 1.1. Ag-rich TiAg core + shell Janus-like columns were obtained with increasing Ag concentrations. © 2018 IOP Publishing Ltd.

  13. Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Pucai; Elansky, N. F.; Timofeev, Yu. M.; Wang, Gengchen; Golitsyn, G. S.; Makarova, M. V.; Rakitin, V. S.; Shtabkin, Yu.; Skorokhod, A. I.; Grechko, E. I.; Fokeeva, E. V.; Safronov, A. N.; Ran, Liang; Wang, Ting

    2018-07-01

    A comparative study was carried out to explore carbon monoxide total columnar amount (CO TC) in background and polluted atmosphere, including the stations of ZSS (Zvenigorod), ZOTTO (Central Siberia), Peterhof, Beijing, and Moscow, during 1998-2014, on the basis of ground- and satellite-based spectroscopic measurements. Interannual variations of CO TC in different regions of Eurasia were obtained from ground-based spectroscopic observations, combined with satellite data from the sensors MOPITT (2001-14), AIRS (2003-14), and IASI MetOp-A (2010-13). A decreasing trend in CO TC (1998-2014) was found at the urban site of Beijing, where CO TC decreased by 1.14%±0.87% yr-1. Meanwhile, at the Moscow site, CO TC decreased remarkably by 3.73%±0.39% yr-1. In the background regions (ZSS, ZOTTO, Peterhof), the reduction was 0.9%-1.7% yr-1 during the same period. Based on the AIRSv6 satellite data for the period 2003-14, a slight decrease (0.4%-0.6% yr-1) of CO TC was detected over the midlatitudes of Eurasia, while a reduction of 0.9%-1.2% yr-1 was found in Southeast Asia. The degree of correlation between the CO TC derived from satellite products (MOPITTv6 Joint, AIRSv6 and IASI MetOp-A) and ground-based measurements was calculated, revealing significant correlation in unpolluted regions. While in polluted areas, IASI MetOp-A and AIRSv6 data underestimated CO TC by a factor of 1.5-2.8. On average, the correlation coefficient between ground- and satellite-based data increased significantly for cases with PBL heights greater than 500 m.

  14. Sun/shade conditions affect recruitment and local adaptation of a columnar cactus in dry forests.

    PubMed

    Miranda-Jácome, Antonio; Montaña, Carlos; Fornoni, Juan

    2013-02-01

    Facilitation among plants in water-limited environments (i.e. where evapotranspiration overcomes the availability of water during the growing season) has been considered a local adaptation to water and light conditions. Among cacti, early life-history stages can benefit from the facilitative effects of nurse plants that reduce solar radiation and water stress. However, whether light condition itself acts as an agent of selection through facilitation remains untested. The aim of this study was to determine (1) whether light conditions affect seedling recruitment, (2) whether the positive effect of shade on seedling recruitment is more intense under more stressful conditions and (3) whether shade condition (facilitation) reduces the magnitude of local adaptation on seedling recruitment relative to full sunlight conditions. A reciprocal transplant experiment, coupled with the artificial manipulation of sun/shade conditions, was performed to test for the effects of local adaptation on germination, seedling survival and growth, using two demes of the columnar cactus Pilosocereus leucocephalus, representing different intensities of stressful conditions. Full sunlight conditions reduced recruitment success and supported the expectation of lower recruitment in more stressful environments. Significant local adaptation was mainly detected under full sunlight conditions, indicating that this environmental factor acts as an agent of selection at both sites. The results supported the expectation that the magnitude of local adaptation, driven by the effects of facilitative nurse plants, is less intense under reduced stressful conditions. This study is the first to demonstrate that sun/shade conditions act as a selective agent accounting for local adaptation in water-limited environments, and that facilitation provided by nurse plants in these environments can attenuate the patterns of local adaptation among plants benefiting from the nurse effect.

  15. Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes.

    PubMed

    Flachowsky, Henryk; Hättasch, Conny; Höfer, Monika; Peil, Andreas; Hanke, Magda-Viola

    2010-01-01

    To break the juvenile stage of apple (Malus x domestica Borkh.) we transferred the LFY gene of Arabidopsis into the genome of the apple cv. 'Pinova'. A total of five transgenic clones constitutively overexpressing the LFY gene were obtained. Approximately, 20 shoots of each clone were rooted and transferred to the glasshouse. No flowers were obtained on transgenic plants during the first 2 years of cultivation. Evaluation of the expression of possible LFY targets revealed that no transcripts could be detected for MdAP1-1 and MdAP1-2. MdTFL1 was unaffected. Based on the absence of the LFY core-binding sequence within promoter sequences of MdAP1-1 and MdAP1-2, it was concluded that LFY was not able to induce these genes. The LFY genes of apple were unaffected in transgenic plants and sequence alignments of the C-terminal amino acid sequence showed a high conservation of these proteins. A change in binding ability to DNA can therefore be excluded. Instead of early flowering, the transgenic plants showed an altered phenotype, which is similar to the columnar phenotype of the 'McIntosh Wijcik' mutant of apple. The transgenic plants showed shortened internodes and a significantly reduced length of the regrowing shoot. A negative correlation was observed between the length of the regrowing shoot and the LFY mRNA transcript level. Furthermore, the LFY transgenic apple plants showed an increased shoot diameter at node 20, which was positively correlated with the LFY mRNA transcript level. Based on our results, we assume an alternative role of LFY in apple.

  16. Sun/shade conditions affect recruitment and local adaptation of a columnar cactus in dry forests

    PubMed Central

    Miranda-Jácome, Antonio; Montaña, Carlos; Fornoni, Juan

    2013-01-01

    Background and Aims Facilitation among plants in water-limited environments (i.e. where evapotranspiration overcomes the availability of water during the growing season) has been considered a local adaptation to water and light conditions. Among cacti, early life-history stages can benefit from the facilitative effects of nurse plants that reduce solar radiation and water stress. However, whether light condition itself acts as an agent of selection through facilitation remains untested. The aim of this study was to determine (1) whether light conditions affect seedling recruitment, (2) whether the positive effect of shade on seedling recruitment is more intense under more stressful conditions and (3) whether shade condition (facilitation) reduces the magnitude of local adaptation on seedling recruitment relative to full sunlight conditions. Methods A reciprocal transplant experiment, coupled with the artificial manipulation of sun/shade conditions, was performed to test for the effects of local adaptation on germination, seedling survival and growth, using two demes of the columnar cactus Pilosocereus leucocephalus, representing different intensities of stressful conditions. Key Results Full sunlight conditions reduced recruitment success and supported the expectation of lower recruitment in more stressful environments. Significant local adaptation was mainly detected under full sunlight conditions, indicating that this environmental factor acts as an agent of selection at both sites. Conclusions The results supported the expectation that the magnitude of local adaptation, driven by the effects of facilitative nurse plants, is less intense under reduced stressful conditions. This study is the first to demonstrate that sun/shade conditions act as a selective agent accounting for local adaptation in water-limited environments, and that facilitation provided by nurse plants in these environments can attenuate the patterns of local adaptation among plants benefiting from the nurse effect. PMID:23223204

  17. Application of Time Series Insar Technique for Deformation Monitoring of Large-Scale Landslides in Mountainous Areas of Western China

    NASA Astrophysics Data System (ADS)

    Qu, T.; Lu, P.; Liu, C.; Wan, H.

    2016-06-01

    Western China is very susceptible to landslide hazards. As a result, landslide detection and early warning are of great importance. This work employs the SBAS (Small Baseline Subset) InSAR Technique for detection and monitoring of large-scale landslides that occurred in Li County, Sichuan Province, Western China. The time series INSAR is performed using descending scenes acquired from TerraSAR-X StripMap mode since 2014 to get the spatial distribution of surface displacements of this giant landslide. The time series results identify the distinct deformation zone on the landslide body with a rate of up to 150mm/yr. The deformation acquired by SBAS technique is validated by inclinometers from diverse boreholes of in-situ monitoring. The integration of InSAR time series displacements and ground-based monitoring data helps to provide reliable data support for the forecasting and monitoring of largescale landslide.

  18. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru; Potekaev, A. I., E-mail: potekaev@spti.tsu.ru

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  19. Crustal deformation associated with crustal activities in the northern Izu-islands area during the summer, 2000

    NASA Astrophysics Data System (ADS)

    Kaidzu, M.; Nishimura, T.; Murakami, M.; Ozawa, S.; Sagiya, T.; Yarai, H.; Imakiire, T.

    2000-08-01

    In the end of June, 2000, intense crustal activity took place in Miyake-jima, Niijima, Kozu-shima and their vicinity. Here we report on the crustal deformation in the area during the period from June 24 to September 4, 2000, detected with the nationwide Global Positioning System (GPS) array operated by the Geographical Survey Institute. The deformation in this area during the above period is characterized by the deflation of Miyake-jima and the extension of the crust in the northeast-southwest direction over a wide area.

  20. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  1. Fast Detection of Material Deformation through Structural Dissimilarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushizima, Daniela; Perciano, Talita; Parkinson, Dilworth

    2015-10-29

    Designing materials that are resistant to extreme temperatures and brittleness relies on assessing structural dynamics of samples. Algorithms are critically important to characterize material deformation under stress conditions. Here, we report on our design of coarse-grain parallel algorithms for image quality assessment based on structural information and on crack detection of gigabyte-scale experimental datasets. We show how key steps can be decomposed into distinct processing flows, one based on structural similarity (SSIM) quality measure, and another on spectral content. These algorithms act upon image blocks that fit into memory, and can execute independently. We discuss the scientific relevance of themore » problem, key developments, and decomposition of complementary tasks into separate executions. We show how to apply SSIM to detect material degradation, and illustrate how this metric can be allied to spectral analysis for structure probing, while using tiled multi-resolution pyramids stored in HDF5 chunked multi-dimensional arrays. Results show that the proposed experimental data representation supports an average compression rate of 10X, and data compression scales linearly with the data size. We also illustrate how to correlate SSIM to crack formation, and how to use our numerical schemes to enable fast detection of deformation from 3D datasets evolving in time.« less

  2. On the absence of InSAR-detected volcano deformation spanning the 1995-1996 and 1999 eruptions of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Kwoun, O.; Masterlark, Timothy; Lu, Z.

    2006-01-01

    Shishaldin Volcano, a large, frequently active basaltic-andesite volcano located on Unimak Island in the Aleutian Arc of Alaska, had a minor eruption in 1995–1996 and a VEI 3 sub-Plinian basaltic eruption in 1999. We used 21 synthetic aperture radar images acquired by ERS-1, ERS-2, JERS-1, and RADARSAT-1 satellites to construct 12 coherent interferograms that span most of the 1993–2003 time interval. All interferograms lack coherence within ∼5 km of the summit, primarily due to persistent snow and ice cover on the edifice. Remarkably, in the 5–15 km distance range where interferograms are coherent, the InSAR images show no intrusion- or withdrawal-related deformation at Shishaldin during this entire time period. However, several InSAR images do show deformation associated with a shallow ML 5.2 earthquake located ∼14 km west of Shishaldin that occurred 6 weeks before the 1999 eruption. We use a theoretical model to predict deformation magnitudes due to a volumetric expansion source having a volume equivalent to the 1999 erupted volume, and find that deformation magnitudes for sources shallower than 10 km are within the expected detection capabilities for interferograms generated from C-band ERS 1/2 and RADARSAT-1 synthetic aperture radar images. We also find that InSAR images cannot resolve relatively shallow deformation sources (1–2 km below sea level) due to spatial gaps in the InSAR images caused by lost coherence. The lack of any deformation, particularly for the 1999 eruption, leads us to speculate that magma feeding eruptions at the summit moves rapidly (at least 80m/day) from > 10 km depth, and that the intrusion–eruption cycle at Shishaldin does not produce significant permanent deformation at the surface.

  3. Molar cusp deformation evaluated by micro-CT and enamel crack formation to compare incremental and bulk-filling techniques.

    PubMed

    Oliveira, Laís Rani Sales; Braga, Stella Sueli Lourenço; Bicalho, Aline Arêdes; Ribeiro, Maria Tereza Hordones; Price, Richard Bengt; Soares, Carlos José

    2018-07-01

    To describe a method of measuring the molar cusp deformation using micro-computed tomography (micro-CT), the propagation of enamel cracks using transillumination, and the effects of hygroscopic expansion after incremental and bulk-filling resin composite restorations. Twenty human molars received standardized Class II mesio-occlusal-distal cavity preparations. They were restored with either a bulk-fill resin composite, X-tra fil (XTRA), or a conventional resin composite, Filtek Z100 (Z100). The resin composites were tested for post-gel shrinkage using a strain gauge method. Cusp deformation (CD) was evaluated using the images obtained using a micro-CT protocol and using a strain-gauge method. Enamel cracks were detected using transillumination. The post-gel shrinkage of Z100 was higher than XTRA (P < 0.001). The amount of cusp deformation produced using Z100 was higher compared to XTRA, irrespective of the measurement method used (P < 0.001). The thinner lingual cusp always had a higher CD than the buccal cusp, irrespective of the measurement method (P < 0.001). A positive correlation (r = 0.78) was found between cusp deformation measured by micro-CT or by the strain-gauge method. After hygroscopic expansion of the resin composite, the cusp displacement recovered around 85% (P < 0.001). After restoration, Z100 produced more cracks than XTRA (P = 0.012). Micro-CT was an effective method for evaluating the cusp deformation. Transillumination was effective for detecting enamel cracks. There were fewer negative effects of polymerization shrinkage in bulk-fill resin restorations using XTRA than for the conventional incremental filling technique using conventional composite resin Z100. Shrinkage and cusp deformation are directly related to the formation of enamel cracks. Cusp deformation and crack propagation may increase the risk of tooth fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.

    2018-03-01

    As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.

  5. Columnar processing in primate pFC: evidence for executive control microcircuits.

    PubMed

    Opris, Ioan; Hampson, Robert E; Gerhardt, Greg A; Berger, Theodore W; Deadwyler, Sam A

    2012-12-01

    A common denominator for many cognitive disorders of human brain is the disruption of neural activity within pFC, whose structural basis is primarily interlaminar (columnar) microcircuits or "minicolumns." The importance of this brain region for executive decision-making has been well documented; however, because of technological constraints, the minicolumnar basis is not well understood. Here, via implementation of a unique conformal multielectrode recording array, the role of interlaminar pFC minicolumns in the executive control of task-related target selection is demonstrated in nonhuman primates performing a visuomotor DMS task. The results reveal target-specific, interlaminar correlated firing during the decision phase of the trial between multielectrode recording array-isolated minicolumnar pairs of neurons located in parallel in layers 2/3 and layer 5 of pFC. The functional significance of individual pFC minicolumns (separated by 40 μm) was shown by reduced correlated firing between cell pairs within single minicolumns on error trials with inappropriate target selection. To further demonstrate dependence on performance, a task-disrupting drug (cocaine) was administered in the middle of the session, which also reduced interlaminar firing in minicolumns that fired appropriately in the early (nondrug) portion of the session. The results provide a direct demonstration of task-specific, real-time columnar processing in pFC indicating the role of this type of microcircuit in executive control of decision-making in primate brain.

  6. Hierarchical Self-Organization of Perylene Bisimides into Supramolecular Spheres and Periodic Arrays Thereof.

    PubMed

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2016-11-09

    Perylene bisimide derivatives (PBIs) are known to form only columnar or lamellar assemblies. There is no known example of a PBI self-assembling into a supramolecular sphere. Therefore, periodic and quasiperiodic arrays generated from spherical assemblies produced from PBIs are also not known. Here, a PBI functionalized at its imide groups with a second generation self-assembling dendron is reported to self-assemble into supramolecular spheres. These spheres self-organize in a body-centered cubic (BCC) periodic array, rarely encountered for self-assembling dendrons but often encountered in block copolymers. These supramolecular spheres also assemble into a columnar hexagonal array in which the supramolecular columns are unexpectedly and unprecedentedly made from spheres. At lower temperature, two additional columnar hexagonal phases consisting of symmetric and asymmetric tetrameric crowns of PBI are observed. Structural and retrostructural analysis via X-ray diffraction (XRD), molecular modeling, molecular simulation, and solid state NMR suggests that inversion of the symmetric tetrameric crowns at high temperature mediates their transformation into supramolecular spheres. The tetrameric crowns of PBIs are able to form an isotropic sphere in the cubic phase due to rapid molecular motion at high temperature, unobservable by XRD but demonstrated by solid state NMR studies. This mechanism of hierarchical self-organization of PBI into supramolecular spheres is most probably general and can be applied to other related planar molecules to generate new functions.

  7. Crystalline Silicates in Comets: Modeling Irregularly-Shaped Forsterite Crystals and Its Implications on Condensation Conditions

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.

    2011-01-01

    Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.

  8. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  9. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia

    PubMed Central

    Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.

    2014-01-01

    Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987

  10. Facilitation and Restoration of Cognitive Function in Primate Prefrontal Cortex by a Neuroprosthesis that Utilizes Minicolumn-Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Gerhardt, Greg A.; Marmarelis, Vasilis; Song, Dong; Opris, Ioan; Santos, Lucas; Berger, Theodore W.; Deadwyler, Sam A.

    2012-01-01

    Problem addressed Maintenance of cognitive control is a major concern for many human disease condition, therefore a major goal of human neuroprosthetics is to facilitate and/or recover cognitive function when such circumstances impair appropriate decision making. Methodology Nonhuman primates trained to perform a delayed match to sample (DMS) were employed to record mini-columnar activity in the prefrontal cortex (PFC) via custom designed conformal multielectrode arrays that provided inter-laminar recordings from neurons in PFC layer 2/3 and layer 5. Such recordings were analyzed via a previously demonstrated nonlinear multi-input multi-output (MIMO) neuroprosthesis in rodents, which extracted and characterized multi-columnar firing patterns during DMS performance. Results The MIMO model verified that the conformal recorded individual PFC minicolumns responded to entrained target selections in patterns critical for successful DMS performance. This allowed substitution of task-related layer 5 neuron firing patterns with electrical stimulation in the same recording regions during columnar transmission from layer 2/3 at the time of target selection. Such stimulation facilitated normal task performance, but more importantly, recovered performance when applied as a neuroprosthesis following pharmacological disruption of decision making in the same task. Significance and potential impact These findings provide the first successful application of a neuroprosthesis in primate brain designed specifically to restore or repair disrupted cognitive function. PMID:22976769

  11. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  12. Hyperplasia of the submucosal glands of the columnar-lined oesophagus.

    PubMed

    Lörinc, Ester; Öberg, Stefan

    2015-04-01

    To evaluate the presence of multi-layered epithelium (ME) and to compare the distribution, size and morphology of the oesophageal submucosal glands (SMG) beneath reflux exposed metaplastic columnar mucosa with those of normal squamous epithelium in patients with columnar-lined oesophagus (CLO). In eight oesophageal resection specimens, the SMG of the metaplastic segments were significantly larger than those in the squamous segments of patients with CLO (0.81 versus 0.56 mm(2) , P = <0.001). There was an accumulation of SMG close to the neosquamocolumnar junction (NSCJ), as indicated by a higher median frequency of SMG (0.080 SMG/mm) compared with that of the squamous (0.013 SMG/mm) and metaplastic segments (0.031 SMG/mm) (P = 0.022). The frequency of ME was significantly higher in the metaplastic compared with the normal squamous segments (1/158 mm and 1/341 mm, respectively, P = 0.028) and ME was found almost exclusively (96%) in direct connection with the excretory ducts of SMG. Hyperplasia of SMG in the metaplastic segment, accumulation of SMG near the NSCJ, the presence of ME in connection with the excretory ducts of SMG and metaplasia are all reflux-induced morphological changes, possibly induced by stimulation of progenitors in the excretory ducts of the SMG. © 2014 John Wiley & Sons Ltd.

  13. The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.

    2018-06-01

    As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.

  14. A Columnar Storage Strategy with Spatiotemporal Index for Big Climate Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Bowen, M. K.; Li, Z.; Schnase, J. L.; Duffy, D.; Lee, T. J.; Yang, C. P.

    2015-12-01

    Large collections of observational, reanalysis, and climate model output data may grow to as large as a 100 PB in the coming years, so climate dataset is in the Big Data domain, and various distributed computing frameworks have been utilized to address the challenges by big climate data analysis. However, due to the binary data format (NetCDF, HDF) with high spatial and temporal dimensions, the computing frameworks in Apache Hadoop ecosystem are not originally suited for big climate data. In order to make the computing frameworks in Hadoop ecosystem directly support big climate data, we propose a columnar storage format with spatiotemporal index to store climate data, which will support any project in the Apache Hadoop ecosystem (e.g. MapReduce, Spark, Hive, Impala). With this approach, the climate data will be transferred into binary Parquet data format, a columnar storage format, and spatial and temporal index will be built and attached into the end of Parquet files to enable real-time data query. Then such climate data in Parquet data format could be available to any computing frameworks in Hadoop ecosystem. The proposed approach is evaluated using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. Experimental results show that this approach could efficiently overcome the gap between the big climate data and the distributed computing frameworks, and the spatiotemporal index could significantly accelerate data querying and processing.

  15. Study on influence of crack on the blade status using FBGs

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun

    2018-03-01

    The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.

  16. Study on influence of crack on the blade status using FBGs

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun

    2017-12-01

    The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.

  17. In situ experimental assessment of lake whitefish development following a freshwater oil spill.

    PubMed

    Debruyn, Adrian M H; Wernick, Barbara G; Stefura, Corey; McDonald, Blair G; Rudolph, Barri-Lynn; Patterson, Luanne; Chapman, Peter M

    2007-10-15

    Wabamun Lake (Alberta, Canada) has been subject to ongoing contamination with polycyclic aromatic hydrocarbons (PAHs) from multiple sources for decades and in August 2005 was exposed to ca. 149 500 L of bunker C oil following a train derailment. We compared the pattern, frequency, and severity of deformity in larvae of lake whitefish (Coregonus clupeaformis) incubated in situ in areas of Wabamun Lake exposed only to "background" PAH contamination and in areas additionally exposed to PAHs from the oil. All sites in the lake (including reference areas) showed incidences of deformity higher than are typically observed in laboratory studies. A small number of oil-exposed sites showed higher incidences of some teratogenic deformities and a tendency to exhibit deformities of higher severity than sites not exposed to oil. The frequency of moderate to severe deformities in 8 of 16 classes was correlated with PAH exposure. Nonmetric multivariate ordination of deformity data revealed a general pattern of increasing incidence and severity of several skeletal (lordosis, scoliosis) and craniofacial (ocular, jaw) deformities at sites with relatively high exposure to oil-derived PAHs. A simultaneous consideration of incidence, severity, and pattern of deformity enabled us to detect a consistent (overall approximately 5% above background) response to the oil despite high variability and high background deformity rates in this historically contaminated environment.

  18. ACF7 regulates colonic permeability.

    PubMed

    Liang, Yong; Shi, Chenzhang; Yang, Jun; Chen, Hongqi; Xia, Yang; Zhang, Peng; Wang, Feng; Han, Huazhong; Qin, Huanlong

    2013-04-01

    Colonic paracellular permeability is regulated by various factors, including dynamics of the cytoskeleton. Recently, ACF7 has been found to play a critical role in cytoskeletal dynamics as an essential integrator. To elucidate the physiological importance of ACF7 and paracellular permeability, we conditionally knocked out ACF7 in the intestinal mucosa of mice. Histopathological findings indicated that ACF7 deficiency resulted in significant interstitial proliferation and columnar epithelial cell rearrangement. Decreased colonic paracellular permeability was detected using a Ussing chamber and the FITC-inulin method. In order to clarify the underlying mechanism, we further analyzed the expression levels of three important tight junction proteins. Downregulation of ZO-1, occludin and claudin-1 was identified. Immunofluorescence provided strong evidence that ZO-1, occludin and claudin-1 were weakly stained. We hypothesized that ACF7 regulates cytoskeleton dynamics to alter mucosal epithelial arrangement and colonic paracellular permeability.

  19. Growth studies at bulk III-Vs by image processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donecker, J.; Hempel, G.; Kluge, J.

    1996-12-01

    The patterns of inhomogeneities in GaAs and InP are studied by scattering and diffraction of light. An adapted version of laser scattering tomography is used for observations with short exposure times and large fields. The information about the three-dimensional distribution of the scatterers in GaAs are evaluated by video travels through the crystal and images of intensities added in interesting directions. Near-infrared transmission and striation distance mapping act like special data compression techniques due to their optical principles. In general, columnar extension of cellular patterns and striations could not be detected in s.i. GaAs. Long-range correlations exist for lineages andmore » slip lines. The comparison with the behavior of striations in doped InP cannot confirm the idea that cellular patterns in GaAs originate from constitutional supercooling during solidification.« less

  20. Ionic Segregation on Grain Boundaries in Thermally Grown Alumina Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A; Unocic, Kinga A

    2012-01-01

    This study first examined segregation behaviour in the alumina scale formed after 100 h at 1100 C on bare and MCrAlYHfSi-coated single-crystal superalloys with {approx}10 ppma La and Y. For the bare superalloy, Hf and Ti were detected on the grain boundaries of the inner columnar alumina layer. Increasing the oxidation temperature to 1200 C for 2 h did not change the segregation behavior. With the bond coating, both Y and Hf were segregated to the grain boundaries as expected. However, there was evidence of Ti-rich oxide particles near the gas interface suggesting that Ti diffused from the superalloy throughmore » the coating. To further understand these segregation observations with multiple dopants, other alumina-forming systems were examined. Alumina scale grain boundary co-segregation of Ti with Y is common for FeCrAl alloys. Co-segregation of Hf and Ti was observed in the scale formed on co-doped NiAl. No La segregation was detected in the scale formed on NiCrAl with only a 19 ppma La addition, however, the scale was adherent.« less

  1. Structural and gasochromic properties of WO3 films prepared by reactive sputtering deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Hakoda, T.; Miyashita, A.; Yoshikawa, M.

    2015-02-01

    The effects of deposition temperature and film thickness on the structural and gasochromic properties of tungsten trioxide (WO3) films used for the optical detection of diluted cyclohexane gas have been investigated. The WO3 films were prepared on SiO2 substrates by magnetron sputtering, with the deposition temperature ranging from 300 to 550 °C in an Ar and O2 gas mixture. The films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Rutherford backscattering spectroscopy (RBS). The gasochromic properties of the WO3 films, coated with a catalytic Pt layer, were examined by exposing them to up to 5% cyclohexane in N2 gas. It was found that (001)-oriented monoclinic WO3 films, with a columnar structure, grew at deposition temperatures between 400 and 450 °C. Furthermore, (010)-oriented WO3 films were preferably formed at deposition temperatures higher than 500 °C. The gasochromic characterization of the Pt/WO3 films revealed that (001)-oriented WO3 films, with cauliflower-like surface morphology, were appropriate for the optical detection of cyclohexane gas.

  2. Seamless image stitching by homography refinement and structure deformation using optimal seam pair detection

    NASA Astrophysics Data System (ADS)

    Lee, Daeho; Lee, Seohyung

    2017-11-01

    We propose an image stitching method that can remove ghost effects and realign the structure misalignments that occur in common image stitching methods. To reduce the artifacts caused by different parallaxes, an optimal seam pair is selected by comparing the cross correlations from multiple seams detected by variable cost weights. Along the optimal seam pair, a histogram of oriented gradients is calculated, and feature points for matching are detected. The homography is refined using the matching points, and the remaining misalignment is eliminated using the propagation of deformation vectors calculated from matching points. In multiband blending, the overlapping regions are determined from a distance between the matching points to remove overlapping artifacts. The experimental results show that the proposed method more robustly eliminates misalignments and overlapping artifacts than the existing method that uses single seam detection and gradient features.

  3. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    NASA Astrophysics Data System (ADS)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  4. Flat Epithelial Atypia of the Breast.

    PubMed

    Collins, Laura C

    2009-06-01

    Lesions of the breast characterized by enlarged terminal duct lobular units lined by columnar epithelial cells are being encountered increasingly in breast biopsy specimens. Some of these lesions feature cuboidal to columnar epithelial cells in which the lining cells exhibit cytologic atypia. The role of these lesions (recently designated "flat epithelial atypia" [FEA]) in breast tumor progression is still emerging. FEA commonly coexists with well-developed examples of atypical ductal hyperplasia, low-grade ductal carcinoma in situ, lobular neoplasia, and tubular carcinoma. These findings and those of recent genetic studies suggest that FEA is a neoplastic lesion that may represent a precursor to or the earliest morphologic manifestation of ductal carcinoma in situ. Additional studies are needed to better understand the biologic nature and clinical significance of these lesions. Copyright © 2009 Elsevier Inc. All rights reserved.

  5. Method and apparatus for calibrating the ionosphere and application to surveillance of geophysical events

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F. (Inventor)

    1984-01-01

    The columnar electron content of the ionosphere between a spacecraft and a receiver is measured in realtime by cross correlating two coherently modulated signals transmitted at different frequencies (L1,L2) from the spacecraft to the receiver using a cross correlator. The time difference of arrival of the modulated signals is proportional to electron content of the ionosphere. A variable delay is adjusted relative to a fixed delay in the respective channels (L1,L2) to produce a maximum at the cross correlator output. The difference in delay required to produce this maximum is a measure of the columnar electron content of the ionosphere. A plurality of monitoring stations and spacecraft (Global Positioning System satellites) are employed to locate any terrestrial event that produces an ionospheric disturbance.

  6. Summertime Dust Devil

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-464, 26 August 2003

    Dust devils are spinning, columnar vortices of air that move across a landscape, picking up dust as they go. They are common occurrences during summer on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer, shows a dust devil in the Phlegra region of Mars near 32.0oN, 182.1oW. Sunlight illuminates the scene from the lower left; the dust devil is casting a columnar shadow toward the upper right. Some dust devils on Mars make streaks as they disrupt the fine coating of dust on the surface--but others do not make streaks. This one did not make a streak. The view shown here is 3 km (1.9 mi) wide.

  7. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  8. Microwave nonlinearity and photoresponse of superconducting resonators with columnar defect micro-channels

    NASA Astrophysics Data System (ADS)

    Remillard, S. K.; Kirkendall, D.; Ghigo, G.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Yang, Z.; Mendelsohn, N. A.; Ghamsari, B. G.; Friedman, B.; Jung, P.; Anlage, S. M.

    2014-09-01

    Micro-channels of nanosized columnar tracks were planted by heavy-ion irradiation into superconducting microwave microstrip resonators that were patterned from YBa2Cu3O7 - x thin films on LaAlO3 substrates. Three different ion fluences were used, producing different column densities, with each fluence having a successively greater impact on the microwave nonlinearity of the device, as compared to a control sample. Photoresponse (PR) images made with a 638 nm rastered laser beam revealed that the channel is a location of enhanced PR and a hot spot for the generation of intermodulation distortion. The microwave PR technique was also advanced in this work by investigating the role of coupling strength on the distribution of PR between inductive and resistive components.

  9. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  10. Testing deformation hypotheses by constraints on a time series of geodetic observations

    NASA Astrophysics Data System (ADS)

    Velsink, Hiddo

    2018-01-01

    In geodetic deformation analysis observations are used to identify form and size changes of a geodetic network, representing objects on the earth's surface. The network points are monitored, often continuously, because of suspected deformations. A deformation may affect many points during many epochs. The problem is that the best description of the deformation is, in general, unknown. To find it, different hypothesised deformation models have to be tested systematically for agreement with the observations. The tests have to be capable of stating with a certain probability the size of detectable deformations, and to be datum invariant. A statistical criterion is needed to find the best deformation model. Existing methods do not fulfil these requirements. Here we propose a method that formulates the different hypotheses as sets of constraints on the parameters of a least-squares adjustment model. The constraints can relate to subsets of epochs and to subsets of points, thus combining time series analysis and congruence model analysis. The constraints are formulated as nonstochastic observations in an adjustment model of observation equations. This gives an easy way to test the constraints and to get a quality description. The proposed method aims at providing a good discriminating method to find the best description of a deformation. The method is expected to improve the quality of geodetic deformation analysis. We demonstrate the method with an elaborate example.

  11. Mössbauer analysis of the magnetic structure of a high-carbon austenitic steel upon deformation and under pressure

    NASA Astrophysics Data System (ADS)

    Shabashov, V. A.; Korshunov, L. G.; Zamatovskii, A. E.; Litvinov, A. V.

    2007-10-01

    A large plastic deformation of Hadfield steel (frictional action, shear under pressure, filing, and rolling) leads to the growth of an internal effective field at 57Fe nuclei, magnetic-degeneracy removal in the spectra, and delay of the paraprocess up to room temperature. In the Mössbauer spectrum of the 120G13 Hadfield steel, the reversible formation of a hyperfine structure, which is supposedly connected with magnetic ordering, has been detected in situ upon quasi-hydrostatic compression to 26 GPa. The observed growth of magnetic characteristics upon deformation and under high pressure is explained by the deformation-induced redistribution of carbon with the formation of short-range ordering of oxygen and manganese.

  12. InSAR Monitoring of Surface Deformation in Alberta's Oil Sands

    NASA Astrophysics Data System (ADS)

    Pearse, J.; Singhroy, V.; Li, J.; Samsonov, S. V.; Shipman, T.; Froese, C. R.

    2013-05-01

    Alberta's oil sands are among the world's largest deposits of crude oil, and more than 80% of it is too deep to mine, so unconventional in-situ methods are used for extraction. Most in situ extraction techniques, such as Steam-Assisted Gravity Drainage (SAGD), use steam injection to reduce the viscosity of the bitumen, allowing it to flow into wells to be pumped to the surface. As part of the oil sands safety and environmental monitoring program, the energy regulator uses satellite radar to monitor surface deformation associated with in-situ oil extraction. The dense vegetation and sparse infrastructure in the boreal forest of northern Alberta make InSAR monitoring a challenge; however, we have found that surface heave associated with steam injection can be detected using traditional differential InSAR. Infrastructure and installed corner reflectors also allow us to use persistent scatterer methods to obtain time histories of deformation at individual sites. We have collected and processed several tracks of RADARSAT-2 data over a broad area of the oil sands, and have detected surface deformation signals of approximately 2-3 cm per year, with time series that correlate strongly with monthly SAGD steam injection volumes.

  13. Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Amelung, F.

    2014-12-01

    Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.

  14. Detection of Sinkhole Activity in Central Florida with High Spatial-Resolution InSAR Time Series Observations

    NASA Astrophysics Data System (ADS)

    Oliver-Cabrera, T.; Wdowinski, S.; Kruse, S.

    2016-12-01

    Central Florida's thick carbonate deposits and hydrological conditions make the area prone to sinkhole development. Sinkhole collapse is a major geologic hazard, threatening human life and causing substantial damage to property. Detecting sinkhole deformation before a collapse is a difficult task, due to small and typically unnoticeable surface changes. Most techniques used to map sinkholes, such as ground penetrating radar, require ground contact and are practical for localized (typically 2D, tens to hundreds of meters) surveys but not for broad study areas. In this study we use Persistent Scatterer (PS) time series analysis of Interferometric Synthetic Aperture Radar (InSAR), which is a very useful technique for detecting localized deformation while covering vast areas. We acquired SAR images over four locations in central Florida in order to detect possible pre-collapse or slow subsidence surface movements. The data used in this study were acquired by TerraSAR-X and COSMO-SkyMed satellites with pixel resolutions ranging between 25cm and 2m. To date, we have obtained four datasets, each of 25-30 acquisitions, covering a period of roughly one year over a total of roughly 2200 km2. We also installed two corner reflectors over a subsiding sinkhole located in an open vegetated area, to provide strong scattering and improve coherence over that particular location. We generate PS time series for each of the four datasets. Preliminary results show localized deformation at several houses and commercial buildings in several locations. Deforming areas vary in size from approximately 10mx20m of a single house to 60mx60m for a commercial building. On site ground penetrating radar surveys will be performed in these areas to verify their relationship to possible sinkhole activities. Our results also confirm that the corner reflectors improved PS detection over low coherence areas.

  15. Tactile Fabric Panel in an Eight Zones Structure

    PubMed Central

    Alsina, Maria; Escudero, Francesc; Margalef, Jordi; Luengo, Sonia

    2007-01-01

    By introducing a percentage of conductive material during the manufacture of sewing thread, it is possible to obtain a fabric which is able to detect variations in pressure in certain areas. In previous experiments the existence of resistance variations has been demonstrated, although some constrains of cause and effect were found in the fabric. The research has been concentrated in obtaining a fabric that allows electronic detection of its shape changes. Additionally, and because a causal behavior is needed, it is necessary that the fabric recovers its original shape when the external forces cease. The structure of the fabric varies with the type of deformation applied. Two kinds of deformation are described: those caused by stretching and those caused by pressure. This last type of deformation gives different responses depending on the conductivity of the object used to cause the pressure. This effect is related to the type of thread used to manufacture the fabric. So, if the pressure is caused by a finger the response is different compared to the response caused by a conductive object. Another fact that has to be mentioned is that a pressure in a specific point of the fabric can affect other detection points depending on the force applied. This effect is related to the fabric structure. The goals of this article are validating the structure of the fabric used, as well as the study of the two types of deformation mentioned before. PMID:28903272

  16. Comparison of three commercially available ektacytometers with different shearing geometries.

    PubMed

    Baskurt, Oguz K; Hardeman, M R; Uyuklu, Mehmet; Ulker, Pinar; Cengiz, Melike; Nemeth, Norbert; Shin, Sehyun; Alexy, Tamas; Meiselman, Herbert J

    2009-01-01

    In December 2008, the International Society for Clinical Hemorheology organized a workshop to evaluate and compare three ektacytometer instruments for measuring deformability of red blood cells (RBC): LORCA (Laser-assisted Optical Rotational Cell Analyzer, RR Mechatronics, Hoorn, The Netherlands), Rheodyn SSD (Myrenne GmbH, Roetgen, Germany) and RheoScan-D (RheoMeditech, Seoul, Korea). Intra-assay reproducibility and biological variation were determined using normal RBC, and cells with reduced deformability (i.e., 0.001-0.02% glutaradehyde (GA), 48 degrees C heat treatment) were employed as either the only RBC present or as a sub-population. Standardized difference values were used as measure of the power to detect differences between normal and treated cells. Salient results include: (1) All instruments had intra-assay variations below 5% for shear stress (SS)>1 Pa but a sharp increase was found for Rheodyn SSD and RheoScan-D at lower SS; (2) Biological variation was similar and markedly increased for SS<3-5 Pa; (3) All instruments detected GA-treated RBC with maximal power at 1-3 Pa, the presence of 10% or 40% GA-modified cells, and the effects of heat treatment. It is concluded that the LORCA, Rheodyn SSD and RheoScan-D all have acceptable precision and power for detecting reduced RBC deformability due to GA treatment or heat treatment, and that the SS range selected for the measurement of deformability is an important determinant of an instrument's power.

  17. Ground deformation associated with the 2008 Sichuan Earthquake in China, estimated using a SAR offset-tracking method

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Takada, Y.; Furuya, M.; Murakami, M.

    2008-12-01

    Introduction: A catastrophic earthquake struck China"fs Sichuan area on May 12, 2008, with the moment magnitude of 7.9 (USGS). The hypocenter and their aftershocks are distributed along the western edge of the Sichuan Basin, suggesting that this seismic event occurred at the Longmeng Shan fault zone which is constituted of major three active faults (Wenchuan-Maowen, Beichuan, and Pengguan faults). However, it is unclear whether these faults were directly involved in the mainshock rupture. An interferometry SAR (InSAR) analysis generally has a merit that we can detect ground deformation in a vast region with high precision, however, for the Sichuan event, the surface deformation near the fault zone has not been satisfactorily detected from the InSAR analyses due to a low coherency. An offset-tracking method is less precise but more robust for detecting large ground deformation than the interferometric approach. Our purpose is to detect the detail ground deformation immediately near the faults involved in the Sichuan event with applying the offset-tracking method. Analysis Method: We analyzed ALOS/PALSAR images, which have been taken from Path 471 to 476 of ascending track, acquired before and after the mainshock. We processed SAR data from the level-1.0 product, using a software package from Gamma Remote Sensing. For offset-tracking analysis we adopt intensity tracking method which is performed by cross-correlating samples of backscatter intensity of a master SAR image with samples from the corresponding search area of a slave image in order to estimate range and azimuth offset fields. We reduce stereoscopic effects that produce apparent offsets, using SRTM3 DEM data. Results: We have successfully obtained the surface deformation in range (radar look direction) component, while in azimuth (flight direction) no significant deformation can be detected in some orbits due to "gazimuth streaks"h that are errors caused by ionospheric effects. Some concluding remarks are as follows: On the Beichuan F. and its northeastward extension, a clear boundary of a motion toward and away from the satellite can be recognized just along the fault, which is almost consistent with a right-lateral fault motion. On the other hand, in the southwestern region from the Beichuan city where the three major faults are running almost parallel, two boundaries of motions can be recognized; On the Beichuan F. there are a clear displacement boundary in range component, while on the Pengguan F. a boundary can be identified in azimuth component rather than in range, suggesting that the seismic ruptures proceeded with different fault motions at each fault. For the Wenchuan-Maowen F., no significant displacement boundary can be recognized. Acknowledgments: PALSAR data are provided from Earthquake Working Group and PIXEL (PALSAR Interferometry Consortium to Study our Evolving Land surface) under a cooperative research contract with JAXA. The ownership of PALSAR data belongs to METI (Ministry of Economy, Trade and Industry) and JAXA.

  18. Episodic inflation events at Akutan Volcano, Alaska, during 2005-2017

    NASA Astrophysics Data System (ADS)

    Ji, Kang Hyeun; Yun, Sang-Ho; Rim, Hyoungrea

    2017-08-01

    Detection of weak volcano deformation helps constrain characteristics of eruption cycles. We have developed a signal detection technique, called the Targeted Projection Operator (TPO), to monitor surface deformation with Global Positioning System (GPS) data. We have applied the TPO to GPS data collected at Akutan Volcano from June 2005 to March 2017 and detected four inflation events that occurred in 2008, 2011, 2014, and 2016 with inflation rates of about 8-22 mm/yr above the background trend at a near-source site AV13. Numerical modeling suggests that the events should be driven by closely located sources or a single source in a shallow magma chamber at a depth of about 4 km. The inflation events suggest that magma has episodically accumulated in a shallow magma chamber.

  19. A review of virtual cutting methods and technology in deformable objects.

    PubMed

    Wang, Monan; Ma, Yuzheng

    2018-06-05

    Virtual cutting of deformable objects has been a research topic for more than a decade and has been used in many areas, especially in surgery simulation. We refer to the relevant literature and briefly describe the related research. The virtual cutting method is introduced, and we discuss the benefits and limitations of these methods and explore possible research directions. Virtual cutting is a category of object deformation. It needs to represent the deformation of models in real time as accurately, robustly and efficiently as possible. To accurately represent models, the method must be able to: (1) model objects with different material properties; (2) handle collision detection and collision response; and (3) update the geometry and topology of the deformable model that is caused by cutting. Virtual cutting is widely used in surgery simulation, and research of the cutting method is important to the development of surgery simulation. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Toward understanding atmospheric physics impacting the relationship between columnar aerosol optical depth and near-surface PM2.5 mass concentrations in Nevada and California, U.S.A., during 2013

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Panorska, Anna; Arnott, W. Patrick; Barnard, James C.; Boehmler, Jayne M.; Holmes, Heather A.

    2017-12-01

    Determining the relationship between columnar aerosol optical depth (τext) and surface particulate matter concentrations (PM2.5) is desired to estimate surface aerosol concentrations over broad spatial and temporal scales using satellite remote sensing. However, remote sensing studies incur challenges when surface aerosol pollution (i.e. PM2.5) is not correlated with columnar conditions (i.e., τext). PM2.5 data fusion models that rely on satellite data and statistical relationships of τext and PM2.5 may not be able to capture the physical conditions impacting the relationships that cause columnar and surface aerosols to not be correlated in the western U.S. Therefore, an extensive examination of the atmospheric conditions is required to improve surface estimates of PM2.5 that rely on columnar aerosol measurements. This investigation uses datasets from both routine monitoring networks and models of meteorological variables and aerosol physical parameters to understand the atmospheric conditions under which surface aerosol pollution can be explained by column measurements in California and Nevada during 2013. A novel quadrant method, that utilizes statistical analysis, was developed to investigate the relationship between τext and PM2.5. The results from this investigation show that τext and PM2.5 had a positive association (τext and PM2.5 increase together) when local sources of pollution or wildfires dominated aerosol pollution in the presence of a deep and well-mixed planetary boundary layer (PBL). Moreover, τext and PM2.5 had no association (where the variables are not related) when stable conditions, long-range transport, or entrainment of air from above the PBL were observed. It was found that seasonal categorization of the relationship between τext and PM2.5, an approach commonly used in statistical models to estimate surface concentrations with satellite remote sensing, may not be enough to account for the atmospheric conditions that drive the relationships between τext and PM2.5. For all stations, winter showed the maximum average PM2.5 concentrations (14.1 μg m-3, σ = 11.6 μg m-3) meanwhile, τext reached minimum values (0.06 μg m-3, σ = 0.04) during the same season. Conversely, spring presented the minimum average PM2.5 concentrations (9.4 μg m-3, σ = 6.9 μg m-3) and the average values of τext during spring had the second highest values (0.11, σ = 0.06) averaged for all stations.

  1. Liquid crystal organization of self-assembling cyclic peptides.

    PubMed

    Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa

    2014-01-21

    Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.

  2. Smart photonic coating as a new visualization technique of strain deformation of metal plates

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi; Sawada, Tsutomu; Tanaka, Yoshikazu; Ario, Ichiro; Hyakutake, Tsuyoshi; Nishizaki, Itaru

    2012-04-01

    We will present a simple and low cost method to visualize local strain distribution in deformed aluminum plates. In this study, aluminum plates were coated with opal photonic crystal film with tunable structural color. The photonic crystal films consist of a silicone elastomer that contains an array of submicron polystyrene colloidal particles. When the aluminum sheets were stretched, the change in the spacing of the colloidal particles in the opal film alters the color of the film. This approach could be useful as a new strain gauge having a visual indicator to detect mechanical deformation.

  3. Defining the Cellular Environment in the Organ of Corti following Extensive Hair Cell Loss: A Basis for Future Sensory Cell Replacement in the Cochlea

    PubMed Central

    Taylor, Ruth R.; Jagger, Daniel J.; Forge, Andrew

    2012-01-01

    Background Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. Methodology/Principal Findings Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca's, suggesting genetic background influences the rate of re-organisation. Conclusions/Significance The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals resulting from genetic influences on the rate at which remodelling occurs may pose challenges to devising the appropriate regenerative therapy for a deaf patient. PMID:22299045

  4. PubMed

    Torrado, Julio; Piazuelo, María Blanca; Ruiz, Irune; Izarzugaza, María Isabel; Camargo, María Constanza; Delgado, Alberto; Abdirad, Afshin; Correa, Pelayo

    2010-01-01

    ANTECEDENTES: El esófago de Barrett es una reconocida lesión precursora de adenocarcinoma esofágico. Aunque generalmente asociada al reflujo gastroesofágico, los mecanismos patogénicos de la enfermedad no son bien conocidos. El objetivo del presente estudio es explorar la historia natural e identificar marcadores de progreso del proceso precanceroso. MATERIAL Y M#ENTITYSTARTX000E9;TODOS: Se utilizaron cortes histológicos de 67 especímenes de esófago correspondientes a 14 pacientes con esófago de Barrett, a los que se siguió entre 1 - 9 años. Se clasificaron las lesiones en: esófago de Barrett sin displasia, indefinido para displasia o con displasia. Se evaluó la expresión de diferentes mucinas en las células caliciformes y en las columnares usando técnicas de histoquímica e inmunohistoquímica. RESULTADOS: En todos los casos se comprobó la presencia de metaplasia intestinal incompleta. Las células columnares dentro del epitelio metaplásico contenían mucinas neutras. A mayor severidad de la lesión se encontró significativamente menor expresión de sialomucinas en las células columnares (p de tendencia igual a 0,03). En sujetos con lesiones indefinidas para displasia se observó un mayor contenido de sulfomucinas en las células caliciformes (p=0,034) y de MUC2 en las células columnares (p=0,029) que en sujetos con esófago de Barrett sin displasia. Se observó expresión de la mucina intestinal MUC2 y de la mucina gástrica MUC5AC en todas las muestras. MUC6, una mucina de las glándulas profundas gástricas, se presentó ocasionalmente. CONCLUSI#ENTITYSTARTX000F3;N: La evaluación de los perfiles de mucinas en el esófago de Barrett sugiere una transición gradual del fenotipo del epitelio metaplásico a medida que la lesión avanza en el tiempo.

  5. El fenotipo de las mucinas en el esófago de Barrett

    PubMed Central

    Torrado, Julio; Piazuelo, María Blanca; Ruiz, Irune; Izarzugaza, María Isabel; Camargo, María Constanza; Delgado, Alberto; Abdirad, Afshin; Correa, Pelayo

    2011-01-01

    Antecedentes El esófago de Barrett es una reconocida lesión precursora de adenocarcinoma esofágico. Aunque generalmente asociada al reflujo gastroesofágico, los mecanismos patogénicos de la enfermedad no son bien conocidos. El objetivo del presente estudio es explorar la historia natural e identificar marcadores de progreso del proceso precanceroso. Material y métodos Se utilizaron cortes histológicos de 67 especímenes de esófago correspondientes a 14 pacientes con esófago de Barrett, a los que se siguió entre 1 – 9 años. Se clasificaron las lesiones en: esófago de Barrett sin displasia, indefinido para displasia o con displasia. Se evaluó la expresión de diferentes mucinas en las células caliciformes y en las columnares usando técnicas de histoquímica e inmunohistoquímica. Resultados En todos los casos se comprobó la presencia de metaplasia intestinal incompleta. Las células columnares dentro del epitelio metaplásico contenían mucinas neutras. A mayor severidad de la lesión se encontró significativamente menor expresión de sialomucinas en las células columnares (p de tendencia igual a 0,03). En sujetos con lesiones indefinidas para displasia se observó un mayor contenido de sulfomucinas en las células caliciformes (p=0,034) y de MUC2 en las células columnares (p=0,029) que en sujetos con esófago de Barrett sin displasia. Se observó expresión de la mucina intestinal MUC2 y de la mucina gástrica MUC5AC en todas las muestras. MUC6, una mucina de las glándulas profundas gástricas, se presentó ocasionalmente. Conclusión La evaluación de los perfiles de mucinas en el esófago de Barrett sugiere una transición gradual del fenotipo del epitelio metaplásico a medida que la lesión avanza en el tiempo. PMID:21804831

  6. Is cratonic sedimentation consistent with available models? An example from the Upper Proterozoic of the West African craton

    NASA Astrophysics Data System (ADS)

    Bertrand-Sarfati, Janine; Moussine-Pouchkine, Alexis

    1988-08-01

    The Atar Group, part of the Upper Proterozoic sequence covering the West African craton, stable since 2000 Ma, is characterized by an alternation of extensive carbonate beds and mixed siliciclastic and carbonate facies. The carbonate beds comprise essentially columnar stromatolite biostromes and bioherms which reflect sublittoral environments. The mixed facies contain a variety of laterally discontinuous facies which imply more variable environmental conditions. The settings of the mixed facies are not always clear but they do not contain thick sequences of high-energy facies. Few obvious facies sequences are discernable; those that are present are considered to be punctuated aggradational cycles (PACs) and they always start with biostromes of columnar stromatolites with very few sediments. Composite sequences are interpreted as due to shallowing upward or increasing energy environments that may be laterally contiguous, despite the fact that the contacts are not gradational. However, much of the stratigraphic sequence cannot be subdivided into cycles and seems to consist of unrelated individual facies, bound by sharp boundaries. The basin analysis reveals that biostromes of columnar stromatolites start after an instantaneous geological event corresponding to a sea-level rise. Consequently, their appearance can be considered as a time-line. We describe, in the Atar Group and its equivalents, three sedimentation trends, all of which are interpreted to be of shallowing upward character. The Atar Group appears to have been deposited in an epeiric sea (i.e. an extremely flat ramp). There are two contrasting styles of sedimentation: (1) after the submergence of the whole area, columnar stromatolites built extensive biostromes; (2) during the stable phase, sediments are deposited in a mosaic of laterally-discontinuous facies. Tidal influence cannot be recognized in the sequence, neither can a salinity increase toward the land; both common features in published epeiric sea models. A cratonic sedimentation area such as this is characterized by its size and flatness. Only during the stable phase of the cycle does small-scale topographic relief lead to deposition of a mosaic of facies. The sedimentation is storm- and wave-dominated.

  7. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  8. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  9. Deformation monitoring at Nevado del Ruiz, Colombia - October 1985 - March 1988

    USGS Publications Warehouse

    Banks, N.G.; Carvajal, C.; Mora, H.; Tryggvason, E.

    1990-01-01

    Deformation studies began at Nevado del Ruiz 23 days before the devastating 13 November 1985 eruption, at least 12 months after precursory seismicity and fumarolic activity began. The late start in geodetic monitoring, limited number of stations in the pre-eruption network, and inconsistent patterns in the observed deformation limit conclusions about intrusive activity in the months and weeks prior to the eruption. However, the data require that the magma source of the devastating eruption was either deeper than 7 km or, if shallow, recovered the same volume and position within one week of the eruption. Geodetic monitoring resumed 1 week after the eruption and, by April 1986, included 11 tilt-leveling stations, 38 EDM lines, and 7 short leveling lines - a network capable of detecting emplacement or movement of magma volumes as small as 3 MCM (3 ?? 106 m3) to a depth of 2-3 km (using a point-source model), 10 MCM to 7 km, 50 MCM to 10 km, and 200 MCM to 15 km beneath Ruiz. In addition, 4 telemetered tiltmeters provided the capability of detecting, in real time, the fairly rapid ascent of much smaller magma bodies. Stations established to detect instability of the summit ice cap after the eruption were discontinued in early 1986. The data collected from the geodetic networks have higher than normal variance but demonstrate that little or no cumulative deformation of Ruiz occurred from October 1985 through March 1988. Thus, little, if any, magma intruded above 5 km beneath the summit during or after the 13 November 1985 eruption. This lack of significant intrusive activity agrees with the surprisingly low seismic energy release under Ruiz and makes direct degassing of a large batholith an improbable explanation of the large sulfur flux to date at Ruiz. Part of the variance in the geodetic data results from real but noncumulative deformation that may in part be pressure-buffered by a fairly large geothermal water-gas mixture for which abundant physical evidence exists. Part of the noncumulative deformation, some of the fairly dispersed and low-level seismicity under Ruiz, and some phreatic events appear to correlate with seasonal precipitation patterns. Hence rain/snow-loading and groundwater interaction may cause deformation events and possibly help trigger some phreatic explosions and seismic events at Ruiz and, as search of the literature reveals, at other volcanoes in metastable states. ?? 1990.

  10. Proximity and touch sensing using deformable ionic conductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Madden, John D. W.; Dobashi, Yuta; Sarwar, Mirza S.; Preston, Eden C.; Wyss, Justin K. M.; Woehling, Vincent; Nguyen, Tran-Minh-Giao; Plesse, Cedric; Vidal, Frédéric; Naficy, Sina; Spinks, Geoffrey M.

    2017-04-01

    There is increasing interest in creating bendable and stretchable electronic interfaces that can be worn or applied to virtually any surface. The electroactive polymer community is well placed to add value by incorporating sensors and actuators. Recent work has demonstrated transparent dielectric elastomer actuation as well as pressure, stretch or touch sensing. Here we present two alternative forms of sensing. The first uses ionically conductive and stretchable gels as electrodes in capacitive sensors that detect finger proximity. In this case the finger acts as a third electrode, reducing capacitance between the two gel electrodes as it approaches, which can be detected even during bending and stretching. Very light finger touch is readily detected even during deformation of the substrate. Lateral resolution is achieved by creating a sensor array. In the second approach, electrodes placed beneath a salt containing gel are able to detect ion currents generated by the deformation of the gel. In this approach, applied pressure results in ion currents that create a potential difference around the point of contact, leading to a voltage and current in the electrodes without any need for input electrical energy. The mechanism may be related to effects seen in ionomeric polymer metal composites (IPMCs), but with the response in plane rather than through the thickness of the film. Ultimately, these ionically conductive materials that can also be transparent and actuate, have the potential to be used in wearable devices.

  11. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA

    USGS Publications Warehouse

    Zhao, Chaoying; Lu, Zhong; Zhang, Qin; de la Fuente, Juan

    2012-01-01

    Multi-temporal ALOS/PALSAR images are used to automatically investigate landslide activity over an area of ~ 200 km by ~ 350 km in northern California and southern Oregon. Interferometric synthetic aperture radar (InSAR) deformation images, InSAR coherence maps, SAR backscattering intensity images, and a DEM gradient map are combined to detect active landslides by setting individual thresholds. More than 50 active landslides covering a total of about 40 km2 area are detected. Then the short baseline subsets (SBAS) InSAR method is applied to retrieve time-series deformation patterns of individual detected landslides. Down-slope landslide motions observed from adjacent satellite tracks with slightly different radar look angles are used to verify InSAR results and measurement accuracy. Comparison of the landslide motion with the precipitation record suggests that the landslide deformation correlates with the rainfall rate, with a lag time of around 1–2 months between the precipitation peak and the maximum landslide displacement. The results will provide new insights into landslide mechanisms in the Pacific Northwest, and facilitate development of early warning systems for landslides under abnormal rainfall conditions. Additionally, this method will allow identification of active landslides in broad areas of the Pacific Northwest in an efficient and systematic manner, including remote and heavily vegetated areas difficult to inventory by traditional methods.

  12. Effect of temperature on the nano/microstructure and mechanical behavior of nanotwinned Ag films

    DOE PAGES

    Zhang, Huan; Geng, Jie; Ott, Ryan T.; ...

    2015-06-24

    In situ and ex situ annealed nanotwinned (NT) Ag thin films have been investigated by TEM and tensile testing to reveal the thermal stability of the twin boundaries, grain boundaries, dislocation densities, and their respective influence of the macroscopic yield stress. The NT Ag films synthesized by magnetron sputtering form both coherent (CTB, Σ3{111}) and incoherent (ITB, Σ3{112}) twin boundaries that are thermally stable up to 473 K (200 Celsius), i.e., no obvious changes in grain size, twin spacing, and yield stress. In situ TEM observations show the dislocations become mobile at 453 K (180 Celsius) resulting in dislocation annihilationmore » primarily at twin and grain boundaries. Rotation of grains with low-angle grain boundaries was observed during in situ heating, resulting in the growth of columnar grains above 453 K (180 Celsius). However, no noticeable changes in the spacings of CTBs were observed during the entire in situ and ex situ annealing [up to 873 K (600 Celsius)]. The increase in grain size and concomitant decrease in yield stress following annealing at various temperatures can be described by the Hall-Petch relationship, demonstrating that grain size rather than twin spacing is most sensitive to thermal annealing and plays a dominant role in the deformation of NT Ag films.« less

  13. Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding.

    PubMed

    Zhang, Peilei; Li, Mingchuan; Yu, Zhishui

    2018-05-23

    Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr₃Si+γ-Ni+Cu ss (Coating 1, Ni-26Cr-29Si), Cr₆Ni 16 Si₇+Ni₂Si+Cu ss (Coating 2, Ni-10Cr-30Si) and Cr₃Ni₅Si₂+Cr₂Ni₃+Cu ss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.

  14. Quantification of the fraction poorly deformable red blood cells using ektacytometry.

    PubMed

    Streekstra, G J; Dobbe, J G G; Hoekstra, A G

    2010-06-21

    We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a laser beam that is sent through the suspension, is projected on a screen. When measuring a healthy red blood cell population iso-intensity curves are ellipses with an axial ratio equal to that of the average red blood cell. In contrast poorly deformable cells result in circular iso-intensity curves. In this study we show that for mixtures of deformable and poorly deformable red blood cells, iso-intensity curves in the composite intensity pattern are neither elliptical nor circular but obtain cross-like shapes. We propose a method to obtain the fraction of poorly deformable red blood cells from those intensity patterns. Experiments with mixtures of poorly deformable and deformable red blood cells validate the method and demonstrate its accuracy. In a clinical setting our approach is potentially of great value for the detection of the fraction of sickle cells in blood samples of patients with sickle cell disease or to find a measure for the parasitemia in patients infected with malaria.

  15. Impact of Type of Sport, Gender and Age on Red Blood Cell Deformability of Elite Athletes.

    PubMed

    Tomschi, Fabian; Bloch, Wilhelm; Grau, Marijke

    2018-01-01

    Our objective was to detect possible differences in red blood cell (RBC) deformability of elite athletes performing different types of sports and being of different age and gender.182 athletes were included in this cross-sectional study. RBC deformability was measured using the laser-assisted optical rotational cell-analyzer. Maximal elongation index (EI  max ) and shear stress at half-maximum deformation (SS  1/2 ) were calculated. The ratio SS  1/2  /EI  max  (EI  Ratio ) was calculated with low values representing high RBC deformation. Hematocrit (Hct) and mean cellular volume (MCV) were determined in venous blood. Overall RBC deformability did not differ between male and female athletes but, when separated by age of the subjects, RBC deformability increased with age in male but not in female athletes. RBC deformability was lower in Combat sports compared other sport groups. Hct was higher in male compared to female athletes while no difference was observed for MCV. MCV and Hct increased with increasing age. A negative correlation was found between the EI  Ratio  and MCV and between EI  Ratio  and Hct. RBC deformability is influenced by age and endurance rate of the sport which suggests that the RBC system may adapt to changing conditions such as adolescence with the onset effects of sex hormones or physical exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Influence of preliminary deformation on the hardening effect upon aging of Al-Cu-Li alloys

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Ashmarin, A. A.; Knyazev, M. I.; Dolgova, M. I.

    2016-09-01

    The influence of preliminary deformation upon rolling of wedge specimens on the mechanical properties and the structural phase state of Al-Cu-Li alloys are studied by X-ray diffraction and hardness measurements. Strong dependence of the hardening effect upon aging on the reduction upon rolling has been revealed. Deformation weakly influences the hardness and significantly increases the hardening upon aging. Herewith, the hardening effect is nearly absent at the minimum deformation ratio of 1% and increases with its increase. It is demonstrated that the content of T1 phase increases from 2 to 4% in the range of a preliminary deformation ratio of 6-10% and the content of δ' phase is 17% at a deformation ratio in the range 1‒6% and increases to 18-19% at a deformation ratio of 6-10%. The δ' phase in an alloy contains <20% nanocrystalline particles with 6-20 nm in size, and the remaining part consists of amorphous particles (as detected by X-ray diffraction) <5 nm in size, which precipitate coherently from the matrix and have the same orientation as the nanocrystalline particles and the solid solution.

  17. Precise leveling, space geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Reilinger, R.

    1981-01-01

    The implications of currently available leveling data on understanding the crustal dynamics of the continental United States are investigated. Neotectonic deformation, near surface movements, systematic errors in releveling measurements, and the implications of this information for earthquake prediction are described. Vertical crustal movements in the vicinity of the 1931 Valentine, Texas, earthquake which may represent coseismic deformation are investigated. The detection of vertical fault displacements by precise leveling in western Kentucky is reported. An empirical basis for defining releveling anomalies and its implications for crustal deformation in southern California is presented. Releveling measurements in the eastern United States and their meaning in the context of possible crustal deformation, including uplift of the Appalachian Mountains, eastward tilting of the Atlantic Coastal Plain, and apparent movements associated with a number of structural features along the east coast, are reported.

  18. Effect of equal-channel angular pressing and annealing conditions on the texture, microstructure, and deformability of an MA2-1 alloy

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; Ivanova, T. M.; Kopylov, V. I.; Dobatkin, S. V.; Pozdnyakova, N. N.; Pimenov, V. A.; Savelova, T. I.

    2010-07-01

    Equal-channel angular pressing (ECAP) of am MA2-1 alloy according to routes A and Bc is used to study the possibility of increasing the low-temperature deformability of the alloy due to grain refinement and a change in its texture. To separate the grain refinement effect from the effect of texture on the deformability of the alloy, samples after ECAP are subjected to recrystallization annealing that provides grain growth to the grain size characteristic of the initial state (IS) of the alloy. Upon ECAP, the average grain size is found to decrease to 2-2.4 μm and the initial sharp axial texture changes substantially (it decomposes into several scattered orientations). The type of orientations and the degree of their scattering depend on the type of ECAP routes. The detected change in the texture is accompanied by an increase in the deformability parameters (normal plastic anisotropy coefficient R, strain-hardening exponent n, relative uniform elongation δu) determined upon tensile tests at 20°C for the states of the alloy formed in the IS-4A-4Bc and IS-4Ao-4BcO sequences. The experimental values of R agree with the values calculated in terms of the Taylor model of plastic deformation in the Bishop-Hill approximation using quantitative texture data in the form of orientation distribution function coefficients with allowance for the activation of prismatic slip, especially for ECAP routes 4Bc and 4BcO. When the simulation results, the Hall-Petch relation, and the generalized Schmid factors are taken into account, a correlation is detected between the deformability parameter, the Hall-Petch coefficient, and the ratio of the critical shear stresses on prismatic and basal planes.

  19. New buoy observation system for tsunami and crustal deformation

    NASA Astrophysics Data System (ADS)

    Takahashi, Narumi; Ishihara, Yasuhisa; Ochi, Hiroshi; Fukuda, Tatsuya; Tahara, Jun'ichiro; Maeda, Yosaku; Kido, Motoyuki; Ohta, Yusaku; Mutoh, Katsuhiko; Hashimoto, Gosei; Kogure, Satoshi; Kaneda, Yoshiyuki

    2014-09-01

    We have developed a new system for real-time observation of tsunamis and crustal deformation using a seafloor pressure sensor, an array of seafloor transponders and a Precise Point Positioning (PPP ) system on a buoy. The seafloor pressure sensor and the PPP system detect tsunamis, and the pressure sensor and the transponder array measure crustal deformation. The system is designed to be capable of detecting tsunami and vertical crustal deformation of ±8 m with a resolution of less than 5 mm. A noteworthy innovation in our system is its resistance to disturbance by strong ocean currents. Seismogenic zones near Japan lie in areas of strong currents like the Kuroshio, which reaches speeds of approximately 5.5 kt (2.8 m/s) around the Nankai Trough. Our techniques include slack mooring and new acoustic transmission methods using double pulses for sending tsunami data. The slack ratio can be specified for the environment of the deployment location. We can adjust slack ratios, rope lengths, anchor weights and buoy sizes to control the ability of the buoy system to maintain freeboard. The measured pressure data is converted to time difference of a double pulse and this simple method is effective to save battery to transmit data. The time difference of the double pulse has error due to move of the buoy and fluctuation of the seawater environment. We set a wire-end station 1,000 m beneath the buoy to minimize the error. The crustal deformation data is measured by acoustic ranging between the buoy and six transponders on the seafloor. All pressure and crustal deformation data are sent to land station in real-time using iridium communication.

  20. Collagen-Proteoglycan Relationships in Epiphyseal Cartilage

    PubMed Central

    Eisenstein, Reuben; Larsson, Sven-Erik; Sorgente, Nino; Kuettner, Klaus E.

    1973-01-01

    Columnar and hypertrophic zones of calf scapular cartilage were studied before and after extraction with 3 M guanidinium chloride (GuCl) and digestion with enzymes which degrade various components of the extracellular matrix. Morphologic and chemical analysis suggests that there are at least two anatomic pools of proteoglycan in this tissue. One, which resides between collagen fibrils, is extractable with GuCl. Another appears attached to collagen by strong bonds and is apparently not extractable with GuCl. This type of collagen-proteoglycan relationship is possibly restricted to epiphyseal cartilage. The morphology of the lacuna is different in the columnar and hypertrophic zones. Proteoglycans in the distal hypertrophic zone are less resistant to GuCl extraction. ImagesFig 9Fig 10Fig 11Fig 1Fig 2Fig 3Fig 4Fig 5Fig 6Fig 7Fig 8 PMID:4357177

  1. Cooperative effect of pH-dependent ion transport within two symmetric-structured nanochannels.

    PubMed

    Meng, Zheyi; Chen, Yang; Li, Xiulin; Xu, Yanglei; Zhai, Jin

    2015-04-15

    A novel and simple design is introduced to construct bichannel nanofluid diodes by combining two poly(ethylene terephthalate) (PET) films with columnar nanochannel arrays varying in size or in surface charge. This type of bichannel device performs obvious ion current rectification, and the pH-dependent tunability and degree of rectification can be improved by histidine modification. The origin of the ion current rectification and its pH-dependent tunability are attributed to the cooperative effect of the two columnar half-channels and the applied bias on the mobile ions. As a result of surface groups on the bichannel being charged with different polarities or degrees at different pH values, the function of the bichannel device can be converted from a nanofluid diode to a normal nanochannel or to a reverse diode.

  2. Ciliated muconodular papillary tumour of the lung: a newly defined low-grade malignant tumour.

    PubMed

    Sato, Shuichi; Koike, Teruaki; Homma, Keiichi; Yokoyama, Akira

    2010-11-01

    We present two cases of ciliated muconodular papillary tumour (CMPT) in this report. CMPT is a newly defined low-grade malignant tumour with ciliated columnar epithelial cells, occurring in the peripheral lung. Both patients underwent pulmonary resection due to an enlarged solitary pulmonary nodule. Pathological findings in both cases confirmed a papillary tumour with a mixture of ciliated columnar and goblet cells. The tumours were rich in mucous and had spread along the alveolar walls, as observed in bronchioloalveolar carcinoma. Nuclear atypia was mild, and no mitotic activity was observed. Immunohistochemically, tumour cells stained positive for carcinoembryonic antigen, thyroid transcription factor-1 and cytokeratin 7 but not for cytokeratin 20. The immunohistochemical staining patterns were almost identical to those of pulmonary adenocarcinoma. We definitively diagnosed as CMPT. Both patients remained relapse-free.

  3. Generalized Ellipsometry on Complex Nanostructures and Low-Symmetry Materials

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa Lynn

    In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with monoclinic and triclinic symmetries. A model eigendielectric displacement vector approach is developed, described and utilized to characterize monoclinic materials. Materials are investigated in spectral regions spanning from the far-infrared to the vacuum ultraviolet. Examples are demonstrated for phonon mode determination in cadmium tungstate and yttrium silicate and for band-to-band transitions in gallia (beta-Ga2O3) single crystals. Furthermore, the anisotropic optical properties of an emerging class of spatially coherent heterostructure materials with nanostructure dimensions are investigated. The so-called anisotropic effective medium approximation for slanted columnar thin films is extended to the concept of slanted columnar heterostructure thin films as well as core-shell heterostructure thin films. Examples include the determination of band-to-band transitions, phonon modes and oxidation properties of cobalt-oxide core shell structures and gas-liquid-solid distribution during controlled adsorption of organic solvents in silicon slanted columnar thin films.

  4. Interobserver reproducibility in the diagnosis of flat epithelial atypia of the breast.

    PubMed

    O'Malley, Frances P; Mohsin, Syed K; Badve, Sunil; Bose, Shikha; Collins, Laura C; Ennis, Marguerite; Kleer, Celina G; Pinder, Sarah E; Schnitt, Stuart J

    2006-02-01

    Columnar cell lesions (CCLs) of the breast with low-grade/monomorphic-type cytologic atypia are being identified increasingly in biopsies performed owing to mammographic microcalcifications. The WHO Working Group on the Pathology and Genetics of Tumours of the Breast recently introduced the term 'flat epithelial atypia' (FEA) for these lesions. However, the ability of pathologists to reproducibly diagnose FEA and to distinguish it from CCLs without atypia has not been previously evaluated. Eight pathologists with an interest in breast pathology participated in a study to address this issue. The study reference pathologist provided the other seven study pathologists with a Powerpoint tutorial that included written criteria for, and representative images of, FEA and CCLs without atypia (ie, columnar cell change and columnar cell hyperplasia). Following review of the tutorial, the study pathologists examined images in Powerpoint format from 30 CCLs and were instructed to categorize each as either 'FEA' or 'not atypical'. Overall agreement among the eight pathologists was 91.8% (95% CI, 84.0-96.9%), and the multi-rater kappa value was 0.83 (95% CI, 0.67-0.94), which is within the 'excellent agreement' range. Agreement was slightly better for determining absence of FEA (92.8%: 95% CI, 84.1-97.4%), than for determining its presence (90.4%: 95% CI, 79.9-96.7%). We conclude that the diagnosis of FEA and its distinction from CCLs without atypia is highly reproducible with the use of available diagnostic criteria.

  5. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    PubMed

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi

  6. The relationship between the microstructure and magnetic properties of sputtered Co/Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Petford-Long, Amanda K.; Jakubovics, J. P.

    1994-11-01

    Co/Pd multilayer films (MLFs) are of interest because of their potential application as high-density magneto-optical recording media. Co/Pd MLFs with varying Co and Pd layer thicknesses were grown by sputter-deposition onto (100) Si wafers. X-ray diffraction and high resolution electron microscopy were used to study the microstructure of the films, and Lorentz microscopy was used to analyze their magnetic domain structure. The films show an fcc crystal structure with a compromised lattice parameter and a strong (111) crystallographic texture in the growth direction. The compromised interplanar spacing parallel to the surface increased with decreasing thickness ratio (t(sub Co)/t(sub Pd), and the columnar grain size decreased with increasing Pd layer thickness. Films with t(sub Co) = 0.35 nm and t(sub Pd) = 2.8 nm (columnar grain diameter 20 nm) showed promising magnetic properties, namely a high perpendicular magnetic anisotropy (1.85x10(exp 5) J/cu m), with a perpendicular coercivity of 98.7 kA/m, a perpendicular remanence ratio of 99%, and a perpendicular coercivity ratio of 88%. The magnetic domains were uniform and of a narrow stripe type, confirming the perpendicular easy axis of magnetization. The Curie temperature was found to be about 430 C. Films of pure Co and Pd, grown for comparison, also showed columnar grain structure with grain-sizes of the same order as those seen in the MLFs. In addition the Pd films showed a (111) textured fcc structure.

  7. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    PubMed Central

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong

    2015-01-01

    Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180

  8. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    PubMed

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.

  9. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates.

    PubMed

    Nguyen, Minh D; Houwman, Evert P; Rijnders, Guus

    2017-10-10

    Thin films of PbZr 0 . 52 Ti 0 . 48 O 3 (PZT) with largely detached columnar grains, deposited by pulsed laser deposition (PLD) on amorphous glass substrates covered with Ca 2 Nb 3 O 10 nanosheets as growth template and using LaNiO 3 electrode layers, are shown to exhibit very high unipolar piezoelectric strain and ultra-low strain hysteresis. The observed increase of the piezoelectric coefficient with increasing film thickness is attributed to the reduction of clamping, because of the increasingly less dense columnar microstructure (more separation between the grains) with across the film thickness. A very large piezoelectric coefficient (490 pm/V) and a high piezoelectric strain (~0.9%) are obtained in 4-µm-thick film under an applied electric field of 200 kV/cm, which is several times larger than in usual PZT ceramics. Further very low strain hysteresis (H≈2-4%) is observed in 4 to 5 µm thick films. These belong to the best values demonstrated so far in piezoelectric films. Fatigue testing shows that the piezoelectric properties are stable up to 10 10 cycles. The growth of high quality PZT films with very large strain and piezoelectric coefficients, very low hysteresis and with long-term stability on a technologically important substrate as glass is of great significance for the development of practical piezo driven microelectromechanical actuator systems.

  10. Annealing dependent evolution of columnar nanostructures in RF magnetron sputtered PTFE films for hydrophobic applications

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; De, Rajnarayan; Maidul Haque, S.; Divakar Rao, K.; Misal, J. S.; Prathap, C.; Das, S. C.; Patidar, Manju M.; Ganesan, V.; Sahoo, N. K.

    2018-01-01

    Present communication focuses on a relatively less explored direction of producing rough polytetrafluoroethylene (PTFE) surfaces for possible hydrophobic applications. The experiments were carried out to make rough PTFE films without losing much of the transmission, which is an important factor while designing futuristic solar cell protection covers. After annealing temperature optimization, as grown RF magnetron sputtered PTFE films (prepared at 160 W RF power) were subjected to vacuum annealing at 200 °C for different time durations ranging from 1 to 4 h. The films show morphological evolution exhibiting formation and growth of columnar nanostructures that are responsible for roughening of the films due to annealing induced molecular migration and rearrangement. In agreement with this, qualitative analysis of corresponding x-ray reflectivity data shows modification in film thickness, which may again be attributed to the growth of columns at the expense of the atoms of remaining film molecules. However, the observations reveal that the film annealed at 200 °C for 2 h gives a combination of patterned columnar structures and reasonable transmission of >85% (in 500-1000 nm wavelength range), both of which are deteriorated when the films are annealed either at high temperature beyond 200 °C or for long durations >3 h. In addition, attenuated total reflection-Fourier transform infrared spectroscopy results reveal that the molecular bonds remain intact upon annealing at any temperature within the studied range indicating the stable nature of the films.

  11. Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare.

    PubMed

    Xu, Hui-Jun; Jiang, Wei-Dan; Feng, Lin; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-11-01

    This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0.05), and glutathione and vitamin C contents (P < 0.05), down-regulated NF-E2-related factor 2 mRNA level (P < 0.05), and up-regulated Kelch-like ECH-associating protein (Keap) 1a (rather than Keap1b) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency induced oxidative injury in fish gill; (2) up-regulated caspase-3, -7, -8, -9, Fas ligand, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1 mRNA levels (P < 0.05), and down-regulated inhibitor of apoptosis protein and B-cell lymphoma-2 (rather than myeloid cell leukemia-1) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated cell apoptosis in fish gill; (3) up-regulated pore-forming TJs Claudin-12, 15a, -15b, and related signaling molecules myosin light chain kinase, p38 mitogen-activated protein kinase (rather than c-Jun N-terminal kinases) mRNA levels (P < 0.05), and down-regulated barrier-forming TJs Occludin, zonula occludens (ZO) 1, ZO-2, Claudin-c, -3c, -7a, -7b mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency disrupted tight junctional complexes in fish gill; (4) decreased lysozyme and acid phosphatase (ACP) activities, and complement 3 (C3), C4 and IgM contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, Hepcidin, β-defensin mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency decrease fish gill immune function; (5) down-regulated the mRNA levels of anti-inflammatory cytokines-related factors interleukin 10 (IL-10), IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBa and eIF4E-binding protein 1 (4E-BP1) (rather than 4E-BP2) (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35, IL-12 P40, nuclear factor κB (NF-κB) p65 (rather than NF-κB p52), IκB kinases (IKK) (only IKKα and IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated fish gill inflammation. In conclusion, vitamin C deficiency disrupted physical barriers and immune barriers, and regulated relative mRNA levels of signaling molecules in fish gill. The vitamin C requirement for against gill rot morbidity of grass carp (264-1031 g) was estimated to be 156.0 mg/kg diet. In addition, based on the gill biochemical indices (antioxidant indices MDA, PC and vitamin C contents, and immune indices LA and ACP activity) the vitamin C requirements for grass carp (264-1031 g) were estimated to be 116.8, 156.6, 110.8, 57.8 and 134.9 mg/kg diet, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Railway deformation detected by DInSAR over active sinkholes in the Ebro Valley evaporite karst, Spain

    NASA Astrophysics Data System (ADS)

    Galve, J. P.; Castañeda, C.; Gutiérrez, F.

    2015-06-01

    Previously not measured subsidence on railway tracks was detected using DInSAR displacement maps produced for the central sector of Ebro Valley (NE Spain). This area is affected by evaporite karst and the analyzed railway corridors traverse active sinkholes that produce deformations in these infrastructures. One of the railway tracks affected by slight settlements corresponds to the Madrid-Barcelona high-speed line, a transport infrastructure highly vulnerable to ground deformation processes. Our analysis based on DInSAR measurements and geomorphological surveys indicate that this line show dissolution-induced subsidence and compaction of anthropogenic deposits (infills and embankments). By using DInSAR techniques, it was also measured the significant subsidence related to the activity of sinkholes in the Castejón-Zaragoza conventional railway line. Thus, this study demonstrate that DInSAR velocity maps coupled with detailed geomorphological surveys may help in the identification of the sectors of railway tracks that may compromise the safety of travellers.

  13. Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems

    NASA Astrophysics Data System (ADS)

    Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.

    The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.

  14. Detection of the 2015 Gorkha earthquake-induced landslide surface deformation in Kathmandu using InSAR images from PALSAR-2 data

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi P.; Une, Hiroshi

    2016-03-01

    Previous studies reported that the 2015 Gorkha earthquake (Mw 7.8), which occurred in Nepal, triggered landslides in mountainous areas. In Kathmandu, earthquake-induced land subsidence was identified by interpreting local phase changes in interferograms produced from Advanced Land Observing Satellite-2/Phased Array type L-band Synthetic Aperture Radar-2 data. However, the associated ground deformation was not discussed in detail. We studied line-of-sight (LoS) changes from InSAR images in the SE area of Tribhuvan International Airport, Kathmandu. To obtain the change in LoS caused only by local, short-wavelength surface deformation, we subtracted the change in LoS attributed to coseismic deformation from the original change in LoS. The resulting change in LoS showed that the river terrace was driven to the bottom of the river valley. We also studied the changes in LoS in both ascending and descending InSAR images of the area along the Bishnumati River and performed 2.5D analysis. Removing the effect of coseismic deformation revealed east-west and up-down components of local surface deformation, indicating that the river terrace deformed eastward and subsided on the western riverbank of the river. On the east riverbank, the river terrace deformed westward and subsided. However, in the southern part of the river basin, the river terrace deformed westward and was uplifted. The deformation data and field survey results indicate that local surface deformation in these two areas was not caused by land subsidence but by a landslide (specifically, lateral spread).

  15. The Subsidence Signature Due To Groundwater Extraction as Inferred from Remote Sensing Data in Mexico City

    NASA Astrophysics Data System (ADS)

    Patel, V.; Chen, J.

    2015-12-01

    Mexico City is facing a severe water shortage; current drought conditions in the city have led to an increase in the demand for groundwater, the pumping of which can cause significant land subsidence. In this study we explored what new information interferometric synthetic aperture radar (InSAR) data collected by the TerraSAR-X satellite could bring to water resource managers in the city so that they can efficiently and sustainably allocate water resources. Previous work done over Mexico City indicates that InSAR can be used to detect deformation due to groundwater pumping. Cabral-Cano et al. (2008) processed InSAR data acquired from ERS between 1996-2000 and from ENVISAT between 2003-2005. They compared the deformation map to geology maps of the region with information obtained by seismic methods. They found that a spatial correlation between the land deformation and the presence of young lacustrine clay beds, which indicate that the subsidence was caused by fluid pressure loss in the aquitard. They also concluded that the subsidence, for the most part, had no seasonal variation and continues to occur at near-constant, high rates. TerraSAR-­X satellite data is known to be more sensitive to small deformations than the data from satellites used in previous studies in the region because of its frequent revisit cycle, short wavelength, and accurate orbital information. For this project, we derived long sequences of crustal deformation time series from TerraSAR-­X data between May 2011 and December 2012 using the Small Baseline Subset (SBAS) method. The resulting time series was then compared to GPS data for calibration and validation. We observed a long-term deformation that was similar to those found in previous studies. The next step in our work is to determine whether the increased sensitivity of the TerraSAR-­X data allows us to detect a seasonal deformation pattern over the study area.

  16. Application of ASAR-ENVISAT Data for Monitoring Andean Volcanic Activity : Results From Lastarria-Azufre Volcanic Complex (Chile-Argentina)

    NASA Astrophysics Data System (ADS)

    Froger, J.; Remy, D.; Bonvalot, S.; Franco Guerra, M.

    2005-12-01

    Since the pioneer study on Mount Etna by Massonnet et al., in 1995, several works have illustrated the promising potentiality of Synthetic Aperture Radar Interferometry (INSAR) for the monitoring of volcanoes. In the case of wide, remote or hazardous volcanic areas, in particular, INSAR represents a safer and more economic way to acquire measurements than from ground based geodetic networks. Here we present the preliminary results of an interferometric survey made with ASAR-ENVISAT data on a selection of South American volcanoes where deformation signals had been previously evidenced or are expected. An interesting result is the detection of a present-day active ground deformation on the Azufre-Lastarria area (Chile-Argentina) indicating that process, identified during 1998-2000 by Pritchard and Simmons (2004) from ERS data, is still active. The phase signal visible on ASAR interferograms (03/2003-06/2005) is roughly elliptical with a 45 km NNE-SSW major axis. Its amplitude increases as a function of time and is compatible with ground uplift in the line of sight of the satellite. The ASAR time series (up to 840 days, 7 ASAR images) indicates variable deformation rate that might confirm the hypothesis of a non uniform deformation process. We investigated the origin and the significance of the deformation using various source modelling strategies (analytical and numerical). The observed deformation can be explained by the infilling of an elliptical magmatic reservoir lying between 7 and 10 km depth. The deformation could represent the first stage of a new caldera forming as it is correlated with a large, although subtle, topographic depression surrounded by a crown of monogenetic centers. A short wavelength inflation has also been detected on Lastaria volcano. It could result from the on-going infilling of a small subsurface magmatic reservoir, eventually supplied by the deeper one. All these observations point out the need of a closer monitoring of this area in order to assess future volcanic hazard.

  17. Effect of Non-rigid Registration Algorithms on Deformation Based Morphometry: A Comparative Study with Control and Williams Syndrome Subjects

    PubMed Central

    Han, Zhaoying; Thornton-Wells, Tricia A.; Dykens, Elisabeth M.; Gore, John C.; Dawant, Benoit M.

    2014-01-01

    Deformation Based Morphometry (DBM) is a widely used method for characterizing anatomical differences across groups. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a DBM atlas. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithms on group differences that may be uncovered through DBM. In this study, we compared group atlas creation and DBM results obtained with five well-established non-rigid registration algorithms using thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Bases Algorithm (ABA); (2) The Image Registration Toolkit (IRTK); (3) The FSL Nonlinear Image Registration Tool (FSL); (4) The Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. Results indicate that the choice of algorithm has little effect on the creation of group atlases. However, regions of differences between groups detected with DBM vary from algorithm to algorithm both qualitatively and quantitatively. The unique nature of the data set used in this study also permits comparison of visible anatomical differences between the groups and regions of difference detected by each algorithm. Results show that the interpretation of DBM results is difficult. Four out of the five algorithms we have evaluated detect bilateral differences between the two groups in the insular cortex, the basal ganglia, orbitofrontal cortex, as well as in the cerebellum. These correspond to differences that have been reported in the literature and that are visible in our samples. But our results also show that some algorithms detect regions that are not detected by the others and that the extent of the detected regions varies from algorithm to algorithm. These results suggest that using more than one algorithm when performing DBM studies would increase confidence in the results. Properties of the algorithms such as the similarity measure they maximize and the regularity of the deformation fields, as well as the location of differences detected with DBM, also need to be taken into account in the interpretation process. PMID:22459439

  18. Continuous section extraction and over-underbreak detection of tunnel based on 3D laser technology and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Wang, Zhiwei; Han, Ya; Li, Shuang; Zhang, Xin

    2015-03-01

    In order to ensure safety, long term stability and quality control in modern tunneling operations, the acquisition of geotechnical information about encountered rock conditions and detailed installed support information is required. The limited space and time in an operational tunnel environment make the acquiring data challenging. The laser scanning in a tunneling environment, however, shows a great potential. The surveying and mapping of tunnels are crucial for the optimal use after construction and in routine inspections. Most of these applications focus on the geometric information of the tunnels extracted from the laser scanning data. There are two kinds of applications widely discussed: deformation measurement and feature extraction. The traditional deformation measurement in an underground environment is performed with a series of permanent control points installed around the profile of an excavation, which is unsuitable for a global consideration of the investigated area. Using laser scanning for deformation analysis provides many benefits as compared to traditional monitoring techniques. The change in profile is able to be fully characterized and the areas of the anomalous movement can easily be separated from overall trends due to the high density of the point cloud data. Furthermore, monitoring with a laser scanner does not require the permanent installation of control points, therefore the monitoring can be completed more quickly after excavation, and the scanning is non-contact, hence, no damage is done during the installation of temporary control points. The main drawback of using the laser scanning for deformation monitoring is that the point accuracy of the original data is generally the same magnitude as the smallest level of deformations that are to be measured. To overcome this, statistical techniques and three dimensional image processing techniques for the point clouds must be developed. For safely, effectively and easily control the problem of Over Underbreak detection of road and solve the problemof the roadway data collection difficulties, this paper presents a new method of continuous section extraction and Over Underbreak detection of road based on 3D laser scanning technology and image processing, the method is divided into the following three steps: based on Canny edge detection, local axis fitting, continuous extraction section and Over Underbreak detection of section. First, after Canny edge detection, take the least-squares curve fitting method to achieve partial fitting in axis. Then adjust the attitude of local roadway that makes the axis of the roadway be consistent with the direction of the extraction reference, and extract section along the reference direction. Finally, we compare the actual cross-sectional view and the cross-sectional design to complete Overbreak detected. Experimental results show that the proposed method have a great advantage in computing costs and ensure cross-section orthogonal intercept terms compared with traditional detection methods.

  19. Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa

    NASA Astrophysics Data System (ADS)

    Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.

    2015-05-01

    Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.

  20. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S; Charpentier, P; Sayler, E

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable targets. NIH grant for the first author as cionsultant and the last author as the PI.« less

Top