Science.gov

Sample records for detecting crystal wplyw

  1. Automated macromolecular crystal detection system and method

    DOEpatents

    Christian, Allen T.; Segelke, Brent; Rupp, Bernard; Toppani, Dominique

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  2. Rapid leak detection with liquid crystals

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Ruppe, E. P.

    1978-01-01

    Small leaks in vacuum lines are detected by applying liquid-crystal coating, warming suspected area, and observing color change due to differential cooling by leak jet. Technique is used on inside or outside walls of vacuum-jacketed lines.

  3. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  4. Two-dimensional photonic crystal surfactant detection.

    PubMed

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  5. Quartz crystals detect gas contaminants during vacuum chamber evacuation

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1967-01-01

    Piezoelectric quartz crystals detect condensable gas contaminants backstreaming into a vacuum chamber when a pump is evacuating the chamber. One crystal acts as a thermometer, the other detects mass change. They are energized by electronic equipment which records frequency changes.

  6. Neutron detection using a crystal ball calorimeter

    SciTech Connect

    Martem’yanov, M. A. Kulikov, V. V.; Krutenkova, A. P.

    2015-12-15

    The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.

  7. Neutron detection using a crystal ball calorimeter

    NASA Astrophysics Data System (ADS)

    Martem'yanov, M. A.; Kulikov, V. V.; Krutenkova, A. P.

    2015-12-01

    The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.

  8. Troublesome Crystal Structures: Prevention, Detection, and Resolution

    PubMed Central

    Harlow, Richard L.

    1996-01-01

    A large number of incorrect crystal structures is being published today. These structures are proving to be a particular problem to those of us who are interested in comparing structural moieties found in the databases in order to develop structure-property relationships. Problems can reside in the input data, e.g., wrong unit cell or low quality intensity data, or in the structural model, e.g., wrong space group or atom types. Many of the common mistakes are, however, relatively easy to detect and thus should be preventable; at the very least, suspicious structures can be flagged, if not by the authors then by the referees and, ultimately, the crystallographic databases. This article describes some of the more common mistakes and their effects on the resulting structures, lists a series of tests that can be used to detect incorrect structures, and makes a strong plea for the publication of higher quality structures. PMID:27805169

  9. Troublesome Crystal Structures: Prevention, Detection, and Resolution.

    PubMed

    Harlow, Richard L

    1996-01-01

    A large number of incorrect crystal structures is being published today. These structures are proving to be a particular problem to those of us who are interested in comparing structural moieties found in the databases in order to develop structure-property relationships. Problems can reside in the input data, e.g., wrong unit cell or low quality intensity data, or in the structural model, e.g., wrong space group or atom types. Many of the common mistakes are, however, relatively easy to detect and thus should be preventable; at the very least, suspicious structures can be flagged, if not by the authors then by the referees and, ultimately, the crystallographic databases. This article describes some of the more common mistakes and their effects on the resulting structures, lists a series of tests that can be used to detect incorrect structures, and makes a strong plea for the publication of higher quality structures.

  10. Photonic crystal microcapsules for label-free multiplex detection.

    PubMed

    Ye, Baofen; Ding, Haibo; Cheng, Yao; Gu, Hongcheng; Zhao, Yuanjin; Xie, Zhuoying; Gu, Zhongze

    2014-05-28

    A novel suspension array, which possesses the joint advantages of photonic crystal encoded technology, bioresponsive hydrogels, and photonic crystal sensors with capability of full multiplexing label-free detection is developed.

  11. Ionizing particle detection based on phononic crystals

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-01

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  12. Ionizing particle detection based on phononic crystals

    SciTech Connect

    Aly, Arafa H. E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  13. Enhanced photoacoustic detection using photonic crystal substrate

    SciTech Connect

    Zhao, Yunfei; Liu, Kaiyang; McClelland, John; Lu, Meng

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  14. Photonic crystal enhanced fluorescence for early breast cancer biomarker detection.

    PubMed

    Cunningham, Brian T; Zangar, Richard C

    2012-08-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features.

  15. The internal defects detection in crystals by digital holographic methods

    NASA Astrophysics Data System (ADS)

    Dyomin, V. V.; Polovcev, I. G.; Kamenev, D. V.

    2016-08-01

    The internal defects detection method is suggested for crystals intended for the use in the IR part of spectrum. The method is tested on samples of the ZnGeP2 monocrystals, the experimental results are shown.

  16. Scalable photonic crystal chips for high sensitivity protein detection.

    PubMed

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  17. Two-photon excited UV fluorescence for protein crystal detection

    SciTech Connect

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-10-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC.

  18. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. © 2015 Society for Laboratory Automation and Screening.

  19. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase

    SciTech Connect

    Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N.; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M.; Soares, Alexei S.

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.

  20. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  1. Photonic crystal hydrogel sensor for detection of nerve agent

    NASA Astrophysics Data System (ADS)

    Xu, Jiayu; Yan, Chunxiao; Liu, Chao; Zhou, Chaohua; Hu, Xiaochun; Qi, Fenglian

    2017-01-01

    Nowadays the photonic crystal hydrogel materials have shown great promise in the detection of different chemical analytes, including creatinine, glucose, metal ions and so on. In this paper, we developed a novel three-dimensional photonic crystal hydrogel, which was hydrolyzed by sodium hydroxide (NaOH) and immobilized with butyrylcholinesterase (BuChE) by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(EDC). They are demonstrated to be excellent in response to sarin and a limit of detection(LOD) of 1×10-9 mg mL-1 was achieved.

  2. Detection of endotoxin using a photonic crystal nanolaser

    NASA Astrophysics Data System (ADS)

    Takahashi, Daichi; Hachuda, Shoji; Watanabe, Takumi; Nishijima, Yoshiaki; Baba, Toshihiko

    2015-03-01

    Fast and reliable detection of endotoxin (ET) in medical equipment and pharmaceutical products is an essential precursor to clinical treatment. In this study, we demonstrate the use of shifts in wavelength of photonic crystal nanolasers for sensing the Limulus amebocyte lysate reaction, which is a standard method for detecting ET. From working curves of wavelength shift vs ET concentration, whose correlation factors were as high as 98%, we detected a required concentration of 0.001 EU/ml within 33 min and detected a low concentration of 0.0001 EU/ml.

  3. Detection of endotoxin using a photonic crystal nanolaser

    SciTech Connect

    Takahashi, Daichi; Hachuda, Shoji; Watanabe, Takumi; Nishijima, Yoshiaki; Baba, Toshihiko

    2015-03-30

    Fast and reliable detection of endotoxin (ET) in medical equipment and pharmaceutical products is an essential precursor to clinical treatment. In this study, we demonstrate the use of shifts in wavelength of photonic crystal nanolasers for sensing the Limulus amebocyte lysate reaction, which is a standard method for detecting ET. From working curves of wavelength shift vs ET concentration, whose correlation factors were as high as 98%, we detected a required concentration of 0.001 EU/ml within 33 min and detected a low concentration of 0.0001 EU/ml.

  4. Liquid crystals detect voids in fiber glass laminates

    NASA Technical Reports Server (NTRS)

    Hollar, W. T.

    1967-01-01

    Liquid crystal solution nondestructively detects voids or poor bond lines in fiber glass laminates. A thin coating of the solution is applied by spray or brush to the test article surface, and when heated indicates the exact location of defects by differences in color.

  5. Single particle detection in CMOS compatible photonic crystal nanobeam cavities.

    PubMed

    Quan, Qimin; Floyd, Daniel L; Burgess, Ian B; Deotare, Parag B; Frank, Ian W; Tang, Sindy K Y; Ilic, Rob; Loncar, Marko

    2013-12-30

    We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.

  6. Solution-Grown Rubrene Crystals as Radiation Detecting Devices

    DOE PAGES

    Carman, Leslie; Martinez, H. Paul; Voss, Lars; ...

    2017-01-11

    There has been increased interest in organic semiconductors over the last decade because of their unique properties. Of these, 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) has generated the most interest because of its high charge carrier mobility. In this paper, large single crystals with a volume of ~1 cm3 were grown from solution by a temperature reduction technique. The faceted crystals had flat surfaces and cm-scale, visually defect-free areas suitable for physical characterization. X-ray diffraction analysis indicates that solvent does not incorporate into the crystals and photoluminescence spectra are consistent with pristine, high-crystallinity rubrene. Furthermore, the response curve to pulsed opticalmore » illumination indicates that the solution grown crystals are of similar quality to those grown by physical vapor transport, albeit larger. The good quality of these crystals in combination with the improvement of electrical contacts by application of conductive polymer on the graphite electrodes have led to the clear observation of alpha particles with these rubrene detectors. Finally, preliminary results with a 252Cf source generate a small signal with the rubrene detector and may demonstrate that rubrene can also be used for detecting high-energy neutrons.« less

  7. Automatic blemish detection in liquid crystal flat panel displays

    NASA Astrophysics Data System (ADS)

    Pratt, William K.; Sawkar, Sunil S.; O'Reilly, Kevin

    1998-02-01

    Visual defects sometimes occur during the manufacturing of flat panel liquid crystal displays (LCDs). One class of defects includes a variety of blemishes variously called stain (English), mura (Japanese) or alluk (Korean). These blemishes appear as low contrast, non-uniform brightness regions, typically larger than single pixels. They are caused by a variety of factors such as non-uniformity distributed liquid crystal material and foreign particles within the panel. Such blemishes cannot be repaired. Automatic inspection systems, designed for pixel and line defect detection, have had difficulty accurately detecting and quantifying LCD blemishes. At present, most blemish detection is performed by human inspectors. This paper describes a recently developed automatic inspection system, which reliably detects, quantifies and classifies LCD blemishes in the presence of single pixel and line pixel defects that tend to obscure the subtle blemishes. The algorithm underlying this system, called MuraLookTM, uses conventional image processing operators such as convolutional filtering, morphological filtering and blob shape analysis under region-of-interest control in a novel combination to systematically separate each of over twenty different blemish patterns. Strength measures for each class of blemish are used under human operator control to grade each blemish as pass or fail. The paper discusses various types of defects in LCD panels and relates them to the MuraLook system defect class patterns. The architecture of the MuraLook defect detection system is described.

  8. Detection of organophosphorus compounds using a molecularly imprinted photonic crystal.

    PubMed

    Liu, Feng; Huang, Shuyue; Xue, Fei; Wang, Yifei; Meng, Zihui; Xue, Min

    2012-02-15

    A label free molecularly imprinted photonic crystal (MIPC) was developed to detect the degradation product of nerve agents. Mono-dispersed poly-methyl methacrylate colloidal particles with the diameter of 280 nm were used to fabricate a closely packed colloidal crystal array (CCA), and a methyl phosphonic acid (MPA) imprinted hydrogel was prepared within the CCA using 2-hydroxyethyl-methacrylate and N-isopropylacrylamide as monomers, ethyleneglycol dimethacrylate and N, N'-methylenebisacrylamide as cross-linkers, a mixture of n-octanol and acetonitrile as porogen. The diffraction intensity of the MIPC decreased significantly upon the MPA adsorption with a limit of detection (LOD) of 10(-6) molL(-1). Furthermore, the diffraction intensity decreased and blue shifted with the increase of temperature, decreased and red shifted with the increase of ionic strength. At higher pH, the diffraction intensity increased without obvious diffraction shift. The MIPC provides an indirect path to detect nerve agents (Sarin, Soman, VX and R-VX) by monitoring the MPA released from the hydrolysis of nerve agents, with LODs of 3.5 × 10(-6) molL(-1), 2.5 × 10(-5) molL(-1), 7.5 × 10(-5) molL(-1) and 7.5 × 10(-5) molL(-1) for Sarin, Soman, VX and R-VX, respectively.

  9. Liquid crystal foil for the detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk

    2016-09-01

    Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.

  10. Single nanoparticle detection using photonic crystal enhanced microscopy.

    PubMed

    Zhuo, Yue; Hu, Huan; Chen, Weili; Lu, Meng; Tian, Limei; Yu, Hojeong; Long, Kenneth D; Chow, Edmond; King, William P; Singamaneni, Srikanth; Cunningham, Brian T

    2014-03-07

    We demonstrate a label-free biosensor imaging approach that utilizes a photonic crystal (PC) surface to detect surface attachment of individual dielectric and metal nanoparticles through measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC. Using a microscopy-based approach to scan the PC resonant reflection properties with 0.6 μm spatial resolution, we show that metal nanoparticles attached to the biosensor surface with strong absorption at the resonant wavelength induce a highly localized reduction in reflection efficiency and are able to be detected by modulation of the resonant wavelength. Experimental demonstrations of single-nanoparticle imaging are supported by finite-difference time-domain computer simulations. The ability to image surface-adsorption of individual nanoparticles offers a route to single molecule biosensing, in which the particles can be functionalized with specific recognition molecules and utilized as tags.

  11. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence

    PubMed Central

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T.

    2013-01-01

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers. PMID:23624689

  12. Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence.

    PubMed

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T

    2013-04-26

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers.

  13. Neutron detection by large NaI crystal

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Gervino, G.

    2016-07-01

    In present days new neutron detection methods are under developed due to the global shortage of 3He and the toxicity of BF3. Neutrons can be indirectly detected by high-energy photons. The performance of a cylindrical NaI crystal, 4 in. diameter and 8 in. length as an indirect neutron detector has been investigated. Measurements were performed with 252Cf source with bare and shielded NaI detector. With a proper converter and moderator structure for the NaI detector, the detection efficiencies and the minimum detectable activities are improved, making the method very interesting for security applications. The indirect detection of neutrons by photons has several advantages. First, this method can in principle be suited by any gamma spectrometer with only slight modifications that do not compromise with its gamma spectrometry measurements. Second, fission neutron sources and neutron generators can be discriminated thanks to their different gamma energy spectra, a discrimination easily done by a NaI spectrometer.

  14. A liquid-crystal-based DNA biosensor for pathogen detection

    PubMed Central

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  15. A liquid-crystal-based DNA biosensor for pathogen detection

    NASA Astrophysics Data System (ADS)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  16. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.

    PubMed

    Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun

    2014-12-04

    Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.

  17. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  18. Liquid crystals as optical amplifiers for bacterial detection.

    PubMed

    Zafiu, C; Hussain, Z; Küpcü, S; Masutani, A; Kilickiran, P; Sinner, E-K

    2016-06-15

    Interactions of bacteria with target molecules (e.g. antibiotics) or other microorganisms are of growing interest. The first barrier for targeting gram-negative bacteria is layer of a Lipopolysaccharides (LPS). Liquid crystal (LC) based sensors covered with LPS monolayers, as presented in this study, offer a simple model to study and make use of this type of interface for detection and screening. This work describes in detail the production and application of such sensors based on three different LPS that have been investigated regarding their potential to serve as sensing layer to detect bacteria. The LPS O127:B8 in combination with a LC based sensor was identified to be most useful as biomimetic sensing surface. This LPS/LC combination interacts with three different bacteria species, one gram-positive and two gram-negative species, allowing the detection of bacterial presence regardless from their viability. It could be shown that even very low bacterial cell numbers (minimum 500 cell ml(-1)) could be detected within minutes (maximum 15 min). The readout mechanism is the adsorption of bacterial entities on surface bond LPS molecules with the LC serving as an optical amplifier.

  19. Detection of Membrane Protein Two-Dimensional Crystals in Living Cells

    PubMed Central

    Gualtieri, E.J.; Guo, F.; Kissick, D.J.; Jose, J.; Kuhn, R.J.; Jiang, W.; Simpson, G.J.

    2011-01-01

    It is notoriously difficult to grow membrane protein crystals and solve membrane protein structures. Improved detection and screening of membrane protein crystals are needed. We have shown here that second-order nonlinear optical imaging of chiral crystals based on second harmonic generation can provide sensitive and selective detection of two-dimensional protein crystalline arrays with sufficiently low background to enable crystal detection within the membranes of live cells. The method was validated using bacteriorhodopsin crystals generated in live Halobacterium halobium bacteria and confirmed by electron microscopy from the isolated crystals. Additional studies of alphavirus glycoproteins indicated the presence of localized crystalline domains associated with virus budding from mammalian cells. These results suggest that in vivo crystallization may provide a means for expediting membrane protein structure determination for proteins exhibiting propensities for two-dimensional crystal formation. PMID:21190673

  20. Photonic crystal fiber modal interferometer for explosives detection

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Wei, Heming; Krishnaswamy, Sridhar

    2016-04-01

    The detection of explosives and their residues is of great importance in public health, antiterrorism and homeland security applications. The vapor pressures of most explosive compounds are extremely low and attenuation of the available vapor is often great due to diffusion in the environment, making direct vapor detection difficult. In this paper, a photonic-microfluidic integrated sensor for highly sensitive 2,4,6-trinitrotoluene (TNT) detection is described based on an in-fiber Mach-Zehnder interferometer (MZI) in a photonic crystal fiber (PCF). A segment of PCF is inserted between standard single-mode fibers (SMF) via butt coupling to form a modal interferometer, in which the cladding modes are excited and interfere with the fundamental core mode. Due to butt coupling, the small air gap between SMF and PCF forms a coupling region and also serves as an inlet/outlet for the gas. The sensor is fabricated by immobilizing a chemo-recognition coating on the inner surface of the holey region of the PCF, which selectively and reversibly binds TNT molecules on the sensitized surface. The sensing mechanism is based on the determination of the TNT-induced wavelength shift of interference peaks due to the refractive index change of the holey-layer. The sensor device therefore is capable of field operation.

  1. Photonic crystal waveguide-based biosensor for detection of diseases

    NASA Astrophysics Data System (ADS)

    Chopra, Harshita; Kaler, Rajinder S.; Painam, Balveer

    2016-07-01

    A biosensor is a device that is used to detect the analytes or molecules of a sample by means of a binding mechanism. A two-dimensional photonic crystal waveguide-based biosensor is designed with a diamond-shaped ring resonator and two waveguides: a bus waveguide and a drop waveguide. The sensing mechanism is based on change in refractive index of the analytes, leading to a shift in the peak resonant wavelength. This mechanism can be used in the field of biomedical treatment where different body fluids such as blood, tears, saliva, or urine can be used as the analyte in which different components of the fluid can be detected. It can also be used to differentiate between the cell lines of a normal and an unhealthy human being. Average value of quality factor for this device comes out to be 1082.2063. For different analytes used, the device exhibits enhanced sensitivity and, hence, it is useful for the detection of diseases.

  2. Detection of sulfur dioxide using a piezoelectric quartz crystal microbalance

    SciTech Connect

    Guimaraes, O.M.

    1997-09-01

    Sulfur dioxide was detected and determined in air by a piezoelectric quartz crystal sensor coated with 4-aminoantipyrine/1-hydroxyetil-2-heptadecenyl imidazol (amine 220) solution (1:1 v/v in chloroform). The analytical response curve is linear over the concentration range from 0.70 to 5.0 ppm of SO{sub 2}. Good linearities (r = 0.9990, 0.9995 and 0.9968) and sensitivities (18.0, 33.4 and 50.7 Hz/ppm) were found, respectively for exposure times of 30, 60 and 90 seconds. The sensor can be used for more than six months without loss in sensitivity and presented good reversibility and reproducibility. Among some possible interferents tested, only nitrogen dioxide and moisture caused major frequency changes.

  3. Quartz crystal microbalance biosensor for rapid detection of aerosolized microorganisms

    NASA Astrophysics Data System (ADS)

    Farka, Zdenĕk.; Kovár, David; Skládal, Petr

    2015-05-01

    Biological warfare agents (BWAs) represent the current menace of the asymmetric war. The early detection of BWAs, especially in the form of bioaerosol, is a challenging task for governments all around the world. Label-free quartz crystal microbalance (QCM) immunosensor and electrochemical immunosensor were developed and tested for rapid detection of BWA surrogate (E. coli) in the form of bioaerosol. Two immobilization strategies for the attachment of antibody were tested; the gold sensor surface was activated by cysteamine and then antibody was covalently linked either using glutaraldehyde, or the reduced antibodies were attached via Sulfo-SMCC. A portable bioaerosol chamber was constructed and used for safe manipulation with aerosolized microorganisms. The dissemination was done using a piezoelectric humidifier, distribution of bioaerosol inside the chamber was ensured using three 12-cm fans. The whole system was controlled remotely using LAN network. The disseminated microbial cells were collected and preconcentrated using the wetted-wall cyclone SASS 2300, the analysis was done using the on-line linked immunosensors. The QCM immunosensor had limit of detection 1×104 CFU·L-1 of air with analysis time 16 min, the whole experiment including dissemination and sensor surface regeneration took 40 min. In case of blank (disseminated sterile buffer), no signal change was observed. The electrochemical immunosensor was able to detect 150 CFU·L-1 of air in 20 min; also in this case, no interferences were observed. Reference measurements were done using particle counter Met One 3400 and by cultivation method on agar plates. The sensors have proved to be applicable for rapid screening of microorganisms in air.

  4. Specific and ultrasensitive ciprofloxacin detection by responsive photonic crystal sensor.

    PubMed

    Zhang, Rong; Wang, Yong; Yu, Li-Ping

    2014-09-15

    A new approach for specific and ultrasensitive measurement of ciprofloxacin has been developed by integrating ternary complexes into responsive photonic crystal (RPC). Tryptophan was first immobilized within the polyacrylamide hydrogel substrates of RPC. The determination of ciprofloxacin was via the existence of zinc(II) ions that function as a 'bridge' to form specific tryptophan-zinc(II)-ciprofloxacin complexes step by step, which resulted in a stepwise red-shift of the diffraction wavelength. A maximum wavelength shift from 798 to 870 nm for ciprofloxacin was observed when the RPC film was immersed in 10(-4)M ciprofloxacin. A linear relationship has been obtained between the Δλ of diffraction peak and logarithm of ciprofloxacin concentration at pH 5.0 in the range of 10(-10) to 10(-4)M. And the least detectable concentration in present work is about 5 × 10(-11)M. The results demonstrated that the as-designed ternary complexes-based RPC sensor exhibited high sensitivity, satisfactory specificity and excellent recoverability for sensing of ciprofloxacin in aqueous media and were validated by detecting ciprofloxacin in the eye-drop sample.

  5. Porous silicon photonic crystals for detection of infections

    NASA Astrophysics Data System (ADS)

    Gupta, B.; Guan, B.; Reece, P. J.; Gooding, J. J.

    2012-10-01

    In this paper we demonstrate the possibility of modifying porous silicon (PSi) particles with surface chemistry and immobilizing a biopolymer, gelatin for the detection of protease enzymes in solution. A rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index. To immobilize gelatin in the pores of the particles, the hydrogen-terminated silicon surface was first modified with an alkyne, 1,8-nonadiyne via hydrosilylation to protect the silicon surfaces from oxidation. This modification allows for further functionality to be added such as the coupling of gelatin. Exposure of the gelatin modified particles to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The ability to monitor the spectroscopic properties of microparticles, and shifts in the optical signature due to changes in the refractive index of the material within the pore space, is demonstrated.

  6. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  7. Delayed examination of synovial fluid by ordinary and polarised light microscopy to detect and identify crystals

    PubMed Central

    Galvez, J; Saiz, E; Linares, L; Climent, A; Marras, C; Pina, M; Castellon, P

    2002-01-01

    Objective: To determine the reliability of a delay in the microscopic examination of synovial fluid (SF) to detect and identify crystals. Methods: Ninety one SF samples were examined, 31 with monosodium urate (MSU) crystals, 30 with crystals of calcium pyrophosphate dihydrate (CPPD), and 30 containing no crystals. The specimens were stored with EDTA, sodium heparin, and without anticoagulant at 4°C before examination at 24 and 72 hours with ordinary and polarised light microscopy. Another aliquot of the same samples was stored in a plastic container without anticoagulant at -80°C and examined after two months. Results: When the samples stored at 4°C were re-examined after 24 hours, intracellular crystals of MSU were seen in 90/93 (97%) cases where they had been identified previously and 89/93 (96%) cases after 72 hours. Similarly, CPPD crystals were identified in 90/90 (100%) and 87/90 (97%) cases after 24 and 72 hours. Examination of the samples stored at -80°C showed intracellular MSU crystals in 25/31 (81%) of cases and CPPD crystals in 25/30 (83%). No crystals were seen in any sample which had previously been diagnosed as crystal-free. Conclusions: Deferred microscopic examination of refrigerated or deep frozen SF provides a strong probability of detecting MSU or CPPD crystals if these are present initially. PMID:11959769

  8. Optical biosensor based on liquid crystal droplets for detection of cholic acid

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao

    2016-12-01

    A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.

  9. Limits in detecting an individual dopant atom embedded in a crystal.

    PubMed

    Mittal, Anudha; Mkhoyan, K Andre

    2011-07-01

    Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms located on the surface of or inside a crystal. Contrast between intensities of an atomic column containing a dopant atom and a pure atomic column in ADF-STEM image depends strongly on specimen parameters and microscope conditions. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms reveal some interesting trends and non-intuitive behaviours in visibility of the dopant atom. The results provide practical guidelines to determine the optimal microscope and specimen conditions to detect a dopant atom in experiment, obtain information about the 3-d location of a dopant atom, and recognize cases where detecting a single dopant atom is not possible. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. In situ detection and identification of hesperidin crystals in satsuma mandarin (Citrus unshiu) peel cells.

    PubMed

    Inoue, Tsuyoshi; Yoshinaga, Arata; Takabe, Keiji; Yoshioka, Terutaka; Ogawa, Kazunori; Sakamoto, Masahiro; Azuma, Jun-ichi; Honda, Yoichi

    2015-01-01

    Hesperidin, a flavonoid known to have important pharmacological effects, accumulates particularly in the peels of satsuma mandarin (Citrus unshiu). Although histochemical studies have suggested that hesperidin forms crystals in some tissues of the Rutaceae and Umbelliferae, there has been no rigorous in situ detection or identification of hesperidin crystals in C. unshiu. To characterise the chemical component of the crystals found in C. unshiu peels using Raman microscopy. Sections of C. unshiu peels were made. The distribution and morphology of crystals in the sections were analysed microscopically. Raman microscopy was used to detect hesperidin in the sections directly. The crystals were more abundant in immature peel and were observed particularly in areas surrounding vascular bundles, around the border between the flavedo and albedo layers and just below the epidermal cells. In the morphological analysis by scanning electron microscopy, needle-shaped crystals aggregated and formed clusters of spherical crystals. Spectra obtained by Raman microscopy of the crystals in the peel sections were consistent with those of the hesperidin standard. This study showed the detailed distribution of crystals in C. unshiu peels and their main component was identified using Raman microscopy to be hesperidin for the first time. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface.

    PubMed

    Mathias, Patrick C; Ganesh, Nikhil; Chan, Leo L; Cunningham, Brian T

    2007-04-20

    A 2D photonic crystal surface with a different period in each lateral direction is demonstrated to detect biomolecules using two distinct sensing modalities. The sensing mechanisms both rely on the generation of a resonant reflection peak at one of two specific wavelengths, depending on the polarization of light that is incident on the photonic crystal. One polarization results in a resonant reflection peak in the visible spectrum to coincide with the excitation wavelength of a fluorophore, while the orthogonal polarization results in a resonant reflection peak at an infrared wavelength which is used for label-free detection of adsorbed biomolecules. The photonic crystal resonance for fluorescence excitation causes enhanced near fields at the structure surface, resulting in increased signal from fluorophores within 100 nm of the device surface. Label-free detection is performed by illuminating the photonic crystal with white light and monitoring shifts in the peak reflected wavelength of the infrared resonance with a high-resolution imaging detection instrument. Rigorous coupled-wave analysis was used to determine optimal dimensions for the photonic crystal structure, and devices were fabricated using a polymer-based nanoreplica molding approach. Fluorescence-based and label-free detection were demonstrated using arrays of spots of dye-conjugated streptavidin. Quantification of the fluorescent signal showed that the fluorescence output from protein spots on the photonic crystal was increased by up to a factor of 35, and deposited spots were also imaged in the label-free detection mode.

  12. Photonic crystal fiber sensor for magnetic field detection

    NASA Astrophysics Data System (ADS)

    Quintero, Sully M. M.; Martelli, Cicero; Kato, Carla C.; Valente, Luiz C. G.; Braga, Arthur M. B.

    2010-09-01

    A magnetic field sensor comprised of a high birefringence photonic crystal fiber coated by a Terfenol-D/Epoxy composite layer is proposed. Magnetic fields induce strains in the magnetostrictive composite that are transferred to the fiber interfering with light propagation. The sensitivity of the developed sensor with magnetic fields is measured to be 6 pm mT-1.

  13. Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor.

    PubMed

    Toccafondo, V; García-Rupérez, J; Bañuls, M J; Griol, A; Castelló, J G; Peransi-Llopis, S; Maquieira, A

    2010-11-01

    We report an experimental demonstration of single-strand DNA (ssDNA) detection at room temperature using a photonic-crystal-waveguide-based optical sensor. The sensor surface was previously biofunctionalized with ssDNA probes to be used as specific target receptors. Our experiments showed that it is possible to detect these hybridization events using planar photonic-crystal structures, reaching an estimated detection limit as low as 19.8 nM for the detection of the complementary DNA strand.

  14. Folate ligand anchored liquid crystal microdroplets emulsion for in vitro detection of KB cancer cells.

    PubMed

    Yoon, Seong H; Gupta, Kailash C; Borah, Jyoti S; Park, Soo-Young; Kim, Young-Kyoo; Lee, Joon-Hyung; Kang, Inn-Kyu

    2014-09-09

    A KB cancer cell-selective, liquid crystal microdroplets emulsion is prepared using folic acid-conjugated block copolymers (PS-b-PAA-FA) and sodium dodecyl sulfate (SDS) as a mediator to induce configurational transitions in 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal microdroplets emulsion. The prepared liquid crystal microdroplets emulsion has shown a configurational transition from radial to bipolar on interacting with KB cancer cells, but no transition from radial to bipolar configuration is observed when liquid crystal microdroplets emulsion was allowed to interact with other normal cells such as fibroblast and osteoblast. The KB cancer cell selectivity of liquid crystal microdroplets emulsion has been considered due to the presence of KB cancer cell folate receptor-specific ligand (FA) at the surface of liquid crystal microdroplets, which allowed liquid crystal microdroplets to interact specifically with KB cancer cells. The ligand-receptor interactions have been considered responsible for triggering the configurational transitions from radial to bipolar in liquid crystal microdroplets emulsion. Thus, folate ligand anchored liquid crystal microdroplets emulsion has shown a potential to be used for in vitro detection of KB cancer cells in the early stage of tumor development.

  15. A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces.

    PubMed

    Block, Ian D; Mathias, Patrick C; Ganesh, Nikhil; Jones, Sarah I; Dorvel, Brian R; Chaudhery, Vikram; Vodkin, Lila O; Bashir, Rashid; Cunningham, Brian T

    2009-07-20

    We report on the design and demonstration of an optical imaging system capable of exciting surface-bound fluorophores within the resonant evanescent electric field of a photonic crystal surface and gathering fluorescence emission that is directed toward the imaging objective by the photonic crystal. The system also has the ability to quantify shifts in the local resonance angle induced by the adsorption of biomolecules on the photonic crystal surface for label-free biomolecular imaging. With these two capabilities combined within a single detection system, we demonstrate label-free images self-registered to enhanced fluorescence images with 328x more sensitive fluorescence detection relative to a glass surface. This technique is applied to a DNA microarray where label-free quantification of immobilized capture DNA enables improved quality control and subsequent enhanced fluorescence detection of dye-tagged hybridized DNA yields 3x more genes to be detected versus commercially available microarray substrates.

  16. In-situ detection of growth striations by crystallization electromotive force measurement during Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Zhu, Yunzhong; Ma, Decai; Long, Siwei; Tang, Feng; Lin, Shaopeng; Wang, Biao

    2017-10-01

    Growth striations, as macrodefects of crystalline materials, are mainly caused by convection and temperature fluctuations in growth interface. For decades, striations have been widely regarded as an inherent problem. Even in the well-developed Czochralski method, the striation formation process is difficult to inspect in situ. In view of this long-standing issue, after systematically studying the temperature, weight, and output power during crystal growth and numerically modeling the growth process, we found that the regularity of the growth interface electromotive force (GEMF) is related to the distribution of striations. Furthermore, the GEMF quantifies interface fluctuations (711.2 s, 16.6 μm) and thermal hysteresis (107 s), presenting finer details than those provided by a thermocouple and a load cell. In this paper, GEMF is found to be an outstanding choice for monitoring the crystal growth status in real time. As an additional feedback, a new automatic control method could be developed for reducing growth striations and promoting crystal quality.

  17. Detection of pharmaceutical crystals in polymer particles by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ricarte, Ralm; Hillmyer, Marc; Lodge, Timothy

    2015-03-01

    The use of solid dispersions, blends of an active pharmaceutical ingredient (API) and a polymer excipient, may significantly enhance the dissolution performance of a poorly water soluble drug. However, the polymer's role in inhibiting API crystallization within the solid dispersion is not well understood. One of the main challenges in elucidating this mechanism is the difficulty of detecting small amounts of API crystals (less than 5 volume percent) within the polymer matrix. In this work, we explore the use of transmission electron microscopy (TEM) to characterize the crystallinity of griseofulvin (GF) in hydroxypropyl methylcellulose acetate succinate (HPMCAS) solid dispersions. Using both real-space images and electron diffraction patterns from TEM, GF crystals in the HPMCAS matrix were unambiguously identified with nanometer resolution and with a crystal detection sensitivity superior to both wide-angle X-ray scattering and differential scanning calorimetry. TEM shows great potential for characterizing even trace API crystallinity in solid polymeric dispersions.

  18. Ce-doped single crystal and ceramic garnets for γ ray detection

    SciTech Connect

    Hull, G; Roberts, J; Kuntz, J; Fisher, S; Sanner, R; Tillotson, T; Drobshoff, A; Payne, S; Cherepy, N

    2007-07-30

    Ceramic and single crystal Lutetium Aluminum Garnet scintillators exhibit energy resolution with bialkali photomultiplier tube detection as good as 8.6% at 662 keV. Ceramic fabrication allows production of garnets that cannot easily be grown as single crystals, such as Gadolinium Aluminum Garnet and Terbium Aluminum Garnet. Measured scintillation light yields of Cerium-doped ceramic garnets indicate prospects for high energy resolution.

  19. Crystal growth in LiGaSe2 for semiconductor radiation detection applications

    NASA Astrophysics Data System (ADS)

    Stowe, A. C.; Woodward, J.; Tupitsyn, E.; Rowe, E.; Wiggins, B.; Matei, L.; Bhattacharya, P.; Burger, A.

    2013-09-01

    Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. Materials such as LiGaSe2 have been synthesized for non-linear optical applications; however, when the crystal is grown enriched in the 6Li isotope, it is possible to imagine a radiation detector. A nuclear reaction occurs with 6Li, which can be detected within the semiconductor crystal. As such, high quality crystals are required, which have few defects which prohibit charge collection. One of the primary challenges in growing a high quality crystal is the reactivity of lithium metal. Vacuum purified lithium metal was therefore reacted with gallium to form LiGa as an intermediate to LiGaSe2 synthesis. Vertical and horizontal Bridgman growth was then conducted to determine the optimal growth conditions. Vertical Bridgman growth resulted in more pure crystals. Annealing in lithium metal vapor reduced crystal defects and improved optical and electrical properties of the subsequent LiGaSe2 crystal.

  20. Modified timing characteristic of a scintillation detection system with photonic crystal structures.

    PubMed

    Liu, Jinliang; Liu, Bo; Zhu, Zhichao; Chen, Liang; Hu, Jing; Xu, Mengxuan; Cheng, Chuanwei; Ouyang, Xiaoping; Zhang, Zhongbing; Ruan, Jinlu; He, Shiyi; Liu, Linyue; Gu, Mu; Chen, Hong

    2017-03-01

    It is intuitively expected that an enhanced light extraction of a scintillator can be easily achieved by photonic crystal structures. Here, we demonstrate a modified timing characteristic for a detection system induced by enhanced light extraction with photonic crystal structures. Such improvement is due to the enhanced light extraction which can be clearly proven by the independent measurements of the light output and the timing resolution. The present investigation is advantageous to promote the development of a scintillation detection system performance based on the time-of-flight measurement.

  1. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    PubMed

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  2. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A.

    PubMed

    Zhang, Jian-Tao; Cai, Zhongyu; Kwak, Daniel H; Liu, Xinyu; Asher, Sanford A

    2014-09-16

    We fabricated a two-dimensional (2-D) photonic crystal lectin sensing material that utilizes light diffraction from a 2-D colloidal array attached to the surface of a hydrogel that contains mannose carbohydrate groups. Lectin-carbohydrate interactions create hydrogel cross-links that shrink the hydrogel volume and decrease the 2-D particle spacing. This mannose containing 2-D photonic crystal sensor detects Concanavalin A (Con A) through shifts in the 2-D diffraction wavelength. Con A concentrations can be determined by measuring the diffracted wavelength or visually determined from the change in the sensor diffraction color. The concentrations are easily monitored by measuring the 2-D array Debye ring diameter. Our observed detection limit for Con A is 0.02 mg/mL (0.7 μM). The 2-D photonic crystal sensors are completely reversible and can monitor Con A solution concentration changes.

  3. Protein-protein binding detection with nanoparticle photonic crystal enhanced microscopy (NP-PCEM).

    PubMed

    Zhuo, Yue; Tian, Limei; Chen, Weili; Yu, Hojeong; Singamaneni, Srikanth; Cunningham, Brian T

    2014-01-01

    We demonstrate a novel microscopy-based biosensing approach that utilizes a photonic crystal (PC) surface to detect protein-protein binding with the functionalized nanoparticles as tags. This imaging approach utilizes the measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC biosensor in the presence of individual nanoparticles. Moreover, it substantially increases the sensitivity of the imaging approach through tunable localized surface plasmon resonant frequency of the nanoparticle matching with the resonance of the PC biosensor. Experimental demonstrations of photonic crystal enhanced microscopy (PCEM) imaging with single nanoparticle resolution are supported by Finite-Difference Time-Domain (FDTD) computer simulations. The ability to detect the surface adsorption of individual nanoparticles as tags offers a route to single molecule biosensing with photonic crystal biosensor in the future.

  4. Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser.

    PubMed

    Hachuda, Shoji; Watanabe, Takumi; Takahashi, Daichi; Baba, Toshihiko

    2016-06-13

    The detection of low-concentration biomarkers is expected to facilitate the early diagnosis of severe diseases, including malignant tumors. Using photonic crystal nanolaser sensors, we detected prostate-specific antigen (PSA) from a concentration of 1 fM, which is difficult to detect by conventional enzyme-linked immunosorbent assay. The signal intensity and stability were improved by using a surfactant (i.e., ethanolamine). Even when a contaminant such as bovine serum albumin was mixed into the PSA sample, thereby increasing the concentration of the contaminant ten billion times, it was still possible to maintain a high level of detection.

  5. Smart detection of microRNAs through fluorescence enhancement on a photonic crystal.

    PubMed

    Pasquardini, L; Potrich, C; Vaghi, V; Lunelli, L; Frascella, F; Descrovi, E; Pirri, C F; Pederzolli, C

    2016-04-01

    The detection of low abundant biomarkers, such as circulating microRNAs, demands innovative detection methods with increased resolution, sensitivity and specificity. Here, a biofunctional surface was implemented for the selective capture of microRNAs, which were detected through fluorescence enhancement directly on a photonic crystal. To set up the optimal biofunctional surface, epoxy-coated commercially available microscope slides were spotted with specific anti-microRNA probes. The optimal concentration of probe as well as of passivating agent were selected and employed for titrating the microRNA hybridization. Cross-hybridization of different microRNAs was also tested, resulting negligible. Once optimized, the protocol was adapted to the photonic crystal surface, where fluorescent synthetic miR-16 was hybridized and imaged with a dedicated equipment. The photonic crystal consists of a dielectric multilayer patterned with a grating structure. In this way, it is possible to take advantage from both a resonant excitation of fluorophores and an angularly redirection of the emitted radiation. As a result, a significant fluorescence enhancement due to the resonant structure is collected from the patterned photonic crystal with respect to the outer non-structured surface. The dedicated read-out system is compact and based on a wide-field imaging detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development such as for example in microarray-type bioassays.

  6. The synthesis of large-diameter ZnTe crystal for THz emitting and detection

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Bai, Wei; Feng, Jiatai; Jie, Wanqi

    2017-10-01

    A high-quality, large-size ZnTe ingot with the diameter of 60 mm and the length of 80 mm were prepared by the modified temperature gradient solvent method, where the Te rich solution acted as both solubility promoter and reactant. Using this method, the crystallization temperature was reduced from 1568 K to 1333 K, plus, the crystal defects could be reduced in some extent due to the lower zinc partial pressure. Few Te inclusions are found in the as-grown ZnTe crystal with the bulk factor less than 0.1%. X-ray diffraction (XRD), infrared transmission microscope, fourier transform infrared (FT-IR) spectrometer, ultraviolet-visible (UV-Vis) spectrophotometer were used to analyze the qualities and properties of the ZnTe crystals. The infrared transmittance over the wavenumber range from 500 to 4000 cm-1 is about 60% and the band gap is about 2.23 eV at the room temperature. The FWHM of the detection pulse with the THz time-domain spectroscopy (THz-TDS) is about 0.34 ps. Besides, both the radiation and detection pulse have a wide frequency distribution about 3 THz at the room temperature. These results strongly indicate that the high-quality ZnTe crystal synthesized by the temperature gradient solvent method is superior for THz device applications.

  7. Characterization of salt interferences in second-harmonic generation detection of protein crystals

    PubMed Central

    Closser, R. G.; Gualtieri, E. J.; Newman, J. A.; Simpson, G. J.

    2013-01-01

    Studies were undertaken to assess the merits and limitations of second-harmonic generation (SHG) for the selective detection of protein and polypeptide crystal formation, focusing on the potential for false positives from SHG-active salts present in crystallization media. The SHG activities of salts commonly used in protein crystallization were measured and quantitatively compared with reference samples. Out of 19 salts investigated, six produced significant background SHG and 15 of the 96 wells of a sparse-matrix screen produced SHG upon solvent evaporation. SHG-active salts include phosphates, hydrated sulfates, formates and tartrates, while chlorides, acetates and anhydrous sulfates resulted in no detectable SHG activity. The identified SHG-active salts produced a range of signal intensities spanning nearly three orders of magnitude. However, even the weakest SHG-active salt produced signals that were several orders of magnitude greater than those produced by typical protein crystals. In general, SHG-active salts were identifiable through characteristically strong SHG and negligible two-photon-excited ultraviolet fluorescence (TPE-UVF). Exceptions included trials containing either potassium dihydrogen phosphate or ammonium formate, which produced particularly strong SHG, but with residual weak TPE-UVF signals that could potentially complicate discrimination in crystallization experiments using these precipitants. PMID:24282335

  8. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions.

    PubMed

    Jensen, Jesper B; Pedersen, Lars H; Hoiby, Poul E; Nielsen, Lars B; Hansen, T P; Folkenberg, J R; Riishede, J; Noordegraaf, Danny; Nielsen, Kristian; Carlsen, A; Bjarklev, A

    2004-09-01

    We demonstrate highly efficient evanescent-wave detection of fluorophore-labeled biomolecules in aqueous solutions positioned in the air holes of the microstructured part of a photonic crystal fiber. The air-suspended silica structures located between three neighboring air holes in the cladding crystal guide light with a large fraction of the optical field penetrating into the sample even at wavelengths in the visible range. An effective interaction length of several centimeters is obtained when a sample volume of less than 1 microL is used.

  9. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy.

    PubMed

    Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T

    2013-10-01

    We experimentally demonstrate simultaneous selective detection of xylene and trichloroethylene (TCE) using multiplexed photonic crystal waveguides (PCWs) by near-infrared optical absorption spectroscopy on a chip. Based on the slow light effect of photonic crystal structure, the sensitivity of our device is enhanced to 1 ppb (v/v) for xylene and 10 ppb (v/v) for TCE in water. Multiplexing is enabled by multimode interference power splitters and Y-combiners that integrate multiple PCWs on a silicon chip in a silicon-on-insulator platform.

  10. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    PubMed

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2.

  11. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid.

    PubMed

    Wang, Xuan; Mu, Zhongde; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2013-12-15

    A novel sensor for the rapid and label-free detection of imidacloprid was developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. The molecular imprinted photonic hydrogel film was prepared with methacrylic acid as monomers, ethylene glycol dimethylacrylate as cross-linkers and imidacloprid as imprinting template molecules. When the colloidal crystal template and the molecularly imprinted template was removed, the resulted MIPH film possessed a highly ordered three-dimensional macroporous structure with nanocavities. The response of the MIPH film to imidacloprid in aqueous solution can be detected through a readable Bragg diffraction red shift. When the concentration of imidacloprid increased from 10(-13) to 10(-7) g/mL, the Bragg diffraction peak shifted from 551 to 589 nm, while there were no obvious peak shifts for thiamethoxam and acetamiprid. This sensor which comprises of no label techniques and expensive instruments has potential application for the detection of trace imidacloprid.

  12. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Wei, Haotong; Wei, Wei; Chuirazzi, William; DeSantis, Dylan; Huang, Jinsong; Cao, Lei

    2017-03-01

    Methylammonium lead tribromide (MAPbBr3) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr3 single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4-1.6)×10-3 cm2/V.

  13. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays.

    PubMed

    Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T

    2011-11-07

    By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer.

  14. Hydrothermal growth and characterization of UO2 single crystals for neutron radiation detection(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mann, Matthew; Hunt, Eric; Young, Christopher; Kimani, Martin; Turner, David; Varga, Stephan; Petrosky, James

    2016-09-01

    There is significant interest in developing efficient, direct conversion, neutron sensitive solid-state radiation detector materials with the ability to discriminate between photon and neutron events. Recently, this has led several research groups to pursue uranium dioxide (UO2) single crystals as a detection material due to the large reaction energy ( 185 MeV) from a neutron induced fission event. The resulting electrical pulse, generated primarily by the energetic fission fragments, is expected to be on the order of 165 MeV, which is much greater than current detection schemes which rely on reaction energies between 2-6 MeV. The primary technical challenge to the successful fabrication of UO2 devices is the lack of high quality (semiconductor grade) single crystals of UO2. The high melting point of UO2 ( 2878°C) precludes the use of traditional melt growth techniques like Czochralski. While exotic melt growth techniques such as arc fusion, cold crucible, and solar furnace have successfully grown UO2, the crystal quality suffers from both thermal strain and oxygen non-stoichiometry, two particularly difficult challenges inherent to uranium oxide materials. Crystal growth of UO2 by the hydrothermal synthesis technique has never been investigated, although the method has been successfully applied to the synthesis of other refractory oxides. In this talk, we will present growth of UO2 single crystals from a variety of hydrothermal solutions at temperatures below 650C. X-ray diffraction confirmed the stoichiometric nature of the samples and X-ray photoelectron spectroscopy determined the photoelectric work function of two crystal orientations. Preliminary proof-of-concept irradiation studies of a simple UO2 resistive detector will also be presented.

  15. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids.

    PubMed

    Uttenthaler, E; Schräml, M; Mandel, J; Drost, S

    2001-12-01

    Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5-20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.

  16. Angular spectrum detection instrument for label-free photonic crystal sensors.

    PubMed

    Liu, Longju; Xu, Zhen; Dong, Liang; Lu, Meng

    2014-05-01

    An angular spectrum analysis system was demonstrated to monitor the optical resonant mode of a photonic crystal (PC) sensor comprised of a one-dimensional grating structure. Exposed to solutions with different refractive indices or adsorbed with biomaterials, the PC sensor exhibited changes of the optical resonant modes. The developed detection system utilized a focused laser beam to detect shifts of the resonant angle, and thereby allowed a kinetic analysis of chemical absorption. Such a detection apparatus offers an adjustable angular resolution and a tunable detection range for a wide variety of refractometric sensing applications. A limit of detection of 6.57×10(-5) refractive index unit has been observed. The instrument also offers an imaging capability of rapidly characterizing low-contrast samples deposited on the PC surface with a spatial resolution of 10 μm.

  17. Liquid crystal thermometry for the detection of neonatal hypothermia in Nepal.

    PubMed

    Manandhar, N; Ellis, M; Manandhar, D S; Morley, D; de L Costello, A M

    1998-02-01

    We assessed the sensitivity, specificity and likelihood ratio of a low cost liquid crystal strip thermometer (LCT) compared with axillary mercury thermometry for the detection of neonatal hypothermia in Nepal. The subjects were 76 healthy newborns in the government maternity hospital of Kathmandu, Nepal in winter. The validity of LCT for the detection of neonatal hypothermia (less than 36 degrees C) showed a sensitivity of 83 per cent, specificity 96 per cent, positive predictive value 98 per cent and a likelihood ratio of 23. Use of LCT on newborns in this setting raises a measured pretest probability of first day hypothermia of 63 per cent to a post-test probability of 97 per cent. Liquid crystal thermometry is a simple, low-cost, and valid method for identifying core hypothermia in newborns. It is ideal for isolated rural communities where LCT strips could be added to delivery kits.

  18. Distant optical detection of small rotations and displacements by means of chiral liquid crystals

    SciTech Connect

    Shibaev, Petr V. E-mail: shibayev@fordham.edu; Troisi, Juliana; Reddy, Kathryn; Iljin, Andrey

    2014-01-15

    The paper describes novel chiral viscoelastic liquid crystalline mixtures and their application for the detection of small rotational displacements of two plates confining cholesteric liquid crystals (CLC). The mixtures are characterized by extremely high viscosities and stability of the selective reflection band (SRB) at ambient temperatures. Even a small rotation applied to the chiral liquid crystal (CLC) cell results in dramatic changes of the reflective properties of sandwiched CLC films. The angle and direction of rotation as well as the magnitude of CLC's shear deformation can be determined for a variety of experimental geometries, each of which is characterized by its own response function. The proposed model explains changes in the reflection spectra for different experimental geometries and relates them to the angle of rotation and magnitude of shear. The method was tested for a detection of small rotations from a distance of up to 50 m and allows for resolving small rotations of the order of fractions of degrees.

  19. Distant optical detection of small rotations and displacements by means of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr V.; Iljin, Andrey; Troisi, Juliana; Reddy, Kathryn

    2014-01-01

    The paper describes novel chiral viscoelastic liquid crystalline mixtures and their application for the detection of small rotational displacements of two plates confining cholesteric liquid crystals (CLC). The mixtures are characterized by extremely high viscosities and stability of the selective reflection band (SRB) at ambient temperatures. Even a small rotation applied to the chiral liquid crystal (CLC) cell results in dramatic changes of the reflective properties of sandwiched CLC films. The angle and direction of rotation as well as the magnitude of CLC's shear deformation can be determined for a variety of experimental geometries, each of which is characterized by its own response function. The proposed model explains changes in the reflection spectra for different experimental geometries and relates them to the angle of rotation and magnitude of shear. The method was tested for a detection of small rotations from a distance of up to 50 m and allows for resolving small rotations of the order of fractions of degrees.

  20. Neutron beam test of barium fluoride crystal for dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.

    2016-10-01

    In order to test the capabilities of Barium Fluoride (BaF2) crystal for dark matter direct detection, nuclear recoils are studied with mono-energetic neutron beam. The energy spectra of nuclear recoils, quenching factors for elastic scattering neutrons and discrimination capability between neutron inelastic scattering events and γ events are obtained for various recoil energies of the F content in BaF2.

  1. Target detection with a liquid-crystal-based passive Stokes polarimeter.

    PubMed

    Goudail, François; Terrier, Patrick; Takakura, Yoshitate; Bigué, Laurent; Galland, Frédéric; DeVlaminck, Vincent

    2004-01-10

    We present an imaging system that measures the polarimetric state of the light coming from each point of a scene. This system, which determines the four components of the Stokes vector at each spatial location, is based on a liquid-crystal polarization modulator, which makes it possible to acquire four-dimensional Stokes parameter images at a standard video rate. We show that using such polarimetric images instead of simple intensity images can improve target detection and segmentation performance.

  2. Electrochemical Quartz Crystal Nanobalance (EQCN) Based Biosensor for Sensitive Detection of Antibiotic Residues in Milk.

    PubMed

    Bhand, Sunil; Mishra, Geetesh K

    2017-01-01

    An electrochemical quartz crystal nanobalance (EQCN), which provides real-time analysis of dynamic surface events, is a valuable tool for analyzing biomolecular interactions. EQCN biosensors are based on mass-sensitive measurements that can detect small mass changes caused by chemical binding to small piezoelectric crystals. Among the various biosensors, the piezoelectric biosensor is considered one of the most sensitive analytical techniques, capable of detecting antigens at picogram levels. EQCN is an effective monitoring technique for regulation of the antibiotics below the maximum residual limit (MRL). The analysis of antibiotic residues requires high sensitivity, rapidity, reliability and cost effectiveness. For analytical purposes the general approach is to take advantage of the piezoelectric effect by immobilizing a biosensing layer on top of the piezoelectric crystal. The sensing layer usually comprises a biological material such as an antibody, enzymes, or aptamers having high specificity and selectivity for the target molecule to be detected. The biosensing layer is usually functionalized using surface chemistry modifications. When these bio-functionalized quartz crystals are exposed to a particular substance of interest (e.g., a substrate, inhibitor, antigen or protein), binding interaction occurs. This causes a frequency or mass change that can be used to determine the amount of material interacted or bound. EQCN biosensors can easily be automated by using a flow injection analysis (FIA) setup coupled through automated pumps and injection valves. Such FIA-EQCN biosensors have great potential for the detection of different analytes such as antibiotic residues in various matrices such as water, waste water, and milk.

  3. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection

    PubMed Central

    Jahns, Sabrina; Bräu, Marion; Meyer, Björn-Ole; Karrock, Torben; Gutekunst, Sören B.; Blohm, Lars; Selhuber-Unkel, Christine; Buhmann, Raymund; Nazirizadeh, Yousef; Gerken, Martina

    2015-01-01

    We present a handheld biosensor system for the label-free and specific multiplexed detection of several biomarkers employing a spectrometer-free imaging measurement system. A photonic crystal surface functionalized with multiple specific ligands forms the optical transducer. The photonic crystal slab is fabricated on a glass substrate by replicating a periodic grating master stamp with a period of 370 nm into a photoresist via nanoimprint lithography and deposition of a 70-nm titanium dioxide layer. Capture molecules are coupled covalently and drop-wise to the photonic crystal surface. With a simple camera and imaging optics the surface-normal transmission is detected. In the transmission spectrum guided-mode resonances are observed that shift due to protein binding. This shift is observed as an intensity change in the green color channel of the camera. Non-functionalized image sections are used for continuous elimination of background drift. In a first experiment we demonstrate the specific and time-resolved detection of 90.0 nm CD40 ligand antibody, 90.0 nM EGF antibody, and 500 nM streptavidin in parallel on one sensor chip. In a second experiment, aptamers with two different spacer lengths are used as receptor. The binding kinetics with association and dissociation of 250 nM thrombin and regeneration of the sensor surface with acidic tris-HCl-buffer (pH 5.0) is presented for two measurement cycles. PMID:26504624

  4. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection.

    PubMed

    Jahns, Sabrina; Bräu, Marion; Meyer, Björn-Ole; Karrock, Torben; Gutekunst, Sören B; Blohm, Lars; Selhuber-Unkel, Christine; Buhmann, Raymund; Nazirizadeh, Yousef; Gerken, Martina

    2015-10-01

    We present a handheld biosensor system for the label-free and specific multiplexed detection of several biomarkers employing a spectrometer-free imaging measurement system. A photonic crystal surface functionalized with multiple specific ligands forms the optical transducer. The photonic crystal slab is fabricated on a glass substrate by replicating a periodic grating master stamp with a period of 370 nm into a photoresist via nanoimprint lithography and deposition of a 70-nm titanium dioxide layer. Capture molecules are coupled covalently and drop-wise to the photonic crystal surface. With a simple camera and imaging optics the surface-normal transmission is detected. In the transmission spectrum guided-mode resonances are observed that shift due to protein binding. This shift is observed as an intensity change in the green color channel of the camera. Non-functionalized image sections are used for continuous elimination of background drift. In a first experiment we demonstrate the specific and time-resolved detection of 90.0 nm CD40 ligand antibody, 90.0 nM EGF antibody, and 500 nM streptavidin in parallel on one sensor chip. In a second experiment, aptamers with two different spacer lengths are used as receptor. The binding kinetics with association and dissociation of 250 nM thrombin and regeneration of the sensor surface with acidic tris-HCl-buffer (pH 5.0) is presented for two measurement cycles.

  5. Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide

    PubMed Central

    Sen, Avijit; Kupcho, Kurt A.; Grinwald, Bart A.; VanTreeck, Heidi J.; Acharya, Bharat R.

    2013-01-01

    A highly sensitive nitrogen dioxide (NO2) sensor based on orientational transition of a thin film of liquid crystal (LC) supported on a gold surface is reported. Transport of NO2 molecules through the LC film to the LC-gold interface induces an orientation transition in the LC film. The dynamic behavior of the sensor response exhibits a concentration-dependent response rate that is employed to generate an algorithm for quantitative determination of unknown concentrations. Sensitive, selective and reversible detection with minimal effects of environmental fluctuations suggest that these sensors can be used for quantitative NO2 detection for a number of applications. PMID:23526230

  6. A 3-day delay in synovial fluid crystal identification did not hinder the reliable detection of monosodium urate and calcium pyrophosphate crystals.

    PubMed

    Tausche, Anne-Kathrin; Gehrisch, Siegmund; Panzner, Ines; Winzer, Maria; Range, Ursula; Bornstein, Stefan R; Siegert, Gabriele; Wunderlich, Carsten; Aringer, Martin

    2013-08-01

    Arthrocentesis is an essential emergency step in managing patients with acute arthritis. To identify a bacterial infection, Gram staining is performed promptly. However, crystal analysis may not be immediately performed in many facilities. Being considered not to be stable over time, synovial fluid (SF) is sometimes discarded instead of being stored for crystal identification. The aim of this study was to assess the detectability of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals in SF over a period of 3 days. Consecutive SF samples from 75 joints were analyzed for MSU, CPP crystals, and pH. Two independent observers evaluated the samples by regular light and polarization microscopy immediately after arthrocentesis and after 1, 2, and 3 days at room temperature or at 4°C. Of 75 samples, 27 contained crystals (16 MSU, 6 CPP, 5 both); semiquantitative counts of both MSU and CPP crystals did not change significantly after 3 days. There was no new formation of crystals in any of the crystal-negative samples, which was independent of the storage temperature. Synovial fluid pH was not predictive of crystals and did not change over time. Although immediate workup for microbiology, including Gram stain and culture, is indispensable and well established, crystal analysis may at times not be immediately performed. Our study suggests that when crystal identification cannot be done immediately, it can be safely performed up to 3 days after arthrocentesis when SF is stored at 4°C or even at stable room temperature (20°C).

  7. (012)-cut chalcopyrite ZnGeP2 as a high-bandwidth terahertz electro-optic detection crystal

    NASA Astrophysics Data System (ADS)

    Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.

    2017-02-01

    The detection properties of a chalcopyrite zinc germanium diphosphide (ZnGeP2, ZGP) electro-optic (EO) crystal, having thickness of 1080 μm and cut along the <012> plane, is studied in the terahertz (THz) frequency range. Outstanding phase matching is achieved between the optical probe pulse and the THz frequency components, leading to a large EO detection bandwidth. ZGP has the ability to measure frequencies that are 1.3 and 1.2 times greater than that of ZnTe for crystal thicknesses of 1080 and 500 μm, respectively. Furthermore, the ZGP crystal is able to detect frequency components that are >=4.6 times larger than both ZnSe and GaP (for crystal thicknesses of 1080 μm) and >=2.2 times larger than ZnSe and GaP (for crystal thicknesses of 500 μm).

  8. Detection of low concentrations of malachite green and crystal violet in water.

    PubMed

    Safarík, I; Safariková, M

    2002-01-01

    A simple procedure for the detection of low concentrations of malachite green and crystal violet in water is presented. The dyes were preconcentrated from 1,000 ml of water samples with magnetic solid phase extraction using magnetic affinity adsorbent (magnetite with immobilized copper phthalocyanine dye). Due to the magnetic properties of the adsorbent the preconcentration process can also be performed in water samples containing suspended solids. After elution of the captured dyes, their presence in eluates was detected spectrophotometrically. Concentrations of both dyes in the range 0.5-1.0 microgl(-1) of water could be reproducibly detected. The dyes can be detected not only in potable water, but also in river ones.

  9. Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection.

    PubMed

    Hou, Jue; Zhang, Huacheng; Yang, Qiang; Li, Mingzhu; Song, Yanlin; Jiang, Lei

    2014-06-02

    Ultratrace detection attracts great interest because it is still a challenge to the early diagnosis and drug testing. Enriching the targets from highly diluted solutions to the sensitive area is a promising method. Inspired by the fog-collecting structure on Stenocara beetle's back, a photonic-crystal (PC) microchip with hydrophilic-hydrophobic micropattern was fabricated by inkjet printing. This device was used to realize high-sensitive ultratrace detection of fluorescence analytes and fluorophore-based assays. Coupled with the fluorescence enhancement effect of a PC, detection down to 10(-16) mol L(-1) was achieved. This design can be combined with biophotonic devices for the detection of drugs, diseases, and pollutions of the ecosystem.

  10. Enhanced backscattering for infrared detection using photonic crystal based flat lens.

    PubMed

    Oden, Jonathan; Hofman, Maxence; Mélique, Xavier; Lippens, Didier; Vanbésien, Olivier

    2012-08-10

    An n=-1 flat lens based on photonic crystal semiconductor technology is evaluated for infrared detection purposes. The idea consists in exploiting the backscattered waves of an incident plane wave impinging on a target placed in the focal region of a flat lens. It is shown that subwavelength detection of micronic dielectric targets can be obtained at 1.55 μm using the double focus of reflected waves induced by negative refraction. Complex relations among the intrinsic nature, the shape and size of the target, and detection efficiency are interpreted in terms of target eigenmode excitation. Reflectivity is modulated by the intrinsic mode nature, transverse, circular, or longitudinal, with an enhancement of the detection sensitivity in the case of whispering-gallery modes. It is believed that such a study paves the way to the definition of original noninvasive infrared sensors.

  11. A method for directional detection of dark matter using spectroscopy of crystal defects

    NASA Astrophysics Data System (ADS)

    Rajendran, Surjeet; Zobrist, Nicholas; Sushkov, Alexander O.; Walsworth, Ronald; Lukin, Mikhail

    2017-08-01

    We propose a method to identify the direction of an incident weakly interacting massive particle (WIMP) via induced nuclear recoil. Our method is based on spectroscopic interrogation of quantum defects in macroscopic solid-state crystals. When a WIMP scatters in a crystal, the induced nuclear recoil creates a tell-tale damage cluster, localized to within about 50 nm, with an orientation to the damage trail that correlates well with the direction of the recoil and hence the incoming WIMP. This damage cluster induces strain in the crystal, shifting the energy levels of nearby quantum defects. These level shifts can be measured optically (or through paramagnetic resonance) making it possible to detect the strain environment around the defect in a solid sample. As a specific example, we consider nitrogen vacancy centers in diamond, for which high defect densities and nanoscale localization of individual defects have been demonstrated. To localize the millimeter-scale region of a nuclear recoil within the crystal due to a potential dark matter event, we can use conventional WIMP detection techniques such as the collection of ionization/scintillation. Once an event is identified, the quantum defects in the vicinity of the event can be interrogated to map the strain environment, thus determining the direction of the recoil. In principle, this approach should be able to identify the recoil direction with an efficiency greater than 70% at a false-positive rate less than 5% for 10 keV recoil energies. If successful, this method would allow for directional detection of WIMP-induced nuclear recoils at solid-state densities, enabling probes of WIMP parameter space below the solar neutrino floor. This technique could also potentially be applied to identify the direction of particles such as neutrons whose low scattering cross section requires detectors with a large target mass.

  12. A focussing iron line crystal spectrometer for Spacelab. [cosmic X-ray detection

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Culhane, J. L.; Rapley, C. G.; Gabriel, A. H.; Walker, A. B. C., Jr.; Woodgate, B. E.

    1977-01-01

    A crystal spectrometer system is described which employs conical focusing of 12 curved LiF crystal panels to minimize the detector size and reduce the background counting rate. The wavelength range from 1.70 to 1.98 A is covered, including the resonance lines of Fe XXV and Fe XXVI as well as the Fe I K-alpha line and absorption edge. Operation of the spectrometer is discussed, noting that diffracted X-rays are registered in one-dimensional position-sensitive detectors and that the arrival position of a photon in a detector is related to its wavelength due to the fixed curvature of the crystal panels in the dispersion plane. Some characteristics of the multianode position-sensitive detectors are reviewed along with the crystal arrangement and mounting. The instrument sensitivity is evaluated in relation to the strengths of 6.7-keV emission features detected by the Ariel 5 and OSO 8 proportional-counter spectrometers.

  13. Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Stillman, David E.

    2011-03-01

    Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.

  14. Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning.

    PubMed

    Yu, Haohai; Wu, Kui; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang; Jiang, Minhua

    2011-04-01

    We demonstrated a laser-diode pumped Nd-doped yttrium gallium garnet crystal laser at 1110 nm for the first time to our knowledge. By suppressing the oscillation at about 1.06 μm, continuous-wave output power of 2.1 W at 1110 nm was achieved. With a Cr:YAG as the saturable absorber, the passive Q-switching performance at this wavelength was obtained. The shortest pulse width and largest pulse energy were 31.5 ns and 22.7 μJ, respectively. Laser radiation at this wavelength is an important source for detecting carbon monoxide poisoning by simple frequency doubling with a nonlinear crystal.

  15. Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles.

    PubMed

    Lin, Pin-Tso; Lu, Tsan-Wen; Lee, Po-Tsung

    2014-03-24

    For manipulating nanometric particles, we propose a photonic crystal waveguide cavity design with a waist structure to enhance resonance characteristic of the cavity. For trapping a polystyrene particle of 50 nm radius on the lateral side of the waist, the optical force can reach 2308 pN/W with 24.7% signal transmission. Threshold power of only 0.32 mW is required for stable trapping. The total length of the device is relatively short with only ten photonic crystal periods, and the trapping can occur precisely and only at the waist. The designed cavity can also provide particle detection and surrounding medium sensing using the transmission spectrum with narrow linewidth. The simulated figure of merit of 110.6 is relatively high compared with those obtained from most plasmonic structures for sensing application. We anticipate this design with features of compact, efficient, and versatile in functionality will be beneficial for developing lab-on-chip in the future.

  16. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    DTIC Science & Technology

    2016-06-01

    and alkali -halide scintillators for potential use in neutron and gamma detection systems.” M.S. thesis, Dept. Physics, Naval Posgraduate School...assets.newport.com/webDocuments- EN/images/2151_And_2153_User_Manual_RevC.pdf Accessed Apr. 1, 2016. [25] Metal package PMT with cooler photosensor modules

  17. In Field Detection of Biologicals in Human Blood Serum, Saliva and Urine Using Pan Coated Quartz Crystals

    DTIC Science & Technology

    1996-10-01

    removed and stored at 40 C for use in assays. 11 inhibit these proteins. Other enzymes, such as a - amylase , are also found in abundance in saliva . This...Detection of Biologicals in Human Blood Serum, Saliva and Urine Using Pan Coated Quartz Crystals PRINCIPAL INVESTIGATOR: Robert Carter CONTRACTING...TITLE AND SUBTITLE In Field Detection of Biologicals in 5. FUNDING NUMBERS Human Blood Serum, Saliva and Urine Using Pan Coated Quartz Crystals

  18. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    NASA Astrophysics Data System (ADS)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  19. Amplification of interference color by using liquid crystal for protein detection

    SciTech Connect

    Zhu, Qingdi; Yang, Kun-Lin

    2013-12-09

    Micrometer-sized, periodic protein lines printed on a solid surface cause interference color which is invisible to the naked eye. However, the interference color can be amplified by using a thin layer of liquid crystal (LC) covered on the surface to form a phase diffraction grating. Strong interference color can thus be observed under ambient light. By using the LC-amplified interference color, we demonstrate naked-eye detection of a model protein—immunoglobulin G (IgG). Limit of detection can reach 20 μg/ml of IgG without using any instrumentation. This detection method is potentially useful for the development of low-cost and portable biosensors.

  20. Amplification of interference color by using liquid crystal for protein detection

    NASA Astrophysics Data System (ADS)

    Zhu, Qingdi; Yang, Kun-Lin

    2013-12-01

    Micrometer-sized, periodic protein lines printed on a solid surface cause interference color which is invisible to the naked eye. However, the interference color can be amplified by using a thin layer of liquid crystal (LC) covered on the surface to form a phase diffraction grating. Strong interference color can thus be observed under ambient light. By using the LC-amplified interference color, we demonstrate naked-eye detection of a model protein—immunoglobulin G (IgG). Limit of detection can reach 20 μg/ml of IgG without using any instrumentation. This detection method is potentially useful for the development of low-cost and portable biosensors.

  1. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber.

    PubMed

    Yang, Xuan; Zhang, Alissa Y; Wheeler, Damon A; Bond, Tiziana C; Gu, Claire; Li, Yat

    2012-01-01

    This paper reports the first step toward the development of a glucose biosensor based on Raman spectroscopy and a photonic crystal fiber (PCF) probe. Historically, it has been very challenging to detect glucose directly by Raman spectroscopy due to its inherently small Raman scattering cross-section. In this work, we report the first quantitative glucose Raman detection in the physiological concentration range (0-25 mM) with a low laser power (2 mW), a short integration time (30 s), and an extremely small sampling volume (~50 nL) using the highly sensitive liquid-filled PCF probe. As a proof of concept, we also demonstrate the molecular specificity of this technique in the presence of a competing sugar, such as fructose. High sensitivity, flexibility, reproducibility, low cost, small sampling volume, and in situ remote sensing capability make PCF a very powerful platform for potential glucose detection based on Raman spectroscopy.

  2. Detection of anthrax lef with DNA-based photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  3. Crystal Diagnostics Xpress S Kit for the Rapid Detection of Salmonella spp. in Selected Food Matrixes.

    PubMed

    Bullard, Brian; Stumpf, Curtis H; Zhao, Weidong; Kuzenko, Stephanie; Niehaus, Gary

    2017-03-07

    The Crystal Diagnostics (CDx) Xpress S Kit is a rapid- screening assay for Salmonella spp. in whole raw tomatoes, whole chicken c`arcasses, raw ground beef, raw beef trim, and whole liquid pasteurized eggs with citric acid when present at levels of 1 CFU/portion size. The Xpress S system comprises an automatic CDx Xpress Reader and a single-use CDx BioCassette that incorporates antibody-coupled microspheres and liquid crystal for the selective identification of the intended microbe. In internal evaluations, the CDx Xpress S Kit detected all 142 Salmonella strains tested, including non-enterica subspecies, and excluded all non-Salmonella species assayed. Method-developer studies, as well as a third-party evaluation, demonstrated that 15 h single-stage enrichment permits rapid detection equivalent to the U.S. Department of Agriculture and U.S. Food and Drug Administration reference methods. The results demonstrate that the CDx Xpress S Kit is one of the fastest, most sensitive, and most accurate methods for detecting Salmonella in food matrixes.

  4. Testing a portable Raman instrument: the detection of biomarkers in gypsum powdered matrix under gypsum crystals.

    PubMed

    Culka, A; Jehlička, J; Strnad, L

    2012-02-01

    In this study the possibility to detect biomarkers in experimentally prepared evaporitic matrices using a portable Raman instrument was estimated. Testing of the instrument was carried-out under the Alpine conditions outdoors at a low ambient temperature of -10 °C and at an altitude of 2860 m (Pitztal, Austria). Amino acids glycine and l-alanine, nucleo bases thymine and adenine, and metabolite urea were the organics mixed with gypsum powder. In this step it was shown that portable Raman spectroscopic instrumentation is capable of detecting biomarkers in complex samples in a host geological matrix. Such detection is possible even when the laser beam was focussed through the gypsum crystals 3-9 mm thick. For exobiology areas, this is an important fact, because life and/or related biomolecules are likely to be found in cavities under the surface of partially transparent evaporitic minerals that provide them a shelter from the hostile surrounding environment. For influencing the intensity of Raman bands the thickness of covering crystals is not as important as is the actual concentration of the biomarkers. This work and similar experiments serve for better evaluation of Raman spectroscopy as a method for future planetary exploration mission adoption.

  5. Quartz crystal microbalance (QCM) as biosensor for the detecting of Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Tran, Van Man; Nguyen, Thi Khoa My; Phat Huynh, Trong; Lam, Quang Vinh; Dat Huynh, Thanh; Truong, Thi Ngoc Lien

    2014-12-01

    Although Escherichia coli (E. coli) is a commensalism organism in the intestine of humans and warm-blooded animals, it can be toxic at higher density and causes diseases, especially the highly toxic E. coli O157:H7. In this paper a quartz crystal microbalance (QCM) biosensor was developed for the detection of E. coli O157:H7 bacteria. The anti-E. coli O157:H7 antibodies were immobilized on a self-assembly monolayer (SAM) modified 5 MHz AT-cut quartz crystal resonator. The SAMs were activated with 16-mercaptopropanoic acid, in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and ester N-hydroxysuccinimide (NHS). The result of changing frequency due to the adsorption of E. coli O157:H7 was measured by the QCM biosensor system designed and fabricated by ICDREC-VNUHCM. This system gave good results in the range of 102-107 CFU mL-1 E. coli O157:H7. The time of bacteria E. coli O157:H7 detection in the sample was about 50 m. Besides, QCM biosensor from SAM method was comparable to protein A method-based piezoelectric immunosensor in terms of the amount of immobilized antibodies and detection sensitivity.

  6. Testing a portable Raman instrument: The detection of biomarkers in gypsum powdered matrix under gypsum crystals

    NASA Astrophysics Data System (ADS)

    Culka, A.; Jehlička, J.; Strnad, L.

    2012-02-01

    In this study the possibility to detect biomarkers in experimentally prepared evaporitic matrices using a portable Raman instrument was estimated. Testing of the instrument was carried-out under the Alpine conditions outdoors at a low ambient temperature of -10 °C and at an altitude of 2860 m (Pitztal, Austria). Amino acids glycine and L-alanine, nucleo bases thymine and adenine, and metabolite urea were the organics mixed with gypsum powder. In this step it was shown that portable Raman spectroscopic instrumentation is capable of detecting biomarkers in complex samples in a host geological matrix. Such detection is possible even when the laser beam was focussed through the gypsum crystals 3-9 mm thick. For exobiology areas, this is an important fact, because life and/or related biomolecules are likely to be found in cavities under the surface of partially transparent evaporitic minerals that provide them a shelter from the hostile surrounding environment. For influencing the intensity of Raman bands the thickness of covering crystals is not as important as is the actual concentration of the biomarkers. This work and similar experiments serve for better evaluation of Raman spectroscopy as a method for future planetary exploration mission adoption.

  7. Detection of anthrax lef with DNA-based photonic crystal sensors.

    PubMed

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  8. Fabrication of liquid crystal based sensor for detection of hydrazine vapours

    NASA Astrophysics Data System (ADS)

    Nandi, Rajib; Singh, Sachin Kumar; Singh, Hemant Kumar; Singh, Bachcha; Singh, Ranjan K.

    2014-10-01

    A novel liquid crystal (LC) based sensor to detect trace level amount of hydrazine vapour has been developed. The LC 4‧-pentyl-4-biphenylcarbonitrile (5CB) doped with 0.5 wt% 4-decyloxy benzaldehyde (DBA) shows dark to bright optical texture upon exposure of hydrazine vapours as revealed by polarizing optical microscopy under crossed polarizers. The hydrazine interacts with the doped DBA and form diimine compound which disrupt the orientation of aligned 5CB. The interaction between DBA and hydrazine has been also studied by Raman spectroscopy.

  9. Thin film of sol-gel deposited in photonic crystal fiber for cholesterol detection

    NASA Astrophysics Data System (ADS)

    Razo-Medina, D. A.; Alvarado-Méndez, E.; Trejo-Durán, M.

    2015-04-01

    In this work, the fabrication of thin films mixed with cholesterol enzyme as recognition component is shown, using solgel technique. The film was deposited at one end of photonic crystal fiber (optrode), which was used as carrier medium of sol-gel matrix. The concentration of cholesterol in the test sample was determined by the use of transmittance. Measuring device consists of a power source (laser diode), optrode and a light detector. The laser beam is transmitted through the optrode; the variations of intensity depending on cholesterol concentration are emitted to be detected by a photoresistor.

  10. Polymer-based Photonic Crystal Cavity Sensor for Optical Detection in the Visible Wavelength Region.

    PubMed

    Maeno, Kenichi; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-01-01

    In this study, a polymer-based two-dimensional photonic crystal (PhC) cavity for visible-light-based optical-sensing applications was designed and fabricated for the first time. The PhC cavity configuration was designed to operate at 650 nm, and fabricated with a polymer (resist) on a silicon substrate using electron-beam lithography. For investigating sensing applications based on shifting of condition exhibiting a photonic bandgap (PBG), the polymer monolayer deposition (layer-by-layer method) was monitored as the light-intensity change at the cavity position. Consequently, the monolayer-level detection of polyions was achieved.

  11. Adenine detection by photonic crystal fiber based surface enhanced Raman scattering probe

    NASA Astrophysics Data System (ADS)

    Li, Mingshan; Yang, Changxi; Yan, He; Jin, Guofan; Hou, Lantian; Zhou, Guiyao

    2008-01-01

    Detection of biological samples in low concentration is of great significance to the basic research in science, the development of medical technology and many other fields related to our lives. Surface-Enhanced Raman Scattering (SERS), well-known as a powerful analytical tool with high sensitivity, is especially suitable for biomolecule detection as it enables near infrared (NIR) excitation and label-free detection. SERS probe made of conventional optical fiber provides better flexibility in detection; however, it requires a complicated fabrication process and doesn't serve as a well-set detecting platform. In this talk we propose and demonstrate a photonic crystal fiber (PCF) based SERS probe, which has the new advantages of simplicity in fabrication, better light confinement and increased light-analyte interaction volume. The PCF-based SERS probes are prepared in three different ways: mixed solution of sample and gold nanoparticles filled in air holes of PCF, sample solution dried in gold coated air holes and sample solution filled in gold coated air holes, respectively. Sample solution of adenine is in concentration of about 10 -6M. Almost every characteristic peak of adenine can be observed in the spectra detected by each of the three probes.

  12. The PSDAVLL signal detection with synchronous ferroelectric liquid crystal switching as a laser frequency stabilization method

    NASA Astrophysics Data System (ADS)

    Dudzik, G.; Rzepka, J.; Abramski, K. M.

    2016-12-01

    In this paper we present the DAVLL (Dichroic Atomic Vapor Laser Lock) signals detection method for laser frequency stabilization which has been improved by synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC). The SSFLC cell is a polarization switch and quarter waveplate component and it replaces the well-known two-photodiode detection configuration known as the balanced polarimeter. The presented polarization switching dichroic atomic vapor laser lock technique (PSDAVLL) was practically used in VCSEL-based frequency stabilization system with vapor isotopes (85,87Rb) rubidium cell. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7 × 10-9 and a reproducibility of 1.2 × 10-8, with a dynamic range ratio (DNR) of detected signals of around 81.4 dB, what is 9.6 dB better than obtained in the balanced polarimeter configuration. The described PSDAVLL technique was compared with 3-f (on the 3rd harmonic) and passive frequency stabilization methods. Additionally, the presented setup consists only one-photodiode detection path what reduces parasitic phenomena like offsets between photodiode amplifiers, amplifier gain changes due to ambient conditions, aging effects of electronic components etc. as a consequence leads to better frequency reproducibility, stabilization accuracy and less detection system sensitivity to ambient condition changes.

  13. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; Huang, Cheng-Sheng; Schulz, Stephen; Cunningham, Brian T.

    2010-01-01

    A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate. PMID:21164826

  14. Multiplexed Cancer Biomarker Detection Using Quartz-based Photonic Crystal Surfaces

    SciTech Connect

    Huang, Cheng-Sheng; Chaudhey, Vikram; Pokhriyal, A.; George, Sherine; Polans, James; Lu, Meng; Tan, Ruimin; Zangar, Richard C.; Cunningham, Brian T.

    2013-01-17

    A photonic crystal (PC) surface is demonstrated as a high-sensitivity platform for detection of a panel of 21 cancer biomarker antigens using a sandwich enzyme-linked immunosorbent assay (ELISA) microarray format. A quartz-based PC structure fabricated by nanoimprint lithography, selected for its low autofluorescence, supports two independent optical resonances that simultaneously enable enhancement of fluorescence detection of biomarkers and label-free quantification of the density of antibody capture spots. A detection instrument is demonstrated that supports fluorescence and label-free imaging modalities, with the ability to optimize the fluorescence enhancement factor on a pixel-by-pixel basis throughout the microarray using an angle-scanning approach for the excitation laser that automatically compensates for variability in surface chemistry density and capture spot density. Measurements show that the angle-scanning illumination approach reduces the coefficient of variation of replicate assays by 20–99% compared to ordinary fluorescence microscopy, thus supporting reduction in limits of detectable biomarker concentration. Using the PC resonance, biomarkers in mixed samples were detectable at the lowest concentrations tested (2.1–41 pg/mL), resulting in a three-log range of quantitative detection.

  15. Multiplexed cancer biomarker detection using quartz-based photonic crystal surfaces.

    PubMed

    Huang, Cheng-Sheng; Chaudhery, Vikram; Pokhriyal, Anusha; George, Sherine; Polans, James; Lu, Meng; Tan, Ruimin; Zangar, Richard C; Cunningham, Brian T

    2012-01-17

    A photonic crystal (PC) surface is demonstrated as a high-sensitivity platform for detection of a panel of 21 cancer biomarker antigens using a sandwich enzyme-linked immunosorbent assay (ELISA) microarray format. A quartz-based PC structure fabricated by nanoimprint lithography, selected for its low autofluorescence, supports two independent optical resonances that simultaneously enable enhancement of fluorescence detection of biomarkers and label-free quantification of the density of antibody capture spots. A detection instrument is demonstrated that supports fluorescence and label-free imaging modalities, with the ability to optimize the fluorescence enhancement factor on a pixel-by-pixel basis throughout the microarray using an angle-scanning approach for the excitation laser that automatically compensates for variability in surface chemistry density and capture spot density. Measurements show that the angle-scanning illumination approach reduces the coefficient of variation of replicate assays by 20-99% compared to ordinary fluorescence microscopy, thus supporting reduction in limits of detectable biomarker concentration. Using the PC resonance, biomarkers in mixed samples were detectable at the lowest concentrations tested (2.1-41 pg/mL), resulting in a three-log range of quantitative detection.

  16. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection.

    PubMed

    Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; Huang, Cheng-Sheng; Schulz, Stephen; Cunningham, Brian T

    2010-11-22

    A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate.

  17. Spatially resolved detection of crystallized water ice in a T Tauri object

    NASA Astrophysics Data System (ADS)

    Schegerer, A. A.; Wolf, S.

    2010-07-01

    Aims: We search for frozen water and its processing around young stellar objects (YSOs of class I/II). We try to detect potential, regional differences in water ice evolution within YSOs, which is relevant to understanding the chemical structure of the progenitors of protoplanetary systems and the evolution of solid materials. Water plays an important role as a reaction bed for rich chemistry and is an indispensable requirement for life as known on Earth. Methods: We present our analysis of NAOS-CONICA/VLT spectroscopy of water ice at 3 μm for the T Tauri star YLW 16 A in the ρ Ophiuchi molecular cloud. We obtained spectra for different regions of the circumstellar environment. The observed absorption profiles are deconvolved with the mass extinction profiles of amorphous and crystallized ice measured in laboratory. We take into account both absorption and scattering by ice grains. Results: Water ice in YLW16A is detected with optical depths of between τ = 1.8 and τ = 2.5. The profiles that are measured can be fitted predominantly by the extinction profiles of small grains (0.1 μm-0.3 μm) with a small contribution from large grains (<10%). However, an unambiguous trace of grain growth cannot be found. We detected crystallized water ice spectra that have their origin in different regions of the circumstellar environment of the T Tauri star YLW 16 A. The crystallinity increases in the upper layers of the circumstellar disk, while only amorphous grains exist in the bipolar envelope. As in studies of silicate grains in T Tauri objects, the higher crystallinity in the upper layers of the outer disk regions implies that water ice crystallizes and remains crystallized close to the disk atmosphere where water ice is shielded against hard irradiation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal 077.C-0794(A)).Appendix is only available in electronic form at http://www.aanda.org

  18. Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Várnai, Tamás.; Kostinski, Alexander

    2017-05-01

    The Deep Space Climate Observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sunlit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We construct a yearlong time series of flash latitudes, scattering angles, and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice platelets floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo. These glint observations also support proposals for detecting starlight glints off faint companions in our search for habitable exoplanets.

  19. Influence of chain lengths of liquid crystals on cholic acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Fang, Jiyu; Wu, Shin-Tson

    2013-09-01

    The concentration level of bile acids is a useful indicator for the diagnosis of liver diseases since individual suffering from liver diseases often has a sharp increase in bile acid concentration. Here we present a sensor platform based on the anchoring transition of nematic liquid crystal (LC), 4', 4-alkylcyanobiphenyls (nCB, n=5-8), at the surfactant-laden LC/aqueous interfaces for the detection of cholic acid (CA) in aqueous solution. In the sensor platform, the competitive adsorption of CA at the surfactant-laden LC/aqueous interface triggers a homeotropic-to-planar anchoring transition of the LC at the interface. We find the detection limit, which is the minimum concentration of CA required to trigger the LC transition, increases with the increase of the chain length of nCB.

  20. Nanoparticle detection using fano-resonance photonic crystal on optical fiber-tip

    NASA Astrophysics Data System (ADS)

    Yang, Daquan; Yuan, Wei; Ji, Yuefeng

    2016-10-01

    Recently, Fano-resonance photonic crystals (PhC) have been employed within a wide variety of nanophotonic structures for different applications, including imaging, filtering, switching, sensing, and so on. In this paper, we propose a convenient and compact fiber-optic sensor based on optical fiber-tips integrated with Fano-resonance pillar-array PhC. The quality factor 1.04×104 and refractive index sensitivity of 226 nm per refractive index unit (RIU) have been demonstrated. In addition, the proposed Fiber-PhC integrated senor structure can be used for nanoparticle detection by checking the reflection spectrum shift with a narrow line-width. Using this method, we demonstrate that the detection of polystyrene nanoparticles with dimensions down to 50 nm in radius can be achieved. Thus, we believe that the design and results presented here are promising and enable the implementation of simple but functional fiber-optic sensors and devices.

  1. Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection.

    PubMed

    Song, Xiaohong; Declair, Stefan; Meier, Torsten; Zrenner, Artur; Förstner, Jens

    2012-06-18

    Using a finite-difference time-domain method, we theoretically investigate the optical spectra of crossing perpendicular photonic crystal waveguides with quantum dots embedded in the central rod. The waveguides are designed so that the light mainly propagates along one direction and the cross talk is greatly reduced in the transverse direction. It is shown that when a quantum dot (QD) is resonant with the cavity, strong coupling can be observed via both the transmission and crosstalk spectrum. If the cavity is far off-resonant from the QD, both the cavity mode and the QD signal can be detected in the transverse direction since the laser field is greatly suppressed in this direction. This structure could have strong implications for resonant excitation and in-plane detection of QD optical spectroscopy.

  2. Applications of metal ions and liquid crystals for multiplex detection of DNA.

    PubMed

    Liu, Yanyang; Yang, Kun-Lin

    2015-02-01

    Many cations such as sodium ions have strong influence on anchoring behaviors of liquid crystals (LC). Since DNA is negatively charged and forms complex with metal ions, it is possible to form DNA/metal ions complex on surfaces to disrupt orientations of LC. This phenomenon is used to establish a principle for detecting surface immobilized DNA by using LC. In contrast, peptide nucleic acid (PNA) is electroneutral. It does not complex with metal ions or affect the orientations of LC. Therefore, PNA can be used as a probe to hybridize with specific DNA with a unique sequence, and the principle mentioned above can be used to detect the DNA target by using metal ions and LC. Based on this method, a 600bp DNA target in buffer can be detected with a limit of detection at 10fM. Unlike other fluorescence-based DNA assays, this LC-based detection method does not require labeling of DNA, and the test result can be viewed with the naked eye under a polarized microscope. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry.

    PubMed

    Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong

    2015-10-06

    Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.

  4. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine.

    PubMed

    Wang, Yi; Hu, Qiongzheng; Tian, Tongtong; Gao, Yan'an; Yu, Li

    2016-11-01

    A liquid crystal (LC)-based sensor, which is capable of monitoring enzymatic activity at the aqueous/LC interface and detecting cellulase and cysteine (Cys), was herein reported. When functionalized with a surfactant, dodecyl β-d-glucopyranoside, the 4-cyano-4'-pentylbiphenyl (5CB) displays a dark-to-bright transition in the optical appearance for cellulase. We attribute this change to the orientational transition of LCs, as a result of enzymatic hydrolysis between cellulase and surfactant. Furthermore, by adding cellulase and Cu(2+), our surfactant-LCs system performs an interesting ability to detect Cys, even though Cys could not interact with surfactant or LC directly. Alternatively, through the strong binding between Cys and Cu(2+), cellulase was able to hydrolyze surfactant in the presence of Cu(2+), leading to the transition of LCs from dark to bright. The detection limit of the LC sensor was around 1×10(-5)mg/mL and 82.5μM for cellulase and Cys, respectively. The LC-based sensor may contribute to the development of low-cost, expedient, and label-free detection for cellulase and Cys and the design strategy may also provide a novel way for detecting multiple analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection.

    PubMed

    Cai, Zhongyu; Sasmal, Aniruddha; Liu, Xinyu; Asher, Sanford A

    2017-10-04

    Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochemically important lectin, jacalin, play significant roles in many biological functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here we report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection of lectin proteins. The copolymerization of a vinyl linked carbohydrate monomer with acrylamide and acrylic acid forms a carbohydrate hydrogel that shows specific "multivalent" binding to lectin proteins. The resulting carbohydrate hydrogels are attached to 2-D photonic crystals (PCs) that brightly diffract visible light. This diffraction provides an optical readout that sensitively monitors the hydrogel volume. We utilize lactose, galactose, and mannose containing hydrogels to fabricate a series of 2-D PC sensors that show strong selective binding to the lectin proteins ricin, jacalin, and concanavalin A (Con A). This binding causes a carbohydrate hydrogel shrinkage which significantly shifts the diffraction wavelength. The resulting 2-D PC sensors can selectively detect the lectin proteins ricin, jacalin, and Con A. These unoptimized 2-D PC hydrogel sensors show a limit of detection (LoD) of 7.5 × 10(-8) M for ricin, a LoD of 2.3 × 10(-7) M for jacalin, and a LoD of 3.8 × 10(-8) M for Con A, respectively. This sensor fabrication approach may enable numerous sensors for the selective detection of numerous lectin proteins.

  6. Selective Virus Detection in Complex Sample Matrices with Photonic Crystal Optical Cavities

    PubMed Central

    Pal, Sudeshna; Yadav, Amrita R.; Lifson, Mark A.; Baker, James E.; Fauchet, Philippe M.; Miller, Benjamin L.

    2013-01-01

    Rapid, sensitive, and selective detection of viruses is critical for applications in medical diagnostics, biosecurity, and environmental safety. In this article, we report the application of a point-defect-coupled W1 photonic crystal (PhC) waveguide biosensor to label-free optical detection of viruses. Fabricated on a silicon-on-insulator (SOI) substrate using electron-beam (e-beam) lithography and reactive-ion-etching, the PhC sensing platform allows optical detection based on resonant mode shifts in response to ambient refractive index changes produced by infiltration of target biomaterial within the holes of the PhC structure. Finite difference time domain (FDTD) calculations were performed to assist with design of the sensor, and to serve as a theoretical benchmark against which experimental results could be compared. Using Human Papillomavirus virus-like particles (VLPs) spiked in 10% fetal bovine serum as a model system, we observed a limit of detection of 1.4 nM in simple (buffer only) or complex (10% serum) sample matrices. The use of anti-VLP antibodies specific for intact VLPs with the PhC sensors provided highly selective VLP detection. PMID:23434758

  7. Specific detection of avidin-biotin binding using liquid crystal droplets.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-03-01

    Poly(acrylicacid-b-4-cynobiphenyl-4'-undecylacrylate) (PAA-b-LCP)-functionalized 4-cyano-4'-pentylbiphenyl (5CB) droplets were made by using microfluidic technique. The PAA chains on the 5CB droplets, were biotinylated, and used to specifically detect avidin-biotin binding at the 5CB/aqueous interface. The avidin-biotin binding was characterized by the configurational change (from radial to bipolar) of the 5CB droplets, as observed through a polarized optical microscope. The maximum biotinylation was obtained by injecting a >100 μg/mL biotin aqueous solution, which enabled a limit of detection of 0.5 μg/mL avidin. This droplet biosensor could specifically detect avidin against other proteins such as bovine serum albumin, lysozyme, hemoglobin, and chymotrypsinogen solutions. Avidin detection with 5CBPAA-biotin droplets having high sensitivity, specificity, and stability demonstrates new applications of the functionalized liquid crystal droplets that can detect specific proteins or other analytes through a ligand/receptor model.

  8. Photonic crystal fiber-based immunosensor for high-performance detection of alpha fetoprotein.

    PubMed

    Liu, Xiaoxia; Song, Xingda; Dong, Zhiyong; Meng, Xiaoting; Chen, Yiping; Yang, Li

    2017-05-15

    We have developed a sensitive photonic crystal fiber (PCF)-based immunosensor for detection of alpha fetoprotein (AFP). The unique PCF possesses a morphology characterized by numerous pore structures and a large surface area-to-volume ratio, which can be used as an immune-reaction carrier to improve the sensitivity and reaction speed of AFP detection. The PCF-based immunosensor possesses a low limit of detection of 0.1ng/mL, which is five times lower than that of the capillary-based sensor and 35 times lower than that of the traditional enzyme-linked immunosorbent assay. The wide linear dynamic range of 0.1-150ng/mL makes the developed immunosensor suitable for clinical practice. The proposed method was successfully applied to AFP detection in a clinical serum sample with acceptable precision. It is indicated that the present PCF-based immunosensor could be used as an attractive analytical platform for sensitive and specific detection of cancer biomarkers.

  9. Selective virus detection in complex sample matrices with photonic crystal optical cavities.

    PubMed

    Pal, Sudeshna; Yadav, Amrita R; Lifson, Mark A; Baker, James E; Fauchet, Philippe M; Miller, Benjamin L

    2013-06-15

    Rapid, sensitive, and selective detection of viruses is critical for applications in medical diagnostics, biosecurity, and environmental safety. In this article, we report the application of a point-defect-coupled W1 photonic crystal (PhC) waveguide biosensor to label-free optical detection of viruses. Fabricated on a silicon-on-insulator (SOI) substrate using electron-beam (e-beam) lithography and reactive-ion-etching, the PhC sensing platform allows optical detection based on resonant mode shifts in response to ambient refractive index changes produced by infiltration of target biomaterial within the holes of the PhC structure. Finite difference time domain (FDTD) calculations were performed to assist with design of the sensor, and to serve as a theoretical benchmark against which experimental results could be compared. Using Human Papillomavirus virus-like particles (VLPs) spiked in 10% fetal bovine serum as a model system, we observed a limit of detection of 1.5 nM in simple (buffer only) or complex (10% serum) sample matrices. The use of anti-VLP antibodies specific for intact VLPs with the PhC sensors provided highly selective VLP detection.

  10. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.

    PubMed

    Dinish, U S; Balasundaram, Ghayathri; Chang, Young Tae; Olivo, Malini

    2014-11-01

    Surface-enhanced Raman scattering (SERS) spectroscopy possesses the most promising advantage of multiplex detection for biosensing applications, which is achieved due to the narrow 'fingerprint' Raman spectra from the analyte molecules. We developed an ultrasensitive platform for the multiplex detection of cancer biomarkers by combining the SERS technique with a hollow-core photonic crystal fiber (HCPCF). Axially aligned air channels inside the HCPCF provide an excellent platform for optical sensing using SERS. In addition to the flexibility of optical fibers, HCPCF provides better light confinement and a larger interaction length for the guided light and the analyte, resulting in an improvement in sensitivity to detect low concentrations of bioanalytes in extremely low sample volumes. Herein, for the first time, we demonstrate the sensitive multiplex detection of biomarkers immobilized inside the HCPCF using antibody-conjugated SERS-active nanoparticles (SERS nanotags). As a proof-of-concept for targeted multiplex detection, initially we carried out the sensing of epidermal growth factor receptor (EGFR) biomarker in oral squamous carcinoma cell lysate using three different SERS nanotags. Subsequently, we also achieved simultaneous detection of hepatocellular carcinoma (HCC) biomarkers-alpha fetoprotein (AFP) and alpha-1-antitrypsin (A1AT) secreted in the supernatant from Hep3b cancer cell line. Using a SERS-HCPCF sensing platform, we could successfully demonstrate the multiplex detection in an extremely low sample volume of ∼20 nL. In future, this study may lead to sensitive biosensing platform for the low concentration detection of biomarkers in an extremely low sample volume of body fluids to achieve early diagnosis of multiple diseases. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  11. Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments.

    PubMed

    Moeglein, W A; Griswold, R; Mehdi, B L; Browning, N D; Teuton, J

    2017-01-01

    In situ scanning transmission electron microscopy is being developed for numerous applications in the study of nucleation and growth under electrochemical driving forces. For this type of experiment, one of the key parameters is to identify when nucleation initiates. Typically, the process of identifying the moment that crystals begin to form is a manual process requiring the user to perform an observation and respond accordingly (adjust focus, magnification, translate the stage, etc.). However, as the speed of the cameras being used to perform these observations increases, the ability of a user to "catch" the important initial stage of nucleation decreases (there is more information that is available in the first few milliseconds of the process). Here, we show that video shot boundary detection can automatically detect frames where a change in the image occurs. We show that this method can be applied to quickly and accurately identify points of change during crystal growth. This technique allows for automated segmentation of a digital stream for further analysis and the assignment of arbitrary time stamps for the initiation of processes that are independent of the user's ability to observe and react.

  12. Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers.

    PubMed

    Fu, Yi; Finklea, Harry O

    2003-10-15

    Molecularly imprinted polymers on quartz crystal microbalances (QCM) are examined for their ability to detect vapors of small organic molecules with greater sensitivity and selectivity than the traditional amorphous polymer coatings. Hydroquinone and phenol serve as noncovalently bound templates that generate shape-selective cavities in a poly(acrylic) or poly(methacrylic) polymer matrix. The imprinted polymers are immobilized on the piezoelectric crystal surface via a precoated poly(isobutylene) layer. The behavior of the imprinted polymer films is characterized by the dynamic and steady-state response of the QCM frequency to pulses of organic vapors in dry air. The apparent partition coefficients are determined for imprinted and nonimprinted polymers prepared by two synthetic methods and for varying mole ratios of template to monomer. The hydroquinone-imprinted polymers and, to a lesser extent, the phenol-imprinted polymers exhibit greater sensitivity and higher selectivity than the nonimprinted polymers toward organic vapors that are structurally related to the templates. These results indicate that molecularly imprinted polymers are promising for the development of selective piezoelectric sensors for organic vapor detection.

  13. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor.

    PubMed

    Zhang, Bailin; Tamez-Vela, Juan Manuel; Solis, Steven; Bustamante, Gilbert; Peterson, Ralph; Rahman, Shafiqur; Morales, Andres; Tang, Liang; Ye, Jing Yong

    2013-01-01

    The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  14. Characterization of in-situ terahertz detection by optical interaction in a periodically poled stoichiometric lithium tantalate nonlinear crystal

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Sup; Ko, Do-Kyeong; Takekawa, Shunji; Kitamura, Kenji; Yu, Nan Ei

    2014-10-01

    Terahertz waves are generated using a femtosecond laser pulse in a periodically poled stoichiometric lithium tantalate crystal and simultaneously detected via a non-collinear optical parametric interaction inside the same crystal. Real time up-conversion signal between the generated THz and an optic probe pulses is measured depending on the beam overlapped conditions using a general silicon-photodiode for the THz detection. The non-collinear geometry is to facilitate manipulated property of the position-dependent bandwidth at narrow and broad bandwidths of 45 GHz and 3.3 THz, respectively at the one crystal. Furthermore, an aperture effect at the detection part is characterized as the function of size and position owing to the spatial distribution of the frequency conversion signal and it is applied in optimization of the in-situ detection scheme.

  15. Simultaneous screening and detection of pharmaceutical co-crystals by the one-step DSC-FTIR microspectroscopic technique.

    PubMed

    Lin, Shan-Yang

    2016-12-12

    Various methods and analytical techniques for the preparation and identification of pharmaceutical co-crystals have been applied, but these operations require considerable time for the screening and preparation of co-crystals. In this review, a powerful method that combines Fourier-transform infrared (FTIR) microspectroscopy with thermal analysis is introduced. This unique one-step real-time differential scanning calorimetry (DSC)-FTIR microspectroscopic approach has been successfully applied to simultaneously and directly screen and detect pharmaceutical co-crystal formation in systems such as indomethacin-saccharin, indomethacin-nicotinamide, carbamazepine-glutaric-acid, metaxalone-succinic-acid and piroxicam-saccharin. This powerful one-step DSC-FTIR combined technique provides an easy and direct method for one-step screening and qualitative detection of co-crystal formation in real time.

  16. A novel opal closest-packing photonic crystal for naked-eye glucose detection.

    PubMed

    Hong, Xiaodi; Peng, Yuan; Bai, Jialei; Ning, Baoan; Liu, Yuanyuan; Zhou, Zhijiang; Gao, Zhixian

    2014-04-09

    A novel opal closest-packing (OCP) photonic crystal (PC) is successfully prepared for naked-eye glucose detection. This PC is fabricated via a vertical convective self-assembly method with a new type of monodisperse microsphere polymerized by co-monomers, namely, methyl methacrylate (MMA), N-isopropylacrylamide (NIPA), and 3-acrylamidophenylboronic acid (AAPBA). The OCP PC has high stability and periodically-ordered structure, showing the desired structural color. The proposed PC material displays a red shift and reduced reflection intensity when detecting glucose molecules. The red-shift wavelength reaches 75 nm, which clearly changes the structural color from brilliant blue to emerald green. This visually distinguishable color change facilitates the detection of the glucose concentrations from 3 to 20 mm, which demonstrates the potential of the opal PC material for naked-eye detection. Thus, the novel PMMA–NIPA–AAPBA OCP PC is a simply prepared and sensitive material, which shows promising use in the diagnosis of diabetes mellitus and in real-time monitoring of diabetes. Different types of appropriated recognition groups are expected to be introduced into the 3D OCP PC to form new functional materials or chemical sensors, which will extensively broaden the PC material application.

  17. Detection of parathion pesticide by quartz crystal microbalance functionalized with UV-activated antibodies.

    PubMed

    Funari, Riccardo; Della Ventura, Bartolomeo; Schiavo, Luigi; Esposito, Rosario; Altucci, Carlo; Velotta, Raffaele

    2013-07-02

    Photonic immobilization technique (PIT) has been used to develop an immunosensor for the detection of parathion. An antibody solution has been activated by breaking the disulfide bridge in the triad Trp/Cys-Cys through absorption of ultrashort UV laser pulses. The free thiol groups so produced interact with gold lamina making the antibody oriented upside, that is, with its variable parts exposed to the environment, thereby greatly increasing the detection efficiency. PIT has been applied to anchor polyclonal antiparathion antibodies to the gold electrode of a Quartz Crystal Microbalance (QCM) giving rise to very high detection sensitivity once the parathion is made heavier by complexion with BSA (bovine serum albumin), this latter step only required by the mass based transducer used in this case. The comparison of the sensor response with irradiated antibodies against different analytes shows that the high degree of antibody specificity is not affected by PIT nor is it by the complexion of parathion with BSA. These results pave the way to important applications in biosensing, since the widespread occurrence of the Trp/Cys-Cys residues triads in proteins make our procedure very general and effective to detect light analytes.

  18. Nonlinear Optical Imaging for Sensitive Detection of Crystals in Bulk Amorphous Powders

    PubMed Central

    KESTUR, UMESH S.; WANAPUN, DUANGPORN; TOTH, SCOTT J.; WEGIEL, LINDSAY A.; SIMPSON, GARTH J.; TAYLOR, LYNNE S.

    2013-01-01

    The primary aim of this study was to evaluate the utility of second-order nonlinear imaging of chiral crystals (SONICC) to quantify crystallinity in drug–polymer blends, including solid dispersions. Second harmonic generation (SHG) can potentially exhibit scaling with crystallinity between linear and quadratic depending on the nature of the source, and thus, it is important to determine the response of pharmaceutical powders. Physical mixtures containing different proportions of crystalline naproxen and hydroxyl propyl methyl cellulose acetate succinate (HPMCAS) were prepared by blending and a dispersion was produced by solvent evaporation. A custom-built SONICC instrument was used to characterize the SHG intensity as a function of the crystalline drug fraction in the various samples. Powder X-ray diffraction (PXRD) and Raman spectroscopy were used as complementary methods known to exhibit linear scaling. SONICC was able to detect crystalline drug even in the presence of 99.9 wt % HPMCAS in the binary mixtures. The calibration curve revealed a linear dynamic range with a R2 value of 0.99 spanning the range from 0.1 to 100 wt % naproxen with a root mean square error of prediction of 2.7%. Using the calibration curve, the errors in the validation samples were in the range of 5%–10%. Analysis of a 75 wt % HPMCAS–naproxen solid dispersion with SONICC revealed the presence of crystallites at an earlier time point than could be detected with PXRD and Raman spectroscopy. In addition, results from the crystallization kinetics experiment using SONICC were in good agreement with Raman spectroscopy and PXRD. In conclusion, SONICC has been found to be a sensitive technique for detecting low levels (0.1% or lower) of crystallinity, even in the presence of large quantities of a polymer. PMID:22847843

  19. Detecting, visualizing, and measuring gold nanoparticle chirality using helical pitch measurements in nematic liquid crystal phases.

    PubMed

    Sharma, Anshul; Mori, Taizo; Lee, Huey-Charn; Worden, Matthew; Bidwell, Eric; Hegmann, Torsten

    2014-12-23

    Chirality at the nanoscale, or more precisely, the chirality or chiroptical effects of chiral ligand-capped metal nanoparticles (NPs) is an intriguing and rapidly evolving field in nanomaterial research with promising applications in catalysis, metamaterials, and chiral sensing. The aim of this work was to seek out a system that not only allows the detection and understanding of NP chirality but also permits visualization of the extent of chirality transfer to a surrounding medium. The nematic liquid crystal phase is an ideal candidate, displaying characteristic defect texture changes upon doping with chiral additives. To test this, we synthesized chiral cholesterol-capped gold NPs and prepared well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism spectropolarimetry and polarized light optical microscopy revealed that all three gold NPs induce chiral nematic phases, and that those synthesized in the presence of a chiral bias (disulfide) are more powerful chiral inducers than those where the NP was formed in the absence of a chiral bias (prepared by conjugation of a chiral silane to preformed NPs). Helical pitch data here visually show a clear dependence on the NP size and the number of chiral ligands bound to the NP surface, thereby supporting earlier experimental and theoretical data that smaller metal NPs made in the presence of a chiral bias are stronger chiral inducers.

  20. Equilibrium Liquid Crystal Phase Diagrams and Detection of Kinetic Arrest in Cellulose Nanocrystal Suspensions

    NASA Astrophysics Data System (ADS)

    Honorato Rios, Camila; Kuhnhold, Anja; Bruckner, Johanna; Dannert, Rick; Schilling, Tanja; Lagerwall, Jan

    2016-05-01

    The cholesteric liquid crystal self-assembly of water-suspended cellulose nanocrystal (CNC) into a helical arrangement was observed already more than 20 years ago and the phenomenon was used to produce iridescent solid films by evaporating the solvent or via sol-gel processing. Yet it remains challenging to produce optically uniform films and to control the pitch reproducibly, reflecting the complexity of the three-stage drying process that is followed in preparing the films. An equilibrium liquid crystal phase formation stage is followed by a non-equilibrium kinetic arrest, which in turn is followed by structural collapse as the remaining solvent is evaporated. Here we focus on the first of these stages, combining a set of systematic rheology and polarizing optics experiments with computer simulations to establish a detailed phase diagram of aqueous CNC suspensions with two different values of the surface charge, up to the concentration where kinetic arrest sets in. We also study the effect of varying ionic strength of the solvent. Within the cholesteric phase regime, we measure the equilibrium helical pitch as a function of the same parameters. We report a hitherto unnoticed change in character of the isotropic-cholesteric transition at increasing ionic strength, with a continuous weakening of the first-order character up to the point where phase coexistence is difficult to detect macroscopically due to substantial critical fluctuations.

  1. Single-nanoparticle detection with slot-mode photonic crystal cavities

    SciTech Connect

    Wang, Cheng; Kita, Shota; Lončar, Marko; Quan, Qimin; Li, Yihang

    2015-06-29

    Optical cavities that are capable for detecting single nanoparticles could lead to great progress in early stage disease diagnostics and the study of biological interactions on the single-molecule level. In particular, photonic crystal (PhC) cavities are excellent platforms for label-free single-nanoparticle detection, owing to their high quality (Q) factors and wavelength-scale modal volumes. Here, we demonstrate the design and fabrication of a high-Q (>10{sup 4}) slot-mode PhC nanobeam cavity, which is able to strongly confine light in the slotted regions. The enhanced light-matter interaction results in an order of magnitude improvement in both refractive index sensitivity (439 nm/RIU) and single-nanoparticle sensitivity compared with conventional dielectric-mode PhC cavities. Detection of single polystyrene nanoparticles with radii of 20 nm and 30 nm is demonstrated in aqueous environments (D{sub 2}O), without additional laser and temperature stabilization techniques.

  2. High temperature transducer using aluminum nitride single crystal for laser ultrasound detection

    NASA Astrophysics Data System (ADS)

    Kim, Taeyang; Kim, Jinwook; Jiang, Xiaoning

    2017-04-01

    In this work, a new ultrasound nondestructive testing (NDT) method based on laser-generated Lamb wave detection was proposed for high temperature (HT) NDT. Lamb waves were introduced to a stainless steel plate by the Nd:YAG pulsed laser at one point and detected by aluminum nitride (AlN) transducer at a distant position. The fundamental symmetric (S0) and antisymmetric (A0) mode Lamb waves were successfully propagated in the thin stainless steel plate. The time-of- flight (TOF) of the S0 and A0 mode waves proportionally increased with the distance (D) between the laser source and the sensor, and almost no attenuation of the amplitude was observed. For the HT NDT experiment, AlN single crystal was adopted as the ultrasonic sensor material due to its high thermal resistance of the dielectric and piezoelectric constants at the elevated temperature up to 800 °C. The combination of non-contact, portable laser source as a Lamb wave generator and temperature-robust NDT sensor made of AIN has shown its great capability to detect the Lamb waves at elevated temperatures.

  3. Label-free detection of cardiac troponin I with a photonic crystal biosensor.

    PubMed

    Zhang, Bailin; Morales, Andres W; Peterson, Ralph; Tang, Liang; Ye, Jing Yong

    2014-08-15

    A biosensor has been developed with a photonic crystal structure used in a total-internal-reflection (PC-TIR) configuration for label-free detection of a cardiac biomarker: Troponin I (cTnI). In contrast to a conventional optical microcavity that has a closed structure with its cavity layer sandwiched between two high-reflection surfaces, the PC-TIR configuration creates a unique open microcavity, which allows its cavity layer (sensing layer) to be easily functionalized and directly exposed to analyte molecules for bioassays. In this study, a PC-TIR sensor has been used for the label-free measurements of cardiac biomarkers by monitoring the changes in the resonant condition of the cavity due to biomolecular binding processes. Antibodies against cTnI are immobilized on the sensor surface for specific detection of cTnI with a wide range of concentrations. Detection limit of cTnI with a concentration as low as 0.1ngmL(-1) has been achieved.

  4. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    SciTech Connect

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N.; Choubey, Ravi Kant

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  5. Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator.

    PubMed

    Kalchmair, S; Gansch, R; Ahn, S I; Andrews, A M; Detz, H; Zederbauer, T; Mujagić, E; Reininger, P; Lasser, G; Schrenk, W; Strasser, G

    2012-02-27

    We characterize the performance of a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS) resonator. The strongest resonance of the PCS is designed to coincide with the absorption peak frequency at 7.6 µm of the QWIP. To accurately characterize the detector performance, it is illuminated by using single mode mid-infrared lasers. The strong resonant absorption enhancement yields a detectivity increase of up to 20 times. This enhancement is a combined effect of increased responsivity and noise current reduction. With increasing temperature, we observe a red shift of the PCS-QWIP resonance peak of -0.055 cm(-1)/K. We attribute this effect to a refractive index change and present a model based on the revised plane wave method.

  6. Impurities detection by optical techniques in KH 2PO 4 crystals

    NASA Astrophysics Data System (ADS)

    Pommiès, M.; Damiani, D.; Le Borgne, X.; Dujardin, C.; Surmin, A.; Birolleau, J. C.; Pilon, F.; Bertussi, B.; Piombini, H.

    2007-07-01

    In this paper we examine how optical techniques can be used for impurities (or defects) detection and identification in KH2PO4 (KDP) components. This is important in so far as some of these defects are responsible for a much weaker than expected Laser-Induced Damage Threshold (LIDT) in these materials, i.e. for a weaker resistance to a laser shot. KDP materials are investigated by photothermal deflection, fluorescence and photoexcitation with the aim of localizing and identifying the laser-induced damage precursors. The rapidly grown KDP crystals are shown to be heterogeneous from the absorption, fluorescence and composition point of view. Impurities concentrations are measured directly by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and tentatively correlated to some optical characteristics and to the LIDT of KDP materials.

  7. New Tl2LaBr5: Ce3+ crystal scintillator for γ-rays detection

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Rooh, Gul; Khan, Arshad; Kim, Sunghwan

    2017-03-01

    In this study we present our preliminary report on the scintillation properties of new Ce-doped Tl2LaBr5 single crystal. Two zones vertical Bridgman technique is used for the growth of this compound. Pure and Ce-doped samples showed maximum emission peaks at 435 nm and 415 nm, respectively. Best light yield of 43,000±4300 ph/MeV with 6.3% (FWHM) energy resolution is obtained for 5% Ce-doped sample under γ-ray excitation. Single exponential decay time constant of 25 ns is observed for 5% Ce doped sample. Effective Z-number is found to be 67, therefore efficient detection of X- and γ-ray will be possible. Preliminary results revealed that this compound will be an ideal candidate for the medical imaging techniques. Further investigations are under way for the determination of optimized conditions of this compound.

  8. Photonic crystal based biosensor for the detection of glucose concentration in urine

    NASA Astrophysics Data System (ADS)

    Robinson, Savarimuthu; Dhanlaksmi, Nagaraj

    2017-03-01

    Photonic sensing technology is a new and accurate measurement technology for bio-sensing applications. In this paper, a two-dimensional photonic crystal ring resonator based sensor is proposed and designed to detect the glucose concentration in urine over the range of 0 gm/dl-15 gm/dl. The proposed sensor is consisted of two inverted "L" waveguides and a ring resonator. If the glucose concentration in urine is varied, the refractive index of the urine is varied, which in turn the output response of sensor will be varied. By having the aforementioned principle, the glucose concentration in urine, glucose concentration in blood, albumin, urea, and bilirubin concentration in urine are predicted. The size of the proposed sensor is about 11.4 µm×11.4 µm, and the sensor can predict the result very accurately without any delay, hence, this attempt could be implemented for medical applications.

  9. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    NASA Astrophysics Data System (ADS)

    Tyagi, Mukta; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Agrawal, V. V.; Biradar, A. M.

    2014-04-01

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  10. Detection and monitoring of biofilm formation in water treatment systems by quartz crystal microbalance sensors.

    PubMed

    Sprung, C; Wählisch, D; Hüttl, R; Seidel, J; Meyer, A; Wolf, G

    2009-01-01

    Investigations are presented for the development and testing of a sensor for the early stage detection and monitoring of biofilm formation. The sensor is based on the well known quartz crystal microbalance technology (QCM). The QCM detectors are integrated into the water flow system and provide continuous in-situ signals. The main objectives of the research are the evaluation of optimal operation conditions and the modification of the quartz resonator surface promoting a preferred cell attachment onto the quartz sensor surface. The miniaturization degree of the mass sensitive detector modules permits the integration into industrial plants, e.g., in order to control and ensure perfect hygienic conditions. First results of the lab study using Pseudomonas putida cultures are presented and discussed.

  11. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    SciTech Connect

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Biradar, A. M.

    2014-04-14

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  12. Detection of UV light based on chemically stimulated luminescence of crystal phosphors

    NASA Astrophysics Data System (ADS)

    Grankin, D. V.; Grankin, V. P.; Martysh, M. A.

    2016-06-01

    High-efficiency accommodation of heterogeneous-reaction energy via an electronic channel and the possibility of using this effect to design an ionizing (UV) radiation detector based on chemically stimulated luminescence have been investigated. Preliminary irradiation of a ZnS sample by UV light is found to cause a luminescence flash under subsequent exposure of the sample surface to a flux of hydrogen atoms. The flash intensity depends on the UV excitation level and increases by several orders of magnitude in comparison with an unirradiated sample. It is shown that a new method for detecting UV light using chemically stimulated luminescence of crystal phosphors accumulating light yield can be developed based on this effect.

  13. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.

    PubMed

    Si, Pengchao; Mortensen, John; Komolov, Alexei; Denborg, Jens; Møller, Preben Juul

    2007-08-06

    By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.

  14. Self-assembled block copolymer photonic crystal for selective fructose detection.

    PubMed

    Ayyub, Omar B; Ibrahim, Michael B; Briber, Robert M; Kofinas, Peter

    2013-08-15

    The use of one-dimensional photonic crystals fabricated from a self-assembled lamellar block copolymer as a sensitive and selective fructose sensor is investigated. The polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) films are functionalized with 2-(bromomethyl)phenylboronic acid. The boronic acid moiety confined within the lamellar morphology can reversibly bind to sugars such as fructose, imparting the photonic properties of the PS-b-P2VP film. The films exhibit a detection limit of 500 μM in water and 1mM in phosphate buffered saline. Exposure to a 50 mM solution of fructose invokes a highly visible color change from blue to orange. The films are also able to selectively recognize and respond to fructose in competitive studies in the presence of glucose, mannose and sucrose.

  15. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    NASA Astrophysics Data System (ADS)

    Pawar, Dnyandeo; Rao, Ch. N.; Choubey, Ravi Kant; Kale, S. N.

    2016-01-01

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  16. Photonic crystal based biosensor for the detection of glucose concentration in urine

    NASA Astrophysics Data System (ADS)

    Robinson, Savarimuthu; Dhanlaksmi, Nagaraj

    2016-10-01

    Photonic sensing technology is a new and accurate measurement technology for bio-sensing applications. In this paper, a two-dimensional photonic crystal ring resonator based sensor is proposed and designed to detect the glucose concentration in urine over the range of 0 gm/dl-15 gm/dl. The proposed sensor is consisted of two inverted "L" waveguides and a ring resonator. If the glucose concentration in urine is varied, the refractive index of the urine is varied, which in turn the output response of sensor will be varied. By having the aforementioned principle, the glucose concentration in urine, glucose concentration in blood, albumin, urea, and bilirubin concentration in urine are predicted. The size of the proposed sensor is about 11.4 µm×11.4 µm, and the sensor can predict the result very accurately without any delay, hence, this attempt could be implemented for medical applications.

  17. Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu

    2006-01-01

    Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.

  18. Defect detection in LiNbO3 crystals using cross Nicol optical system with heating function

    NASA Astrophysics Data System (ADS)

    Hoshino, Yasushi; Shimizu, Hajime; Arishima, Koichi; Kozawaguchi, Haruki

    2017-07-01

    LiNbO3 crystals are important for applications such as optical devices and surface acoustic wave filters. However, defects in such crystals can negatively affect device characteristics. Consequently, control of defects is important during device manufacturing. In this study, a new defect detection method using a cross Nicol optical system with a heating function and defect image enhancement is proposed. Experiments confirmed that defects detected by this method correspond to those imaged by X-ray topography. It was found that additional defects are formed by charge induced during heating.

  19. A Customized Raman System for Point-of-Care Detection of Arthropathic Crystals in the Synovial Fluid

    PubMed Central

    Li, Bolan; Yang, Shan; Akkus, Ozan

    2014-01-01

    Monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) are the most frequently observed crystals in joint space, leading to painful arthropathies. Correct diagnosis of the crystal identity is critical for the appropriate course of treatment. In this work, a custom Raman device in combination with a practical and efficient sample preparation method is used for chemically selective diagnosis of MSU and CPPD crystals in an automated fashion. The samples were prepared by a brief enzymatic digestion treatment of synovial fluid followed by a customized filtration process which was able to congregate crystals over a submillimeter sized spot. The data acquisition and collection was automated to collect multiple spectra distributed over the filtration spot. The performance of the cost-efficient Raman system was compared to a research-grade high fidelity Raman instrument. The custom-designed Raman device could detect MSU crystals at sub-clinical concentration of 0.1 μg/mL, and 1 μg/mL for CPPD crystals. This practical sample preparation approach in tandem with the low-cost customized Raman device has a potential to be a novel tool for point-and-shoot Raman diagnosis of arthritic crystals in synovial fluid at the point of care. PMID:24419093

  20. Single crystal elastic constants evaluated with surface acoustic waves generated and detected by lasers within polycrystalline steel samples

    NASA Astrophysics Data System (ADS)

    Gasteau, D.; Chigarev, N.; Ducousso-Ganjehi, L.; Gusev, V. E.; Jenson, F.; Calmon, P.; Tournat, V.

    2016-01-01

    We report on a laser generated and detected surface acoustic wave method for evaluating the elastic constants of micro-crystals composing polycrystalline steel. The method is based on the measurement of surface wave velocities in many micro-crystals oriented randomly relative to both the wave propagation direction and the sample surface. The surface wave velocity distribution is obtained experimentally thanks to the scanning potentiality of the method and is then compared to the theoretical one. The inverse problem can then be solved, leading to the determination of three elastic constants of the cubic symmetry micro-crystals. Extensions of the method to the characterization of texture, preferential orientation of micro-crystals or welds could be foreseen.

  1. High sensitive immunoassay for multiplex mycotoxin detection with photonic crystal microsphere suspension array.

    PubMed

    Deng, Guozhe; Xu, Kun; Sun, Yue; Chen, Yu; Zheng, Tiesong; Li, Jianlin

    2013-03-05

    A novel, sensitive, and high throughput competitive immunoassay for multiplex mycotoxins was established by immobilizing the artificial antigens (Ags) of mycotoxins on the surfaces of three kinds of silica photonic crystal microsphere (SPCM) suspension arrays. The SPCMs were encoded by their reflectance peak positions. Aflatoxin B1 (AFB1), fumonisin B1 (FB1), and citrinin (CIT) spiked in the cereals were extracted, and the fluorescein isothiocyanate (FITC) labeled antibodies (Abs) of these mycotoxins were added into the centrifuge tube which contained the SPCMs of the modified artificial antigens (Ags). The fluorescence signal was collected by an array fluorescent scanner. The limit of detection (LOD) was as low as 0.5, 1, and 0.8 pg/mL for AFB1, FB1, and CIT, respectively. The new method provided a wide linear detection range from 0.001 to 10, 0.001 to 10, and 0.001 to 1 ng/mL for AFB1, FB1, and CIT, respectively. The mean recovery rates are in range of 74.7 ± 4.0% to 127.9 ± 4.4% for the three mycotoxins in corn, peanuts, and wheat. The developed method for mycotoxins was used to assay the AFB1, FB1, and CIT level in 10 naturally contaminated cereal samples, and the results of detection were in agreement with that of a classic enzyme-linked immunosorbent assay (ELISA) method. This method saves a large amount of reagents (10 μL volume) and detection time (<3 h) for multiplex mycotoxin assay.

  2. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection.

    PubMed

    Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco

    2003-03-01

    A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.

  3. Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection

    NASA Astrophysics Data System (ADS)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem; Hocini, Abdesselam

    2017-02-01

    A Bio-sensing platform based on an infiltrated photonic crystal ring shaped holes cavity-coupled waveguide system is proposed for glucose concentration detection. Considering silicon-on-insulator (SOI) technology, it has been demonstrated that the ring shaped holes configuration provides an excellent optical confinement within the cavity region, which further enhances the light-matter interactions at the precise location of the analyte medium. Thus, the sensitivity and the quality factor (Q) can be significantly improved. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte glucose concentration are analyzed by performing finite-difference time-domain (FDTD) simulations. Accordingly, an improved sensitivity of 462 nm/RIU and a Q factor as high as 1.11х105 have been achieved, resulting in a detection limit of 3.03х10-6 RIU. Such combination of attributes makes the designed structure a promising element for performing label-free biosensing in medical diagnosis and environmental monitoring.

  4. Detection of Cartilage Oligomeric Matrix Protein Using a Quartz Crystal Microbalance

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Weng, Ting-Chan; Lin, Pin-Hsuan; Yang, Jia-Jyun; Chen, I-Fen; Kuo, Shyh-Ming; Chang, Shwu-Jen; Tu, Yuan-Kun; Kao, Yu-Hsien; Hung, Chih-Hsin

    2010-01-01

    Current methods for diagnosing early stage osteoarthritis (OA) based on the magnetic resonance imaging and enzyme-linked immunosorbent assay methods are specific, but require specialized laboratory facilities and highly trained personal to obtain a definitive result. In this work, a user friendly and non-invasive quartz crystal microbalance (QCM) immunosensor method has been developed to detect Cartilage Oligomeric Matrix Protein (COMP) for early stage OA diagnosis. This QCM immunosensor was fabricated to immobilize COMP antibodies utilizing the self-assembled monolayer technique. The surface properties of the immunosensor were characterized by its FTIR and electrochemical impedance spectra (EIS). The feasibility study was based on urine samples obtained from 41 volunteers. Experiments were carried out in a flow system and the reproducibility of the electrodes was evaluated by the impedance measured by EIS. Its potential dynamically monitored the immunoreaction processes and could increase the efficiency and sensitivity of COMP detection in laboratory-cultured preparations and clinical samples. The frequency responses of the QCM immunosensor changed from 6 kHz when testing 50 ng/mL COMP concentration. The linear regression equation of frequency shift and COMP concentration was determined as: y = 0.0872 x + 1.2138 (R2 = 0.9957). The COMP in urine was also determined by both QCM and EIS for comparison. A highly sensitive, user friendly and cost effective analytical method for the early stage OA diagnosis has thus been successfully developed. PMID:22163547

  5. Optical detection of a single rare-earth ion in a crystal

    PubMed Central

    Kolesov, R.; Xia, K.; Reuter, R.; Stöhr, R.; Zappe, A.; Meijer, J.; Hemmer, P.R.; Wrachtrup, J.

    2012-01-01

    Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr3+ ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr3+ ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications. PMID:22929786

  6. Biomimetic receptors for bioanalyte detection by quartz crystal microbalances - from molecules to cells.

    PubMed

    Latif, Usman; Qian, Jianjin; Can, Serpil; Dickert, Franz L

    2014-12-05

    A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM) coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs) known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sensor was fabricated for real time monitoring of 17β-estradiol in water samples by using molecular imprinted polyurethane. Optimization of porogen (pyrene) and cross-linker (phloroglucinol) levels leads to improved sensitivity, selectivity and response time of the estradiol sensor. Surface imprinting of polyurethane as sensor coating also allowed us to generate interaction sites for the selective recognition of bacteria, even in a very complex mixture of interfering compounds, while they were growing from their spores in nutrient solution. A double molecular imprinting approach was followed to transfer the geometrical features of natural bacteria onto the synthetic polymer to generate biomimetic bacteria. The use of biomimetic bacteria as template makes it possible to prepare multiple sensor coatings with similar sensitivity and selectivity. Thus, cell typing, e.g., differentiation of bacteria strains, bacteria growth profile and extent of their nutrition, can be monitored by biomimetic mass sensors. Obviously, this leads to controlled cell growth in bioreactors.

  7. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin.

    PubMed

    Chuang, Cheng-Hao; Lin, Yi-Cheng; Chen, Wei-Long; Chen, Yu-Hsuan; Chen, Yu-Xun; Chen, Chieh-Ming; Shiu, Hung Wei; Chang, Lo-Yueh; Chen, Chia-Hao; Chen, Chih-Hsin

    2016-04-15

    We report a new mechanism for liquid crystal (LC)-based sensor system for trypsin detection. In this system, bovine serum albumin (BSA) was immobilized on gold grids as the enzymatic substrate. When the BSA-modified grid was filled with LC and immersed in the solution containing trypsin, the peptide bonds of BSA were hydrolyzed and peptide fragments were desorbed from the surface of gold grid, which disrupted the orientation of LC at the vicinity and resulted in a dark-to-bright transition of optical image of LCs. By using this mechanism, the limit of detection (LOD) of trypsin is 10 ng/mL, and it does not respond to thrombin and pepsin. Besides, the cleavage behavior on gold surfaces was directly visualized by the scanning photoelectron microscopy (SPEM), in particular for the chemical composition identification and element-resolved image. The loss of BSA fragments and the enhancement of Au photoelectron signal after trypsin cleavage were corresponding to the proposed mechanism of the LC-based sensor system. Because the signals reported by LC can be simply interpreted through the human naked-eye, it provides a simple method for fast-screening trypsin activity in aqueous solution.

  8. Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers.

    SciTech Connect

    Sadati, Monirosadat; Apik, Aslin Ismitli; Armas-Perez, Julio C.; Martinez-Gonzalez, Jose; Hernandez-Ortiz, Juan P.; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-10-14

    Liquid crystals (LCs) can serve as sensitive reporters of interfacial events, and this property has been used for sensing of synthetic or biological toxins. Here it is demonstrated that LCs can distinguish distinct molecular motifs and exhibit a specific response to beta-sheet structures. That property is used to detect the formation of highly toxic protofibrils involved in neurodegenerative diseases, where it is crucial to develop methods that probe the early-stage aggregation of amyloidogenic peptides in the vicinity of biological membranes. In the proposed method, the amyloid fibrils formed at the lipid-decorated LC interface can change the orientation of LCs and form elongated and branched structures that are amplified by the mesogenic medium; however, nonamyloidogenic peptides form ellipsoidal domains of tilted LCs. Moreover, a theoretical and computational analysis is used to reveal the underlying structure of the LC, thereby providing a detailed molecular-level view of the interactions and mechanisms responsible for such motifs. The corresponding signatures can be detected at nanomolar concentrations of peptide by polarized light microscopy and much earlier than the ones that can be identified by fluorescence-based techniques. As such, it offers the potential for early diagnoses of neurodegenerative diseases and for facile testing of inhibitors of amyloid formation.

  9. Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances — From Molecules to Cells †

    PubMed Central

    Latif, Usman; Qian, Jianjin; Can, Serpil; Dickert, Franz L.

    2014-01-01

    A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM) coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs) known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sensor was fabricated for real time monitoring of 17β-estradiol in water samples by using molecular imprinted polyurethane. Optimization of porogen (pyrene) and cross-linker (phloroglucinol) levels leads to improved sensitivity, selectivity and response time of the estradiol sensor. Surface imprinting of polyurethane as sensor coating also allowed us to generate interaction sites for the selective recognition of bacteria, even in a very complex mixture of interfering compounds, while they were growing from their spores in nutrient solution. A double molecular imprinting approach was followed to transfer the geometrical features of natural bacteria onto the synthetic polymer to generate biomimetic bacteria. The use of biomimetic bacteria as template makes it possible to prepare multiple sensor coatings with similar sensitivity and selectivity. Thus, cell typing, e.g., differentiation of bacteria strains, bacteria growth profile and extent of their nutrition, can be monitored by biomimetic mass sensors. Obviously, this leads to controlled cell growth in bioreactors. PMID:25490598

  10. Quartz crystal microbalance for the detection of carbaryl using molecularly imprinted polymers as recognition element.

    PubMed

    Yao, Wei; Gao, Zhixian; Cheng, Yiyong

    2009-10-01

    A new piezoelectric quartz crystal sensor using molecularly imprinted polymers (MIPs) as recognition element has been prepared for the fast detection of carbaryl. The MIPs were prepared by precipitation polymerization in ACN, and then the polymer particles were fixed on the surface of the electrode. Computer simulation technology was employed to investigate the interaction between carbaryl and methacrylic acid (MAA) for elucidating the recognition mechanism. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to evaluate the obtained imprinted polymer particles and the MIP sensitive film coated on the electrode. The sensor developed exhibits a liner relationship between the frequency shift and carbaryl concentration in the range of 10-1000 ng/mL (y = 0.139 x + 2.99, r = 0.9981), and the detection limit was 12.5 ng/mL (S/N = 3). Furthermore, the influencing factors were investigated, and the experiments indicated that the obtained sensor has high sensitivity, excellent selectivity, good reproducibility, and reusable property.

  11. A facile surface-enhanced Raman scattering (SERS) detection of rhodamine 6G and crystal violet using Au nanoparticle substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Zeng, Tixian; Tan, Xiulan; Wu, Weidong; Tang, Yongjian; Zhang, Haibin

    2015-08-01

    In this study, Au nanoparticle (5 nm) colloid was employed for a facile preparation of SERS substrates from three approaches: (1) original Au nanoparticles, (b) Au colloid coated 200 nm polystyrene (PS) beads, and (3) Au colloid annealed at 200-500 °C. Rhodamine 6G (R6G) and crystal violet were employed as the Raman active probes. The Au colloid deposited PS beads (PS@Au) exhibit intensive SERS signal for R6G detection, which is promising for crystal violet detection after being annealed at 400 °C. The 200 °C annealed Au nanoparticles demonstrate excellent combined SERS sensitivity for both R6G and crystal violet. For the original Au colloid, elevated annealing temperature from 200 °C to 500 °C decreases the SERS intensity as Au particles were coarsened gradually.

  12. Diff Quik staining method for detection and identification of monosodium urate and calcium pyrophosphate crystals in synovial fluids

    PubMed Central

    Selvi, E; Manganelli, S; Catenaccio, M; De Stefano, R; Frati, E; Cucini, S; Marcolongo, R

    2001-01-01

    OBJECTIVE—To evaluate whether the Diff Quik (DQ) staining method might prove useful in identifying monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) crystals on permanent mounted stained slides.
METHODS—27 synovial fluid (SF) samples obtained from the knees of 21 patients with acute CPPD disease and 6 with acute gout were studied. Wet analysis for crystal detection and identification was performed within one hour of joint aspiration. In addition, 16 inflammatory synovial effusions obtained from patients with knee arthritis induced by non-crystalline inflammatory diseases were studied. For each SF, a DQ stained slide was analysed by two of the authors trained in SF analysis. The observers were blinded to the type of crystals present in the SF. Each slide was analysed by compensated polarised as well as transmitted light microscopy. An SF was considered positive if intracellular and/or extracellular crystals were clearly identified. In addition, the observer was asked to identify the type of the crystals using compensated polarised light microscopy. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of the DQ staining method were determined.
RESULTS—51 true positive and 28 true negative cases were correctly classified (39 CPPD samples, 12 MSU samples, 28 samples of crystal unrelated arthropathies). Overall, four false positive and three false negative cases were reported. In all the false positive cases, extracellular CPPD crystals were erroneously identified, whereas CPPD crystals present in the SF were not identified in the three false negative cases. All MSU specimens were correctly diagnosed. The overall specificity, sensitivity, and accuracy using DQ stained slides for crystal confirmation were respectively 87.5%, 94.4%, and 91.9%. The PPV was 92.7% and the NPV 90.3%. In particular, the specificity, sensitivity, and accuracy for CPPD detection were 90.9%, 92.9%, and 91

  13. Synthesis of hierarchical iron hydrogen phosphate crystal as a robust peroxidase mimic for stable H₂O₂ detection.

    PubMed

    Zhang, Tongbao; Lu, Yangcheng; Luo, Guangsheng

    2014-08-27

    To develop a green, cost-efficient and robust peroxidase mimic, micro/nano hierarchical morphology (for ease of separation and reuse), relative chemically stable composition (for ease of storage) and stable crystal structure (for long-term stability) are highly desired. Herein, using phosphoric acid as a chelating ligand to control the release of iron ions, hierarchical iron(III) hydrogen phosphate hydrate crystals are successfully prepared by nanosheets formation and following self-assembling in a facile low-temperature hydrothermal process. They are first found to have peroxidase-like activity and showed higher affinity for H2O2 and lower affinity for 3,3',5,5'-tetramethylbenzidine compared with horseradish peroxidase. The affinity feature is used for quantitative detection of H2O2 and shows a wide linear detection range from 57.4 to 525.8 μM (R(2) = 0.994) with a low detection limit of 1 μM. Benefited from chemical stability of hierarchical iron(III) salt crystals, they own good reproducibility (relative standard deviation = 1.95% for 10 independent measurements), long-term stability (no activity loss after 10 cycles), and ease of recovery (by simple centrifugation). Because the method is easily accessible, iron hydrogen phosphate hierarchical crystals have great potential for practical use of H2O2 sensing and detection under harsh conditions.

  14. Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline.

    PubMed

    Hou, Jue; Zhang, Huacheng; Yang, Qiang; Li, Mingzhu; Jiang, Lei; Song, Yanlin

    2015-06-01

    A hydrophilic-hydrophobic patterned molecularly imprinted (MIP) photonic crystal (PC) sensor is fabricated for highly sensitive tetracycline detection. The relationship between the tetracycline concentration, its corresponding color of the sensor, and the diameter of MIP-PC dot is found using a fan-shaped color card. This work provides a new strategy to design the sensors with tunable detection ranges for practical applications.

  15. Using channelized Hotelling observers to quantify temporal effects of medical liquid crystal displays on detection performance

    NASA Astrophysics Data System (ADS)

    Platiša, Ljiljana; Goossens, Bart; Vansteenkiste, Ewout; Badano, Aldo; Philips, Wilfried

    2010-02-01

    Clinical practice is rapidly moving in the direction of volumetric imaging. Often, radiologists interpret these images in liquid crystal displays at browsing rates of 30 frames per second or higher. However, recent studies suggest that the slow response of the display can compromise image quality. In order to quantify the temporal effect of medical displays on detection performance, we investigate two designs of a multi-slice channelized Hotelling observer (msCHO) model in the task of detecting a single-slice signal in multi-slice simulated images. The design of msCHO models is inspired by simplifying assumptions about how humans observe while viewing in the stack-browsing mode. For comparison, we consider a standard CHO applied only on the slice where the signal is located, recently used in a similar study. We refer to it as a single-slice CHO (ssCHO). Overall, our results confirm previous findings that the slow response of displays degrades the detection performance of the observers. More specifically, the observed performance range of msCHO designs is higher compared to the ssCHO suggesting that the extent and rate of degradation, though significant, may be less drastic than previously estimated by the ssCHO. Especially, the difference between msCHO and ssCHO is more significant for higher browsing speeds than for slow image sequences or static images. This, together with their design criteria driven by the assumptions about humans, makes the msCHO models promising candidates for further studies aimed at building anthropomorphic observer models for the stack-mode image presentation.

  16. Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering.

    SciTech Connect

    Baca, A. J.; Truong, T. T.; Cambrea, L. R.; Montgomery, J. M.; Abdula, D.; Banks, T. R.; Yao, J.; Nuzzo, R. G.; Gray, S. K.; Rogers, J. A.

    2009-06-24

    This report introduces a type of plasmonic crystal that consists of metal coated nanostructures of relief molded on a polymer film as a substrate for surface-enhanced Raman scattering (SERS). Such crystals exhibit SERS enhancement factors of {approx} 10{sup 5}, over large areas and with sufficiently high levels of uniformity for precise two-dimensional Raman mapping of surface bound monolayers. The ease of fabrication together with the high sensitivities and spatial resolution that can be achieved suggests an attractive route to SERS substrates for portable chemical warfare agent detection, environmental monitors, noninvasive imaging of biomolecules, and other applications.

  17. Photonic crystal fiber injected with Fe{sub 3}O{sub 4} nanofluid for magnetic field detection

    SciTech Connect

    Thakur, Harneet V.; Nalawade, Sandipan M.; Gupta, Swati; Kitture, Rohini; Kale, S. N.

    2011-10-17

    We report a magnetic field sensor having advantages of both photonic crystal fiber and optofluidics, combining them on a single platform by infiltrating small amount of Fe{sub 3}O{sub 4} magnetic optofluid/nanofluid in cladding holes of polarization-maintaining photonic crystal fiber. We demonstrated that magnetic field of few mT can be easily and very well detected with higher sensitivity of 242 pm/mT. The change in the birefringence values has been correlated to the response of nanofluid to applied field.

  18. Improvement of antigen detection efficiency with the use of two-dimensional photonic crystal as a substrate

    NASA Astrophysics Data System (ADS)

    Dovzhenko, Dmitriy; Terekhin, Vladimir; Vokhmincev, Kirill; Sukhanova, Alyona; Nabiev, Igor

    2017-01-01

    Multiplex detection of different antigens in human serum in order to reveal diseases at the early stage is of interest nowadays. There are a lot of biosensors, which use the fluorescent labels for specific detection of analytes. For instance, common method for detection of antigens in human serum samples is enzyme-linked immunosorbent assay (ELISA). One of the most effective ways to improve the sensitivity of this detection method is the use of a substrate that could enhance the fluorescent signal and make it easier to collect. Two-dimensional (2D) photonic crystals are very suitable structures for these purposes because of the ability to enhance the luminescent signal, control the light propagation and perform the analysis directly on its surface. In our study we have calculated optimal parameters for 2D-dimensional photonic crystal consisting of the array of silicon nano-rods, fabricated such photonic crystal on a silicon substrate using reactive ion etching and showed the possibility of its efficient application as a substrate for ELISA detection of human cancer antigens.

  19. Polarization-sensitive electro-optic detection of terahertz wave using three different types of crystal symmetry: Toward broadband polarization spectroscopy

    SciTech Connect

    Oguchi, Kenichi; Iwasaki, Hotsumi; Okano, Makoto; Watanabe, Shinichi

    2016-01-04

    We investigated polarization-sensitive electro-optic (EO) detection of terahertz (THz) waves by using two uniaxial crystals: a c-cut gallium selenide and a c-cut lithium niobate crystals. We formulated a general frequency-domain description of EO detection by in-plane isotropic EO crystals, which holds regardless of the frequency. Based on this description, the polarization of THz waves can be derived by analyzing EO sampling signals measured with two orthogonal configurations of the in-plane isotropic EO crystals as well as typical (111) zinc-blende EO crystals. In addition, we experimentally demonstrated that the frequency-dependent polarization of THz waves can be reproducibly retrieved using three EO crystals with different crystal symmetries and with different phase matching conditions. Our description provides essential information for practical polarization sensing in the THz frequency range as well as in the mid-infrared range.

  20. Detection of H3N2 canine influenza virus using a Quartz Crystal Microbalance.

    PubMed

    Kim, Yong Kwan; Lim, Seong-In; Cho, Yoon-Young; Choi, Sarah; Song, Jae-Young; An, Dong-Jun

    2014-11-01

    Label-free technology-based Quartz Crystal Microbalance (QCM) is an emerging tool in biological research. In this study, QCM was applied successfully for the rapid diagnosis of H3N2 canine influenza virus (CIV) infection. ProLinker™ B, a calixcrown derivative, enables antibodies to be attached to a gold-coated quartz surface and positioned in a regular pattern with the correct orientation. The ProLinker-coated quartz-based assay detected H3N2 CIV at lower concentrations (2(2) HA unit) than a commercial immunochromatography Ag kit (2(3) HA unit). Three independent experiments in which H3N2 CIV-positive reference samples were applied to an anti-CIV nucleoprotein (NP) monoclonal antibody immobilized on a quartz surface yielded standard deviations (SD) of ≤5%, indicating high reproducibility. In addition, the QCM assay with a cut-off value (-140 Hz) showed 97.1% (34/35) sensitivity and 94.7% (36/38) specificity in testing 73 field saliva samples, respectively. Thus, the QCM assay described herein will be a valuable tool for the rapid diagnosis of H3N2 CIV infection with high sensitivity and specificity, and should overcome several of the disadvantages and limitations inherent in the commercial immunochromatography Ag kit.

  1. Label-Free Detection of Gliadin in Food by Quartz Crystal Microbalance-Based Immunosensor.

    PubMed

    Funari, Riccardo; Terracciano, Irma; Della Ventura, Bartolomeo; Ricci, Sara; Cardi, Teodoro; D'Agostino, Nunzio; Velotta, Raffaele

    2017-02-15

    Gluten is a protein composite found in wheat and related grains including barley, rye, oat, and all their species and hybrids. Gluten matrix is a biomolecular network of gliadins and glutenins that contribute to the texture of pastries, breads, and pasta. Gliadins are mainly responsible for celiac disease, one of the most widespread food-related pathologies in Western world. In view of the importance of gliadin proteins, by combining the quartz crystal microbalance technology, a cheap and robust piezoelectric transducer, with the so-called photonic immobilization technique, an effective surface functionalization method that provides spatially oriented antibodies on gold substrates, we realized a sensitive and reliable biosensor for quantifying these analytes extracted from real samples in a very short time. The resulting immunosensor has a limit of detection of about 4 ppm and, more remarkably, shows excellent sensitivity in the range 7.5-15 ppm. This feature makes our device reliable and effective for practical applications since it is able to keep low the influence of false positives.

  2. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  3. Active layer identification of photonic crystal waveguide biosensor chip for the detection of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Painam, Balveer; Kaler, Rajinder S.; Kumar, Mukesh

    2016-07-01

    This work represents experimental and simulation analysis of photonic crystal waveguide (PCW)-based biosensor structures, which is used for detection of the Escherichia coli (E. coli) cell. A method is adopted for E. coli culture to measure length, diameter, and refractive index to finalize the structural design and to verify the suitability of PCW as a biosensor. This method is tested using DH5α strains of E. coli. The typical precisions of measurements are varied in ranges from 1.132 to 1.825 μm and from 0.447 to 0.66 μm for pathogen's length and diameter, respectively. The measured distribution of samples over length and diameter are in correlation with the measurements performed by scanning electron microscope. After obtaining average length and diameter of cylindrical shaped E. coli cell, we consider these values for simulation analysis of designed PCW biosensor. E. coli cell is trapped in the middle of the PCW biosensor having three different types of waveguides, i.e., gallium arsenide/silicon dioxide (GaAs/SiO2), silicon/silicon dioxide (Si/SiO2), or silicon nitride/silicon dioxide (Si3N4/SiO2) to observe the maximum resonance shift and sensitivity. It is observed from the simulation data analysis that GaAs/SiO2 is the preferred PCW biosensor for the identification of E. coli.

  4. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal.

    PubMed

    Lu, Wei; Asher, Sanford A; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-10-05

    We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH=7.0, 30mM). The limit of detection (LOD) of the sensor was 1.03μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84nm diffraction red shift when the TNT concentration increased to 20mM. The sensor response time was 3min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol, 2-nitroaniline, 3-aminophenol and 3-nitroaniline. The sensor showed high stability with little response change after three years storage. This sensor technology might be useful for the visual determination of TNT.

  5. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Yakunin, Sergii; Dirin, Dmitry N.; Shynkarenko, Yevhen; Morad, Viktoriia; Cherniukh, Ihor; Nazarenko, Olga; Kreil, Dominik; Nauser, Thomas; Kovalenko, Maksym V.

    2016-09-01

    The decay of the majority of radioactive isotopes involves the emission of gamma (γ) photons with energies of ˜50 keV to 10 MeV. Detectors of such hard radiation that are low-cost, highly sensitive and operate at ambient temperatures are desired for numerous applications in defence and medicine, as well as in research. We demonstrate that 0.3-1 cm solution-grown single crystals (SCs) of semiconducting hybrid lead halide perovskites (MAPbI3, FAPbI3 and I-treated MAPbBr3, where MA = methylammonium and FA = formamidinium) can serve as solid-state gamma-detecting materials. This possibility arises from a high charge-carrier mobility-lifetime (μτ) product of 1.0-1.8 × 10-2 cm2 V-1, a low dark carrier density of 109-1011 cm-3 (refs 3,4), a low density of charge traps of 109-1010 cm-3 (refs 4,5) and a high absorptivity of hard radiation by the lead and iodine atoms. We demonstrate the utility of perovskite detectors for testing the radiopurity of medical radiotracer compounds such as 18F-fallypride. Energy-resolved sensing at room temperature is presented using FAPbI3 SCs and an 241Am source.

  6. Effect of viewing angle on visual detection in liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Badano, Aldo; Gallas, Brandon D.; Myers, Kyle J.; Burgess, Arthur E.

    2003-05-01

    Display devices for medical diagnostic workstations should have a diffuse emission with apparent luminance independent of viewing angle. Such displays are called Lambertian, or they obey Lambert's law. Actual display devices are never truly Lambertian; the luminance of a pixel depends on the viewing angle. In active-matrix liquid crystal displays (AMLCD), the departure from the Lambertian profile depends on the gray level and complex pixel designs having multiple domains, in-plain switching or vertically-aligned technology. Our previous measurements established that the largest deviation from the desired Lambertian distribution occurs in the low luminance range for the diagonal viewing direction. Our purpose in this work is to determine the effect that non-uniform changes of the angular emission have on the detection of low-contrast signals in noisy backgrounds. We used a sequential two-alternative forced choice (2AFC) approach with test images displayed at the center of the screen. The observer location was fixed at different viewing angles: on-axis and off-axis. The results are expressed in terms of percent-correct for each observer and for each experimental condition (viewing angle and luminance). Our results show that for the test images used in this experiment with human observers, the changes in detectability between on-axis and off-axis viewing are smaller than the observer variability. Model observers are consistent with these results but also indicate that different background and signal levels can lead to meaningful performance differences between on-axis and off-axis viewing.

  7. Feasibility of a tetracycline-binding method for detecting synovial fluid basic calcium phosphate crystals.

    PubMed

    Rosenthal, Ann K; Fahey, Mark; Gohr, Claudia; Burner, Todd; Konon, Irina; Daft, Laureen; Mattson, Eric; Hirschmugl, Carol; Ryan, Lawrence M; Simkin, Peter

    2008-10-01

    Basic calcium phosphate (BCP) crystals are common components of osteoarthritis (OA) synovial fluid. Progress in understanding the role of these bioactive particles in clinical OA has been hampered by difficulties in their identification. Tetracyclines stain calcium phosphate mineral in bone. The aim of this study was to investigate whether tetracycline staining might be an additional or alternative method for identifying BCP crystals in synovial fluid. A drop of oxytetracycline was mixed with a drop of fluid containing synthetic or native BCP, calcium pyrophosphate dihydrate (CPPD), or monosodium urate (MSU) crystals and placed on a microscope slide. Stained and unstained crystals were examined by light microscopy, with and without a portable broad-spectrum ultraviolet (UV) pen light. A small set of characterized synovial fluid samples were compared by staining with alizarin red S and oxytetracycline. Synthetic BCP crystals in synovial fluid were quantified fluorimetrically using oxytetracycline. After oxytetracycline staining, synthetic and native BCP crystals appeared as fluorescent amorphous aggregates under UV light. Oxytetracycline did not stain CPPD or MSU crystals or other particulates. Oxytetracycline staining had fewer false-positive test results than did alizarin red S staining and could provide estimates of the quantities of synthetic BCP crystals in synovial fluid. With further validation, oxytetracycline staining may prove to be a useful adjunct or alternative to currently available methods for identifying BCP crystals in synovial fluid.

  8. Apparatus for detecting and recognizing analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam

    2010-12-14

    The invention contemplates apparatuses for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization patterns") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. Changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. Also, changes in the crystallization patterns, as well as the character of such changes, can be used as recognition elements in analysis of protein molecules.

  9. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation.

    PubMed

    Ozalp, Veli C; Bayramoglu, Gulay; Erdem, Zehra; Arica, M Yakup

    2015-01-01

    A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL(-1) from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.

  10. Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays

    NASA Astrophysics Data System (ADS)

    Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard

    2017-07-01

    Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.

  11. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO2 single crystals

    DOE PAGES

    Dickens, Peter T.; Marcial, Jose; McCloy, John; ...

    2017-05-17

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6% 6Li, a 10 mmmore » Ø by 10 mm sample of LiAlO2 has a 70.7% intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.« less

  12. Terahertz electro-optic detection using a ⟨012⟩-cut chalcopyrite ZnGeP2 crystal

    NASA Astrophysics Data System (ADS)

    Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.

    2016-06-01

    The electro-optic detection capabilities of a <012>-cut chalcopyrite ZnGeP2 (ZGP) crystal is investigated in the terahertz (THz) frequency regime. Our experiments attest that ZGP exhibits low THz losses and dispersion, and that phonon-polariton effects are too weak to perturb the THz pulse. Additionally, ZGP is shown to have excellent phase matching between an optical probe pulse and a THz pulse. For a 1080 μm thick ZGP crystal, this phase matching yields a detection bandwidth 1.3 times greater than ZnTe and 4.8 times greater than ZnSe and GaP. Thus, ZGP has promising applications in THz time-domain spectroscopy.

  13. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.

    PubMed

    Shinoj, V K; Murukeshan, V M

    2012-05-15

    We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.

  14. Real-time microbe detection based on director distortions around growing immune complexes in lyotropic chromonic liquid crystals.

    PubMed

    Shiyanovskii, S V; Schneider, T; Smalyukh, I I; Ishikawa, T; Niehaus, G D; Doane, K J; Woolverton, C J; Lavrentovich, O D

    2005-02-01

    We describe director distortions in the nematic liquid crystal (LC) caused by a spherical particle with tangential surface orientation of the director and show that light transmittance through the distorted region is a steep function of the particle's size. The effect allows us to propose a real-time microbial sensor based on a nontoxic lyotropic chromonic LC (LCLC) that detects and amplifies the presence of immune complexes. A cassette is filled with LCLC, antibody, and antigen-bearing particles. Small and isolated particles cause no macroscopic distortions of the LCLC. Upon antibody-antigen binding, the growing immune complexes distort the director and cause detectable optical transmittance between crossed polarizers.

  15. Detection of Glypican-3 Proteins for Hepatocellular Carcinoma Marker Using Wireless-Electrodeless Quartz-Crystal Microbalance

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Omori, Toshinobu; Hatanaka, Kenichi; Hirao, Masahiko; Nishiyama, Masayoshi

    2008-05-01

    Pure shear-wave resonances were excited and detected in 18- and 30-µm-thick electrodeless AT-cut quartz plates in liquids using line antennas contactlessly, achieving high-frequency quartz-crystal microbalances (QCMs). Their fundamental resonance frequencies (85 and 54 MHz) were monitored to study interactions in real time between human glypican-3 and an anti-glypican-3 antibody: glypican-3 is a prospective protein marker for hepatocellular carcinoma. Their affinity was determined by the Langmuir kinetics. This study demonstrates the high ability of the wireless-electrodeless QCM for detection of the protein markers and development of drugs for disorders.

  16. Design, construction and testing of a system for detection of toxic gases based on piezoelectric crystals.

    PubMed

    Leyva, J A; de Cisneros, J L; de Barreda, D G; Becerra, A J

    1994-01-01

    A system for static operation of toxic gas sensors based on piezoelectric crystals was constructed as a preliminary step in the development of this type of sensor. The sensing part of the setup consists of a twin oscillating circuit assembled from commercially available electronic parts mounted on a motherboard. The oscillating circuits can accommodate two piezoelectric crystals, of which one or both can be coated with different materials, or a single one, as required. The sensing assembly (crystals plus oscillating circuits) is placed in a customized test chamber that allows one to control and reproduce its internal environment. Once assembled and fine-tuned, the proposed setup was used to test a commercially available piezoelectric crystal for sensing formaldehyde in order to expand available information on this type of sensor.

  17. Quartz crystal microbalance detection of DNA single-base mutation based on monobase-coded cadmium tellurium nanoprobe.

    PubMed

    Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo

    2011-01-01

    A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection.

  18. Selective detection of sub-atto-molar Streptavidin in 10(13)-fold impure sample using photonic crystal nanolaser sensors.

    PubMed

    Hachuda, Shoji; Otsuka, Shota; Kita, Shota; Isono, Toshinari; Narimatsu, Michimasa; Watanabe, Keisuke; Goshima, Yoshio; Baba, Toshihiko

    2013-05-20

    Biosensors selectively detecting a very small amount of biomarker protein in human blood are desired for early and reliable diagnoses of severe diseases. This paper reports the detection of protein (streptavidin: SA) in ultra-low concentration, with an ultra-high selectivity against contaminants, using photonic crystal nanolasers. For biotin-modified nanolasers in pure water with SA, an extremely-low detection limit of 16 zM is evaluated. Even in a mixture with 1 μM bovine serum albumin as the contaminant, 100 zM SA is detected, meaning a selectivity of 10(13). These are remarkable capabilities that are promising for practical biosensing in the medical applications mentioned above.

  19. Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica

    PubMed Central

    Kong, Xianming; Xi, Yuting; Le Duff, Paul; Chong, Xinyuan; Li, Erwen; Ren, Fanghui; Rorrer, Gregory L.; Wang, Alan X.

    2017-01-01

    We demonstrate a photonic crystal biosilica surface-enhanced Raman scattering (SERS) substrate based on a diatom frustule with in-situ synthesized silver nanoparticles (Ag NPs) to detect explosive molecules from nanoliter (nL) solution. By integrating high density Ag NPs inside the nanopores of diatom biosilica, which is not achievable by traditional self-assembly techniques, we obtained ultra-high SERS sensitivity due to dual enhancement mechanisms. First, the hybrid plasmonic-photonic crystal biosilica with three dimensional morphologies was obtained by electroless-deposited Ag seeds at nanometer sized diatom frustule surface, which provides high density hot spots as well as strongly coupled optical resonances with the photonic crystal structure of diatom frustules. Second, we discovered that the evaporation-driven microscopic flow combined with the strong hydrophilic surface of diatom frustules is capable of concentrating the analyte molecules, which offers a simple yet effective mechanism to accelerate the mass transport into the SERS substrate. Using the inkjet printing technology, we are able to deliver multiple 100 pico-liter (pL) volume droplets with pinpoint accuracy into a single diatom frustule with dimension around 30 μm × 7 μm × 5 μm, which allows for label-free detection of explosive molecules such as trinitrotoluene (TNT) down to 10−10 M in concentration and 2.7 × 10−15 g in mass from 120 nL solution. Our research illustrates a new paradigm of SERS sensing to detect trace level of chemical compounds from minimum volume of analyte using nature created photonic crystal biosilica materials. PMID:27471144

  20. Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica.

    PubMed

    Kong, Xianming; Xi, Yuting; Le Duff, Paul; Chong, Xinyuan; Li, Erwen; Ren, Fanghui; Rorrer, Gregory L; Wang, Alan X

    2017-02-15

    We demonstrate a photonic crystal biosilica surface-enhanced Raman scattering (SERS) substrate based on a diatom frustule with in-situ synthesized silver nanoparticles (Ag NPs) to detect explosive molecules from nanoliter (nL) solution. By integrating high density Ag NPs inside the nanopores of diatom biosilica, which is not achievable by traditional self-assembly techniques, we obtained ultra-high SERS sensitivity due to dual enhancement mechanisms. First, the hybrid plasmonic-photonic crystal biosilica with three dimensional morphologies was obtained by electroless-deposited Ag seeds at nanometer sized diatom frustule surface, which provides high density hot spots as well as strongly coupled optical resonances with the photonic crystal structure of diatom frustules. Second, we discovered that the evaporation-driven microscopic flow combined with the strong hydrophilic surface of diatom frustules is capable of concentrating the analyte molecules, which offers a simple yet effective mechanism to accelerate the mass transport into the SERS substrate. Using the inkjet printing technology, we are able to deliver multiple 100pico-liter (pL) volume droplets with pinpoint accuracy into a single diatom frustule with dimension around 30µm×7µm×5µm, which allows for label-free detection of explosive molecules such as trinitrotoluene (TNT) down to 10(-10)M in concentration and 2.7×10(-15)g in mass from 120nL solution. Our research illustrates a new paradigm of SERS sensing to detect trace level of chemical compounds from minimum volume of analyte using nature created photonic crystal biosilica materials.

  1. Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline

    PubMed Central

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.

    2013-01-01

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294

  2. Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection.

    PubMed

    Shi, Lina; Pottier, Pierre; Skorobogatiy, Maksim; Peter, Yves-Alain

    2009-06-22

    Using finite-difference time-domain method, we characterize the normal-incidence transmission properties of a two slab photonic crystal device in a view of its applications in fluorescence enhancement and multi-analyte detection. Individual slabs consist of a square or a triangular lattice of air holes embedded into a silicon nitride slab. The geometrical parameters are chosen so that the individual slabs operate in a guided resonance regime where strong reflectivity under the normal incidence angle is observed in a broad spectral range. When placed in the close proximity of each other, the two photonic crystal slab system exhibits a narrow Fabry-Perot type transmission peak corresponding to the excitation of a resonant mode in the cavity formed by the two slabs. We then study the effects of the size of the air gap between the two photonic crystal slabs on the spectral position and bandwidth of a resonance transmission peak. Finally, we investigate the electromagnetic energy distributions at the wavelength of a transmission resonance in the double slab photonic crystals. As a final result we demonstrate that this structure can provide electric field enhancement at the slab surface, which can be used for fluorescence enhancement.

  3. Timing capabilities of garnet crystals for detection of high energy charged particles

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Gundacker, S.; Lecoq, P.; Benaglia, A.; Nikl, M.; Kamada, K.; Yoshikawa, A.; Auffray, E.

    2017-04-01

    Particle detectors at future collider experiments will operate at high collision rates and thus will have to face high pile up and a harsh radiation environment. Precision timing capabilities can help in the reconstruction of physics events by mitigating pile up effects. In this context, radiation tolerant, scintillating crystals coupled to silicon photomultipliers (SiPMs) can provide a flexible and compact option for the implementation of a precision timing layer inside large particle detectors. In this paper, we compare the timing performance of aluminum garnet crystals (YAG: Ce, LuAG: Ce, GAGG: Ce) and the improvements of their time resolution by means of codoping with Mg2+ ions. The crystals were read out using SiPMs from Hamamatsu glued to the rear end of the scintillator and their timing performance was evaluated by measuring the coincidence time resolution (CTR) of 150 GeV charged pions traversing a pair of crystals. The influence of crystal properties, such as density, light yield and decay kinetics on the timing performance is discussed. The best single detector time resolutions are in the range of 23-30 ps (sigma) and only achieved by codoping the garnet crystals with divalent ions, such as Mg2+. The much faster scintillation decay in the co-doped samples as compared to non co-doped garnets explains the higher timing performance. Samples of LSO: Ce, Ca and LYSO:Ce crystals have also been used as reference time device and showed a time resolution at the level of 17 ps, in agreement with previous results.

  4. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10-4 μg ml-1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  5. The detection of calcium pyrophosphate crystals in the synovial fluid of patients with rheumatoid arthritis using the cytospin technique: prevalence and clinical correlation.

    PubMed

    Theiler, Georg; Quehenberger, Franz; Rainer, Franz; Neubauer, Manfred; Stettin, Mariana; Robier, Christoph

    2014-01-01

    There are only a few studies dealing with the detection and clinical impact of calcium pyrophosphate (CPPD) crystals in patients with rheumatoid arthritis (RA) published to date. In particular, data determined by the cytospin technique, which is an effective tool to enhance the crystal detection rate, are lacking. The objectives of this study were to determine the prevalence of CPPD crystals in the synovial fluid (SF) of patients with RA and to investigate whether the detection of CPPD crystals is correlated with demographic, clinical and serological features. We examined 113 consecutive SF samples of patients with RA, obtained from therapeutic arthrocentesis of knee joints. After cytocentrifugation, the sediments were examined by polarized microscopy for the occurrence of CPPD crystals. Demographic, clinical and serological data, acquired from the medical records, were compared between crystal-positive and crystal-negative subjects. CPPD crystals were observed in 20 of the 113 cases, representing 17.7%. CPPD-positive and CPPD-negative subjects did not differ significantly in sex, duration of disease, Steinbrocker radiologic stage, disease activity score 28, as well as serum rheumatoid factor and anti-CCP positivity. Patients positively tested for CPPD crystals had a significantly higher age than CPPD-negative patients (p < 0.0001). An age-independent association of long-time treatment with diuretics and CPPD crystal formation was not found. In conclusion, demographic, clinical and serological characteristics of patients with RA were not associated with the occurrence of CPPD crystals. Age was the only significant influencing factor on CPPD crystal formation in patients with RA.

  6. Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator

    NASA Astrophysics Data System (ADS)

    Kim, Eunho; Restuccia, Francesco; Yang, Jinkyu; Daraio, Chiara

    2015-12-01

    We experimentally and numerically investigate a diagnostic method for detecting hidden delamination in composite panels, using highly nonlinear solitary waves. Solitary waves are a type of nonlinear waves with strong energy intensity and non-distortive nature, which can be controllably generated in one-dimensional granular crystals. In this study, we use granular crystals as a combined sensor and actuator to detect hidden delamination in carbon fiber reinforced polymer (CFRP) composite panels. Specifically, we locally excite a CFRP composite specimen using the granular crystal as an actuator and measure the reflected waves that carry the specimen’s diagnostic information using the same device as a sensor. We first investigate the effect of the panel’s boundary conditions on the response of the reflected solitary waves. We then investigate the interactions of a solitary wave with delamination hidden in the CFRP composite specimen. Lastly, we define a damage index based on the solitary waves’ responses to identify the location of the hidden delamination in the CFRP composite panel. The solitary wave-based diagnostic method can provide unique merits, such as portable and fast sensing of composites’ hidden damage, thereby with the potential of being used for hot spot monitoring of composite-based structures.

  7. Use of shear-stress-sensitive, temperature-insensitive liquid crystals for hypersonic boundary-layer transition detection

    SciTech Connect

    Aeschliman, D.P.; Croll, R.H.; Kuntz, D.W.

    1997-04-01

    The use of shear-stress-sensitive, temperature-insensitive (SSS/TI) liquid crystals (LCs) has been evaluated as a boundary-layer transition detection technique for hypersonic flows. Experiments were conducted at Mach 8 in the Sandia National Laboratories Hypersonic Wind Tunnel using a flat plate model at near zero-degree angle of attack over the freestream unit Reynolds number range 1.2-5.8x10{sup 6}/ft. Standard 35mm color photography and Super VHS color video were used to record LC color changes due to varying surface shear stress during the transition process for a range of commercial SSS liquid crystals. Visual transition data were compared to an established method using calorimetric surface heat-transfer measurements to evaluate the LC technique. It is concluded that the use of SSS/TI LCs can be an inexpensive, safe, and easy to use boundary-layer transition detection method for hypersonic flows. However, a valid interpretation of the visual records requires careful attention to illumination intensity levels and uniformity, lighting and viewing angles, some prior understanding of the general character of the flow, and the selection of the appropriate liquid crystal for the particular flow conditions.

  8. Compact gamma-ray detection system for space applications based on photodiodes and CsI(TI) scintillation crystals

    NASA Astrophysics Data System (ADS)

    Graue, Roland; Stuffler, Timo; Goebel, Thomas

    1996-10-01

    For the measurement of astronomical gamma ray radiation in the energy range 50 keV to several MeV usually photomultiplier tubes (PMT) with scintillation crystals are used. However, due to the internal detection mechanism high voltage and single photon counting are required leading to heavy and structurally unpractical systems. Even APD's (avalanche photodiodes) do not circumvent the problem of the high voltage. Recent improvements in the performance of semiconductor detectors allow the use of large area and low noise pin photodiodes as innovative scintillation detectors with 40 - 100 V operating voltage only. Tl-doped CsI as scintillation crystal with a superior light yield has not only a much higher photon output compared to the light yield of pure CsI and BGO crystals which are used for the gamma ray detection with PMTs, but has also a perfect matching of spectral properties of the photodiode. This paper presents a comprehensive comparison with conventional PMT scintillation detector systems and the development activities of full size breadboards with such a photodiode/CsI(Tl) detector set-up. The relevant functional performance test results have shown the high technical maturity of this detector system and the principal feasibility for the application either in the INTEGRAL spectrometer and imager anticoincidence shield (ACS) or in image central detector system. The dedicated ACS configuration design featuring optimized mass budget combined with high gamma ray stopping efficiency is figured.

  9. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  10. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    NASA Astrophysics Data System (ADS)

    Bilski, P.; Marczewska, B.

    2017-02-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F2 and F3+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  11. Highly sensitive, direct and real-time detection of silver nanowires by using a quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; Park, Chanho; You, Juneseok; Choi, Jaeyeong; Park, Hyunjun; Park, Jinsung; Lee, Howon; Choi, Chang-Hwan; Na, Sungsoo

    2016-11-01

    For several decades, silver nanomaterials (AgNMs) have been used in various research areas and commercial products. Among the many AgNMs, silver nanowires (AgNWs) are one of the mostly widely used nanomaterials due to their high electrical and thermal conductivity. However, recent studies have investigated the toxicity of AgNWs. For this reason, it is necessary to develop a successful detection method of AgNWs for protecting human health. In this study, label-free, highly sensitive, direct, and real-time detection of AgNWs is performed for the first time. The detection mechanism is based on the resonance frequency shift upon the mass change from the hybridization between the probe DNA on the electrode and the linker DNA attached on AgNWs. The frequency shift is measured by using a quartz crystal microbalance. We are able to detect 1 ng ml-1 of AgNWs in deionized water in real-time. Moreover, our detection method can selectively detect AgNWs among other types of one-dimensional nanomaterials and can also be applied to detection in drinking water.

  12. Investigations of Cadmium Manganese Telluride Crystals for Room-Temperature Radiation Detection

    SciTech Connect

    Yang, G.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Carcelen, V.; Gul, R.; James, R.

    2009-10-06

    Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot, and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam X-ray topography (SWBXT), current-voltage (I-V) measurements, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors to irradiation exposure. The crystal from the stable growth region proved superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by two orders-of-magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its ({mu}{tau}){sub e} value was 2.6 x 10{sup -3} cm{sup 2}/V, which is acceptable for thin detectors, including for applications in medicine.

  13. [Liquid crystal thermography; a reliable method for detecting soda lime exhaustion].

    PubMed

    Tsuchiya, M; Ueda, W; Tomoda, M; Takimoto, E; Furuno, K; Kuzume, Y; Kanaya, H; Hasegawa, T; Aono, J; Maesako, M

    1990-07-01

    The dynamic and functional state of soda lime can be more precisely assessed by measuring changes in wall temperatures of the absorption chambers rather than observing color change of the soda lime granules. We demonstrated in this report that the liquid crystal thermometer is an inexpensive and reliable measuring device for this purpose.

  14. Investigations of Cadmium Manganese Telluride Crystals for Room-temperature Radiation Detection

    SciTech Connect

    Yang, G.; Bolotnikov, A; Li, L; Camarda, G; Cui, Y; Hossain, A; Kim, K; Carcelen, V; Gul, R; James, R

    2010-01-01

    Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam x-ray topography (SWBXT), current-voltage (I-V) measurement, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors of radiation exposure. The crystal from the stable growth region proved to be superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by one order of magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its ({mu}{tau})e value was 2.6 x 10{sup -3} cm{sup 2}/V, which is acceptable for thin detectors, including their application in medicine.

  15. Evaluation of crystal violet decolorization assay for minimal inhibitory concentration detection of primary antituberculosis drugs against Mycobacterium tuberculosis isolates*

    PubMed Central

    Coban, Ahmet Yilmaz; Akbal, Ahmet Ugur; Uzun, Meltem; Cayci, Yeliz Tanriverdi; Birinci, Asuman; Durupinar, Belma

    2016-01-01

    In this study we evaluated the crystal violet decolorization assay (CVDA) for detection of minimum inhibitory concentration (MIC) of antituberculosis drugs. 53 isolates were tested in this study and 13 of them were multidrug resistant (MDR) isolates. The antibiotics concentrations were 2-0.06 mg/L for isoniazid (INH) and rifampicin (RIF) and were 16-0.25 mg/L for streptomycin (STM) and ethambutol (EMB). Crystal violet (CV-25 mg/L) was added into the microwells on the seventh day of incubation and incubation was continued until decolorization. Decolorization of CV was the predictor of bacterial growth. Overall agreements for four drugs were detected as 98.1%, and the average time was detected as 9.5 ± 0.89 day after inoculation. One isolate for INH and two isolates for STM were determined resistant in the reference method, but susceptible by the CVDA. One isolate was susceptible to EMB by the reference method, but resistant by the CVDA. All results were concordant for RIF. This study shows that CVDA is a rapid, reliable and suitable for determination of MIC values of Mycobacterium tuberculosis. And it can be used easily especially in countries with limited-sources. PMID:27304025

  16. 3D photonic crystal-based biosensor functionalized with quantum dot-based aptamer for thrombine detection

    NASA Astrophysics Data System (ADS)

    Lim, Chae Young; Choi, Eunpyo; Park, Youngkyu; Park, Jungyul

    2013-05-01

    In this paper, we propose a new technique for protein detection by using the enhancement of intensity in quantum dots (Qdot) whose emission is guided by 3D photonic crystal (PC) structures. For easy to use, we design the emitted light from the sensor can be recovered, when the chemical antibody (aptamer) conjugated with guard DNA (g-DNA) labeled with a quencher (Black FQ) hybridizes with the target proteins. In detail, we synthesis a Qdot-aptamer complex and then immobilize these complex on the PC surfaces. Next, we perform the hybridization of the Qdot-aptamer complex with g-DNA labeled with the quencher. It induces the quenching effect of fluoresce intensity in the Qdot-aptamer. In presence of target protein (thrombin), the Qdot-aptamer complex prefers to form the thrombin-aptamer complex: this results in the release of Black FQ-g-DNA and the quenched light intensity recovers into the original high intensity with Qdot. The intensity recovery varies quantitatively according to the level of the target protein concentration. This proposed sensor shows much higher detection sensitivity than the general fluorescent detection mechanism, which is functionalized on the flat surfaces because of the light guiding effect from 3D photonic crystal structures.

  17. Apoferritin crystals

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Alexander Chernov, of the Universities Space Research Association (USRA) and based at Marshall Space Flight Center, is investigating why protein crystals grown in space are, in about 20 percent of cases, better-ordered than those grown on the ground. They are testing the idea that the amount of impurities trapped by space-grown crystals may be different than the amount trapped by crystals grown on Earth because convection is negligible in microgravity. The concentrations or impurities in many space-grown crystals turned out to be several times lower than that in the terrestrial ones, sometimes below the detection limit. The ground-based experiment also showed that the amount of impurities per unit volume of the crystals was usually higher than the amount per unit volume of the solution. This means that a growing crystal actually purifies the solution in its immediate vicinity. Here, an impurity depletion zone is created around apoferritin crystals grown in gel, imitating microgravity conditions.

  18. Apoferritin crystals

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Alexander Chernov, of the Universities Space Research Association (USRA) and based at Marshall Space Flight Center, is investigating why protein crystals grown in space are, in about 20 percent of cases, better-ordered than those grown on the ground. They are testing the idea that the amount of impurities trapped by space-grown crystals may be different than the amount trapped by crystals grown on Earth because convection is negligible in microgravity. The concentrations or impurities in many space-grown crystals turned out to be several times lower than that in the terrestrial ones, sometimes below the detection limit. The ground-based experiment also showed that the amount of impurities per unit volume of the crystals was usually higher than the amount per unit volume of the solution. This means that a growing crystal actually purifies the solution in its immediate vicinity. Here, an impurity depletion zone is created around apoferritin crystals grown in gel, imitating microgravity conditions.

  19. Single-particle detection of virus simulants under microfluidic flow with two-dimensional photonic crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin L.; Baker, James E.; Sriram, Rashmi

    2017-05-01

    Because of their compatibility with standard CMOS fabrication, small footprint, and exceptional sensitivity, Two-Dimensional Photonic Crystals (2D PhCs) have been posited as attractive components for the development of real-time integrated photonic virus sensors. While detection of single virus-sized particles by 2D PhCs has been demonstrated, specific recognition of a virus simulant under conditions relevant to sensor use (including aqueous solution and microfluidic flow) has remained an unsolved challenge. This talk will describe the design and testing of a W1 waveguide-coupled 2D PhC in the context of addressing that challenge.

  20. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber.

    PubMed

    U S, Dinish; Fu, Chit Yaw; Soh, Kiat Seng; Ramaswamy, Bhuvaneswari; Kumar, Anil; Olivo, Malini

    2012-03-15

    Enzyme-linked immunosorbent assays (ELISA) are commonly used for detecting cancer proteins at concentration in the range of about ng-μg/mL. Hence it often fails to detect tumor markers at the early stages of cancer and other diseases where the amount of protein is extremely low. Herein, we report a novel photonic crystal fiber (PCF) based surface enhanced Raman scattering (SERS) sensing platform for the ultrasensitive detection of cancer proteins in an extremely low sample volume. As a proof of concept, epidermal growth factor receptors (EGFRs) in a lysate solution from human epithelial carcinoma cells were immobilized into the hollow core PCF. Highly sensitive detection of protein was achieved using anti-EGFR antibody conjugated SERS nanotag. This SERS nanotag probe was realized by anchoring highly active Raman molecules onto the gold nanoparticles followed by bioconjugation. The proposed sensing method can detect low amount of proteins at ∼100 pg in a sample volume of ∼10 nL. Our approach may lead to the highly sensitive protein sensing methodology for the early detection of diseases.

  1. A novel dendritic surfactant for enhanced microcystin-LR detection by double amplification in a quartz crystal microbalance biosensor.

    PubMed

    Xia, Yuetong; Zhang, Jianping; Jiang, Long

    2011-08-01

    Enhanced sensitivity for the hepatotoxin microcystin-LR (MC-LR) was achieved in a quartz crystal microbalance (QCM) system via double amplification. For primary amplification, an innovative interface on the QCM was obtained as a matrix by the vesicle layer formed by our synthetic dendritic surfactant, bis (amidoethyl-carbamoylethyl) octadecylamine (C18N3). The vesicle matrix was then functionalised by an optimised concentration of monoclonal antibodies against MC-LR (anti-MC-LR) to detect the analyte. The results showed that a detection limit of 100 ng/mL was achieved by primary amplification. To achieve higher sensitivity, secondary amplification was implemented with anti-MC-LR gold nanoparticle (AuNPs) conjugates as probes, which lowered the detection limit for MC-LR to 1 ng/mL (the maximum concentration recommended by the World Health Organization [WHO] in drinking water for humans). The QCM immunosensor reported here has advantages such as high sensitivity, portability, simplicity, and cost-effectiveness for MC-LR detection. It would be uniquely superior compared with current MC-LR detection techniques for on-the-spot water detection. Furthermore, the methodology described here is also potentially significant in many fields for the routine monitoring of environmental and food safety.

  2. Effective antibodies immobilization and functionalized nanoparticles in a quartz-crystal microbalance-based immunosensor for the detection of parathion

    PubMed Central

    Della Ventura, Bartolomeo; Iannaccone, Marco; Funari, Riccardo; Pica Ciamarra, Massimo; Altucci, Carlo; Capparelli, Rosanna; Roperto, Sante; Velotta, Raffaele

    2017-01-01

    Background Biosensor-based detection provides a rapid and low-cost alternative to conventional analytical methods for revealing the presence of the contaminants in water as well as solid matrices. Although important to be detected, small analytes (few hundreds of Daltons) are an issue in biosensing since the signal they induce in the transducer, and specifically in a Quartz-Crystal Microbalance, is undetectable. A pesticide like parathion (M = 292 Da) is a typical example of contaminant for which a signal amplification procedure is desirable. Methods/Findings The ballasting of the analyte by gold nanoparticles has been already applied to heavy target as proteins or bacteria to improve the limit of detection. In this paper, we extend the application of such a method to small analytes by showing that once the working surface of a Quartz-Crystal Microbalance (QCM) has been properly functionalized, a limit of detection lower than 1 ppb is reached for parathion. The effective surface functionalization is achieved by immobilizing antibodies upright oriented on the QCM gold surface by a simple photochemical technique (Photonic Immobilization Technique, PIT) based on the UV irradiation of the antibodies, whereas a simple protocol provided by the manufacturer is applied to functionalize the gold nanoparticles. Thus, in a non-competitive approach, the small analyte is made detectable by weighing it down through a “sandwich protocol” with a second antibody tethered to heavy gold nanoparticles. The immunosensor has been proved to be effective against the parathion while showing no cross reaction when a mixture of compounds very similar to parathion is analyzed. Conclusion/Significance The immunosensor described in this paper can be easily applied to any small molecule for which polyclonal antibodies are available since both the functionalization procedure of the QCM probe surface and gold nanoparticle can be applied to any IgG, thereby making our device of general

  3. Effective antibodies immobilization and functionalized nanoparticles in a quartz-crystal microbalance-based immunosensor for the detection of parathion.

    PubMed

    Della Ventura, Bartolomeo; Iannaccone, Marco; Funari, Riccardo; Pica Ciamarra, Massimo; Altucci, Carlo; Capparelli, Rosanna; Roperto, Sante; Velotta, Raffaele

    2017-01-01

    Biosensor-based detection provides a rapid and low-cost alternative to conventional analytical methods for revealing the presence of the contaminants in water as well as solid matrices. Although important to be detected, small analytes (few hundreds of Daltons) are an issue in biosensing since the signal they induce in the transducer, and specifically in a Quartz-Crystal Microbalance, is undetectable. A pesticide like parathion (M = 292 Da) is a typical example of contaminant for which a signal amplification procedure is desirable. The ballasting of the analyte by gold nanoparticles has been already applied to heavy target as proteins or bacteria to improve the limit of detection. In this paper, we extend the application of such a method to small analytes by showing that once the working surface of a Quartz-Crystal Microbalance (QCM) has been properly functionalized, a limit of detection lower than 1 ppb is reached for parathion. The effective surface functionalization is achieved by immobilizing antibodies upright oriented on the QCM gold surface by a simple photochemical technique (Photonic Immobilization Technique, PIT) based on the UV irradiation of the antibodies, whereas a simple protocol provided by the manufacturer is applied to functionalize the gold nanoparticles. Thus, in a non-competitive approach, the small analyte is made detectable by weighing it down through a "sandwich protocol" with a second antibody tethered to heavy gold nanoparticles. The immunosensor has been proved to be effective against the parathion while showing no cross reaction when a mixture of compounds very similar to parathion is analyzed. The immunosensor described in this paper can be easily applied to any small molecule for which polyclonal antibodies are available since both the functionalization procedure of the QCM probe surface and gold nanoparticle can be applied to any IgG, thereby making our device of general application in terms of target analyte.

  4. Novel phage amplified multichannel series piezoelectric quartz crystal sensor for rapid and sensitive detection of Mycobacterium tuberculosis.

    PubMed

    Mi, Xianwen; He, Fengjiao; Xiang, Meiyu; Lian, Yan; Yi, Songlin

    2012-01-17

    The key factors that control the spread and mortality rate of tuberculosis (TB) are rapid detection and diagnosis. However, the current detection of Mycobacterium tuberculosis (M. tuberculosis) cannot meet the recommended requirements for clinical diagnosis in turnaround time. In this paper, the feature of phage D29 that infects M. tuberculosis and Mycobacterium smegmatis (M. smegmatis) was combined with the sensitivity of multichannel series piezoelectric quartz crystal sensor (MSPQC) to detect M. tuberculosis. The phage D29 played a role of inhibiting the growth of M. tuberculosis and M. smegmatis. M. tuberculosis is used to protect phage D29 from being killed by ferrous ammonium sulfate (FAS) and carries phage D29 into the detection medium containing M. smegmatis. The action of M. smegmatis indicated the existence state of phage D29 in the detection medium. The growth curve of M. smegmatis obtained by MSPQC indicated the state of the growth of M. tuberculosis. Therefore, M. tuberculosis in the sample could be rapidly detected by evaluating the extent of inhibiting the growth of M. smegmatis compared with the normal growth of M. smegmatis. The detection of M. tuberculosis was transformed into the detection of M. smegmatis, which is more rapid and sensitive than that of M. tuberculosis. For 10(2) cfu/mL of M. tuberculosis in clinical sample, the turnaround time was less than 30 h. Although statistical analysis showed that no significant difference existed between the results of the proposed method here and the BACTEC960 MGIT method in clinical M. tuberculosis detection, the phage amplified MSPQC (PA MSPQC) method presented here was faster and more economical.

  5. Experimental detection of quantum oscillations of anomalous Hall resistance in mercury selenide crystals with cobalt impurities

    NASA Astrophysics Data System (ADS)

    Lonchakov, A. T.; Bobin, S. B.; Deryushkin, V. V.; Okulov, V. I.; Govorkova, T. E.; Neverov, V. N.; Pamyatnykh, E. A.; Paranchich, L. D.

    2017-04-01

    Quantum oscillations of the anomalous component of Hall resistance with an amplitude exceeding the amplitude of the Shubnikov-de Haas oscillations of transverse magnetoresistance are observed in mercury selenide crystals doped with low concentrations of cobalt impurity. In accordance with the predictions of the Hall effect theory for systems with spontaneous spin polarization of hybridized donor electrons, the observed oscillations correspond to magnetic quantum oscillations caused by the thermodynamic anomalous Hall effect.

  6. Reversible Melting of UHMMPE and PE Extended-chain Crystals Detected by Temperature-modulated Calorimetry

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Wunderlich, Bernhard

    2002-03-01

    The melting and crystallization of gel-spun, ultrahigh molar mass polyethylene (UHMMPE) and polyethylene extended-chain crystals (ECC) are analyzed with both, standard differential scanning calorimetry (DSC) and a temperature-modulated DSC. For short-chain, flexible molecules up to 10 nm length, reversible melting was found last year, as expected for small molecules. Longer oligomers melted almost fully irreversibly. Medium to high molar mass polyethylene, in contrast, show again a small reversing and reversible component in the high-temperature melting region. It was proposed in the literature, that this effect in the polyethylene is solely caused by "fold-surface melting." To test this theory and to look for additional effects on the lateral surfaces, the new morphologies are quantitatively compared with the prior analyzed samples. The UHMMPE contains a mobile, oriented mesophase and few folded chains. The ECC has no chain folds and less than 2fraction. In both cases reversing melting and crystallization is observed. --- Supported by NSF, Polymers Program, DMR-9703692, and the Div. of Mat. Sci., BES, DOE at ORNL, managed by UT-Batelle, LLC, for the U.S. Department of Energy, under contract number DOE-AC05-00OR22725.

  7. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  8. Determination of crystal violet in seawater and seafood samples through off-line molecularly imprinted SPE followed by HPLC with diode-array detection.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2013-03-01

    A highly selective sample cleanup procedure combined with molecularly imprinted SPE was developed for the isolation of crystal violet from seawater and seafood samples. The molecularly imprinted polymer was prepared using crystal violet as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The crystal violet-imprinted polymer was used as the selective sorbent for the SPE of crystal violet. An off-line molecularly imprinted SPE method followed by HPLC with diode-array detection for the analysis of crystal violet was also established. Good linearity on the molecularly imprinted SPE columns was obtained from 0 to 200 μg/L (R(2) > 0.99). The result demonstrated that the proposed method can be used for the direct determination of crystal violet in seawater and seafood samples. Finally, five samples were analyzed and the following crystal violet concentrations were obtained: 0.92 and 0.52 μg/L in two seawater samples, as well as 0.36 and 0.27 μg/kg in two seafood samples. There is no crystal violet detected in the third seawater sample.

  9. Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles.

    PubMed

    Gong, Tianxun; Cui, Ying; Goh, Douglas; Voon, Kong Kien; Shum, Perry Ping; Humbert, Georges; Auguste, Jean-Louis; Dinh, Xuan-Quyen; Yong, Ken-Tye; Olivo, Malini

    2015-02-15

    An ultrasensitive surface enhanced Raman spectroscopy (SERS) based sensing platform was developed to detect the mean sialic acid level on the surface of single cell with sensitivity as low as 2 fmol. This platform adopted the use of an interference-free Raman tag, 4-(dihydroxyborophenyl) acetylene (DBA), which selectively binds to sialic acid on the cell membrane. By loading the side channel of a photonic crystal fiber with a mixture of gold nanoparticles and DBA-tagged HeLa cell, and subsequently propagating laser light through the central solid core, strong SERS signal was obtained. This SERS technique achieved accurate detection and quantification of concentration of sialic acid on a single cell, surpassing previously reported methods that required more than 10(5) cells. Moreover, this platform can be developed into a clinical diagnostic tool to potentially analyze sialic acid-related diseases such as tumor malignancy and metastasis in real-time.

  10. Evaluation of a novel label-free photonic-crystal biosensor imaging system for the detection of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong

    2017-02-01

    Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.

  11. Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) biosensor.

    PubMed

    Mishra, Geetesh K; Sharma, Atul; Bhand, Sunil

    2015-05-15

    This work presents the development of an ultrasensitive biosensor for detection of streptomycin residues in milk samples using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) technique. Monoclonal antibody specific to streptomycin was immobilized on to the thiol modified gold quartz crystal surface. A broad dynamic range (0.3-300 ng/mL) was obtained for streptomycin with a good linearity in the range 0.3-10 ng/mL for PBS and 0.3-50 ng/mL for milk. The correlation coefficient (R(2)) of the biosensor was found to be 0.994 and 0.997 for PBS and milk respectively. Excellent recoveries were obtained from the streptomycin spiked milk samples in the range 98-99.33%, which shows the applicability of the developed biosensor in milk. The reproducibility of the developed biosensor was found satisfactory with % RSD (n=5) 0.351. A good co-relation was observed between the streptomycin recoveries measured through the developed biosensor and the commercial ELISA kit. The analytical figures of merit of the developed biosensor confirm that the developed FIA-EQCN biosensor could be very effective for low-level detection of streptomycin in milk samples.

  12. Feasibility demonstration for hydrogen chloride detection using a chemisorption technique and a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Workman, G. L.

    1975-01-01

    A method of measuring concentrations of hydrogen chloride between 1 part per billion and 10 parts per million at standard temperature and pressure is presented. The feasibility of a low-cost device incorporating a chemisorption technique coupled with a quartz crystal microbalance was demonstrated in the field at the Viking B launch using a Titan-Centaur vehicle from Kennedy Space Center on August 20, 1975. Hydrogen chloride is a product of solid rocket combustion. The concentration level of hydrogen chloride for this particular launch was measured as approximately 0.2 parts per million at 4 km from the launch site.

  13. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hao; Lee, Mon-Juan; Lee, Wei

    2016-08-01

    Liquid crystal (LC)-based biosensing is generally limited by the lack of accurate quantitative strategies. This study exploits the unique electric capacitance properties of LCs to establish quantitative assay methods for bovine serum albumin (BSA) biomolecules. By measuring the voltage-dependent electric capacitance of LCs under an alternating-current field with increasing amplitude, positive correlations were derived between the BSA concentration and the electric capacitance parameters of LCs. This study demonstrates that quantitative analysis can be achieved in LC-based biosensing through electric capacitance measurements extensively employed in LCD research and development.

  14. Photonic crystal fiber sensor based on surface-enhanced Raman scattering for explosives detection

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Chen, Rong; Li, Jingke

    2016-11-01

    We report an new approach of integrating photonic crystal fiber (PCF) SERS sensors to a Raman spectrometer for high sensitivity to the explosive 2,4,6-trinitrotoluene (TNT). The PCF SERS probe can be fabricated by using gold nanoparticles immobilized on the inner surface of air channels in a PCF through polymer-mediated self-assembly. To study the response of above fabricated substrates to the TNT vapor, the PCF SERS probe integrated with a Raman spectrometer was proposed and demonstrated in this study. The TNT-induced SERS signals are measured and the sensing capability of the proposed sensors is investigated experimentally.

  15. Enhanced detection limit by dark mode perturbation in 2D photonic crystal slab refractive index sensors.

    PubMed

    Nicolaou, Costa; Lau, Wah Tung; Gad, Raanan; Akhavan, Hooman; Schilling, Ryan; Levi, Ofer

    2013-12-16

    We demonstrate for the first time a 300nm thick, 300μm × 300μm 2D dielectric photonic crystal slab membrane with a quality factor of 10,600 by coupling light to slightly perturbed dark modes through alternating nano-hole sizes. The newly created fundamental guided resonances greatly reduce nano-fabrication accuracy requirements. Moreover, we created a new layer architecture resulting in electric field enhancement at the interface between the slab and sensing regions, and spectral sensitivity of >800 nm/RIU, that is, >0.8 of the single-mode theoretical upper limit of spectral sensitivity.

  16. Liquid Crystal Based Sensor to Detect Beta-Sheet Formation of Peptides

    NASA Astrophysics Data System (ADS)

    Sadati, Monirosadat; Izmitli Apik, Aslin; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-03-01

    Protein aggregation into amyloid fibrils is involved in the progression of Alzheimer's, typeII diabetes and Huntington's diseases. Although larger aggregates remain important for clinical determination, small oligomers are of great interest due to their potentially toxic nature. It is therefore crucial to develop methods that probe the aggregation process at early stages and in the vicinity of biological membranes. Here, we present a simple method that relies on liquid crystalline materials and a Langmuir monolayer at the aqueous-liquid crystal (LC) interface. The approach is based on the LC's specific response to β-sheet structures, which abound in amyloid fibrils. When the system is observed under polarized light, the fibrils formed by amyloidogenic peptides give rise to the formation of elongated and branched structures in the LCs. Moreover, the PolScope measurements prove that the LCs are predominantly aligned along the fibrils when exposed to a β-sheet forming peptide. In contrast, non-amyloidogenic peptides form ellipsoidal domains of irregularly tilted LCs. This method is capable of reporting aggregation at lipid-aqueous interfaces at nanomolar concentrations of the peptide, and much earlier than commonly used fluorescence-based techniques. We thank Prof. Oleg D. Levrentovich and Young-Ki Kim from the Liquid Crystal Institute of Kent State University for the use of their PolScope instrument. This work was partially supported by the Swiss National Science Foundation (P300P2_151342).

  17. Optical fibers based on compositions of polymers and liquid crystals for gas detection

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Tantillo, Anthony

    Optical fibers based on compositions of methacrylic and vinyl polymers mixed with low molar mass liquid crystals were prepared and studied as promising gas sensors. A range of concentrations producing anisotropic fibers that are mostly sensitive to the vapors of organic solvents was determined. The fibers were prepared by stretching gel-like compositions of polymers and liquid crystals. Mechanical properties of the compositions leading to the most stable fibers were studied. It was found that under certain conditions the fibers develop multilayered structure with anisotropic (mostly liquid crystalline) core. These fibers are very sensitive to changing gaseous atmosphere and to the presence of organic solvent vapors. The sensitivity of different types of fibers to a variety of organic solvents vapors was determined. Some fibers were crosslinked by using hydrogen bonding molecules. The behavior of these optical fibers with respect to the influence of organic vapors with and without hydrogen donor/acceptor moieties was also analyzed. It was shown that hydrogen bonding increases the mechanical strength of the fibers but does not affect substantially their sensitivity to gases. Optical calculations and model discussion accompany the presentation of experimental data.

  18. Anemia detection utilizing diffuse reflectance spectra from the palpebral conjunctiva and tunable liquid crystal filter technology

    NASA Astrophysics Data System (ADS)

    McMurdy, John W., III; Jay, Gregory D.; Suner, Selim; Crawford, Gregory P.

    2006-03-01

    Anemia is a serious worldwide disorder affecting 2 billion people globally. While the only clinically accepted method of diagnosis remains an invasive blood draw and laboratory analysis, numerous attempts have been made to measure total blood hemoglobin noninvasively. Although the palpebral conjunctiva can be used as a poor qualitative indicator of anemia, a quantitative analysis of the conjunctiva using visible diffuse reflectance spectroscopy can provide an accurate and easy method of noninvasive measurement. Preliminary studies using a traditional grating based spectrometer have shown this method of analysis to be effective and accurate at diagnosing anemia and are presented here. An alternative device to collect diffuse reflectance spectroscopy based on tunable liquid crystal technology that is comparatively inexpensive and compact is also presented. Deformed helix ferroelectric liquid crystals (DHFLC) can be tuned fully across the visible spectrum and have a narrow bandwidth of reflection. A handheld microspectrometer facilitates this technique becoming a clinically viable method of analysis and enables total hemoglobin to be measured quickly, and without the need of a blood draw. The rapidity of this test can make total hemoglobin measurement a new vital sign, increasingly important because of the concurrent appearance of anemia with numerous other disorders.

  19. Crystal growth and characterization of rare earth iodides for scintillation detection

    NASA Astrophysics Data System (ADS)

    van Loef, E. V.; Higgins, W. M.; Glodo, J.; Churilov, A. V.; Shah, K. S.

    2008-04-01

    In this paper we report on the crystal growth and characterization of a new class of inorganic scintillators based on the rare earth iodides, in particular LuI 3, YI 3 and GdI 3, doped with trivalent cerium. Single crystals of LuI 3:Ce 3+, YI 3:Ce 3+ and GdI 3:Ce 3+ were grown by the vertical Bridgman technique in evacuated silica ampoules. In some cases, tantalum or graphite crucibles were used to minimize wetting of the ampoule. X-ray excited optical luminescence spectra of LuI 3:Ce 3+, YI 3:Ce 3+ and GdI 3:Ce 3+ exhibit a broad band due to Ce 3+ emission, peaking in the 500-550 nm region. LuI 3:Ce 3+, YI 3:Ce 3+ and GdI 3:Ce 3+ show high light yields up to 100,000 photons/MeV and fast principle decay time constants of <40 ns. Energy resolutions measured at 662 keV are of the order of 3.5-9% (FWHM).

  20. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors.

    PubMed

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Drabkin, Harry A; Gemmill, Robert M; Simon, George R; Chin, Steve H; Chen, Ray T

    2013-05-15

    We experimentally demonstrate label-free photonic crystal (PC) microcavity biosensors in silicon-on-insulator (SOI) to detect the epithelial-mesenchymal transition (EMT) transcription factor, ZEB1, in minute volumes of sample. Multiplexed specific detection of ZEB1 in lysates from NCI-H358 lung cancer cells down to an estimated concentration of 2 cells per micro-liter is demonstrated. L13 photonic crystal microcavities, coupled to W1 photonic crystal waveguides, are employed in which resonances show high Q in the bio-ambient phosphate buffered saline (PBS). When the sensor surface is derivatized with a specific antibody, the binding of the corresponding antigen from a complex whole-cell lysate generates a change in refractive index in the vicinity of the photonic crystal microcavity, leading to a change in the resonance wavelength of the resonance modes of the photonic crystal microcavity. The shift in the resonance wavelength reveals the presence of the antigen. The sensor cavity has a surface area of ∼11μm(2). Multiplexed sensors permit simultaneous detection of many binding interactions with specific immobilized antibodies from the same bio-sample at the same instant of time. Specificity was demonstrated using a sandwich assay which further amplifies the detection sensitivity at low concentrations. The device represents a proof-of-concept demonstration of label-free, high throughput, multiplexed detection of cancer cells with specificity and sensitivity on a silicon chip platform.

  1. Multiplexed Specific Label-Free Detection of NCI-H358 Lung Cancer Cell Line Lysates with Silicon Based Photonic Crystal Microcavity Biosensors

    PubMed Central

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Drabkin, Harry A.; Gemmill, Robert M.; Simon, George R.; Chin, Steve H.; Chen, Ray T.

    2012-01-01

    We experimentally demonstrate label-free photonic crystal (PC) microcavity biosensors in silicon-on-insulator (SOI) to detect the epithelial-mesenchymal transition (EMT) transcription factor, ZEB1, in minute volumes of sample. Multiplexed specific detection of ZEB1 in lysates from NCI-H358 lung cancer cells down to an estimated concentration of 2 cells per micro-liter is demonstrated. L13 photonic crystal microcavities, coupled to W1 photonic crystal waveguides, are employed in which resonances show high Q in the bio-ambient phosphate buffered saline (PBS). When the sensor surface is derivatized with a specific antibody, the binding of the corresponding antigen from a complex whole-cell lysate generates a change in refractive index in the vicinity of the photonic crystal microcavity, leading to a change in the resonance wavelength of the resonance modes of the photonic crystal microcavity. The shift in the resonance wavelength reveals the presence of the antigen. The sensor cavity has a surface area of ~11 μm2. Multiplexed sensors permit simultaneous detection of many binding interactions with specific immobilized antibodies from the same bio-sample at the same instant of time. Specificity was demonstrated using a sandwich assay which further amplifies the detection sensitivity at low concentrations. The device represents a proof-of-concept demonstration of label-free, high throughput, multiplexed detection of cancer cells with specificity and sensitivity on a silicon chip platform. PMID:23274197

  2. Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor.

    PubMed

    Liao, Shuzhen; Qiao, Yanan; Han, Wenting; Xie, Zhaoxia; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-01-03

    A novel acetylcholinesterase (AChE) liquid crystal (LC) biosensor based on enzymatic growth of gold nanoparticles (Au NPs) has been developed for amplified detection of acetylcholine (ACh) and AChE inhibitor. In this method, AChE mediates the hydrolysis of acetylthiocholine (ATCl) to form thiocholine, and the latter further reduces AuCl(4)(-) to Au NPs without Au nanoseeds. This process, termed biometallization, leads to a great enhancement in the optical signal of the LC biosensor due to the large size of Au NPs, which can greatly disrupt the orientational arrangement of LCs. On the other hand, the hydrolysis of ATCl is inhibited in the presence of ACh or organophosphate pesticides (OPs, a AChE inhibitor), which will decrease the catalytic growth of Au NPs and, as a result, reduce the orientational response of LCs. On the basis of such an inhibition mechanism, the AChE LC biosensor can be used as an effective way to realize the detection of ACh and AChE inhibitors. The results showed that the AChE LC biosensor was highly sensitive to ACh with a detection limit of 15 μmol/L and OPs with a detection limit of 0.3 nmol/L. This study provides a simple and sensitive AChE LC biosensing approach and offers effective signal enhanced strategies for the development of enzyme LC biosensors. © 2011 American Chemical Society

  3. Bio-functionalized hollow core photonic crystal fibers for label-free DNA detection

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Salloom, Hussein T.; Coscelli, E.; Sozzi, M.; Manicardi, A.; Ahmad, Ahmad K.; Al-Janabi, A. Hadi; Corradini, R.; Picchi, G.; Cucinotta, A.; Selleri, S.

    2014-02-01

    Bio-functionalization of inner surfaces of all silica Hollow Core-Photonic Crystal Fibers (HC-PCF) has been investigated. The approach is based on layer-by-layer self-assembly Peptide Nucleic Acid (PNA) probes, which is an oligonucleotide mimic that is well suited for specific DNA target recognition. Two kinds of HC-PCFs have been considered: a photonic Bragg fiber and a hollow core (HC-1060) fiber. After spectral characterization and internal surface functionalization by using PNA probes, genomic DNA solutions from soy flour were infiltrated into the fibers. The experimental results indicate that hybridization of the complementary strand of target DNA increases the thickness of the silica layer and leads up to the generation of surface modes, resulting in a significant modulation of the transmission spectra. Numerical analysis confirms such behavior, suggesting the possibility to realize biological sensing.

  4. Photonic crystal fiber in-line Mach-Zehnder interferometer for explosive detection.

    PubMed

    Tao, Chuanyi; Wei, Heming; Feng, Wenlin

    2016-02-08

    We report a photonic crystal fiber (PCF) in-line Mach-Zehnder interferometer used as a gas sensor device which exhibits high sensitivity to the explosive trinitrotoluene (TNT). The interferometric sensor head is formed by embedding a segment of large-mode-area/grapefruit PCF between standard single-mode fibers via butt coupling, which produces two small air gaps in between terminated fiber ends with ceramic ferrule connectors as coupling regions, which also serve as inlet/outlet for the gas. The spectral response of the interferometer is investigated in terms of its wavelength spectrum. The selectivity to TNT vapor is achieved by immobilizing a molecular recognition ployallylamine layer on the inner surface of the holey region of the PCF. The TNT-induced variations of the interference fringes are measured and the sensing capability of the proposed sensor is demonstrated experimentally.

  5. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal.

    PubMed

    Utikal, T; Eichhammer, E; Petersen, L; Renn, A; Götzinger, S; Sandoghdar, V

    2014-04-11

    The narrow optical transitions and long spin coherence times of rare earth ions in crystals make them desirable for a number of applications ranging from solid-state spectroscopy and laser physics to quantum information processing. However, investigations of these features have not been possible at the single-ion level. Here we show that the combination of cryogenic high-resolution laser spectroscopy with optical microscopy allows one to spectrally select individual praseodymium ions in yttrium orthosilicate. Furthermore, this spectral selectivity makes it possible to resolve neighbouring ions with a spatial precision of the order of 10 nm. In addition to elaborating on the essential experimental steps for achieving this long-sought goal, we demonstrate state preparation and read out of the three ground-state hyperfine levels, which are known to have lifetimes of the order of hundred seconds.

  6. A fluorescence-detection size-exclusion chromatography-based thermostability assay to identify membrane protein expression and crystallization conditions

    PubMed Central

    Hattori, Motoyuki; Hibbs, Ryan E.; Gouaux, Eric

    2012-01-01

    SUMMARY Optimization of membrane protein stability under different solution conditions is essential for obtaining crystals that diffract to high resolution. Traditional methods that evaluate protein stability require large amounts of material, and are therefore ill-suited for medium- to high-throughput screening of membrane proteins. Here we present a rapid and efficient fluorescence-detection size-exclusion chromatography-based thermostability assay (FSEC-TS). In this method, the target protein is fused to GFP. Heated protein samples, treated with a panel of additives, are then analyzed by FSEC. FSEC-TS allows one to evaluate the thermostability of nanogram to microgram amounts of the target protein under a variety of conditions without purification. We applied this method to the Danio rerio P2X4 receptor and Caenorhabditis elegans GluCl to screen ligands, ions and lipids, including newly designed cholesterol derivatives. In the case of GluCl, the screening results were used to obtain crystals of the receptor in the presence of lipids. PMID:22884106

  7. Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Biswas, T.; Chattopadhyay, R.; Ghosh, J.; Bysakh, S.; Bhadra, S. K.

    2016-11-01

    A simple integrated hydrogen sensor using Pd-Au alloy/air based one dimensional photonic crystal with an air defect layer is theoretically modeled. Structural parameters of the photonic crystal are delicately scaled to generate photonic band gap frequencies in a visible spectral regime. An optimized defect thickness permits a localized defect mode operating at a frequency within the photonic band gap region. Hydrogen absorption causes modification in the band gap characteristics due to variation of refractive index and lattice parameters of the alloy. As a result, the transmission peak appeared due to the resonant defect state gets shifted. This peak shifting is utilized to detect sparse amount of hydrogen present in the surrounding environment. A theoretical framework is built to calculate the refractive index profile of hydrogen loaded alloy using density functional theory and Bruggeman's effective medium approximation. The calculated refractive index variation of Pd3Au alloy film due to hydrogen loading is verified experimentally by measuring the reflectance characteristics. Lattice expansion properties of the alloy are studied through X-ray diffraction analyses. The proposed structure shows about 3 nm red shift of the transmission peak for a rise of 1% atomic hydrogen concentration in the alloy.

  8. Enhanced fluorescence detection of miRNA-16 on a photonic crystal.

    PubMed

    Frascella, F; Ricciardi, S; Pasquardini, L; Potrich, C; Angelini, A; Chiadò, A; Pederzolli, C; De Leo, N; Rivolo, P; Pirri, C F; Descrovi, E

    2015-08-21

    We report a novel sensing method for fluorescence-labelled microRNAs (miRNAs) spotted on an all-dielectric photonic structure. Such a photonic structure provides an enhanced excitation and a directional beaming of the emitted fluorescence, resulting in a significant improvement of the overall signal collected. As a result, the Limit of Detection (LoD) is demonstrated to decrease by a factor of about 50. A compact read-out system allows a wide-field imaging-based detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development for example in microarray-type bioassays.

  9. Ultrasensitive Detection of Cymbidium Mosaic Potexvirus Using a Single-Wall Carbon Nanotube-Functionalized Quartz Crystal Microbalance

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Hung, Yao-Ching; Chiou, Jin-Chern; Wang, Hui-Liang; Huang, Hung-Shu; Huang, Li-Chia; Huang, Guewha Steven

    2010-10-01

    We have developed an ultrasensitive, convenient, real-time platform for detecting Cymbidium mosaic potexvirus (CymMV) based on single-wall carbon nanotube (SWNT)-functionalized quartz crystal microbalance (QCM) sensors. Functionalization was achieved by coating the QCM electrode with SWNTs, followed by 1,1'-carbonyldiimidazole-activated Tween 20 (CDI-Tween 20) modification and conjugation of antibodies. Sensitivity was enhanced from 2.18 to 11.5 Hz ng-1 when 0.1 µg mL-1 CymMV was applied. The low limit of detection of SWNT-functionalized QCM sensors was improved from 2.08 to 0.502 ng. The SWNT-functionalized QCM sensor was successfully used to quantify the amount of CymMV contained in infected orchid leaves. Compared to enzyme-linked immunosorbent assay (ELISA), SWNT-functionalized QCM sensors are fast, economical, and ultra-sensitive, with comparable sensitivities. The current study demonstrates the application of QCM sensors as a convenient platform to detect and quantify CymMV.

  10. Detection of Staphylococcus epidermidis by a Quartz Crystal Microbalance Nucleic Acid Biosensor Array Using Au Nanoparticle Signal Amplification

    PubMed Central

    Xia, Han; Wang, Feng; Huang, Qing; Huang, Junfu; Chen, Ming; Wang, Jue; Yao, Chunyan; Chen, Qinghai; Cai, Guoru; Fu, Weiling

    2008-01-01

    Staphylococcus epidermidis is a critical pathogen of nosocomial blood infections, resulting in significant morbidity and mortality. A piezoelectric quartz crystal microbalance (QCM) nucleic acid biosensor array using Au nanoparticle signal amplification was developed to rapidly detect S. epidermidis in clinical samples. The synthesized thiolated probes specific targeting S. epidermidis 16S rRNA gene were immobilized on the surface of QCM nucleic acid biosensor arrays. Hybridization was induced by exposing the immobilized probes to the PCR amplified fragments of S. epidermidis, resulting in a mass change and a consequent frequency shift of the QCM biosensor. To further enhance frequency shift results from above described hybridizations, streptavidin coated Au nanoparticles were conjugated to the PCR amplified fragments. The results showed that the lowest detection limit of current QCM system was 1.3×103 CFU/mL. A linear correlation was found when the concentration of S. epidermidis varied from 1.3×103 to 1.3×107 CFU/mL. In addition, 55 clinical samples were detected with both current QCM biosensor system and conventional clinical microbiological method, and the sensitivity and specificity of current QCM biosensor system were 97.14% and 100%, respectively. In conclusion, the current QCM system is a rapid, low-cost and sensitive method that can be used to identify infection of S. epidermidis in clinical samples. PMID:27873880

  11. Development of molecularly imprinted polymer films used for detection of profenofos based on a quartz crystal microbalance sensor.

    PubMed

    Gao, Na; Dong, Jianwei; Liu, Ming; Ning, Baoan; Cheng, Chaonan; Guo, Chun; Zhou, Caihong; Peng, Yuan; Bai, Jialei; Gao, Zhixian

    2012-03-07

    A quartz crystal microbalance (QCM) sensor based on molecularly imprinted ultra-thin films was developed for detecting profenofos in real samples. Films prepared by physical entrapment (MIP-A) and in situ self-assembly (MIP-B) were compared. The results indicated that the best sensing signal was obtained through the in situ self-assembly method. The QCM sensor chip was pretreated with 11-mercaptoundecanoic acid (MUA) to form a self-assembled monolayer (SAM), and then polymer films were immobilized directly on the SAM using surface-initiated radical polymerization. In this paper, all detection experiments were taken in air. The reaction was processed in solution, and the electrode was washed with deionized water and dried with N(2) before QCM measurement. The film was characterized by a scanning electron microscope (SEM), AC impedance and cyclic voltammetry. Analysis of the QCM response in the presence of different concentrations of profenofos showed a good linear correlation during 1.0 × 10(-8) to 1.0 × 10(-5) mg mL(-1) (y = 5log x + 42.5, R = 0.9960) and 1.0 × 10(-5) to 1.0 × 10(-3) mg mL(-1) (y = 25.86log x + 146, R = 0.9959), respectively. The MIP-QCM sensor was used to detect profenofos in tap water, and showed good recovery and repeatability.

  12. Selective detection of Cu2 + and Co2 + in aqueous media: Asymmetric chemosensors, crystal structure and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Dogaheh, Samira Gholizadeh; Khanmohammadi, Hamid; Carolina Sañudo, E.

    2017-05-01

    Two new azo-azomethine receptors, H2L1 and H2L2, containing hydrazine, naphthalene and different electron withdrawing groups, Cl and NO2, have been designed and synthesized for qualitative and quantitative detection of Cu2 + and Co2 + in aqueous media. The crystal structure of H2L1is reported. The H2L1was used as a chemosensor for selective detection of trace amount of Cu2 + in aqueous media. H2L2 was also applied to naked-eye distinction of Cu2 + and Co2 + from other transition metal ions in aqueous media. Detection limit of Cu2 + is 1.13 μM and 1.26 μM, in water, for H2L1 and H2L2, respectively, which are lower than the World Health Organization (WHO) recommended level. The binuclear Cu2 + and Co2 + complexes of the receptors have been also prepared and characterized using spectroscopic methods and MALDI-TOF mass analysis. Furthermore, the binding stoichiometry between the receptors upon the addition Cu2 + and Co2 + has been investigated using Job's plot. Moreover, the fluorescence emission spectra of the receptors and their metal complexes are also reported.

  13. Selective detection of Cu(2+) and Co(2+) in aqueous media: Asymmetric chemosensors, crystal structure and spectroscopic studies.

    PubMed

    Dogaheh, Samira Gholizadeh; Khanmohammadi, Hamid; Carolina Sañudo, E

    2017-05-15

    Two new azo-azomethine receptors, H2L(1) and H2L(2), containing hydrazine, naphthalene and different electron withdrawing groups, Cl and NO2, have been designed and synthesized for qualitative and quantitative detection of Cu(2+) and Co(2+) in aqueous media. The crystal structure of H2L(1)is reported. The H2L(1)was used as a chemosensor for selective detection of trace amount of Cu(2+) in aqueous media. H2L(2) was also applied to naked-eye distinction of Cu(2+) and Co(2+) from other transition metal ions in aqueous media. Detection limit of Cu(2+) is 1.13μM and 1.26μM, in water, for H2L(1) and H2L(2), respectively, which are lower than the World Health Organization (WHO) recommended level. The binuclear Cu(2+) and Co(2+) complexes of the receptors have been also prepared and characterized using spectroscopic methods and MALDI-TOF mass analysis. Furthermore, the binding stoichiometry between the receptors upon the addition Cu(2+) and Co(2+) has been investigated using Job's plot. Moreover, the fluorescence emission spectra of the receptors and their metal complexes are also reported.

  14. Refocusing resolution based on negative refractive-photonic crystal group with Ag defects for target detection and imaging

    NASA Astrophysics Data System (ADS)

    Lian, Yingfei; Zhu, Na; Fang, Yuntuan; Sun, Jiwen; Chen, Junlv; Qian, Huili

    2015-03-01

    Negative refractive-photonic crystal (NR-PC) lenses that can exceed the diffraction limit of focus resolution for imaging and target detection in the near field have gotten more and more special attention in recent years. Three flat lens groups with Ag defects based on NR-PC are designed, and the focusing imaging in the NR-PC three flat lens groups is concluded with the extension of Snell's law, and the influence on the resolution for a target detection dynamic scanning scheme is simulated by using the finite difference time domain method. An optimal-doped structure with Ag defects is achieved by different simulation combinations. The refocusing resolution 0.18834λ is achieved in the optimal structure and there is approximately a 0.06806λ improvement in the refocusing resolution compared to those undoped with Ag (0.2564λ) it also possesses distinct smaller side-lobes than a single flat lens doped with Ag. This means the optimal detecting ability for the three NR-PC flat lens groups with Ag defects is more improved than that for a single undoped and doped with Ag. This is significant for the perfect imaging being achieved for a particle structure.

  15. Octamer formation in lysozyme solutions at the initial crystallization stage detected by small-angle neutron scattering.

    PubMed

    Boikova, Anastasiia S; Dyakova, Yulia A; Ilina, Kseniia B; Konarev, Petr V; Kryukova, Alyona E; Kuklin, Alexandr I; Marchenkova, Margarita A; Nabatov, Boris V; Blagov, Alexandr E; Pisarevsky, Yurii V; Kovalchuk, Mikhail V

    2017-07-01

    Solutions of lysozyme in heavy water were studied by small-angle neutron scattering (SANS) at concentrations of 40, 20 and 10 mg ml(-1) with and without the addition of precipitant, and at temperatures of 10, 20 and 30°C. In addition to the expected protein monomers, dimeric and octameric species were identified in solutions at the maximum concentration and close to the optimal conditions for crystallization. An optimal temperature for octamer formation was identified and both deviation from this temperature and a reduction in protein concentration led to a significant decrease in the volume fractions of octamers detected. In the absence of precipitant, only monomers and a minor fraction of dimers are present in solution.

  16. Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms.

    PubMed

    Liu, Jianjun; Tan, Wei; Liu, Exian; Hu, Haili; Fan, Zhigang; Zhang, Tianhua; Zhang, Xiong

    2016-05-01

    In this study, a planar scanning method is proposed. This novel method adapts two monitors moving along double planar tracks that can be used to detect refraction characteristics of two-dimensional (2D) photonic quasi-crystal (PQC) wedge-shaped prisms. Refraction of a decagonal Penrose-type PQC prism is analyzed for a given incident beam and two polarization modes at different incident positions in the prism using this method. Refraction from the prism is irregular, indicating that nonuniformity in the arrangement of scatterers in the prism causes Bragg-like scattering irregularities. Numerical results show that this method can be used for guiding the design of a 2D PQC prism and for the analysis of its refraction characteristics.

  17. Label-free detection of glycated haemoglobin in human blood using silicon-based photonic crystal nanocavity biosensor

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Seifouri, Mahmood; Mohsenirad, Hamideh

    2016-07-01

    In this paper, we describe a two-dimensional photonic crystal-based biosensor that consists of a waveguide and a nanocavity with high sensitivity. A new method is employed for increasing sensitivity of the biosensor. The simulation results show that biosensor is highly sensitive to the refractive index (RI) variations due to injected biomaterials, like glycated haemoglobin, into the sensing surface. The proposed biosensor is designed for the wavelength range of 1514.4-1896.3 nm. The sensitivity and the quality factor are calculated to be 3000 and 272.43 nm/RIU, respectively. The designed structure can detect a 0.002 change in the RI via resonant wavelength shift of 0.9 nm. The band diagram and transmission spectra are computed using plane wave expansion and finite difference time domain methods.

  18. Selective detection of sub-atto-molar streptavidin in 1013 fold impure sample using nanoslot photonic crystal nanolaser

    NASA Astrophysics Data System (ADS)

    Hachuda, Shoji; Otsuka, Shota; Isono, Toshinari; Watanabe, Keisuke; Baba, Toshihiko

    2013-02-01

    Biosensors which can selectively detect a very small amount of biomarker protein in human blood are desired toward early diagnoses of severe diseases. However, no methods simultaneously satisfy the requirements such as high sensitivity, high selectivity, simple detection, and immediacy. We succeeded in detecting ultra-low-concentration streptavidin (SA) even in a highly impure sample using nanoslot photonic crystal (PC) nanolasers. This nanolaser consists of GaInAsP semiconductor slab with a periodic airhole array. Since the total device area is no larger than 20 × 20 μm2, highthroughput fabrication is possible even using e-beam lithography. Moreover, it is easy to operate by photopumping through free-space optics. Since the evanescent wave of the laser mode penetrates from the PC slab, the laser wavelength changes sensitively to the environmental index. In the sensing experiment, we first functionalized the devices with biotin, and then measured the wavelength in ultrapure water before and after immersing in the solutions with various concentrations of SA. As a result, we evaluated that the detection limit of SA is 16 zM. In another experiment, we put 1 μM BSA into the solution as a contaminant, and repeated the same measurement. We detected 100 zM SA even in the impure solution only when biotin is functionalized in advance, meaning a selectivity ratio (BSA / SA) of 1013. Thus this device achieves unprecedentedly high sensitivity and selectivity in addition to the simple fabrication and fast sensing. It is very promising as a point of care device for medical diagnoses.

  19. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays.

    PubMed

    Jones, Sarah I; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T; Vodkin, Lila

    2015-03-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts.

  20. Label-Free Detection of Soybean Rust Spores using Photonic Crystal Biosensors

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most devastating foliar diseases affecting soybeans grown worldwide. The disease was reported for the first time in the United States in 2004. Early spore detection, prior to the appearance of visible symptoms, is critical to ef...

  1. Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization.

    PubMed

    Ouyang, Wei; Han, Jongyoon; Wang, Wei

    2017-10-06

    The regulation effect of surface charges on the transport of electrons in nanomaterials and ions in nanofluidic devices has been widely used to develop highly sensitive and label-free electrical biosensors. The intrinsic limitation to the clinical application of surface charge-effect nano-electrical biosensors is that they usually do not function in physiological conditions normally with high ionic concentrations (∼160 mM), in which the surface charges are screened within a short distance (<1 nm at 160 mM). In this work, we developed a general strategy that enables surface charge-effect electrical biomolecular detection in physiological conditions with an integrated mechanism for enhancement of the limit of detection (LOD) by in situ preconcentration of target molecules during incubation and creation of a transient low ionic concentration environment during the signal read-out step using reconfigurable ion concentration polarization (ICP). We demonstrated the effectiveness of this strategy in a simple nanofluidic biosensor named a nanofluidic crystal (NFC), which can be prepared within hours and without expensive equipment. Our results indicate that the ion depletion effect of ICP could lower the ionic concentration by at least 200 fold and provide a stable ionic environment for over 15 s, enabling electrical detection of proteins and DNAs in serum and urine with LODs of 1-10 nM. We further reconfigured the device to preconcentrate target biomolecules before detection using the enrichment effect of ICP, obtaining LODs of 10-100 pM for proteins and DNAs in physiological conditions. By overcoming the inherent constraint on buffer conditions and the issues regarding fabrication, we believe that this work represents significant progress towards the practical application of surface charge-effect nano-electrical biosensors in point-of-care diagnostics and clinical medicine.

  2. Design of photonic crystal based ring resonator for detection of different blood constituents

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Sharan, Preeta

    2015-08-01

    In this paper a photonic crystal based ring resonator structure (PCRR) which can sense different bio-constituents in blood in the wavelength range of 1530-1565 nm for biomedical applications has been successfully demonstrated. Simulation and analysis has been done for Biotin-Streptavidin, Bovine Serum Albumin, Cytop (polymer), Ethanol, Glucose solution (40gm/100 ml), Hemoglobin, Blood Plasma, Polyacrylamide and Sylgard184. Finite Difference Time Domain (FDTD) method has been used for the analysis. MEEP (MIT Electromagnetic Equation Propagation) and MPB (MIT Photonic Bands) simulation tools have been used for modeling and designing of PCRR and IPKISS software framework has been used for generation of mask design which can be used for the fabrication of the PCRR sensor. The optical properties of different bio-constituents are studied and the normalized transmitted output power, transmission wavelength and Q factor have been observed for different blood-constituents which can be used for blood analysis.It has been observed that for little change in dielectric constant (ɛ) according to the blood-constituent taken there will be a moderate shift in the transmitted output power, transmission wavelength and quality factor and hence it acts as a sensor. This indicates that it is highly sensitive even for little change in refractive index. Our designed sensor has achieved sensitivity of 343 nm/RIU.

  3. Silicon photonic crystal microarrays for high throughput label-free detection of lung cancer cell line lysates with sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Gemmill, Robert M.; Chen, Ray T.

    2013-03-01

    Detection of biomolecules on microarrays based on label-free on-chip optical biosensors is very attractive since this format avoids complex chemistries caused by steric hindrance of labels. Application areas include the detection of cancers and allergens, and food-borne pathogens to name a few. We have demonstrated photonic crystal microcavity biosensors with high sensitivity down to 1pM concentrations (67pg/ml). High sensitivities were achieved by slow light engineering which reduced the radiation loss and increased the stored energy in the photonic crystal microcavity resonance mode. Resonances with high quality factor Q~26,760 in liquid ambient, coupled with larger optical mode volumes allowed enhanced interaction with the analyte biomolecules which resulted in sensitivities down to 10 cells per micro-liter to lung cancer cell lysates. The specificity of detection was ensured by multiplexed detections from multiple photonic crystal microcavities arrayed on the arms of a multimode interference power splitter. Specific binding interactions and control experiments were performed simultaneously at the same instant of time with the same 60 microliter sample volume. Specificity is further ensured by sandwich assay methods in the multiplexed experiment. Sandwich assay based amplification increased the sensitivity further resulting in the detection of lung cancer cell lysates down to concentrations of 2 cells per micro-liter. The miniaturization enabled by photonic crystal biosensors coupled with waveguide interconnected layout thus offers the potential of high throughput proteomics with high sensitivity and specificity.

  4. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites.

    PubMed

    Feng, Fan; Zheng, Jianwu; Qin, Peng; Han, Tao; Zhao, Dayun

    2017-05-15

    For the rapid and robust detection of both parent clenbuterol (CLB) and its metabolites in swine urine samples, a novel quartz crystal microbalance (QCM) sensor array for CLB detection based on molecularly imprinted polymers (MIPs) was developed in this investigation. At first, clenbuterol and the structural analogs of its metabolites, 4-Aminohippuric acid (AHA) and 4-hydroxymandelic acid (HMA), were chosen as molecular templates. Through computational molecular modeling, the optimum ratio between the functional monomer and molecular template was selected. The surface imprinting method was applied to modify QCM electrode surface to graft a thin MIP film. The grafting polymer was characterized by Fourier-transformed infrared spectrometry (FTIR) and atomic force microscopy (AFM), respectively. After then, an array system composed of three sensors was employed to test the responses with different solutions and the principal component analysis (PCA) was adopted to analyze the corresponding data. As a result, for the designed sensor to clenbuterol, a linear equation y=100.07x-722.96 (R(2)=0.9928) was found between the sensor frequency shift ΔF and negative logarithm of clenbuterol concentration (-lgC). The limitation of detection (LOD) was 3.0ng/mL, which is lower than the Codex Alimentarius Commission regulations residue limit 10μg/L. The corresponding data of the three template solutions were analyzed by PCA, obtaining 100% recognition. The result demonstrated the feasibility that the developed method could be applied to detect whether the livestock was feed with CLB nutrient redistribution agent by checking the urine samples.

  5. Detection and characterization of crystal suspensions using single-source dual-energy computed tomography: a phantom model of crystal arthropathies.

    PubMed

    Diekhoff, Torsten; Kiefer, Tobias; Stroux, Andrea; Pilhofer, Irid; Juran, Ralf; Mews, Jürgen; Blobel, Jörg; Tsuyuki, Masaharu; Ackermann, Beate; Hamm, Bernd; Hermann, Kay-Geert A

    2015-04-01

    .659 to 0.745 and from 0.718 to 0.750, respectively. This phantom study shows that single-source DECT allows detection and characterization of crystal deposits when present in soft tissue at relatively low concentrations. Further studies in patients have to prove its benefits in diagnostic imaging and treatment monitoring as well as its significance compared with dual-source CT systems.

  6. Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors

    SciTech Connect

    Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Lattanzi, D.; Pillon, M.; Montereali, R. M.; Vincenti, M. A.

    2008-03-01

    Recently, a compact solid-state neutron detector capable of simultaneously detecting thermal and fast neutrons was proposed [M. Marinelli et al., Appl. Phys. Lett. 89, 143509 (2006)]. Its design is based on a p-type/intrinsic/metal layered structure obtained by Microwave Plasma Chemical Vapor Deposition (CVD) of homoepitaxial diamond followed by thermal evaporation of an Al contact and a {sup 6}LiF converting layer. Fast neutrons are directly detected in the CVD diamond bulk, since they have enough energy to produce the {sup 12}C(n,{alpha}){sup 9}Be reaction in diamond. Thermal neutrons are instead converted into charged particles in the {sup 6}LiF layer through the {sup 6}Li(n,{alpha})T nuclear reaction. These charged particles are then detected in the diamond layer. The thickness of the {sup 6}LiF converting layer and the CVD diamond sensing layer affect the counting efficiency and energy resolution of the detector both for low- (thermal) and high-energy neutrons. An analysis is carried out on the dynamics of the {sup 6}Li(n,{alpha})T and the {sup 12}C(n,{alpha}){sup 9}Be reactions products, and the distribution of the energy released inside the sensitive layer is calculated. The detector counting efficiency and energy resolution were accordingly derived as a function of the thickness of the {sup 6}LiF and CVD diamond layers, both for thermal and fast neutrons, thus allowing us to choose the optimum detector design for any particular application. Comparison with experimental results is also reported.

  7. In situ and fast detection of single-walled carbon nanotubes by using DNA mediated aggregation method and quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; Park, Jinsung; Lee, Sangmyung; You, Juneseok; Park, Chanho; Lee, Jaeryung; Park, Woonghwi; Yun, Jinsu; Ahn, Sanghyun; Na, Sungsoo

    2015-07-01

    Carbon nanotubes (CNTs) have attracted great interest from scientific interest to industrial areas. Due to the toxicity effect of CNTs, assessment methods for CNTs are one of the noticeable issues. In this work, we report the in situ and fast detection of single-walled carbon nanotubes (SWCNTs) by using a quartz crystal microbalance. The detection is based on DNA hybridization between the DNA on a quartz electrode and the DNA of aggregated SWCNTs. It is shown that our detection tool is capable of the in situ and fast detection of 5 min with the limit of detection (LOD) of 10 ng ml-1 in distilled water. Furthermore, our detection tool is able to detect SWCNTs in a real practical sample of tap water with the LOD of 100 ng ml-1. Our work sheds light on a direct monitoring tool that could detect and assess the toxicity of SWCNTs in a real environment.

  8. High-speed crystal detection and characterization using a fast-readout detector.

    PubMed

    Aishima, Jun; Owen, Robin L; Axford, Danny; Shepherd, Emma; Winter, Graeme; Levik, Karl; Gibbons, Paul; Ashton, Alun; Evans, Gwyndaf

    2010-09-01

    A novel raster-scanning method combining continuous sample translation with the fast readout of a Pilatus P6M detector has been developed on microfocus beamline I24 at Diamond Light Source. This fast grid-scan tool allows the rapid evaluation of large sample volumes without the need to increase the beam size at the sample through changes in beamline hardware. A slow version is available for slow-readout detectors. Examples of grid-scan use in centring optically invisible samples and in detecting and characterizing numerous microcrystals on a mesh-like holder illustrate the most common applications of the grid scan now in routine use on I24.

  9. Optical detection of ultrasound using AFC-based quantum memory technique in cryogenic rare earth ion doped crystals

    NASA Astrophysics Data System (ADS)

    Taylor, Luke R.; McAuslan, David L.; Longdell, Jevon J.

    2013-03-01

    We present results of a novel and highly sensitive technique for the optical detection of ultrasound using the selective storage of frequency shifted photons in an inherently highly efficient and low noise atomic frequency comb (AFC) based quantum memory. The ultrasound `tagged' optical sidebands are absorbed within a pair of symmetric AFCs, generated via optical pumping in a Pr3+:Y2SiO5 sample (tooth separation Δ = 150 kHz, comb finesse fc ~ 2 and optical depth αL ~ 2), separated by twice the ultrasound modulation frequency (1.5 MHz) and centered on either side of a broad spectral pit (1.7 MHz width) allowing transmission of the carrier. The stored sidebands are recovered with 10-20% efficiency as a photon echo (as defined by the comb parameters), and we demonstrate a record 49 dB discrimination between the sidebands and the carrier pulse, high discrimination being important for imaging tissues at depth. We further demonstrate detector limited discrimination (~29 dB) using a highly scattered beam, confirming that the technique is immune to speckle decorrelation. We show that it also remains valid in the case of optically thin samples, and thus represents a significant improvement over other ultrasound detection methods based on rare-earth-ion-doped crystals. These results strongly suggest the suitability of our technique for high-resolution non-contact real-time imaging of biological tissues.

  10. Multicenter evaluation of crystal violet decolorization assay (CVDA) for rapid detection of isoniazid and rifampicin resistance in Mycobacterium tuberculosis

    PubMed Central

    Coban, Ahmet Yilmaz; Akbal, Ahmet Ugur; Bicmen, Can; Albay, Ali; Sig, Ali Korhan; Uzun, Meltem; Selale, Deniz Sertel; Ozkutuk, Nuri; Surucuoglu, Suheyla; Albayrak, Nurhan; Ucarman, Nilay; Ozkutuk, Aydan; Esen, Nuran; Ceyhan, Ismail; Ozyurt, Mustafa; Bektore, Bayhan; Aslan, Gonul; Delialioğlu, Nuran; Alp, Alpaslan

    2016-01-01

    The aim of this multicenter study was to evaluate the performance of the crystal violet decolorization assay (CVDA) for detection of multidrug resistant tuberculosis (MDR-TB). This study was performed in 11 centers in two phases. A total of 156 isolates were tested for INH and RIF resistance. In the phase I, 106 clinical isolates were tested in the Center 1–7. In the phase 2, 156 clinical isolates were tested in the center 1–6, center 8–11. Eighty six of 156 tested isolates were the same in phase I. Agreements were 96.2–96.8% for INH and 98.1–98.7% for RIF in the phase I-II, respectively. Mean time to obtain the results in the phase I was 14.3 ± 5.4 days. In the phase II, mean time to obtain the results was 11.6 ± 3.5 days. Test results were obtained within 14days for 62.3% (66/106) of isolates in the phase I and 81.4% (127/156) of isolates in the phase II. In conclusion, CVDA is rapid, reliable, inexpensive, and easy to perform for rapid detection of MDR-TB isolates. In addition, it could be adapted for drug susceptibility testing with all drugs both in developed and developing countries. PMID:27982061

  11. Multicenter evaluation of crystal violet decolorization assay (CVDA) for rapid detection of isoniazid and rifampicin resistance in Mycobacterium tuberculosis.

    PubMed

    Coban, Ahmet Yilmaz; Akbal, Ahmet Ugur; Bicmen, Can; Albay, Ali; Sig, Ali Korhan; Uzun, Meltem; Selale, Deniz Sertel; Ozkutuk, Nuri; Surucuoglu, Suheyla; Albayrak, Nurhan; Ucarman, Nilay; Ozkutuk, Aydan; Esen, Nuran; Ceyhan, Ismail; Ozyurt, Mustafa; Bektore, Bayhan; Aslan, Gonul; Delialioğlu, Nuran; Alp, Alpaslan

    2016-12-16

    The aim of this multicenter study was to evaluate the performance of the crystal violet decolorization assay (CVDA) for detection of multidrug resistant tuberculosis (MDR-TB). This study was performed in 11 centers in two phases. A total of 156 isolates were tested for INH and RIF resistance. In the phase I, 106 clinical isolates were tested in the Center 1-7. In the phase 2, 156 clinical isolates were tested in the center 1-6, center 8-11. Eighty six of 156 tested isolates were the same in phase I. Agreements were 96.2-96.8% for INH and 98.1-98.7% for RIF in the phase I-II, respectively. Mean time to obtain the results in the phase I was 14.3 ± 5.4 days. In the phase II, mean time to obtain the results was 11.6 ± 3.5 days. Test results were obtained within 14days for 62.3% (66/106) of isolates in the phase I and 81.4% (127/156) of isolates in the phase II. In conclusion, CVDA is rapid, reliable, inexpensive, and easy to perform for rapid detection of MDR-TB isolates. In addition, it could be adapted for drug susceptibility testing with all drugs both in developed and developing countries.

  12. Chemically Selective Coated Quartz Crystal Microbalance (QCM) Array for Detection of Volatile Organic Chemicals

    SciTech Connect

    Bohuszewicz, T.V.; Frye-Mason, G.C.; Martin, S.J.; Osbourn, G.C. Bartholomew, J.W.; Schneider, T.W.; Spates, J.J.

    1998-11-04

    Liquid flow cells have been fabricated to prepare an array of QCMS operating simultaneously for detection and identification of VOCS in water. TWO signals, a tlequency response and a damping voltage response, were obtained per resonator. A blank QCM was used as a reference to account for changes in liquid density and viscosity. Nine different polymer coatings applied using a spin coat technique have been examined for VOC response under liquid flow conditions. A matrix of three classes of VOCS were examined for each coating with four chemicals in each class. The three classes of VOCS are polar, nonpolar and chlorinated. A pattern recognition technique, called visually empirical region of influence (VERI), was used to cluster the responses in n-dimensional space. Chemicals within a class varying by only one methyl group (e.g., toluene and xylene) are easily discriminated using only two different coatings with three different QCM responses. All chemicak were easily separated and detected with a total of 5 films and 6 responses with >99% accuracy.

  13. Chemically selective coated quartz-crystal-microbalance (QCM) array for detection of volatile organic chemicals

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas W.; Frye-Mason, Gregory C.; Martin, Stephen J.; Spates, James J.; Bohuszewicz, Teresa V.; Osbourn, Gordon C.; Bartholomew, John W.

    1998-12-01

    Liquid flow cells have been fabricated to prepare an array of QCMs operating simultaneously for detection and identification of VOCs in water. Two signals, a frequency response and a damping voltage response, were obtained per resonator. A blank QCM was used as a reference to account for changes in liquid density and viscosity. Nine different polymer coatings applied using a spin coat technique have been examined for VOC response under liquid flow conditions. A matrix of three classes of VOCs were examined for each coating with four chemicals in each class. The three classes of VOCs are polar, nonpolar and chlorinated. A pattern recognition technique, called visually empirical region of influence, was used to cluster the responses in n- dimensional space. Chemicals within a class varying by only one methyl group (e.g., toluene and xylene) are easily discriminated using only two different coatings with three different QCM responses. All chemicals were easily separated and detected with a total of 5 films and 6 responses with >99% accuracy.

  14. Detection of Calcium Crystals in Knee Osteoarthritis Synovial Fluid: A Comparison Between Polarized Light and Scanning Electron Microscopy.

    PubMed

    Frallonardo, Paola; Oliviero, Francesca; Peruzzo, Luca; Tauro, Leonardo; Scanu, Anna; Galozzi, Paola; Ramonda, Roberta; Punzi, Leonardo

    2016-10-01

    The identification of calcium crystals in synovial fluid (SF) of patients with osteoarthritis (OA) represents an important step in understanding the role of these crystals in synovial inflammation and disease progression. This study aimed to investigate the presence of calcium pyrophosphate (CPP) and basic calcium phosphate (BCP) crystals in SF collected from patients with symptomatic knee OA by scanning electron microscopy (SEM) coupled to x-ray energy dispersive spectroscopy, compensated polarized light microscopy (CPLM), and alizarin red staining. Seventy-four patients with knee OA were included in the study. Synovial fluid samples were collected after arthrocentesis and examined under CPLM for the assessment of CPP crystals. Basic calcium phosphate crystals were evaluated by alizarin red staining. All the samples were examined by SEM. The concordance between the 2 techniques was evaluated by Cohen κ agreement coefficient. Calcium pyrophosphate and BCP crystals were found, respectively, in 23 (31.1%) and 13 (17.5%) of 74 OA SFs by SEM analysis. Calcium pyrophosphate crystals were identified in 23 (31.1%) of 74 samples by CPLM, whereas BCP crystals were suspected in 27 (36.4%) of 74 samples. According to κ coefficient, the concordance between CPLM and SEM was 0.83 for CPP, and that between alizarin red and SEM was 0.68 for BCP. The results of our study showed a high level of concordance between the 2 microscope techniques as regards CPP crystal identification and a lower agreement for BCP crystals. Although this finding highlights the difficulty in identifying BCP crystals by alizarin red staining, the use of SEM remains unsuitable to apply in the clinical setting. Because of the in vitro inflammatory effect of BCP crystals, further work on their analysis in SF could provide important information about the OA process.

  15. Using MRI to detect and differentiate calcium oxalate and calcium hydroxyapatite crystals in air-bubble-free phantom.

    PubMed

    Mustafi, Devkumar; Fan, Xiaobing; Peng, Bo; Foxley, Sean; Palgen, Jeremy; Newstead, Gillian M

    2015-12-01

    Calcium oxalate (CaOX) crystals and calcium hydroxyapatite (CaHA) crystals were commonly associated with breast benign and malignant lesions, respectively. In this research, CaOX (n = 6) and CaHA (n = 6) crystals in air-bubble-free agarose phantom were studied and characterized by using MRI at 9.4 T scanner. Calcium micro-crystals, with sizes that ranged from 200 to 500 µm, were made with either 99% pure CaOX or CaHA powder and embedded in agar to mimic the dimensions and calcium content of breast microcalcifications in vivo. MRI data were acquired with high spatial resolution T2-weighted (T2W) images and gradient echo images with five different echo times (TEs). The crystal areas were determined by setting the threshold relative to agarose signal. The ratio of crystal areas was calculated by the measurements from gradient echo images divided by T2W images. Then the ratios as a function of TE were fitted with the radical function. The results showed that the blooming artifacts due to magnetic susceptibility between agar and CaHA crystals were more than twice as large as the susceptibility in CaOX crystals (p < 0.05). In addition, larger bright rings were observed on gradient echo images around CaHA crystals compared to CaOX crystals. Our results suggest that MRI may provide useful information regarding breast microcalcifications by evaluating the apparent area of crystal ratios obtained between gradient echo and T2W images. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Improvement of the growth of Li4SiO4 single crystals for neutron detection and their scintillation and luminescence properties

    NASA Astrophysics Data System (ADS)

    Pejchal, Jan; Babin, Vladimir; Beitlerova, Alena; Kurosawa, Shunsuke; Yokota, Yuui; Yoshikawa, Akira; Nikl, Martin

    2017-01-01

    We have investigated Li4SiO4 scintillation crystals for their possible application in neutron detection due to high Li content and low density of 2.35 g/cm3. The micro-pulling-down method employing the Ir crucible and afterheater was optimized for crystal growth of Li4SiO4 taking into account the Li evaporation. To grow high-quality crack-free single crystals, the heating power was increased to establish milder temperature gradient, thicker meniscus, smaller crystal diameter and resulting smaller stress in the as-grown crystals. The undoped, Ti-, Cr-, and Al- doped crystals were prepared and studied. Radioluminescence measurements under X-ray excitation showed quite high overall scintillation efficiency of the Ti-doped sample reaching as high as 250% of that of Bi4Ge3O12 reference scintillator. The emission spectrum was dominated by one broad band peaking at 350 nm related to Ti4+ impurity. Reasonable light yield of 10000 photons/neutron was found. However, its long decay time of 54 μs might be a limitation especially for high counting rate applications. The overall scintillation efficiency of the Cr3+ sample was much lower and the spectrum shows one broad peak at 463 nm which does not correspond to Cr3+ luminescence. The radioluminescence spectrum of the Al-doped sample resembled to that of the Ti-doped one, just its magnitude is considerably lower, which was explained by Ti contamination. Peculiarities and optimization of crystal growth and a preliminary sketch of luminescence mechanisms and dopant incorporation are discussed.

  17. Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications

    NASA Astrophysics Data System (ADS)

    Amarasinghe, Priyanthi M.; Kim, Joo-Soo; Chen, Henry; Trivedi, Sudhir; Qadri, Syed B.; Soos, Jolanta; Diestler, Mark; Zhang, Dajie; Gupta, Neelam; Jensen, Janet L.; Jensen, James

    2016-09-01

    Single crystals of mercurous halide were grown by physical vapor transport method (PVT). The orientation and the crystalline quality of the grown crystals were determined using high resolution x-ray diffraction (HRXRD) technique. The full width at half maximum (FWHM) of the grown mercurous bromide crystals was measured to be 0.13 degrees for (004) reflection, which is the best that has been achieved so far for PVT grown mercurous halide single crystals. The extended defects of the crystals were also analyzed using high resolution x-ray diffraction topography. Preliminary studies were carried out to evaluate the performance of the crystals on acousto-optic modulator (AOM) and gamma-ray detector applications. The results indicate the grown mercurous halide crystals are excellent materials for acousto-optic modulator device fabrication. The diffraction efficiencies of the fabricated AOM device with 1152 and 1523 nm wavelength lasers polarizing parallel to the acoustic wave were found to be 35% and 28%, respectively. The results also indicate the grown crystals are a promising material for gamma-ray detector application with a very high energy resolution of 1.86% FWHM.

  18. Do Not Hallow until You Are out of the Wood! Ultrasonographic Detection of CPP Crystal Deposits in Menisci: Facts and Pitfalls

    PubMed Central

    Filippou, Georgios; Adinolfi, Antonella; Bozios, Panagiotis; Lorenzini, Sauro; Picerno, Valentina; Di Sabatino, Valentina; Bertoldi, Ilaria; Gambera, Dario; Galeazzi, Mauro; Frediani, Bruno

    2013-01-01

    Purpose. Ultrasonography (US) has been demonstrated to be an important tool in the diagnosis of calcium pyrophosphate (CPP) crystal deposition disease. The aim of our study was to individuate and describe possible pitfalls in US detection of such deposits in menisci. Patients and Methods. We enrolled all patients waiting to undergo knee replacement surgery due to osteoarthritis, for one-month period. Each patient underwent US examination of the knee, focusing on the menisci. After surgery, the menisci were examined by US, macroscopically and microscopically, using the microscopic analysis as the gold standard for CPP deposition. Results. 11 menisci of 6 patients have been studied. Ex vivo examination of menisci performed better in CPP identification than in vivo examination. The possible reasons of misinterpretation or misdiagnosis of the in vivo exam were identified and are extensively described in the paper. Also a new sign of CPP crystal deposits was found. Conclusions. This study permitted to highlight some difficulties in CPP crystal detection by US in menisci. Further studies are needed to define completely US CPP crystal aspect and to improve the sensibility and specificity of US in CPP deposition diagnosis. PMID:23970829

  19. Post-column reaction for simultaneous analysis of chromatic and leuco forms of malachite green and crystal violet by high-performance liquid chromatography with photometric detection

    USGS Publications Warehouse

    Allen, J.L.; Meinertz, J.R.

    1991-01-01

    The chromatic and leuco forms of malachite green and crystal violet were readily separated and detected by a sensitive and selective high-performance liquid chromatographic procedure. The chromatic and leuco forms of the dyes were separated within 11 min on a C18 column with a mobile phase of 0.05 M sodium acetate and 0.05 M acetic acid in water (19%) and methanol (81%). A reaction chamber, containing 10% PbO2 in Celite 545, was placed between the column and the spectrophotometric detector to oxidize the leuco forms of the dyes to their chromatic forms. Chromatic and leuco malachite green were quantified by their absorbance at 618 nm; and chromatic and leuco Crystal Violet by their absorbance at 588 nm. Detection limits for chromatic and leuco forms of both dyes ranged from 0.12 to 0.28 ng. A linear range of 1 to 100 ng was established for both forms of the dyes.

  20. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation.

  1. Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A High-performance Scintillator for Radiation Detection Applications

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Hawrami, Rastgo; Higgins, William; Van Loef, Edgar; Glodo, J.; Shah, Kanai; Bhattacharya, P.; Tupitsyn, E; Groza, Michael; Burger, Arnold

    2013-01-01

    Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec) than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.

  2. Bridgman growth of large SrI2:Eu2+ single crystals: A high-performance scintillator for radiation detection applications

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Hawrami, R.; Higgins, W. M.; van Loef, E.; Glodo, J.; Shah, K. S.; Rowe, Emmanuel; Bhattacharya, Pijush; Tupitsyn, Eugene; Groza, Michael; Burger, Arnold; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3-6%) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+—a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+—unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 ns) than the 1.2 μs decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (˜515 °C), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a "bent" or "bulb" grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.

  3. Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO.

    PubMed

    Yan, Shicheng; Wan, Lijuan; Li, Zhaosheng; Zhou, Yong; Zou, Zhigang

    2010-09-14

    A new approach is proposed to synthesize a mesoporous single crystal Ga(2)O(3) nanoplate by heating a single crystal nanoplate of GaOOH, which involves an ion exchange between KGaO(2) and CH(3)COOH at room temperature for the formation of GaOOH and pseudomorphic and topotactic phase transformation from GaOOH to Ga(2)O(3).

  4. Application of Photonic Crystal Enhanced Fluorescence to Detection of Low Serum Concentrations of Human IgE Antibodies Specific for a Purified Cat Allergen (Fel d1)

    PubMed Central

    Tan, Yafang; Halsey, John F.; Tang, Tiantian; Wetering, Scott Vande; Taine, Elaine; Van Cleve, Mark; Cunningham, Brian T.

    2015-01-01

    We demonstrate the detection of low concentrations of allergen-specific Immunoglobulin E (IgE) in human sera using a Photonic Crystal Enhanced Fluorescence (PCEF) microarray platform. The Photonic Crystal (PC) surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cy5, was used to amplify the fluorescence signal intensity measured from a multiplexed allergen microarray. Surface-based sandwich immunoassays were used to detect and quantify specific IgE antibodies against a highly purified cat allergen (Fel d1). A comparison of the lowest detectable concentration of IgE measured by the PC microarray system and a commercially available clinical analyzer demonstrated that the PCEF microarray system provides higher sensitivity. The PCEF system was able to detect low concentrations of specific IgE (~0.02 kU/L), which is 5 to 17 -fold more sensitive than the commercially available FDA-approved analyzers. In preliminary experiments using multi-allergen arrays, we demonstrate selective simultaneous detection of IgE antibodies to multiple allergens. PMID:26406461

  5. Application of photonic crystal enhanced fluorescence to detection of low serum concentrations of human IgE antibodies specific for a purified cat allergen (Fel D1).

    PubMed

    Tan, Yafang; Halsey, John F; Tang, Tiantian; Wetering, Scott Vande; Taine, Elaine; Cleve, Mark Van; Cunningham, Brian T

    2016-03-15

    We demonstrate the detection of low concentrations of allergen-specific Immunoglobulin E (IgE) in human sera using a Photonic Crystal Enhanced Fluorescence (PCEF) microarray platform. The Photonic Crystal (PC) surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cy5, was used to amplify the fluorescence signal intensity measured from a multiplexed allergen microarray. Surface-based sandwich immunoassays were used to detect and quantify specific IgE antibodies against a highly purified cat allergen (Fel d1). A comparison of the lowest detectable concentration of IgE measured by the PC microarray system and a commercially available clinical analyzer demonstrated that the PCEF microarray system provides higher sensitivity. The PCEF system was able to detect low concentrations of specific IgE (~0.02 kU/L), which is 5-17-fold more sensitive than the commercially available FDA-approved analyzers. In preliminary experiments using multi-allergen arrays, we demonstrate selective simultaneous detection of IgE antibodies to multiple allergens.

  6. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime.

    PubMed

    García-Rupérez, Jaime; Toccafondo, Veronica; Bañuls, María José; Castelló, Javier García; Griol, Amadeu; Peransi-Llopis, Sergio; Maquieira, Ángel

    2010-11-08

    We report experimental results of label-free anti-bovine serum albumin (anti-BSA) antibody detection using a SOI planar photonic crystal waveguide previously bio-functionalized with complementary BSA antigen probes. Sharp fringes appearing in the slow-light regime near the edge of the guided band are used to perform the sensing. We have modeled the presence of these band edge fringes and demonstrated the possibility of using them for sensing purposes by performing refractive index variations detection, achieving a sensitivity of 174.8 nm/RIU. Then, label-free anti-BSA biosensing experiments have been carried out, estimating a surface mass density detection limit below 2.1 pg/mm2 and a total mass detection limit below 0.2 fg.

  7. Immobilization of bovine serum albumin as a sensitive biosensor for the detection of trace lead ion in solution by piezoelectric quartz crystal impedance.

    PubMed

    Yin, Jian; Wei, Wanzhi; Liu, Xiaoying; Kong, Bo; Wu, Ling; Gong, Shuguo

    2007-01-01

    A biosensor based on bovine serum albumin (BSA) for the detection of lead (Pb(2+)) ion was developed and characterized. BSA was immobilized onto a colloidal Au-modified piezoelectric quartz crystal (PQC) as a biosensor for the detection of Pb(2+) ion by piezoelectric quartz crystal impedance (PQCI). Calibration curves for the quantification of Pb(2+) ion showed excellent linearity throughout the concentration range from 1.0 x 10(-7) to 3.0 x 10(-9)mol/L. The interaction between the Pb(2+) ions and the sensor chip is influenced significantly by the pH of the reaction buffer, and the optimal pH for the experiment was 5.4. Under the optimal conditions, the detection limit of 1.0 x 10(-9)mol/L for Pb(2+) was obtained. Kinetic parameters of the Pb(2+)-BSA interactions were also determined by using this chip. The sensor chip could be regenerated for use by dipping in the ethylenediaminetetraacetic acid (EDTA) solution for approximately 2h, and the chip was used to detect Pb(2+) ion for eight times without obvious signal attenuation.

  8. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  9. Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension array.

    PubMed

    Yue, Sun; Jie, Xu; Wei, Li; Bin, Cao; Dou Dou, Wang; Yi, Yang; QingXia, Lin; JianLin, Li; TieSong, Zheng

    2014-12-02

    A simple, new aptamer-photonic crystal encoded suspension array was designed to simultaneously quantify and qualify ochratoxin A(OTA) and fumonisin B1(FB1) in cereal samples. The aptamers of OTA and FB1 were immobilized on the surfaces of photonic crystals by chemical bonding. When the target mycotoxins appear in a sample, the fluorescence-labeled complementary DNA of the aptamer dissociates from their double DNA hybrid and results in an obvious decrease in fluorescence intensity of the microsphere. The difference value of fluorescent intensities for each kind of silica photonic crystal microsphere (SPCM) quantitatively conveys the concentration of mycotoxin, and the structure colors or reflectance peak positions of the SPCMs confirm the kind of mycotoxin detected. The reaction conditions including the immobilization method for aptamers, hybridization, and incubation conditions have been optimized. This developed method displayed a wide linear detection range (0.01-1 ng/mL for OTA and 0.001-1 ng/mL for FB1) and a low limit of detection (0.25 pg/mL for OTA and 0.16 pg/mL for FB1). The recovery rates in the spiked cereal samples ranged from 81.80% to 116.38% for OTA and 76.58%-114.79% for FB1. The positive detection results in the naturally contaminated cereal samples were in agreement with those of classic enzyme-linked immunosorbent assay (ELISA). This simple suspension array scheme displays a great application potential for the high throughput screen assay of mycotoxins.

  10. Fabrication of a PMN-PT Single Crystal-Based Transcranial Doppler Transducer and the Power Regulation of Its Detection System

    PubMed Central

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-01-01

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The −6 dB bandwidth of the transducer is 68.4% and the sensitivity is −17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries. PMID:25536000

  11. Direct detection of the gel-fluid phase transition of a single supported phospholipid bilayer using quartz crystal microbalance with dissipation monitoring.

    PubMed

    Wargenau, Andreas; Tufenkji, Nathalie

    2014-08-19

    Supported phospholipid bilayers (SPBs) are valuable models for fundamental studies of biological membranes and their interaction with biologically relevant solutes or particles. Herein, we demonstrate the capability of the quartz crystal microbalance with dissipation monitoring (QCM-D) to directly detect the gel-fluid phase transition of a SPB. The approach involves comparison of the frequency response of a bare and a bilayer-coated QCM-D crystal during linear temperature variation. Phase transition results in a change of the resonance frequency that coincides directly with the accompanied change in bilayer thickness detected by ellipsometry. Experiments performed at different heating rates further demonstrate the use of dissipation monitoring to determine the phase transition temperature based on the temperature-induced viscosity changes of the ambient medium in the immediate environment of the bilayer. Unlike other methods, the proposed approach enables precise determination of the phase transition of a SPB without the need for thermal equilibration of the measurement chamber and, thus, has great potential for sensitive detection of structural and/or compositional changes of the bilayer.

  12. Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system.

    PubMed

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-12-19

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The -6 dB bandwidth of the transducer is 68.4% and the sensitivity is -17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries.

  13. Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance.

    PubMed

    Sheng, Zhonghan; Han, Jianhua; Zhang, Jianping; Zhao, Hong; Jiang, Long

    2011-10-15

    A simple and sensitive method was developed for the detection of mercury ions with quartz crystal microbalance (QCM), based on the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) interaction and gold nanoparticle-mediated signal amplification. To enhance the sensitivity of detection a sandwich hybridization approach was adopted in this work. The QCM gold surface was modified with the probe SH-oligonucleotides (Oligo-1) and 6-Mercapto-1-hexanol to form an active surface for the hybridization of a longer ss-DNA (Oligo-2), and then Oligo-3 hybridazated with an excess and matching part of Oligo-2. In all oligonucleotides, there existed T bases. In the presence of Hg(2+) ions, special T-Hg(2+)-T reaction greatly enhanced the hybridization of oligonucleotides and detection sensitivity. The gold nanoparticle (Au NPs) amplifier method further increased the sensitivity of detection. A detection sensitivity of 5nM Hg(2+) was obtained in the QCM system, whereas other coexisting metal ions (such as Ni(2+), Mg(2+), Co(2+), Cr(3+), Pb(2+), Cd(2+), Mn(2+), Ba(2+)) had no significant interference. This method reveals a new approach for the manufacture of a kind of simple and low cost sensors for the Hg(2+) detection. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. [Diagnostic detection performance of a simulated nodule in chest computed tomography images and gray and color nuclear medicine images: comparison between a medical liquid crystal display monitor and an ordinary liquid crystal display monitor].

    PubMed

    Okumura, Eiichiro; Kamimae, Riyou; Miyashita, Kenta; Ueda, Rina; Kanmae, Yusuke; Kubo, Mikayo; Shirasaka, Natsumi; Takeda, Taiki; Hashimoto, Noriyuki

    2014-08-01

    The purpose of this study was to evaluate the detection performance of simulated nodules in chest computed tomography (CT) images and nuclear medicine images with an ordinary liquid crystal display (LCD) and a medical LCD (grayscale standard display function: GSDF) and gamma 2.2. We collected 72 chest CT image slices obtained from an LSCT phantom with simulated signals composed of various sizes and CT values and 78 slices of monochrome and color nuclear medicine images obtained from a digital phantom with a simulated signal composed of various sizes and radiation levels. Six observers performed receiver operating characteristic (ROC) analysis using a continuous scale. The area under the ROC curve (AUC) was calculated for each monitor. The average AUC values for detection of chest CT images on a medical LCD (GSDF), medical LCD (gamma 2.2), and ordinary LCD were 0.71, 0.67, and 0.73, respectively. The average AUC values for detection of monochrome nuclear medicine images using a medical LCD (GSDF), medical LCD (gamma 2.2), and ordinary LCD were 0.81, 0.75, and 0.72, respectively. The average AUC values for detection of color nuclear medicine images on a medical LCD (GSDF), medical LCD (gamma 2.2), and ordinary LCD were 0.88, 0.86, and 0.90, respectively. Observer performance for detection of simulated nodules in chest CT images and nuclear medicine images was not significantly different between the three LCD monitors. We therefore conclude that an ordinary LCD monitor can be used to detect simulated nodules in chest CT images and nuclear medicine images.

  15. Real Time Detecting and Processing Signals by an Integrated Sensor Chip Based on Meta-materials and Photonic Crystals

    DTIC Science & Technology

    2012-05-29

    the Finite-Difference Time-Domain Method (FDTD), and the Finite Element Method ( FEM ). We used PWEM and FDTD to solve for the photonic band...a commercial full-wave FEM simulation software to simulate and integrate the elements of our signal processing system. After all the different...the numerical simulations and experimental results for our self-collimating photonic crystal waveguide. We used the FEM software to simulate a butt

  16. Quantitative detection of Amino Acid, Organic Acid and Sugar using an Electrode-separated Piezoelectric Quartz Crystal

    NASA Astrophysics Data System (ADS)

    Nomura, Toshiaki; Yamamura, Satoshi; Arikawa, Yukihiko

    An electrode-separated piezoelectric quartz crystal (electrode-separated PQC) is constructed with no electrode attached to either side of the quartz plate, but electrodes are separately inserted in the electrolyte solution on both sides of the quartz plate, and are connected to an oscillator. The frequency shifts due to the solution properties and the mass change on the quartz plate is just the same as for a normal piezoelectric quartz crystal (normal PQC) having two electrodes. The electrode-separated PQC will be more useful than the normal PQC because it can be made smaller, higher frequency, and then cheaper. Amino acid, organic acid and sugar are important substances in the alcoholic beverage made by fermentation, such as sake. The Amino acids were determined using electrode-separated PQC coated with chitosan in copper (II) solution. Formation of complex with chitosan on the quartz plate, Cu(II) and amino acid in the sample solution induced the frequency shift of PQC. On the other hand, using non-coated electrode-separated PQC, concentration of organic acid and sugar in the liquid were determined, because the frequency of the crystal filled with the liquid containing organic acid and sugar was shifted with the viscosity and conductivity, respectively.

  17. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A.

    PubMed

    Griffete, Nébéwia; Frederich, Hugo; Maître, Agnès; Schwob, Catherine; Ravaine, Serge; Carbonnier, Benjamin; Chehimi, Mohamed M; Mangeney, Claire

    2011-12-01

    This paper reports the preparation of a molecularly imprinted inverse opal hydrogel containing a 2D defect layer, by combining the Langmuir-Blodgett technique and the photonic crystal template method. By coupling the exceptional characteristics of molecularly imprinted polymers, sensitive to the presence of a target molecule, and those of photonic crystals in a single device, we could obtain a defect-embedded imprinted photonic polymer consisting in a three-dimensional, highly-ordered and interconnected macroporous array, where nanocavities complementary to analytes in shape and binding sites are distributed. As a proof of concept, we prepared a three-dimensional macroporous array of poly(methacrylic acid) (PMAA) containing molecular imprints of bisphenol A (BPA) and a planar defect layer consisting in macropores of different size. The optical properties of the resulting inverse opal were investigated using reflection spectroscopy. The defect layer was shown to enhance the sensitivity of the photonic crystal material, opening new possibilities towards the development smart optical sensing devices.

  18. Rare-Earth Tri-Halide Methanol-Adduct Single-Crystal Scintillators for Gamma Ray and Neutron Detection - 8/17/09

    SciTech Connect

    Boatner, Lynn A; Wisniewski, D.; Neal, John S; Bell, Zane W; Ramey, Joanne Oxendine; Kolopus, James A; Chakoumakos, Bryan C; Custelcean, Radu; Wisniewska, Monika; Peña, K. E.

    2009-01-01

    Cerium activated rare-earth tri- halides represent a well-known family of high performance inorganic rare-earth scintillators - including the high-light-yield, high-energy-resolution scintillator, cerium-doped lanthanum tribromide. These hygroscopic inorganic rare-earth halides are currently grown as single crystals from the melt - either by the Bridgman or Czochralski techniques slow and expensive processes that are frequently characterized by severe cracking of the material due to anisotropic thermal stresses and cleavage effects. We have recently discovered a new family of cerium-activated rare-earth metal organic scintillators consisting of tri-halide methanol adducts of cerium and lanthanum namely CeCl3(CH3OH)4 and LaBr3(CH3OH)4:Ce. These methanol-adduct scintillator materials can be grown near room temperature from a methanol solution, and their high solubility is consistent with the application of the rapid solution growth methods that are currently used to grow very large single crystals of potassium dihydrogen phosphate. The structures of these new rare-earth metal-organic scintillating compounds were determined by single crystal x-ray refinements, and their scintillation response to both gamma rays and neutrons, as presented here, was characterized using different excitation sources. Tri-halide methanol-adduct crystals activated with trivalent cerium apparently represent the initial example of a solution-grown rare-earth metal-organic molecular scintillator that is applicable to gamma ray, x-ray, and fast neutron detection.

  19. Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods.

    PubMed

    Dai, Jie; Zhang, Yan; Pan, Mingfei; Kong, Lingjie; Wang, Shuo

    2014-06-11

    To rapidly detect histamine (HA) in foods, a novel material for HA-specific recognition was synthesized by a sol-gel process and coated on a quartz crystal microbalance (QCM) sensor. The Scatchard model was used to evaluate the adsorption performance of the material; high affinity for HA was demonstrated. Based on QCM frequency change, the sensor exhibited linear behavior for HA concentrations of 0.11 × 10(-2) to 4.45 × 10(-2) mg L(-1), a detection limit of 7.49 × 10(-4) mg kg(-1) (S/N = 3), high selectivity for HA (selectivity coefficient >4) compared with structural analogues, good reproducibility, and long-term stability. The sensor was used to determine the concentration of HA in spiked fish products; the recovery values were satisfactory (93.2-100.4%) and compared well with those obtained by high-performance liquid chromatography (correlation coefficient, r(2) = 0.9965).

  20. Luminescent Metal-Organic Framework Sensor: Exceptional Cd(2+) Turn-On Detection and First In Situ Visualization of Cd(2+) Ion Diffusion into a Crystal.

    PubMed

    Lim, Kwang Soo; Jeong, So Yeon; Kang, Dong Won; Song, Jeong Hwa; Jo, Hyuna; Lee, Woo Ram; Phang, Won Ju; Moon, Dohyun; Hong, Chang Seop

    2016-12-23

    With regard to fluorescence quenching commonly observed during metal-ion detection, "turn-on" chemical sensing has been rarely reported, but could be extremely important because it facilitates the selective recognition of target objects of interest against a dark background. A metal-organic framework (MOF) chemosensor has been prepared that serves as an efficient platform for the selective detection of Cu(2+) and Cd(2+) ions over other metal ions. In particular, this framework shows the highest fluorescence enhancement (≈60-fold relative to Cd-free MOF) for the hazardous metal ion Cd(2+) among luminescent MOFs and displays excellent reusability in repeated cycles. The direct diffusion of Cd(2+) into the crystal pores has also been visualized for the first time.

  1. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label.

    PubMed

    Shan, Wenqian; Pan, Yuliang; Fang, Heting; Guo, Manli; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2014-08-01

    An aptamer-based quartz crystal microbalance (QCM) biosensor was developed for the selective and sensitive detection of leukemia cells. In this strategy, aminophenylboronic acid-modified gold nanoparticles (APBA-AuNPs) which could bind to cell membrane were used for the labeling of cells followed by silver enhancement, through which significant signal amplification was achieved. Both the QCM and fluorescence microscopy results manifested the selectivity of the sensor designed. A good linear relationship between the frequency response and cell concentration over the range of 2×10(3)-1×10(5)cells/mL was obtained, with a detection limit of 1160cells/mL. This approach provides a simple, rapid, and economical method for leukemia cell analysis which might have great potential for further use. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Large-size CsI(Tl) crystal read-out by SiPM for low-energy charged-particles detection

    NASA Astrophysics Data System (ADS)

    Bondí, M.; Battaglieri, M.; Carpinelli, M.; Celentano, A.; De Napoli, M.; De Vita, R.; Marsicano, L.; Randazzo, N.; Sipala, V.; Smith, E. S.

    2017-09-01

    Silicon photomultipliers are a novel technology for the detection of photons in near ultraviolet, visible, and near-infrared spectral ranges. Their application is rapidly growing and extending to many fields in physics, replacing traditional PMTs and APDs. In this study a large-size CsI(Tl) crystal coupled to small-area SiPM (3 × 3mm2) was used to detect α-particles and low energy protons. In particular, the detector was irradiated with proton beams accelerated by the Tandem Van-der-Graff of the INFN-Laboratori Nazionali del Sud (LNS), at incident energies between 2.5 MeV and 24 MeV. The detector performance was studied in terms of light yield, linearity and energy resolution. In addition, we investigated the dependence of the detector response on the impact point of the particles.

  3. Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor.

    PubMed

    Teh, Hui Boon; Li, Haiyan; Yau Li, Sam Fong

    2014-10-21

    A novel, label-free DNAzyme-based quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor was developed for the highly sensitive and specific detection of Pb(2+) ions. To enhance the performance of the sensor, oligonucleotide-functionalized gold nanoparticles were used for both frequency and dissipation amplification. This sensor was developed by immobilizing Pb(2+)-specific DNAzymes onto the QCM-D sensor surface and allowing them to hybridize with substrate-functionalized AuNPs. The DNAzyme catalyzed the cleavage of the substrate in the presence of Pb(2+) ions, causing the cleaved substrate-functionalized AuNPs to be removed from the sensor surface. Thus, Pb(2+) ions can be determined on-line by monitoring the change in frequency and dissipation signals. The results revealed that the sensor showed a sensitive response to Pb(2+) ions with detection limits of 14 nM and 20 nM for frequency and dissipation, respectively. This QCM-D biosensor also exhibited excellent selectivity toward Pb(2+) ions in the presence of other divalent metal ions. In addition, the approach was able to detect Pb(2+) in tap water, demonstrating its great potential for monitoring drinking water quality. The proposed sensor system described here represents a new class of lead ion sensor. Its simple detection strategy makes it feasible for 'pollution-free' detection; thus, the approach could have applications in on-line water quality monitoring.

  4. Sensitive Detection of Protein and miRNA Cancer Biomarkers using Silicon-Based Photonic Crystals and A Resonance Coupling Laser Scanning Platform

    PubMed Central

    George, Sherine; Chaudhery, Vikram; Lu, Meng; Takagi, Miki; Amro, Nabil; Pokhriyal, Anusha; Tan, Yafang; Ferreira, Placid; Cunningham, Brian T.

    2013-01-01

    Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels (“enhanced excitation”) and the spatially biased funneling of fluorophore emissions through coupling to PC resonances (“enhanced extraction”), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couples fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 minute. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-α and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM. PMID:23963502

  5. Sensitive detection of protein and miRNA cancer biomarkers using silicon-based photonic crystals and a resonance coupling laser scanning platform.

    PubMed

    George, Sherine; Chaudhery, Vikram; Lu, Meng; Takagi, Miki; Amro, Nabil; Pokhriyal, Anusha; Tan, Yafang; Ferreira, Placid; Cunningham, Brian T

    2013-10-21

    Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels ("enhanced excitation") and the spatially biased funneling of fluorophore emissions through coupling to PC resonances ("enhanced extraction"), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couple fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 min. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-α and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM.

  6. Label-free optical detection of C-reactive protein by nanoimprint lithography-based 2D-photonic crystal film.

    PubMed

    Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki

    2016-06-01

    The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications.

  7. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus

    NASA Astrophysics Data System (ADS)

    Chen, Sz-Hau; Chuang, Yao-Chen; Lu, Yi-Chen; Lin, Hsiu-Chao; Yang, Yun-Liang; Lin, Chih-Sheng

    2009-05-01

    Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (ΔF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml-1 and a linear correlation (R2 = 0.987) of ΔF versus virus titration from 2 × 100 to 2 × 106 PFU ml-1 was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.

  8. Microfludic Sensing Devices Employing In Situ-Formed Liquid Crystal Thin Film for Detection of Biochemical Interactions1†

    PubMed Central

    Liu, Ye; Cheng, Daming; Lin, I-Hsin; Abbott, Nicholas L.; Jiang, Hongrui

    2012-01-01

    Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A2 (PLA2). PMID:22842797

  9. First order magnetic transition in single crystal CaFe2As2 detected by 75As NMR

    SciTech Connect

    Baek, Seung Ho; Curro, Nicholas J

    2008-01-01

    We report {sup 75}As Nuclear Magnetic Resonance data in a single crystal of CaFe{sub 2}As{sub 2}. The Knight shift, the electric field gradient, and the spin lattice relaxation rate are strongly temperature dependent in the paramagnetic state, and change discontinuously at the structural transition temperature, T{sub S} = T{sub N} = 167 K. Immediately below, the NMR spectra reveal an internal field at the As site associated with the presence of a commensurate magnetic order. These results indicate that the structural and magnetic transitions in CaFe{sub 2}As{sub 2} are first order and strongly coupled, and that the electron density in the FeAs plane is highly sensitive to the out-of-plane structure.

  10. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection.

    PubMed

    Shen, Weizhi; Li, Mingzhu; Ye, Changqing; Jiang, Lei; Song, Yanlin

    2012-09-07

    Integrating photonic crystals (PC) into microfluidic systems has attracted immense interest for its novel functions. However, it is still a great challenge to fabricate PC microfluidic chips rapidly with complex functions. In this work, a direct-writing colloidal PC microchannel was firstly achieved by inkjet printing and was used for the surface-tension-confined microfluidic immune assay. PC channels with different structure colors have been successfully integrated on one chip. The fabricated chip has the advantages of rapid fabrication, quick fluidic transport and can monitor the fluidic fluxion using the naked eye. Utilizing this PC microfluidic chip, a colorimetric label-free immune assay was realized without nonspecific adsorption interference of the target.

  11. A procedure to calculate the self-shielding and detection efficiency for a gamma-emitting disk and sodium iodide crystal

    NASA Astrophysics Data System (ADS)

    Arcipiani, Biagio; Pedretti, Edmondo

    1980-07-01

    This paper reports on a procedure to correct for the detector efficiency and radiation self-absorption the number of counts tallied when the activity of a gamma-emitting thick foil is measured by means of a sodium iodide crystal. A model is set up whereby, after ideally dividing the disk into a large number of slices, it is shown how to separate for each slice the role of radiation detection from that of the absorption in the material between the slice and the crystal. While the former is accounted for by using an available Monte Carlo code, the latter is reduced to the calculation of suitable geometrical factors. Formulas for these factors are derived and were coded for an electronic computer. The Fortran IV program is available. Numerical results of the geometrical factors are shown for a 14 mm radius and 2.07 mm thick indium foil irradiated in a plasma focus machine, and these are compared with those obtained by a crude approximation reported elsewhere.

  12. Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1.

    PubMed

    Arif, Sania; Qudsia, Syeda; Urooj, Samina; Chaudry, Nazia; Arshad, Aneeqa; Andleeb, Saadia

    2015-03-15

    Breast cancer represents a significant health problem because of its high prevalence. Tests like mammography, which are used abundantly for the detection of breast cancer, suffer from serious limitations. Mammography correctly detects malignancy about 80-90% of the times, failing in places when (1) the tumor is small at early stage, (2) breast tissue is dense or (3) in women of less than 40 years. Serum-based detection of biomarkers involves risk of disease transfer, along with other concerns. These techniques compromise in the early detection of breast cancer. Early detection of breast cancer is a crucial factor to enhance the survival rate of patient. Development of regular screening tests for early diagnosis of breast cancer is a challenge. This review highlights the design of a handy and household biosensor device aimed for self-screening and early diagnosis of breast cancer. The design makes use of salivary autoantibodies for specificity to develop a noninvasive procedure, breast cancer specific biomarkers for precision for the development of device, and biosensor technology for sensitivity to screen the early cases of breast cancer more efficiently.

  13. The cylindrical air holes of the negative-refraction photonic crystal double flat lens group for lightwave target detection and imaging

    NASA Astrophysics Data System (ADS)

    Lu, Jian; Shen, Yang; Shen, TingGen; Lian, YingFei; Wang, FeiFei; Xu, Yang

    2013-06-01

    The influence of the cylindrical air holes of the negative-refraction photonic crystal (NR-PC) double flat lens group on the performance of lightwave target detection and imaging is studied in this paper using the finite-difference time-domain (FDTD) method. Numerical simulations indicate that significant enhancement of the scattering signal can be obtained by using a NR-PC flat lens; consequently, great improvement of the refocusing gain as well as the imaging resolution will be provided. We further research the effects of different positions for target detection by using a NR-PC double flat lens group with cylindrical air holes. Then we use defective air holes instead of perfect ones. By using a dynamic scanning scheme, we find that the distance between two flats could be changed flexibly. And it could improve the lateral resolution of target scanning and enlarge the distance between the target and flat greatly. In conclusion, our investigation optimized the performance of the detection and imaging system, and provided the basis for converting an idealized left-handed material lens into a physically realizable NR-PC double flat lens group.

  14. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance

    PubMed Central

    Tao, Wenyan; Lin, Peng; Liu, Sili; Xie, Qingji; Ke, Shanming; Zeng, Xierong

    2017-01-01

    Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), a type of room temperature ionic liquid (RTIL), as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM) for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF4] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF4]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis. PMID:28117697

  15. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    PubMed

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  16. Direct Detection of Transcription Factors in Cotyledons during Seedling Development Using Sensitive Silicon-Substrate Photonic Crystal Protein Arrays1[OPEN

    PubMed Central

    Jones, Sarah I.; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T.; Vodkin, Lila

    2015-01-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  17. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  18. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  19. Crystal Meth

    MedlinePlus

    ... from Other Parents Stories of Hope Crystal meth Crystal meth Story of Hope by giovanni January 3, ... about my drug addiction having to deal with Crystal meth. I am now in recovery and fighting ...

  20. Crystal Meth

    MedlinePlus

    ... Navigation Home / Stories of Hope / Crystal meth Crystal meth Story Of Hope By giovanni January 3rd, 2013 ... my drug addiction having to deal with Crystal meth. I am now in recovery and fighting my ...

  1. Detection of the Impact of Ice Crystal Accretion in an Aircraft Engine Compression System During Dynamic Operation

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2014-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.

  2. Investigations of 6LiIn1-xGaxSe2 semi-insulating crystals for neutron detection

    NASA Astrophysics Data System (ADS)

    Wiggins, Brenden; Bell, Joseph; Burger, Arnold; Stassun, Keivan; Stowe, Ashley C.

    2015-08-01

    Neutron detectors are used for illicit material detection, neutron radiography, stellar investigations of chemical content including biological compounds in planetary terrain and to monitor nuclear power plant fuel products and radioactive waste. Li-containing chalcogenide materials are promising alternative thermal neutron detection materials due to the incorporation of the 6Li isotope at high density. 6LiInSe2 is limited in its effective thermal neutron efficiency by 115In neutron capture which results in gamma decay rather than charge creation. This study includes investigations of mixed crystalline material 6LiIn1-xGaxSe2 where the indium concentration is reduced by Ga substitution. The optical properties have been tuned by gallium substitution and radiation response has been observed.

  3. Effect of spatial noise of medical grade Liquid Crystal Displays (LCD) on the detection of micro-calcification

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Fan, Jiahua; Dallas, William J.; Krupinski, Elizabeth A.; Johnson, Jeffrey

    2009-08-01

    This presentation describes work in progress that is the result of an NIH SBIR Phase 1 project that addresses the wide- spread concern for the large number of breast-cancers and cancer victims [1,2]. The primary goal of the project is to increase the detection rate of microcalcifications as a result of the decrease of spatial noise of the LCDs used to display the mammograms [3,4]. Noise reduction is to be accomplished with the aid of a high performance CCD camera and subsequent application of local-mean equalization and error diffusion [5,6]. A second goal of the project is the actual detection of breast cancer. Contrary to the approach to mammography, where the mammograms typically have a pixel matrix of approximately 1900 x 2300 pixels, otherwise known as FFDM or Full-Field Digital Mammograms, we will only use sections of mammograms with a pixel matrix of 256 x 256 pixels. This is because at this time, reduction of spatial noise on an LCD can only be done on relatively small areas like 256 x 256 pixels. In addition, judging the efficacy for detection of breast cancer will be done using two methods: One is a conventional ROC study [7], the other is a vision model developed over several years starting at the Sarnoff Research Center and continuing at the Siemens Corporate Research in Princeton NJ [8].

  4. Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor.

    PubMed

    Peterson, Ross D; Chen, Weili; Cunningham, Brian T; Andrade, Juan E

    2015-12-15

    Iron deficiency anemia (IDA) has detrimental effects on individuals and societies worldwide. A standard sandwich assay (SA) for the detection of soluble transferrin receptor (sTfR), a biomarker of IDA, on a photonic crystal (PC) biosensor was established, but it was susceptible to non-specific signals from complex matrixes. In this study, iron-oxide nanoparticles (fAb-IONs) were used as magnetic immuno-probes to bind sTfR and minimize non-specific signals, while enhancing detection on the PC biosensor. This inverse sandwich assay (IA) method completely bound sTfR with low variability (<4% RSD) in buffer and allowed for its accurate and precise detection in sera (Liquichek™ control sera) on the PC biosensor using two certified ELISAs as reference methods. A linear dose-response curve was elicited at the fAb-IONs concentration in which the theoretical binding ratio (sTfR:fAb-IONs) was calculated to be <1 on the IA. The LoDs for sTfR in the SA and IA were similar (P>0.05) at 14 and 21 μg/mL, respectively. The inherent imprecision of the IA and reference ELISAs was σ(δ)=0.45 µg/mL and the mean biases for Liquichek™ 1, 2 and 3 were 0.18, 0.19 and -0.04 µg/mL, respectively. Whereas the inherent imprecision of the SA and reference ELISAs was σ(δ)=0.52 µg/mL and the biases for Liquichek™ 1, 2 and 3 were 0.66, 0.14 and -0.67 µg/mL, respectively. Thus, unlike the SA, the IA method measures sTfR with the same bias as the reference ELISAs. Combined magnetic separation and detection of nutrition biomarkers on PC biosensors represents a facile method for their accurate and reliable quantification in complex matrixes.

  5. An arrayed infrared filter based on liquid crystal Fabry-Perot effect for electrically tunable spectral imaging detection

    NASA Astrophysics Data System (ADS)

    Lin, Jiuning; Tong, Qing; Luo, Jun; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    An arrayed electrically tunable infrared (IR) filter based on the key structure of liquid crystal Fabry-Perot (LC-FP) working in the wavelength range from 2.5 to 12 μm, is designed and fabricated successfully. According to the electrically controlled birefringence characteristics of nematic LC molecules, the refractive index of LC materials filled into a prefabricated microcavity can be adjusted by the spatial electric field stimulated between the top aluminum electrode patterned by conventional UV-photolithography and the bottom aluminum electrode in the LC-FP. The particular functions including key spectral selection and spectral adjustment, can be performed by the developed LC-FP filter driven and controlled electrically. Our experiments show that the maximum transmittance of the transmission peaks is ~24% and the peaks of transmission spectrum shift through applying different voltage signals with a root mean square (RMS) value ranging from 0 to ~21.7Vrms. The experimental results are consistent with the simulation according to the model constructed by us. As a 4-channel array-type IR filter, the top electrode of the device is composed of four same sub-electrodes, which is powered, respectively, to select desired transmission spectrum. Each of the units in the device is operated separately and synchronously, which means that spectral images of the same object can be obtained with different wavelengths in one shot. Without any mechanical parts, the developed LC-FP filter exhibits several advantages including ultra-small size, low cost, high reliability, high spectral selectivity, and compact integration.

  6. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    NASA Astrophysics Data System (ADS)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  7. Determination of malachite green, crystal violet and their leuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up.

    PubMed

    Xie, Jie; Peng, Tao; Chen, Dong-Dong; Zhang, Qing-Jie; Wang, Guo-Min; Wang, Xiong; Guo, Qi; Jiang, Fan; Chen, Dan; Deng, Jian

    2013-01-15

    A high performance liquid chromatography method with visible detection (HPLC-VIS) for the determination of malachite green (MG), crystal violet (CV), leucomalachite green (LMG), and leucocrystal violet (LCV) in fish has been developed after clean-up through an immunoaffinity column (IAC). Residues were simultaneously extracted from fish muscle with acetonitrile and ammonium acetate buffer. The leuco-forms, LMG and LCV, were oxidized quantitatively to the chromic CV and MG by reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Extracts were then purified on an IAC which prepared by immobilizing the anti-MG-CV antibodies by the sol-gel method. Finally, the eluents were analyzed by HPLC-VIS. The limits of detection were 0.15, 0.1, 0.18 and 0.14ng/g for MG, CV, LMG and LCV, respectively. The average recoveries in samples fortified with MG, CV, LMG and LCV over the range 0.5-10ng/g were from 71.6% to 96.8% with RSDs of 5.1-12.3% (n=6). This novel method was confirmed by liquid chromatography-tandem mass spectrometry with electrospray interface in positive mode using multiple reaction monitoring.

  8. MWIR/LWIR filter based on Liquid-Crystal Fabry-Perot structure for tunable spectral imaging detection

    NASA Astrophysics Data System (ADS)

    Zhang, Huaidong; Muhammad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-03-01

    An electrically tunable medium-wave infrared (MWIR)/long-wave infrared (LWIR) filter based on the key structure of Liquid-Crystal (LC) Fabry-Perot (FP), which works in the wavelength range from 2.5 μm to 12 μm, is designed and fabricated successfully in this paper. According to the optical interference principle of the FP cavity and electrically controlled birefringence of nematic LC molecules, the particular functions including spectral selection and spectral staring and spectral adjustment, can be realized by the developed MWIR/LWIR filter driven and controlled electrically. As to the LC-FP filter, both planar reflective mirrors are shaped by depositing a layer of aluminum (Al) film (∼60 nm) over one side of double-side polished Zinc Selenide (ZnSe) wafer (∼1 mm), and then polyimide (PI) layer with the thickness of ∼100 nm is coated directly on Al film. With typical sandwich architecture, the depth of the cavity with nematic LC molecules sealed in is ∼7.5 μm. To make sure the LC molecules parallel aligned and twist regularly under voltage driving signal applied on Al film, which also acts as electrode, the V-grooves are formed in PI layer with the depth of ∼90 nm and the width of ∼350 nm at average by strong rubbing. The typical transmission spectrum in MWIR&LWIR wavelength range and several spectral images in MWIR wavelength range based on the fabricated LC-FP filter, have been obtained through applying a voltage driving-signal with different root-means-square (RMS) value over the electrodes of LC-FP filter in the selected voltage range from 0VRMS to 19.8VRMS. The testing result demonstrates a prospect of realization smart spectral imaging and further integrating the LC-FP filter with infrared focal plane arrays (FPAs) to achieve the purpose infrared multispectral imaging. The developed MWIR&LWIR LC-FP filters show some obvious advantages such as wide working wavelength range, electrically tunable spectral selection, ultra-compact, low cost, being

  9. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.

    PubMed

    Zhang, Huaidong; Muhammmad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2014-09-01

    An electrically tunable infrared (IR) filter based on the liquid crystal (LC) Fabry-Perot (FP) key structure, which works in the wavelength range from 5.5 to 12 μm, is designed and fabricated successfully. Both planar reflective mirrors with a very high reflectivity of ∼95%, which are shaped by depositing a layer of aluminum (Al) film over one side of a double-sided polished zinc selenide wafer, are coupled into a dual-mirror FP cavity. The LC materials are filled into the FP cavity with a thickness of ∼7.5  μm for constructing the LC-FP filter, which is a typical type of sandwich architecture. The top and bottom mirrors of the FP cavity are further coated by an alignment layer with a thickness of ∼100  nm over Al film. The formed alignment layer is rubbed strongly to shape relatively deep V-grooves to anchor LC molecules effectively. Common optical tests show some particular properties; for instance, the existing three transmission peaks in the measured wavelength range, the minimum full width at half-maximum being ∼120  nm, and the maximum adjustment extent of the imaging wavelength being ∼500  nm through applying the voltage driving signal with a root mean square (RMS) value ranging from 0 to ∼19.8  V. The experiment results are consistent with the simulation, according to our model setup. The spectral images obtained in the long-wavelength IR range, through the LC-FP device driven by the voltage signal with a different RMS value, demonstrates the prospect of the realization of smart spectral imaging and further integrating the LC-FP filter with IR focal plane arrays. The developed LC-FP filters show some advantages, such as electrically tunable imaging wavelength, very high structural and photoelectronic response stability, small size and low power consumption, and a very high filling factor of more than 95% compared with common MEMS-FP spectral imaging approaches.

  10. Crystal face temperature determination means

    DOEpatents

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  11. An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: A new candidate for hard radiation detection

    DOE PAGES

    Wibowo, Arief C.; Malliakas, Christos D.; Li, Hao; ...

    2016-03-16

    Here, we assess the mercury chalcohalide compound, β-Hg3S2Cl2, as a potential semiconductor material for X-ray and γ-ray detection. It has a high density (6.80 g/cm3) and wide band gap (2.56 eV) and crystallizes in the cubic Pm4more » $$\\bar{3}$$n space group with a three-dimensional structure comprised of [Hg12S8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of β-Hg3S2Cl2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg3Bi2S2Cl8 compound followed by the formation of β-Hg3S2Cl2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg3Bi2S2Cl8 followed by its partial decomposition into β-Hg3S2Cl2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 1010 Ω·cm and mobility-lifetime products of electron and hole carriers of 1.4(4) × 10–4 cm2/V and 7.5(3) × 10–5 cm2/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of β-Hg3S2Cl2 as a hard radiation detector material.« less

  12. Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance.

    PubMed

    Wu, Vivian C H; Chen, Sz-Hau; Lin, Chih-Sheng

    2007-06-15

    A DNA piezoelectric biosensing method for real-time detection of Escherichia coli O157:H7 in a circulating-flow system was developed in this study. Specific probes [a 30-mer oligonucleotide with or without additional 12 deoxythymidine 5'-monophosphate (12-dT)] for the detection of E. coli O157:H7 gene eaeA, synthetic oligonucleotide targets (30 and 104 mer) and PCR-amplified DNA fragments from the E. coli O157:H7 eaeA gene (104 bp), were used to evaluate the efficiency of the probe immobilization and hybridization with target DNA in the circulating-flow quartz crystal microbalance (QCM) device. It was found that thiol modification on the 5'-end of the probes was essential for probe immobilization on the gold surface of the QCM device. The addition of 12-dT to the probes as a spacer, significantly enhanced (P<0.05) the hybridization efficiency (H%). The results indicate that the spacer enhanced the H% by 1.4- and 2-fold when the probes were hybridized with 30- and 104-mer targets, respectively. The spacer reduced steric interference of the support on the hybridization behavior of immobilized oligonucleotides, especially when the probes hybridized with relatively long oligonucleotide targets. The QCM system was also applied in the detection of PCR-amplified DNA from real samples of E. coli O157:H7. The resultant H% of the PCR-amplified double-strand DNA was comparable to that of the synthetic target T-104AS, a single-strand DNA. The piezoelectric biosensing system has potential for further applications. This approach lays the groundwork for incorporating the method into an integrated system for rapid PCR-based DNA analysis.

  13. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures.

  14. Axion crystals

    NASA Astrophysics Data System (ADS)

    Ozaki, Sho; Yamamoto, Naoki

    2017-08-01

    The low-energy effective theories for gapped insulators are classified by three parameters: permittivity ɛ, permeability μ, and theta angle θ. Crystals with periodic ɛ are known as photonic crystals. We here study the band structure of photons in a new type of crystals with periodic θ (modulo 2 π) in space, which we call the axion crystals. We find that the axion crystals have a number of new properties that the usual photonic crystals do not possess, such as the helicity-dependent mass gap and nonrelativistic gapless dispersion relation at small momentum. We briefly discuss possible realizations of axion crystals in condensed matter systems and high-energy physics.

  15. Quartz Crystal Microbalance Aptasensor for Sensitive Detection of Mercury(II) Based on Signal Amplification with Gold Nanoparticles

    PubMed Central

    Dong, Zong-Mu; Zhao, Guang-Chao

    2012-01-01

    We show that a short mercury-specific aptamer (MSA) along with gold nanoparticles (Au-NPs) can be used to determine Hg(II) ion by a combination of a QCM-based sensor and a flow system. The MSA binds specifically to Hg(II), and the Au-NPs can amplify the signal to enhance sensitivity. Specifically, the short thiolated MSAs are immobilized on the surface of the QCM as the capture probe, and the MSAs are linked to the Au-NPs as the linking probe. The two components can form a sandwich structure of the T-Hg(II)-T type in the presence of Hg(II) ions. This leads to change in the mass on the QCM and a change in the resonance frequency. Hg(II) can be determined with a detection limit of 0.24 ± 0.06 nM which is better by three orders of magnitude than previous methods. The sensor can be regenerated by disrupting the T-Hg(II)-T base pairs with a solution of cysteine. PMID:22969338

  16. Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors.

    PubMed

    Lee, Seung-Woo; Takahara, Naoki; Korposh, Sergiy; Yang, Do-Hyeon; Toko, Kiyoshi; Kunitake, Toyoki

    2010-03-15

    Quartz crystal microbalance (QCM) gas sensors based on the alternate adsorption of TiO(2) and polyacrilic acid (PAA) were developed for the sensitive detection of amine odors. Individual TiO(2) gel layers could be regularly assembled with a thickness of approximately 0.3 nm by the gas-phase surface sol-gel process (GSSG). The thickness of the poly(acrylic acid) (PAA) layer is dependent on its molecular weight, showing different thicknesses of approximately 0.4 nm for PAA(25) (Mw 250,000) and 0.6-0.8 nm for PAA(400) (Mw 4,000,000). The QCM sensors showed a linear response to ammonia in the concentration range 0.3-15 ppm, depending on the deposition cycle of the alternate TiO(2)/PAA layer. The ammonia binding is based on the acid-base interaction to the free carboxylic acid groups of PAA and the limit of detection (LOD) of the 20-cycle TiO(2)/PAA(400) film was estimated to be 0.1 ppm when exposed to ammonia. The sensor response was very fast and stable in a wide relative humidity (rH) range of 30-70%, showing almost the same frequency changes at a given concentration of ammonia. Sensitivity to n-butylamine and ammonia was higher than to pyridine, which is owing to the difference of molecular weight and basicity of the amine analytes. The alternate TiO(2)/PAA(400) films have a highly effective ability to capture amine odors, and the ambient ammonia concentration of 15 ppm could be condensed up to approximately 20,000 ppm inside the films.

  17. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  18. Immunomagnetic separation of Erwinia carotovora subsp. atroseptica from potato peel extracts to improve detection sensitivity on a crystal violet pectate medium or by PCR.

    PubMed

    van der Wolf, J M; Hyman, L J; Jones, D A; Grevesse, C; van Beckhoven, J R; van Vuurde, J W; Pérombelon, M C

    1996-05-01

    Immunomagnetic separation (IMS) procedures for the selective separation of Erwinia carotovora subsp. atroseptica from potato peel extract were optimized for the recovery of target and removal of non-target bacteria. A streptomycin-resistant strain of Erw. carotovora subsp. atroseptica was used in combination with a crystal violet pectate (CVP) medium supplemented with 100 micrograms ml-1 of streptomycin to determine the recovery level of the target bacterium. Recovery obtained with a polyclonal antiserum against Erw. carotovora subsp. atroseptica at a concentration of 6 micrograms IgG ml-1 was greater than that obtained with two monoclonal antibodies against lipopolysaccharides of Erw. carotovora subsp. atroseptica at a concentration of 10 micrograms IgG ml-1. A linear relationship was found between particle concentration ranging from 12 to 200 micrograms ml-1 and recovery level. When the Advanced Magnetics (AM) protein A and anti-rabbit IgG particles in the AM separation system and the Dynal anti-rabbit IgG particles in the Dynal separation system were examined, the highest recovery level per microgram of particles (66%) was obtained with the Advanced Magnetics protein A particles, followed by AM anti-rabbit particles (37%). Without IMS, detection of Erw. carotovora subsp. atroseptica in tuber peel extracts on a CVP-medium without streptomycin was impossible when the ratio of Erw. carotovora subsp. carotovora to Erw. carotovora subsp. atroseptica was greater than 100 or when large numbers of other saprophytic bacteria were present, because of overcrowding. IMS, using the AM anti-rabbit IgG particles, ensured that Erw. carotovora subsp. atroseptica could be enumerated in tuber peel extract consistently, to a detection level of 100 cells ml-1. Similarly, the IMS procedure lowered the detection level of Erw. carotovora subsp. atroseptica in a twofold diluted peel extract by PCR to ca 2.0 x 10(3) cells ml-1 or 50 cells per reaction tube. In contrast, positive results

  19. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  20. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  1. Small-scale microcosms to detect chemical induced changes in soil nematode communities--effects of crystal proteins and Bt-maize plant material.

    PubMed

    Höss, Sebastian; Reiff, Nicola; Nguyen, Hang T; Jehle, Johannes A; Hermes, Hanna; Traunspurger, Walter

    2014-02-15

    Small-scale laboratory microcosms (30 g soil in 50 ml tubes) were evaluated for their suitability to assess the impact of chemicals on in situ soil nematode communities. For this purpose, appropriate conditions in the microcosms were explored to ensure stable conditions and a homogenous distribution of the nematodes. Then, the microcosms were used to assess the toxicity of insecticidal crystal proteins (Cry1A.105, Cry2Ab2, Cry3Bb1) present in genetically modified maize (MON89034×MON88017) on in situ nematode communities. Highly abundant and genus rich nematode communities could be maintained over a period of 12 weeks. Due to a low variance between the replicates of the treatments, low detection limits could be achieved. Using meaningful stress indices, such as the maturity indices, the microcosm study revealed dose-dependent effects of the insecticidal Cry proteins that could be verified as toxic effects by comparing with effects of two positive controls (Cu, nematicidal Cry5B). Moreover, toxic effects could be differentiated from organic enrichment effects that were induced by the addition of plant material. With a NOECCommunity of 0.1 mg kg(-1) dry wt, the nematode communities reacted considerably more sensitive to the Cry proteins than a single-species nematode toxicity test (NOEC: 29 mg l(-1)). The small-scale microcosm set-up turned out to be a suitable, low-budget tool for assessing the toxicity of chemicals on soil nematodes on community level, representing a link between single-species toxicity tests and large scale outdoor mesocosms. Copyright © 2013. Published by Elsevier B.V.

  2. Hydrogen interstitial in H-ion implanted ZnO bulk single crystals: Evaluation by elastic recoil detection analysis and electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Kamioka, K.; Nishimura, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2015-12-01

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are evaluated by elastic recoil detection analysis (ERDA), electron paramagnetic resonance (EPR), and Van der Pauw methods. The H-ion implantation (peak concentration: 5.0 × 1015 cm-2) into ZnO is performed using a 500 keV implanter. The maximum of the concentration of the implanted H estimated by a TRIM simulation is at 3600 nm in depth. The resistivity decreases from ∼103 Ω cm for un implanted ZnO to 6.5 Ω cm for as-implanted, 2.3 × 10-1 Ω cm for 200 °C annealed, and 3.2 × 10-1 Ω cm for 400 °C annealed samples. The ERDA measurements can evaluate the concentration of hydrogens which move to the vicinity of the surface (surface to 300 nm or 100 nm) because of the diffusion by the annealing at 200 °C and 400 °C. The hydrogen concentration near the surface estimated using the 2.0 MeV helium beam is ∼3.8 × 1013 cm-2 for annealed samples. From EPR measurements, the oxygen vacancy of +charge state (Vo+) is observed in as-implanted samples. The Vo+ related signal (g = 1.96) observed under no illumination disappears after successive illumination with a red LED and appears again with a blue light illumination. The activation energy of as-implanted, 200 °C annealed, and 400 °C annealed samples estimated from the temperature dependence of carrier concentration lies between 29 meV and 23 meV, suggesting the existence of H interstitial as a shallow donor level.

  3. Hydrogen ion-implantation induced low resistive layer in KNbO3 bulk single crystal: Evaluation by elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Shinkawa, A.; Shibasaki, Y.; Nishimura, T.; Tanuma, C.; Kuriyama, K.

    2016-03-01

    Origins of low resistivity in H-ion implanted KNbO3 bulk single crystals are studied by elastic recoil detection analysis (ERDA) and Van der Pauw methods. The H-ion implantation (peak ion fluence: 5.0 × 1015 cm-2) into KNbO3 is performed using a 500 keV implanter. The sheet resistance decreases from ∼108 Ω/□ for an un-implanted KNbO3 sample to 2.33 × 105 Ω/□ for as-implanted, 2.29 × 105 Ω/□ for 100 °C annealed, and 4.25 × 105 Ω/□ for 150 °C annealed samples, respectively. The ERDA experiment using the 1.5 MeV-4He+ beam can evaluate hydrogen from the surface to around 60 nm. The hydrogen concentration near the surface estimated using the 1.5 MeV helium beam is 5.1 × 1014 cm-2 for un-implanted KNbO3 sample, 5.6 × 1014 cm-2 for as-implanted, 3.4 × 1014 cm-2 for 150 °C annealed samples, respectively, indicating that a part of hydrogen is diffused out by annealing. The low resistive layer induced in H-ion implanted KNbO3 suggests the existence of a shallow energy level related to the complex defect consisting of hydrogen interstitial and the proton induced defect such as oxygen vacancy.

  4. Naphthoquinone based Chemosensor 2-(2‧-aminoethylpyridine)-3-chloro-1,4-naphthoquinone: Detection of metal ions, X-ray -crystal structures and DFT studies

    NASA Astrophysics Data System (ADS)

    Patil, Amit; Ware, Anuja P.; Bhand, Sujit; Chakrovarty, Debamitra; Gonnade, Rajesh; Pingale, Subhash S.; Salunke-Gawali, Sunita

    2016-06-01

    Naphthoquinone based Chemosensor 2; 2-(2‧-aminoethylpyridine)-3-chloro-1,4-napthoquinone have been synthesized and characterized. Chemosensor 2 crystallizes in the orthorhombic space group Pbcn and shows extensive intramolecular as well as intermolecular hydrogen bonding interactions. Each molecule of Chemosensor 2 showed interaction with five neighboring molecules via C-H⋯N, N-H⋯N, C-H⋯Cl and C-H⋯O interactions. Slipped π-π stacking interaction was observed in adjacent quinonoid and benzenoid rings. Chemosensor abilities of Chemosensor 2 ligand have been evaluated with metal ions viz. Cu2+, Ni2+, Zn2+, Co2+, Fe3+, Mn2+, Cr3+, Hg2+, La3+ and Cd2+ in methanol, methanol-water mixture and in presence of mild base triethylamine. Stoichiometry of Chemosensor 2 with metal ions such as Cu2+, Ni2+, Zn2+and Co2+ ions was determined by Jobs method in methanol and were found as 1:1 for Cu2+and 2:1 for Ni2+, Zn2+ Co2+. The variation in the metal ligand ratio is observed in aqueous media for Cu2+. Chemosensor 2 can be used selectively for naked eye detection of Cu2+ ions. The association constant obtained in methanol shows the trend Cu2+>Ni2+>Co2+. Cu2+ and two (Ni-1 and Ni-2) Ni2+ complexes were synthesized. Ni-2 complex showed coordination of Chemosensor 2 ligands was through pyridine nitrogen's only. The Chemosensor 2 and its deprotonated forms in methanol, water and triethylamine were also studied by TD-DFT studies.

  5. Higher Q factor and higher extinction ratio with lower detection limit photonic crystal-parallel-integrated sensor array for on-chip optical multiplexing sensing.

    PubMed

    Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Sun, Fujun; Tian, Huiping

    2016-12-10

    We introduce an alternative method to establish a nanoscale sensor array based on a photonic crystal (PhC) slab, which is referred to as a 1×4 monolithic PhC parallel-integrated sensor array (PhC-PISA). To realize this function, four lattice-shifted resonant cavities are butt-coupled to four output waveguide branches, respectively. By shifting the first to the two closest neighboring holes around the defect, a high Q factor over 1.5×104 has been obtained. Owing to the slightly different cavity spacing, each PhC resonator shows an independent resonant peak shift as the refractive index changes surrounding the resonant cavity. The specific single peak with a well-defined extinction ratio exceeds 25 dB. By applying the finite-difference time-domain (FDTD) method, we demonstrate that the sensitivities of each sensor in PhC-PISA S1=60.500  nm/RIU, S2=59.623  nm/RIU, S3=62.500  nm/RIU, and S4=51.142  nm/RIU (refractive index unit) are achieved, respectively. In addition, the negligible crosstalk and detection limit as small as 1×10-4 have been observed. The proposed sensor array as a desirable platform has great potential to realize optical multiplexing sensing and high-density monolithic integration.

  6. Crystallization of lactose from carbopol gels.

    PubMed

    Zeng, X M; Martin, G P; Marriott, C; Pritchard, J

    2000-07-01

    To crystallize lactose under static conditions with a view to preparing crystals of well-defined morphology. et-Lactose monohydrate was crystallized from neutralized Carbopol 934 gels. When the majority of crystals had grown to maturity, the gels were acidified using diluted hydrochloric acid and the crystals were harvested by filtration or centrifugation and washed with ethanol-water mixtures. Crystals prepared from the gel had a consistently narrower size distribution than control crystals, prepared from solution under constant stirring. If crystallization was effected in the gel without sedimentation of the crystals, then the resultant crystals had smooth surfaces without visually detectable surface roughness or asperities viewed by optical microscopy. The crystals from Carbopol gels also exhibited the uniform shape of an elongated tomahawk regardless of the crystallization conditions, in contrast to crystallization under constant stirring, where the crystal shape of lactose changed with crystallization conditions especially as a function of the initial concentration of lactose. All batches of lactose crystals prepared from Carbopol gels existed as alpha-lactose monohydrate, which showed better flowability than the controls of a similar particle size. Crystallization from Carbopol gel produces lactose crystals of uniform size, regular shape, smooth surface, and improved flowability.

  7. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  8. Simultaneous detection of surface coverage and structure of krypton films on gold by helium atom diffraction and quartz crystal microbalance techniques

    SciTech Connect

    Danisman, M. Fatih; Oezkan, Berrin

    2011-11-15

    We describe a quartz crystal microbalance setup that can be operated at low temperatures in ultra high vacuum with gold electrode surfaces acting as substrate surface for helium diffraction measurements. By simultaneous measurement of helium specular reflection intensity from the electrode surface and resonance frequency shift of the crystal during film adsorption, helium diffraction data can be correlated to film thickness. In addition, effects of interfacial viscosity on the helium diffraction pattern could be observed. To this end, first, flat gold films on AT cut quartz crystals were prepared which yield high enough helium specular reflection intensity. Then the crystals were mounted in the helium diffractometer sample holder and driven by means of a frequency modulation driving setup. Different crystal geometries were tested to obtain the best quality factor and preliminary measurements were performed on Kr films on gold surfaces. While the crystal structure and coverage of krypton films as a function of substrate temperature could successfully be determined, no depinning effects could be observed.

  9. Simultaneous detection of surface coverage and structure of krypton films on gold by helium atom diffraction and quartz crystal microbalance techniques.

    PubMed

    Danışman, M Fatih; Özkan, Berrin

    2011-11-01

    We describe a quartz crystal microbalance setup that can be operated at low temperatures in ultra high vacuum with gold electrode surfaces acting as substrate surface for helium diffraction measurements. By simultaneous measurement of helium specular reflection intensity from the electrode surface and resonance frequency shift of the crystal during film adsorption, helium diffraction data can be correlated to film thickness. In addition, effects of interfacial viscosity on the helium diffraction pattern could be observed. To this end, first, flat gold films on AT cut quartz crystals were prepared which yield high enough helium specular reflection intensity. Then the crystals were mounted in the helium diffractometer sample holder and driven by means of a frequency modulation driving setup. Different crystal geometries were tested to obtain the best quality factor and preliminary measurements were performed on Kr films on gold surfaces. While the crystal structure and coverage of krypton films as a function of substrate temperature could successfully be determined, no depinning effects could be observed.

  10. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  11. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  12. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  13. Computational crystallization

    PubMed Central

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H.

    2016-01-01

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536

  14. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  15. Crystallization mechanisms of acicular crystals

    NASA Astrophysics Data System (ADS)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  16. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  17. Crystal Data

    National Institute of Standards and Technology Data Gateway

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  18. On dewetting of thin films due to crystallization (crystallization dewetting).

    PubMed

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  19. Robotic CCD microscope for enhanced crystal recognition

    DOEpatents

    Segelke, Brent W.; Toppani, Dominique

    2007-11-06

    A robotic CCD microscope and procedures to automate crystal recognition. The robotic CCD microscope and procedures enables more accurate crystal recognition, leading to fewer false negative and fewer false positives, and enable detection of smaller crystals compared to other methods available today.

  20. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain.

    PubMed

    Xin, Yanmei; Li, Zhenzhen; Wu, Wenlong; Fu, Baihe; Wu, Hongjun; Zhang, Zhonghai

    2017-01-15

    For implementing sensitive and selective detection of biological molecules, the biosensors are been designed more and more complicated. The exploration of detection platform in a simple way without loss their sensitivity and selectivity is always a big challenge. Herein, a prototype of recognition biomolecule unit-free photoelectrochemical (PEC) sensing platform with self-cleaning activity is proposed with TiO2 nanotube photonic crystal (TiO2 NTPCs) materials as photoelectrode, and dopamine (DA) molecule as both sensitizer and target analyte. The unique adsorption between DA and TiO2 NTPCs induces the formation of charge transfer complex, which not only expends the optical absorption of TiO2 into visible light region, thus significantly boosts the PEC performance under illumination of visible light, but also implements the selective detection of DA on TiO2 photoelectrode. This simple but efficient PEC analysis platform presents a low detection limit of 0.15nm for detection of DA, which allows to realize the sensitive and selective determination of DA release from the mouse brain for its practical application after coupled with a microdialysis probe. The DA functionalized TiO2 NTPCs PEC sensing platform opens up a new PEC detection model, without using extra-biomolecule auxiliary, just with target molecule naturally adsorbed on the electrode for sensitive and selective detection, and paves a new avenue for biosensors design with minimalism idea.

  1. Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Wright, John D.

    1995-02-01

    This book describes the chemical and physical structure of molecular crystals, their optical and electronic properties, and the reactions between neighboring molecules in crystals. In the second edition, the author has taken into account research that has undergone extremely rapid development since the first edition was published in 1987. For instance, he gives extensive coverage to the applications of molecular materials in high-technology devices (e.g. optical communications, laser printers, photocopiers, liquid crystal displays, solar cells, and more). There is also an entirely new chapter on the recently discovered Buckminsterfullerene carbon molecule (C60) and organic non-linear optic materials.

  2. Crystal face temperature determination means

    DOEpatents

    Nason, Donald O.; Burger, Arnold

    1994-01-01

    An optically transparent furnace (10) having a detection apparatus (29) with a pedestal (12) enclosed in an evacuated ampule (16) for growing a crystal (14) thereon. Temperature differential is provided by a source heater (20), a base heater (24) and a cold finger (26) such that material migrates from a polycrystalline source material (18) to grow the crystal (14). A quartz halogen lamp (32) projects a collimated beam (30) onto the crystal (14) and a reflected beam (34) is analyzed by a double monochromator and photomultiplier detection spectrometer (40) and the detected peak position (48) in the reflected energy spectrum (44) of the reflected beam (34) is interpreted to determine surface temperature of the crystal (14).

  3. Crystal clear

    NASA Astrophysics Data System (ADS)

    2012-02-01

    A semiconductor is usually opaque to any light whose photon energy is larger than the semiconductor bandgap. Nature Photonics spoke to Stephen Durbin about how to render GaAs semiconductor crystals transparent using intense X-ray pulses.

  4. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  5. Acoustic Microsensors III. Direct Detection of Staphylococcal Enterotoxin B Employing a Piezoelectric Crystal Immunosensor with a Flexible Carboxylated Dextran Matrix as the Biochemical Interface.

    DTIC Science & Technology

    1998-03-01

    of the hydrogel matrix are: • an increased immobilization capacity as compared to monolayer based coat- ings: the dextran layer is about 100 nm...employing a piezoelectric crystal immunosensor with a flexible carboxylated dextran matrix as the biochemical interface Lange Kleiweg 137 P.O. Box 45... dextran matrix as the biochemical in- terface Auteur(s) J.L.N. Harteveld Datum maart 1998 Opdrachtnr. : A93KL448 Rapportnr. : PML 1997-A58

  6. Fiber thermometer based on the cross detection of the fluorescence lifetime of Cr3+:YAG crystal fiber and Plank"s blackbody radiation from cryogenic up to 1400°C

    NASA Astrophysics Data System (ADS)

    Ye, Linhua; Qiu, Yanqing; Shen, Yonghang; He, Sailing

    2005-02-01

    A fiber thermometer using the cross detection of the fluorescence lifetime and blackbody radiation was presented to measure temperature from -10°C up to 1400°C. Using a long pure YAG crystal fiber as the seed and a 0.1 at. % Cr2O3-doped Y3Al5O12 sintered powder rod as the source rod, a YAG fiber thermal probe with Cr3+ -ions doped end was grown by laser heated pedestal growth method. A blackbody cavity was constructed by sintered a thin ceramic layer around the Cr3+: YAG fiber end. A phase-locked detection scheme was used for the fluorescence lifetime detection. The fluorescence characteristics of the Cr3+-ions doped YAG was analyzed in a temperature range from -10°C up to 500°C. From 350°C to 1400°C the blackbody radiation signal in a narrow waveband were detected. Because the fluorescence lifetime was intensity independent, it should have the long-term stability and would not change if the fiber connectors of the probes were realigned. So the fluorescence lifetime based temperature measurement could be used to recalibrate that based on the blackbody radiation detection. Preliminary experimental results showed that the system could achieve a resolution much better than 1°C over the whole temperature range from -10°C to 1400°C.

  7. Crystal Compton Camera

    SciTech Connect

    Ziock, Klaus-Peter; Braverman, Joshua B.; Harrison, Mark J.; Hornback, Donald Eric; Fabris, Lorenzo; Newby, Jason

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  8. Principle of tunable chemical vapor detection exploiting the angular Goos-Hänchen shift in a magneto-electric liquid-crystal-based system

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Y. S.; Bentivegna, F. F. L.; Petrov, R. V.; Bichurin, M. I.

    2017-09-01

    We present a theoretical investigation of the angular Goos-Hänchen shift (GHS) of a Gaussian light beam upon reflection from a multilayered structure consisting of a nematic liquid crystal (LC) cell sandwiched between electrodes and deposited on a magneto-electric/non-magnetic bilayer. We show that the angular GHS can be enhanced and controlled both via a voltage applied to the LC cell and a magnetization reversal in the magneto-electric film. We describe the principle of an optical sensor of chemical vapors in the vicinity of the structure based on the voltage-induced tunability of the angular GHS.

  9. Photonic crystal enhanced cytokine immunoassay.

    PubMed

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  10. SYMMETRICAL LASER CRYSTALS.

    DTIC Science & Technology

    CRYSTAL GROWTH , SYMMETRY(CRYSTALLOGRAPHY), LASERS, SYNTHESIS, FERROELECTRIC CRYSTALS , FLUORESCENCE, IMPURITIES, BARIUM COMPOUNDS, ZIRCONATES...STRONTIUM COMPOUNDS, TITANATES, STANNATES, SAMARIUM, MANGANESE, REFRACTORY MATERIALS, OXIDES, SINGLE CRYSTALS .

  11. Photoelastic sphenoscopic analysis of crystals

    NASA Astrophysics Data System (ADS)

    Montalto, L.; Rinaldi, D.; Scalise, L.; Paone, N.; Davı, F.

    2016-01-01

    Birefringent crystals are at the basis of various devices used in many fields, from high energy physics to biomedical imaging for cancer detection. Since crystals are the main elements of those devices, a great attention is paid on their quality and properties. Here, we present a methodology for the photoelastic analysis of birefringent crystals, based on a modified polariscope. Polariscopes using conoscopic observation are used to evaluate crystals residual stresses in a precise but time consuming way; in our methodology, the light beam shape, which impinges on the crystal surface, has been changed from a solid cone (conoscopy) to a wedge (sphenoscopy). Since the polarized and coherent light is focused on a line rather than on a spot, this allows a faster analysis which leads to the observation, at a glance, of a spatial distribution of stress along a line. Three samples of lead tungstate crystals have been observed using this technique, and the obtained results are compared with the conoscopic observation. The samples have been tested both in unloaded condition and in a loaded configuration induced by means of a four points bending device, which allows to induce a known stress distribution in the crystal. The obtained results confirm, in a reliable manner, the sensitivity of the methodology to the crystal structure and stress.

  12. Photoelastic sphenoscopic analysis of crystals.

    PubMed

    Montalto, L; Rinaldi, D; Scalise, L; Paone, N; Davì, F

    2016-01-01

    Birefringent crystals are at the basis of various devices used in many fields, from high energy physics to biomedical imaging for cancer detection. Since crystals are the main elements of those devices, a great attention is paid on their quality and properties. Here, we present a methodology for the photoelastic analysis of birefringent crystals, based on a modified polariscope. Polariscopes using conoscopic observation are used to evaluate crystals residual stresses in a precise but time consuming way; in our methodology, the light beam shape, which impinges on the crystal surface, has been changed from a solid cone (conoscopy) to a wedge (sphenoscopy). Since the polarized and coherent light is focused on a line rather than on a spot, this allows a faster analysis which leads to the observation, at a glance, of a spatial distribution of stress along a line. Three samples of lead tungstate crystals have been observed using this technique, and the obtained results are compared with the conoscopic observation. The samples have been tested both in unloaded condition and in a loaded configuration induced by means of a four points bending device, which allows to induce a known stress distribution in the crystal. The obtained results confirm, in a reliable manner, the sensitivity of the methodology to the crystal structure and stress.

  13. Photoelastic sphenoscopic analysis of crystals

    SciTech Connect

    Montalto, L.; Rinaldi, D.; Scalise, L.; Paone, N.; Davì, F.

    2016-01-15

    Birefringent crystals are at the basis of various devices used in many fields, from high energy physics to biomedical imaging for cancer detection. Since crystals are the main elements of those devices, a great attention is paid on their quality and properties. Here, we present a methodology for the photoelastic analysis of birefringent crystals, based on a modified polariscope. Polariscopes using conoscopic observation are used to evaluate crystals residual stresses in a precise but time consuming way; in our methodology, the light beam shape, which impinges on the crystal surface, has been changed from a solid cone (conoscopy) to a wedge (sphenoscopy). Since the polarized and coherent light is focused on a line rather than on a spot, this allows a faster analysis which leads to the observation, at a glance, of a spatial distribution of stress along a line. Three samples of lead tungstate crystals have been observed using this technique, and the obtained results are compared with the conoscopic observation. The samples have been tested both in unloaded condition and in a loaded configuration induced by means of a four points bending device, which allows to induce a known stress distribution in the crystal. The obtained results confirm, in a reliable manner, the sensitivity of the methodology to the crystal structure and stress.

  14. Cubane-type Fe4S4 Clusters with Chiral Thiolate Ligation: Formation by Ligand Substitution, Detection of Intermediates by 1H NMR, and Solid State Structures Including Spontaneous Resolution Upon Crystallization

    PubMed Central

    Lo, Wayne; Huang, Shaw; Zheng, Shao-Liang; Holm, R. H.

    2011-01-01

    Cubane-type clusters [Fe4S4(SR*)4]2− containing chiral thiolate ligands with R* = CH(Me)Ph (1), CH2CH(Me)Et (2), and CH2CH(OH)CH2OH (3) have been prepared by ligand substitution in the reaction systems [Fe4S4(SEt)4]/R*SH (1–3, acetonitrile) and [Fe4S4Cl4]2−/NaSR*(3, Me2SO). Reactions with successive equivalents of thiol or thiolate generate the species [Fe4S4L4-n(SR*)n]2− (L = SEt, Cl) with n = 1–4. Clusters 1 and 2 were prepared with racemic thiols leading to the possible formation of one enantiomeric pair (n = 1) and seven diastereomers and their enantiomers (n = 2–4). Reactions were monitored by isotropically shifted 1H NMR spectra in acetonitrile or Me2SO. In systems affording 1 and 2 as final products, individual mixed-ligand species could not be detected. However, crystallization of (Et4N)2[1] afforded 1-[SS(RS)(RS)] in which two sites are disordered because of occupancy of R and S ligands. Similarly, (Et4N)2[2] led to 2-[SSSS], a consequence of spontaneous resolution upon crystallization. The clusters 3-[RRRR] and 3- [SSSS] were obtained from enantiomerically pure thiols. Successive reactions lead to detection of species with n = 1–4 by appearance of four pairs of diastereotopic SCH2 signals in both acetonitrile and Me2SO reaction systems. Identical spectra were obtained with racemic, R-(−), and S-(+) thiols, indicating that ligand-ligand interactions are too weak to allow detection of diastereomers (e.g., [SSSS] vs. [SSRR]). The stability of 3 in Me2SO/H2O media is described. PMID:21942299

  15. Therapeutic Crystals

    ERIC Educational Resources Information Center

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  16. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  17. Therapeutic Crystals

    ERIC Educational Resources Information Center

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  18. Comparing Crystals

    ERIC Educational Resources Information Center

    Sharp, Janet; Hoiberg, Karen; Chumbley, Scott

    2003-01-01

    This standard lesson on identifying salt and sugar crystals expands into an opportunity for students to develop their observation, questioning, and modeling skills. Although sugar and salt may look similar, students discovered that they looked very different under a magnifying glass and behaved differently when dissolved in water. In addition,…

  19. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  20. Photonic crystal biosensors towards on-chip integration.

    PubMed

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  2. Immobilization of a human epidermal growth factor receptor 2 mimotope-derived synthetic peptide on Au and its potential application for detection of herceptin in human serum by quartz crystal microbalance.

    PubMed

    Shang, Yuqin; Singh, Pankaj R; Chisti, Mohammad M; Mernaugh, Ray; Zeng, Xiangqun

    2011-12-01

    Therapeutic antibodies are antigenically similar to human antibodies and are difficult to detect in assays of human serum samples without the use of the therapeutic antibody's complementary antigen. Herein for the first time, we established a platform to detect Herceptin in solutions by using a small (<2.2 kDa), inexpensive, highly stable human epidermal growth factor receptor (HER2) mimotope-derived synthetic peptide immobilized on the surface of a Au quartz electrode. We used the HER2 mimotope as a substitute for the HER2 receptor protein in piezoimmunosensor or quartz crystal microbalance (QCM) assays to detect Herceptin in human serum. We demonstrated that assay sensitivity was dependent upon the amino acids used to tether and link the peptide to the sensor surface and the buffers used to carry out the assays. The detection limit of the piezoimmunosensor assay was 0.038 nM with a linear operating range of 0.038-0.859 nM. Little nonspecific binding to other therapeutic antibodies (Avastin and Rituxan) was observed. Levels of Herceptin in serum samples obtained from treated patients, as ascertained using the synthetic peptide-based QCM assay, were typical for those treated with Herceptin. The findings of this study are significant in that low-cost synthetic peptides could be used in a QCM assay, in lieu of native or recombinant antigens or capture antibodies, to rapidly detect a therapeutic antibody in human serum. The results suggested that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of affinity-based immunosensors to detect a broad range of clinical biomarkers.

  3. Crystal Ball Replica

    NASA Astrophysics Data System (ADS)

    Ajamian, John

    2016-09-01

    The A2 collaboration of the Institute for Nuclear Physics of Johannes Gutenberg University performs research on (multiple) meson photoproduction and nucleon structure and dynamics using a high energy polarized photon beam at specific targets. Particles scattered from the target are detected in the Crystal Ball, or CB. The CB is composed of 672 NaI crystals that surround the target and can analyze particle type and energy of ejected particles. Our project was to create a replica of the CB that could display what was happening in real time on a 3 Dimensional scale replica. Our replica was constructed to help explain the physics to the general public, be used as a tool when calibrating each of the 672 NaI crystals, and to better analyze the electron showering of particles coming from the target. This poster will focus on the hardware steps necessary to construct the replica and wire the 672 programmable LEDS in such a way that they can be mapped to correspond to the Crystal Ball elements. George Washington NSF Grant.

  4. Quartz-like Crystals Found in Planetary Disks

    NASA Image and Video Library

    2008-11-11

    NASA Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite.

  5. Point defects in CdTexSe1-x crystals grown from a Te-rich solution for applications in detecting radiation

    DOE PAGES

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  6. Point defects in CdTexSe1-x crystals grown from a Te-rich solution for applications in detecting radiation

    SciTech Connect

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, W.; Yang, G.; Burger, A.; James, R. B.; Cui, Y.

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  7. Hyperbolic decay of photo-created Sb2+ ions in Sn2P2S6:Sb crystals detected with electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Basun, S. A.; Halliburton, L. E.; Evans, D. R.

    2017-01-01

    In this paper, we employed a method that overcomes the known limitations of electron paramagnetic resonance (EPR) to monitor charge trap dynamics over a broad temperature range not normally accessible due to the lifetime broadening of the EPR lines at higher temperatures. This was achieved by measuring the decay of the EPR intensity after thermal annealing by rapid cycling back to low temperatures for the EPR measurement. This technique was used to experimentally demonstrate interesting physics in the form of a direct measurement of the hyperbolic decay 1/(1+t) of a charge trap population, which previously was only considered theoretically. The nontrivial effects of bimolecular recombination are demonstrated in the Sn2S2P6:Sb crystals, providing an explanation of the optical sensitization process observed in photorefractive Sn2P2S6:Sb used for dynamic holography.

  8. A Novel Signal-Amplified Immunoassay for the Detection of C-Reactive Protein Using HRP-Doped Magnetic Nanoparticles as Labels with the Electrochemical Quartz Crystal Microbalance as a Detector.

    PubMed

    Gan, Ning; Xiong, Ping; Wang, Ji; Li, Tianhua; Hu, Futao; Cao, Yuting; Zheng, Lei

    2013-01-01

    A novel horseradish peroxidase- (HPR-) doped magnetic core-shell Fe3O4@SiO2@Au nanocomposites (Fe-Au MNPs) were employed on immunoassay for the determination of C-reactive protein (CRP) based on a electrochemical quartz crystal microbalance detector (EQCM). Firstly, the secondary CRP antibody and HRP were both immobilized on the Fe-Au MNPs (Fe-Au MNPs-anti-CRP2/HRP) as a signal tag. Secondly, the above tag and the primary antibody (anti-CRP1) in the bottom of 96-well microtiter plate were employed to conjugate with a serial of CRP concentrations to produce a sandwich immunocomplex. Thirdly, the immunocomplex solution was subsequently exposed to 3, 3'-diaminobenzidine (DAB) in the presence of H2O2, resulting in an insoluble product. When the precipitation solution was dripped on EQCM, it can achieve a decrease of frequency of crystal (Δf). The amount of Δf was proportional to (CRP) from 0.003 to 200 ng mL(-1) with a low detection limit of 1 pg mL(-1). Compared with the enzyme-linked immunosorbent assay (ELISA), the immunoassay shows greatly improved sensitivity due to the significant amount of HRP labeled on signal tag. It also has good specificity and low sample consumption, which is expected to be a benefit for the CRP screening in early diagnosis of cardiovascular disease.

  9. Ionic crystals

    SciTech Connect

    Mahan, G.D.

    1985-03-01

    The theme of the second Petra School of Physics was the optical properties of solids. The author's lectures will discuss the theory of ionic crystals such as the alkali halides. The general topics will include a discussion of: the local electric fields, multipole polarizability, core level spectra, and electron energy levels. The subject of alkali halides is today regarded as unfashionable. They were quite popular years ago, but fashions and fancies in science have moved elsewhere. One should not think they are well understood. The author's impression of this field is that activity stopped, not because the problems were solved, but rather because the workers got tired of not being able to solve them. For example, we still do not have a good theory of crystal structure, since microscopic forces are not well characterized. One concludes that other quantities which depend upon forces, such as the elastic constants, are also not well understood, although theories of them are published all of the time. As another example, we still do not have a good theory of bonding. Here there are two camps: one which regards the bonding as ionic, while the other advocates significant amounts of covalency. Recently we have shown that both the elastic constants, and the amount of covalent bonding, depend significantly upon the higher multipole polarizabilities. In summary, the subject of ionic crystals is a field where there are still many unresolved issues awaiting good research. 21 refs., 5 figs., 4 tabs.

  10. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  11. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  12. Detection of inherited monazite in the Manaslu leucogranite by 208Pb/(232Th) ion microprobe dating: Crystallization age and tectonic implications

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; McKeegan, K. D.; LeFort, P.

    1995-07-01

    Although leucogranites are among the least petrologically variable of all igneous rocks, ironically they are among the most difficult to reliably date. The High Himalayan leucogranites have been the subject of numerous geochronological investigations because of their interrelationship with the most significant tectonic features of that mountain belt. For a variety of reasons linked to the minimum melt composition of these leucogranites, these dating studies have not been entirely successful. We report results of a new ion microprobe dating method based on the decay of 232Th to 208Pb in monazite that has directly revealed the presence of inherited Pb in monazite from the Manalsu granite, casting doubt on its previously accepted age. Monazite ages obtained from this leucogranite yield two distinct populations, a large number of ages with a normal distribution and mean age of 22.4 ± 0.5 Ma (±2 S.E.) that we interpret to be the crystallization age, and a smaller inherited fraction with an age of ca. 600 Ma. Because formation of the granite is thought to be related to slip on the Main Central Thrust, both this date and a second less precise result from a structurally similar pluton near Mt. Everest indicate that the Main Central Thrust was active in the interval 24-22 Ma, but do not constrain its initiation. Together with crosscutting relationships, these data require that movement on the North Himalayan Fault occurred prior to 22 Ma at both locations.

  13. An investigation of the role of defect levels on the radiation response of synthetic diamond crystals when used as sensors for the detection of mammography X-rays.

    PubMed

    Ade, Nicholas

    2017-09-01

    This study evaluates the role of defects on the performances of synthetic diamond sensors on exposure to mammography X-rays. Through systematic investigations, the main cause of instability of response of examined sensors necessitating pre-irradiation was isolated and ascribed to the presence of ambient light which has the effect of emptying shallow trapping levels. The changes in response between measurements in light and dark conditions varied from 2.8 ± 1.2% to 63.0 ± 0.3%. Sensitivities between 0.4 and 6.7nCGy(-1)mm(-3) determined for the sensors varied with defect levels. The study indicates that differences in crystal quality due to the presence and influence of defects would cause a discrepancy in the dosimetric performances of various diamond detectors. Once a sensor plate is selected (based on the influence of defect levels) and coupled to the probe housing with the response of the diamond sensor stabilised and appropriately shielded from ambient light, daily priming is not needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Photonic crystal optofluidic biolaser

    NASA Astrophysics Data System (ADS)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  15. Quartz Crystal Microbalance Data

    SciTech Connect

    Baxamusa, S H

    2011-11-16

    We are using a Qpod quartz crystal microbalance (manufactured by Inficon) for use as a low-volume non-volatile residue analysis tool. Inficon has agreed to help troubleshoot some of our measurements and are requesting to view some sample data, which are attached. The basic principle of an NVR analysis is to evaporate a known volume of solvent, and weigh the remaining residue to determine the purity of the solvent. A typical NVR analysis uses 60 g of solvent and can measure residue with an accuracy of +/- 0.01 mg. The detection limit is thus (0.01 mg)/(60 g) = 0.17 ppm. We are attempting to use a quartz crystal microbalance (QCM) to make a similar measurement. The attached data show the response of the QCM as a 5-20 mg drop of solvent evaporates on its surface. The change in mass registered by the QCM after the drop evaporates is the residue that deposits on the crystal. On some measurements, the change in mass in less than zero, which is aphysical since the drop will leave behind {>=}0 mass of residue. The vendor, Inficon, has agreed to look at these data as a means to help troubleshoot the cause.

  16. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  17. Method For Screening Microcrystallizations For Crystal Formation

    DOEpatents

    Santarsiero, Bernard D. , Stevens, Raymond C. , Schultz, Peter G. , Jaklevic, Joseph M. , Yegian, Derek T. , Cornell, Earl W. , Nordmeyer, Robert A.

    2003-10-07

    A method is provided for performing array microcrystallizations to determine suitable crystallization conditions for a molecule, the method comprising: forming an array of microcrystallizations, each microcrystallization comprising a drop comprising a mother liquor solution whose composition varies within the array and a molecule to be crystallized, the drop having a volume of less than 1 microliter; storing the array of microcrystallizations under conditions suitable for molecule crystals to form in the drops in the array; and detecting molecule crystal formation in the drops by taking images of the drops.

  18. Visible light absorbance enhanced by nitrogen embedded in the surface layer of Mn-doped sodium niobate crystals, detected by ultra violet - visible spectroscopy, x-ray photoelectron spectroscopy, and electric conductivity tests

    NASA Astrophysics Data System (ADS)

    Molak, A.; Pilch, M.

    2016-05-01

    Sodium niobate crystals doped with manganese ions, Na(NbMn)O3, were annealed in a nitrogen N2 flow at 600, 670, and 930 K. It was verified that simultaneous doping with Mn ions and annealing in nitrogen enhanced the photocatalytic features of sodium niobate. The transmission in the ultraviolet-visible range was measured at room temperature. The absorbance edge is in the range from 3.4 to 2.3 eV. The optical band gap Egap = 1.2-1.3 eV was evaluated using the Tauc relation. Crystals annealed at 670 K and 930 K exhibited an additional shift of the absorption edge of ˜20-40 nm toward longer wavelengths. The optical energy gap narrowed as a result of the superimposed effect of Mn and N co-doping. The x-ray photoelectron spectroscopy test showed that N ions incorporated into the surface layer. The valence band consisted of O 2p states hybridized with Nb 4d, Mn 3d, and N 2s states. The disorder detected in the surroundings of Nb and O ions decreased due to annealing. The binding energy of oxygen ions situated within the surface layer was EB ≈ 531 eV. The other contributions were assigned to molecular contamination. The contribution centered at 535.5 eV vanished after annealing at 600 K and 670 K. The contribution centered at 534 eV vanished after annealing at 930 K. The N2 annealing partly removed carbonates from the surfaces of the samples. In the 480-950 K range, the electric conductivity activation energy, Ea = 0.7-1.2 eV, was comparable with the optical Egap. The electric permittivity showed dispersion in the 0.1-800 kHz range that corresponds to the occurrence of defects.

  19. An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: A new candidate for hard radiation detection

    SciTech Connect

    Wibowo, Arief C.; Malliakas, Christos D.; Li, Hao; Stoumpos, Constantinos C.; Chung, Duck Young; Wessels, Bruce W.; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2016-03-16

    Here, we assess the mercury chalcohalide compound, β-Hg3S2Cl2, as a potential semiconductor material for X-ray and γ-ray detection. It has a high density (6.80 g/cm3) and wide band gap (2.56 eV) and crystallizes in the cubic Pm4$\\bar{3}$n space group with a three-dimensional structure comprised of [Hg12S8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of β-Hg3S2Cl2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg3Bi2S2Cl8 compound followed by the formation of β-Hg3S2Cl2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg3Bi2S2Cl8 followed by its partial decomposition into β-Hg3S2Cl2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 1010 Ω·cm and mobility-lifetime products of electron and hole carriers of 1.4(4) × 10–4 cm2/V and 7.5(3) × 10–5 cm2/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of β-Hg3S2Cl2 as a hard radiation detector material.

  20. Nonlinear Optical Effects in Liquid Crystals.

    DTIC Science & Technology

    1980-12-10

    nematic MBBA is studied. The experiments involve the detection of optical radiation at second- harmonic frequency when aligned thin film liquid crystals...studied. The experiments involve the detection of optical radiation at second-harmonic frequency when aligned thin film liquid crystals sam- ples are...used in our experiments. The shematic circuit diagram is shown in Fig. 7. A resistance sensing bridge network is used with a thermistor sensor and a

  1. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    PubMed Central

    Baranowski, Michael; Stec, Boguslaw

    2007-01-01

    We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCO) from the red algae Galdieria Sulphuraria. The protein crystallized in two different crystal forms, the I422 crystal form being obtained from high salt and the P21 crystal form being obtained from lower concentration of salt and PEG. We report here the crystallization, preliminary stages of structure determination and the detection of the structural phase transition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzyme belongs to the hexadecameric class (L8S8) with an approximate molecular weight 0.6MDa. The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a single hexadecamer per asymmetric unit. The preservation of diffraction power in a phase transition for such a large macromolecule is rare.

  2. A rhodamine 6G derived Schiff base as a fluorescent and colorimetric probe for pH detection and its crystal structure

    NASA Astrophysics Data System (ADS)

    Guo, Ping; Liu, Lijuan; Shi, Qian; Yin, Chunyan; Shi, Xuefang

    2017-02-01

    A fluorescent and colorimetric pH probe based on a rhodamine 6G derivative, RP1, was designed and synthesized. The probe was based on the pH induced change in the structure between the spirocyclic (non-fluorescent, colorless) and quinoid (fluorescent, pink) forms of rhodamine 6G. The effect of the acid concentration on the fluorescence "off-on" behaviors of RP1 was investigated. RP1 was fluorescent in the pH range of 1.1-3.1 and has a pKa value of 2.08 (±0.07). Thus RP1 should be useful for studies in strongly acidic environments. Possible interferences from fourteen common metal ions were tested and excluded showing the excellent selectivity of the probe. Finally, the probe exhibits an intense color change at pH values lower than 3.1 which makes it useful for naked-eye pH detection.

  3. Low-noise solar-blind photodetectors based on LaAlO3 single crystal with transparent indium-tin-oxide electrode as detection window.

    PubMed

    Guo, Er-Jia; Lu, Hui-Bin; He, Meng; Jin, Kui-Juan; Yang, Guo-Zhen

    2010-10-10

    The low-noise solar-blind photodetectors of indium-tin-oxide/LaAlO(3)/Ag (ITO/LAO/Ag) have been fabricated based on the properties of LAO bandgap excitation and the transparent conductance of ITO thin film. The ITO thin films are epitaxially grown on LAO wafers as the electrodes and detection windows of the photodetectors. The photodetectors have low noise and excellent electromagnetic shielding. The influence of the thickness of ITO thin films on the responsivity of the photodetectors has been studied. The photocurrent responsivity can reach 10.3 mA/W under the irradiation of 200-220 nm for a photodetector with 5 nm thick ITO film. The noise current is 1 pA order magnitude under the sunlight at midday. The experiment results suggest that ITO/LAO/Ag is one of the promising structures for the solar-blind deep-ultraviolet photodetectors.

  4. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  5. Crystallization of Stretched Polyimides: A Structure-Property Study

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Dezern, James F.

    2002-01-01

    A simple rotational isomeric state model was used to detect the degree to which polyimide repeat units might align to give an extended crystal. It was found experimentally that the hallmarks of stretch-crystallization were more likely to occur in materials whose molecules could readily give extended, aligned conformations. A proposed screening criterion was 84% accurate in selecting crystallizing molecules.

  6. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOEpatents

    Zaitseva, Natalia; Carman, M Leslie; Payne, Steve

    2014-10-28

    An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.

  7. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  8. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  9. Synthesis, crystal structures, DNA binding and photoluminescence properties of [Cu(pzta)2Cl]Cl⋅H2O for DNA detection.

    PubMed

    Duan, Ran-ran; Wang, Lu; Huo, Wei-qiang; Chen, Shi; Zhou, Xiao-hua

    2014-07-15

    We report here the synthesis of a new copper(II) complex of 2,4-diamino-6-(2'-pyrazin)-1,3,5-triazine [Cu(pzta)2Cl]Cl·H2O and its characterization using UV and IR spectroscopy, elemental analysis, and X-ray diffraction. Fluorescence spectroscopy revealed that the complex was sensitive to oxygen and to the polarity of nonaqueous solvents. Binding of the complex to DNA was investigated using UV spectroscopy, ethidium bromide displacement from DNA, cyclic voltammetry, and viscometry. The results revealed the DNA binding mode was intercalation together with external static-electricity. However, the complex can be also used to DNA detection as DNA fluorescence probe with a LOD of 4.21 ng mL(-1) for the relative wide linear range between 0.2 and 17 μg mL(-1). In conclusion, that synthetic method of the complex was easy with low expense and was relatively rapid and sensitive compared to most toxic fluorescence dyes. This finding would indicate the complex may be a potential DNA-targeted probes and optical probes for oxygen-free environments in nonaqueous form. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  11. PARAMAGNETIC RELAXATION IN CRYSTALS.

    DTIC Science & Technology

    CRYSTALS, PARAMAGNETIC RESONANCE, RELAXATION TIME , CRYSTAL DEFECTS, QUARTZ, GLASS, STRAIN(MECHANICS), TEMPERATURE, NUCLEAR SPINS, HYDROGEN, CALCIUM COMPOUNDS, FLUORIDES, COLOR CENTERS, PHONONS, OXYGEN.

  12. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  13. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  14. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-04

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  15. Coupled External Cavity Photonic Crystal Enhanced Fluorescence

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T.

    2016-01-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ~10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ~105× improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays. PMID:23129575

  16. Coupled external cavity photonic crystal enhanced fluorescence.

    PubMed

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  17. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  18. A method to improve sugar crystals classification

    NASA Astrophysics Data System (ADS)

    Tapamo, Jules-Raymond; Deokaran, Yuren

    2004-05-01

    There has been a long development of sugar crystal analysis techniques. Initially crystals were manually passed through various increasingly finer sieves so that one could manually calculate what percentage of crystals and crystal masses lay in various size groups. Later microscopes were used on small samples to take pictures of crystals so that they could be sized manually at higher degree of accuracy. In order to increase the accuracy, image processing are being used to analyze the pictures taken under microscope. The main concern is to analyze crystals with width greater than 50 micrometers. The ideal crystal is roughly square and has a width of approximately 120 micrometers. There is then a need to separate crystals into two main classes: the class of crystals that have to be considered for the analysis and those that will be rejected. This classification process involves: the enhancement of the quality of the image, the binarization of the image, the extraction of the connected components, the features extraction from each connected component and the characterization of the classes. During this process, there is more often a lost of information and in some case an intrusion of noise. These can have as result some misclassifications. These misclassifications can be caused by touching crystals or overlapping crystals that are treated as single crystal. These can also be due to the fact that edges of crystals are not well extracted. In this paper we present a method to alleviate those misclassifications using mathematical morphology and a combination of binarization and edge detection. This method gives better classification. Some results are presented.

  19. Predicting crystals of Janus colloids

    NASA Astrophysics Data System (ADS)

    Vissers, Teun; Preisler, Zdeněk; Smallenburg, Frank; Dijkstra, Marjolein; Sciortino, Francesco

    2013-04-01

    We present a numerical study on the phase diagram for a simple model of Janus colloids, including ordered and disordered structures. Using a range of techniques, we generate a set of crystal structures and investigate their relative stability field in the pressure-temperature and temperature-density planes by means of free-energy calculations and thermodynamic integration schemes. We find that despite the Janus colloids' simple architecture, they form stable crystal structures with complicated bond-topologies on an underlying face-centered-cubic or hexagonal-close-packed lattice. In addition, we find a phase consisting of wrinkled bilayer sheets, competing with both the fluid and the crystal phases. We detect a metastable gas-liquid coexistence which displays a micellization-driven re-entrant behavior.

  20. Automated high-throughput nanoliter-scale protein crystallization screening.

    PubMed

    Li, Fenglei; Robinson, Howard; Yeung, Edward S

    2005-12-01

    A highly efficient method is developed for automated high-throughput screening of nanoliter-scale protein crystallization. The system integrates liquid dispensing, crystallization and detection. The automated liquid dispensing system handles nanoliters of protein and various combinations of precipitants in parallel to access diverse regions of the phase diagram. A new detection scheme, native fluorescence, with complementary visible-light detection is employed for monitoring the progress of crystallization. This detection mode can distinguish protein crystals from inorganic crystals in a nondestructive manner. A gas-permeable membrane covering the microwells simplifies evaporation rate control and probes extended conditions in the phase diagram. The system was successfully demonstrated for the screening of lysozyme crystallization under 81 different conditions.

  1. Molecular tectonics: from crystals to crystals of crystals.

    PubMed

    Marinescu, Gabriela; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2013-12-11

    The in situ combination of M(II) cations (Co, Ni, Cu or Zn) with 2,4,6-pyridinetricarboxylic acid as a ligand, a bisamidinium dication as a H-bond donor tecton and NaOH leads to the formation of anionic metal complexes ML2(2-) and their interconnection into isomorphous 3D H-bonded networks displaying different colours which were used as preformed seed crystals for the formation of crystals of crystals by 3D epitaxial growth.

  2. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  3. Surface adsorption of Cs137 ions on quartz crystals

    USGS Publications Warehouse

    Antkiw, Stephen; Waesche, H.; Senftle, F.

    1954-01-01

    Adsorption tests were made on four large synthetic and three natural quartz crystals to see if surface defects might be detected by subsequent autoradiography techniques. The adsorbent used was radioactive Cs137 in a solution of Cs 137Cl. Natural quartz crystals adsorbed more cesium than the synthetic crystals. Certain surface defects were made evident by this method, but twinning features could not be detected.

  4. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  5. Visible light absorbance enhanced by nitrogen embedded in the surface layer of Mn-doped sodium niobate crystals, detected by ultra violet - visible spectroscopy, x-ray photoelectron spectroscopy, and electric conductivity tests

    SciTech Connect

    Molak, A. Pilch, M.

    2016-05-28

    Sodium niobate crystals doped with manganese ions, Na(NbMn)O{sub 3}, were annealed in a nitrogen N{sub 2} flow at 600, 670, and 930 K. It was verified that simultaneous doping with Mn ions and annealing in nitrogen enhanced the photocatalytic features of sodium niobate. The transmission in the ultraviolet-visible range was measured at room temperature. The absorbance edge is in the range from 3.4 to 2.3 eV. The optical band gap E{sub gap} = 1.2–1.3 eV was evaluated using the Tauc relation. Crystals annealed at 670 K and 930 K exhibited an additional shift of the absorption edge of ∼20–40 nm toward longer wavelengths. The optical energy gap narrowed as a result of the superimposed effect of Mn and N co-doping. The x-ray photoelectron spectroscopy test showed that N ions incorporated into the surface layer. The valence band consisted of O 2p states hybridized with Nb 4d, Mn 3d, and N 2s states. The disorder detected in the surroundings of Nb and O ions decreased due to annealing. The binding energy of oxygen ions situated within the surface layer was E{sub B} ≈ 531 eV. The other contributions were assigned to molecular contamination. The contribution centered at 535.5 eV vanished after annealing at 600 K and 670 K. The contribution centered at 534 eV vanished after annealing at 930 K. The N{sub 2} annealing partly removed carbonates from the surfaces of the samples. In the 480–950 K range, the electric conductivity activation energy, E{sub a} = 0.7–1.2 eV, was comparable with the optical E{sub gap}. The electric permittivity showed dispersion in the 0.1–800 kHz range that corresponds to the occurrence of defects.

  6. CRYSTAL COLLIMATION AT RHIC.

    SciTech Connect

    FLILLER,R.P.,III.DREES,A.GASSNER,D.HAMMONS,L.MCINTYRE,G.PEGGS,S.TRBOJEVIC,D.BIRYUKOV,V.CHESNOKOV,Y.TEREKHOV,V.

    2003-06-19

    Crystal Channeling occurs when an ion enters a crystal with a small angle with respect to the crystal planes. The electrostatic interaction between the incoming ion and the lattice causes the ion to follow the crystal planes. By mechanically bending a crystal, it is possible to use a crystal to deflect ions. One novel use of a bent crystal is to use it to channel beam halo particles into a collimator downstream. By deflecting the halo particles into a collimator with a crystal it may be possible to improve collimation efficiency as compared to a single collimator. A bent crystal is installed in the yellow ring of the Relativistic Heavy Ion Collider (RHIC). In this paper we discuss our experience with the crystal collimator, and compare our results to previous data, simulation, and theoretical prediction.

  7. The next generation of crystal detectors

    NASA Astrophysics Data System (ADS)

    Zhu, Ren-Yuan

    2015-09-01

    Crystal detectors have been used widely in high energy and nuclear physics experiments, medical instruments and homeland security applications. Novel crystal detectors are continuously being discovered and developed in academia and in industry. In high energy and nuclear physics experiments, total absorption electromagnetic calorimeters (ECAL) made of inorganic crystals are known for their superb energy resolution and detection efficiency for photon and electron measurements. A crystal ECAL is thus the choice for those experiments where precision measurements of photons and electrons are crucial for their physics missions. For future HEP experiments at the energy and intensity frontiers, however, the crystal detectors used in the above mentioned ECALs are either not bright and fast enough, or not radiation hard enough. Crystal detectors have also been proposed to build a Homogeneous Hadron Calorimeter (HHCAL) to achieve unprecedented jet mass resolution by duel readout of both Cherenkov and scintillation light, where development of cost-effective crystal detectors is a crucial issue because of the huge crystal volume required. This paper discusses several R&D directions for the next generation of crystal detectors for future HEP experiments.

  8. Crystallization of struvite from metastable region with different types of seed crystal

    NASA Astrophysics Data System (ADS)

    Ali, Imtiaj; Schneider, Phil Andrew

    2005-05-01

    The main feature of this paper was to recognize struvite crystallization in the metastable region of supersaturation. Thermodynamic equilibria of struvite were simulated to identify the minimum struvite solubility limit, thereafter validated by existing thermodynamic modelling packages such as PHREEQC and the derived data from existing struvite solubility curve. Using laser light scattering detection, spontaneous nucleation was identified by the slow increase of pH in a supersaturated solution of struvite. The crystallization experiment, conducted close to the saturation region in metastable zone, initiated struvite growth. The conducted experiment showed that mother crystal (struvite) was more effective as seeds for struvite crystallization.

  9. Crystal Diagnostics MultiPath System™.

    PubMed

    Stumpf, Curtis H; Zhao, Weidong; Bullard, Brian; Ammons, Christine; Devlin, Karl I; Niehaus, Gary D

    2014-01-01

    The Crystal Diagnostics MultiPath System™ provides rapid detection of Escherichia coli O157 in fresh raw ground beef, raw beeftrim, and spinach. The Crystal Diagnostics system combines patented Liquid Crystal technology with antibody-coated paramagnetic microspheres to selectively capture and detect E. coli O157 in food matrixes. This is the only liquid crystal-based biosensor commercially available for the detection of pathogens. The Crystal Diagnostics system expeditiously provides the sensitivity and accuracy of the U.S. Department of Agriculture Food Safety Inspection Service (USDA-FSIS) and the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA-BAM) methods for detecting as low as one CFU of E. coli O157 per 375 g of raw ground beef and raw beef trim, or 200 g of raw spinach. An internal inclusivity validation demonstrated detection of all 50 tested strains of . coli O157. The internal and independent laboratory tests demonstrate that the method is rapid and sensitive for detecting of E. coli O157 in fresh raw ground beef, beef trim, and spinach.

  10. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  11. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOEpatents

    Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang

    2012-06-26

    A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.

  12. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  13. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  14. Photonic crystal fiber nanospectrometer

    NASA Astrophysics Data System (ADS)

    Reimlinger, Mark; Battinelli, Emily; Wynne, Rosalind

    2012-04-01

    A silica-based steering wheel core photonic crystal fiber (SW-PCF) with a nano-featured spectrometer chemical agent detection configuration is presented. The spectrometer chip acquired from Nano-Optic DevicesTM can reduce the size of the spectrometer down to a coin. Results are provided for PCF structures filled with sample materials for spectroscopic identification. Portable and compact spectroscopic detectors with long interaction lengths (> few mm) specially outfitted for extreme environmental conditions are of interest to both military and civil institutions who wish to monitor air/water composition. The featured PCF spectrometer has the potential to measure optical absorption spectra in order to detect trace amounts of contaminants in gaseous or aqueous samples. The absorption spectrum of the SW-PCF detection system was measured as a function of the fiber interaction length and material volume. The SW-PCF measured spectra agreed with reference spectra. The SW-PCF has a core diameter of 3.9μm, outer diameter of 132.5μm. A nearly 5 cm length of the SW-PCF was coupled to the surface of a thin nanofeatured chip. The remaining end of the SW-PCF section is coupled to a laser light source centered at λ=635nm. The diffraction pattern produced by the nano-featured chip is captured by an objective lens and CCD camera for image analysis. The position of the intensity pattern extracted from the analyzed image indicates the spectral components of the absorption characteristics for the detected sample. This nano-featured spectrometer offers spectral resolution down to 0.1nm that makes it possible to detect substances with very detailed spectral features.

  15. Higher order modes in photonic crystal slabs.

    PubMed

    Gansch, Roman; Kalchmair, Stefan; Detz, Hermann; Andrews, Aaron M; Klang, Pavel; Schrenk, Werner; Strasser, Gottfried

    2011-08-15

    We present a detailed investigation of higher order modes in photonic crystal slabs. In such structures the resonances exhibit a blue-shift compared to an ideal two-dimensional photonic crystal, which depends on the order of the slab mode and the polarization. By fabricating a series of photonic crystal slab photo detecting devices, with varying ratios of slab thickness to photonic crystal lattice constant, we are able to distinguish between 0th and 1st order slab modes as well as the polarization from the shift of resonances in the photocurrent spectra. This method complements the photonic band structure mapping technique for characterization of photonic crystal slabs. © 2011 Optical Society of America

  16. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  17. Polarization proximity effect in isolator crystal pairs.

    PubMed

    Linzon, Y; Ferrera, M; Razzari, L; Pignolet, A; Morandotti, R

    2008-12-01

    We experimentally study the polarization dynamics (orientation and ellipticity) of near-infrared light transmitted through magneto-optical yttrium iron garnet isolator crystal pairs using a modified balanced detection scheme. When the pair separation is in the submillimeter range, we observed a proximity effect in which the saturation field is reduced by up to 20%. One-dimensional calculations suggest that the proximity effect originates from magnetostatic interactions between the dipole moments of the isolator crystals.

  18. Comparison of FDG PET and positron coincidence detection imaging using a dual-head gamma camera with 5/8-inch NaI(Tl) crystals in patients with suspected body malignancies.

    PubMed

    Boren, E L; Delbeke, D; Patton, J A; Sandler, M P

    1999-04-01

    The purpose of this study was to compare the diagnostic accuracy of fluorine-18 fluorodeoxyglucose (FDG) images obtained with (a) a dual-head coincidence gamma camera (DHC) equipped with 5/8-inch-thick NaI(Tl) crystals and parallel slit collimators and (b) a dedicated positron emission tomograph (PET) in a series of 28 patients with known or suspected malignancies. Twenty-eight patients with known or suspected malignancies underwent whole-body FDG PET imaging (Siemens, ECAT 933) after injection of approximately 10 mCi of 18F-FDG. FDG DHC images were then acquired for 30 min over the regions of interest using a dual-head gamma camera (VariCam, Elscint). The images were reconstructed in the normal mode, using photopeak/photopeak, photopeak/Compton, and Compton/photopeak coincidence events. FDG PET imaging found 45 lesions ranging in size from 1 cm to 7 cm in 28 patients. FDG DHC imaging detected 35/45 (78%) of these lesions. Among the ten lesions not seen with FDG DHC imaging, eight were less than 1.5 cm in size, and two were located centrally within the abdomen suffering from marked attenuation effects. The lesions were classified into three categories: thorax (n=24), liver (n=12), and extrahepatic abdominal (n=9). FDG DHC imaging identified 100% of lesions above 1.5 cm in the thorax group and 78% of those below 1.5 cm, for an overall total of 83%. FDG DHC imaging identified 100% of lesions above 1.5 cm, in the liver and 43% of lesions below 1.5 cm, for an overall total of 67%. FDG DHC imaging identified 78% of lesions above 1.5 cm in the extrahepatic abdominal group. There were no lesions below 1.5 cm in this group. FDG coincidence imaging using a dual-head gamma camera detected 90% of lesions greater than 1.5 cm. These data suggest that DHC imaging can be used clinically in well-defined diagnostic situations to differentiate benign from malignant lesions.

  19. Growth of dopamine crystals

    SciTech Connect

    Patil, Vidya Patki, Mugdha

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  20. Apparatus for growing crystals

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J. (Inventor); Witt, August F. (Inventor)

    1986-01-01

    An improved apparatus and method for growing crystals from a melt employing a heat pipe, consisting of one or more sections, each section serving to control temperature and thermal gradients in the crystal as it forms inside the pipe.

  1. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  2. Crystal structure and prediction.

    PubMed

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  3. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  4. Crystal Structure and Prediction

    NASA Astrophysics Data System (ADS)

    Thakur, Tejender S.; Dubey, Ritesh; Desiraju, Gautam R.

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  5. Microgravity protein crystallization

    PubMed Central

    McPherson, Alexander; DeLucas, Lawrence James

    2015-01-01

    Over the past 20 years a variety of technological advances in X-ray crystallography have shortened the time required to determine the structures of large macromolecules (i.e., proteins and nucleic acids) from several years to several weeks or days. However, one of the remaining challenges is the ability to produce diffraction-quality crystals suitable for a detailed structural analysis. Although the development of automated crystallization systems combined with protein engineering (site-directed mutagenesis to enhance protein solubility and crystallization) have improved crystallization success rates, there remain hundreds of proteins that either cannot be crystallized or yield crystals of insufficient quality to support X-ray structure determination. In an attempt to address this bottleneck, an international group of scientists has explored use of a microgravity environment to crystallize macromolecules. This paper summarizes the history of this international initiative along with a description of some of the flight hardware systems and crystallization results. PMID:28725714

  6. Use of dye to distinguish salt and protein crystals under microcrystallization conditions

    NASA Technical Reports Server (NTRS)

    Cosenza, Larry (Inventor); Bray, Terry L. (Inventor); DeLucas, Lawrence J. (Inventor); Gester, Thomas E. (Inventor); Hamrick, David T. (Inventor)

    2007-01-01

    An improved method of screening crystal growth conditions is provided wherein molecules are crystallized from solutions containing dyes. These dyes are selectively incorporated or associated with crystals of particular character thereby rendering crystals of particular character colored and improving detection of the dyed crystals. A preferred method involves use of dyes in protein solutions overlayed by oil. Use of oil allows the use of small volumes of solution and facilitates the screening of large numbers of crystallization conditions in arrays using automated devices that dispense appropriate solutions to generate crystallization trials, overlay crystallization trials with an oil, provide appropriate conditions conducive to crystallization and enhance detection of dyed (colored) or undyed (uncolored) crystals that result.

  7. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  8. CRYSTAL FILTER TEST SET

    DTIC Science & Technology

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  9. Apparatus for mounting crystal

    DOEpatents

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  10. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  11. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  12. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  13. Triangular ice crystals

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin; Salzmann, Christoph; Heymsfield, Andrew; Neely, Ryan

    2014-05-01

    We are all familiar with the hexagonal form of snow crystals and it is well established that this shape is derived from the arrangement of water molecules in the crystal lattice. However, crystals with a triangular form are often found in the Earth's atmosphere and the reason for this non-hexagonal shape has remained elusive. Recent laboratory work has shed light on why ice crystals should take on this triangular or three-fold scalene habit. Studies of the crystal structure of ice have shown that ice which initially crystallises can be made of up of hexagonal layers which are interlaced with cubic layers to produce a 'stacking disordered ice'. The degree of stacking disorder can vary from crystals which are dominantly hexagonal with a few cubic stacking faults, through to ice where the cubic and hexagonal sequences are fully randomised. The introduction of stacking disorder to ice crystals reduces the symmetry of the crystal from 6-fold (hexagonal) to 3-fold (triangular); this offers an explanation for the long standing problem of why some atmospheric ice crystals have a triangular habit. We discuss the implications of triangular crystals for halos, radiative properties, and also discuss the implications for our understanding of the nucleation and early stages of ice crystal growth for ice crystals in the atmosphere.

  14. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  15. Food Crystalization and Eggs

    USDA-ARS?s Scientific Manuscript database

    Food Crystalization and Eggs Deana R. Jones, Ph.D. USDA Agricultural Research Service Egg Safety and Quality Research Unit Athens, Georgia, USA Deana.Jones@ars.usda.gov Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a foo...

  16. Annealing macromolecular crystals.

    PubMed

    Hanson, B Leif; Bunick, Gerard J

    2007-01-01

    The process of crystal annealing has been used to improve the quality of diffraction from crystals that would otherwise be discarded for displaying unsatisfactory diffraction after flash cooling. Although techniques and protocols vary, macromolecular crystals are annealed by warming the flash-cooled crystal, then flash cooling it again. To apply macromolecular crystal annealing, a flash-cooled crystal displaying unacceptably high mosaicity or diffraction from ice is removed from the goniometer and immediately placed in cryoprotectant buffer. The crystal is incubated in the buffer at either room temperature or the temperature at which the crystal was grown. After about 3 min, the crystal is remounted in the loop and flash cooled. In situ annealing techniques, where the cold stream is diverted and the crystal allowed to warm on the loop prior to flash cooling, are variations of annealing that appears to work best when large solvent channels are not present in the crystal lattice or the solvent content of the crystal is relatively low.

  17. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  18. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  19. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    SciTech Connect

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  20. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  1. Improving marginal crystals.

    PubMed

    Carter, Charles W; Riès-Kautt, Madeleine

    2007-01-01

    The physical chemistry of crystal growth can help to identify directions in which to look for improved crystal properties. In this chapter, we summarize how crystal growth depends on parameters that can be controlled experimentally, and relate them to the tools available for optimizing a particular crystal form for crystal shape, volume, and diffraction quality. Our purpose is to sketch the conceptual basis of optimization and to provide sample protocols derived from those foundations. We hope to assist even those who chose not to use systematic methods by enabling them to carry out rudimentary optimization searches armed with a better understanding of how the underlying physical chemistry operates.

  2. Optofluidic Fano resonance photonic crystal refractometric sensors

    NASA Astrophysics Data System (ADS)

    Wang, Shuling; Liu, Yonghao; Zhao, Deyin; Yang, Hongjun; Zhou, Weidong; Sun, Yuze

    2017-02-01

    We report an ultra-compact surface-normal optofluidic refractometric sensor based on a two-dimensional silicon photonic crystal on insulator. In contrast to the conventional symmetric Lorentzian resonance that is prevalently used in the label-free sensors, the asymmetric lineshape and steep peak-to-dip transition of a Fano resonance enable the enhanced detection sensitivity. The detection limit of 1.3 × 10-6 refractive index units is achieved, which is among the lowest reported experimentally in the defect-free photonic crystal sensors.

  3. Photonic crystal light source

    DOEpatents

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  4. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  5. Imaging of Protein Crystals with Two-Photon Microscopy

    SciTech Connect

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-05-02

    Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as 10 {mu}m in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.

  6. Imaging of protein crystals with two–photon microscopy†

    PubMed Central

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-01-01

    Second–order non–linear optical imaging of chiral crystals (SONICC), that portrays second harmonic generation (SHG) by non–centrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal–to–noise ratio. Here we report the incorporation of both SONICC and two–photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as ~10 μm in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG–silent protein crystals. Our experimental data suggests that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPFE. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with non–damaging infrared light in a single system, makes the combination of SHG and intrinsic visible TPEF a powerful tool for non–destructive protein crystal identification and characterization during crystallization trials. PMID:22324807

  7. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  8. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  9. Impurities in zone-refining anthracene crystals

    NASA Astrophysics Data System (ADS)

    Hong, Irvine Huamin; Jie Tan, Ke; Toh, Minglin; Jiang, Hui; Zhang, Keke; Kloc, Christian

    2013-01-01

    Over the past five decades, paramount interest had been given to the synthesis of single crystals for use as scintillators in nuclear radiation detection field. Organic semiconductors are in principle less costly and of light weight, providing real potential as improved radiation detectors. However, challenges remain in the crystal growth and purification of the neutron detection material whereby the residual impurity will result in formation of excitation trap quenching the light yield within the host crystal. In this study, single crystals of anthracene up to 10 cm had been grown from the melt based on a self-designed, inexpensive and versatile zone refining apparatus. Platelets cut from these crystals by applying wire saw were tested for purity and perfection by Powder X-ray Diffraction (XRD), Laser Desorption Ionization-Time of Flight Mass Spectrometry (LDI-ToF MS), Fourier-Transform Infrared Spectroscopy (FT-IR), Atomic Force Microscopy (AFM) and fluorescence measurement. The results of characterization studies revealed that impurities within commercial anthracene powder such as carbazole and 9,9'bianthryl have been reduced effectively as indicated by LDI-ToF MS analysis. Meanwhile the photoluminescence analysis had clearly demonstrated higher photon energies derived from the pure crystal as compared to those of commercial material with higher content of impurities where free excitons during their localization surrender part of its energy to the surroundings.

  10. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  11. Rapid and reversible photoinduced switching of a rotaxane crystal

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Jen; Tsai, Ya-Ching; Suzaki, Yuji; Osakada, Kohtaro; Miura, Atsushi; Horie, Masaki

    2016-11-01

    Crystalline phase transitions caused by external stimuli have been used to detect physical changes in the solid-state properties. This study presents the mechanical switching of crystals of ferrocene-containing rotaxane controlled by focused laser light. The expansion and contraction of the crystals can be driven by turning on and off laser light at 445 nm. The irradiation-induced expansion of the crystal involves elongation along the a, b and c axes at 30 °C, whereas heating of the crystal at 105 °C causes the shortening of c axis. The expansions reversibly occur and have the advantage of a rapid relaxation (reverse) process. Single-crystal X-ray crystallography reveals the detailed structural changes of the molecules, corresponding to a change in the size of the crystals on laser irradiation. This molecular crystal behaviour induced by laser irradiation, is demonstrated for the remote control of objects, namely, microparticle transport and microswitching in an electric circuit.

  12. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  13. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  14. Hydrogen sensor based on metallic photonic crystal slabs.

    PubMed

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  15. Crystallization and crystal properties of squid rhodopsin

    SciTech Connect

    Murakami, Midori; Kitahara, Rei; Gotoh, Toshiaki; Kouyama, Tsutomu

    2007-06-01

    Truncated rhodopsin from the retina of the squid Todarodes pacificus was extracted and crystallized by the sitting-drop vapour-diffusion method. Hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. Rhodopsin, a photoreceptor membrane protein in the retina, is a prototypical member of the G-protein-coupled receptor family. In this study, rhodopsin from the retina of the squid Todarodes pacificus was treated with V8 protease to remove the C-terminal extension. Truncated rhodopsin was selectively extracted from the microvillar membranes using alkyl glucoside in the presence of zinc ions and was then crystallized by the sitting-drop vapour-diffusion method. Of the various crystals obtained, hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. The diffraction data suggested that the crystal belongs to space group P6{sub 2}, with unit-cell parameters a = b = 122.1, c = 158.6 Å. Preliminary crystallographic analysis, together with linear dichroism results, suggested that the rhodopsin dimers are packed in such a manner that their transmembrane helices are aligned nearly parallel to the c axis.

  16. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  17. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  18. Invited Review Article: Development of crystal lenses for energetic photons

    SciTech Connect

    Smither, Robert K.

    2014-08-15

    This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used to increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application.

  19. Screening of Protein Crystallization Trials by Second Order Nonlinear Optical Imaging of Chiral Crystals (SONICC)

    PubMed Central

    Haupert, Levi; Simpson, Garth

    2011-01-01

    Second order nonlinear optical imaging of chiral crystals (SONICC) is a promising new method for the sensitive and selective detection of protein crystals. Relevant general principles of second harmonic generation, which underpins SONICC, are reviewed. Instrumentation and methods for SONICC measurements are described and critically assessed in terms of performance trade-offs. Potential origins of false-positives and false-negatives are also discussed. PMID:22101350

  20. Cluster Mechanism of Homogeneous Crystallization (Computer Study)

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2008-12-01

    A molecular dynamics (MD) study of homogeneous crystallization of liquid rubidium is conducted with an inter-particle pair potential. The equilibrium crystallization temperature of the models was 313 K. Models consisted of 500, 998, and 1968 particles in a basic cube. The main investigation method was as follows: to detect (along the MD run) the atoms with Voronoi polyhedrons (VP) of 0608 type (“0608-atoms,” as in a bcc crystal) and to detect the bound groups of 0608-atoms (“0608-clusters”) that could play the role of the seeds in crystallization. Full crystallization was observed only at temperatures lower than 185 K with the creation of a predominant bcc crystal. The crystallization mechanism of Rb models differs drastically from the mechanism adopted in classical nucleation theory. It consists of the growth of the total number of 0608-atoms on cooling and the formation of 0608-clusters, analogous to the case of coagulation of solute for a supersaturated two-component solution. At the first stage of the process the clusters have a very loose structure (something like medusa or octopus with many tentacles) and include inside atoms with other Voronoi polyhedron types. The dimensions of clusters quickly increase and approach those of the basic cube. 0608-atoms play the leading role in the crystallization process and activate the transition of the atoms involved in the 0608-coordination. The fast growth of the maximum cluster begins after it attains a critical size (about 150 0608-atoms). The fluctuations of cluster sizes are very important in the creation of a 0608-cluster of critical (threshold) size. These fluctuations are especially large in the interval from 180 K to 185 K.

  1. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  2. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  3. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  4. Antarctic stratospheric ice crystals

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Toon, O. B.; Pueschel, R. F.; Snetsinger, K. G.; Verma, S.

    1989-01-01

    Ice crystals were replicated over the Palmer Peninsula at approximately 72 deg S on six occasions during the 1987 Airboirne Antarctic Ozone Experiment. The sampling altitude was between 12.5 and 18.5 km (45-65 thousand ft pressure altitude) with the temperature between 190 and 201 K. The atmosphere was subsaturated with respect to ice in all cases. The collected crystals were predominantly solid and hollow columns. The largest crystals were sampled at lower altitudes where the potential temperature was below 400 K. While the crystals were larger than anticipated, their low concentration results in a total surface area that is less than one tenth of the total aerosol surface area. The large ice crystals may play an important role in the observed stratospheric dehydration processes through sedimentation. Evidence of scavenging of submicron particles further suggests that the ice crystals may be effective in the removal of stratospheric chemicals.

  5. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent. Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:18429252

  6. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560

  7. Differences between individual ZSM-5 crystals in forming hollow single crystals and mesopores during base leaching.

    PubMed

    Fodor, Daniel; Krumeich, Frank; Hauert, Roland; van Bokhoven, Jeroen A

    2015-04-13

    After base treatment of ZSM-5 crystals below 100 nm in size, TEM shows hollow single crystals with a 10 nm shell. SEM images confirm that the shell is well- preserved even after prolonged treatment. Determination of the Si/Al ratios with AAS and XPS in combination with argon sputtering reveals aluminum zoning of the parent zeolite, and the total pore volume increases in the first two hours of base treatment. In corresponding TEM images, the amount of hollow crystals are observed to increase during the first two hours of base treatment, and intact crystals are visible even after 10 h of leaching; these observations indicate different dissolution rates between individual crystals. TEM of large, commercially available ZSM-5 crystals shows inhomogeneous distribution of mesopores among different crystals, which points to the existence of structural differences between individual crystals. Only tetrahedrally coordinated aluminum is detected with (27) Al MAS NMR after the base leaching of nano-sized ZSM-5. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  9. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  10. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  11. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  12. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  13. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  14. Patterned Colloidal Photonic Crystals.

    PubMed

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2017-09-11

    Colloidal photonic crystals (PCs) have been well developed because they are easy-to-prepare, cost-effective, and versatile to be modified and functionalized. Patterned colloidal PCs contributes a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate induced assembly, inkjet printing, and selective immobilization and modification is presented. The advantages of patterned PC devices are also discussed in detail, for example, the detection sensitivity and response speed of sensors can be improved; the flow direction and wicking rate of the microfluidic channel can be well controlled; cross-reactive molecules can be recognized through array patterned microchip; the display devices with tunable pattern, well-arranged RGB unit, and wide viewing-angle can be fabricated; and several anti-counterfeiting devices with different security strategies can be constructed. Finally, the perspective of future developments and challenges is presented and widely exhibited. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  16. Liquid crystal optofluidics

    NASA Astrophysics Data System (ADS)

    Vasdekis, A. E.; Cuennet, J. G.; Psaltis, D.

    2012-10-01

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  17. Heroin crystal nephropathy.

    PubMed

    Bautista, Josef Edrik Keith; Merhi, Basma; Gregory, Oliver; Hu, Susie; Henriksen, Kammi; Gohh, Reginald

    2015-06-01

    In this paper we present an interesting case of acute kidney injury and severe metabolic alkalosis in a patient with a history of heavy heroin abuse. Urine microscopy showed numerous broomstick-like crystals. These crystals are also identified in light and electron microscopy. We hypothesize that heroin crystalizes in an alkaline pH, resulting in tubular obstruction and acute kidney injury. Management is mainly supportive as there is no known specific therapy for this condition. This paper highlights the utility of urine microscopy in diagnosing the etiology of acute kidney injury and proposes a novel disease called heroin crystal nephropathy.

  18. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  19. Automation in biological crystallization.

    PubMed

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  20. Automation in biological crystallization

    PubMed Central

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074