Sample records for detecting differential memory

  1. Updating of Aversive Memories after Temporal Error Detection Is Differentially Modulated by mTOR across Development

    ERIC Educational Resources Information Center

    Tallot, Lucille; Diaz-Mataix, Lorenzo; Perry, Rosemarie E.; Wood, Kira; LeDoux, Joseph E.; Mouly, Anne-Marie; Sullivan, Regina M.; Doyère, Valérie

    2017-01-01

    The updating of a memory is triggered whenever it is reactivated and a mismatch from what is expected (i.e., prediction error) is detected, a process that can be unraveled through the memory's sensitivity to protein synthesis inhibitors (i.e., reconsolidation). As noted in previous studies, in Pavlovian threat/aversive conditioning in adult rats,…

  2. The role of cue detection for prospective memory development across the lifespan.

    PubMed

    Hering, Alexandra; Wild-Wall, Nele; Gajewski, Patrick D; Falkenstein, Michael; Kliegel, Matthias; Zinke, Katharina

    2016-12-01

    Behavioral findings suggest an inverted U-shaped pattern of prospective memory development across the lifespan. A key mechanism underlying this development is the ability to detect cues. We examined the influence of cue detection on prospective memory, combining behavioral and electrophysiological measures, in three age groups: adolescents (12-14 years), young (19-28 years), and old adults (66-77 years). Cue detection was manipulated by varying the distinctiveness (i.e., how easy it was to detect the cue based on color) of the prospective memory cue in a semantic judgment ongoing task. Behavioral results supported the pattern of an inverted U-shape with a pronounced prospective memory decrease in old adults. Adolescents and young adults showed a prospective memory specific modulation (larger amplitudes for the cues compared to other trials) already for the N1 component. No such specific modulation was evident in old adults for the early N1 component but only at the later P3b component. Adolescents showed differential modulations of the amplitude also for irrelevant information at the P3b, suggesting less efficient processing. In terms of conceptual implications, present findings underline the importance of cue detection for prospective remembering and reveal different developmental trajectories for cue detection. Our findings suggest that cue detection is not a unitary process but consists of multiple stages corresponding to several ERP components that differentially contribute to prospective memory performance across the lifespan. In adolescents resource allocation for detecting cues seemed successful initially but less efficient at later stages; whereas we found the opposite pattern for old adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response

    PubMed Central

    Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping

    2006-01-01

    To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257

  4. The Role of Sex in Memory Function: Considerations and Recommendations in the Context of Exercise.

    PubMed

    Loprinzi, Paul D; Frith, Emily

    2018-05-31

    There is evidence to suggest that biological sex plays a critical role in memory function, with sex differentially influencing memory type. In this review, we detail the current evidence evaluating sex-specific effects on various memory types. We also discuss potential mechanisms that explain these sex-specific effects, which include sex differences in neuroanatomy, neurochemical differences, biological differences, and cognitive and affect-related differences. Central to this review, we also highlight that, despite the established sex differences in memory, there is little work directly comparing whether males and females have a differential exercise-induced effect on memory function. As discussed herein, such a differential effect is plausible given the clear sex-specific effects on memory, exercise response, and molecular mediators of memory. We emphasize that future work should be carefully powered to detect sex differences. Future research should also examine these potential exercise-related sex-specific effects for various memory types and exercise intensities and modalities. This will help enhance our understanding of whether sex indeed moderates the effects of exercise and memory function, and as such, will improve our understanding of whether sex-specific, memory-enhancing interventions should be developed, implemented, and evaluated.

  5. Psychometric characteristics of the Rivermead Behavioural Memory Test (RBMT) as an early detection instrument for dementia and mild cognitive impairment in Brazil.

    PubMed

    Yassuda, Mônica Sanches; Flaks, Mariana Kneese; Viola, Luciane Fátima; Pereira, Fernanda Speggiorin; Memória, Claudia Maia; Nunes, Paula Villela; Forlenza, Orestes Vicente

    2010-09-01

    The Rivermead Behavioural Memory Test (RBMT) assesses everyday memory by means of tasks which mimic daily challenges. The objective was to examine the validity of the Brazilian version of the RBMT to detect cognitive decline. 195 older adults were diagnosed as normal controls (NC) or with mild cognitive impairment (MCI) or Alzheimer's disease (AD) by a multidisciplinary team, after participants completed clinical and neuropsychological protocols. Cronbach's alpha was high for the total sample for the RBMT profile (PS) and screening scores (SS) (PS = 0.91, SS = 0.87) and for the AD group (PS = 0.84, SS = 0.85), and moderate for the MCI (PS = 0.62, SS = 0.55) and NC (PS = 0.62, SS = 0.60) groups. RBMT total scores, Appointment, Pictures, Immediate and Delayed Story, Immediate and Delayed Route, Delayed Message and Date contributed to differentiate NC from MCI. ROC curve analyses indicated high accuracy to differentiate NC from AD patients, and, moderate accuracy to differentiate NC from MCI. The Brazilian version of the RBMT seems to be an appropriate instrument to identify memory decline in Brazilian older adults.

  6. Updating of aversive memories after temporal error detection is differentially modulated by mTOR across development

    PubMed Central

    Tallot, Lucille; Diaz-Mataix, Lorenzo; Perry, Rosemarie E.; Wood, Kira; LeDoux, Joseph E.; Mouly, Anne-Marie; Sullivan, Regina M.; Doyère, Valérie

    2017-01-01

    The updating of a memory is triggered whenever it is reactivated and a mismatch from what is expected (i.e., prediction error) is detected, a process that can be unraveled through the memory's sensitivity to protein synthesis inhibitors (i.e., reconsolidation). As noted in previous studies, in Pavlovian threat/aversive conditioning in adult rats, prediction error detection and its associated protein synthesis-dependent reconsolidation can be triggered by reactivating the memory with the conditioned stimulus (CS), but without the unconditioned stimulus (US), or by presenting a CS–US pairing with a different CS–US interval than during the initial learning. Whether similar mechanisms underlie memory updating in the young is not known. Using similar paradigms with rapamycin (an mTORC1 inhibitor), we show that preweaning rats (PN18–20) do form a long-term memory of the CS–US interval, and detect a 10-sec versus 30-sec temporal prediction error. However, the resulting updating/reconsolidation processes become adult-like after adolescence (PN30–40). Our results thus show that while temporal prediction error detection exists in preweaning rats, specific infant-type mechanisms are at play for associative learning and memory. PMID:28202715

  7. Soyasaponin I Improved Neuroprotection and Regeneration in Memory Deficient Model Rats

    PubMed Central

    Hong, Sung-Woon; Heo, Hwon; Yang, Jeong-hwa; Han, Maeum; Kim, Dong-Hyun; Kwon, Yunhee Kim

    2013-01-01

    Soy (Glycine Max Merr, family Leguminosae) has been reported to possess anti-cancer, anti-lipidemic, estrogen-like, and memory-enhancing effects. We investigated the memory-enhancing effects and the underlying mechanisms of soyasaponin I (soya-I), a major constituent of soy. Impaired learning and memory were induced by injecting ibotenic acid into the entorhinal cortex of adult rat brains. The effects of soya-I were evaluated by measuring behavioral tasks and neuronal regeneration of memory-deficient rats. Oral administration of soya-I exhibited significant memory-enhancing effects in the passive avoidance, Y-maze, and Morris water maze tests. Soya-Ι also increased BrdU incorporation into the dentate gyrus and the number of cell types (GAD67, ChAT, and VGluT1) in the hippocampal region of memory-deficient rats, whereas the number of reactive microglia (OX42) decreased. The mechanism underlying memory improvement was assessed by detecting the differentiation and proliferation of neural precursor cells (NPCs) prepared from the embryonic hippocampus (E16) of timed-pregnant Sprague-Dawley rats using immunocytochemical staining and immunoblotting analysis. Addition of soya-Ι in the cultured NPCs significantly elevated the markers for cell proliferation (Ki-67) and neuronal differentiation (NeuN, TUJ1, and MAP2). Finally, soya-I increased neurite lengthening and the number of neurites during the differentiation of NPCs. Soya-Ι may improve hippocampal learning and memory impairment by promoting proliferation and differentiation of NPCs in the hippocampus through facilitation of neuronal regeneration and minimization of neuro-inflammation. PMID:24324703

  8. Chondrogenic Differentiation Increases Antidonor Immune Response to Allogeneic Mesenchymal Stem Cell Transplantation

    PubMed Central

    Ryan, Aideen E; Lohan, Paul; O'Flynn, Lisa; Treacy, Oliver; Chen, Xizhe; Coleman, Cynthia; Shaw, Georgina; Murphy, Mary; Barry, Frank; Griffin, Matthew D; Ritter, Thomas

    2014-01-01

    Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3+ and CD68+ infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use. PMID:24184966

  9. Articulatory rehearsal in verbal working memory: a possible neurocognitive endophenotype that differentiates between schizophrenia and schizoaffective disorder.

    PubMed

    Gruber, Oliver; Gruber, Eva; Falkai, Peter

    2006-09-11

    Recent fMRI studies have identified brain systems underlying different components of working memory in healthy individuals. The aim of this study was to compare the functional integrity of these neural networks in terms of behavioural performance in patients with schizophrenia, schizoaffective disorder and healthy controls. In order to detect specific working memory deficits based on dysfunctions of underlying brain circuits we used the same verbal and visuospatial Sternberg item-recognition tasks as in previous neuroimaging studies. Clinical and performance data from matched groups consisting of 14 subjects each were statistically analyzed. Schizophrenic patients exhibited pronounced impairments of both verbal and visuospatial working memory, whereas verbal working memory performance was preserved in schizoaffective patients. The findings provide first evidence that dysfunction of a brain system subserving articulatory rehearsal could represent a biological marker which differentiates between schizophrenia and schizoaffective disorder.

  10. Episodic Memory Impairments in Primary Brain Tumor Patients.

    PubMed

    Durand, Thomas; Berzero, Giulia; Bompaire, Flavie; Hoffmann, Sabine; Léger, Isabelle; Jego, Virginie; Baruteau, Marie; Delgadillo, Daniel; Taillia, Hervé; Psimaras, Dimitri; Ricard, Damien

    2018-01-04

    Cognitive investigations in brain tumor patients have mostly explored episodic memory without differentiating between encoding, storage, and retrieval deficits. The aim of this study is to offer insight into the memory sub-processes affected in primary brain tumor patients and propose an appropriate assessment method. We retrospectively reviewed the clinical and memory assessments of 158 patients with primary brain tumors who had presented to our departments with cognitive complaints and were investigated using the Free and Cued Selective Reminding Test. Retrieval was the process of episodic memory most frequently affected, with deficits in this domain detected in 92% of patients with episodic memory impairments. Storage and encoding deficits were less prevalent, with impairments, respectively, detected in 41% and 23% of memory-impaired patients. The pattern of episodic memory impairment was similar across different tumor histologies and treatment modalities. Although all processes of episodic memory were found to be impaired, retrieval was by far the most widely affected function. A thorough assessment of all three components of episodic memory should be part of the regular neuropsychological evaluation in patients with primary brain tumors. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence

    PubMed Central

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966

  12. Temporal and Spatial Predictability of an Irrelevant Event Differently Affect Detection and Memory of Items in a Visual Sequence.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2016-01-01

    We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.

  13. Memory monitoring by animals and humans

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Shields, W. E.; Allendoerfer, K. R.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)

    1998-01-01

    The authors asked whether animals and humans would use similarly an uncertain response to escape indeterminate memories. Monkeys and humans performed serial probe recognition tasks that produced differential memory difficulty across serial positions (e.g., primacy and recency effects). Participants were given an escape option that let them avoid any trials they wished and receive a hint to the trial's answer. Across species, across tasks, and even across conspecifics with sharper or duller memories, monkeys and humans used the escape option selectively when more indeterminate memory traces were probed. Their pattern of escaping always mirrored the pattern of their primary memory performance across serial positions. Signal-detection analyses confirm the similarity of the animals' and humans' performances. Optimality analyses assess their efficiency. Several aspects of monkeys' performance suggest the cognitive sophistication of their decisions to escape.

  14. Age-Related Differences in Working Memory Performance in A 2-Back Task

    PubMed Central

    Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.

    2011-01-01

    The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328

  15. Transcriptional Profiling of Antigen-Dependent Murine B Cell Differentiation and Memory Formation1

    PubMed Central

    Bhattacharya, Deepta; Cheah, Ming T.; Franco, Christopher B.; Hosen, Naoki; Pin, Christopher L.; Sha, William C.; Weissman, Irving L.

    2015-01-01

    Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071

  16. Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process

    PubMed Central

    De Pino, Gabriela; Fernández, Rodrigo Sebastián; Villarreal, Mirta Fabiana; Pedreira, María Eugenia

    2016-01-01

    Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated. PMID:26991776

  17. Multiple determinants of lifespan memory differences.

    PubMed

    Henson, Richard N; Campbell, Karen L; Davis, Simon W; Taylor, Jason R; Emery, Tina; Erzinclioglu, Sharon; Kievit, Rogier A

    2016-09-07

    Memory problems are among the most common complaints as people grow older. Using structural equation modeling of commensurate scores of anterograde memory from a large (N = 315), population-derived sample (www.cam-can.org), we provide evidence for three memory factors that are supported by distinct brain regions and show differential sensitivity to age. Associative memory and item memory are dramatically affected by age, even after adjusting for education level and fluid intelligence, whereas visual priming is not. Associative memory and item memory are differentially affected by emotional valence, and the age-related decline in associative memory is faster for negative than for positive or neutral stimuli. Gray-matter volume in the hippocampus, parahippocampus and fusiform cortex, and a white-matter index for the fornix, uncinate fasciculus and inferior longitudinal fasciculus, show differential contributions to the three memory factors. Together, these data demonstrate the extent to which differential ageing of the brain leads to differential patterns of memory loss.

  18. Neuroimaging techniques for memory detection: scientific, ethical, and legal issues.

    PubMed

    Meegan, Daniel V

    2008-01-01

    There is considerable interest in the use of neuroimaging techniques for forensic purposes. Memory detection techniques, including the well-publicized Brain Fingerprinting technique (Brain Fingerprinting Laboratories, Inc., Seattle WA), exploit the fact that the brain responds differently to sensory stimuli to which it has been exposed before. When a stimulus is specifically associated with a crime, the resulting brain activity should differentiate between someone who was present at the crime and someone who was not. This article reviews the scientific literature on three such techniques: priming, old/new, and P300 effects. The forensic potential of these techniques is evaluated based on four criteria: specificity, automaticity, encoding flexibility, and longevity. This article concludes that none of the techniques are devoid of forensic potential, although much research is yet to be done. Ethical issues, including rights to privacy and against self-incrimination, are discussed. A discussion of legal issues concludes that current memory detection techniques do not yet meet United States standards of legal admissibility.

  19. Multiple determinants of lifespan memory differences

    PubMed Central

    Henson, Richard N.; Campbell, Karen L.; Davis, Simon W.; Taylor, Jason R.; Emery, Tina; Erzinclioglu, Sharon; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Edward T.; Calder, Andrew C.; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William D.; Rowe, James B.; Shafto, Meredith A.; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Mustafa, Abdur; Price, Darren; Samu, David; Treder, Matthias; Tsvetanov, Kamen A.; van Belle, Janna; Williams, Nitin; Bates, Lauren; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Henriques, Rafael; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewa, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Kievit, Rogier A.

    2016-01-01

    Memory problems are among the most common complaints as people grow older. Using structural equation modeling of commensurate scores of anterograde memory from a large (N = 315), population-derived sample (www.cam-can.org), we provide evidence for three memory factors that are supported by distinct brain regions and show differential sensitivity to age. Associative memory and item memory are dramatically affected by age, even after adjusting for education level and fluid intelligence, whereas visual priming is not. Associative memory and item memory are differentially affected by emotional valence, and the age-related decline in associative memory is faster for negative than for positive or neutral stimuli. Gray-matter volume in the hippocampus, parahippocampus and fusiform cortex, and a white-matter index for the fornix, uncinate fasciculus and inferior longitudinal fasciculus, show differential contributions to the three memory factors. Together, these data demonstrate the extent to which differential ageing of the brain leads to differential patterns of memory loss. PMID:27600595

  20. Is there pre-attentive memory-based comparison of pitch?

    PubMed

    Jacobsen, T; Schröger, E

    2001-07-01

    The brain's responsiveness to changes in sound frequency has been demonstrated by an overwhelming number of studies. Change detection occurs unintentionally and automatically. It is generally assumed that this brain response, the so-called mismatch negativity (MMN) of the event-related brain potential or evoked magnetic field, is based on the outcome of a memory-comparison mechanism rather than being due to a differential state of refractoriness of tonotopically organized cortical neurons. To the authors' knowledge, however, there is no entirely compelling evidence for this belief. An experimental protocol controlling for refractoriness effects was developed and a true memory-comparison-based brain response to pitch change was demonstrated.

  1. Differential verbal, visual, and spatial working memory in written language production.

    PubMed

    Raulerson, Bascom A; Donovan, Michael J; Whiteford, Alison P; Kellogg, Ronald T

    2010-02-01

    The contributions of verbal, visual, and spatial working memory to written language production were investigated. Participants composed definitions for nouns while concurrently performing a task which required updating, storing, and retrieving information coded either verbally, visually, or spatially. The present study extended past findings by showing the linguistic encoding of planned conceptual content makes its largest demand on verbal working memory for both low and high frequency nouns. Kellogg, Olive, and Piolat in 2007 found that concrete nouns place substantial demands on visual working memory when imaging the nouns' referents during planning, whereas abstract nouns make no demand. The current study further showed that this pattern was not an artifact of visual working memory being sensitive to manipulation of just any lexical property of the noun prompts. In contrast to past results, writing made a small but detectible demand on spatial working memory.

  2. Psychophysiology of prospective memory.

    PubMed

    Rothen, Nicolas; Meier, Beat

    2014-01-01

    Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.

  3. Asymmetric Spatial Processing Under Cognitive Load.

    PubMed

    Naert, Lien; Bonato, Mario; Fias, Wim

    2018-01-01

    Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.

  4. Characterizing age-related decline of recognition memory and brain activation profile in mice.

    PubMed

    Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale

    2018-06-01

    Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Gender differences in the functional neuroanatomy of emotional episodic autobiographical memory.

    PubMed

    Piefke, Martina; Weiss, Peter H; Markowitsch, Hans J; Fink, Gereon R

    2005-04-01

    Autobiographical memory is based on interactions between episodic memory contents, associated emotions, and a sense of self-continuity along the time axis of one's life. The functional neuroanatomy subserving autobiographical memory is known to include prefrontal, medial and lateral temporal, as well as retrosplenial brain areas; however, whether gender differences exist in neural correlates of autobiographical memory remains to be clarified. We reanalyzed data from a previous functional magnetic resonance imaging (fMRI) experiment to investigate gender-related differences in the neural bases of autobiographical memories with differential remoteness and emotional valence. On the behavioral level, there were no significant gender differences in memory performance or emotional intensity of memories. Activations common to males and females during autobiographical memory retrieval were observed in a bilateral network of brain areas comprising medial and lateral temporal regions, including hippocampal and parahippocampal structures, posterior cingulate, as well as prefrontal cortex. In males (relative to females), all types of autobiographical memories investigated were associated with differential activation of the left parahippocampal gyrus. By contrast, right dorsolateral prefrontal cortex was activated differentially by females. In addition, the right insula was activated differentially in females during remote and negative memory retrieval. The data show gender-related differential neural activations within the network subserving autobiographical memory in both genders. We suggest that the differential activations may reflect gender-specific cognitive strategies during access to autobiographical memories that do not necessarily affect the behavioral level of memory performance and emotionality. (c) 2005 Wiley-Liss, Inc.

  6. A signal detection-item response theory model for evaluating neuropsychological measures.

    PubMed

    Thomas, Michael L; Brown, Gregory G; Gur, Ruben C; Moore, Tyler M; Patt, Virginie M; Risbrough, Victoria B; Baker, Dewleen G

    2018-02-05

    Models from signal detection theory are commonly used to score neuropsychological test data, especially tests of recognition memory. Here we show that certain item response theory models can be formulated as signal detection theory models, thus linking two complementary but distinct methodologies. We then use the approach to evaluate the validity (construct representation) of commonly used research measures, demonstrate the impact of conditional error on neuropsychological outcomes, and evaluate measurement bias. Signal detection-item response theory (SD-IRT) models were fitted to recognition memory data for words, faces, and objects. The sample consisted of U.S. Infantry Marines and Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), and Visual Object Learning Test (VOLT; N = 1,249), and self-report of past head injury with loss of consciousness. SD-IRT models adequately fitted recognition memory item data across all modalities. Error varied systematically with ability estimates, and distributions of residuals from the regression of memory discrimination onto self-report of past head injury were positively skewed towards regions of larger measurement error. Analyses of differential item functioning revealed little evidence of systematic bias by level of education. SD-IRT models benefit from the measurement rigor of item response theory-which permits the modeling of item difficulty and examinee ability-and from signal detection theory-which provides an interpretive framework encompassing the experimentally validated constructs of memory discrimination and response bias. We used this approach to validate the construct representation of commonly used research measures and to demonstrate how nonoptimized item parameters can lead to erroneous conclusions when interpreting neuropsychological test data. Future work might include the development of computerized adaptive tests and integration with mixture and random-effects models.

  7. T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production.

    PubMed

    Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline

    2012-06-01

    Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies.

  8. Differential working memory correlates for implicit sequence performance in young and older adults.

    PubMed

    Bo, Jin; Jennett, S; Seidler, R D

    2012-09-01

    Our recent work has revealed that visuospatial working memory (VSWM) relates to the rate of explicit motor sequence learning (Bo and Seidler in J Neurophysiol 101:3116-3125, 2009) and implicit sequence performance (Bo et al. in Exp Brain Res 214:73-81, 2011a) in young adults (YA). Although aging has a detrimental impact on many cognitive functions, including working memory, older adults (OA) still rely on their declining working memory resources in an effort to optimize explicit motor sequence learning. Here, we evaluated whether age-related differences in VSWM and/or verbal working memory (VWM) performance relates to implicit performance change in the serial reaction time (SRT) sequence task in OA. Participants performed two computerized working memory tasks adapted from change detection working memory assessments (Luck and Vogel in Nature 390:279-281, 1997), an implicit SRT task and several neuropsychological tests. We found that, although OA exhibited an overall reduction in both VSWM and VWM, both OA and YA showed similar performance in the implicit SRT task. Interestingly, while VSWM and VWM were significantly correlated with each other in YA, there was no correlation between these two working memory scores in OA. In YA, the rate of SRT performance change (exponential fit to the performance curve) was significantly correlated with both VSWM and VWM, while in contrast, OA's performance was only correlated with VWM, and not VSWM. These results demonstrate differential reliance on VSWM and VWM for SRT performance between YA and OA. OA may utilize VWM to maintain optimized performance of second-order conditional sequences.

  9. Hippocampal maturity promotes memory distinctiveness in childhood and adolescence

    PubMed Central

    Keresztes, Attila; Bender, Andrew R.; Bodammer, Nils C.; Shing, Yee Lee

    2017-01-01

    Adaptive learning systems need to meet two complementary and partially conflicting goals: detecting regularities in the world versus remembering specific events. The hippocampus (HC) keeps a fine balance between computations that extract commonalities of incoming information (i.e., pattern completion) and computations that enable encoding of highly similar events into unique representations (i.e., pattern separation). Histological evidence from young rhesus monkeys suggests that HC development is characterized by the differential development of intrahippocampal subfields and associated networks. However, due to challenges in the in vivo investigation of such developmental organization, the ontogenetic timing of HC subfield maturation remains controversial. Delineating its course is important, as it directly influences the fine balance between pattern separation and pattern completion operations and, thus, developmental changes in learning and memory. Here, we relate in vivo, high-resolution structural magnetic resonance imaging data of HC subfields to behavioral memory performance in children aged 6–14 y and in young adults. We identify a multivariate profile of age-related differences in intrahippocampal structures and show that HC maturity as captured by this pattern is associated with age differences in the differential encoding of unique memory representations. PMID:28784801

  10. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.

  11. Consistency across repeated eyewitness interviews: contrasting police detectives' beliefs with actual eyewitness performance.

    PubMed

    Krix, Alana C; Sauerland, Melanie; Lorei, Clemens; Rispens, Imke

    2015-01-01

    In the legal system, inconsistencies in eyewitness accounts are often used to discredit witnesses' credibility. This is at odds with research findings showing that witnesses frequently report reminiscent details (details previously unrecalled) at an accuracy rate that is nearly as high as for consistently recalled information. The present study sought to put the validity of beliefs about recall consistency to a test by directly comparing them with actual memory performance in two recall attempts. All participants watched a film of a staged theft. Subsequently, the memory group (N = 84) provided one statement immediately after the film (either with the Self-Administered Interview or free recall) and one after a one-week delay. The estimation group (N = 81) consisting of experienced police detectives estimated the recall performance of the memory group. The results showed that actual recall performance was consistently underestimated. Also, a sharp decline of memory performance between recall attempts was assumed by the estimation group whereas actual accuracy remained stable. While reminiscent details were almost as accurate as consistent details, they were estimated to be much less accurate than consistent information and as inaccurate as direct contradictions. The police detectives expressed a great concern that reminiscence was the result of suggestive external influences. In conclusion, it seems that experienced police detectives hold many implicit beliefs about recall consistency that do not correspond with actual recall performance. Recommendations for police trainings are provided. These aim at fostering a differentiated view on eyewitness performance and the inclusion of more comprehensive classes on human memory structure.

  12. Induction of CD4 T cell memory by local cellular collectivity.

    PubMed

    Polonsky, Michal; Rimer, Jacob; Kern-Perets, Amos; Zaretsky, Irina; Miller, Stav; Bornstein, Chamutal; David, Eyal; Kopelman, Naama Meira; Stelzer, Gil; Porat, Ziv; Chain, Benjamin; Friedman, Nir

    2018-06-15

    Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4 + T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses. Copyright © 2018, American Association for the Advancement of Science.

  13. Asymmetric Spatial Processing Under Cognitive Load

    PubMed Central

    Naert, Lien; Bonato, Mario; Fias, Wim

    2018-01-01

    Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371

  14. Detection of Memory B Activity Against a Therapeutic Protein in Treatment-Naïve Subjects.

    PubMed

    Liao, Karen; Derbyshire, Stacy; Wang, Kai-Fen; Caucci, Cherilyn; Tang, Shuo; Holland, Claire; Loercher, Amy; Gunn, George R

    2018-03-16

    Bridging immunoassays commonly used to detect and characterize immunogenicity during biologic development do not provide direct information on the presence or development of a memory anti-drug antibody (ADA) response. In this study, a B cell ELISPOT assay method was used to evaluate pre-existing ADA for anti-TNFR1 domain antibody, GSK1995057, an experimental biologic in treatment naive subjects. This assay utilized a 7-day activation of PBMCs by a combination of GSK1995057 (antigen) and polyclonal stimulator followed by GSK1995057-specific ELISPOT for the enumeration of memory B cells that have differentiated into antibody secreting cells (ASC) in vitro. We demonstrated that GSK1995057-specific ASC were detectable in treatment-naïve subjects with pre-existing ADA; the frequency of drug-specific ASC was low and ranged from 1 to 10 spot forming units (SFU) per million cells. Interestingly, the frequency of drug-specific ASC correlated with the ADA level measured using an in vitro ADA assay. We further confirmed that the ASC originated from CD27 + memory B cells, not from CD27 - -naïve B cells. Our data demonstrated the utility of the B cell ELISPOT method in therapeutic protein immunogenicity evaluation, providing a novel way to confirm and characterize the cell population producing pre-existing ADA. This novel application of a B cell ELISPOT assay informs and characterizes immune memory activity regarding incidence and magnitude associated with a pre-existing ADA response.

  15. Conversational assessment in memory clinic encounters: interactional profiling for differentiating dementia from functional memory disorders.

    PubMed

    Jones, Danielle; Drew, Paul; Elsey, Christopher; Blackburn, Daniel; Wakefield, Sarah; Harkness, Kirsty; Reuber, Markus

    2016-01-01

    In the UK dementia is under-diagnosed, there is limited access to specialist memory clinics, and many of the patients referred to such clinics are ultimately found to have functional (non-progressive) memory disorders (FMD), rather than a neurodegenerative disorder. Government initiatives on 'timely diagnosis' aim to improve the rate and quality of diagnosis for those with dementia. This study seeks to improve the screening and diagnostic process by analysing communication between clinicians and patients during initial specialist clinic visits. Establishing differential conversational profiles could help the timely differential diagnosis of memory complaints. This study is based on video- and audio recordings of 25 initial consultations between neurologists and patients referred to a UK memory clinic. Conversation analysis was used to explore recurrent communicative practices associated with each diagnostic group. Two discrete conversational profiles began to emerge, to help differentiate between patients with dementia and functional memory complaints, based on (1) whether the patient is able to answer questions about personal information; (2) whether they can display working memory in interaction; (3) whether they are able to respond to compound questions; (4) the time taken to respond to questions; and (5) the level of detail they offer when providing an account of their memory failure experiences. The distinctive conversational profiles observed in patients with functional memory complaints on the one hand and neurodegenerative memory conditions on the other suggest that conversational profiling can support the differential diagnosis of functional and neurodegenerative memory disorders.

  16. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1997-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  17. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  18. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells.

    PubMed

    Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M

    2011-10-15

    Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.

  19. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1997-09-23

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  20. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  1. Cancer immunotherapy and immunological memory.

    PubMed

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

    Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  2. From episodic to habitual prospective memory: ERP-evidence for a linear transition

    PubMed Central

    Meier, Beat; Matter, Sibylle; Baumann, Brigitta; Walter, Stefan; Koenig, Thomas

    2014-01-01

    Performing a prospective memory task repeatedly changes the nature of the task from episodic to habitual. The goal of the present study was to investigate the neural basis of this transition. In two experiments, we contrasted event-related potentials (ERPs) evoked by correct responses to prospective memory targets in the first, more episodic part of the experiment with those of the second, more habitual part of the experiment. Specifically, we tested whether the early, middle, or late ERP-components, which are thought to reflect cue detection, retrieval of the intention, and post-retrieval processes, respectively, would be changed by routinely performing the prospective memory task. The results showed a differential ERP effect in the middle time window (450–650 ms post-stimulus). Source localization using low resolution brain electromagnetic tomography analysis suggests that the transition was accompanied by an increase of activation in the posterior parietal and occipital cortex. These findings indicate that habitual prospective memory involves retrieval processes guided more strongly by parietal brain structures. In brief, the study demonstrates that episodic and habitual prospective memory tasks recruit different brain areas. PMID:25071519

  3. Differentiating the Differentiation Models: A Comparison of the Retrieving Effectively from Memory Model (REM) and the Subjective Likelihood Model (SLiM)

    ERIC Educational Resources Information Center

    Criss, Amy H.; McClelland, James L.

    2006-01-01

    The subjective likelihood model [SLiM; McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory. "Psychological Review," 105(4), 734-760.] and the retrieving effectively from memory model [REM; Shiffrin, R. M., & Steyvers, M. (1997). A model…

  4. Motivation enhances visual working memory capacity through the modulation of central cognitive processes.

    PubMed

    Sanada, Motoyuki; Ikeda, Koki; Kimura, Kenta; Hasegawa, Toshikazu

    2013-09-01

    Motivation is well known to enhance working memory (WM) capacity, but the mechanism underlying this effect remains unclear. The WM process can be divided into encoding, maintenance, and retrieval, and in a change detection visual WM paradigm, the encoding and retrieval processes can be subdivided into perceptual and central processing. To clarify which of these segments are most influenced by motivation, we measured ERPs in a change detection task with differential monetary rewards. The results showed that the enhancement of WM capacity under high motivation was accompanied by modulations of late central components but not those reflecting attentional control on perceptual inputs across all stages of WM. We conclude that the "state-dependent" shift of motivation impacted the central, rather than the perceptual functions in order to achieve better behavioral performances. Copyright © 2013 Society for Psychophysiological Research.

  5. Consistency across Repeated Eyewitness Interviews: Contrasting Police Detectives’ Beliefs with Actual Eyewitness Performance

    PubMed Central

    Krix, Alana C.; Sauerland, Melanie; Lorei, Clemens; Rispens, Imke

    2015-01-01

    In the legal system, inconsistencies in eyewitness accounts are often used to discredit witnesses’ credibility. This is at odds with research findings showing that witnesses frequently report reminiscent details (details previously unrecalled) at an accuracy rate that is nearly as high as for consistently recalled information. The present study sought to put the validity of beliefs about recall consistency to a test by directly comparing them with actual memory performance in two recall attempts. All participants watched a film of a staged theft. Subsequently, the memory group (N = 84) provided one statement immediately after the film (either with the Self-Administered Interview or free recall) and one after a one-week delay. The estimation group (N = 81) consisting of experienced police detectives estimated the recall performance of the memory group. The results showed that actual recall performance was consistently underestimated. Also, a sharp decline of memory performance between recall attempts was assumed by the estimation group whereas actual accuracy remained stable. While reminiscent details were almost as accurate as consistent details, they were estimated to be much less accurate than consistent information and as inaccurate as direct contradictions. The police detectives expressed a great concern that reminiscence was the result of suggestive external influences. In conclusion, it seems that experienced police detectives hold many implicit beliefs about recall consistency that do not correspond with actual recall performance. Recommendations for police trainings are provided. These aim at fostering a differentiated view on eyewitness performance and the inclusion of more comprehensive classes on human memory structure. PMID:25695428

  6. Age differences in perceptions of memory strategy effectiveness for recent and remote memory.

    PubMed

    Lineweaver, Tara T; Horhota, Michelle; Crumley, Jessica; Geanon, Catherine T; Juett, Jacqueline J

    2018-03-01

    We examined whether young and older adults hold different beliefs about the effectiveness of memory strategies for specific types of memory tasks and whether memory strategies are perceived to be differentially effective for young, middle-aged, and older targets. Participants rated the effectiveness of five memory strategies for 10 memory tasks at three target ages (20, 50, and 80 years old). Older adults did not strongly differentiate strategy effectiveness, viewing most strategies as similarly effective across memory tasks. Young adults held strategy-specific beliefs, endorsing external aids and physical health as more effective than a positive attitude or internal strategies, without substantial differentiation based on task. We also found differences in anticipated strategy effectiveness for targets of different ages. Older adults described cognitive and physical health strategies as more effective for older than middle-aged targets, whereas young adults expected these strategies to be equally effective for middle-aged and older target adults.

  7. Narrative abilities, memory and attention in children with a specific language impairment.

    PubMed

    Duinmeijer, Iris; de Jong, Jan; Scheper, Annette

    2012-01-01

    While narrative tasks have proven to be valid measures for detecting language disorders, measuring communicative skills and predicting future academic performance, research into the comparability of different narrative tasks has shown that outcomes are dependent on the type of task used. Although many of the studies detecting task differences touch upon the fact that tasks place differential demands on cognitive abilities like auditory attention and memory, few studies have related specific narrative tasks to these cognitive abilities. Examining this relation is especially warranted for children with specific language impairment (SLI), who are characterized by language problems, but often have problems in other cognitive domains as well. In the current research, a comparison was made between a story retelling task (The Bus Story) and a story generation task (The Frog Story) in a group of children with SLI (n= 34) and a typically developing group (n= 38) from the same age range. In addition to the two narrative tasks, sustained auditory attention (TEA-Ch) and verbal working memory (WISC digit span and the Dutch version of the CVLT-C word list recall) were measured. Correlations were computed between the narrative, the memory and the attention scores. A group comparison showed that the children with SLI scored significantly worse than the typically developing children on several narrative measures as well as on sustained auditory attention and verbal working memory. A within-subjects comparison of the scores on the two narrative tasks showed a contrast between the tasks on several narrative measures. Furthermore, correlational analyses showed that, on the level of plot structure, the story generation task correlated with sustained auditory attention, while the story retelling task correlated with word list recall. Mean length of utterance (MLU) on the other hand correlated with digit span but not with sustained auditory attention. While children with SLI have problems with narratives in general, their performance is also dependent on the specific elicitation task used for research or diagnostics. Various narrative tasks generate different scores and are differentially correlated to cognitive skills like attention and memory, making the selection of a given task crucial in the clinical setting. © 2012 Royal College of Speech and Language Therapists.

  8. Differential memory in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1991-01-01

    The process of 'differential memory' in the earth's magnetotail is studied in the framework of the modified Harris magnetotail geometry. It is verified that differential memory can generate non-Maxwellian features in the modified Harris field model. The time scales and the potentially observable distribution functions associated with the process of differential memory are investigated, and it is shown that non-Maxwelllian distributions can evolve as a test particle response to distribution function boundary conditions in a Harris field magnetotail model. The non-Maxwellian features which arise from distribution function mapping have definite time scales associated with them, which are generally shorter than the earthward convection time scale but longer than the typical Alfven crossing time.

  9. Ezh2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumor immunity.

    PubMed

    He, Shan; Liu, Yongnian; Meng, Lijun; Sun, Hongxing; Wang, Ying; Ji, Yun; Purushe, Janaki; Chen, Pan; Li, Changhong; Madzo, Jozef; Issa, Jean-Pierre; Soboloff, Jonathan; Reshef, Ran; Moore, Bethany; Gattinoni, Luca; Zhang, Yi

    2017-12-14

    Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8 + T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies.

  10. Decoding fMRI Signatures of Real-world Autobiographical Memory Retrieval.

    PubMed

    Rissman, Jesse; Chow, Tiffany E; Reggente, Nicco; Wagner, Anthony D

    2016-04-01

    Extant neuroimaging data implicate frontoparietal and medial-temporal lobe regions in episodic retrieval, and the specific pattern of activity within and across these regions is diagnostic of an individual's subjective mnemonic experience. For example, in laboratory-based paradigms, memories for recently encoded faces can be accurately decoded from single-trial fMRI patterns [Uncapher, M. R., Boyd-Meredith, J. T., Chow, T. E., Rissman, J., & Wagner, A. D. Goal-directed modulation of neural memory patterns: Implications for fMRI-based memory detection. Journal of Neuroscience, 35, 8531-8545, 2015; Rissman, J., Greely, H. T., & Wagner, A. D. Detecting individual memories through the neural decoding of memory states and past experience. Proceedings of the National Academy of Sciences, U.S.A., 107, 9849-9854, 2010]. Here, we investigated the neural patterns underlying memory for real-world autobiographical events, probed at 1- to 3-week retention intervals as well as whether distinct patterns are associated with different subjective memory states. For 3 weeks, participants (n = 16) wore digital cameras that captured photographs of their daily activities. One week later, they were scanned while making memory judgments about sequences of photos depicting events from their own lives or events captured by the cameras of others. Whole-brain multivoxel pattern analysis achieved near-perfect accuracy at distinguishing correctly recognized events from correctly rejected novel events, and decoding performance did not significantly vary with retention interval. Multivoxel pattern classifiers also differentiated recollection from familiarity and reliably decoded the subjective strength of recollection, of familiarity, or of novelty. Classification-based brain maps revealed dissociable neural signatures of these mnemonic states, with activity patterns in hippocampus, medial PFC, and ventral parietal cortex being particularly diagnostic of recollection. Finally, a classifier trained on previously acquired laboratory-based memory data achieved reliable decoding of autobiographical memory states. We discuss the implications for neuroscientific accounts of episodic retrieval and comment on the potential forensic use of fMRI for probing experiential knowledge.

  11. Differential Effects of Arousal in Positive and Negative Autobiographical Memories

    PubMed Central

    Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.

    2014-01-01

    Autobiographical memories are characterized by a range of emotions and emotional reactions. Recent research has demonstrated that differences in emotional valence (positive v. negative emotion) and arousal (the degree of emotional intensity) differentially influence the retrieved memory narrative. Although the mnemonic effects of valence and arousal have both been heavily studied, it is currently unclear whether the effects of emotional arousal are equivalent for positive and negative autobiographical events. In the current study, multilevel models were used to examine differential effects emotional valence and arousal on the richness of autobiographical memory retrieval both between and within subjects. Thirty-four young adults were asked to retrieve personal autobiographical memories associated with popular musical cues and to rate the valence, arousal, and richness of these events. The multilevel analyses identified independent influences of valence and intensity upon retrieval characteristics at the within and between subject levels. In addition, the within subject interactions between valence and arousal highlighted differential effects of arousal for positive and negative memories. These findings have important implications for future studies of emotion and memory, highlighting the importance of considering both valence and arousal when examining the role emotion plays in the richness of memory representation. PMID:22873402

  12. Differential effects of arousal in positive and negative autobiographical memories.

    PubMed

    Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S

    2012-01-01

    Autobiographical memories are characterised by a range of emotions and emotional reactions. Recent research has demonstrated that differences in emotional valence (positive vs. negative emotion) and arousal (the degree of emotional intensity) differentially influence the retrieved memory narrative. Although the mnemonic effects of valence and arousal have both been heavily studied, it is currently unclear whether the effects of emotional arousal are equivalent for positive and negative autobiographical events. In the current study, multilevel models were used to examine differential effects of emotional valence and arousal on the richness of autobiographical memory retrieval both between and within subjects. Thirty-four young adults were asked to retrieve personal autobiographical memories associated with popular musical cues and to rate the valence, arousal and richness of these events. The multilevel analyses identified independent influences of valence and intensity upon retrieval characteristics at the within- and between-subject levels. In addition, the within-subject interactions between valence and arousal highlighted differential effects of arousal for positive and negative memories. These findings have important implications for future studies of emotion and memory, highlighting the importance of considering both valence and arousal when examining the role emotion plays in the richness of memory representation.

  13. A DNA-based pattern classifier with in vitro learning and associative recall for genomic characterization and biosensing without explicit sequence knowledge.

    PubMed

    Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo

    2014-01-01

    Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.

  14. Dissociating Long and Short-term Memory in Three-Month-Old Infants Using the Mismatch Response to Voice Stimuli

    PubMed Central

    Zinke, Katharina; Thöne, Leonie; Bolinger, Elaina M.; Born, Jan

    2018-01-01

    Auditory event-related potentials (ERPs) have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR) to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory) than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011), to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social) long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word “baby” (400 ms, interstimulus interval: 600 ms, 10 min overall duration) pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented “standard” stimulus, whereas another unfamiliar voice served as the “unfamiliar deviant” stimulus, and the voice of the infant’s mother served as the “familiar deviant.” Data collection was successful for 31 infants (mean age = 100 days). The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother’s voice) was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300–400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200–300 ms post-stimulus interval. Overall results confirm a differential MMR response to unfamiliar and familiar deviants in 3-month-olds, with the earlier negative MMR to unfamiliar deviants likely reflecting change detection based on comparison processes in short-term memory, and the later positive MMR to familiar deviants reflecting subsequent long-term memory-based processing of stimulus relevance. PMID:29441032

  15. Dissociating Long and Short-term Memory in Three-Month-Old Infants Using the Mismatch Response to Voice Stimuli.

    PubMed

    Zinke, Katharina; Thöne, Leonie; Bolinger, Elaina M; Born, Jan

    2018-01-01

    Auditory event-related potentials (ERPs) have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR) to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory) than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011), to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social) long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word "baby" (400 ms, interstimulus interval: 600 ms, 10 min overall duration) pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented "standard" stimulus, whereas another unfamiliar voice served as the "unfamiliar deviant" stimulus, and the voice of the infant's mother served as the "familiar deviant." Data collection was successful for 31 infants (mean age = 100 days). The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother's voice) was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300-400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200-300 ms post-stimulus interval. Overall results confirm a differential MMR response to unfamiliar and familiar deviants in 3-month-olds, with the earlier negative MMR to unfamiliar deviants likely reflecting change detection based on comparison processes in short-term memory, and the later positive MMR to familiar deviants reflecting subsequent long-term memory-based processing of stimulus relevance.

  16. Subthalamic stimulation differentially modulates declarative and nondeclarative memory.

    PubMed

    Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas

    2004-03-01

    Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins

  17. Increasing the power for detecting impairment in older adults with the Faces subtest from Wechsler Memory Scale-III: an empirical trial.

    PubMed

    Levy, Boaz

    2006-10-01

    Empirical studies have questioned the validity of the Faces subtest from the WMS-III for detecting impairment in visual memory, particularly among the elderly. A recent examination of the test norms revealed a significant age related floor effect already emerging on Faces I (immediate recall), implying excessive difficulty in the acquisition phase among unimpaired older adults. The current study compared the concurrent validity of the Faces subtest with an alternative measure between 16 Alzheimer's patients and 16 controls. The alternative measure was designed to facilitate acquisition by reducing the sequence of item presentation. Other changes aimed at increasing the retrieval challenge, decreasing error due to guessing and standardizing the administration. Analyses converged to indicate that the alternative measure provided a considerably greater differentiation than the Faces subtest between Alzheimer's patients and controls. Steps for revising the Faces subtest are discussed.

  18. Increased numbers of pre-existing memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells1

    PubMed Central

    Joshi, Nikhil S.; Cui, Weiguo; Dominguez, Claudia; Chen, Jonathan H.; Hand, Timothy W.; Kaech, Susan M.

    2011-01-01

    Memory CD8 T cells acquire TEM properties following reinfection, and may reach terminally differentiated, senescent states (“Hayflick limit”) after multiple infections. The signals controlling this process are not well understood, but we found that the degree of 2o effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and pre-existing memory CD8 T cell number (i.e., 1o memory CD8 T cell precursor frequency) present during secondary infection. Compared to naïve cells, memory CD8 T cells were predisposed towards terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of antigen. TE cell formation following 2o or 3o infections was dependent on increased T-bet expression because T-bet+/− cells were resistant to these phenotypic changes. Larger numbers of pre-existing memory CD8 T cells limited the duration of 2o infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2o TE CD8 T cells that formed. Together, these data show that, over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with antigen or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by pre-existing memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies. PMID:21930973

  19. Effects of Age and Acute Moderate Alcohol Administration on Electrophysiological Correlates of Working Memory Maintenance

    PubMed Central

    Boissoneault, Jeff; Frazier, Ian; Lewis, Ben; Nixon, Sara Jo

    2016-01-01

    Background Previous studies suggest older adults may be differentially susceptible to the acute neurobehavioral effects of moderate alcohol intake. To our knowledge, no studies have addressed acute moderate alcohol effects on the electrophysiological correlates of working memory in younger and older social drinkers. This study characterized alcohol-related effects on frontal theta (FTP) and posterior alpha power (PAP) associated with maintenance of visual information during a working memory task. Methods Older (55–70 years of age; n = 51, 29 women) and younger (25–35 years of age; n = 70, 39 women) community-dwelling moderate drinkers were recruited for this study. Participants were given either placebo or an active dose targeting breath alcohol concentrations (BrACs) of 0.04 or 0.065 g/dL. Following absorption, participants completed a visual working memory task assessing cue recognition following a 9s delay. FTP and PAP were determined via Fourier transformation and subjected to 2 (age group) X 3 (dose) X 2 (repeated: working memory task condition) mixed models analysis. Results In addition to expected age-related reductions in PAP, a significant age group X dose interaction was detected for PAP such that 0.04 g/dL dose level was associated with greater PAP in younger adults but lower PAP in their older counterparts. PAP was lower in older vs younger adults at both active doses. Further mixed models revealed a significant negative association between PAP and working memory efficiency for older adults. No effects of age, dose, or their interaction were noted for FTP. Conclusions Results bolster the small but growing body of evidence that older adults exhibit differential sensitivity to the neurobehavioral effects of moderate alcohol use. Given the theoretical role of PAP in attentional and working memory function, these findings shed light on the attentional mechanisms underlying effects of acute moderate alcohol on working memory efficiency in older adults. PMID:27419803

  20. Neural Differentiation Tracks Improved Recall of Competing Memories Following Interleaved Study and Retrieval Practice

    PubMed Central

    Hulbert, J. C.; Norman, K. A.

    2015-01-01

    Selective retrieval of overlapping memories can generate competition. How does the brain adaptively resolve this competition? One possibility is that competing memories are inhibited; in support of this view, numerous studies have found that selective retrieval leads to forgetting of memories that are related to the just-retrieved memory. However, this retrieval-induced forgetting (RIF) effect can be eliminated or even reversed if participants are given opportunities to restudy the materials between retrieval attempts. Here, we outline an explanation for such a reversal, rooted in a neural network model of RIF that predicts representational differentiation when restudy is interleaved with selective retrieval. To test this hypothesis, we measured changes in pattern similarity of the BOLD fMRI signal elicited by related memories after undergoing interleaved competitive retrieval and restudy. Reduced pattern similarity within the hippocampus positively correlated with retrieval-induced facilitation of competing memories. This result is consistent with an adaptive differentiation process that allows individuals to learn to distinguish between once-confusable memories. PMID:25477369

  1. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  2. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity.

    PubMed

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Hur, Eun Mi; Schafer, Peter H; Ringheim, Garth E

    2017-10-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27 + memory and memory-like CD27 - IgD - double-negative (DN) B cells, but not CD27 - IgD + naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27 + memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 Modulation of Cereblon Activity

    PubMed Central

    Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Schafer, Peter H.

    2017-01-01

    BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27+ memory and memory-like CD27−IgD− double-negative (DN) B cells, but not CD27−IgD+ naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27+ memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. PMID:28848067

  4. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency.

    PubMed

    Schmueck-Henneresse, Michael; Sharaf, Radwa; Vogt, Katrin; Weist, Benjamin J D; Landwehr-Kenzel, Sybille; Fuehrer, Henrike; Jurisch, Anke; Babel, Nina; Rooney, Cliona M; Reinke, Petra; Volk, Hans-Dieter

    2015-06-01

    Memory T cells expressing stem cell-like properties have been described recently. The capacity of self-renewal and differentiation into various memory/effector subsets make them attractive for adoptive T cell therapy to combat severe virus infections and tumors. The very few reports on human memory stem T cells (T(SCM)) are restricted to analyses on polyclonal T cells, but extensive data on Ag-specific T(SCM )are missing. This might be due to their very low frequency limiting their enrichment and characterization. In this article, we provide functional and phenotypic data on human viral-specific T(SCM), defined as CD8(+)CD45RA(+)CCR7(+)CD127(+)CD95(+). Whereas <1% of total T cells express the T(SCM) phenotype, human CMV-specific T(SCM) can be detected at frequencies similar to those seen in other subsets, resulting in ∼ 1 /10,000 human CMV-specific T(SCM). A new virus-specific expansion protocol of sort-purified T(SCM) reveals both upregulation of various T cell subset markers and preservation of their stem cell phenotype in a significant proportion, indicating both self-renewal and differentiation potency of virus-specific T cells sharing their TCR repertoire. Furthermore, we describe a simplified culture protocol that allows fast expansion of virus-specific T(SCM) starting from a mixed naive T/T(SCM) pool of PBLs. Due to the clinical-grade compatibility, this might be the basis for novel cell therapeutic options in life-threatening courses of viral and tumor disease. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory?

    PubMed Central

    Horton, Megan K.; Kahn, Linda G.; Perera, Frederica; Barr, Dana Boyd; Rauh, Virginia

    2013-01-01

    Prenatal exposure to chlorpyrifos (CPF), an organophosphorus insecticide, has long been associated with delayed neurocognitive development and most recently with decrements in working memory at age 7. In the current paper, we expanded the previous work on CPF to investigate how additional biological and social environmental factors might create or explain differential neurodevelopmental susceptibility, focusing on main and moderating effects of the quality of the home environment (HOME) and child sex. We evaluate how the quality of the home environment (specifically, parental nurturance and environmental stimulation) and child sex interact with the adverse effects of prenatal CPF exposure on working memory at child age 7 years. We did not observe a remediating effect of a high quality home environment (either parental nurturance or environmental stimulation) on the adverse effects of prenatal CPF exposure on working memory. However, we detected a borderline significant interaction between prenatal exposure to CPF and child sex (B (95% CI) for interaction term = −1.714 (−3.753 to 0.326)) suggesting males experience a greater decrement in working memory than females following prenatal CPF exposure. In addition, we detected a borderline interaction between parental nurturance and child sex (B (95% CI) for interaction term = 1.490 (−0.518 to 3.499)) suggesting that, in terms of working memory, males benefit more from a nurturing environment than females. To our knowledge, this is the first investigation into factors that may inform an intervention strategy to reduce or reverse the cognitive deficits resulting from prenatal CPF exposure. PMID:22824009

  6. Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.

    PubMed

    Salmon, David P; Heindel, William C; Hamilton, Joanne M; Vincent Filoteo, J; Cidambi, Varun; Hansen, Lawrence A; Masliah, Eliezer; Galasko, Douglas

    2015-08-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Recognition Memory Span in Autopsy-Confirmed Dementia with Lewy Bodies and Alzheimer’s Disease

    PubMed Central

    Salmon, David P.; Heindel, William C.; Hamilton, Joanne M.; Filoteo, J. Vincent; Cidambi, Varun; Hansen, Lawrence A.; Masliah, Eliezer; Galasko, Douglas

    2016-01-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and normal control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from Long-Term Storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. PMID:26184443

  8. Differential sensitivity of the Response Bias Scale (RBS) and MMPI-2 validity scales to memory complaints.

    PubMed

    Gervais, Roger O; Ben-Porath, Yossef S; Wygant, Dustin B; Green, Paul

    2008-12-01

    The MMPI-2 Response Bias Scale (RBS) is designed to detect response bias in forensic neuropsychological and disability assessment settings. Validation studies have demonstrated that the scale is sensitive to cognitive response bias as determined by failure on the Word Memory Test (WMT) and other symptom validity tests. Exaggerated memory complaints are a common feature of cognitive response bias. The present study was undertaken to determine the extent to which the RBS is sensitive to memory complaints and how it compares in this regard to other MMPI-2 validity scales and indices. This archival study used MMPI-2 and Memory Complaints Inventory (MCI) data from 1550 consecutive non-head-injury disability-related referrals to the first author's private practice. ANOVA results indicated significant increases in memory complaints across increasing RBS score ranges with large effect sizes. Regression analyses indicated that the RBS was a better predictor of the mean memory complaints score than the F, F(B), and F(P) validity scales and the FBS. There was no correlation between the RBS and the CVLT, an objective measure of verbal memory. These findings suggest that elevated scores on the RBS are associated with over-reporting of memory problems, which provides further external validation of the RBS as a sensitive measure of cognitive response bias. Interpretive guidelines for the RBS are provided.

  9. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  10. Neural Differentiation of Incorrectly Predicted Memories.

    PubMed

    Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas B

    2017-02-22

    When an item is predicted in a particular context but the prediction is violated, memory for that item is weakened (Kim et al., 2014). Here, we explore what happens when such previously mispredicted items are later reencountered. According to prior neural network simulations, this sequence of events-misprediction and subsequent restudy-should lead to differentiation of the item's neural representation from the previous context (on which the misprediction was based). Specifically, misprediction weakens connections in the representation to features shared with the previous context and restudy allows new features to be incorporated into the representation that are not shared with the previous context. This cycle of misprediction and restudy should have the net effect of moving the item's neural representation away from the neural representation of the previous context. We tested this hypothesis using human fMRI by tracking changes in item-specific BOLD activity patterns in the hippocampus, a key structure for representing memories and generating predictions. In left CA2/3/DG, we found greater neural differentiation for items that were repeatedly mispredicted and restudied compared with items from a control condition that was identical except without misprediction. We also measured prediction strength in a trial-by-trial fashion and found that greater misprediction for an item led to more differentiation, further supporting our hypothesis. Therefore, the consequences of prediction error go beyond memory weakening. If the mispredicted item is restudied, the brain adaptively differentiates its memory representation to improve the accuracy of subsequent predictions and to shield it from further weakening. SIGNIFICANCE STATEMENT Competition between overlapping memories leads to weakening of nontarget memories over time, making it easier to access target memories. However, a nontarget memory in one context might become a target memory in another context. How do such memories get restrengthened without increasing competition again? Computational models suggest that the brain handles this by reducing neural connections to the previous context and adding connections to new features that were not part of the previous context. The result is neural differentiation away from the previous context. Here, we provide support for this theory, using fMRI to track neural representations of individual memories in the hippocampus and how they change based on learning. Copyright © 2017 the authors 0270-6474/17/372022-10$15.00/0.

  11. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  12. A model of memory impairment in schizophrenia: cognitive and clinical factors associated with memory efficiency and memory errors.

    PubMed

    Brébion, Gildas; Bressan, Rodrigo A; Ohlsen, Ruth I; David, Anthony S

    2013-12-01

    Memory impairments in patients with schizophrenia have been associated with various cognitive and clinical factors. Hallucinations have been more specifically associated with errors stemming from source monitoring failure. We conducted a broad investigation of verbal memory and visual memory as well as source memory functioning in a sample of patients with schizophrenia. Various memory measures were tallied, and we studied their associations with processing speed, working memory span, and positive, negative, and depressive symptoms. Superficial and deep memory processes were differentially associated with processing speed, working memory span, avolition, depression, and attention disorders. Auditory/verbal and visual hallucinations were differentially associated with specific types of source memory error. We integrated all the results into a revised version of a previously published model of memory functioning in schizophrenia. The model describes the factors that affect memory efficiency, as well as the cognitive underpinnings of hallucinations within the source monitoring framework. © 2013.

  13. N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation

    PubMed Central

    Iborra, Salvador; Ramos, Manuel; Arana, David M.; Lázaro, Silvia; Aguilar, Francisco; Santos, Eugenio; López, Daniel

    2013-01-01

    Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate. PMID:23776078

  14. Neural correlates of change detection and change blindness in a working memory task.

    PubMed

    Pessoa, Luiz; Ungerleider, Leslie G

    2004-05-01

    Detecting changes in an ever-changing environment is highly advantageous, and this ability may be critical for survival. In the present study, we investigated the neural substrates of change detection in the context of a visual working memory task. Subjects maintained a sample visual stimulus in short-term memory for 6 s, and were asked to indicate whether a subsequent, test stimulus matched or did not match the original sample. To study change detection largely uncontaminated by attentional state, we compared correct change and correct no-change trials at test. Our results revealed that correctly detecting a change was associated with activation of a network comprising parietal and frontal brain regions, as well as activation of the pulvinar, cerebellum, and inferior temporal gyrus. Moreover, incorrectly reporting a change when none occurred led to a very similar pattern of activations. Finally, few regions were differentially activated by trials in which a change occurred but subjects failed to detect it (change blindness). Thus, brain activation was correlated with a subject's report of a change, instead of correlated with the physical change per se. We propose that frontal and parietal regions, possibly assisted by the cerebellum and the pulvinar, might be involved in controlling the deployment of attention to the location of a change, thereby allowing further processing of the visual stimulus. Visual processing areas, such as the inferior temporal gyrus, may be the recipients of top-down feedback from fronto-parietal regions that control the reactive deployment of attention, and thus exhibit increased activation when a change is reported (irrespective of whether it occurred or not). Whereas reporting that a change occurred, be it correctly or incorrectly, was associated with strong activation in fronto-parietal sites, change blindness appears to involve very limited territories.

  15. Visual short-term memory load reduces retinotopic cortex response to contrast.

    PubMed

    Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli

    2012-11-01

    Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.

  16. The Differential Contributions of Auditory-Verbal and Visuospatial Working Memory on Decoding Skills in Children Who Are Poor Decoders

    ERIC Educational Resources Information Center

    Squires, Katie Ellen

    2013-01-01

    This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…

  17. Differentiation and Response Bias in Episodic Memory: Evidence from Reaction Time Distributions

    ERIC Educational Resources Information Center

    Criss, Amy H.

    2010-01-01

    In differentiation models, the processes of encoding and retrieval produce an increase in the distribution of memory strength for targets and a decrease in the distribution of memory strength for foils as the amount of encoding increases. This produces an increase in the hit rate and decrease in the false-alarm rate for a strongly encoded compared…

  18. Differential effects of non-REM and REM sleep on memory consolidation?

    PubMed

    Ackermann, Sandra; Rasch, Björn

    2014-02-01

    Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation.

  19. A transcriptome-based model of central memory CD4 T cell death in HIV infection.

    PubMed

    Olvera-García, Gustavo; Aguilar-García, Tania; Gutiérrez-Jasso, Fany; Imaz-Rosshandler, Iván; Rangel-Escareño, Claudia; Orozco, Lorena; Aguilar-Delfín, Irma; Vázquez-Pérez, Joel A; Zúñiga, Joaquín; Pérez-Patrigeon, Santiago; Espinosa, Enrique

    2016-11-22

    Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log 2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.

  20. Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory?

    PubMed

    Horton, Megan K; Kahn, Linda G; Perera, Frederica; Barr, Dana Boyd; Rauh, Virginia

    2012-01-01

    Prenatal exposure to chlorpyrifos (CPF), an organophosphorus insecticide, has long been associated with delayed neurocognitive development and most recently with decrements in working memory at age 7. In the current paper, we expanded the previous work on CPF to investigate how additional biological and social environmental factors might create or explain differential neurodevelopmental susceptibility, focusing on main and moderating effects of the quality of the home environment (HOME) and child sex. We evaluate how the quality of the home environment (specifically, parental nurturance and environmental stimulation) and child sex interact with the adverse effects of prenatal CPF exposure on working memory at child age 7years. We did not observe a remediating effect of a high quality home environment (either parental nurturance or environmental stimulation) on the adverse effects of prenatal CPF exposure on working memory. However, we detected a borderline significant interaction between prenatal exposure to CPF and child sex (B (95% CI) for interaction term=-1.714 (-3.753 to 0.326)) suggesting males experience a greater decrement in working memory than females following prenatal CPF exposure. In addition, we detected a borderline interaction between parental nurturance and child sex (B (95% CI) for interaction term=1.490 (-0.518 to 3.499)) suggesting that, in terms of working memory, males benefit more from a nurturing environment than females. To our knowledge, this is the first investigation into factors that may inform an intervention strategy to reduce or reverse the cognitive deficits resulting from prenatal CPF exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.

    PubMed

    Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X

    2016-12-01

    Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Differentiating true and false schematic memories in older adults.

    PubMed

    Webb, Christina E; Dennis, Nancy A

    2018-02-06

    While schemas aid memory for schematically related information, the gist induced by the schema can also lead to high rates of false memories, especially in older adults. The neural mechanisms that support and differentiate true and false memories in aging are not well understood. The current study sought to clarify this, using a novel scene paradigm to investigate the role of schemas on true and false memories in older adults. Healthy older adults encoded schematic scenes (e.g., bathroom). At retrieval, participants were tested on their memory for both schematic and non-schematic targets and lures while fMRI data was collected. Results indicate that true memories were supported by the typical retrieval network, and activity in this network was greater for true than false memories. Schema specific retrieval was supported by mPFC, extending this common finding to aging. While no region differentiated false memories compared to correct rejections, results showed that individual differences in false memory rates were associated with variability in neural activity. The findings underscore the importance of elucidating the neural basis of cognition within older adults, as well as the specific contribution of individual differences to the neural basis of memory errors in aging. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.

    PubMed Central

    Tulving, E; Kapur, S; Craik, F I; Moscovitch, M; Houle, S

    1994-01-01

    Data are reviewed from positron emission tomography studies of encoding and retrieval processes in episodic memory. These data suggest a hemispheric encoding/retrieval asymmetry model of prefrontal involvement in encoding and retrieval of episodic memory. According to this model, the left and right prefrontal lobes are part of an extensive neuronal network that subserves episodic remembering, but the two prefrontal hemispheres play different roles. Left prefrontal cortical regions are differentially more involved in retrieval of information from semantic memory and in simultaneously encoding novel aspects of the retrieved information into episodic memory. Right prefrontal cortical regions, on the other hand, are differentially more involved in episodic memory retrieval. PMID:8134342

  4. Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells.

    PubMed

    Rodriguez, Ramon M; Suarez-Alvarez, Beatriz; Lavín, José L; Mosén-Ansorena, David; Baragaño Raneros, Aroa; Márquez-Kisinousky, Leonardo; Aransay, Ana M; Lopez-Larrea, Carlos

    2017-01-15

    Epigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To better understand the mechanisms of memory maintenance in CD8 + T cells, we performed genome-wide analysis of DNA methylation, histone marking (acetylated lysine 9 in histone H3 and trimethylated lysine 9 in histone), and gene-expression profiles in naive, effector memory (EM), and terminally differentiated EM (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (e.g., KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8 + T cells, and that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8 + T cell maintenance and T cell terminal differentiation. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. FOXO1 opposition of CD8+ T cell effector programming confers early memory properties and phenotypic diversity.

    PubMed

    Delpoux, Arnaud; Lai, Chen-Yen; Hedrick, Stephen M; Doedens, Andrew L

    2017-10-17

    The factors and steps controlling postinfection CD8 + T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8 + T cells. We determined the early postinfection TCF7 high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7 high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1 pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.

  6. Erasing and blurring memories: The differential impact of interference on separate aspects of forgetting.

    PubMed

    Sun, Sol Z; Fidalgo, Celia; Barense, Morgan D; Lee, Andy C H; Cant, Jonathan S; Ferber, Susanne

    2017-11-01

    Interference disrupts information processing across many timescales, from immediate perception to memory over short and long durations. The widely held similarity assumption states that as similarity between interfering information and memory contents increases, so too does the degree of impairment. However, information is lost from memory in different ways. For instance, studied content might be erased in an all-or-nothing manner. Alternatively, information may be retained but the precision might be degraded or blurred. Here, we asked whether the similarity of interfering information to memory contents might differentially impact these 2 aspects of forgetting. Observers studied colored images of real-world objects, each followed by a stream of interfering objects. Across 4 experiments, we manipulated the similarity between the studied object and the interfering objects in circular color space. After interference, memory for object color was tested continuously on a color wheel, which in combination with mixture modeling, allowed for estimation of how erasing and blurring differentially contribute to forgetting. In contrast to the similarity assumption, we show that highly dissimilar interfering items caused the greatest increase in random guess responses, suggesting a greater frequency of memory erasure (Experiments 1-3). Moreover, we found that observers were generally able to resist interference from highly similar items, perhaps through surround suppression (Experiments 1 and 4). Finally, we report that interference from items of intermediate similarity tended to blur or decrease memory precision (Experiments 3 and 4). These results reveal that the nature of visual similarity can differentially alter how information is lost from memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Computational Cognitive Neuroscience of Early Memory Development

    ERIC Educational Resources Information Center

    Munakata, Yuko

    2004-01-01

    Numerous brain areas work in concert to subserve memory, with distinct memory functions relying differentially on distinct brain areas. For example, semantic memory relies heavily on posterior cortical regions, episodic memory on hippocampal regions, and working memory on prefrontal cortical regions. This article reviews relevant findings from…

  8. The Influence of Prior Knowledge on Memory: A Developmental Cognitive Neuroscience Perspective

    PubMed Central

    Brod, Garvin; Werkle-Bergner, Markus; Shing, Yee Lee

    2013-01-01

    Across ontogenetic development, individuals gather manifold experiences during which they detect regularities in their environment and thereby accumulate knowledge. This knowledge is used to guide behavior, make predictions, and acquire further new knowledge. In this review, we discuss the influence of prior knowledge on memory from both the psychology and the emerging cognitive neuroscience literature and provide a developmental perspective on this topic. Recent neuroscience findings point to a prominent role of the medial prefrontal cortex (mPFC) and of the hippocampus (HC) in the emergence of prior knowledge and in its application during the processes of successful memory encoding, consolidation, and retrieval. We take the lateral PFC into consideration as well and discuss changes in both medial and lateral PFC and HC across development and postulate how these may be related to the development of the use of prior knowledge for remembering. For future direction, we argue that, to measure age differential effects of prior knowledge on memory, it is necessary to distinguish the availability of prior knowledge from its accessibility and use. PMID:24115923

  9. Contextualization: Memory Formation and Retrieval in a Nested Environment

    NASA Astrophysics Data System (ADS)

    Piefke, Martina; Markowitsch, Hans J.

    Episodic memory functions are highly context-dependent. This is true for both experimental and autobiographical episodic memory. We here review neuropsychological and neuroimaging evidence for effects of differential encoding and retrieval contexts on episodic memory performance as well as the underlying neurofunctional mechanisms. In studies of laboratory episodic memory, the influence of context parameters can be assessed by experimental manipulations. Such experiments suggest that contextual variables mainly affect prefrontal functions supporting executive processes involved in episodic learning and retrieval. Context parameters affecting episodic autobiographical memory are far more complex and cannot easily be controlled. Data support the view that not only prefrontal, but also further medial temporal and posterior parietal regions mediating the re-experience and emotional evaluation of personal memories are highly influenced by changing contextual variables of memory encoding and retrieval. Based on our review of available data, we thus suggest that experimental and autobiographical episodic memories are influenced by both overlapping and differential context parameters.

  10. Effects of Age and Acute Moderate Alcohol Administration on Electrophysiological Correlates of Working Memory Maintenance.

    PubMed

    Boissoneault, Jeff; Frazier, Ian; Lewis, Ben; Nixon, Sara Jo

    2016-09-01

    Previous studies suggest older adults may be differentially susceptible to the acute neurobehavioral effects of moderate alcohol intake. To our knowledge, no studies have addressed acute moderate alcohol effects on the electrophysiological correlates of working memory in younger and older social drinkers. This study characterized alcohol-related effects on frontal theta (FTP) and posterior alpha power (PAP) associated with maintenance of visual information during a working memory task. Older (55 to 70 years of age; n = 51, 29 women) and younger (25 to 35 years of age; n = 70, 39 women) community-dwelling moderate drinkers were recruited for this study. Participants were given either placebo or an active dose targeting breath alcohol concentrations (BrACs) of 0.04 or 0.065 g/dl. Following absorption, participants completed a visual working memory task assessing cue recognition following a 9-s delay. FTP and PAP were determined via Fourier transformation and subjected to 2 (age group) × 3 (dose) × 2 (repeated: working memory task condition) mixed models analysis. In addition to expected age-related reductions in PAP, a significant age group × dose interaction was detected for PAP such that 0.04 g/dl dose level was associated with greater PAP in younger adults but lower PAP in their older counterparts. PAP was lower in older versus younger adults at both active doses. Further mixed models revealed a significant negative association between PAP and working memory efficiency for older adults. No effects of age, dose, or their interaction were noted for FTP. Results bolster the small but growing body of evidence that older adults exhibit differential sensitivity to the neurobehavioral effects of moderate alcohol use. Given the theoretical role of PAP in attentional and working memory function, these findings shed light on the attentional mechanisms underlying effects of acute moderate alcohol on working memory efficiency in older adults. Copyright © 2016 by the Research Society on Alcoholism.

  11. Achievement motivation and memory: achievement goals differentially influence immediate and delayed remember-know recognition memory.

    PubMed

    Murayama, Kou; Elliot, Andrew J

    2011-10-01

    Little research has been conducted on achievement motivation and memory and, more specifically, on achievement goals and memory. In the present research, the authors conducted two experiments designed to examine the influence of mastery-approach and performance-approach goals on immediate and delayed remember-know recognition memory. The experiments revealed differential effects for achievement goals over time: Performance-approach goals showed higher correct remember responding on an immediate recognition test, whereas mastery-approach goals showed higher correct remember responding on a delayed recognition test. Achievement goals had no influence on overall recognition memory and no consistent influence on know responding across experiments. These findings indicate that it is important to consider quality, not just quantity, in both motivation and memory, when studying relations between these constructs.

  12. Aging Memories: Differential Decay of Episodic Memory Components

    ERIC Educational Resources Information Center

    Talamini, Lucia M.; Gorree, Eva

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a…

  13. The neuropsychological differentiation of patients with very mild Alzheimer's disease and/or major depression.

    PubMed

    desRosiers, G; Hodges, J R; Berrios, G

    1995-11-01

    To evaluate the usefulness of standardized neuropsychological tests in the psychometric differentiation of patients with very mild or mild Alzheimer's Disease (AD) and/or major depression presenting in a tertiary clinic with memory/attention complaints. Controlled prospective clinicoexperimental design. Multidisciplinary Memory Clinic at Addenbroke's Hospital, Cambridge, England. Twenty-four patients with a clinical diagnosis of Alzheimer's disease (12 with major depression and 12 without), 12 patients with major depressive illness but without AD, and 12 healthy control subjects, all matched for age, sex, education levels, and estimates of premorbid intellectual potential. Mini-Mental State Examination (MMSE), Wechsler's Logical Memory (WLM) and Visual Reproduction (WVR), immediate and delayed reproduction, Wechsler's paired Associate Learning (WPAL), including the Easy and Hard subsets. Warrington's Recognition Memory for Faces (WRMF), Kendrick's Object Learning (KOLT) and Digit Copying (KDCT) Tests. Minimum 2-year follow-up diagnosis. Statistically, patients with very mild AD were distinguished clearly from those without AD on most tests of memory functions. Psychometrically, only KOLT and an index of retention on WLM and WVR were specific enough to avoid false positives, a requirement for second-stage tools. They also proved sensitive enough to suggest their role as first-stage instruments when screening for primary dementia in high-functioning patients scoring above the cut-point on MMSE. As efforts intensify to develop more powerful means to identify patients with Alzheimer's disease in its earliest stages, inclusion of specialist tests posing greater cognitive challenge than standard mental status scales has been one strategy. Our study explored how some of these neuropsychological tools behave psychometrically when analyzed on a single-case basis, and the results suggest a few are sensitive enough to boost detection above base rates alone while also being specific enough to reduce false alarms. Retention on Wechsler's Logical Memory and Visual Reproduction tasks and scores on Kendrick's Object Learning Test helped decrease the degree of ambiguity when cognitive profiles were used to distinguish depressed patients with Alzheimer disease from those without.

  14. Unique and shared validity of the "Wechsler logical memory test", the "California verbal learning test", and the "verbal learning and memory test" in patients with epilepsy.

    PubMed

    Helmstaedter, Christoph; Wietzke, Jennifer; Lutz, Martin T

    2009-12-01

    This study was set-up to evaluate the construct validity of three verbal memory tests in epilepsy patients. Sixty-one consecutively evaluated patients with temporal lobe epilepsy (TLE) or extra-temporal epilepsy (E-TLE) underwent testing with the verbal learning and memory test (VLMT, the German equivalent of the Rey auditory verbal learning test, RAVLT); the California verbal learning test (CVLT); the logical memory and digit span subtests of the Wechsler memory scale, revised (WMS-R); and testing of intelligence, attention, speech and executive functions. Factor analysis of the memory tests resulted in test-specific rather than test over-spanning factors. Parameters of the CVLT and WMS-R, and to a much lesser degree of the VLMT, were highly correlated with attention, language function and vocabulary. Delayed recall measures of logical memory and the VLMT differentiated TLE from E-TLE. Learning and memory scores off all three tests differentiated mesial temporal sclerosis from other pathologies. A lateralization of the epilepsy was possible only for a subsample of 15 patients with mesial TLE. Although the three tests provide overlapping indicators for a temporal lobe epilepsy or a mesial pathology, they can hardly be taken in exchange. The tests have different demands on semantic processing and memory organization, and they appear differentially sensitive to performance in non-memory domains. The tests capability to lateralize appears to be poor. The findings encourage the further discussion of the dependency of memory outcomes on test selection.

  15. Origin and Function of Circulating Plasmablasts during Acute Viral Infections.

    PubMed

    Fink, Katja

    2012-01-01

    Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.

  16. Individual differences in event-based prospective memory: Evidence for multiple processes supporting cue detection.

    PubMed

    Brewer, Gene A; Knight, Justin B; Marsh, Richard L; Unsworth, Nash

    2010-04-01

    The multiprocess view proposes that different processes can be used to detect event-based prospective memory cues, depending in part on the specificity of the cue. According to this theory, attentional processes are not necessary to detect focal cues, whereas detection of nonfocal cues requires some form of controlled attention. This notion was tested using a design in which we compared performance on a focal and on a nonfocal prospective memory task by participants with high or low working memory capacity. An interaction was found, such that participants with high and low working memory performed equally well on the focal task, whereas the participants with high working memory performed significantly better on the nonfocal task than did their counterparts with low working memory. Thus, controlled attention was only necessary for detecting event-based prospective memory cues in the nonfocal task. These results have implications for theories of prospective memory, the processes necessary for cue detection, and the successful fulfillment of intentions.

  17. Incidental learning of probability information is differentially affected by the type of visual working memory representation.

    PubMed

    van Lamsweerde, Amanda E; Beck, Melissa R

    2015-12-01

    In this study, we investigated whether the ability to learn probability information is affected by the type of representation held in visual working memory. Across 4 experiments, participants detected changes to displays of coloured shapes. While participants detected changes in 1 dimension (e.g., colour), a feature from a second, nonchanging dimension (e.g., shape) predicted which object was most likely to change. In Experiments 1 and 3, items could be grouped by similarity in the changing dimension across items (e.g., colours and shapes were repeated in the display), while in Experiments 2 and 4 items could not be grouped by similarity (all features were unique). Probability information from the predictive dimension was learned and used to increase performance, but only when all of the features within a display were unique (Experiments 2 and 4). When it was possible to group by feature similarity in the changing dimension (e.g., 2 blue objects appeared within an array), participants were unable to learn probability information and use it to improve performance (Experiments 1 and 3). The results suggest that probability information can be learned in a dimension that is not explicitly task-relevant, but only when the probability information is represented with the changing dimension in visual working memory. (c) 2015 APA, all rights reserved).

  18. The importance of age-related differences in prospective memory: Evidence from diffusion model analyses.

    PubMed

    Ball, B Hunter; Aschenbrenner, Andrew J

    2017-06-09

    Event-based prospective memory (PM) refers to relying on environmental cues to trigger retrieval of a deferred action plan from long-term memory. Considerable research has demonstrated PM declines with increased age. Despite efforts to better characterize the attentional processes that underlie these decrements, the majority of research has relied on measures of central tendency to inform theoretical accounts of PM that may not entirely capture the underlying dynamics involved in allocating attention to intention-relevant information. The purpose of the current study was to examine the utility of the diffusion model to better understand the cognitive processes underlying age-related differences in PM. Results showed that emphasizing the importance of the PM intention increased cue detection selectively for older adults. Standard cost analyses revealed that PM importance increased mean response times and accuracy, but not differentially for young and older adults. Consistent with this finding, diffusion model analyses demonstrated that PM importance increased response caution as evidenced by increased boundary separation. However, the selective benefit in cue detection for older adults may reflect peripheral target-checking processes as indicated by changes in nondecision time. These findings highlight the use of modeling techniques to better characterize the processes underlying the relations among aging, attention, and PM.

  19. Fragility of haptic memory in human full-term newborns.

    PubMed

    Lejeune, Fleur; Borradori Tolsa, Cristina; Gentaz, Edouard; Barisnikov, Koviljka

    2018-05-31

    Numerous studies have established that newborns can memorize tactile information about the specific features of an object with their hands and detect differences with another object. However, the robustness of haptic memory abilities has already been examined in preterm newborns and in full-term infants, but not yet in full-term newborns. This research is aimed to better understand the robustness of haptic memory abilities at birth by examining the effects of a change in the objects' temperature and haptic interference. Sixty-eight full-term newborns (mean postnatal age: 2.5 days) were included. The two experiments were conducted in three phases: habituation (repeated presentation of the same object, a prism or cylinder in the newborn's hand), discrimination (presentation of a novel object), and recognition (presentation of the familiar object). In Experiment 1, the change in the objects' temperature was controlled during the three phases. Results reveal that newborns can memorize specific features that differentiate prism and cylinder shapes by touch, and discriminate between them, but surprisingly they did not show evidence of recognizing them after interference. As no significant effect of the temperature condition was observed in habituation, discrimination and recognition abilities, these findings suggest that discrimination abilities in newborns may be determined by the detection of shape differences. Overall, it seems that the ontogenesis of haptic recognition memory is not linear. The developmental schedule is likely crucial for haptic development between 34 and 40 GW. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Visual working memory in deaf children with diverse communication modes: improvement by differential outcomes.

    PubMed

    López-Crespo, Ginesa; Daza, María Teresa; Méndez-López, Magdalena

    2012-01-01

    Although visual functions have been proposed to be enhanced in deaf individuals, empirical studies have not yet established clear evidence on this issue. The present study aimed to determine whether deaf children with diverse communication modes had superior visual memory and whether their performance was improved by the use of differential outcomes. Severely or profoundly deaf children who employed spoken Spanish, Spanish Sign Language (SSL), and both spoken Spanish and SSL modes of communication were tested in a delayed matching-to-sample task for visual working memory assessment. Hearing controls were used to compare performance. Participants were tested in two conditions, differential outcome and non-differential outcome conditions. Deaf groups with either oral or SSL modes of communication completed the task with less accuracy than bilingual and control hearing children. In addition, the performances of all groups improved through the use of differential outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Feedforward-Feedback Hybrid Control for Magnetic Shape Memory Alloy Actuators Based on the Krasnosel'skii-Pokrovskii Model

    PubMed Central

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010

  2. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  3. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques.

    PubMed

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A; Veazey, Ronald S

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross-react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define "memory" T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in approximately 44% of rhesus macaques (Macaca mulatta) of Indian but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques.

  4. The ERP old-new effect: A useful indicator in studying the effects of sleep on memory retrieval processes.

    PubMed

    Mograss, Melodee; Godbout, Roger; Guillem, F

    2006-11-01

    To verify that the classic "Old/New" memory effect can be detected after a long delay, and to investigate the differential influence of declarative memory processes after normal sleep and daytime wake. The protocol is a variation of a more traditional study-recognition test used in event-related potential (ERP) studies in which sleep or wake is inserted between the learning and recognition session in order to verify the existence of the Old/New effect (ie, positive shift that occurs when stimuli are repeated). ERPs were recorded during the recognition-test session. The protocol was based on early work that compared the effect of sleep on memory without recording sleep. Data collection occurred in the outpatient sleep laboratory. Results from 13 subjects (6 men) aged between 21 and 39 years. The subjects performed the recognition memory test after sleep and daytime wake periods. More-accurate performance for the old (studied) stimuli occurred after the sleep session. Analysis of variance on correctly answered reaction times revealed a significant effect of condition (old/new) with no difference across session. A repeated-measure analysis revealed differences in "Old/New" effect, whereby the amplitude difference between the old and new items was larger after sleep than after wake. This effect of sleep was found in early frontal and later posterior ERP components, processes that represent strategic, contextual processing and facilitation of episodic memory. Memory representation was not different across sessions. These findings suggest that sleep and wake facilitate 2 components of memory unequally, ie, episodic recognition and memory representation functioning.

  5. Autobiographical memory for the differential diagnosis of cognitive pathology in aging.

    PubMed

    Meléndez, Juan C; Redondo, Rita; Torres, Marta; Mayordomo, Teresa; Sales, Alicia

    2016-11-01

    The present study distinguishes three memory stages across the lifespan, and aims to compare episodic and semantic autobiographical memory in healthy older adults, with amnesic mild cognitive impairment, and with Alzheimer's disease. This information can offer evidence about the way semantic and episodic autobiographical memory work, and how the disease affects them. The sample was composed of 56 people, all aged over 60 years; 15 with amnestic mild cognitive impairment, 12 with Alzheimer's disease and 29 healthy older people. Participants were evaluated with the Autobiographical Memory Interview. A mixed anova showed significant main effects of memory and time-period, and significant interactions of memory × group, time-period × group and memory × time × group. Assessment of autobiographical memory provides information to differentiate amnestic mild cognitive impairment patients from Alzheimer's disease patients. Although the decline in episodic memory starts with the onset of the disease, semantic memory is maintained until moderate stages of dementia. Geriatr Gerontol Int 2016; 16:1220-1225. © 2015 Japan Geriatrics Society.

  6. CD8 T cell memory: it takes all kinds

    PubMed Central

    Hamilton, Sara E.; Jameson, Stephen C.

    2012-01-01

    Understanding the mechanisms that regulate the differentiation and maintenance of CD8+ memory T cells is fundamental to the development of effective T cell-based vaccines. Memory cell differentiation is influenced by the cytokines that accompany T cell priming, the history of previous antigen encounters, and the tissue sites into which memory cells migrate. These cues combine to influence the developing CD8+ memory pool, and recent work has revealed the importance of multiple transcription factors, metabolic molecules, and surface receptors in revealing the type of memory cell that is generated. Paired with increasingly meticulous subsetting and sorting of memory populations, we now know the CD8+ memory pool to be phenotypically and functionally heterogeneous in nature. This includes both recirculating and tissue-resident memory populations, and cells with varying degrees of inherent longevity and protective function. These data point to the importance of tailored vaccine design. Here we discuss how the diversity of the memory CD8+ T cell pool challenges the notion that “one size fits all” for pathogen control, and how distinct memory subsets may be suited for distinct aspects of protective immunity. PMID:23230436

  7. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation

    PubMed Central

    Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang

    2015-01-01

    The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008

  8. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.

    PubMed

    Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang

    2015-02-24

    The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.

  9. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task.

    PubMed

    Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D

    2013-11-01

    Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.

  10. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085

  11. Flash memory management system and method utilizing multiple block list windows

    NASA Technical Reports Server (NTRS)

    Chow, James (Inventor); Gender, Thomas K. (Inventor)

    2005-01-01

    The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.

  12. Decoding individual episodic memory traces in the human hippocampus.

    PubMed

    Chadwick, Martin J; Hassabis, Demis; Weiskopf, Nikolaus; Maguire, Eleanor A

    2010-03-23

    In recent years, multivariate pattern analyses have been performed on functional magnetic resonance imaging (fMRI) data, permitting prediction of mental states from local patterns of blood oxygen-level-dependent (BOLD) signal across voxels. We previously demonstrated that it is possible to predict the position of individuals in a virtual-reality environment from the pattern of activity across voxels in the hippocampus. Although this shows that spatial memories can be decoded, substantially more challenging, and arguably only possible to investigate in humans, is whether it is feasible to predict which complex everyday experience, or episodic memory, a person is recalling. Here we document for the first time that traces of individual rich episodic memories are detectable and distinguishable solely from the pattern of fMRI BOLD signals across voxels in the human hippocampus. In so doing, we uncovered a possible functional topography in the hippocampus, with preferential episodic processing by some hippocampal regions over others. Moreover, our results imply that the neuronal traces of episodic memories are stable (and thus predictable) even over many re-activations. Finally, our data provide further evidence for functional differentiation within the medial temporal lobe, in that we show the hippocampus contains significantly more episodic information than adjacent structures. 2010 Elsevier Ltd. All rights reserved.

  13. Memory Detection 2.0: The First Web-Based Memory Detection Test

    PubMed Central

    Kleinberg, Bennett; Verschuere, Bruno

    2015-01-01

    There is accumulating evidence that reaction times (RTs) can be used to detect recognition of critical (e.g., crime) information. A limitation of this research base is its reliance upon small samples (average n = 24), and indications of publication bias. To advance RT-based memory detection, we report upon the development of the first web-based memory detection test. Participants in this research (Study1: n = 255; Study2: n = 262) tried to hide 2 high salient (birthday, country of origin) and 2 low salient (favourite colour, favourite animal) autobiographical details. RTs allowed to detect concealed autobiographical information, and this, as predicted, more successfully so than error rates, and for high salient than for low salient items. While much remains to be learned, memory detection 2.0 seems to offer an interesting new platform to efficiently and validly conduct RT-based memory detection research. PMID:25874966

  14. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  15. Interconnected subsets of memory follicular helper T cells have different effector functions.

    PubMed

    Asrir, Assia; Aloulou, Meryem; Gador, Mylène; Pérals, Corine; Fazilleau, Nicolas

    2017-10-10

    Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.

  16. Aging memories: differential decay of episodic memory components.

    PubMed

    Talamini, Lucia M; Gorree, Eva

    2012-05-17

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.

  17. Research about Memory Detection Based on the Embedded Platform

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Chu, Jian

    As is known to us all, the resources of memory detection of the embedded systems are very limited. Taking the Linux-based embedded arm as platform, this article puts forward two efficient memory detection technologies according to the characteristics of the embedded software. Especially for the programs which need specific libraries, the article puts forwards portable memory detection methods to help program designers to reduce human errors,improve programming quality and therefore make better use of the valuable embedded memory resource.

  18. Age-Related Differences in Recognition Memory for Items and Associations: Contribution of Individual Differences in Working Memory and Metamemory

    PubMed Central

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Ability to form new associations between unrelated items is particularly sensitive to aging, but the reasons for such differential vulnerability are unclear. In this study, we examined the role of objective and subjective factors (working memory and beliefs about memory strategies) on differential relations of age with recognition of items and associations. Healthy adults (N = 100, age 21 to 79) studied word pairs, completed item and association recognition tests, and rated the effectiveness of shallow (e.g., repetition) and deep (e.g., imagery or sentence generation) encoding strategies. Advanced age was associated with reduced working memory (WM) capacity and poorer associative recognition. In addition, reduced WM capacity, beliefs in the utility of ineffective encoding strategies, and lack of endorsement of effective ones were independently associated with impaired associative memory. Thus, maladaptive beliefs about memory in conjunction with reduced cognitive resources account in part for differences in associative memory commonly attributed to aging. PMID:22251381

  19. Differential effects of cannabinoid receptor agonist on social discrimination and contextual fear in amygdala and hippocampus.

    PubMed

    Segev, Amir; Akirav, Irit

    2011-04-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 µg/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval. In the ventral subiculum (vSub), WIN impaired fear retrieval. In the neutral social discrimination task, WIN into the vSub impaired both acquisition/consolidation and retrieval, whereas in the medial amygdala WIN impaired acquisition. The results suggest that cannabinoid signaling differentially affects memory in a task-, region-, and memory stage-dependent manner.

  20. Differentiating location- and distance-based processes in memory for time: an ERP study.

    PubMed

    Curran, Tim; Friedman, William J

    2003-09-01

    Memory for the time of events may benefit from reconstructive, location-based, and distance-based processes, but these processes are difficult to dissociate with behavioral methods. Neuropsychological research has emphasized the contribution of prefrontal brain mechanisms to memory for time but has not clearly differentiated location- from distance-based processing. The present experiment recorded event-related brain potentials (ERPs) while subjects completed two different temporal memory tests, designed to emphasize either location- or distance-based processing. The subjects' reports of location-based versus distance-based strategies and the reaction time pattern validated our experimental manipulation. Late (800-1,800 msec) frontal ERP effects were related to location-based processing. The results provide support for a two-process theory of memory for time and suggest that frontal memory mechanisms are specifically related to reconstructive, location-based processing.

  1. Differential effects of ongoing EEG beta and theta power on memory formation

    PubMed Central

    Scholz, Sebastian; Schneider, Signe Luisa

    2017-01-01

    Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459

  2. Differential patterns of contextual organization of memory in first-episode psychosis.

    PubMed

    Murty, Vishnu P; McKinney, Rachel A; DuBrow, Sarah; Jalbrzikowski, Maria; Haas, Gretchen L; Luna, Beatriz

    2018-02-15

    Contextual information is used to support and organize episodic memory. Prior research has reliably shown memory deficits in psychosis; however, little research has characterized how this population uses contextual information during memory recall. We employed an approach founded in a computational framework of free recall to quantify how individuals with first episode of psychosis (FEP, N = 97) and controls (CON, N = 55) use temporal and semantic context to organize memory recall. Free recall was characterized using the Hopkins Verbal Learning Test-Revised (HVLT-R). We compared FEP and CON on three measures of free recall: proportion recalled, temporal clustering, and semantic clustering. Measures of temporal/semantic clustering quantified how individuals use contextual information to organize memory recall. We also assessed to what extent these measures relate to antipsychotic use and differentiated between different types of psychosis. We also explored the relationship between these measures and intelligence. In comparison to CON, FEP had reduced recall and less temporal clustering during free recall (p < 0.05, Bonferroni-corrected), and showed a trend towards greater semantic clustering (p = 0.10, Bonferroni-corrected). Within FEP, antipsychotic use and diagnoses did not differentiate between free recall accuracy or contextual organization of memory. IQ was related to free recall accuracy, but not the use of contextual information during recall in either group (p < 0.05, Bonferroni-corrected). These results show that in addition to deficits in memory recall, FEP differed in how they organize memories compared to CON.

  3. Diet-induced obesity does not impact the generation and maintenance of primary memory CD8 T cells.

    PubMed

    Khan, Shaniya H; Hemann, Emily A; Legge, Kevin L; Norian, Lyse A; Badovinac, Vladimir P

    2014-12-15

    The extent to which obesity compromises the differentiation and maintenance of protective memory CD8 T cell responses and renders obese individuals susceptible to infection remains unknown. In this study, we show that diet-induced obesity did not impact the maintenance of pre-existing memory CD8 T cells, including acquisition of a long-term memory phenotype (i.e., CD27(hi), CD62L(hi), KLRG1(lo)) and function (i.e., cytokine production, secondary expansion, and memory CD8 T cell-mediated protection). Additionally, obesity did not influence the differentiation and maintenance of newly evoked memory CD8 T cell responses in inbred and outbred hosts generated in response to different types of systemic (LCMV, L. monocytogenes) and/or localized (influenza virus) infections. Interestingly, the rate of naive-to-memory CD8 T cell differentiation after a peptide-coated dendritic cell immunization was similar in lean and obese hosts, suggesting that obesity-associated inflammation, unlike pathogen- or adjuvant-induced inflammation, did not influence the development of endogenous memory CD8 T cell responses. Therefore, our studies reveal that the obese environment does not influence the development or maintenance of memory CD8 T cell responses that are either primed before or after obesity is established, a surprising notion with important implications for future studies aiming to elucidate the role obesity plays in host susceptibility to infections. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. A new full-field interferometry approach for counting and differentiating aquatic biotic nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boccara, A. Claude; Fedala, Yasmina; Voronkoff, Justine; Paffoni, Nina; Boccara, Martine

    2017-03-01

    Due to the huge abundance and the major role that viruses and membrane vesicles play in the seas or rivers ecosystems it is necessary to develop simple, sensitive, compact and reliable methods for their detection and characterization. Our approach is based on the measurement of the weak light level scattered by the biotic nanoparticles. We describe a new full-field, incoherently illuminated, shot-noise limited, common-path interferometric detection method coupled with the analysis of Brownian motion to detect, quantify, and differentiate biotic nanoparticles. The last developments take advantage of a new fast (700 Hz) camera with 2 Me- full well capacity that improves the signal to noise ratio and increases the precision of the Brownian motion characterization. We validated the method with calibrated nanoparticles and homogeneous DNA or RNA.viruses. The smallest virus size that we characterized with a suitable signal-to-noise ratio was around 30 nm in diameter with a target towards the numerous 20 nm diameter viruses. We show for the first time anisotropic trajectories for myoviruses meaning that there is a memory of the initial direction of their Brownian motions. Significant improvements have been made in the handling of the sample as well as in the statistical analysis for differentiating the various families of vesicles and virus. We further applied the method for vesicles detection and for analysis of coastal and oligotrophic samples from Tara Oceans circumnavigation as well of various rivers.

  5. A behavioral task with more opportunities for memory acquisition promotes the survival of new neurons in the adult dentate gyrus.

    PubMed

    Aasebø, Ida E J; Kasture, Ameya Sanjay; Passeggeri, Marzia; Tashiro, Ayumu

    2018-05-09

    It has been suggested that the dentate gyrus, particularly its new neurons generated via adult neurogenesis, is involved in memory acquisition and recall. Here, we trained rats in two types of Morris water maze tasks that are differentially associated with these two memory processes, and examined whether new neurons are differently affected by the two tasks performed during the second week of neuronal birth. Our results indicate that the task involving more opportunities to acquire new information better supports the survival of new neurons. Further, we assessed whether the two tasks differentially induce the expression of an immediate early gene, Zif268, which is known to be induced by neuronal activation. While the two tasks differentially induce Zif268 expression in the dentate gyrus, the proportions of new neurons activated were similar between the two tasks. Thus, we conclude that while the two tasks differentially activate the dentate gyrus, the task involving more opportunities for memory acquisition during the second week of the birth of new neurons better promotes the survival of the new neurons.

  6. Working Memory in Children with Developmental Disorders

    ERIC Educational Resources Information Center

    Alloway, Tracy Packiam; Rajendran, Gnanathusharan; Archibald, Lisa M. D.

    2009-01-01

    The aim of the present study was to directly compare working memory skills across students with different developmental disorders to investigate whether the uniqueness of their diagnosis would impact memory skills. The authors report findings confirming differential memory profiles on the basis of the following developmental disorders: Specific…

  7. HIV-DNA priming alters T-cell responses to HIV-adenovirus vaccine even when responses to DNA are undetectable1

    PubMed Central

    De Rosa, Stephen C.; Thomas, Evan P.; Bui, John; Huang, Yunda; deCamp, Allan; Morgan, Cecilia; Kalams, Spyros; Tomaras, Georgia D.; Akondy, Rama; Ahmed, Rafi; Lau, Chuen-Yen; Graham, Barney S.; Nabel, Gary J.; McElrath, M. Juliana

    2011-01-01

    Many candidate HIV vaccines are designed to primarily elicit T-cell responses. Although repeated immunization with the same vaccine boosts antibody responses, the benefit for T-cell responses is ill-defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T-cell responses, but increases gp140 antibody responses ten-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8+ T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4+ and CD8+ T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts, and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination. PMID:21844392

  8. The aftermath of memory retrieval for recycling visual working memory representations.

    PubMed

    Park, Hyung-Bum; Zhang, Weiwei; Hyun, Joo-Seok

    2017-07-01

    We examined the aftermath of accessing and retrieving a subset of information stored in visual working memory (VWM)-namely, whether detection of a mismatch between memory and perception can impair the original memory of an item while triggering recognition-induced forgetting for the remaining, untested items. For this purpose, we devised a consecutive-change detection task wherein two successive testing probes were displayed after a single set of memory items. Across two experiments utilizing different memory-testing methods (whole vs. single probe), we observed a reliable pattern of poor performance in change detection for the second test when the first test had exhibited a color change. The impairment after a color change was evident even when the same memory item was repeatedly probed; this suggests that an attention-driven, salient visual change made it difficult to reinstate the previously remembered item. The second change detection, for memory items untested during the first change detection, was also found to be inaccurate, indicating that recognition-induced forgetting had occurred for the unprobed items in VWM. In a third experiment, we conducted a task that involved change detection plus continuous recall, wherein a memory recall task was presented after the change detection task. The analyses of the distributions of recall errors with a probabilistic mixture model revealed that the memory impairments from both visual changes and recognition-induced forgetting are explained better by the stochastic loss of memory items than by their degraded resolution. These results indicate that attention-driven visual change and recognition-induced forgetting jointly influence the "recycling" of VWM representations.

  9. Differential induction of CD94 and NKG2 in CD4 helper T cells. A consequence of influenza virus infection and interferon-γ?

    PubMed Central

    Graham, Christine M; Christensen, Jillian R; Thomas, D Brian

    2007-01-01

    Influenza A virus causes worldwide epidemics and pandemics and the investigation of memory T helper (Th) cells that help maintain serological memory following infection is important for vaccine design. In this study we investigated CD94 and NKG2 gene expression in memory CD4 T-cell clones established from the spleens of C57BL/10 (H-2b) and BALB/c (H-2d) mice infected with influenza A virus (H3N2). CD94 and NKG2A/C/E proteins form heterodimeric membrane receptors that are involved in virus recognition. CD94 and NKG2 expression have been well characterized in natural killer (NK) and cytotoxic T cells. Despite CD94 being potentially an important marker for Th1 cells involved in virus infection, however, there has been little investigation of its expression or function in the CD4 T-cell lineage and no studies have looked at in-vivo-generated Th cells or memory cells. We show in this study that in-vivo-generated CD4 Th1 cells, but not Th2 cells, exhibited full-length CD94 and NKG2A gene expression following activation with viral peptide. For NKG2A, a novel ‘short’ (possibly redundant) truncated isoform was detectable in a Th2 cell clone. Another member of the NK receptor family, NKG2D, but not NKG2C or E, was also differentially expressed in Th1 cells. We show here that CD94 and NKG2A may exist as multiple isoforms with the potential to distinguish helper T-cell subsets. PMID:17462078

  10. Differential Involvement of Brain-Derived Neurotrophic Factor in Reconsolidation and Consolidation of Conditioned Taste Aversion Memory

    PubMed Central

    Wang, Yue; Zhang, Tian-Yi; Xin, Jian; Li, Ting; Yu, Hui; Li, Na; Chen, Zhe-Yu

    2012-01-01

    Consolidated memory can re-enter states of transient instability following reactivation, which is referred to as reconsolidation, and the exact molecular mechanisms underlying this process remain unexplored. Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic plasticity and memory processes. We have recently observed that BDNF signaling in the central nuclei of the amygdala (CeA) and insular cortex (IC) was involved in the consolidation of conditioned taste aversion (CTA) memory. However, whether BDNF in the CeA or IC is required for memory reconsolidation is still unclear. In the present study, using a CTA memory paradigm, we observed increased BDNF expression in the IC but not in the CeA during CTA reconsolidation. We further determined that BDNF synthesis and signaling in the IC but not in the CeA was required for memory reconsolidation. The differential, spatial-specific roles of BDNF in memory consolidation and reconsolidation suggest that dissociative molecular mechanisms underlie reconsolidation and consolidation, which might provide novel targets for manipulating newly encoded and reactivated memories without causing universal amnesia. PMID:23185492

  11. Age Differentiation within Gray Matter, White Matter, and between Memory and White Matter in an Adult Life Span Cohort.

    PubMed

    de Mooij, Susanne M M; Henson, Richard N A; Waldorp, Lourens J; Kievit, Rogier A

    2018-06-20

    It is well established that brain structures and cognitive functions change across the life span. A long-standing hypothesis called "age differentiation" additionally posits that the relations between cognitive functions also change with age. To date, however, evidence for age-related differentiation is mixed, and no study has examined differentiation of the relationship between brain and cognition. Here we use multigroup structural equation models (SEMs) and SEM trees to study differences within and between brain and cognition across the adult life span (18-88 years) in a large ( N > 646, closely matched across sexes), population-derived sample of healthy human adults from the Cambridge Centre for Ageing and Neuroscience (www.cam-can.org). After factor analyses of gray matter volume (from T1- and T2-weighted MRI) and white matter organization (fractional anisotropy from diffusion-weighted MRI), we found evidence for the differentiation of gray and white matter, such that the covariance between brain factors decreased with age. However, we found no evidence for age differentiation among fluid intelligence, language, and memory, suggesting a relatively stable covariance pattern among cognitive factors. Finally, we observed a specific pattern of age differentiation between brain and cognitive factors, such that a white matter factor, which loaded most strongly on the hippocampal cingulum, became less correlated with memory performance in later life. These patterns are compatible with the reorganization of cognitive functions in the face of neural decline, and/or with the emergence of specific subpopulations in old age. SIGNIFICANCE STATEMENT The theory of age differentiation posits age-related changes in the relationships among cognitive domains, either weakening (differentiation) or strengthening (dedifferentiation), but evidence for this hypothesis is mixed. Using age-varying covariance models in a large cross-sectional adult life span sample, we found age-related reductions in the covariance among both brain measures (neural differentiation), but no covariance change among cognitive factors of fluid intelligence, language, and memory. We also observed evidence of uncoupling (differentiation) between a white matter factor and cognitive factors in older age, most strongly for memory. Together, our findings support age-related differentiation as a complex, multifaceted pattern that differs for brain and cognition, and discuss several mechanisms that might explain the changing relationship between brain and cognition. Copyright © 2018 de Mooij et al.

  12. Differentiation of Forebrain and Hippocampal Dopamine 1-Class Receptors, D1R and D5R, in Spatial Learning and Memory

    PubMed Central

    Sariñana, Joshua; Tonegawa, Susumu

    2017-01-01

    Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R- specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. PMID:26174222

  13. Stress Modulates the Use of Spatial versus Stimulus-Response Learning Strategies in Humans

    ERIC Educational Resources Information Center

    Philippsen, Christine; Richter, Steffen; Bohringer, Andreas; Wippich, Werner; Schachinger, Hartmut; Schwabe, Lars; Oitzl, Melly S.

    2007-01-01

    Animal studies provided evidence that stress modulates multiple memory systems, favoring caudate nucleus-based "habit" memory over hippocampus-based "cognitive" memory. However, effects of stress on learning strategy and memory consolidation were not differentiated. We specifically address the effects of psychosocial stress on the applied learning…

  14. Abortive T Follicular Helper Development Is Associated with a Defective Humoral Response in Leishmania infantum-Infected Macaques

    PubMed Central

    Rodrigues, Vasco; Laforge, Mireille; Campillo-Gimenez, Laure; Soundaramourty, Calaiselvy; Correia-de-Oliveira, Ana; Dinis-Oliveira, Ricardo Jorge; Ouaissi, Ali; Cordeiro-da-Silva, Anabela; Silvestre, Ricardo; Estaquier, Jérôme

    2014-01-01

    Leishmania infantum causes a chronic infectious disease named visceral leishmaniasis (VL). We employed a non-human primate model to monitor immune parameters over time and gain new insights into the disease. Rhesus macaques were infected with L. infantum and the T helper and B cell immunological profiles characterized during acute and chronic phases of infection. Parasite detection in visceral compartments during the acute phase was associated with differentiation of effector memory CD4 T cells and increased levels of Th1 transcripts. At the chronic phase, parasites colonized novel lymphoid niches concomitant with increased expression of IL10. Despite the occurrence of hypergammaglobulinemia, the production of parasite-specific IgG was poor, being confined to the acute phase and positively correlated with the frequency of an activated memory splenic B cell population. We noticed the expansion of a splenic CD4 T cell population expressing CXCR5 and Bcl-6 during acute infection that was associated with the differentiation of the activated memory B cell population. Moreover, the number of splenic germinal centers peaked at one month after infection, hence paralleling the production of specific IgG. However, at chronic infection these populations contracted impacting the production of parasite-specific IgG. Our study provides new insights into the immune events taking place in a physiologically relevant host and a mechanistic basis for the inefficient humoral response during VL. PMID:24763747

  15. Proteomic Analysis of Rat Hippocampus under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin

    It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling

  16. Differential neural correlates of autobiographical memory recall in bipolar and unipolar depression.

    PubMed

    Young, Kymberly D; Bodurka, Jerzy; Drevets, Wayne C

    2016-11-01

    Autobiographical memory (AM) recall is impaired in both bipolar depression (BD) and major depressive disorder (MDD). The current study used functional magnetic resonance imaging (fMRI) to investigate differences between healthy controls (HCs) and depressed participants with either BD or MDD as they recalled AMs that varied in emotional valence. Unmedicated adults in a current major depressive episode who met criteria for either MDD or BD and HCs (n=16/group) underwent fMRI while recalling AMs in response to emotionally valenced cue words. Control tasks involved generating examples from a given category and counting the number of risers in a letter string. Both participants with BD and those with MDD recalled fewer specific and more categorical memories than HC participants. During specific AM recall of positive memories, participants with BD showed increased hemodynamic activity in the ventrolateral prefrontal cortex, posterior cingulate cortex, anterior insula, middle temporal gyrus, parahippocampus, and amygdala relative to MDD and HC participants, as well as decreased dorsolateral prefrontal (DLPFC) activity relative to MDD participants. During specific AM recall of negative memories, participants with BD manifested decreased activity in the precuneus, amygdala, anterior cingulate, and DLPFC along with increased activity in the dorsomedial PFC relative to MDD participants. While depressed participants with BD and MDD exhibited similar depression ratings and memory deficits, the brain regions underlying successful AM recall significantly differentiated these patient groups. Differential amygdala activity during emotional memory recall (particularly increased activity in participants with BD for positive AMs) may prove useful in the differentiation of individuals with MDD and BD experiencing a depressive episode. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Repetition Suppression and Multi-Voxel Pattern Similarity Differentially Track Implicit and Explicit Visual Memory

    PubMed Central

    Chun, Marvin M.; Kuhl, Brice A.

    2013-01-01

    Repeated exposure to a visual stimulus is associated with corresponding reductions in neural activity, particularly within visual cortical areas. It has been argued that this phenomenon of repetition suppression is related to increases in processing fluency or implicit memory. However, repetition of a visual stimulus can also be considered in terms of the similarity of the pattern of neural activity elicited at each exposure—a measure that has recently been linked to explicit memory. Despite the popularity of each of these measures, direct comparisons between the two have been limited, and the extent to which they differentially (or similarly) relate to behavioral measures of memory has not been clearly established. In the present study, we compared repetition suppression and pattern similarity as predictors of both implicit and explicit memory. Using functional magnetic resonance imaging, we scanned 20 participants while they viewed and categorized repeated presentations of scenes. Repetition priming (facilitated categorization across repetitions) was used as a measure of implicit memory, and subsequent scene recognition was used as a measure of explicit memory. We found that repetition priming was predicted by repetition suppression in prefrontal, parietal, and occipitotemporal regions; however, repetition priming was not predicted by pattern similarity. In contrast, subsequent explicit memory was predicted by pattern similarity (across repetitions) in some of the same occipitotemporal regions that exhibited a relationship between priming and repetition suppression; however, explicit memory was not related to repetition suppression. This striking double dissociation indicates that repetition suppression and pattern similarity differentially track implicit and explicit learning. PMID:24027275

  18. Anosmia: Differential diagnosis, evaluation, and management.

    PubMed

    Scangas, George A; Bleier, Benjamin S

    2017-01-01

    The ability to scrutinize our surroundings remains heavily dependent on the sense of smell. From the ability to detect dangerous situations such as fires to the recollection of a fond memory triggered by an odor, the advantages of an intact olfactory system cannot be overstated. Outcomes studies have highlighted the profound negative impact of anosmia and parosmia on the overall quality of life. The National Institute on Deafness and Other Communication Disorders estimates that ∼1.4% of the United States population experiences chronic olfactory dysfunction and smell loss. Efforts have focused on improving both the diagnosis of olfactory dysfunction through olfactory testing and improved reporting of treatment outcomes of olfactory training. The purpose of this article was to review the differential diagnosis, workup, and current treatment strategies of anosmia and smell disorders.

  19. The Arabidopsis DNA Methylome Is Stable under Transgenerational Drought Stress1[OPEN

    PubMed Central

    2017-01-01

    Improving the responsiveness, acclimation, and memory of plants to abiotic stress holds substantive potential for improving agriculture. An unresolved question is the involvement of chromatin marks in the memory of agriculturally relevant stresses. Such potential has spurred numerous investigations yielding both promising and conflicting results. Consequently, it remains unclear to what extent robust stress-induced DNA methylation variation can underpin stress memory. Using a slow-onset water deprivation treatment in Arabidopsis (Arabidopsis thaliana), we investigated the malleability of the DNA methylome to drought stress within a generation and under repeated drought stress over five successive generations. While drought-associated epi-alleles in the methylome were detected within a generation, they did not correlate with drought-responsive gene expression. Six traits were analyzed for transgenerational stress memory, and the descendants of drought-stressed lineages showed one case of memory in the form of increased seed dormancy, and that persisted one generation removed from stress. With respect to transgenerational drought stress, there were negligible conserved differentially methylated regions in drought-exposed lineages compared with unstressed lineages. Instead, the majority of observed variation was tied to stochastic or preexisting differences in the epigenome occurring at repetitive regions of the Arabidopsis genome. Furthermore, the experience of repeated drought stress was not observed to influence transgenerational epi-allele accumulation. Our findings demonstrate that, while transgenerational memory is observed in one of six traits examined, they are not associated with causative changes in the DNA methylome, which appears relatively impervious to drought stress. PMID:28986422

  20. Differential Age Effects on Spatial and Visual Working Memory

    ERIC Educational Resources Information Center

    Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert

    2011-01-01

    The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…

  1. Dynamic switching between semantic and episodic memory systems.

    PubMed

    Kompus, Kristiina; Olsson, Carl-Johan; Larsson, Anne; Nyberg, Lars

    2009-09-01

    It has been suggested that episodic and semantic long-term memory systems interact during retrieval. Here we examined the flexibility of memory retrieval in an associative task taxing memories of different strength, assumed to differentially engage episodic and semantic memory. Healthy volunteers were pre-trained on a set of 36 face-name pairs over a 6-week period. Another set of 36 items was shown only once during the same time period. About 3 months after the training period all items were presented in a randomly intermixed order in an event-related fMRI study of face-name memory. Once presented items differentially activated anterior cingulate cortex and a right prefrontal region that previously have been associated with episodic retrieval mode. High-familiar items were associated with stronger activation of posterior cortices and a left frontal region. These findings fit a model of memory retrieval by which early processes determine, on a trial-by-trial basis, if the task can be solved by the default semantic system. If not, there is a dynamic shift to cognitive control processes that guide retrieval from episodic memory.

  2. Neural substrate of initiation of cross-modal working memory retrieval.

    PubMed

    Zhang, Yangyang; Hu, Yang; Guan, Shuchen; Hong, Xiaolong; Wang, Zhaoxin; Li, Xianchun

    2014-01-01

    Cross-modal working memory requires integrating stimuli from different modalities and it is associated with co-activation of distributed networks in the brain. However, how brain initiates cross-modal working memory retrieval remains not clear yet. In the present study, we developed a cued matching task, in which the necessity for cross-modal/unimodal memory retrieval and its initiation time were controlled by a task cue appeared in the delay period. Using functional magnetic resonance imaging (fMRI), significantly larger brain activations were observed in the left lateral prefrontal cortex (l-LPFC), left superior parietal lobe (l-SPL), and thalamus in the cued cross-modal matching trials (CCMT) compared to those in the cued unimodal matching trials (CUMT). However, no significant differences in the brain activations prior to task cue were observed for sensory stimulation in the l-LPFC and l-SPL areas. Although thalamus displayed differential responses to the sensory stimulation between two conditions, the differential responses were not the same with responses to the task cues. These results revealed that the frontoparietal-thalamus network participated in the initiation of cross-modal working memory retrieval. Secondly, the l-SPL and thalamus showed differential activations between maintenance and working memory retrieval, which might be associated with the enhanced demand for cognitive resources.

  3. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    PubMed

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  4. Sad benefit in face working memory: an emotional bias of melancholic depression.

    PubMed

    Linden, Stefanie C; Jackson, Margaret C; Subramanian, Leena; Healy, David; Linden, David E J

    2011-12-01

    Emotion biases feature prominently in cognitive theories of depression and are a focus of psychological interventions. However, there is presently no stable neurocognitive marker of altered emotion-cognition interactions in depression. One reason may be the heterogeneity of major depressive disorder. Our aim in the present study was to find an emotional bias that differentiates patients with melancholic depression from controls, and patients with melancholic from those with non-melancholic depression. We used a working memory paradigm for emotional faces, where two faces with angry, happy, neutral, sad or fearful expression had to be retained over one second. Twenty patients with melancholic depression, 20 age-, education- and gender-matched control participants and 20 patients with non-melancholic depression participated in the study. We analysed performance on the working memory task using signal detection measures. We found an interaction between group and emotion on working memory performance that was driven by the higher performance for sad faces compared to other categories in the melancholic group. We computed a measure of "sad benefit", which distinguished melancholic and non-melancholic patients with good sensitivity and specificity. However, replication studies and formal discriminant analysis will be needed in order to assess whether emotion bias in working memory may become a useful diagnostic tool to distinguish these two syndromes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Source Memory in Korsakoff Syndrome: Disentangling the Mechanisms of Temporal Confusion.

    PubMed

    Brion, Mélanie; de Timary, Philippe; Pitel, Anne-Lise; Maurage, Pierre

    2017-03-01

    Korsakoff syndrome (KS), most frequently resulting from alcohol dependence (ALC), is characterized by severe anterograde amnesia. It has been suggested that these deficits may extend to other memory components, and notably source memory deficits involved in the disorientation and temporal confusion frequently observed in KS. However, the extent of this source memory impairment in KS and its usefulness for the differential diagnosis between ALC and KS remain unexplored. Nineteen patients with KS were compared with 19 alcohol-dependent individuals and 19 controls in a source memory test exploring temporal context confusions ("continuous recognition task"). Episodic memory and psychopathological comorbidities were controlled for. While no source memory deficit was observed in ALC, KS was associated with a significant presence of temporal context confusion, even when the influence of comorbidities was taken into account. This source memory impairment did not appear to be related to performances on episodic memory or executive functions. Patients with KS displayed source memory deficits, as indexed by temporal context confusions. The absence of a relationship with episodic memory performances seems to indicate that source memory impairment is not a mere by-product of amnesia. As ALC was associated with preserved source memory, the presence of temporal context confusion may serve as a complementary tool for the differential diagnosis between ALC and KS. Copyright © 2017 by the Research Society on Alcoholism.

  6. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions.

    PubMed

    Seifert, Marc; Przekopowitz, Martina; Taudien, Sarah; Lollies, Anna; Ronge, Viola; Drees, Britta; Lindemann, Monika; Hillen, Uwe; Engler, Harald; Singer, Bernhard B; Küppers, Ralf

    2015-02-10

    The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.

  7. Shape Memory Alloys for Monitoring Minor Over-Heating/Cooling Based on the Temperature Memory Effect via Differential Scanning Calorimetry: A Review of Recent Progress

    NASA Astrophysics Data System (ADS)

    Wang, T. X.; Huang, W. M.

    2017-12-01

    The recent development in the temperature memory effect (TME) via differential scanning calorimetry in shape memory alloys is briefly discussed. This phenomenon was also called the thermal arrest memory effect in the literature. However, these names do not explicitly reveal the potential application of this phenomenon in temperature monitoring. On the other hand, the standard testing process of the TME has great limitation. Hence, it cannot be directly applied for temperature monitoring in most of the real engineering applications in which temperature fluctuation occurs mostly in a random manner within a certain range. However, as shown here, after proper modification, we are able to monitor the maximum or minimum temperature in either over-heating or over-cooling with reasonable accuracy.

  8. Differential functions of NR2A and NR2B in short-term and long-term memory in rats.

    PubMed

    Jung, Ye-Ha; Suh, Yoo-Hun

    2010-08-23

    N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.

  9. Pathogen stimulation history impacts donor-specific CD8+ T cell susceptibility to costimulation/integrin blockade-based therapy

    PubMed Central

    Badell, IR; Kitchens, WH; Wagener, ME; Lukacher, AE; Larsen, CP; Ford, ML

    2017-01-01

    Recent studies have shown that the quantity of donor-reactive memory T cells is an important factor in determining the relative heterologous immunity barrier posed during transplantation. Here, we hypothesized that the quality of T cell memory also potently influences the response to costimulation blockade-based immunosuppression. Using a murine skin graft model of CD8+ memory T cell-mediated costimulation blockade resistance, we elicited donor-reactive memory T cells using three distinct types of pathogen infections. Strikingly, we observed differential efficacy of a costimulation and integrin blockade regimen based on the type of pathogen used to elicit the donor-reactive memory T cell response. Intriguingly, the most immunosuppression-sensitive memory T cell populations were composed primarily of central memory cells that possessed greater recall potential, exhibited a less differentiated phenotype, and contained more multi-cytokine producers. These data therefore demonstrate that the memory T cell barrier is dependent on the specific type of pathogen infection via which the donor-reactive memory T cells are elicited, and suggest that the immune stimulation history of a given transplant patient may profoundly influence the relative barrier posed by heterologous immunity during transplantation. PMID:26228897

  10. True and False DRM Memories: Differences Detected with an Implicit Task

    PubMed Central

    Marini, Maddalena; Agosta, Sara; Mazzoni, Giuliana; Barba, Gianfranco Dalla; Sartori, Giuseppe

    2012-01-01

    Memory is prone to illusions. When people are presented with lists of words associated with a non-presented critical lure, they produce a high level of false recognitions (false memories) for non-presented related stimuli indistinguishable, at the explicit level, from presented words (DRM paradigm). We assessed whether true and false DRM memories can be distinguished at the implicit level by using the autobiographical IAT (aIAT), a novel method based on indirect measures that permits to detect true autobiographical events encoded in the respondent’s mind/brain. In our experiment, after a DRM task participants performed two aIATs: the first aimed at testing implicit memory for presented words (true-memories aIAT) and the second aimed at evaluating implicit memory for critical lures (false-memories aIAT). Specifically, the two aIATs assessed the association of presented words and critical lures with the logical dimension “true.” Results showed that the aIAT detected a greater association of presented words than critical lures with the logical dimension “true.” This result indicates that although true and false DRM memories are indistinguishable at the explicit level a different association of the true and false DRM memories with the logical dimension “true” can be detected at the implicit level, and suggests that the aIAT may be a sensitive instrument to detect differences between true and false DRM memories. PMID:22969740

  11. The Differential Relations between Verbal, Numerical and Spatial Working Memory Abilities and Children's Reading Comprehension

    ERIC Educational Resources Information Center

    Oakhill, Jane; Yuill, Nicola; Garnham, Alan

    2011-01-01

    Working memory predicts children's reading comprehension but it is not clear whether this relation is due to a modality-specific or general working memory. This study, which investigated the relations between children's reading skills and working memory (WM) abilities in 3 modalities, extends previous work by including measures of both reading…

  12. Fish T cells: recent advances through genomics

    USGS Publications Warehouse

    Laing, Kerry J.; Hansen, John D.

    2011-01-01

    This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.

  13. Differential involvement of episodic and face representations in ERP repetition effects.

    PubMed

    Jemel, Boutheina; Calabria, Marco; Delvenne, Jean-François; Crommelinck, Marc; Bruyer, Raymond

    2003-03-03

    The purpose of this study was to disentangle the contribution of episodic-perceptual from pre-existing memory representations of faces to repetition effects. ERPs were recorded to first and second presentations of same and different photos of famous and unfamiliar faces, in an incidental task where occasional non-targets had to be detected. Repetition of same and different photos of famous faces resulted in an N400 amplitude decrement. No such N400 repetition-induced attenuation was observed for unfamiliar faces. In addition, repetition of same photos of faces, and not different ones, gave rise to an early ERP repetition effect (starting at approximately 350 ms) with an occipito-temporal scalp distribution. Together, these results suggest that repetition effects depend on two temporally and may be neuro-functionally distinct loci, episode-based representation and face recognition units stored in long-term memory.

  14. Cytokine-Induced Memory-Like Differentiation Enhances Unlicensed Natural Killer Cell Antileukemia and FcγRIIIa-Triggered Responses.

    PubMed

    Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A

    2017-03-01

    Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Attending to unrelated targets boosts short-term memory for color arrays.

    PubMed

    Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V

    2011-05-01

    Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Expectations impact short-term memory through changes in connectivity between attention- and task-related brain regions.

    PubMed

    Sinke, Christopher; Forkmann, Katarina; Schmidt, Katharina; Wiech, Katja; Bingel, Ulrike

    2016-05-01

    Over the recent years, neuroimaging studies have investigated the neural mechanisms underlying the influence of expectations on perception. However, it seems equally reasonable to assume that expectations impact cognitive functions. Here we used fMRI to explore the role of expectations on task performance and its underlying neural mechanisms. 43 healthy participants were randomly assigned to two groups. Using verbal instructions, group 1 was led to believe that pain enhances task performance while group 2 was instructed that pain hampers their performance. All participants performed a Rapid-Serial-Visual-Presentation (RSVP) Task (target detection and short-term memory component) with or without concomitant painful heat stimulation during 3T fMRI scanning. As hypothesized, short-term memory performance showed an interaction between painful stimulation and expectation. Positive expectations induced stronger neural activation in the right inferior parietal cortex (IPC) during painful stimulation than negative expectation. Moreover, IPC displayed differential functional coupling with the left inferior occipital cortex under pain as a function of expectancy. Our data show that an individual's expectation can influence cognitive performance in a visual short-term memory task which is associated with activity and connectivity changes in brain areas implicated in attentional processing and task performance. Copyright © 2016. Published by Elsevier Ltd.

  17. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness.

    PubMed

    Pedicord, Virginia A; Cross, Justin R; Montalvo-Ortiz, Welby; Miller, Martin L; Allison, James P

    2015-03-01

    During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. The list-composition effect in memory for emotional and neutral pictures: Differential contribution of ventral and dorsal attention networks to successful encoding.

    PubMed

    Barnacle, Gemma E; Montaldi, Daniela; Talmi, Deborah; Sommer, Tobias

    2016-09-01

    The Emotional enhancement of memory (EEM) is observed in immediate free-recall memory tests when emotional and neutral stimuli are encoded and tested together ("mixed lists"), but surprisingly, not when they are encoded and tested separately ("pure lists"). Here our aim was to investigate whether the effect of list-composition (mixed versus pure lists) on the EEM is due to differential allocation of attention. We scanned participants with fMRI during encoding of semantically-related emotional (negative valence only) and neutral pictures. Analysis of memory performance data replicated previous work, demonstrating an interaction between list composition and emotional valence. In mixed lists, neural subsequent memory effects in the dorsal attention network were greater for neutral stimulus encoding, while neural subsequent memory effects for emotional stimuli were found in a region associated with the ventral attention network. These results imply that when life experiences include both emotional and neutral elements, memory for the latter is more highly correlated with neural activity representing goal-directed attention processing at encoding. Copyright © 2016. Published by Elsevier Ltd.

  19. Reconciling change blindness with long-term memory for objects.

    PubMed

    Wood, Katherine; Simons, Daniel J

    2017-02-01

    How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.

  20. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.

    PubMed

    Lubin, Farah D; Roth, Tania L; Sweatt, J David

    2008-10-15

    Long-term memory formation requires selective changes in gene expression. Here, we determined the contribution of chromatin remodeling to learning-induced changes in brain-derived neurotrophic factor (bdnf) gene expression in the adult hippocampus. Contextual fear learning induced differential regulation of exon-specific bdnf mRNAs (I, IV, VI, IX) that was associated with changes in bdnf DNA methylation and altered local chromatin structure. Infusions of zebularine (a DNA methyltransferase inhibitor) significantly altered bdnf DNA methylation and triggered changes in exon-specific bdnf mRNA levels, indicating that altered DNA methylation is sufficient to drive differential bdnf transcript regulation in the hippocampus. In addition, NMDA receptor blockade prevented memory-associated alterations in bdnf DNA methylation, resulting in a block of altered bdnf gene expression in hippocampus and a deficit in memory formation. These results suggest epigenetic modification of the bdnf gene as a mechanism for isoform-specific gene readout during memory consolidation.

  1. Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer's disease diagnosis.

    PubMed

    Bellassen, Virginie; Iglói, Kinga; de Souza, Leonardo Cruz; Dubois, Bruno; Rondi-Reig, Laure

    2012-02-08

    Episodic memory impairment is a hallmark for early diagnosis of Alzheimer's disease. Most actual tests used to diagnose Alzheimer's disease do not assess the spatiotemporal properties of episodic memory and lead to false-positive or -negative diagnosis. We used a newly developed, nonverbal navigation test for Human, based on the objective experimental testing of a spatiotemporal experience, to differentially Alzheimer's disease at the mild stage (N = 16 patients) from frontotemporal lobar degeneration (N = 11 patients) and normal aging (N = 24 subjects). Comparing navigation parameters and standard neuropsychological tests, temporal order memory appeared to have the highest predictive power for mild Alzheimer's disease diagnosis versus frontotemporal lobar degeneration and normal aging. This test was also nonredundant with classical neuropsychological tests. As a conclusion, our results suggest that temporal order memory tested in a spatial navigation task may provide a selective behavioral marker of Alzheimer's disease.

  2. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination.

    PubMed

    Fuertes Marraco, Silvia A; Soneson, Charlotte; Cagnon, Laurène; Gannon, Philippe O; Allard, Mathilde; Abed Maillard, Samia; Montandon, Nicole; Rufer, Nathalie; Waldvogel, Sophie; Delorenzi, Mauro; Speiser, Daniel E

    2015-04-08

    Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans. Copyright © 2015, American Association for the Advancement of Science.

  3. Encoding, Consolidation, and Retrieval of Contextual Memory: Differential Involvement of Dorsal CA3 and CA1 Hippocampal Subregions

    ERIC Educational Resources Information Center

    Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…

  4. Age effects in emotional prospective memory: cue valence differentially affects the prospective and retrospective component.

    PubMed

    Schnitzspahn, Katharina M; Horn, Sebastian S; Bayen, Ute J; Kliegel, Matthias

    2012-06-01

    While first studies suggested that emotional task material may enhance prospective memory performance in young and older adults, the extent and mechanisms of this effect are under debate. The authors explored possible differential effects of cue valence on the prospective and retrospective component of prospective memory in young and older adults. Forty-five young and 41 older adults performed a prospective memory task in which emotional valence of the prospective memory cue was manipulated (positive, negative, neutral). The multinomial model of event-based prospective memory was used to analyze effects of valence and age on the two prospective memory components separately. Results revealed an interaction indicating that age differences were smaller in both emotional valence conditions. For older adults positive cues improved the prospective component, while negative cues improved the retrospective component. No main effect of valence was found for younger adults on an overt accuracy measure, but model-based analyses showed that the retrospective component was enhanced in the positive compared with the negative cue condition. The study extends the literature in demonstrating that processes underlying emotional effects on prospective memory may differ depending on valence and age. PsycINFO Database Record (c) 2012 APA, all rights reserved

  5. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins

    PubMed Central

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553

  6. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.

    PubMed

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.

  7. Does working memory load facilitate target detection?

    PubMed

    Fruchtman-Steinbok, Tom; Kessler, Yoav

    2016-02-01

    Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses.

    PubMed

    Beste, Christian; Stock, Ann-Kathrin; Ness, Vanessa; Epplen, Jörg T; Arning, Larissa

    2012-08-01

    The ADORA2A gene encodes the adenosine A(2A) receptor that is highly expressed in the striatum where it plays a role in modulating glutamatergic and dopaminergic transmission. Glutamatergic signaling has been suggested to play a pivotal role in cognitive functions related to the pre-attentive processing of external stimuli. Yet, the precise molecular mechanism of these processes is poorly understood. Therefore, we aimed to investigate whether ADORA2A gene variation has modulating effects on visual pre-attentive sensory memory processing. Studying two polymorphisms, rs5751876 and rs2298383, in 199 healthy control subjects who performed a partial-report paradigm, we find that ADORA2A variation is associated with differences in the efficiency of pre-attentive sensory memory sub-processes. We show that especially the initial visual availability of stimulus information is rendered more efficiently in the homozygous rare genotype groups. Processes related to the transfer of information into working memory and the duration of visual sensory (iconic) memory are compromised in the homozygous rare genotype groups. Our results show a differential genotype-dependent modulation of pre-attentive sensory memory sub-processes. Hence, we assume that this modulation may be due to differential effects of increased adenosine A(2A) receptor signaling on glutamatergic transmission and striatal medium spiny neuron (MSN) interaction. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.

  9. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    PubMed

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  10. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  11. Age 60 Study, Part 2: Airline Pilot Age and Performance - A Review of the Scientific Literature

    DTIC Science & Technology

    1994-10-01

    It is clear that increasing age 14 differentially affects different memory processes. Hultsch and Dixon (1990) draw the following conclusions about...tasks involving retrieval from secondary memory that may also reflect age differences in initial encoding processes. Hultsch and Dixon (1990) also...working memory ( Hultsch & Dixon, 1990). These age-related declines in working memory are important because of working memory’s contribution to

  12. Face repetition detection and social interest: An ERP study in adults with and without Williams syndrome.

    PubMed

    Key, Alexandra P; Dykens, Elisabeth M

    2016-12-01

    The present study examined possible neural mechanisms underlying increased social interest in persons with Williams syndrome (WS). Visual event-related potentials (ERPs) during passive viewing were used to compare incidental memory traces for repeated vs. single presentations of previously unfamiliar social (faces) and nonsocial (houses) images in 26 adults with WS and 26 typical adults. Results indicated that participants with WS developed familiarity with the repeated faces and houses (frontal N400 response), but only typical adults evidenced the parietal old/new effect (previously associated with stimulus recollection) for the repeated faces. There was also no evidence of exceptional salience of social information in WS, as ERP markers of memory for repeated faces vs. houses were not significantly different. Thus, while persons with WS exhibit behavioral evidence of increased social interest, their processing of social information in the absence of specific instructions may be relatively superficial. The ERP evidence of face repetition detection in WS was independent of IQ and the earlier perceptual differentiation of social vs. nonsocial stimuli. Large individual differences in ERPs of participants with WS may provide valuable information for understanding the WS phenotype and have relevance for educational and treatment purposes.

  13. Redirection to the bone marrow improves T cell persistence and antitumor functions.

    PubMed

    Khan, Anjum B; Carpenter, Ben; Santos E Sousa, Pedro; Pospori, Constandina; Khorshed, Reema; Griffin, James; Velica, Pedro; Zech, Mathias; Ghorashian, Sara; Forrest, Calum; Thomas, Sharyn; Gonzalez Anton, Sara; Ahmadi, Maryam; Holler, Angelika; Flutter, Barry; Ramirez-Ortiz, Zaida; Means, Terry K; Bennett, Clare L; Stauss, Hans; Morris, Emma; Lo Celso, Cristina; Chakraverty, Ronjon

    2018-05-01

    A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15-dependent homeostatic expansion and promoted the differentiation of memory precursor-like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells.

  14. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    PubMed Central

    Gervais-St-Amour, Catherine

    2016-01-01

    The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC) from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50%) when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium. PMID:27872867

  15. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    PubMed

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  16. Ecological assessment of mild cognitive impairment and Alzheimer disease using the Rivermead Behavioural Memory Test.

    PubMed

    Bolló-Gasol, S; Piñol-Ripoll, G; Cejudo-Bolivar, J C; Llorente-Vizcaino, A; Peraita-Adrados, H

    2014-01-01

    The Rivermead Behavioural Memory Test (RBMT) is a short, ecologically-valid memory test battery that can provide data about a subject's memory function in daily life. We used RBMT to examine daily memory function in patients with mild cognitive impairment (MCI), Alzheimer disease (AD), and in healthy controls. We also evaluated differences between the memory profiles of subjects whose MCI remained stable after 1 year and those with conversion to AD. Sample of 91 subjects older than 60 years: 30 controls, 27 MCI subjects and 34 AD patients. Subjects were assessed using MMSE and RBMT. The 40 men and 51 women in the sample had a mean age of 74.29±6.71 and 5.87±2.93 years of education. For the total profile and screening RBMT scores (P<.001) and total MMSE scores (P<.05), control subjects scored significantly higher than those with MCI, who in turn scored higher than AD patients. In all subtests, the control group (P<.001) and MCI group (P<.05) were distinguishable from the AD group. Prospective, retrospective, and orientation subtests found differences between the MCI and control groups (P<.05). MCI subjects who progressed to AD scored lower at baseline on the total RBMT and MMSE, and on name recall, belongings, story-immediate recall, route-delayed recall, orientation (P<.05), face recognition, story-delayed recall, and messages-delayed recall sections (P<.01). RBMT is an ecologically-valid episodic memory test that can be used to differentiate between controls, MCI subjects, and AD subjects. It can also be used to detect patients with MCI who will experience progression to AD. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  17. Identification of the key molecules involved in chronic copper exposure-aggravated memory impairment in transgenic mice of Alzheimer's disease using proteomic analysis.

    PubMed

    Yu, Jun; Luo, Xiaobin; Xu, Hua; Ma, Quan; Yuan, Jianhui; Li, Xuling; Chang, Raymond Chuen-Chung; Qu, Zhongsen; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by a progressive impairment of cognitive functions including spatial learning and memory. Excess copper exposure accelerates the development of AD; however, the potential mechanisms by which copper exacerbates the symptoms of AD remain unknown. In this study, we explored the effects of chronic copper exposure on cognitive function by treating 6 month-old triple AD transgenic (3xTg-AD) mice with 250 ppm copper sulfate in drinking water for 6 months, and identified several potential key molecules involved in the effects of chronic copper exposure on memory by proteomic analysis. The behavioral test showed that chronic copper exposure aggravated memory impairment of 3xTg-AD mice. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry revealed a total of 44 differentially expressed proteins (18 upregulated and 26 down-regulated) in hippocampus between the wild-type (WT) mice and non-exposed 3xTg-AD mice. A total of 40 differentially expressed proteins were revealed (20 upregulated and 20 down-regulated) in hippocampus between copper exposed and non-exposed 3xTg-AD mice. Among these differentially expressed proteins, complexin-1 and complexin-2, two memory associated proteins, were significantly decreased in hippocampus of 3xTg-AD mice compared with the WT mice. Furthermore, the expression of these two proteins was further down-regulated in 3xTg-AD mice when exposed to copper. The abnormal expression of complexin-1 and complexin-2 identified by proteomic analysis was verified by western blot analysis. Taken together, our data showed that chronic copper exposure accelerated memory impairment and altered the expression of proteins in hippocampus in 3xTg-AD mice. The functional analysis on the differentially expressed proteins suggested that complexin-1 and complexin-2 may be the key molecules involved in chronic copper exposure-aggravated memory impairment in AD.

  18. Differential Contributions of Language Skills to Children's Episodic Recall

    ERIC Educational Resources Information Center

    Klemfuss, J. Zoe

    2015-01-01

    Theorists have identified language as a critical contributor to children's episodic memory development, yet studies linking language and memory have had mixed results. The present study aimed to clarify the mechanisms linking language and memory and to explain the previous mixed results. Sixty-four preschool children's receptive and productive…

  19. Differential learning and memory performance in OEF/OIF veterans for verbal and visual material.

    PubMed

    Sozda, Christopher N; Muir, James J; Springer, Utaka S; Partovi, Diana; Cole, Michael A

    2014-05-01

    Memory complaints are particularly salient among veterans who experience combat-related mild traumatic brain injuries and/or trauma exposure, and represent a primary barrier to successful societal reintegration and everyday functioning. Anecdotally within clinical practice, verbal learning and memory performance frequently appears differentially reduced versus visual learning and memory scores. We sought to empirically investigate the robustness of a verbal versus visual learning and memory discrepancy and to explore potential mechanisms for a verbal/visual performance split. Participants consisted of 103 veterans with reported history of mild traumatic brain injuries returning home from U.S. military Operations Enduring Freedom and Iraqi Freedom referred for outpatient neuropsychological evaluation. Findings indicate that visual learning and memory abilities were largely intact while verbal learning and memory performance was significantly reduced in comparison, residing at approximately 1.1 SD below the mean for verbal learning and approximately 1.4 SD below the mean for verbal memory. This difference was not observed in verbal versus visual fluency performance, nor was it associated with estimated premorbid verbal abilities or traumatic brain injury history. In our sample, symptoms of depression, but not posttraumatic stress disorder, were significantly associated with reduced composite verbal learning and memory performance. Verbal learning and memory performance may benefit from targeted treatment of depressive symptomatology. Also, because visual learning and memory functions may remain intact, these might be emphasized when applying neurocognitive rehabilitation interventions to compensate for observed verbal learning and memory difficulties.

  20. Effector and memory CD8+ T cell differentiation: toward a molecular understanding of fate determination.

    PubMed

    Belz, Gabrielle T; Kallies, Axel

    2010-06-01

    CD8(+) T cells play a key role in protecting the body against invading microorganisms. Their capacity to control infection relies on the development of peripheral effector and memory T cells. Much of our current knowledge has been gained by tracking alterations of the phenotype of CD8(+) T cells but the molecular understanding of the events that underpin the emergence of heterogeneous effector and memory CD8(+) T cells in response to infection has remained limited. This review focuses on the recent progress in our understanding of the molecular wiring of this differentiation process. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Influence of aging on the neural correlates of autobiographical, episodic, and semantic memory retrieval.

    PubMed

    St-Laurent, Marie; Abdi, Hervé; Burianová, Hana; Grady, Cheryl L

    2011-12-01

    We used fMRI to assess the neural correlates of autobiographical, semantic, and episodic memory retrieval in healthy young and older adults. Participants were tested with an event-related paradigm in which retrieval demand was the only factor varying between trials. A spatio-temporal partial least square analysis was conducted to identify the main patterns of activity characterizing the groups across conditions. We identified brain regions activated by all three memory conditions relative to a control condition. This pattern was expressed equally in both age groups and replicated previous findings obtained in a separate group of younger adults. We also identified regions whose activity differentiated among the different memory conditions. These patterns of differentiation were expressed less strongly in the older adults than in the young adults, a finding that was further confirmed by a barycentric discriminant analysis. This analysis showed an age-related dedifferentiation in autobiographical and episodic memory tasks but not in the semantic memory task or the control condition. These findings suggest that the activation of a common memory retrieval network is maintained with age, whereas the specific aspects of brain activity that differ with memory content are more vulnerable and less selectively engaged in older adults. Our results provide a potential neural mechanism for the well-known age differences in episodic/autobiographical memory, and preserved semantic memory, observed when older adults are compared with younger adults.

  2. IgG1 memory B cells keep the memory of IgE responses.

    PubMed

    He, Jin-Shu; Subramaniam, Sharrada; Narang, Vipin; Srinivasan, Kandhadayar; Saunders, Sean P; Carbajo, Daniel; Wen-Shan, Tsao; Hidayah Hamadee, Nur; Lum, Josephine; Lee, Andrea; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Lafaille, Juan J; Curotto de Lafaille, Maria A

    2017-09-21

    The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80 + CD73 + and CD80 - CD73 - , contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80 + CD73 + high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.

  3. End-stage renal disease, dialysis, kidney transplantation and their impact on CD4+ -T-cell differentiation.

    PubMed

    Schaier, Matthias; Leick, Angele; Uhlmann, Lorenz; Kälble, Florian; Morath, Christian; Eckstein, Volker; Ho, Anthony; Mueller-Tidow, Carsten; Meuer, Stefan; Mahnke, Karsten; Sommerer, Claudia; Zeier, Martin; Steinborn, Andrea

    2018-05-02

    Premature aging of both CD4 + -regulatory- (Tregs) and CD4 + -responder-T-cells (Tresps) in end-stage renal disease (ESRD) patients is expected to affect the success of later kidney transplantation. Both T-cell populations are released from the thymus as inducible co-stimulatory (ICOS + -) and ICOS - -recent thymic emigrant (RTE)-Tregs/Tresps, which differ primarily in their proliferative capacities. In this study, we analysed the effect of ESRD and subsequent renal replacement therapies on the differentiation of ICOS + - and ICOS - -RTE-Tregs/Tresps into ICOS + - or ICOS - -CD31 - -Memory-Tregs/Tresps and examined whether diverging pathways affected the suppressive activity of ICOS + - and ICOS - -Tregs in co-culture with autologous Tresps. Compared to healthy controls, we found an increased differentiation of ICOS + -RTE-Tregs/Tresps and ICOS - -RTE-Tregs via CD31 + -memory-Tregs/Tresps into CD31 - -memory-Tregs/Tresps in ESRD and dialysis patients. In contrast, ICOS - -RTE-Tresps showed an increased differentiation via ICOS - -mature naïve (MN)-Tresps into CD31 - -memory-Tresps. Thereby, the ratio of ICOS + -Tregs/ICOS + -Tresps was not changed, while that of ICOS - -Tregs/ICOS - -Tresps was significantly increased. This differentiation preserved the suppressive activity of both Treg populations in ESRD and partly in dialysis patients. After transplantation, the increased differentiation of ICOS + - and ICOS - -RTE-Tresps proceeded, while that of ICOS + -RTE-Tregs ceased and that of ICOS - -RTE-Tregs switched to an increased differentiation via ICOS - -MN-Tregs. Consequently, the ratios of ICOS + -Tregs/ICOS + -Tresps and of ICOS - -Tregs/ICOS - -Tresps decreased significantly, reducing the suppressive activity of Tregs markedly. Our data reveal that an increased tolerance-inducing differentiation of ICOS + - and ICOS - -Tregs preserves the functional activity of Tregs in ESRD patients, but this cannot be maintained during long-term renal replacement therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Diagnostic Accuracy of Memory Measures in Alzheimer’s Dementia and Mild Cognitive Impairment: a Systematic Review and Meta-Analysis

    PubMed Central

    Weissberger, Gali H.; Strong, Jessica V.; Stefanidis, Kayla B.; Summers, Mathew J.; Bondi, Mark W.; Stricker, Nikki H.

    2018-01-01

    With an increasing focus on biomarkers in dementia research, illustrating the role of neuropsychological assessment in detecting mild cognitive impairment (MCI) and Alzheimer’s dementia (AD) is important. This systematic review and meta-analysis, conducted in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) standards, summarizes the sensitivity and specificity of memory measures in individuals with MCI and AD. Both meta-analytic and qualitative examination of AD versus healthy control (HC) studies (n = 47) revealed generally high sensitivity and specificity (≥ 80% for AD comparisons) for measures of immediate (sensitivity = 87%, specificity = 88%) and delayed memory (sensitivity = 89%, specificity = 89%), especially those involving word-list recall. Examination of MCI versus HC studies (n = 38) revealed generally lower diagnostic accuracy for both immediate (sensitivity = 72%, specificity = 81%) and delayed memory (sensitivity = 75%, specificity = 81%). Measures that differentiated AD from other conditions (n = 10 studies) yielded mixed results, with generally high sensitivity in the context of low or variable specificity. Results confirm that memory measures have high diagnostic accuracy for identification of AD, are promising but require further refinement for identification of MCI, and provide support for ongoing investigation of neuropsychological assessment as a cognitive biomarker of preclinical AD. Emphasizing diagnostic test accuracy statistics over null hypothesis testing in future studies will promote the ongoing use of neuropsychological tests as Alzheimer’s disease research and clinical criteria increasingly rely upon cerebrospinal fluid (CSF) and neuroimaging biomarkers. PMID:28940127

  5. Why Consumers Misattribute Sponsorships to Non-Sponsor Brands: Differential Roles of Item and Relational Communications.

    PubMed

    Weeks, Clinton S; Humphreys, Michael S; Cornwell, T Bettina

    2018-02-01

    Brands engaged in sponsorship of events commonly have objectives that depend on consumer memory for the sponsor-event relationship (e.g., sponsorship awareness). Consumers however, often misattribute sponsorships to nonsponsor competitor brands, indicating erroneous memory for these relationships. The current research uses an item and relational memory framework to reveal sponsor brands may inadvertently foster this misattribution when they communicate relational linkages to events. Effects can be explained via differential roles of communicating item information (information that supports processing item distinctiveness) versus relational information (information that supports processing relationships among items) in contributing to memory outcomes. Experiment 1 uses event-cued brand recall to show that correct memory retrieval is best supported by communicating relational information when sponsorship relationships are not obvious (low congruence). In contrast, correct retrieval is best supported by communicating item information when relationships are obvious (high congruence). Experiment 2 uses brand-cued event recall to show that, against conventional marketing recommendations, relational information increases misattribution, whereas item information guards against misattribution. Results suggest sponsor brands must distinguish between item and relational communications to enhance correct retrieval and limit misattribution. Methodologically, the work shows that choice of cueing direction is critical in differentially revealing patterns of correct and incorrect retrieval with pair relationships. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Testing Signal-Detection Models of Yes/No and Two-Alternative Forced-Choice Recognition Memory

    ERIC Educational Resources Information Center

    Jang, Yoonhee; Wixted, John T.; Huber, David E.

    2009-01-01

    The current study compared 3 models of recognition memory in their ability to generalize across yes/no and 2-alternative forced-choice (2AFC) testing. The unequal-variance signal-detection model assumes a continuous memory strength process. The dual-process signal-detection model adds a thresholdlike recollection process to a continuous…

  7. Relationship between Fear Conditionability and Aversive Memories: Evidence from a Novel Conditioned-Intrusion Paradigm

    PubMed Central

    Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.

    2013-01-01

    Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407

  8. Detailed sensory memory, sloppy working memory.

    PubMed

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  9. Left-frontal brain potentials index conceptual implicit memory for words initially viewed subliminally.

    PubMed

    Chen, Jason C W; Li, Wen; Lui, Ming; Paller, Ken A

    2009-08-18

    Neural correlates of explicit and implicit memory tend to co-occur and are therefore difficult to measure independently, posing problems for understanding the unique nature of different types of memory processing. To circumvent this problem, we developed an experimental design wherein subjects acquired information from words presented in a subliminal manner, such that conscious remembering was minimized. Cross-modal word repetition was used so that perceptual implicit memory would also be limited. Healthy human subjects viewed subliminal words six times each and about 2 min later heard the same words interspersed with new words in a category-verification test. Electrophysiological correlates of word repetition included negative brain potentials over left-frontal locations beginning approximately 500 ms after word onset. Behavioral responses were slower for repeated words than for new words. Differential processing of word meaning in the absence of explicit memory was most likely responsible for differential electrical and behavioral responses to old versus new words. Moreover, these effects were distinct from neural correlates of explicit memory observed in prior experiments, and were observed here in two separate experiments, thus providing a foundation for further investigations of relationships and interactions between different types of memory engaged when words repeat.

  10. Impaired Memory Retrieval Correlates with Individual Differences in Cortisol Response but Not Autonomic Response

    ERIC Educational Resources Information Center

    Tranel, Daniel; Adolphs, Ralph; Buchanan, Tony W.

    2006-01-01

    Stress can enhance or impair memory performance. Both cortisol release and sympathetic nervous system responses have been implicated in these differential effects. Here we investigated how memory retrieval might be affected by stress-induced cortisol release, independently of sympathetic nervous system stress responses. Thirty-two healthy…

  11. Improved Reading Gate For Vertical-Bloch-Line Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.

  12. Differential Neural Activity during Search of Specific and General Autobiographical Memories Elicited by Musical Cues

    ERIC Educational Resources Information Center

    Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.

    2011-01-01

    Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime…

  13. Effects of Learning Experience on Forgetting Rates of Item and Associative Memories

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Zhan, Lexia; Wang, Yingying; Du, Xiaoya; Zhou, Wenxi; Ning, Xueling; Sun, Qing; Moscovitch, Morris

    2016-01-01

    Are associative memories forgotten more quickly than item memories, and does the level of original learning differentially influence forgetting rates? In this study, we addressed these questions by having participants learn single words and word pairs once (Experiment 1), three times (Experiment 2), and six times (Experiment 3) in a massed…

  14. Half-State Readout In Vertical-Bloch-Line Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.

    1994-01-01

    Potentially narrow margins of chirality-based chopping of magnetic stripes avoided. Half-state readout is experimental method of readout in Vertical-Bloch-Line (VBL) memory. Based on differential deflections of magnetic stripe domains in which data bits stored. To give meaning to explanation of half-state readout, see "Vertical-Bloch-Line Memory" (NPO-18467).

  15. Working memory component processes: isolating BOLD signal changes.

    PubMed

    Motes, Michael A; Rypma, Bart

    2010-01-15

    The chronology of the component processes subserving working memory (WM) and hemodynamic response lags has hindered the use of fMRI for exploring neural substrates of WM. In the present study, however, participants completed full trials that involved encoding two or six letters, maintaining the memory set over a delay, and then deciding whether a probe was in the memory set or not. Additionally, they completed encode-only, encode-and-maintain, and encode-and-decide partial trials intermixed with the full trials. The inclusion of partial trials allowed for the isolation of BOLD signal changes to the different trial periods. The results showed that only lateral and medial prefrontal cortex regions differentially responded to the 2- and 6-letter memory sets over the trial periods, showing greater activation to 6-letter sets during the encode and maintain trial periods. Thus, the data showed the differential involvement of PFC in the encoding and maintenance of supra- and sub-capacity memory sets and show the efficacy of using fMRI partial trial methods to study WM component processes.

  16. Working Memory Component Processes: Isolating BOLD Signal-Changes

    PubMed Central

    Motes, Michael A.; Rypma, Bart

    2009-01-01

    The chronology of the component processes subserving working memory (WM) and hemodynamic response lags have hindered the use of fMRI for exploring neural substrates of WM. In the present study, however, participants completed full trials that involved encoding two or six letters, maintaining the memory-set over a delay, and then deciding whether a probe was in the memory-set or not. Additionally, they completed encode only, encode and maintain, and encode and decide partial-trials intermixed with the full-trials. The inclusion of partial-trials allowed for the isolation of BOLD signal-changes to the different trial-periods. The results showed that only lateral and medial prefrontal cortex regions differentially responded to the 2- and 6-letter memory-sets over the trial-periods, showing greater activation to 6-letter sets during the encode and maintain trial-periods. Thus, the data showed the differential involvement of PFC in the encoding and maintenance of supra- and sub-capacity memory-sets and show the efficacy of using fMRI partial-trial methods to study WM component processes. PMID:19732840

  17. Post-traumatic stress disorder is associated with limited executive resources in a working memory task

    PubMed Central

    Honzel, Nikki; Justus, Timothy; Swick, Diane

    2015-01-01

    Patients with post-traumatic stress disorder (PTSD) can show declines in working memory. A dual-task design was used to determine if these impairments are linked to executive control limitations. Participants performed a Sternberg memory task with either one or four letters. In the dual-task condition, the maintenance period was filled with an arrow flanker task. PTSD patients were less accurate on the working memory task than controls, especially in the dual-task condition. In the single-task condition, both groups showed similar patterns of brain potentials from 300–500 ms when discriminating old and new probes. However, when taxed with an additional task, the event-related potentials (ERPs) of the PTSD group no longer differentiated old and new probes. In contrast, interference resolution processes in both the single- and dual-task conditions of the flanker were intact. The lack of differentiation in the ERPs reflects impaired working memory performance under more difficult dual-task conditions. Exacerbated difficulty in performing a working memory task with concurrent task demands suggests a specific limitation in executive control resources in PTSD. PMID:24165904

  18. Eight color immunophenotyping of T-, B- and NK-cell subpopulations for characterization of chronic immunodeficiencies.

    PubMed

    A, Boldt; S, Borte; S, Fricke; K, Kentouche; F, Emmrich; M, Borte; F, Kahlenberg; U, Sack

    2014-01-16

    Background: The heterogeneity of primary and secondary immunodeficiencies demands for the development of a comprehensive flow cytometric screening system, based on reference values that support a standardized immunophenotypic characterization of most lymphocyte subpopulations. Methods: Peripheral blood samples from healthy adult volunteers (n=25) were collected and split into eight panel fractions (100µl each). Subsequently, pre-mixed 8-color antibody cocktails were incubated per specific panel of whole blood to detect and differentiate cell subsets of: (i) a general lymphocyte overviews, (ii) B-cell subpopulations, (iii) CD4+ subpopulations, (iv) CD8+ subpopulations, (v) regulatory T-cells, (vi) recent thymic emigrants, (vii) NK-cell subpopulations, (viii) NK-cell activation markers. All samples were lysed, washed and measured by flow cytometry. FACS DIVA software was used for data analysis and calculation of quadrant statistics (mean values, standard error of mean, percentile ranges). Results: Whole blood staining of lymphocytes provided the analysis of: (i) CD3+, 4+, 8+, 19+, 16/56+, and activated CD4/8 cells; (ii) immature, naïve, non-switched/switched, memory, (activated) CD21 low , transitional B-cells, plasmablasts/plasmacells; (iii and iv) naïve, central memory, effector, effector memory, TH1/TH2/TH17-like and CCR5+CD8-cells; (v) CD25+, regulatory T-cells (naïve/memory, HLA-DR+); (vi) α/β- and γ/δ-T-cells, recent thymic emigrants in CD4/CD8 cells; (vii) immature/mature CD56 bright , CD94/NKG2D+ NK-cells; and (viii) Nkp30, 44, 46 and CD57+NK-cells. Clinical examples and quadrant statistics are provided. Conclusion: The present study represents a practical approach to standardize the immunophenotyping of most T-, B- and NK-cell subpopulations. That allows differentiating, whether abnormalities or developmental shifts observed in lymphocyte subpopulations originates either from primary or secondary immunological disturbance. © 2014 Clinical Cytometry Society. Copyright © 2014 Clinical Cytometry Society.

  19. On-orbit observations of single event upset in Harris HM-6508 1K RAMs, reissue A

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Mandel, R.

    1987-02-01

    The Harris HM-6508 1K x 1 RAMs are part of a subsystem of a satellite in a low, polar orbit. The memory module, used in the subsystem containing the RAMs, consists of three printed circuit cards, with each card containing eight 2K byte memory hybrids, for a total of 48K bytes. Each memory hybrid contains 16 HM-6508 RAM chips. On a regular basis all but 256 bytes of the 48K bytes are examined for bit errors. Two different techniques were used for detecting bit errors. The first technique, a memory check sum, was capable of automatically detecting all single bit and some double bit errors which occurred within a page of memory. A memory page consists of 256 bytes. Memory check sum tests are performed approximately every 90 minutes. To detect a multiple error or to determine the exact location of the bit error within the page the entire contents of the memory is dumped and compared to the load file. Memory dumps are normally performed once a month, or immediately after the check sum routine detects an error. Once the exact location of the error is found, the correct value is reloaded into memory. After the memory is reloaded, the contents of the memory location in question is verified in order to determine if the error was a soft error generated by an SEU or a hard error generated by a part failure or cosmic-ray induced latchup.

  20. Characterization of a CD44/CD122int memory CD8 T cell subset generated under sterile inflammatory conditions.

    PubMed

    Mbitikon-Kobo, Florentin-Martial; Vocanson, Marc; Michallet, Marie-Cécile; Tomkowiak, Martine; Cottalorda, Anne; Angelov, Georgi S; Coupet, Charles-Antoine; Djebali, Sophia; Marçais, Antoine; Dubois, Bertrand; Bonnefoy-Bérard, Nathalie; Nicolas, Jean-François; Arpin, Christophe; Marvel, Jacqueline

    2009-03-15

    Most memory CD8 T cell subsets that have been hitherto defined are generated in response to infectious pathogens. In this study, we have characterized the CD8 T cells that survive priming conditions, devoid of pathogen-derived danger signals. In both a TCR-transgenic model and a model of contact hypersensitivity, we show that the priming of naive CD8 T cells under sterile inflammatory conditions generates memory. The corresponding memory CD8 T cells can be identified by their intermediate expression levels of CD44 and CD122. We also show that CD44/122(int) memory CD8 T cells spontaneously develop in wild type mice and that they display intermediate levels of several other memory traits including functional (IFN-gamma secretion capacity, CCL5 messenger stores), phenotypic, and molecular (T-bet and eomesodermin expression levels) features. We finally show that they correspond to an early differentiation stage and can further differentiate in CD44/122(high) memory T cells. Altogether, our results identify a new memory CD8 T cell subset that is generated under sterile inflammatory conditions and involved in the recall contact hypersensitivity reactions that are responsible for allergic contact dermatitis.

  1. Brief, pre-retrieval stress differentially influences long-term memory depending on sex and corticosteroid response.

    PubMed

    Zoladz, Phillip R; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Burke, Hanna M; Woelke, Sarah A; Pisansky, Julia M; Talbot, Jeffery N

    2014-03-01

    Previous work has indicated that stress generally impairs memory retrieval. However, little research has addressed discrepancies that exist in this line of work and the factors that could explain why stress can exert differential effects on retrieval processes. Therefore, we examined the influence of brief, pre-retrieval stress that was administered immediately before testing on long-term memory in males and females. Participants learned a list of 42 words varying in emotional valence and arousal. Following the learning phase, participants were given an immediate free recall test. Twenty-four hours later, participants submerged their non-dominant hand in a bath of ice cold (Stress) or warm (No Stress) water for 3 min. Immediately following this manipulation, participants' memory for the word list was assessed via free recall and recognition tests. We observed no group differences on short-term memory. However, male participants who showed a robust cortisol response to the stress exhibited enhanced long-term recognition memory, while male participants who demonstrated a blunted cortisol response to the stress exhibited impaired long-term recall and recognition memory. These findings suggest that the effects of brief, pre-retrieval stress on long-term memory are sex-specific and mediated by corticosteroid mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Structure of Working Memory Abilities across the Adult Life Span

    PubMed Central

    Hale, Sandra; Rose, Nathan S.; Myerson, Joel; Strube, Michael J; Sommers, Mitchell; Tye-Murray, Nancy; Spehar, Brent

    2010-01-01

    The present study addresses three questions regarding age differences in working memory: (1) whether performance on complex span tasks decreases as a function of age at a faster rate than performance on simple span tasks; (2) whether spatial working memory decreases at a faster rate than verbal working memory; and (3) whether the structure of working memory abilities is different for different age groups. Adults, ages 20–89 (n=388), performed three simple and three complex verbal span tasks and three simple and three complex spatial memory tasks. Performance on the spatial tasks decreased at faster rates as a function of age than performance on the verbal tasks, but within each domain, performance on complex and simple span tasks decreased at the same rates. Confirmatory factor analyses revealed that domain-differentiated models yielded better fits than models involving domain-general constructs, providing further evidence of the need to distinguish verbal and spatial working memory abilities. Regardless of which domain-differentiated model was examined, and despite the faster rates of decrease in the spatial domain, age group comparisons revealed that the factor structure of working memory abilities was highly similar in younger and older adults and showed no evidence of age-related dedifferentiation. PMID:21299306

  3. Integrated Analysis of Alzheimer's Disease and Schizophrenia Dataset Revealed Different Expression Pattern in Learning and Memory.

    PubMed

    Li, Wen-Xing; Dai, Shao-Xing; Liu, Jia-Qian; Wang, Qian; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Alzheimer's disease (AD) and schizophrenia (SZ) are both accompanied by impaired learning and memory functions. This study aims to explore the expression profiles of learning or memory genes between AD and SZ. We downloaded 10 AD and 10 SZ datasets from GEO-NCBI for integrated analysis. These datasets were processed using RMA algorithm and a global renormalization for all studies. Then Empirical Bayes algorithm was used to find the differentially expressed genes between patients and controls. The results showed that most of the differentially expressed genes were related to AD whereas the gene expression profile was little affected in the SZ. Furthermore, in the aspects of the number of differentially expressed genes, the fold change and the brain region, there was a great difference in the expression of learning or memory related genes between AD and SZ. In AD, the CALB1, GABRA5, and TAC1 were significantly downregulated in whole brain, frontal lobe, temporal lobe, and hippocampus. However, in SZ, only two genes CRHBP and CX3CR1 were downregulated in hippocampus, and other brain regions were not affected. The effect of these genes on learning or memory impairment has been widely studied. It was suggested that these genes may play a crucial role in AD or SZ pathogenesis. The different gene expression patterns between AD and SZ on learning and memory functions in different brain regions revealed in our study may help to understand the different mechanism between two diseases.

  4. Sex-Dependent Effects of Prenatal Stress on Social Memory in Rats: A Role for Differential Expression of Central Vasopressin-1a Receptors.

    PubMed

    Grundwald, N J; Benítez, D P; Brunton, P J

    2016-04-01

    Prenatal stress (PNS) affects a number of traits in the offspring, including stress axis regulation, emotionality and cognition; however, much less is known about the effects of PNS on social memory and the underlying central mechanisms. In the present study, we investigated social preference, social memory under basal and stress conditions and olfactory memory for social and nonsocial odours in the adult offspring of dams exposed to social stress during late pregnancy. Given the key roles that the central oxytocin and vasopressin systems play in facilitating social memory, we further investigated the effects of PNS on the central expression of mRNA for oxytocin (Oxtr) and vasopressin-1a (Avpr1a) receptors. PNS did not affect social preference in either sex; however, social memory was impaired under basal conditions in PNS females but not PNS males. Accordingly, Avpr1a mRNA expression in the lateral septum and bed nucleus of stria terminalis (BNST) was unaltered in males but was significantly lower in PNS females compared to controls. No differences in Oxtr mRNA expression were detected between control and PNS offspring in either sex in any of the brain regions examined. Social memory deficits in PNS females persisted when social odours were used; however, this does not appear to be a result of impaired olfaction because memory for nonsocial odours was similar in control and PNS females. Under acute stress conditions, deficits in social memory were observed in both male and female control offspring; however, PNS males were unaffected. Moreover, acute stress facilitated social memory in PNS females and this was associated with an up-regulation of Avpr1a mRNA in the lateral septum and BNST. Our data support a role for altered signalling via central Avpr1a in PNS-induced sex-dependent changes in social memory and may have implications for understanding the aetiology of neurodevelopmental disorders characterised by social behaviour deficits in humans. © 2015 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  5. Validation of the Argentine version of the Memory Binding Test (MBT) for Early Detection of Mild Cognitive Impairment

    PubMed Central

    Roman, Fabian; Iturry, Mónica; Rojas, Galeno; Barceló, Ernesto; Buschke, Herman; Allegri, Ricardo F.

    2016-01-01

    ABSTRACT Background: "Forgetfulness" is frequent in normal aging and characteristic of the early stages of dementia syndromes. The episodic memory test is central for detecting amnestic mild cognitive impairment (MCI). The Memory Binding Test (MBT) is a simple, easy and brief memory test to detect the early stage of episodic memory impairment. Objective: To validate the Argentine version of the MBT in a Latin American population and to estimate the diagnostic accuracy as a tool for early detection of MCI. Methods: 88 subjects (46 healthy controls and 42 patients with amnestic MCI) matched for age and educational level were evaluated by an extensive neuropsychological battery and the memory binding test. Results: A significantly better performance was detected in the control group; all MBT scales were predictive of MCI diagnosis (p<.01). The MBT showed high sensitivity (69%) and high specificity (88%), with a PPV of 93% and a NPV of 55% for associative paired recall. A statistically significant difference (c2=14,164, p<.001) was obtained when comparing the area under the curve (AUC) of the MBT (0.88) and the MMSE (0.70). Conclusion: The Argentine version of the MBT correlated significantly with the MMSE and the memory battery and is a useful tool in the detection of MCI. The operating characteristics of the MBT are well suited, surpassing other tests commonly used for detecting MCI. PMID:29213458

  6. Neurocognitive differential diagnosis of dementing diseases: Alzheimer's Dementia, Vascular Dementia, Frontotemporal Dementia, and Major Depressive Disorder.

    PubMed

    Braaten, Alyssa J; Parsons, Thomas D; McCue, Robert; Sellers, Alfred; Burns, William J

    2006-11-01

    Similarities in presentation of Dementia of Alzheimer's Type, Vascular Dementia, Frontotemporal Dementia, and Major Depressive Disorder, pose differential diagnosis challenges. The current study identifies specific neuropsychological patterns of scores for Dementia of Alzheimer's Type, Vascular Dementia, Frontotemporal Dementia, and Major Depressive Disorder. Neuropsychological domains directly assessed in the study included: immediate memory, delayed memory, confrontational naming, verbal fluency, attention, concentration, and executive functioning. The results reveal specific neuropsychological comparative profiles for Dementia of Alzheimer's Type, Vascular Dementia, Frontotemporal Dementia, and Major Depressive Disorder. The identification of these profiles will assist in the differential diagnosis of these disorders and aid in patient treatment.

  7. Concreteness effects in short-term memory: a test of the item-order hypothesis.

    PubMed

    Roche, Jaclynn; Tolan, G Anne; Tehan, Gerald

    2011-12-01

    The following experiments explore word length and concreteness effects in short-term memory within an item-order processing framework. This framework asserts order memory is better for those items that are relatively easy to process at the item level. However, words that are difficult to process benefit at the item level for increased attention/resources being applied. The prediction of the model is that differential item and order processing can be detected in episodic tasks that differ in the degree to which item or order memory are required by the task. The item-order account has been applied to the word length effect such that there is a short word advantage in serial recall but a long word advantage in item recognition. The current experiment considered the possibility that concreteness effects might be explained within the same framework. In two experiments, word length (Experiment 1) and concreteness (Experiment 2) are examined using forward serial recall, backward serial recall, and item recognition. These results for word length replicate previous studies showing the dissociation in item and order tasks. The same was not true for the concreteness effect. In all three tasks concrete words were better remembered than abstract words. The concreteness effect cannot be explained in terms of an item-order trade off. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  8. Neutron imaging integrated circuit and method for detecting neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarkar, Vivek V.; More, Mitali J.

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge statemore » less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.« less

  9. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance.

    PubMed

    Rogel, Anne; Willoughby, Jane E; Buchan, Sarah L; Leonard, Henry J; Thirdborough, Stephen M; Al-Shamkhani, Aymen

    2017-02-14

    Memory CD8 + T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8 + T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8 + T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8 + T cells from pdk1 K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3) lo CD43 lo effector-like memory cells. Consequently, antitumor immunity by CD8 + T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8 + T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8 + T-cell responses.

  10. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance

    PubMed Central

    Rogel, Anne; Willoughby, Jane E.; Buchan, Sarah L.; Leonard, Henry J.; Thirdborough, Stephen M.; Al-Shamkhani, Aymen

    2017-01-01

    Memory CD8+ T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8+ T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8+ T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8+ T cells from pdk1K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3)loCD43lo effector-like memory cells. Consequently, antitumor immunity by CD8+ T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8+ T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8+ T-cell responses. PMID:28137869

  11. Detection of complex cyber attacks

    NASA Astrophysics Data System (ADS)

    Gregorio-de Souza, Ian; Berk, Vincent H.; Giani, Annarita; Bakos, George; Bates, Marion; Cybenko, George; Madory, Doug

    2006-05-01

    One significant drawback to currently available security products is their inabilty to correlate diverse sensor input. For instance, by only using network intrusion detection data, a root kit installed through a weak username-password combination may go unnoticed. Similarly, an administrator may never make the link between deteriorating response times from the database server and an attacker exfiltrating trusted data, if these facts aren't presented together. Current Security Information Management Systems (SIMS) can collect and represent diverse data but lack sufficient correlation algorithms. By using a Process Query System, we were able to quickly bring together data flowing from many sources, including NIDS, HIDS, server logs, CPU load and memory usage, etc. We constructed PQS models that describe dynamic behavior of complicated attacks and failures, allowing us to detect and differentiate simultaneous sophisticated attacks on a target network. In this paper, we discuss the benefits of implementing such a multistage cyber attack detection system using PQS. We focus on how data from multiple sources can be combined and used to detect and track comprehensive network security events that go unnoticed using conventional tools.

  12. How Emotional Pictures Influence Visuospatial Binding in Short-Term Memory in Ageing and Alzheimer's Disease?

    ERIC Educational Resources Information Center

    Borg, Celine; Leroy, Nicolas; Favre, Emilie; Laurent, Bernard; Thomas-Anterion, Catherine

    2011-01-01

    The present study examines the prediction that emotion can facilitate short-term memory. Nevertheless, emotion also recruits attention to process information, thereby disrupting short-term memory when tasks involve high attentional resources. In this way, we aimed to determine whether there is a differential influence of emotional information on…

  13. Are Errors Differentiable from Deceptive Responses when Feigning Memory Impairment? An fMRI Study

    ERIC Educational Resources Information Center

    Lee, Tatia M. C.; Au, Ricky K. C.; Liu, Ho-Ling; Ting, K. H.; Huang, Chih-Mao; Chan, Chetwyn C. H.

    2009-01-01

    Previous neuroimaging studies have suggested that the neural activity associated with truthful recall, with false memory, and with feigned memory impairment are different from one another. Here, we report a functional magnetic resonance imaging (fMRI) study that addressed an important but yet unanswered question: Is the neural activity associated…

  14. Attention Problems, Phonological Short-Term Memory, and Visuospatial Short-Term Memory: Differential Effects on Near- and Long-Term Scholastic Achievement

    ERIC Educational Resources Information Center

    Sarver, Dustin E.; Rapport, Mark D.; Kofler, Michael J.; Scanlan, Sean W.; Raiker, Joseph S.; Altro, Thomas A.; Bolden, Jennifer

    2012-01-01

    The current study examined individual differences in children's phonological and visuospatial short-term memory as potential mediators of the relationship among attention problems and near- and long-term scholastic achievement. Nested structural equation models revealed that teacher-reported attention problems were associated negatively with…

  15. Computational modeling of the negative priming effect based on inhibition patterns and working memory

    PubMed Central

    Chung, Dongil; Raz, Amir; Lee, Jaewon; Jeong, Jaeseung

    2013-01-01

    Negative priming (NP), slowing down of the response for target stimuli that have been previously exposed, but ignored, has been reported in multiple psychological paradigms including the Stroop task. Although NP likely results from the interplay of selective attention, episodic memory retrieval, working memory, and inhibition mechanisms, a comprehensive theoretical account of NP is currently unavailable. This lacuna may result from the complexity of stimuli combinations in NP. Thus, we aimed to investigate the presence of different degrees of the NP effect according to prime-probe combinations within a classic Stroop task. We recorded reaction times (RTs) from 66 healthy participants during Stroop task performance and examined three different NP subtypes, defined according to the type of the Stroop probe in prime-probe pairs. Our findings show significant RT differences among NP subtypes that are putatively due to the presence of differential disinhibition, i.e., release from inhibition. Among the several potential origins for differential subtypes of NP, we investigated the involvement of selective attention and/or working memory using a parallel distributed processing (PDP) model (employing selective attention only) and a modified PDP model with working memory (PDP-WM, employing both selective attention and working memory). Our findings demonstrate that, unlike the conventional PDP model, the PDP-WM successfully simulates different levels of NP effects that closely follow the behavioral data. This outcome suggests that working memory engages in the re-accumulation of the evidence for target response and induces differential NP effects. Our computational model complements earlier efforts and may pave the road to further insights into an integrated theoretical account of complex NP effects. PMID:24312046

  16. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

    PubMed

    Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi

    2009-12-15

    The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  17. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia

    PubMed Central

    Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie

    2011-01-01

    An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487

  18. Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults.

    PubMed

    Ezzati, Ali; Katz, Mindy J; Zammit, Andrea R; Lipton, Michael L; Zimmerman, Molly E; Sliwinski, Martin J; Lipton, Richard B

    2016-12-01

    The hippocampus plays a critical role in verbal and spatial memory, thus any pathological damage to this formation may lead to cognitive impairment. It is suggested that right and left hippocampi are affected differentially in healthy or pathologic aging. The purpose of this study was to test the hypothesis that verbal episodic memory performance is associated with left hippocampal volume (HV) while spatial memory is associated with right HV. 115 non-demented adults over age 70 were drawn from the Einstein Aging Study. Verbal memory was measured using the free recall score from the Free and Cued Selective Reminding Test - immediate recall (FCSRT-IR), logical memory immediate and delayed subtests (LM-I and LM-II) from the Wechsler Memory Scale-Revised (WMS-R). Spatial Memory was measured using a computerized dot memory paradigm that has been validated for use in older adults. All participants underwent 3T MRI with subsequent automatized measurement of the volume of each hippocampus. The sample had a mean age of 78.7 years (SD=5.0); 57% were women, and 52% were white. Participants had a mean of 14.3 years (SD=3.5) of education. In regression models, two tests of verbal memory (FCSRT-IR free recall and LM-II) were positively associated with left HV, but not with right HV. Performance on the spatial memory task was associated with right HV, but not left HV. Our findings support the hypothesis that the left hippocampus plays a critical role in episodic verbal memory, while right hippocampus might be more important for spatial memory processing among non-demented older adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dissociative detachment and memory impairment: reversible amnesia or encoding failure?

    PubMed

    Allen, J G; Console, D A; Lewis, L

    1999-01-01

    The authors propose that clinicians endeavor to differentiate between reversible and irreversible memory failures in patients with dissociative symptoms who report "memory gaps" and "lost time." The classic dissociative disorders, such as dissociative amnesia and dissociative identity disorder, entail reversible memory failures associated with encoding experience in altered states. The authors propose another realm of memory failures associated with severe dissociative detachment that may preclude the level of encoding of ongoing experience needed to support durable autobiographical memories. They describe how dissociative detachment may be intertwined with neurobiological factors that impair memory, and they spell out the significance of distinguishing reversible and irreversible memory impairment for diagnosis, patient education, psychotherapy, and research.

  20. Processing device with self-scrubbing logic

    DOEpatents

    Wojahn, Christopher K.

    2016-03-01

    An apparatus includes a processing unit including a configuration memory and self-scrubber logic coupled to read the configuration memory to detect compromised data stored in the configuration memory. The apparatus also includes a watchdog unit external to the processing unit and coupled to the self-scrubber logic to detect a failure in the self-scrubber logic. The watchdog unit is coupled to the processing unit to selectively reset the processing unit in response to detecting the failure in the self-scrubber logic. The apparatus also includes an external memory external to the processing unit and coupled to send configuration data to the configuration memory in response to a data feed signal outputted by the self-scrubber logic.

  1. Verification of immune response optimality through cybernetic modeling.

    PubMed

    Batt, B C; Kompala, D S

    1990-02-09

    An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included.

  2. Reprogrammed mouse astrocytes retain a "memory" of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts.

    PubMed

    Tian, Changhai; Wang, Yongxiang; Sun, Lijun; Ma, Kangmu; Zheng, Jialin C

    2011-02-01

    Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.

  3. Comparison of Memory Function and MMPI-2 Profile between Post-traumatic Stress Disorder and Adjustment Disorder after a Traffic Accident

    PubMed Central

    Bae, Sung-Man; Hyun, Myoung-Ho

    2014-01-01

    Objective Differential diagnosis between post-traumatic stress disorder (PTSD) and adjustment disorder (AD) is rather difficult, but very important to the assignment of appropriate treatment and prognosis. This study investigated methods to differentiate PTSD and AD. Methods Twenty-five people with PTSD and 24 people with AD were recruited. Memory tests, the Minnesota Multiphasic Personality Inventory 2 (MMPI-2), and Beck's Depression Inventory were administered. Results There were significant decreases in immediate verbal recall and delayed verbal recognition in the participants with PTSD. The reduced memory functions of participants with PTSD were significantly influenced by depressive symptoms. Hypochondriasis, hysteria, psychopathic deviate, paranoia, schizophrenia, post-traumatic stress disorder scale of MMPI-2 classified significantly PTSD and AD group. Conclusion Our results suggest that verbal memory assessments and the MMPI-2 could be useful for discriminating between PTSD and AD. PMID:24851120

  4. Autophagy is essential for effector CD8 T cell survival and memory formation

    PubMed Central

    Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi

    2014-01-01

    The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489

  5. Molecular regulation of effector and memory T cell differentiation

    PubMed Central

    Chang, John T; Wherry, E John; Goldrath, Ananda W

    2015-01-01

    Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352

  6. The Influence of Positive Mood on Different Aspects of Cognitive Control

    PubMed Central

    Martin, Elizabeth A.; Kerns, John G.

    2010-01-01

    Some evidence suggests that positive mood influences cognitive control. The current research investigated whether positive mood has differential effects on two aspects of cognitive control, working memory and prepotent response inhibition. In Study 1, following either a positive or neutral mood induction, participants completed the Running Memory Span (RMS), a measure primarily of working memory storage capacity, and the Stroop task, a measure of prepotent response inhibition. Results were that the positive mood group performed worse on the RMS task but not on the Stroop task. In Study 2, participants completed the RMS and another measure of prepotent response inhibition, the Flanker task. Results were that when in a positive mood state participants performed worse on the RMS but not on the Flanker task. Overall, this research suggests that positive mood has differential effects on cognitive control, impairing working memory but having no effect on prepotent response inhibition. PMID:21399720

  7. Biomarker clusters are differentially associated with longitudinal cognitive decline in late midlife

    PubMed Central

    Racine, Annie M.; Koscik, Rebecca L.; Berman, Sara E.; Nicholas, Christopher R.; Clark, Lindsay R.; Okonkwo, Ozioma C.; Rowley, Howard A.; Asthana, Sanjay; Bendlin, Barbara B.; Blennow, Kaj; Zetterberg, Henrik; Gleason, Carey E.; Carlsson, Cynthia M.

    2016-01-01

    The ability to detect preclinical Alzheimer’s disease is of great importance, as this stage of the Alzheimer’s continuum is believed to provide a key window for intervention and prevention. As Alzheimer’s disease is characterized by multiple pathological changes, a biomarker panel reflecting co-occurring pathology will likely be most useful for early detection. Towards this end, 175 late middle-aged participants (mean age 55.9 ± 5.7 years at first cognitive assessment, 70% female) were recruited from two longitudinally followed cohorts to undergo magnetic resonance imaging and lumbar puncture. Cluster analysis was used to group individuals based on biomarkers of amyloid pathology (cerebrospinal fluid amyloid-β42/amyloid-β40 assay levels), magnetic resonance imaging-derived measures of neurodegeneration/atrophy (cerebrospinal fluid-to-brain volume ratio, and hippocampal volume), neurofibrillary tangles (cerebrospinal fluid phosphorylated tau181 assay levels), and a brain-based marker of vascular risk (total white matter hyperintensity lesion volume). Four biomarker clusters emerged consistent with preclinical features of (i) Alzheimer’s disease; (ii) mixed Alzheimer’s disease and vascular aetiology; (iii) suspected non-Alzheimer’s disease aetiology; and (iv) healthy ageing. Cognitive decline was then analysed between clusters using longitudinal assessments of episodic memory, semantic memory, executive function, and global cognitive function with linear mixed effects modelling. Cluster 1 exhibited a higher intercept and greater rates of decline on tests of episodic memory. Cluster 2 had a lower intercept on a test of semantic memory and both Cluster 2 and Cluster 3 had steeper rates of decline on a test of global cognition. Additional analyses on Cluster 3, which had the smallest hippocampal volume, suggest that its biomarker profile is more likely due to hippocampal vulnerability and not to detectable specific volume loss exceeding the rate of normal ageing. Our results demonstrate that pathology, as indicated by biomarkers, in a preclinical timeframe is related to patterns of longitudinal cognitive decline. Such biomarker patterns may be useful for identifying at-risk populations to recruit for clinical trials. PMID:27324877

  8. Biomarker clusters are differentially associated with longitudinal cognitive decline in late midlife.

    PubMed

    Racine, Annie M; Koscik, Rebecca L; Berman, Sara E; Nicholas, Christopher R; Clark, Lindsay R; Okonkwo, Ozioma C; Rowley, Howard A; Asthana, Sanjay; Bendlin, Barbara B; Blennow, Kaj; Zetterberg, Henrik; Gleason, Carey E; Carlsson, Cynthia M; Johnson, Sterling C

    2016-08-01

    The ability to detect preclinical Alzheimer's disease is of great importance, as this stage of the Alzheimer's continuum is believed to provide a key window for intervention and prevention. As Alzheimer's disease is characterized by multiple pathological changes, a biomarker panel reflecting co-occurring pathology will likely be most useful for early detection. Towards this end, 175 late middle-aged participants (mean age 55.9 ± 5.7 years at first cognitive assessment, 70% female) were recruited from two longitudinally followed cohorts to undergo magnetic resonance imaging and lumbar puncture. Cluster analysis was used to group individuals based on biomarkers of amyloid pathology (cerebrospinal fluid amyloid-β42/amyloid-β40 assay levels), magnetic resonance imaging-derived measures of neurodegeneration/atrophy (cerebrospinal fluid-to-brain volume ratio, and hippocampal volume), neurofibrillary tangles (cerebrospinal fluid phosphorylated tau181 assay levels), and a brain-based marker of vascular risk (total white matter hyperintensity lesion volume). Four biomarker clusters emerged consistent with preclinical features of (i) Alzheimer's disease; (ii) mixed Alzheimer's disease and vascular aetiology; (iii) suspected non-Alzheimer's disease aetiology; and (iv) healthy ageing. Cognitive decline was then analysed between clusters using longitudinal assessments of episodic memory, semantic memory, executive function, and global cognitive function with linear mixed effects modelling. Cluster 1 exhibited a higher intercept and greater rates of decline on tests of episodic memory. Cluster 2 had a lower intercept on a test of semantic memory and both Cluster 2 and Cluster 3 had steeper rates of decline on a test of global cognition. Additional analyses on Cluster 3, which had the smallest hippocampal volume, suggest that its biomarker profile is more likely due to hippocampal vulnerability and not to detectable specific volume loss exceeding the rate of normal ageing. Our results demonstrate that pathology, as indicated by biomarkers, in a preclinical timeframe is related to patterns of longitudinal cognitive decline. Such biomarker patterns may be useful for identifying at-risk populations to recruit for clinical trials. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The Association of Aging and Aerobic Fitness With Memory

    PubMed Central

    Bullock, Alexis M.; Mizzi, Allison L.; Kovacevic, Ana; Heisz, Jennifer J.

    2018-01-01

    The present study examined the differential effects of aging and fitness on memory. Ninety-five young adults (YA) and 81 older adults (OA) performed the Mnemonic Similarity Task (MST) to assess high-interference memory and general recognition memory. Age-related differences in high-interference memory were observed across the lifespan, with performance progressively worsening from young to old. In contrast, age-related differences in general recognition memory were not observed until after 60 years of age. Furthermore, OA with higher aerobic fitness had better high-interference memory, suggesting that exercise may be an important lifestyle factor influencing this aspect of memory. Overall, these findings suggest different trajectories of decline for high-interference and general recognition memory, with a selective role for physical activity in promoting high-interference memory. PMID:29593524

  10. Memory engram storage and retrieval.

    PubMed

    Tonegawa, Susumu; Pignatelli, Michele; Roy, Dheeraj S; Ryan, Tomás J

    2015-12-01

    A great deal of experimental investment is directed towards questions regarding the mechanisms of memory storage. Such studies have traditionally been restricted to investigation of the anatomical structures, physiological processes, and molecular pathways necessary for the capacity of memory storage, and have avoided the question of how individual memories are stored in the brain. Memory engram technology allows the labeling and subsequent manipulation of components of specific memory engrams in particular brain regions, and it has been established that cell ensembles labeled by this method are both sufficient and necessary for memory recall. Recent research has employed this technology to probe fundamental questions of memory consolidation, differentiating between mechanisms of memory retrieval from the true neurobiology of memory storage. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Neurophysiology of spectrotemporal cue organization of spoken language in auditory memory.

    PubMed

    Moberly, Aaron C; Bhat, Jyoti; Welling, D Bradley; Shahin, Antoine J

    2014-03-01

    Listeners assign different weights to spectral dynamics, such as formant rise time (FRT), and temporal dynamics, such as amplitude rise time (ART), during phonetic judgments. We examined the neurophysiological basis of FRT and ART weighting in the /ba/-/wa/ contrast. Electroencephalography was recorded for thirteen adult English speakers during a mismatch negativity (MMN) design using synthetic stimuli: a /ba/ with /ba/-like FRT and ART; a /wa/ with /wa/-like FRT and ART; and a /ba/(wa) with /ba/-like FRT and /wa/-like ART. We hypothesized that because of stronger reliance on FRT, subjects would encode a stronger memory trace and exhibit larger MMN during the FRT than the ART contrast. Results supported this hypothesis. The effect was most robust in the later portion of MMN. Findings suggest that MMN is generated by multiple sources, differentially reflecting acoustic change detection (earlier MMN, bottom-up process) and perceptual weighting of ART and FRT (later MMN, top-down process). Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques

    PubMed Central

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A.; Veazey, Ronald S.

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define “memory” T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in ~44% of rhesus macaques (Macaca mulatta) of Indian, but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques. PMID:18304631

  13. Regulation of Asymmetric Division and CD8+ T Lymphocyte Fate Specification by PKCζ and PKCλ/ι

    PubMed Central

    Metz, Patrick J.; Arsenio, Janilyn; Kakaradov, Boyko; Kim, Stephanie H.; Remedios, Kelly A.; Oakley, Katherine; Akimoto, Kazunori; Ohno, Shigeo; Yeo, Gene W.; Chang, John T.

    2015-01-01

    During an immune response against a microbial pathogen, activated naïve T lymphocytes give rise to effector cells that provide acute host defense and memory cells that provide long-lived immunity. It has been shown that T lymphocytes can undergo asymmetric division, enabling the daughter cells to inherit unequal amounts of fate-determining proteins and thereby acquire distinct fates from their inception. Here, we show that the absence of the atypical protein kinase C (aPKC) isoforms, PKCζ and PKCλ/ι, disrupts asymmetric CD8+ T lymphocyte division. These alterations were associated with aberrant acquisition of a ‘pre-effector’ transcriptional program, detected by single-cell gene expression analyses, in lymphocytes that had undergone their first division in vivo and enhanced differentiation toward effector fates at the expense of memory fates. Together, these results demonstrate a role for aPKC in regulating asymmetric division and the specification of divergent CD8+ T lymphocyte fates early during an immune response. PMID:25617472

  14. Visual search for changes in scenes creates long-term, incidental memory traces.

    PubMed

    Utochkin, Igor S; Wolfe, Jeremy M

    2018-05-01

    Humans are very good at remembering large numbers of scenes over substantial periods of time. But how good are they at remembering changes to scenes? In this study, we tested scene memory and change detection two weeks after initial scene learning. In Experiments 1-3, scenes were learned incidentally during visual search for change. In Experiment 4, observers explicitly memorized scenes. At test, after two weeks observers were asked to discriminate old from new scenes, to recall a change that they had detected in the study phase, or to detect a newly introduced change in the memorization experiment. Next, they performed a change detection task, usually looking for the same change as in the study period. Scene recognition memory was found to be similar in all experiments, regardless of the study task. In Experiment 1, more difficult change detection produced better scene memory. Experiments 2 and 3 supported a "depth-of-processing" account for the effects of initial search and change detection on incidental memory for scenes. Of most interest, change detection was faster during the test phase than during the study phase, even when the observer had no explicit memory of having found that change previously. This result was replicated in two of our three change detection experiments. We conclude that scenes can be encoded incidentally as well as explicitly and that changes in those scenes can leave measurable traces even if they are not explicitly recalled.

  15. Specific memory B cell response and participation of CD4+ central and effector memory T cells in mice immunized with liposome encapsulated recombinant NE protein based Hepatitis E vaccine candidate.

    PubMed

    Kulkarni, Shruti P; Thanapati, Subrat; Arankalle, Vidya A; Tripathy, Anuradha S

    2016-11-21

    Liposome encapsulated neutralizing epitope protein of Hepatitis E virus (HEV), rNEp, our Hepatitis E vaccine candidate, was shown to be immunogenic and safe in pregnant and non-pregnant mice and yielded sterilizing immunity in rhesus monkeys. The current study in Balb/c mice assessed the levels and persistence of anti-HEV IgG antibodies by ELISA, frequencies of B, memory B, T and memory T cells by flow cytometry and HEV-specific IgG secreting memory B cells by ELISPOT till 420days post immunization (PI) with 5?g rNEp encapsulated in liposome based adjuvant (2 doses, 4weeks apart). Mice immunized with a lower dose (1?g) were assessed only for anamnestic response post booster dose. Vaccine candidate immunized mice (5?g dose) elicited strong anti-HEV IgG response that was estimated to persist for lifetime. At day 120 PI, frequency of memory B cells was higher in immunized mice than those receiving adjuvant alone. Anti-HEV IgG titers were lower in mice immunized with 1?g dose. A booster dose yielded a heightened antibody response in mice with both high (>800GMT, 5?g) and low (?100GMT, 1?g) anti-HEV IgG titers. At day 6th post booster dose, HEV-specific antibody secreting plasma cells (ASCs) were detected in 100% and 50% of mice with high and low anti-HEV IgG titers, respectively, whereas the frequencies of CD4 + central and effector memory T cells were high in mice with high anti-HEV IgG titers only. Taken together, the vaccine candidate effectively generates persistent and anamnestic antibody response, elicits participation of CD4 + memory T cells and triggers memory B cells to differentiate into ASCs upon boosting. This approach of assessing the immunogenicity of vaccine candidate could be useful to explore the longevity of HEV-specific memory response in future HEV vaccine trials in human. Copyright © 2016. Published by Elsevier Ltd.

  16. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  17. Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change.

    PubMed

    Maess, Burkhard; Jacobsen, Thomas; Schröger, Erich; Friederici, Angela D

    2007-08-15

    Changes in the pitch of repetitive sounds elicit the mismatch negativity (MMN) of the event-related brain potential (ERP). There exist two alternative accounts for this index of automatic change detection: (1) A sensorial, non-comparator account according to which ERPs in oddball sequences are affected by differential refractory states of frequency-specific afferent cortical neurons. (2) A cognitive, comparator account stating that MMN reflects the outcome of a memory comparison between a neuronal model of the frequently presented standard sound with the sensory memory representation of the changed sound. Using a condition controlling for refractoriness effects, the two contributions to MMN can be disentangled. The present study used whole-head MEG to further elucidate the sensorial and cognitive contributions to frequency MMN. Results replicated ERP findings that MMN to pitch change is a compound of the activity of a sensorial, non-comparator mechanism and a cognitive, comparator mechanism which could be separated in time. The sensorial part of frequency MMN consisting of spatially dipolar patterns was maximal in the late N1 range (105-125 ms), while the cognitive part peaked in the late MMN-range (170-200 ms). Spatial principal component analyses revealed that the early part of the traditionally measured MMN (deviant minus standard) is mainly due to the sensorial mechanism while the later mainly due to the cognitive mechanism. Inverse modeling revealed sources for both MMN contributions in the gyrus temporales transversus, bilaterally. These MEG results suggest temporally distinct but spatially overlapping activities of non-comparator-based and comparator-based mechanisms of automatic frequency change detection in auditory cortex.

  18. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    PubMed

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  19. Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs. intermediate memory.

    PubMed

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jörg; Pape, Hans-Christian

    2012-04-17

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.

  20. Word list and story recall elicit different patterns of memory deficit in patients with Alzheimer's disease, frontotemporal dementia, subcortical ischemic vascular disease, and Lewy body dementia.

    PubMed

    Perri, Roberta; Fadda, Lucia; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2013-01-01

    Different roles have been attributed to mesio-temporal areas and frontal lobes in declarative memory functioning, and qualitative differences have been observed in the amnesic symptoms due to pathological damage of these two portions of the central nervous system. The aim of the present study was to look for memory profiles related to pathological involvement in the temporal and frontal structures in patients with different dementia syndromes on word-list and prose memory tasks. 20 patients with Alzheimer's disease (AD), 20 with frontal variant of FTD (fvFTD), 20 with subcortical ischemic vascular dementia (SIVD), and 20 with Lewy body dementia (LBD) and 34 healthy subjects (NCs) were submitted to word-list and prose memory tasks. All groups performed similarly on both the immediate and delayed recall of the word-list. Conversely, AD patients performed worse than all the other dementia groups on the immediate prose recall. On delayed prose recall, AD patients performed worse than fvFTD and SIVD patients but similar to LBD patients. Differential scores between word-list and prose tests were minimal in the AD group and very pronounced in fvFTD and SIVD groups. The combined use of the prose and word-list tasks evidenced a "mesio-temporal" memory profile in AD patients as opposed to a "frontal" one in fvFTD and SIVD patients and a mixed profile in the LBD patients. In particular, a differential score between the two tests can be useful in differentiating AD patients from patients with other forms of dementia.

  1. Hippocampus-dependent spatial memory impairment due to molar tooth loss is ameliorated by an enriched environment.

    PubMed

    Kondo, Hiroko; Kurahashi, Minori; Mori, Daisuke; Iinuma, Mitsuo; Tamura, Yasuo; Mizutani, Kenmei; Shimpo, Kan; Sonoda, Shigeru; Azuma, Kagaku; Kubo, Kin-ya

    2016-01-01

    Teeth are crucial, not only for mastication, but for overall nutrition and general health, including cognitive function. Aged mice with chronic stress due to tooth loss exhibit impaired hippocampus-dependent learning and memory. Exposure to an enriched environment restores the reduced hippocampal function. Here, we explored the effects of an enriched environment on learning deficits and hippocampal morphologic changes in aged senescence-accelerated mouse strain P8 (SAMP8) mice with tooth loss. Eight-month-old male aged SAMP8 mice with molar intact or with molars removed were housed in either a standard environment or enriched environment for 3 weeks. The Morris water maze was performed for spatial memory test. The newborn cell proliferation, survival, and differentiation in the hippocampus were analyzed using 5-Bromodeoxyuridine (BrdU) immunohistochemical method. The hippocampal brain-derived neurotrophic factor (BDNF) levels were also measured. Mice with upper molars removed (molarless) exhibited a significant decline in the proliferation and survival of newborn cells in the dentate gyrus (DG) as well as in hippocampal BDNF levels. In addition, neuronal differentiation of newly generated cells was suppressed and hippocampus-dependent spatial memory was impaired. Exposure of molarless mice to an enriched environment attenuated the reductions in the hippocampal BDNF levels and neuronal differentiation, and partially improved the proliferation and survival of newborn cells, as well as the spatial memory ability. These findings indicated that an enriched environment could ameliorate the hippocampus-dependent spatial memory impairment induced by molar tooth loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Memory blindness: Altered memory reports lead to distortion in eyewitness memory.

    PubMed

    Cochran, Kevin J; Greenspan, Rachel L; Bogart, Daniel F; Loftus, Elizabeth F

    2016-07-01

    Choice blindness refers to the finding that people can often be misled about their own self-reported choices. However, little research has investigated the more long-term effects of choice blindness. We examined whether people would detect alterations to their own memory reports, and whether such alterations could influence participants' memories. Participants viewed slideshows depicting crimes, and then either reported their memories for episodic details of the event (Exp. 1) or identified a suspect from a lineup (Exp. 2). Then we exposed participants to manipulated versions of their memory reports, and later tested their memories a second time. The results indicated that the majority of participants failed to detect the misinformation, and that exposing witnesses to misleading versions of their own memory reports caused their memories to change to be consistent with those reports. These experiments have implications for eyewitness memory.

  3. Differential roles of the infralimbic and prelimbic areas of the prefrontal cortex in reconsolidation of a traumatic memory.

    PubMed

    Levin, Natali; Kritman, Milly; Maroun, Mouna; Akirav, Irit

    2017-09-01

    Studies about reconsolidation of conditioned fear memories have shown that pharmacological manipulation at memory reactivation can attenuate or enhance the subsequent expression of the conditioned fear response. Here we examined the effects of a single injection of the mTOR inhibitor rapamycin (Rap) into the infralimbic (IL) and prelimbic (PL) areas [which compose the ventromedial prefrontal cortex (PFC)] on reconsolidation and extinction of a traumatic fear memory. We found opposite effects of Rap infused into the PL and IL on reconsolidation and extinction: intra-PL Rap and systemic Rap impaired reconsolidation and facilitated extinction whereas intra-IL Rap enhanced reconsolidation and impaired extinction. These effects persisted at least 10 days after reactivation. Shock exposure induced anxiety-like behavior and impaired working memory and intra-IL and -PL Rap normalized these effects. Finally, when measured after fear retrieval, shocked rats exhibited reduced and increased phosphorylated p70s6K levels in the IL and basolateral amygdala, respectively. No effect on phosphorylated p70s6K levels was observed in the PL. The study points to the differential roles of the IL and PL in memory reconsolidation and extinction. Moreover, inhibiting mTOR via rapamycin following reactivation of a fear memory may be a novel approach in attenuating enhanced fear memories. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  4. Structural whole-brain covariance of the anterior and posterior hippocampus: Associations with age and memory.

    PubMed

    Nordin, Kristin; Persson, Jonas; Stening, Eva; Herlitz, Agneta; Larsson, Elna-Marie; Söderlund, Hedvig

    2018-02-01

    The hippocampus (HC) interacts with distributed brain regions to support memory and shows significant volume reductions in aging, but little is known about age effects on hippocampal whole-brain structural covariance. It is also unclear whether the anterior and posterior HC show similar or distinct patterns of whole-brain covariance and to what extent these are related to memory functions organized along the hippocampal longitudinal axis. Using the multivariate approach partial least squares, we assessed structural whole-brain covariance of the HC in addition to regional volume, in young, middle-aged and older adults (n = 221), and assessed associations with episodic and spatial memory. Based on findings of sex differences in both memory and brain aging, we further considered sex as a potential modulating factor of age effects. There were two main covariance patterns: one capturing common anterior and posterior covariance, and one differentiating the two regions by capturing anterior-specific covariance only. These patterns were differentially related to associative memory while unrelated to measures of single-item memory and spatial memory. Although patterns were qualitatively comparable across age groups, participants' expression of both patterns decreased with age, independently of sex. The results suggest that the organization of hippocampal structural whole-brain covariance remains stable across age, but that the integrity of these networks decreases as the brain undergoes age-related alterations. © 2017 Wiley Periodicals, Inc.

  5. Comparing single- and dual-process models of memory development.

    PubMed

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  6. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep

    PubMed Central

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-01-01

    Study Objectives: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. Methods: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. Results: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. Conclusions: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. Citation: Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of interference in long and short-term memory differentially modulate non-REM and REM sleep. SLEEP 2016;39(12):2173–2188. PMID:27748246

  7. Cognitive control, attention, and the other race effect in memory.

    PubMed

    Brown, Thackery I; Uncapher, Melina R; Chow, Tiffany E; Eberhardt, Jennifer L; Wagner, Anthony D

    2017-01-01

    People are better at remembering faces from their own race than other races-a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an "old/new" recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces.

  8. Cognitive control, attention, and the other race effect in memory

    PubMed Central

    Uncapher, Melina R.; Chow, Tiffany E.; Eberhardt, Jennifer L.; Wagner, Anthony D.

    2017-01-01

    People are better at remembering faces from their own race than other races–a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an “old/new” recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces. PMID:28282414

  9. Unitary or Non-Unitary Nature of Working Memory? Evidence from Its Relation to General Fluid and Crystallized Intelligence

    ERIC Educational Resources Information Center

    Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang

    2012-01-01

    This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…

  10. Non Temporal Determinants of Bilingual Memory Capacity: The Role of Long-Term Representations and Fluency.

    ERIC Educational Resources Information Center

    Chincotta, Dino; Underwood, Geoffrey

    1998-01-01

    Examined the view that the variation in bilingual short-term memory capacity is determined by differential rates of subvocal rehearsal between the languages. Auditory memory span and articulation time were measured for three bilingual groups who spoke Finnish at home and Swedish at school, and either Finnish of Swedish in both the home and the…

  11. ERP Correlates of Target-Distracter Differentiation in Repeated Runs of a Continuous Recognition Task with Emotional and Neutral Faces

    ERIC Educational Resources Information Center

    Treese, Anne-Cecile; Johansson, Mikael; Lindgren, Magnus

    2010-01-01

    The emotional salience of faces has previously been shown to induce memory distortions in recognition memory tasks. This event-related potential (ERP) study used repeated runs of a continuous recognition task with emotional and neutral faces to investigate emotion-induced memory distortions. In the second and third runs, participants made more…

  12. A Cross-Syndrome Study of the Differential Effects of Sleep on Declarative Memory Consolidation in Children with Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Ashworth, Anna; Hill, Catherine M.; Karmiloff-Smith, Annette; Dimitriou, Dagmara

    2017-01-01

    Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep-dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first…

  13. Differential Needs of Zinc in the CA3 Area of Dorsal Hippocampus for the Consolidation of Contextual Fear and Spatial Memories

    ERIC Educational Resources Information Center

    Ceccom, Johnatan; Bouhsira, Emilie; Halley, Helene; Daumas, Stephanie; Lassalle, Jean Michel

    2013-01-01

    One peculiarity of the hippocampal CA3 mossy fiber terminals is the co-release of zinc and glutamate upon synaptic transmission. How these two players act on hippocampal-dependent memories is still unclear. To decipher their respective involvement in memory consolidation, a pharmacological approach was chosen. Using two hippocampal-dependent…

  14. The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response

    USDA-ARS?s Scientific Manuscript database

    The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE+ cells in memory responses is particularly unclear. IgE B cell differentiation is characterized by a transient GC phase, a bias towards the plasma cell (PC) fate,...

  15. Monkeys Rely on Recency of Stimulus Repetition When Solving Short-Term Memory Tasks

    ERIC Educational Resources Information Center

    Wittig, John H., Jr.; Richmond, Barry J.

    2014-01-01

    Seven monkeys performed variants of two short-term memory tasks that others have used to differentiate between selective and nonselective memory mechanisms. The first task was to view a list of sequentially presented images and identify whether a test matched any image from the list, but not a distractor from a preceding list. Performance was best…

  16. Telomerase Is Involved in IL-7-Mediated Differential Survival of Naive and Memory CD4+ T Cells1

    PubMed Central

    Yang, Yinhua; An, Jie; Weng, Nan-ping

    2008-01-01

    IL-7 plays an essential role in T cell maintenance and survival. The survival effect of IL-7 is thought to be mediated through regulation of Bcl2 family proteins. After a comparative analysis of IL-7-induced growth and cell death of human naive and memory CD4+ T cells, we observed that more memory CD4+ T cells underwent cell division and proceeded to apoptosis than naive cells in response to IL-7. However, IL-7-induced expressions of Bcl2 family members (Bcl2, Bcl-xL, Bax, and Bad) were similar between naive and memory cells. Instead, we found that IL-7 induced higher levels of telomerase activity in naive cells than in memory cells, and the levels of IL-7-induced telomerase activity had a significant inverse correlation with cell death in CD4+ T cells. Furthermore, we showed that reducing expression of telomerase reverse transcriptase and telomerase activity significantly increased cell death of IL-7-cultured CD4+ T cells. Together, these findings demonstrate that telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. PMID:18322183

  17. Development and assessment of a composite score for memory in the Alzheimer's Disease Neuroimaging Initiative (ADNI).

    PubMed

    Crane, Paul K; Carle, Adam; Gibbons, Laura E; Insel, Philip; Mackin, R Scott; Gross, Alden; Jones, Richard N; Mukherjee, Shubhabrata; Curtis, S McKay; Harvey, Danielle; Weiner, Michael; Mungas, Dan

    2012-12-01

    We sought to develop and evaluate a composite memory score from the neuropsychological battery used in the Alzheimer's Disease (AD) Neuroimaging Initiative (ADNI). We used modern psychometric approaches to analyze longitudinal Rey Auditory Verbal Learning Test (RAVLT, 2 versions), AD Assessment Schedule - Cognition (ADAS-Cog, 3 versions), Mini-Mental State Examination (MMSE), and Logical Memory data to develop ADNI-Mem, a composite memory score. We compared RAVLT and ADAS-Cog versions, and compared ADNI-Mem to RAVLT recall sum scores, four ADAS-Cog-derived scores, the MMSE, and the Clinical Dementia Rating Sum of Boxes. We evaluated rates of decline in normal cognition, mild cognitive impairment (MCI), and AD, ability to predict conversion from MCI to AD, strength of association with selected imaging parameters, and ability to differentiate rates of decline between participants with and without AD cerebrospinal fluid (CSF) signatures. The second version of the RAVLT was harder than the first. The ADAS-Cog versions were of similar difficulty. ADNI-Mem was slightly better at detecting change than total RAVLT recall scores. It was as good as or better than all of the other scores at predicting conversion from MCI to AD. It was associated with all our selected imaging parameters for people with MCI and AD. Participants with MCI with an AD CSF signature had somewhat more rapid decline than did those without. This paper illustrates appropriate methods for addressing the different versions of word lists, and demonstrates the additional power to be gleaned with a psychometrically sound composite memory score.

  18. Noncredible cognitive performance at clinical evaluation of adult ADHD: An embedded validity indicator in a visuospatial working memory test.

    PubMed

    Fuermaier, Anselm B M; Tucha, Oliver; Koerts, Janneke; Lange, Klaus W; Weisbrod, Matthias; Aschenbrenner, Steffen; Tucha, Lara

    2017-12-01

    The assessment of performance validity is an essential part of the neuropsychological evaluation of adults with attention-deficit/hyperactivity disorder (ADHD). Most available tools, however, are inaccurate regarding the identification of noncredible performance. This study describes the development of a visuospatial working memory test, including a validity indicator for noncredible cognitive performance of adults with ADHD. Visuospatial working memory of adults with ADHD (n = 48) was first compared to the test performance of healthy individuals (n = 48). Furthermore, a simulation design was performed including 252 individuals who were randomly assigned to either a control group (n = 48) or to 1 of 3 simulation groups who were requested to feign ADHD (n = 204). Additional samples of 27 adults with ADHD and 69 instructed simulators were included to cross-validate findings from the first samples. Adults with ADHD showed impaired visuospatial working memory performance of medium size as compared to healthy individuals. Simulation groups committed significantly more errors and had shorter response times as compared to patients with ADHD. Moreover, binary logistic regression analysis was carried out to derive a validity index that optimally differentiates between true and feigned ADHD. ROC analysis demonstrated high classification rates of the validity index, as shown in excellent specificity (95.8%) and adequate sensitivity (60.3%). The visuospatial working memory test as presented in this study therefore appears sensitive in indicating cognitive impairment of adults with ADHD. Furthermore, the embedded validity index revealed promising results concerning the detection of noncredible cognitive performance of adults with ADHD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Diagnostic Accuracy of Memory Measures in Alzheimer's Dementia and Mild Cognitive Impairment: a Systematic Review and Meta-Analysis.

    PubMed

    Weissberger, Gali H; Strong, Jessica V; Stefanidis, Kayla B; Summers, Mathew J; Bondi, Mark W; Stricker, Nikki H

    2017-12-01

    With an increasing focus on biomarkers in dementia research, illustrating the role of neuropsychological assessment in detecting mild cognitive impairment (MCI) and Alzheimer's dementia (AD) is important. This systematic review and meta-analysis, conducted in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) standards, summarizes the sensitivity and specificity of memory measures in individuals with MCI and AD. Both meta-analytic and qualitative examination of AD versus healthy control (HC) studies (n = 47) revealed generally high sensitivity and specificity (≥ 80% for AD comparisons) for measures of immediate (sensitivity = 87%, specificity = 88%) and delayed memory (sensitivity = 89%, specificity = 89%), especially those involving word-list recall. Examination of MCI versus HC studies (n = 38) revealed generally lower diagnostic accuracy for both immediate (sensitivity = 72%, specificity = 81%) and delayed memory (sensitivity = 75%, specificity = 81%). Measures that differentiated AD from other conditions (n = 10 studies) yielded mixed results, with generally high sensitivity in the context of low or variable specificity. Results confirm that memory measures have high diagnostic accuracy for identification of AD, are promising but require further refinement for identification of MCI, and provide support for ongoing investigation of neuropsychological assessment as a cognitive biomarker of preclinical AD. Emphasizing diagnostic test accuracy statistics over null hypothesis testing in future studies will promote the ongoing use of neuropsychological tests as Alzheimer's disease research and clinical criteria increasingly rely upon cerebrospinal fluid (CSF) and neuroimaging biomarkers.

  20. Are multiple visual short-term memory storages necessary to explain the retro-cue effect?

    PubMed

    Makovski, Tal

    2012-06-01

    Recent research has shown that change detection performance is enhanced when, during the retention interval, attention is cued to the location of the upcoming test item. This retro-cue advantage has led some researchers to suggest that visual short-term memory (VSTM) is divided into a durable, limited-capacity storage and a more fragile, high-capacity storage. Consequently, performance is poor on the no-cue trials because fragile VSTM is overwritten by the test display and only durable VSTM is accessible under these conditions. In contrast, performance is improved in the retro-cue condition because attention keeps fragile VSTM accessible. The aim of the present study was to test the assumptions underlying this two-storage account. Participants were asked to encode an array of colors for a change detection task involving no-cue and retro-cue trials. A retro-cue advantage was found even when the cue was presented after a visual (Experiment 1) or a central (Experiment 2) interference. Furthermore, the magnitude of the interference was comparable between the no-cue and retro-cue trials. These data undermine the main empirical support for the two-storage account and suggest that the presence of a retro-cue benefit cannot be used to differentiate between different VSTM storages.

  1. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    PubMed

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  2. Processing device with self-scrubbing logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojahn, Christopher K.

    An apparatus includes a processing unit including a configuration memory and self-scrubber logic coupled to read the configuration memory to detect compromised data stored in the configuration memory. The apparatus also includes a watchdog unit external to the processing unit and coupled to the self-scrubber logic to detect a failure in the self-scrubber logic. The watchdog unit is coupled to the processing unit to selectively reset the processing unit in response to detecting the failure in the self-scrubber logic. The apparatus also includes an external memory external to the processing unit and coupled to send configuration data to the configurationmore » memory in response to a data feed signal outputted by the self-scrubber logic.« less

  3. Modeling Protective Anti-Tumor Immunity via Preventative Cancer Vaccines Using a Hybrid Agent-based and Delay Differential Equation Approach

    PubMed Central

    Kim, Peter S.; Lee, Peter P.

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry. PMID:23133347

  4. CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields.

    PubMed

    Dimsdale-Zucker, Halle R; Ritchey, Maureen; Ekstrom, Arne D; Yonelinas, Andrew P; Ranganath, Charan

    2018-01-18

    The hippocampus plays a critical role in spatial and episodic memory. Mechanistic models predict that hippocampal subfields have computational specializations that differentially support memory. However, there is little empirical evidence suggesting differences between the subfields, particularly in humans. To clarify how hippocampal subfields support human spatial and episodic memory, we developed a virtual reality paradigm where participants passively navigated through houses (spatial contexts) across a series of videos (episodic contexts). We then used multivariate analyses of high-resolution fMRI data to identify neural representations of contextual information during recollection. Multi-voxel pattern similarity analyses revealed that CA1 represented objects that shared an episodic context as more similar than those from different episodic contexts. CA23DG showed the opposite pattern, differentiating between objects encountered in the same episodic context. The complementary characteristics of these subfields explain how we can parse our experiences into cohesive episodes while retaining the specific details that support vivid recollection.

  5. Release of inattentional blindness by high working memory load: elucidating the relationship between working memory and selective attention.

    PubMed

    de Fockert, Jan W; Bremner, Andrew J

    2011-12-01

    An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus detection is competing for attention with a concurrent visual task. Participants were required to judge which of two lines was the longer while holding in working memory either one digit (low load) or six digits (high load). An unexpected visual stimulus was presented once alongside the line judgment task. Detection of the unexpected stimulus was significantly improved under conditions of higher working memory load. This improvement in performance prompts the striking conclusion that an effect of cognitive load is to increase attentional spread, thereby enhancing our ability to detect perceptual stimuli to which we would normally be inattentionally blind under less taxing cognitive conditions. We discuss the implications of these findings for our understanding of the relationship between working memory and selective attention. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Differential binding of colors to objects in memory: red and yellow stick better than blue and green

    PubMed Central

    Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard

    2015-01-01

    Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object’s importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers’ confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently from each other. PMID:25784892

  7. Differential binding of colors to objects in memory: red and yellow stick better than blue and green.

    PubMed

    Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard

    2015-01-01

    Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object's importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers' confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently from each other.

  8. (Putative) Sex differences in neuroimmune modulation of memory

    PubMed Central

    Tronson, Natalie C.; Collette, Katie M.

    2016-01-01

    The neuroimmune system is significantly sexually dimorphic, with sex differences evident in the number and activation states of microglia, in the activation of astrocytes, and in cytokine release and function. Neuroimmune cells and signaling are now recognized as critical for many neural functions throughout the lifespan, including synaptic plasticity and memory function. Here we address the question of how cytokines, astrocytes, and microglia contribute to memory, and specifically how neuroimmune modulation of memory differentially affects males and females. Understanding sex differences in both normal memory processes and dysregulation of memory in psychiatric and neurological disorders is critical for developing treatment and preventive strategies for memory disorders that are effective for both men and women. PMID:27870428

  9. Effects of emotional context on memory for details: the role of attention.

    PubMed

    Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias

    2013-01-01

    It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context.

  10. Effects of Emotional Context on Memory for Details: The Role of Attention

    PubMed Central

    Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias

    2013-01-01

    It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context. PMID:24116226

  11. Goal-Directed Modulation of Neural Memory Patterns: Implications for fMRI-Based Memory Detection.

    PubMed

    Uncapher, Melina R; Boyd-Meredith, J Tyler; Chow, Tiffany E; Rissman, Jesse; Wagner, Anthony D

    2015-06-03

    Remembering a past event elicits distributed neural patterns that can be distinguished from patterns elicited when encountering novel information. These differing patterns can be decoded with relatively high diagnostic accuracy for individual memories using multivoxel pattern analysis (MVPA) of fMRI data. Brain-based memory detection--if valid and reliable--would have clear utility beyond the domain of cognitive neuroscience, in the realm of law, marketing, and beyond. However, a significant boundary condition on memory decoding validity may be the deployment of "countermeasures": strategies used to mask memory signals. Here we tested the vulnerability of fMRI-based memory detection to countermeasures, using a paradigm that bears resemblance to eyewitness identification. Participants were scanned while performing two tasks on previously studied and novel faces: (1) a standard recognition memory task; and (2) a task wherein they attempted to conceal their true memory state. Univariate analyses revealed that participants were able to strategically modulate neural responses, averaged across trials, in regions implicated in memory retrieval, including the hippocampus and angular gyrus. Moreover, regions associated with goal-directed shifts of attention and thought substitution supported memory concealment, and those associated with memory generation supported novelty concealment. Critically, whereas MVPA enabled reliable classification of memory states when participants reported memory truthfully, the ability to decode memory on individual trials was compromised, even reversing, during attempts to conceal memory. Together, these findings demonstrate that strategic goal states can be deployed to mask memory-related neural patterns and foil memory decoding technology, placing a significant boundary condition on their real-world utility. Copyright © 2015 the authors 0270-6474/15/358531-15$15.00/0.

  12. A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory' effect by exploiting the baseline oxidative status of lymphocytes

    PubMed Central

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; III Petricoin, E; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T

    2013-01-01

    Central memory (TCM) and transitional memory (TTM) CD4+ T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that TCM and TTM lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the TCM/TTM lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways. PMID:24309931

  13. Detecting and correcting hard errors in a memory array

    DOEpatents

    Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.

    2015-11-19

    Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.

  14. Proactive Interference Does Not Meaningfully Distort Visual Working Memory Capacity Estimates in the Canonical Change Detection Task

    PubMed Central

    Lin, Po-Han; Luck, Steven J.

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556

  15. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task.

    PubMed

    Lin, Po-Han; Luck, Steven J

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.

  16. Differential age-related effects on conjunctive and relational visual short-term memory binding.

    PubMed

    Bastin, Christine

    2017-12-28

    An age-related associative deficit has been described in visual short-term binding memory tasks. However, separate studies have suggested that ageing disrupts relational binding (to associate distinct items or item and context) more than conjunctive binding (to integrate features within an object). The current study directly compared relational and conjunctive binding with a short-term memory task for object-colour associations in 30 young and 30 older adults. Participants studied a number of object-colour associations corresponding to their individual object span level in a relational task in which objects were associated to colour patches and a conjunctive task where colour was integrated into the object. Memory for individual items and for associations was tested with a recognition memory test. Evidence for an age-related associative deficit was observed in the relational binding task, but not in the conjunctive binding task. This differential impact of ageing on relational and conjunctive short-term binding is discussed by reference to two underlying age-related cognitive difficulties: diminished hippocampally dependent binding and attentional resources.

  17. Sustained change blindness to incremental scene rotation: a dissociation between explicit change detection and visual memory.

    PubMed

    Hollingworth, Andrew; Henderson, John M

    2004-07-01

    In a change detection paradigm, the global orientation of a natural scene was incrementally changed in 1 degree intervals. In Experiments 1 and 2, participants demonstrated sustained change blindness to incremental rotation, often coming to consider a significantly different scene viewpoint as an unchanged continuation of the original view. Experiment 3 showed that participants who failed to detect the incremental rotation nevertheless reliably detected a single-step rotation back to the initial view. Together, these results demonstrate an important dissociation between explicit change detection and visual memory. Following a change, visual memory is updated to reflect the changed state of the environment, even if the change was not detected.

  18. Detection of suboptimal effort with symbol span: development of a new embedded index.

    PubMed

    Young, J Christopher; Caron, Joshua E; Baughman, Brandon C; Sawyer, R John

    2012-03-01

    Developing embedded indicators of suboptimal effort on objective neurocognitive testing is essential for detecting increasingly sophisticated forms of symptom feigning. The current study explored whether Symbol Span, a novel Wechsler Memory Scale-fourth edition measure of supraspan visual attention, could be used to discriminate adequate effort from suboptimal effort. Archival data were collected from 136 veterans classified into Poor Effort (n = 42) and Good Effort (n = 94) groups based on symptom validity test (SVT) performance. The Poor Effort group had significantly lower raw scores (p < .001) and age-corrected scaled scores (p < .001) than the Good Effort group on the Symbol Span test. A raw score cutoff of <14 produced 83% specificity and 50% sensitivity for detection of Poor Effort. Similarly, sensitivity was 52% and specificity was 84% when employing a cutoff of <7 for Age-Corrected Scale Score. Collectively, present results suggest that Symbol Span can effectively differentiate veterans with multiple failures on established free-standing and embedded SVTs.

  19. Modeling Memory Processes and Performance Benchmarks of AWACS Weapons Director Teams

    DTIC Science & Technology

    2006-01-31

    levels of processing generally lead to higher levels of performance than shallow levels of processing ( Craik & Lockhart ...making. New York: John Wiley & Sons. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing : A framework for memory research. Journal of Verbal...representation. The type of processing occurring at encoding has been demonstrated to result in differential levels of memory performance ( Craik

  20. Influence of memory theme and posttraumatic stress disorder on memory specificity in British and Iranian trauma survivors.

    PubMed

    Jobson, Laura; Cheraghi, Sepideh

    2016-09-01

    This study investigated the influence of culture, memory theme and posttraumatic stress disorder (PTSD) on autobiographical memory specificity in Iranian and British trauma survivors. Participants completed the Autobiographical Memory Test and PTSD Diagnostic Scale. The results indicated that the British group provided significantly more personal-themed memories than the Iranian group, while the Iranian group provided significantly more social-themed memories than the British group. The British group also provided a significantly greater proportion of specific personal-themed and social-themed memories than the Iranian group. Overall, in both cultural groups memory specificity was found to be significantly correlated with PTSD symptoms. These findings provide further evidence that regardless of memory theme, specificity of autobiographical memories function to differentiate the self from others and reaffirm the independent self. They also further highlight that pan-culturally an overgeneral retrieval style may be employed by those with PTSD symptoms.

  1. Memory for sequences of events impaired in typical aging.

    PubMed

    Allen, Timothy A; Morris, Andrea M; Stark, Shauna M; Fortin, Norbert J; Stark, Craig E L

    2015-03-01

    Typical aging is associated with diminished episodic memory performance. To improve our understanding of the fundamental mechanisms underlying this age-related memory deficit, we previously developed an integrated, cross-species approach to link converging evidence from human and animal research. This novel approach focuses on the ability to remember sequences of events, an important feature of episodic memory. Unlike existing paradigms, this task is nonspatial, nonverbal, and can be used to isolate different cognitive processes that may be differentially affected in aging. Here, we used this task to make a comprehensive comparison of sequence memory performance between younger (18-22 yr) and older adults (62-86 yr). Specifically, participants viewed repeated sequences of six colored, fractal images and indicated whether each item was presented "in sequence" or "out of sequence." Several out of sequence probe trials were used to provide a detailed assessment of sequence memory, including: (i) repeating an item from earlier in the sequence ("Repeats"; e.g., AB A: DEF), (ii) skipping ahead in the sequence ("Skips"; e.g., AB D: DEF), and (iii) inserting an item from a different sequence into the same ordinal position ("Ordinal Transfers"; e.g., AB 3: DEF). We found that older adults performed as well as younger controls when tested on well-known and predictable sequences, but were severely impaired when tested using novel sequences. Importantly, overall sequence memory performance in older adults steadily declined with age, a decline not detected with other measures (RAVLT or BPS-O). We further characterized this deficit by showing that performance of older adults was severely impaired on specific probe trials that required detailed knowledge of the sequence (Skips and Ordinal Transfers), and was associated with a shift in their underlying mnemonic representation of the sequences. Collectively, these findings provide unambiguous evidence that the capacity to remember sequences of events is fundamentally affected by typical aging. © 2015 Allen et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Memory for sequences of events impaired in typical aging

    PubMed Central

    Allen, Timothy A.; Morris, Andrea M.; Stark, Shauna M.; Fortin, Norbert J.

    2015-01-01

    Typical aging is associated with diminished episodic memory performance. To improve our understanding of the fundamental mechanisms underlying this age-related memory deficit, we previously developed an integrated, cross-species approach to link converging evidence from human and animal research. This novel approach focuses on the ability to remember sequences of events, an important feature of episodic memory. Unlike existing paradigms, this task is nonspatial, nonverbal, and can be used to isolate different cognitive processes that may be differentially affected in aging. Here, we used this task to make a comprehensive comparison of sequence memory performance between younger (18–22 yr) and older adults (62–86 yr). Specifically, participants viewed repeated sequences of six colored, fractal images and indicated whether each item was presented “in sequence” or “out of sequence.” Several out of sequence probe trials were used to provide a detailed assessment of sequence memory, including: (i) repeating an item from earlier in the sequence (“Repeats”; e.g., ABADEF), (ii) skipping ahead in the sequence (“Skips”; e.g., ABDDEF), and (iii) inserting an item from a different sequence into the same ordinal position (“Ordinal Transfers”; e.g., AB3DEF). We found that older adults performed as well as younger controls when tested on well-known and predictable sequences, but were severely impaired when tested using novel sequences. Importantly, overall sequence memory performance in older adults steadily declined with age, a decline not detected with other measures (RAVLT or BPS-O). We further characterized this deficit by showing that performance of older adults was severely impaired on specific probe trials that required detailed knowledge of the sequence (Skips and Ordinal Transfers), and was associated with a shift in their underlying mnemonic representation of the sequences. Collectively, these findings provide unambiguous evidence that the capacity to remember sequences of events is fundamentally affected by typical aging. PMID:25691514

  3. Detecting Gravitational Wave Memory without Parent Signals

    NASA Astrophysics Data System (ADS)

    McNeill, Lucy O.; Thrane, Eric; Lasky, Paul D.

    2017-05-01

    Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little more than an order of magnitude smaller in strain than the oscillatory parent waves. We introduce the concept of "orphan memory": gravitational-wave memory for which there is no detectable parent signal. In particular, high-frequency gravitational-wave bursts (≳kHz ) produce orphan memory in the LIGO/Virgo band. We show that Advanced LIGO measurements can place stringent limits on the existence of high-frequency gravitational waves, effectively increasing the LIGO bandwidth by orders of magnitude. We investigate the prospects for and implications of future searches for orphan memory.

  4. Flexibility in Visual Working Memory: Accurate Change Detection in the Face of Irrelevant Variations in Position

    PubMed Central

    Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.

    2012-01-01

    Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933

  5. Word Associated Arousal as an Encoding Dimension in Short Term Memory.

    ERIC Educational Resources Information Center

    Hayduk, Allan W.; Osborne, John W.

    1981-01-01

    The fact that a significant amount of release from proactive interference was obtained with subjects in this study by shifting between differentially arousing categories of words suggested that rated word arousal is an encoding dimension in short-term memory. (CM)

  6. T-cell differentiation and CD56+ levels in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration.

    PubMed

    Subhi, Yousif; Nielsen, Marie Krogh; Molbech, Christopher Rue; Oishi, Akio; Singh, Amardeep; Nissen, Mogens Holst; Sørensen, Torben Lykke

    2017-11-20

    Polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (AMD) are prevalent age-related diseases characterized by exudative changes in the macula. Although they share anatomical and clinical similarities, they are also distinctly characterized by their own features, e.g. vascular abnormalities in PCV and drusen-mediated progression in neovascular AMD. PCV remains etiologically uncharacterized, and ongoing discussion is whether PCV and neovascular AMD share the same etiology or constitute two substantially different diseases. In this study, we investigated T-cell differentiation and aging profile in human patients with PCV, patients with neovascular AMD, and age-matched healthy control individuals. Fresh venous blood was prepared for flow cytometry to investigate CD4 + and CD8 + T-cell differentiation (naïve, central memory, effector memory, effector memory CD45ra + ), loss of differentiation markers CD27 and CD28, and expression of aging marker CD56. Patients with PCV were similar to the healthy controls in all aspects. In patients with neovascular AMD we found significantly accelerated T-cell differentiation (more CD28 - CD27 - cells) and aging (more CD56 + cells) in the CD8 + T-cell compartment. These findings suggest that PCV and neovascular AMD are etiologically different in terms of T cell immunity, and that neovascular AMD is associated with T-cell immunosenescence.

  7. Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem

    PubMed Central

    Dyer, Adrian G.; Garcia, Jair E.

    2014-01-01

    Free-flying honeybees acquire color information differently depending upon whether a target color is learnt in isolation (absolute conditioning), or in relation to a perceptually similar color (differential conditioning). Absolute conditioning allows for rapid learning, but color discrimination is coarse. Differential conditioning requires more learning trials, but enables fine discriminations. Currently it is unknown whether differential conditioning to similar colors in honeybees forms a long-term memory, and the stability of memory in a biologically relevant scenario considering similar or saliently different color stimuli. Individual free-flying honeybees (N = 6) were trained to similar color stimuli separated by 0.06 hexagon units for 60 trials and mean accuracy was 81.7% ± 12.2% s.d. Bees retested on subsequent days showed a reduction in the number of correct choices with increasing time from the initial training, and for four of the bees this reduction was significant from chance expectation considering binomially distributed logistic regression models. In contrast, an independent group of 6 bees trained to saliently different colors (>0.14 hexagon units) did not experience any decay in memory retention with increasing time. This suggests that whilst the bees’ visual system can permit fine discriminations, flowers producing saliently different colors are more easily remembered by foraging bees over several days. PMID:26462830

  8. Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem.

    PubMed

    Dyer, Adrian G; Garcia, Jair E

    2014-07-30

    Free-flying honeybees acquire color information differently depending upon whether a target color is learnt in isolation (absolute conditioning), or in relation to a perceptually similar color (differential conditioning). Absolute conditioning allows for rapid learning, but color discrimination is coarse. Differential conditioning requires more learning trials, but enables fine discriminations. Currently it is unknown whether differential conditioning to similar colors in honeybees forms a long-term memory, and the stability of memory in a biologically relevant scenario considering similar or saliently different color stimuli. Individual free-flying honeybees (N = 6) were trained to similar color stimuli separated by 0.06 hexagon units for 60 trials and mean accuracy was 81.7% ± 12.2% s.d. Bees retested on subsequent days showed a reduction in the number of correct choices with increasing time from the initial training, and for four of the bees this reduction was significant from chance expectation considering binomially distributed logistic regression models. In contrast, an independent group of 6 bees trained to saliently different colors (>0.14 hexagon units) did not experience any decay in memory retention with increasing time. This suggests that whilst the bees' visual system can permit fine discriminations, flowers producing saliently different colors are more easily remembered by foraging bees over several days.

  9. Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ.

    PubMed

    Good-Jacobson, Kim L; Chen, Yunshun; Voss, Anne K; Smyth, Gordon K; Thomas, Tim; Tarlinton, David

    2014-07-01

    Memory B cells and long-lived bone marrow-resident plasma cells maintain humoral immunity. Little is known about the intrinsic mechanisms that are essential for forming memory B cells or endowing them with the ability to rapidly differentiate upon reexposure while maintaining the population over time. Histone modifications have been shown to regulate lymphocyte development, but their role in regulating differentiation and maintenance of B-cell subsets during an immune response is unclear. Using stage-specific deletion of monocytic leukemia zinc finger protein (MOZ), a histone acetyltransferase, we demonstrate that mutation of this chromatin modifier alters fate decisions in both primary and secondary responses. In the absence of MOZ, germinal center B cells were significantly impaired in their ability to generate dark zone centroblasts, with a concomitant decrease in both cell-cycle progression and BCL-6 expression. In contrast, there was increased differentiation to IgM and low-affinity IgG1(+) memory B cells. The lack of MOZ affected the functional outcome of humoral immune responses, with an increase in secondary germinal centers and a corresponding decrease in secondary high-affinity antibody-secreting cell formation. Therefore, these data provide strong evidence that manipulating epigenetic modifiers can regulate fate decisions during humoral responses, and thus could be targeted for therapeutic intervention.

  10. The Differential Outcomes Procedure Enhances Adherence to Treatment: A Simulated Study with Healthy Adults

    PubMed Central

    Molina, Michael; Plaza, Victoria; Fuentes, Luis J.; Estévez, Angeles F.

    2015-01-01

    Memory for medical recommendations is a prerequisite for good adherence to treatment, and therefore to ameliorate the negative effects of the disease, a problem that mainly affects people with memory deficits. We conducted a simulated study to test the utility of a procedure (the differential outcomes procedure, DOP) that may improve adherence to treatment by increasing the patient’s learning and retention of medical recommendations regarding medication. The DOP requires the structure of a conditional discriminative learning task in which correct choice responses to specific stimulus–stimulus associations are reinforced with a particular reinforcer or outcome. In two experiments, participants had to learn and retain in their memory the pills that were associated with particular disorders. To assess whether the DOP improved long-term retention of the learned disorder/pill associations, participants were asked to perform two recognition memory tests, 1 h and 1 week after completing the learning phase. The results showed that compared with the standard non-differential outcomes procedure, the DOP produced better learning and long-term retention of the previously learned associations. These findings suggest that the DOP can be used as a useful complementary technique in intervention programs targeted at increasing adherence to clinical recommendations. PMID:26913010

  11. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    PubMed

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  12. Effects of Delay Duration on the WMS Logical Memory Performance of Older Adults with Probable Alzheimer's Disease, Probable Vascular Dementia, and Normal Cognition.

    PubMed

    Montgomery, Valencia; Harris, Katie; Stabler, Anthony; Lu, Lisa H

    2017-05-01

    To examine how the duration of time delay between Wechsler Memory Scale (WMS) Logical Memory I and Logical Memory II (LM) affected participants' recall performance. There are 46,146 total Logical Memory administrations to participants diagnosed with either Alzheimer's disease (AD), vascular dementia (VaD), or normal cognition in the National Alzheimer's Disease Coordinating Center's Uniform Data Set. Only 50% of the sample was administered the standard 20-35 min of delay as specified by WMS-R and WMS-III. We found a significant effect of delay time duration on proportion of information retained for the VaD group compared to its control group, which remained after adding LMI raw score as a covariate. There was poorer retention of information with longer delay for this group. This association was not as strong for the AD and cognitively normal groups. A 24.5-min delay was most optimal for differentiating AD from VaD participants (47.7% classification accuracy), an 18.5-min delay was most optimal for differentiating AD versus normal participants (51.7% classification accuracy), and a 22.5-min delay was most optimal for differentiating VaD versus normal participants (52.9% classification accuracy). Considering diagnostic implications, our findings suggest that test administration should incorporate precise tracking of delay periods. We recommend a 20-min delay with 18-25-min range. Poor classification accuracy based on LM data alone is a reminder that story memory performance is only one piece of data that contributes to complex clinical decisions. However, strict adherence to the recommended range yields optimal data for diagnostic decisions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats.

    PubMed

    Slouzkey, Ilana; Maroun, Mouna

    2016-12-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction. © 2016 Slouzkey and Maroun; Published by Cold Spring Harbor Laboratory Press.

  14. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce.

    PubMed

    Yakovlev, Igor A; Carneros, Elena; Lee, YeonKyeong; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2016-05-01

    A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory. As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.

  15. Different types of exercise induce differential effects on neuronal adaptations and memory performance.

    PubMed

    Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J

    2012-01-01

    Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.

    PubMed

    Maier, Martin E; Steinhauser, Marco

    2017-10-01

    Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.

  17. The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment.

    PubMed

    Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M

    2018-01-01

    To compare ability of 2 measures of delayed memory (word list, story paragraph) to discriminate Normal Control (NC) subjects from those with amnestic mild cognitive impairment (aMCI). Demographic, neuropsychological, and diagnostic data contributed by 34 Alzheimer's Disease Centers to the National Alzheimer's Coordinating Center characterized 2717 individuals with a diagnosis of either NC (n=2205) or aMCI (n=512). The Montreal Cognitive Assessment-Memory Index Score (MoCA-MIS) assessed delayed word recall, and the Craft Story 21, delayed story recall. Logistic regression and receiver operator characteristic curves controlling for age, sex, and education assessed the ability of each test to differentiate NCs from subjects with aMCI. The MoCA-MIS had significantly better sensitivity and specificity (area under the receiver operator characteristic curve 0.83 vs. 0.80, P=0.004). At sensitivity 80%, the specificity of the MoCA-MIS was 69.1%, compared with 62.8% for the Craft Story. These data suggest that the MoCA-MIS, a recall score from items within the MoCA, is better at discriminating NCs from subjects with aMCI than the Craft Story. Word recall may be an efficient alternative to paragraph recall for diagnostic screening within clinical practice and research settings.

  18. Portuguese version of Wechsler Memory Scale-3rd edition's utility with demented elderly adults.

    PubMed

    Gonçalves, Cátia; Pinho, Maria S; Cruz, Vítor; Gens, Helena; Oliveira, Fátima; Pais, Joana; Rente, José; Santana, Isabel; Santos, José M

    2017-01-01

    The purpose of this study is to analyze the utility of the Portuguese version of the Wechsler Memory Scale-3rd edition (WMS-III) with demented elderly people, namely its capacity to detect and discriminate between subcortical vascular dementia (SVD) and Alzheimer's disease (AD). We assessed early demented patients (SVD = 16; AD = 36) aged 65 or older who were compared to a control group (n = 40). Both clinical groups were adequately matched in terms of disease severity, overall cognitive functioning, depressive symptomatology, and pre-morbid intelligence. Between-group's differences were evaluated using the Quade's rank analysis of covariance. We also computed indexes and subtests optimal cut-off scores, and the corresponding sensitivity, specificity, and positive and negative predictive values, which were able to successfully discriminate between patients and healthy subjects. The SVD patients had a better overall memory performance than AD patients on the majority of the indexes and the delayed condition subtests of the WMS-III. The AD patients only showed a better performance on digit span subtest. Several measures discriminated patients from healthy subjects. This study suggests some recommendations for the diagnostic accuracy of the Portuguese version of WMS-III in dementia and about differential diagnosis between SVD and AD.

  19. Orienting Attention in Visual Working Memory Reduces Interference from Memory Probes

    ERIC Educational Resources Information Center

    Makovski, Tal; Sussman, Rachel; Jiang, Yuhong V.

    2008-01-01

    Given a changing visual environment, and the limited capacity of visual working memory (VWM), the contents of VWM must be in constant flux. Using a change detection task, the authors show that VWM is subject to obligatory updating in the face of new information. Change detection performance is enhanced when the item that may change is…

  20. Episodic, but not semantic, autobiographical memory is reduced in amnestic mild cognitive impairment.

    PubMed

    Murphy, Kelly J; Troyer, Angela K; Levine, Brian; Moscovitch, Morris

    2008-11-01

    Amnestic mild cognitive impairment (aMCI) is characterized by decline in anterograde memory as measured by the ability to learn and remember new information. We investigated whether retrograde memory for autobiographical information was affected by aMCI. Eighteen control (age 66-84 years) and 17 aMCI (age 66-84 years) participants described a personal event from each of the five periods across the lifespan. These events were transcribed and scored according to procedures that separate episodic (specific happenings) from semantic (general knowledge) elements of autobiographical memory. Although both groups generated protocols of similar length, the composition of autobiographical recall differentiated the groups. The aMCI group protocols were characterized by reduced episodic and increased semantic information relative to the control group. Both groups showed a similar pattern of recall across time periods, with no evidence that the aMCI group had more difficulty recalling recent, rather than remote, life events. These results indicate that episodic and semantic autobiographical memories are differentially affected by the early brain changes associated with aMCI. Reduced autobiographical episodic memories in aMCI may be the result of medial temporal lobe dysfunction, consistent with multiple trace theory, or alternatively, could be related to dysfunction of a wider related network of neocortical structures. In contrast, the preservation of autobiographical semantic memories in aMCI suggests neural systems, such as lateral temporal cortex, that support these memories, may remain relatively intact.

  1. When the future becomes the past: Differences in brain activation patterns for episodic memory and episodic future thinking.

    PubMed

    Weiler, Julia A; Suchan, Boris; Daum, Irene

    2010-10-15

    Episodic memory and episodic future thinking activate a network of overlapping brain regions, but little is known about the mechanism with which the brain separates the two processes. It was recently suggested that differential activity for memory and future thinking may be linked to differences in the phenomenal properties (e.g., richness of detail). Using functional magnetic resonance imaging in healthy subjects and a novel experimental design, we investigated the networks involved in the imagery of future and the recall of past events for the same target occasion, i.e. the Christmas and New Year's holidays, thereby keeping temporal distance and content similar across conditions. Although ratings of phenomenal characteristics were comparable for future thoughts and memories, differential activation patterns emerged. The right posterior hippocampus exhibited stronger memory-related activity during early event recall, and stronger future thought-related activity during late event imagination. Other regions, e.g., the precuneus and lateral prefrontal cortex, showed the reverse activation pattern with early future-associated and late past-associated activation. Memories compared to future thoughts were further related to stronger activation in several visual processing regions, which accords with a reactivation of the original perceptual experience. In conclusion, the results showed for the first time unique neural signatures for both memory and future thinking even in the absence of differences in phenomenal properties and suggested different time courses of brain activation for episodic memory and future thinking. Copyright 2010 Elsevier B.V. All rights reserved.

  2. The role of visual imagery in the retention of information from sentences.

    PubMed

    Drose, G S; Allen, G L

    1994-01-01

    We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.

  3. Differential involvement of knowledge representation and executive control in episodic memory performance in young and older adults.

    PubMed

    Bouazzaoui, Badiâa; Fay, Séverine; Taconnat, Laurence; Angel, Lucie; Vanneste, Sandrine; Isingrini, Michel

    2013-06-01

    Craik and Bialystok (2006, 2008) postulated that examining the evolution of knowledge representation and control processes across the life span could help in understanding age-related cognitive changes. The present study explored the hypothesis that knowledge representation and control processes are differentially involved in the episodic memory performance of young and older adults. Young and older adults were administered a cued-recall task and tests of crystallized knowledge and executive functioning to measure representation and control processes, respectively. Results replicate the classic finding that executive and cued-recall performance decline with age, but crystallized-knowledge performance does not. Factor analysis confirmed the independence of representation and control. Correlation analyses showed that the memory performance of younger adults was correlated with representation but not with control measures, whereas the memory performance of older adults was correlated with both representation and control measures. Regression analyses indicated that the control factor was the main predictor of episodic-memory performance for older adults, with the representation factor adding an independent contribution, but the representation factor was the sole predictor for young adults. This finding supports the view that factors sustaining episodic memory vary from young adulthood to old age; representation was shown to be important throughout adulthood, and control was also important for older adults. The results also indicated that control and representation modulate age-group-related variance in episodic memory.

  4. Memory and functional brain differences in a national sample of U.S. veterans with Gulf War Illness.

    PubMed

    Cooper, Crystal M; Briggs, Richard W; Farris, Emily A; Bartlett, James; Haley, Robert W; Odegard, Timothy N

    2016-04-30

    Roughly 26-32% of U. S. veterans who served in the 1991 Persian Gulf War report suffering from chronic health problems. Memory complaints are regularly reported by ill Gulf War veterans (GWV), but limited data verify their complaints. This study investigated episodic memory and brain function in a nationally representative sample of GWV, using a face-name memory task and functional magnetic resonance imaging during encoding. A syndrome classification system was used to subdivide ill GWV into the three major Gulf War Illness syndrome types, "impaired cognition" (GWV-1), "confusion ataxia" (GWV-2), and "central pain" (GWV-3). Memory and brain function of ill GWV were contrasted to deployed and nondeployed well GWV controls (GWV-C). Ill GWV exhibited impaired memory function relative to GWV-C but the patterns of functional brain differences varied. Brain activation differentiated the GWV-C from the ill GWV. The different syndrome types also differed from one another in several brain regions. Additionally, the current study was the first to observe differences in brain function between deployed and nondeployed GWV-C. These results provide (1) evidence of memory impairment in ill GWV and differentiate the syndrome types at a functional neurobiological level, and (2) the role of deployment in the war on brain function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Examining the influence of a spatially irrelevant working memory load on attentional allocation.

    PubMed

    McDonnell, Gerald P; Dodd, Michael D

    2013-08-01

    The present study examined the influence of holding task-relevant gaze cues in working memory during a target detection task. Gaze cues shift attention in gaze-consistent directions, even when they are irrelevant to a primary detection task. It is unclear, however, whether gaze cues need to be perceived online to elicit these effects, or how these effects may be moderated if the gaze cues are relevant to a secondary task. In Experiment 1, participants encoded a face for a subsequent memory task, after which they performed an unrelated target detection task. Critically, gaze direction was irrelevant to the target detection task, but memory for the perceived face was tested at trial conclusion. Surprisingly, participants exhibited inhibition-of-return (IOR) and not facilitation, with slower response times for the gazed-at location. In Experiments 2, presentation duration and cue-target stimulus-onset asynchrony were manipulated and we continued to observe IOR with no early facilitation. Experiment 3 revealed facilitation but not IOR when the memory task was removed; Experiment 4 also revealed facilitation when the gaze cue memory task was replaced with arrows cues. The present experiments provide an important dissociation between perceiving cues online versus holding them in memory as it relates to attentional allocation. 2013 APA, all rights reserved

  6. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents.

    PubMed

    Kimani, S; Sinei, K; Bukachi, F; Tshala-Katumbay, D; Maitai, C

    2014-03-01

    Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p < 0.05), higher working memory errors (WME) (F(2, 19) = 5.09, p < 0.05) and longer RAM navigation time (F(2, 19) = 3.91, p < 0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p < 0.01) and increased working memory errors (F(2, 19) = 9.35 p < 0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate.

  7. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents

    PubMed Central

    Kimani, S.; Sinei, K.; Bukachi, F.; Tshala-Katumbay, D.; Maitai, C.

    2014-01-01

    Background Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Methods Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Results Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F 2, 19 = 4.57 p <0.05), higher working memory errors (WME) (F 2, 19 = 5.09, p <0.05) and longer RAM navigation time (F2, 19 = 3.91, p <0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F 2, 19 = 7.45, p <0.01) and increased working memory errors (F 2, 19 = 9.35 p <0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Conclusion Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate. PMID:24293006

  8. Human hippocampus associates information in memory

    PubMed Central

    Henke, Katharina; Weber, Bruno; Kneifel, Stefan; Wieser, Heinz Gregor; Buck, Alfred

    1999-01-01

    The hippocampal formation, one of the most complex and vulnerable brain structures, is recognized as a crucial brain area subserving human long-term memory. Yet, its specific functions in memory are controversial. Recent experimental results suggest that the hippocampal contribution to human memory is limited to episodic memory, novelty detection, semantic (deep) processing of information, and spatial memory. We measured the regional cerebral blood flow by positron-emission tomography while healthy volunteers learned pairs of words with different learning strategies. These led to different forms of learning, allowing us to test the degree to which they challenge hippocampal function. Neither novelty detection nor depth of processing activated the hippocampal formation as much as semantically associating the primarily unrelated words in memory. This is compelling evidence for another function of the human hippocampal formation in memory: establishing semantic associations. PMID:10318979

  9. First- and Second-Order Sensitivity Analysis of a P-Version Finite Element Equation Via Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    1998-01-01

    Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.

  10. T cell fates ‘zipped up’: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function1

    PubMed Central

    Richer, Martin J.; Lang, Mark L.; Butler, Noah S.

    2016-01-01

    Recent data illustrate a key role for the transcriptional regulator Bach2 in orchestrating T cell differentiation and function. Although Bach2 has a well-described role in B cell differentiation, emerging data show that Bach2 is a prototypical member of a novel class of transcription factors that regulates transcriptional activity in T cells at super enhancers, or regions of high transcriptional activity. Accumulating data demonstrate specific roles for Bach2 in favoring regulatory T cell generation, restraining effector T cell differentiation and potentiating memory T cell development. Evidence suggests that Bach2 regulates various facets of T cell function by repressing other key transcriptional regulator such as Blimp-1. This review examines our current understanding of the role of Bach2 in T cell function and highlights the growing evidence that this transcriptional repressor functions as a key regulator involved in maintenance of T cell quiescence, T cell subset differentiation and memory T cell generation. PMID:27496973

  11. PKMζ Differentially Utilized between Sexes for Remote Long-Term Spatial Memory

    PubMed Central

    Sebastian, Veronica; Vergel, Tatyana; Baig, Raheela; Schrott, Lisa M.; Serrano, Peter A.

    2013-01-01

    It is well established that male rats have an advantage in acquiring place-learning strategies, allowing them to learn spatial tasks more readily than female rats. However many of these differences have been examined solely during acquisition or in 24h memory retention. Here, we investigated whether sex differences exist in remote long-term memory, lasting 30d after training, and whether there are differences in the expression pattern of molecular markers associated with long-term memory maintenance. Specifically, we analyzed the expression of protein kinase M zeta (PKMζ) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2. To adequately evaluate memory retention, we used a robust training protocol to attenuate sex differences in acquisition and found differential effects in memory retention 1d and 30d after training. Female cohorts tested for memory retention 1d after 60 training trials outperformed males by making significantly fewer reference memory errors at test. In contrast, male cohorts tested 30d after 60 training trials outperformed females of the same condition, making fewer reference memory errors and achieving significantly higher retention test scores. Furthermore, given 60 training trials, females tested 30d later showed significantly worse memory compared to females tested 1d later, while males tested 30d later did not differ from males tested 1d later. Together these data suggest that with robust training males do no retain spatial information as well as females do 24h post-training but maintain this spatial information for longer. Males also showed a significant increase in synaptic PKMζ expression and a positive correlation with retention test scores, while females did not. Interestingly, both sexes showed a positive correlation between retention test scores and synaptic GluA2 expression. Furthermore, the increased expression of synaptic PKMζ, associated with male memory but not with female memory, identifies another potential sex-mediated difference in memory processing. PMID:24244733

  12. Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making.

    PubMed

    Liu, Shuyan; Schad, Daniel J; Kuschpel, Maxim S; Rapp, Michael A; Heinz, Andreas

    2016-01-01

    Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes.

  13. Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making

    PubMed Central

    Kuschpel, Maxim S.; Rapp, Michael A.; Heinz, Andreas

    2016-01-01

    Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes. PMID:26982326

  14. Opiate-associated contextual memory formation and retrieval are differentially modulated by dopamine D1 and D2 signaling in hippocampal-prefrontal connectivity.

    PubMed

    Wang, Yunpeng; Zhang, Hongying; Cui, Jingjing; Zhang, Jing; Yin, Fangyuan; Guo, Hao; Lai, Jianghua; Xing, Bo

    2018-04-17

    Contextual memory driven by abused drugs such as opiates has a central role in maintenance and relapse of drug-taking behaviors. Although dopamine (DA) signaling favors memory storage and retrieval via regulation of hippocampal-prefrontal connectivity, its role in modulating opiate-associated contextual memory is largely unknown. Here, we report roles of DA signaling within the hippocampal-prefrontal circuit for opiate-related memories. Combining-conditioned place preference (CPP) with molecular analyses, we investigated the DA D1 receptor (D1R) and extracellular signal-regulated kinase (ERK)-cAMP-response element binding protein (CREB) signaling, as well as DA D2 receptor (D2R) and protein kinase B (PKB or Akt)/glycogen synthase kinase 3 (GSK3) signaling in the ventral hippocampus (vHip) and medial prefrontal cortex (mPFC) during the formation of opiate-related associative memories. Morphine-CPP acquisition increased the activity of the D1R-ERK-CREB pathway in both the vHip and mPFC. Morphine-CPP reinstatement was associated with the D2R-mediated hyperactive GSK3 via Akt inhibition in the vHip and PFC. Furthermore, integrated D1R-ERK-CREB and D2R-Akt-GSK3 pathways in the vHip-mPFC circuit are required for the acquisition and retrieval of the morphine contextual memory, respectively. Moreover, blockage of D1R or D2R signaling could alleviate normal Hip-dependent spatial memory. These results suggest that D1R and D2R signaling are differentially involved in the acquisition and retrieval of morphine contextual memory, and DA signaling in the vHip-mPFC connection contributes to morphine-associated and normal memory, largely depending on opiate exposure states.

  15. PI[subscript 3]-Kinase Cascade Has a Differential Role in Acquisition and Extinction of Conditioned Fear Memory in Juvenile and Adult Rats

    ERIC Educational Resources Information Center

    Slouzkey, Ilana; Maroun, Mouna

    2016-01-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (P[subscript 3]K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear…

  16. Differential contribution of left and right prefrontal cortex to associative cued-recall memory: a parametric PET study.

    PubMed

    Lepage, Martin

    2004-03-01

    Several brain imaging studies have implicated prefrontal regions bilaterally during cued-recall memory tasks and yet the functional significance of these regions remains poorly understood. Using PET, we examined the neural activity in prefrontal regions of 15 subjects while they performed three cued-recall tasks differing in pre-experimental semantic associations between cues and targets. This manipulation produced varying levels of retrieval performance when one member (a semantic category name) of the triad was used as a cue for the retrieval of the other two members. The percentage of items correctly recalled was 10, 46, and 70 in the low, medium, and high cued-recall conditions, respectively. Linear contrast analyses of the PET data identified brain regions where neural activity varied with the number of items retrieved from memory. A left lateral prefrontal region showed maximal activity during the high cued-recall condition, which likely reflects processes involved in retrieval success and possibly in the generation of memory responses. Three right prefrontal regions (anterior and dorsolateral) showed maximal activity during the low cued-recall condition, which likely reflects processes involved in memory search/monitoring. These findings add further support for a bilateral prefrontal contribution to memory cued-recall tasks and point to differential roles of the two hemispheres.

  17. Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.

    PubMed

    Ventre, Erwan; Brinza, Lilia; Schicklin, Stephane; Mafille, Julien; Coupet, Charles-Antoine; Marçais, Antoine; Djebali, Sophia; Jubin, Virginie; Walzer, Thierry; Marvel, Jacqueline

    2012-10-01

    IL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses.

  18. Iconic memory requires attention

    PubMed Central

    Persuh, Marjan; Genzer, Boris; Melara, Robert D.

    2012-01-01

    Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features. PMID:22586389

  19. Iconic memory requires attention.

    PubMed

    Persuh, Marjan; Genzer, Boris; Melara, Robert D

    2012-01-01

    Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features.

  20. Different effects of executive and visuospatial working memory on visual consciousness.

    PubMed

    De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip

    2015-11-01

    Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.

  1. Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.

    PubMed

    Saiki, Jun; Miyatsuji, Hirofumi

    2009-03-23

    Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.

  2. Characteristics of color memory for natural scenes

    NASA Astrophysics Data System (ADS)

    Amano, Kinjiro; Uchikawa, Keiji; Kuriki, Ichiro

    2002-08-01

    To study the characteristics of color memory for natural images, a memory-identification task was performed with differing color contrasts; three of the contrasts were defined by chromatic and luminance components of the image, and the others were defined with respect to the categorical colors. After observing a series of pictures successively, subjects identified the pictures using a confidence rating. Detection of increased contrasts tended to be harder than detection of decreased contrasts, suggesting that the chromaticness of pictures is enhanced in memory. Detecting changes within each color category was more difficult than across the categories. A multiple mechanism that processes color differences and categorical colors is briefly considered. 2002 Optical Society of America

  3. Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus

    PubMed Central

    Bonnici, Heidi M.; Chadwick, Martin J.; Lutti, Antoine; Hassabis, Demis; Weiskopf, Nikolaus; Maguire, Eleanor A.

    2012-01-01

    How autobiographical memories are represented in the human brain and whether this changes with time are questions central to memory neuroscience. Two regions in particular have been consistently implicated, the ventromedial prefrontal cortex (vmPFC) and the hippocampus, although their precise contributions are still contested. The key question in this debate, when reduced to its simplest form, concerns where information about specific autobiographical memories is located. Here we availed ourselves of the opportunity afforded by multi-voxel pattern analysis (MVPA) to provide an alternative to conventional neuropsychological and fMRI approaches, by detecting representations of individual autobiographical memories in patterns of fMRI activity. We examined whether information about specific recent (two weeks old) and remote (ten years old) autobiographical memories was represented in vmPFC and hippocampus, and other medial temporal and neocortical regions. vmPFC contained information about recent and remote autobiographical memories, although remote memories were more readily detected there, indicating that consolidation or a change of some kind had occurred. Information about both types of memory was also present in the hippocampus, suggesting it plays a role in the retrieval of vivid autobiographical memories regardless of remoteness. Interestingly, we also found that while recent and remote memories were both represented within anterior and posterior hippocampus, the latter nevertheless contained more information about remote memories. Thus, like vmPFC, the hippocampus too respected the distinction between recent and remote memories. Overall, these findings clarify and extend our view of vmPFC and hippocampus while also informing systems-level consolidation and providing clear targets for future studies. PMID:23175849

  4. The attentional boost effect and context memory.

    PubMed

    Mulligan, Neil W; Smith, S Adam; Spataro, Pietro

    2016-04-01

    Stimuli co-occurring with targets in a detection task are better remembered than stimuli co-occurring with distractors-the attentional boost effect (ABE). The ABE is of interest because it is an exception to the usual finding that divided attention during encoding impairs memory. The effect has been demonstrated in tests of item memory but it is unclear if context memory is likewise affected. Some accounts suggest enhanced perceptual encoding or associative binding, predicting an ABE on context memory, whereas other evidence suggests a more abstract, amodal basis of the effect. In Experiment 1, context memory was assessed in terms of an intramodal perceptual detail, the font and color of the study word. Experiment 2 examined context memory cross-modally, assessing memory for the modality (visual or auditory) of the study word. Experiments 3 and 4 assessed context memory with list discrimination, in which 2 study lists are presented and participants must later remember which list (if either) a test word came from. In all experiments, item (recognition) memory was also assessed and consistently displayed a robust ABE. In contrast, the attentional-boost manipulation did not enhance context memory, whether defined in terms of visual details, study modality, or list membership. There was some evidence that the mode of responding on the detection task (motoric response as opposed to covert counting of targets) may impact context memory but there was no evidence of an effect of target detection, per se. In sum, the ABE did not occur in context memory with verbal materials. (c) 2016 APA, all rights reserved).

  5. Elimination of cancer stem cells and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking inhibition of tumorigenesis and the potential eradication of HIV-1.

    PubMed

    Finley, Jahahreeh

    2017-07-01

    Although promising treatments are currently in development to slow disease progression and increase patient survival, cancer remains the second leading cause of death in the United States. Cancer treatment modalities commonly include chemoradiation and therapies that target components of aberrantly activated signaling pathways. However, treatment resistance is a common occurrence and recent evidence indicates that the existence of cancer stem cells (CSCs) may underlie the limited efficacy and inability of current treatments to effectuate a cure. CSCs, which are largely resistant to chemoradiation therapy, are a subpopulation of cancer cells that exhibit characteristics similar to embryonic stem cells (ESCs), including self-renewal, multi-lineage differentiation, and the ability to initiate tumorigenesis. Interestingly, intracellular mechanisms that sustain quiescence and promote self-renewal in adult stem cells (ASCs) and CSCs likely also function to maintain latency of HIV-1 in CD4 + memory T cells. Although antiretroviral therapy is highly effective in controlling HIV-1 replication, the persistence of latent but replication-competent proviruses necessitates the development of compounds that are capable of selectively reactivating the latent virus, a method known as the "shock and kill" approach. Homeostatic proliferation in central CD4 + memory T (T CM ) cells, a memory T cell subset that exhibits limited self-renewal and differentiation and is a primary reservoir for latent HIV-1, has been shown to reinforce and stabilize the latent reservoir in the absence of T cell activation and differentiation. HIV-1 has also been found to establish durable and long-lasting latency in a recently discovered subset of CD4 + T cells known as T memory stem (T SCM ) cells. T SCM cells, compared to T CM cells, exhibit stem cell properties that more closely match those of ESCs and ASCs, including self-renewal and differentiation into all memory T cell subsets. It is our hypothesis that activation of AMPK, a master regulator of cellular metabolism that plays a critical role in T cell activation and differentiation of ESCs and ASCs, will lead to both T cell activation-induced latent HIV-1 reactivation, facilitating virus destruction, as well as "activation", differentiation, and/or apoptosis of CSCs, thus inhibiting tumorigenesis. We also propose the novel observation that compounds that have been shown to both facilitate latent HIV-1 reactivation and promote CSC differentiation/apoptosis (e.g. bryostatin-1, JQ1, metformin, butyrate, etc.) likely do so through a common mechanism of AMPK activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Neural circuitry of abdominal pain-related fear learning and reinstatement in irritable bowel syndrome.

    PubMed

    Icenhour, A; Langhorst, J; Benson, S; Schlamann, M; Hampel, S; Engler, H; Forsting, M; Elsenbruch, S

    2015-01-01

    Altered pain anticipation likely contributes to disturbed central pain processing in chronic pain conditions like irritable bowel syndrome (IBS), but the learning processes shaping the expectation of pain remain poorly understood. We assessed the neural circuitry mediating the formation, extinction, and reactivation of abdominal pain-related memories in IBS patients compared to healthy controls (HC) in a differential fear conditioning paradigm. During fear acquisition, predictive visual cues (CS(+)) were paired with rectal distensions (US), while control cues (CS(-)) were presented unpaired. During extinction, only CSs were presented. Subsequently, memory reactivation was assessed with a reinstatement procedure involving unexpected USs. Using functional magnetic resonance imaging, group differences in neural activation to CS(+) vs CS(-) were analyzed, along with skin conductance responses (SCR), CS valence, CS-US contingency, state anxiety, salivary cortisol, and alpha-amylase activity. The contribution of anxiety symptoms was addressed in covariance analyses. Fear acquisition was altered in IBS, as indicated by more accurate contingency awareness, greater CS-related valence change, and enhanced CS(+)-induced differential activation of prefrontal cortex and amygdala. IBS patients further revealed enhanced differential cingulate activation during extinction and greater differential hippocampal activation during reinstatement. Anxiety affected neural responses during memory formation and reinstatement. Abdominal pain-related fear learning and memory processes are altered in IBS, mediated by amygdala, cingulate cortex, prefrontal areas, and hippocampus. Enhanced reinstatement may contribute to hypervigilance and central pain amplification, especially in anxious patients. Preventing a 'relapse' of learned fear utilizing extinction-based interventions may be a promising treatment goal in IBS. © 2014 John Wiley & Sons Ltd.

  7. Dual-Process Theory and Signal-Detection Theory of Recognition Memory

    ERIC Educational Resources Information Center

    Wixted, John T.

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know…

  8. The Role of Attention in the Maintenance of Feature Bindings in Visual Short-term Memory

    ERIC Educational Resources Information Center

    Johnson, Jeffrey S.; Hollingworth, Andrew; Luck, Steven J.

    2008-01-01

    This study examined the role of attention in maintaining feature bindings in visual short-term memory. In a change-detection paradigm, participants attempted to detect changes in the colors and orientations of multiple objects; the changes consisted of new feature values in a feature-memory condition and changes in how existing feature values were…

  9. Testing visual short-term memory of pigeons (Columba livia) and a rhesus monkey (Macaca mulatta) with a location change detection task.

    PubMed

    Leising, Kenneth J; Elmore, L Caitlin; Rivera, Jacquelyne J; Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A

    2013-09-01

    Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect ("what") of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for "where" an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject's task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.

  10. Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.

    PubMed

    Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine

    2017-04-01

    The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  12. A Hardware Platform for Characterizing and Validating 1-Dimensional Optical Systems

    DTIC Science & Technology

    2014-09-01

    principle laboratory experiments, a bread -board sensor and data collection system was created to gather fuze data to postprocess after the event...merely differentiates this bistable memory category from dynamic random access memory [RAM], which must be periodically refreshed to retain data.) A

  13. Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110δ-Akt-Mediated Signals.

    PubMed

    Mauro, Claudio; Smith, Joanne; Cucchi, Danilo; Coe, David; Fu, Hongmei; Bonacina, Fabrizia; Baragetti, Andrea; Cermenati, Gaia; Caruso, Donatella; Mitro, Nico; Catapano, Alberico L; Ammirati, Enrico; Longhi, Maria P; Okkenhaug, Klaus; Norata, Giuseppe D; Marelli-Berg, Federica M

    2017-03-07

    Low-grade systemic inflammation associated to obesity leads to cardiovascular complications, caused partly by infiltration of adipose and vascular tissue by effector T cells. The signals leading to T cell differentiation and tissue infiltration during obesity are poorly understood. We tested whether saturated fatty acid-induced metabolic stress affects differentiation and trafficking patterns of CD4 + T cells. Memory CD4 + T cells primed in high-fat diet-fed donors preferentially migrated to non-lymphoid, inflammatory sites, independent of the metabolic status of the hosts. This was due to biased CD4 + T cell differentiation into CD44 hi -CCR7 lo -CD62L lo -CXCR3 + -LFA1 + effector memory-like T cells upon priming in high-fat diet-fed animals. Similar phenotype was observed in obese subjects in a cohort of free-living people. This developmental bias was independent of any crosstalk between CD4 + T cells and dendritic cells and was mediated via direct exposure of CD4 + T cells to palmitate, leading to increased activation of a PI3K p110δ-Akt-dependent pathway upon priming. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Slowing down after a mild traumatic brain injury: a strategy to improve cognitive task performance?

    PubMed

    Ozen, Lana J; Fernandes, Myra A

    2012-01-01

    Long-term persistent attention and memory difficulties following a mild traumatic brain injury (TBI) often go undetected on standard neuropsychological tests, despite complaints by mild TBI individuals. We conducted a visual Repetition Detection working memory task to digits, in which we manipulated task difficulty by increasing cognitive load, to identify subtle deficits long after a mild TBI. Twenty-six undergraduate students with a self-report of one mild TBI, which occurred at least 6 months prior, and 31 non-head-injured controls took part in the study. Participants were not informed until study completion that the study's purpose was to examine cognitive changes following a mild TBI, to reduce the influence of "diagnosis threat" on performance. Neuropsychological tasks did not differentiate the groups, though mild TBI participants reported higher state anxiety levels. On our working memory task, the mild TBI group took significantly longer to accurately detect repeated targets on our task, suggesting that slowed information processing is a long-term consequence of mild TBI. Accuracy was comparable in the low-load condition and, unexpectedly, mild TBI performance surpassed that of controls in the high-load condition. Temporal analysis of target identification suggested a strategy difference between groups: mild TBI participants made a significantly greater number of accurate responses following the target's offset, and significantly fewer erroneous distracter responses prior to target onset, compared with controls. Results suggest that long after a mild TBI, high-functioning young adults invoke a strategy of delaying their identification of targets in order to maintain, and facilitate, accuracy on cognitively demanding tasks. © The Author 2011. Published by Oxford University Press. All rights reserved.

  15. BDNF and COMT polymorphisms have a limited association with episodic memory performance or engagement in complex cognitive activity in healthy older adults.

    PubMed

    Stuart, Kimberley; Summers, Mathew James; Valenzuela, Michael J; Vickers, James C

    2014-04-01

    Cognitive decline is a major factor in lowering the quality of life in older populations, and contributes substantially to social, economic, and health costs. As humans age, cognitive function decreases differentially, and individual differences in cognitive ageing are likely attributed to a range of causes, including environmental and genetic influences. The current study included 360 participants (240 females and 120 males) aged between 50 and 79years from the Tasmanian Healthy Brain Project. The brain-derived neurotrophic factor (BDNF) Val66Met and Catechol-O-Methyltransferase (COMT) Val158Met polymorphisms were examined for their association with visual and auditory episodic memory performance. The polymorphisms were also investigated for their association with reported life-long engagement in complex cognitive activity using a retrospective questionnaire. Relative to the demographic variables, the gene variations were found to have no association with episodic memory performance, with the exception of the COMT polymorphism on a single measure of auditory memory (RAVLT). Several other studies also demonstrated that these polymorphisms have no, small, or inconsistent effects on memory function. The BDNF Val66Met and COMT Val158Met polymorphisms were also found to be of little significance to active engagement in complex cognitive activity throughout most of the lifespan. An association was detected between BDNF Val66Met and engagement in cognitive activity in early life (p=.04, d=.23), however this did not reach significance when adjusted for multiple comparisons. The biological mechanisms that underlie engagement in cognitive activity are elusive, thus the potential relationship between BDNF Val66Met genotype and early life cognitive engagement warrants further investigation. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  16. Dimension-based attention in visual short-term memory.

    PubMed

    Pilling, Michael; Barrett, Doug J K

    2016-07-01

    We investigated how dimension-based attention influences visual short-term memory (VSTM). This was done through examining the effects of cueing a feature dimension in two perceptual comparison tasks (change detection and sameness detection). In both tasks, a memory array and a test array consisting of a number of colored shapes were presented successively, interleaved by a blank interstimulus interval (ISI). In Experiment 1 (change detection), the critical event was a feature change in one item across the memory and test arrays. In Experiment 2 (sameness detection), the critical event was the absence of a feature change in one item across the two arrays. Auditory cues indicated the feature dimension (color or shape) of the critical event with 80 % validity; the cues were presented either prior to the memory array, during the ISI, or simultaneously with the test array. In Experiment 1, the cue validity influenced sensitivity only when the cue was given at the earliest position; in Experiment 2, the cue validity influenced sensitivity at all three cue positions. We attributed the greater effectiveness of top-down guidance by cues in the sameness detection task to the more active nature of the comparison process required to detect sameness events (Hyun, Woodman, Vogel, Hollingworth, & Luck, Journal of Experimental Psychology: Human Perception and Performance, 35; 1140-1160, 2009).

  17. A cognitive neuroscience account of posttraumatic stress disorder and its treatment.

    PubMed

    Brewin, C R

    2001-04-01

    Recent research in the areas of animal conditioning, the neural systems underlying emotion and memory, and the effect of fear on these systems is reviewed. This evidence points to an important distinction between hippocampally-dependent and non-hippocampally-dependent forms of memory that are differentially affected by extreme stress. The cognitive science perspective is related to a recent model of posttraumatic stress disorder, dual representation theory, that also posits separate memory systems underlying vivid reexperiencing versus ordinary autobiographical memories of trauma. This view is compared with other accounts in the literature of traumatic memory processes in PTSD, and the contrasting implications for therapy are discussed.

  18. Dual-process theory and signal-detection theory of recognition memory.

    PubMed

    Wixted, John T

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know procedure, and both methods are now widely used in the neuroscience literature to identify the brain correlates of recollection and familiarity. However, in recent years, a substantial literature has accumulated directly contrasting the signal-detection model against the threshold/detection model, and that literature is almost unanimous in its endorsement of signal-detection theory. A dual-process version of signal-detection theory implies that individual recognition decisions are not process pure, and it suggests new ways to investigate the brain correlates of recognition memory. ((c) 2007 APA, all rights reserved).

  19. Distributed learning enhances relational memory consolidation.

    PubMed

    Litman, Leib; Davachi, Lila

    2008-09-01

    It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of forgetting relative to ML. Furthermore, we demonstrate that this savings in forgetting is specific to relational, but not item, memory. In the context of extant theories and knowledge of memory consolidation, these results suggest that an important mechanism underlying the mnemonic benefit of DL is enhanced memory consolidation. We speculate that synaptic strengthening mechanisms supporting long-term memory consolidation may be differentially mediated by the spacing of memory reactivation. These findings have broad implications for the scientific study of episodic memory consolidation and, more generally, for educational curriculum development and policy.

  20. [Hypoxia and memory. Specific features of nootropic agents effects and their use].

    PubMed

    Voronina, T A

    2000-01-01

    Hypoxia and hypoxic adaptation are powerful factors of controlling memory and behavior processes. Acute hypoxia exerts a differential impact on different deficits of mnestic and cognitive functions. Instrumental reflexes of active and passive avoidance, negative learning, behavior with a change in the stereotype of learning are more greatly damaged. Memory with spatial and visual differentiation and their rearrangement change to a lesser extent and conditional reflexes are not deranged. In this contract, altitude hypoxic adaptation enhances information fixation and increases the degree and duration of retention of temporary relations. Nootropic agents with an antihypoxic action exert a marked effect on hypoxia-induced cognitive and memory disorders and the magnitude of this effect depends on the ration of proper nootropic to antihypoxic components in the spectrum of the drugs' pharmacological activity. The agents that combine a prevailing antiamnestic effect and a marked and moderate antihypoxic action (mexidole, nooglutil, pyracetam, beglymin, etc.) are most effective in eliminating different hypoxia-induced cognitive and memory disorders, nootropic drugs that have a pronounced antiamnestic activity (centrophenoxine, etc.) and no antihypoxic component also restore the main types of mnestic disorders after hypoxia, but to a lesser extent.

  1. Origin and differentiation of human memory CD8 T cells after vaccination.

    PubMed

    Akondy, Rama S; Fitch, Mark; Edupuganti, Srilatha; Yang, Shu; Kissick, Haydn T; Li, Kelvin W; Youngblood, Ben A; Abdelsamed, Hossam A; McGuire, Donald J; Cohen, Kristen W; Alexe, Gabriela; Nagar, Shashi; McCausland, Megan M; Gupta, Satish; Tata, Pramila; Haining, W Nicholas; McElrath, M Juliana; Zhang, David; Hu, Bin; Greenleaf, William J; Goronzy, Jorg J; Mulligan, Mark J; Hellerstein, Marc; Ahmed, Rafi

    2017-12-21

    The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen.

  2. Time dependent effects of stress prior to encoding on event-related potentials and 24 h delayed retrieval.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars; Meyer, Thomas; Smeets, Tom

    2013-12-01

    Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the Maastricht Acute Stress Test (MAST) or a no-stress control condition either immediately before (i.e., proximate condition) or 30 min before (i.e., distant condition) a picture encoding task. In general, stress decreased the number of freely recalled and recognized pictures and increased the number of false alarms. However, timing of stress exposure did not differentially affect picture recall, recognition or selective attention processes (i.e., LPP). Nevertheless, stress-induced cortisol responses and correctly recognized neutral pictures were positively associated within the proximate stress condition but negatively associated within the distant stress condition. These findings suggest that the time at which a stressor is applied might differentially impact the association between stress-induced cortisol elevations and memory formation and indicate the need for a finer delineation of the time window during which glucocorticoids affect memory formation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Human T-cell leukemia virus type 1 infects multiple lineage hematopoietic cells in vivo

    PubMed Central

    Sugata, Kenji; Ueno, Takaharu; Koh, Ki-Ryang; Higuchi, Yusuke; Matsuda, Fumihiko; Melamed, Anat; Bangham, Charles R.

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread of HTLV-1 in vivo. PMID:29186194

  4. Comprehensive Mass Cytometry Analysis of Cell Cycle, Activation, and Coinhibitory Receptors Expression in CD4 T Cells from Healthy and HIV-Infected Individuals.

    PubMed

    Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte

    2017-01-01

    Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  5. α4β7+ CD4+ Effector/Effector Memory T Cells Differentiate into Productively and Latently Infected Central Memory T Cells by Transforming Growth Factor β1 during HIV-1 Infection.

    PubMed

    Cheung, Ka-Wai; Wu, Tongjin; Ho, Sai Fan; Wong, Yik Chun; Liu, Li; Wang, Hui; Chen, Zhiwei

    2018-04-15

    HIV-1 transmission occurs mainly through mucosal tissues. During mucosal transmission, HIV-1 preferentially infects α 4 β 7 + gut-homing CCR7 - CD4 + effector/effector memory T cells (T EM ) and results in massive depletion of these cells and other subsets of T EM in gut-associated lymphoid tissues. However, besides being eliminated by HIV-1, the role of T EM during the early stage of infection remains inconclusive. Here, using in vitro -induced α 4 β 7 + gut-homing T EM (α 4 β 7 + T EM ), we found that α 4 β 7 + T EM differentiated into CCR7 + CD4 + central memory T cells (T CM ). This differentiation was HIV-1 independent but was inhibited by SB431542, a specific transforming growth factor β (TGF-β) receptor I kinase inhibitor. Consistently, T EM -to-T CM differentiation was observed in α 4 β 7 + T EM stimulated with TGF-β1 (TGF-β). The T CM properties of the TGF-β-induced T EM -derived T CM (α 4 β 7 + T CM ) were confirmed by their enhanced CCL19 chemotaxis and the downregulation of surface CCR7 upon T cell activation in vitro Importantly, the effect of TGF-β on T CM differentiation also held in T EM directly isolated from peripheral blood. To investigate the significance of the TGF-β-dependent T EM -to-T CM differentiation in HIV/AIDS pathogenesis, we observed that both productively and latently infected α 4 β 7 + T CM could differentiate from α 4 β 7 + T EM in the presence of TGF-β during HIV-1 infection. Collectively, this study not only provides a new insight for the plasticity of T EM but also suggests that the TGF-β-dependent T EM -to-T CM differentiation is a previously unrecognized mechanism for the formation of latently infected T CM after HIV-1 infection. IMPORTANCE HIV-1 is the causative agent of HIV/AIDS, which has led to millions of deaths in the past 30 years. Although the implementation of highly active antiretroviral therapy has remarkably reduced the HIV-1-related morbidity and mortality, HIV-1 is not eradicated in treated patients due to the presence of latent reservoirs. Besides, the pathogenesis in CD4 T cells early after infection still remains elusive. Immediately after HIV-1 mucosal infection, CD4 T cells are preferentially infected and depleted. However, in addition to being depleted, the other roles of the CD4 T cells, especially the effector/effector memory T cells (T EM ), in disease progression are not completely understood. The significance of this study is in revealing a novel mechanism for the formation of latently HIV-1-infected central memory CD4 T cells, a major latent reservoir from CD4 T EM after infection. Our findings suggest previously unrecognized roles of CD4 T EM in HIV-1 pathogenesis. Copyright © 2018 American Society for Microbiology.

  6. How the measurement of memory processes can affect memory performance: the case of remember/know judgments.

    PubMed

    Naveh-Benjamin, Moshe; Kilb, Angela

    2012-01-01

    Relatively little attention has been paid thus far in memory research to the effects of measurement instruments intended to assess memory processes on the constructs being measured. The current article investigates the influence of employing the popular remember/know (R/K) measurement procedure on memory performance itself. This measurement procedure was extensively used in the past to assess the respective contributions of 2 processes to memory judgments, one based on familiarity and the other on recollection. Two experiments using unrelated word pairs showed that the use of an R/K procedure can alter memory performance. Specifically, the R/K procedure improved associative memory among older but not younger adults compared to conditions in which participants were not asked to provide R/K judgments. Such an effect was not observed in item memory performance. Potential mechanisms mediating these differential memory measurement effects are outlined, and the measurement effects' implications for memory and cognitive research are discussed.

  7. Negative emotion elicited in high school students enhances consolidation of item memory, but not source memory.

    PubMed

    Wang, Bo

    2015-05-01

    The study examined the effect of negative emotion on consolidation of both item and source memory. Participants learned words read by either a male or female. Then they watched either a negative or a neutral video clip. Memory tests were carried out either 25min or 24h after learning. The study yielded the following findings. First, negative emotion enhanced consolidation of item memory as measured by recognition memory in the 25-min delay, and enhanced consolidation of item memory as measured by free recall in both the 25-min and the 24-h delay. Second, negative emotion had little effect on consolidation of source memory, either in the 25-min or the 24-h delay. These findings provide evidence for the differential effects of negative emotion on item memory and source memory and have implications for using emotion as a strategy to intervene memory consolidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Subjective memory complaints are associated with brain activation supporting successful memory encoding.

    PubMed

    Hayes, Jessica M; Tang, Lingfei; Viviano, Raymond P; van Rooden, Sanneke; Ofen, Noa; Damoiseaux, Jessica S

    2017-12-01

    Subjective memory complaints, the perceived decline in cognitive abilities in the absence of clinical deficits, may precede Alzheimer's disease. Individuals with subjective memory complaints show differential brain activation during memory encoding; however, whether such differences contribute to successful memory formation remains unclear. Here, we investigated how subsequent memory effects, activation which is greater for hits than misses during an encoding task, differed between healthy older adults aged 50 to 85 years with (n = 23) and without (n = 41) memory complaints. Older adults with memory complaints, compared to those without, showed lower subsequent memory effects in the occipital lobe, superior parietal lobe, and posterior cingulate cortex. In addition, older adults with more memory complaints showed a more negative subsequent memory effects in areas of the default mode network, including the posterior cingulate cortex, precuneus, and ventromedial prefrontal cortex. Our findings suggest that for successful memory formation, older adults with subjective memory complaints rely on distinct neural mechanisms which may reflect an overall decreased task-directed attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Are Asians Forgetful? Perception, Retention, and Recall in Episodic Remembering

    ERIC Educational Resources Information Center

    Wang, Qi

    2009-01-01

    Cross-cultural studies have shown that Asians exhibit less accessibility to episodic memories than Euro-Americans. This difference is often attributed to differential cognitive and social influences on memory retention, although there have been no empirical data concerning the underlying mechanism. Three studies were conducted to examine encoding…

  10. The Relations between Number Property Strategies, Working Memory, and Multiplication in Elementary Students

    ERIC Educational Resources Information Center

    Liu, Ru-De; Ding, Yi; Gao, Bing-Cheng; Zhang, Dake

    2015-01-01

    This study aimed to examine the relations among property strategies, working memory, and multiplication tasks with 101 Chinese fourth-grade students. Two multiplication property strategies (associative and distributive) were compared with no strategy and demonstrated differentiated effects on students' accuracy and reaction time. Associative…

  11. Training with Differential Outcomes Enhances Discriminative Learning and Visuospatial Recognition Memory in Children Born Prematurely

    ERIC Educational Resources Information Center

    Martinez, Lourdes; Mari-Beffa, Paloma; Roldan-Tapia, Dolores; Ramos-Lizana, Julio; Fuentes, Luis J.; Estevez, Angeles F.

    2012-01-01

    Previous studies have demonstrated that discriminative learning is facilitated when a particular outcome is associated with each relation to be learned. When this training procedure is applied (the differential outcome procedure; DOP), learning is faster and more accurate than when the more common non-differential outcome procedure is used. This…

  12. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  13. Learning and Recall of Medical Treatment-Related Information in Older Adults Using the Differential Outcomes Procedure

    PubMed Central

    Plaza, Victoria; Molina, Michael; Fuentes, Luis J.; Estévez, Angeles F.

    2018-01-01

    It has recently been reported that the differential outcomes procedure (DOP) might be one of the therapeutical techniques focused at promoting autonomy in the elderly to deal with their medical issues. Molina et al. (2015) found that a group of healthy young adults improved their learning and long-term retention of six disorder/pill associations when each relationship to be learned was associated with a particular reinforcer (the differential outcomes condition) compared to when they were randomly administered (the non-differential outcomes condition). In the present study, we extend these findings to older adults who usually show difficulties to remember to take their medications as prescribed. Participants were asked to learn the association between three pills and the specific time at the day when they had to take each medication. Two memory tests were also performed 1 h and 1 week after completing the training phase. Results showed a faster learning of the task and long-term retention of the previously learned associations (pill/time of day) when differential outcomes were used. Furthermore, the older adults’ performance in the learning and memory phases did not differ from that of the younger adults in the DOP condition. These findings demonstrate that this procedure can help elderly people to ameliorate not only their learning, but also their long-term memory difficulties, suggesting the potential for the DOP to promote adherence to treatment in this population. PMID:29491846

  14. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    PubMed Central

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew

    2008-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. This study tests the hypothesis that differences between the memory of a stimulus array and the perception of a new array are detected in a manner that is analogous to the detection of simple features in visual search tasks. That is, just as the presence of a task-relevant feature in visual search can be detected in parallel, triggering a rapid shift of attention to the object containing the feature, the presence of a memory-percept difference along a task-relevant dimension can be detected in parallel, triggering a rapid shift of attention to the changed object. Supporting evidence was obtained in a series of experiments that examined manual reaction times, saccadic reaction times, and event-related potential latencies. However, these experiments also demonstrated that a slow, limited-capacity process must occur before the observer can make a manual change-detection response. PMID:19653755

  15. CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness

    PubMed Central

    Bartsch, Thorsten; Döhring, Juliane; Rohr, Axel; Jansen, Olav; Deuschl, Günther

    2011-01-01

    Autobiographical memories in our lives are critically dependent on temporal lobe structures. However, the contribution of CA1 neurons in the human hippocampus to the retrieval of episodic autobiographical memory remains elusive. In patients with a rare acute transient global amnesia, highly focal lesions confined to the CA1 field of the hippocampus can be detected on MRI. We studied the effect of these lesions on autobiographical memory using a detailed autobiographical interview including the remember/know procedure. In 14 of 16 patients, focal lesions in the CA1 sector of the hippocampal cornu ammonis were detected. Autobiographical memory was significantly affected over all time periods, including memory for remote periods. Impairment of episodic memory and autonoetic consciousness exhibited a strong temporal gradient extending 30 to 40 y into the past. These results highlight the distinct and critical role of human hippocampal CA1 neurons in autobiographical memory retrieval and for re-experiencing detailed episodic memories. PMID:21987814

  16. Dynamic phenotypic restructuring of the CD4 and CD8 T-cell subsets with age in healthy humans: a compartmental model analysis.

    PubMed

    Jackola, D R; Hallgren, H M

    1998-11-16

    In healthy humans, phenotypic restructuring occurs with age within the CD3+ T-lymphocyte complement. This is characterized by a non-linear decrease of the percentage of 'naive' (CD45RA+) cells and a corresponding non-linear increase of the percentage of 'memory' (CD45R0+) cells among both the CD4+ and CD8+ T-cell subsets. We devised a simple compartmental model to study the age-dependent kinetics of phenotypic restructuring. We also derived differential equations whose parameters determined yearly gains minus losses of the percentage and absolute numbers of circulating naive cells, yearly gains minus losses of the percentage and absolute numbers of circulating memory cells, and the yearly rate of conversion of naive to memory cells. Solutions of these evaluative differential equations demonstrate the following: (1) the memory cell complement 'resides' within its compartment for a longer time than the naive cell complement within its compartment for both CD4 and CD8 cells; (2) the average, annual 'turnover rate' is the same for CD4 and CD8 naive cells. In contrast, the average, annual 'turnover rate' for memory CD8 cells is 1.5 times that of memory CD4 cells; (3) the average, annual conversion rate of CD4 naive cells to memory cells is twice that of the CD8 conversion rate; (4) a transition in dynamic restructuring occurs during the third decade of life that is due to these differences in turnover and conversion rates, between and from naive to memory cells.

  17. Postnatal MK-801 treatment of female rats impairs acquisition of working memory, but not reference memory in an eight-arm radial maze; no beneficial effects of enriched environment.

    PubMed

    Nozari, Masoumeh; Mansouri, Farshad Alizadeh; Shabani, Mohammad; Nozari, Hojat; Atapour, Nafiseh

    2015-07-01

    Memory impairment has been documented in MK-801 (NMDA receptor antagonist) model of schizophrenia, but less is known on the rescue and/or differential effects of MK-801 on short- and long-term memories. We determined the effects of MK-801 treatment and/or enriched environment (EE) on acquisition of reference and working memory in developing rats. Female Wistar rats were injected with MK-801 (1 mg/kg) from postnatal days (P) 6-10. Task acquisition, working memory error (WME), and reference memory error (RME) were assessed in an eight-arm radial maze task. Behavioral performance of rats was also tested in an open field test before (P35-P40) and after (P65-P70) radial maze training to assess anxiety and locomotion. EE was applied from birth up to the end of experiments. MK-801 treatment did not influence task acquisition in the radial maze; however, by the end of training, MK-801-treated rats made significantly more WME, but not RME, compared to control rats. Ratio of WME to total error was also significantly higher in MK-801 group. EE prevented MK-801-associated behaviors in the open field but did not exert beneficial effects on working memory deficit in the radial maze task. EE per se affected behavioral performance of rats only in the open field test. Our results suggest that postnatal MK-801 treatment differentially affects working and reference memory in a young brain. Anxiety and hyperactivity associated with MK-801 are observed more severely in adulthood. Dissociation of the positive effects of EE may suggest selective modification of distinct pathways.

  18. A model for memory systems based on processing modes rather than consciousness.

    PubMed

    Henke, Katharina

    2010-07-01

    Prominent models of human long-term memory distinguish between memory systems on the basis of whether learning and retrieval occur consciously or unconsciously. Episodic memory formation requires the rapid encoding of associations between different aspects of an event which, according to these models, depends on the hippocampus and on consciousness. However, recent evidence indicates that the hippocampus mediates rapid associative learning with and without consciousness in humans and animals, for long-term and short-term retention. Consciousness seems to be a poor criterion for differentiating between declarative (or explicit) and non declarative (or implicit) types of memory. A new model is therefore required in which memory systems are distinguished based on the processing operations involved rather than by consciousness.

  19. Testing pigeon memory in a change detection task.

    PubMed

    Wright, Anthony A; Katz, Jeffrey S; Magnotti, John; Elmore, L Caitlin; Babb, Stephanie; Alwin, Sarah

    2010-04-01

    Six pigeons were trained in a change detection task with four colors. They were shown two colored circles on a sample array, followed by a test array with the color of one circle changed. The pigeons learned to choose the changed color and transferred their performance to four unfamiliar colors, suggesting that they had learned a generalized concept of color change. They also transferred performance to test delays several times their 50-msec training delay without prior delay training. The accurate delay performance of several seconds suggests that their change detection was memory based, as opposed to a perceptual attentional capture process. These experiments are the first to show that an animal species (pigeons, in this case) can learn a change detection task identical to ones used to test human memory, thereby providing the possibility of directly comparing short-term memory processing across species.

  20. 'Different strokes for different folks': geographically isolated strains of Lymnaea stagnalis only respond to sympatric predators and have different memory forming capabilities.

    PubMed

    Orr, Michael V; Hittel, Karla; Lukowiak, Ken

    2009-07-01

    Gaining insight into how natural trait variation is manifest in populations shaped by differential environmental factors is crucial to understanding the evolution, ecology and sensory biology of natural populations. We have demonstrated that lab-reared Lymnaea detect and respond to the scent of a crayfish predator with specific, appropriate anti-predator behavioral responses, including enhanced long-term memory (LTM) formation, and that such predator detection significantly alters the electrophysiological activity of RPeD1, a neuron that is a necessary site for LTM formation. Here we ask: (1) do distinct populations of wild Lymnaea stagnalis respond only to sympatric predators and if so, can these traits be quantified at both the behavioral and neurophysiological levels, and (2) does the presence of a non-sympatric predator elicit anti-predator behaviors including augmentation of LTM? We tested three different populations of wild (i.e. not lab-reared) snails freshly collected from their natural habitat: (1) polders near Utrecht in The Netherlands, (2) six seasonally isolated ponds in the Belly River drainage in southern Alberta, Canada and (3) a 20-year-old human-made dugout pond in southern Alberta. We found strain-specific variations in the ability to form LTM and that only a sympatric predator evoked anti-predatory behaviors, including enhanced LTM formation and changes in RPeD1 activity.

  1. Differential roles of resistance to proactive interference and suppression of prepotent responses in overgeneral memory.

    PubMed

    Comas, Michelle; Valentino, Kristin; Johnson, Anne F; Gibson, Bradley S; Taylor, Courtney

    2018-06-12

    Overgeneral memory (OGM), difficulty in retrieving specific autobiographical memories, is a robust phenomenon related to the onset and course of depressive and posttraumatic stress disorders. Inhibitory mechanisms are theorized to underlie OGM; however, empirical support for this link is equivocal. The current study examines the differential roles of two aspects of inhibitory control in association with OGM: suppression of prepotent responses and resistance to proactive interference (PI). Only resistance to PI was expected to be negatively related to OGM, whereby individuals with greater ability to resist PI would have reduced OGM. Participants (n = 49) completed a self-report measure of depressive symptoms and engaged in two tasks aimed at assessing resistance to PI and suppression of prepotent responses. Participants also completed a task assessing overgeneral autobiographical memory. As hypothesized, resistance to PI, but not suppression of prepotent responses negatively predicted OGM above and beyond the influence of depressive symptoms. Because a double dissociation was not examined, we cannot address the potential independence of the submechanisms of inhibitory control that we assessed. Results exemplify the differential associations of two components of inhibition and OGM, suggesting that resistance to PI, in particular, may contribute to the development and/or maintenance of OGM and associated depressive disorders. Directions for future research are discussed. Copyright © 2018. Published by Elsevier Ltd.

  2. Differentiation with Stratification: A Principle of Theoretical Physics in the Tradition of the Memory Art

    NASA Astrophysics Data System (ADS)

    Pombo, Claudia

    2015-10-01

    The art of memory started with Aristotle's questions on memory. During its long evolution, it had important contributions from alchemists, was transformed by Ramon Llull and apparently ended with Giordano Bruno, who was considered the best known representative of this art. This tradition did not disappear, but lives in the formulations of our modern scientific theories. From its initial form as a method of keeping information via associations, it became a principle of classification and structuring of knowledge. This principle, which we here name differentiation with stratification, is a structural design behind classical mechanics. Integrating two different traditions of science in one structure, this physical theory became the modern paradigm of science. In this paper, we show that this principle can also be formulated as a set of questions. This is done via an analysis of theories, based on the epistemology of observational realism. A combination of Rudolph Carnap's concept of theory as a system of observational and theoretical languages, with a criterion for separating observational languages, based on analytical psychology, shapes this epistemology. The `nuclear' role of the observational laws and the differentiations from these nucleus, reproducing the general cases of phenomena, reveals the memory art's heritage in the theories. Here in this paper we argue that this design is also present in special relativity and in quantum mechanics.

  3. B-cell activation with CD40L or CpG measures the function of B-cell subsets and identifies specific defects in immunodeficient patients.

    PubMed

    Marasco, Emiliano; Farroni, Chiara; Cascioli, Simona; Marcellini, Valentina; Scarsella, Marco; Giorda, Ezio; Piano Mortari, Eva; Leonardi, Lucia; Scarselli, Alessia; Valentini, Diletta; Cancrini, Caterina; Duse, Marzia; Grimsholm, Ola; Carsetti, Rita

    2017-01-01

    Around 65% of primary immunodeficiencies are antibody deficiencies. Functional tests are useful tools to study B-cell functions in vitro. However, no accepted guidelines for performing and evaluating functional tests have been issued yet. Here, we report our experience on the study of B-cell functions in infancy and throughout childhood. We show that T-independent stimulation with CpG measures proliferation and differentiation potential of memory B cells. Switched memory B cells respond better than IgM memory B cells. On the other hand, CD40L, a T-dependent stimulus, does not induce plasma cell differentiation, but causes proliferation of naïve and memory B cells. During childhood, the production of plasmablasts in response to CpG increases with age mirroring the development of memory B cells. The response to CD40L does not change with age. In patients with selective IgA deficiency (SIgAD), we observed that switched memory B cells are reduced due to the absence of IgA memory B cells. In agreement, IgA plasma cells are not generated in response to CpG. Unexpectedly, B cells from SIgAD patients show a reduced proliferative response to CD40L. Our results demonstrate that functional tests are an important tool to assess the functions of the humoral immune system. © 2016 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spatial Working Memory Ability in Individuals at Ultra High Risk for Psychosis

    PubMed Central

    Goghari, Vina M.; Brett, Caroline; Tabraham, Paul; Johns, Louise; Valmaggia, Lucia; Broome, Matthew; Woolley, James; Bramon, Elvira; Howes, Oliver

    2014-01-01

    The goal of this investigation was to clarify the nature of spatial working memory difficulties in individuals at ultra high risk (UHR) for psychosis. We evaluated spatial working memory and intelligence in 96 individuals at UHR for psychosis, 28 patients with first episode psychosis (FEP), and 23 healthy controls. Fourteen UHR individuals developed a psychotic disorder during follow-up. Compared to controls, the UHR group was impaired in both the short-term maintenance of material and in the effective use of strategy, but not more immediate memory. These impairments were not as severe as those in the FEP group, as the UHR group performed better than the FEP group. A similar pattern of results was found for the intelligence measures. Discriminant function analyses demonstrated short-term maintenance of material significantly differentiated the UHR and healthy control groups even when accounting for full scale intelligence quotient (IQ); whereas full scale IQ significantly differentiated the UHR and FEP groups and FEP and control groups. Notably, within the UHR group, impaired spatial working memory performance was associated with lower global functioning, but not full scale IQ. The subgroup of UHR individuals who later developed psychosis was not significantly more impaired on any aspect of working memory performance than the group of UHR individuals who did not develop psychosis. Given, the relationship between spatial working memory deficits and functional outcome, these results indicate that cognitive remediation could be useful in individuals at UHR for psychosis to potentially improve functioning. PMID:24398256

  5. Differential pattern of semantic memory organization between bipolar I and II disorders.

    PubMed

    Chang, Jae Seung; Choi, Sungwon; Ha, Kyooseob; Ha, Tae Hyon; Cho, Hyun Sang; Choi, Jung Eun; Cha, Boseok; Moon, Eunsoo

    2011-06-01

    Semantic cognition is one of the key factors in psychosocial functioning. The aim of this study was to explore the differences in pattern of semantic memory organization between euthymic patients with bipolar I and II disorders using the category fluency task. Study participants included 23 euthymic subjects with bipolar I disorder, 23 matched euthymic subjects with bipolar II disorder and 23 matched control subjects. All participants were assessed for verbal learning, recall, learning strategies, and fluency. The combined methods of hierarchical clustering and multidimensional scaling were used to compare the pattern of semantic memory organization among the three groups. Quantitative measures of verbal learning, recall, learning strategies, and fluency did not differ between the three groups. A two-cluster structure of semantic memory organization was identified for the three groups. Semantic structure was more disorganized in the bipolar I disorder group compared to the bipolar II disorder. In addition, patients with bipolar II disorder used less elaborate strategies of semantic memory organization than those of controls. Compared to healthy controls, strategies for categorization in semantic memory appear to be less knowledge-based in patients with bipolar disorders. A differential pattern of semantic memory organization between bipolar I and II disorders indicates a higher risk of cognitive abnormalities in patients with bipolar I disorder compared to patients with bipolar II disorder. Exploring qualitative nature of neuropsychological domains may provide an explanatory insight into the characteristic behaviors of patients with bipolar disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy.

    PubMed

    Coras, Roland; Pauli, Elisabeth; Li, Jinmei; Schwarz, Michael; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo; Stefan, Hermann; Blumcke, Ingmar

    2014-07-01

    To clarify the anatomical organization of human memory remains a major challenge in clinical neuroscience. Experimental data suggest dentate gyrus granule cells play a major role in memory acquisition, i.e. pattern separation and rapid pattern completion, whereas hippocampal CA1 neurons are implicated in place memory and autobiographical memory retrieval. Patients with temporal lobe epilepsy present with a broad spectrum of memory impairment, which can be assessed during clinical examination. Although long seizure histories may contribute to a pathophysiological reorganization of functional connectivity, surgical resection of the epileptic hippocampus offers a unique possibility to anatomically study the differential contribution of hippocampal subfields to compromised learning and memory in humans. Herein, we tested the hypothesis of hippocampal subfield specialization in a series of 100 consecutive patients with temporal lobe epilepsy submitted to epilepsy surgery. Memory profiles were obtained from intracarotid amobarbital testing and non-invasive verbal memory assessment before surgery, and correlated with histopathologically quantified cell loss pattern in hippocampal subfields obtained from the same patients using the new international consensus classification for hippocampal sclerosis proposed by the International League against Epilepsy (HS ILAE). Interestingly, patients with CA1 predominant cell loss (HS ILAE Type 2; n = 13) did not show declarative memory impairment and were indistinguishable from patients without any hippocampal cell loss (n = 19). In contrast, 63 patients with neuronal loss affecting all hippocampal subfields including CA1, CA4 and dentate gyrus (HS ILAE Type 1), or predominant cell loss in CA4 and partially affecting also CA3 and dentate gyrus (HS ILAE Type 3, n = 5) showed significantly reduced declarative memory capacities (intracarotid amobarbital testing: P < 0.001; verbal memory: P < 0.05). Our results suggested an alternative model of how memory processing can be organized amongst hippocampal subfields, and that CA1 pyramidal cells are less critically involved in declarative human memory acquisition compared to dentate gyrus granule cells or CA4/CA3 pyramidal cells. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effector CD8 T cells dedifferentiate into long-lived memory cells.

    PubMed

    Youngblood, Ben; Hale, J Scott; Kissick, Haydn T; Ahn, Eunseon; Xu, Xiaojin; Wieland, Andreas; Araki, Koichi; West, Erin E; Ghoneim, Hazem E; Fan, Yiping; Dogra, Pranay; Davis, Carl W; Konieczny, Bogumila T; Antia, Rustom; Cheng, Xiaodong; Ahmed, Rafi

    2017-12-21

    Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.

  8. Granger causality analysis reveals distinct spatio-temporal connectivity patterns in motor and perceptual visuo-spatial working memory.

    PubMed

    Protopapa, Foteini; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2014-01-01

    We employed spectral Granger causality analysis on a full set of 56 electroencephalographic recordings acquired during the execution of either a 2D movement pointing or a perceptual (yes/no) change detection task with memory and non-memory conditions. On the basis of network characteristics across frequency bands, we provide evidence for the full dissociation of the corresponding cognitive processes. Movement-memory trial types exhibited higher degree nodes during the first 2 s of the delay period, mainly at central, left frontal and right-parietal areas. Change detection-memory trial types resulted in a three-peak temporal pattern of the total degree with higher degree nodes emerging mainly at central, right frontal, and occipital areas. Functional connectivity networks resulting from non-memory trial types were characterized by more sparse structures for both tasks. The movement-memory trial types encompassed an apparent coarse flow from frontal to parietal areas while the opposite flow from occipital, parietal to central and frontal areas was evident for the change detection-memory trial types. The differences among tasks and conditions were more profound in α (8-12 Hz) and β (12-30 Hz) and less in γ (30-45 Hz) band. Our results favor the hypothesis which considers spatial working memory as a by-product of specific mental processes that engages common brain areas under different network organizations.

  9. Overlapping parietal activity in memory and perception: evidence for the attention to memory model.

    PubMed

    Cabeza, Roberto; Mazuz, Yonatan S; Stokes, Jared; Kragel, James E; Woldorff, Marty G; Ciaramelli, Elisa; Olson, Ingrid R; Moscovitch, Morris

    2011-11-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To investigate this last hypothesis, we scanned participants with event-related fMRI whereas they performed memory and perception tasks, each comprising an orienting phase (top-down attention) and a detection phase (bottom-up attention). The study yielded two main findings. First, consistent with the AtoM model, orienting-related activity for memory and perception overlapped in DPC, whereas detection-related activity for memory and perception overlapped in VPC. The DPC overlap was greater in the left intraparietal sulcus, and the VPC overlap in the left TPJ. Around overlapping areas, there were differences in the spatial distribution of memory and perception activations, which were consistent with trends reported in the literature. Second, both DPC and VPC showed stronger connectivity with medial-temporal lobe during the memory task and with visual cortex during the perception task. These findings suggest that, during memory tasks, some parietal regions mediate similar attentional control processes to those involved in perception tasks (orienting in DPC vs. detection in VPC), although on different types of information (mnemonic vs. sensory).

  10. Aversive Memory Reactivation Engages in the Amygdala Only Some Neurotransmitters Involved in Consolidation

    ERIC Educational Resources Information Center

    Bucherelli, Corrado; Baldi, Elisabetta; Mariottini, Chiara; Passani, Maria Beatrice; Blandina, Patrizio

    2006-01-01

    Consolidation refers to item stabilization in long-term memory. Retrieval renders a consolidated memory sensitive, and a "reconsolidation" process has been hypothesized to keep the original memory persistent. Some authors could not detect this phenomenon. Here we show that retrieved contextual fear memory is vulnerable to amnesic treatments and…

  11. Spatial working memory in aging and mild cognitive impairment: effects of task load and contextual cueing.

    PubMed

    Kessels, Roy P C; Meulenbroek, Olga; Fernández, Guillén; Olde Rikkert, Marcel G M

    2010-09-01

    Mild Cognitive Impairment (MCI) is characterized by episodic memory deficits, while aspects of working memory may also be implicated, but studies into this latter domain are scarce and results are inconclusive. Using a computerized search paradigm, this study compares 25 young adults, 25 typically aging older adults and 15 amnestic MCI patients as to their working-memory capacities for object-location information and potential differential effects of memory load and additional context cues. An age-related deficit in visuospatial working-memory maintenance was found that became more pronounced with increasing task demands. The MCI group additionally showed reduced maintenance of bound information, i.e., object-location associations, again especially at elevated memory load. No effects of contextual cueing were found. The current findings indicate that working memory should be considered when screening patients for suspected MCI and monitoring its progression.

  12. Memory for music in Alzheimer's disease: unforgettable?

    PubMed

    Baird, Amee; Samson, Séverine

    2009-03-01

    The notion that memory for music can be preserved in patients with Alzheimer's Disease (AD) has been raised by a number of case studies. In this paper, we review the current research examining musical memory in patients with AD. In keeping with models of memory described in the non-musical domain, we propose that various forms of musical memory exist, and may be differentially impaired in AD, reflecting the pattern of neuropathological changes associated with the condition. Our synthesis of this literature reveals a dissociation between explicit and implicit musical memory functions. Implicit, specifically procedural musical memory, or the ability to play a musical instrument, can be spared in musicians with AD. In contrast, explicit musical memory, or the recognition of familiar or unfamiliar melodies, is typically impaired. Thus, the notion that music is unforgettable in AD is not wholly supported. Rather, it appears that the ability to play a musical instrument may be unforgettable in some musicians with AD.

  13. Becoming a better person: temporal remoteness biases autobiographical memories for moral events

    PubMed Central

    Escobedo, Jessica R.; Adolphs, Ralph

    2010-01-01

    Our autobiographical self depends on the differential recollection of our personal past, notably including memories of morally laden events. While both emotion and temporal recency are well known to influence memory, very little is known about how we remember moral events, and in particular about the distribution in time of memories for events that were blameworthy or praiseworthy. To investigate this issue in detail, we collected a novel database of 758 confidential, autobiographical narratives for personal moral events from 100 well-characterized healthy adults. Negatively valenced moral memories were significantly more remote than positively valenced memories, both as measured by the valence of the cue word that evoked the memory as well as by the content of the memory itself. The effect was independent of chronological age, ethnicity, gender, or personality, arguing for a general emotional bias in how we construct our moral autobiography. PMID:20677868

  14. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees

    PubMed Central

    Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles

    2015-01-01

    DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238

  15. The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats.

    PubMed

    Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M

    2016-02-01

    Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this impairment was largely reversed at 24-h. Animals in the high-dose NTP (20mg/kg/day) group were impaired at both short- and long-term intervals. Activity levels, used as an index of location memory during the ORT, demonstrated that rats receiving DMI were again impaired at retaining memory for location. DMI dose-dependently disrupts LTP in the dentate gyrus of anesthetized rats and also disrupts memory for tests of spatial memory when administered for long periods. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Revised associative inference paradigm confirms relational memory impairment in schizophrenia

    PubMed Central

    Armstrong, Kristan; Williams, Lisa E.; Heckers, Stephan

    2013-01-01

    Objective Patients with schizophrenia have widespread cognitive impairments, with selective deficits in relational memory. We previously reported a differential relational memory deficit in schizophrenia using the Associative Inference Paradigm (AIP), a task suggested by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative to examine relational memory. However, the AIP had limited feasibility for testing in schizophrenia due to high attrition of schizophrenia patients during training. Here we developed and tested a revised version of the AIP to improve feasibility. Method 30 healthy control and 37 schizophrenia subjects received 3 study-test sessions on 3 sets of paired associates: H-F1 (house paired with face), H-F2 (same house paired with new face), and F3-F4 (two novel faces). After training, subjects were tested on the trained, non-inferential Face-Face pairs (F3-F4) and novel, inferential Face-Face pairs (F1-F2), constructed from the faces of the trained House-Face pairs. Results Schizophrenia patients were significantly more impaired on the inferential F1-F2 pairs than the non-inferential F3-F4 pairs, providing evidence for a differential relational memory deficit. Only 8 percent of schizophrenia patients were excluded from testing due to poor training performance. Conclusions The revised AIP confirmed the previous finding of a relational memory deficit in a larger and more representative sample of schizophrenia patients. PMID:22612578

  17. Revised associative inference paradigm confirms relational memory impairment in schizophrenia.

    PubMed

    Armstrong, Kristan; Williams, Lisa E; Heckers, Stephan

    2012-07-01

    Patients with schizophrenia have widespread cognitive impairments, with selective deficits in relational memory. We previously reported a differential relational memory deficit in schizophrenia using the Associative Inference Paradigm (AIP), a task suggested by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative to examine relational memory. However, the AIP had limited feasibility for testing in schizophrenia because of high attrition of schizophrenia patients during training. Here we developed and tested a revised version of the AIP to improve feasibility. 30 healthy control and 37 schizophrenia subjects received 3 study-test sessions on 3 sets of paired associates: H-F1 (house paired with face), H-F2 (same house paired with new face), and F3-F4 (two novel faces). After training, subjects were tested on the trained, noninferential Face-Face pairs (F3-F4) and novel, inferential Face-Face pairs (F1-F2), constructed from the faces of the trained House-Face pairs. Schizophrenia patients were significantly more impaired on the inferential F1-F2 pairs than the noninferential F3-F4 pairs, providing evidence for a differential relational memory deficit. Only 8% of schizophrenia patients were excluded from testing because of poor training performance. The revised AIP confirmed the previous finding of a relational memory deficit in a larger and more representative sample of schizophrenia patients.

  18. Power reduction by power gating in differential pair type spin-transfer-torque magnetic random access memories for low-power nonvolatile cache memories

    NASA Astrophysics Data System (ADS)

    Ohsawa, Takashi; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo

    2014-01-01

    Array operation currents in spin-transfer-torque magnetic random access memories (STT-MRAMs) that use four differential pair type magnetic tunnel junction (MTJ)-based memory cells (4T2MTJ, two 6T2MTJs and 8T2MTJ) are simulated and compared with that in SRAM. With L3 cache applications in mind, it is assumed that the memories are composed of 32 Mbyte capacity to be accessed in 64 byte in parallel. All the STT-MRAMs except for the 8T2MTJ one are designed with 32 bit fine-grained power gating scheme applied to eliminate static currents in the memory cells that are not accessed. The 8T2MTJ STT-MRAM, the cell’s design concept being not suitable for the fine-grained power gating, loads and saves 32 Mbyte data in 64 Mbyte unit per 1 Mbit sub-array in 2 × 103 cycles. It is shown that the array operation current of the 4T2MTJ STT-MRAM is 70 mA averaged in 15 ns write cycles at Vdd = 0.9 V. This is the smallest among the STT-MRAMs, about the half of the low standby power (LSTP) SRAM whose array operation current is totally dominated by the cells’ subthreshold leakage.

  19. Population genetic structure and its implications for adaptive variation in memory and the hippocampus on a continental scale in food-caching black-capped chickadees.

    PubMed

    Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Burg, T M; Braun, M J; Davidson, B S

    2012-09-01

    Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow. Published 2012. This article is a US Government work and is in the public domain in the USA.

  20. Guidance of Attention to Objects and Locations by Long-Term Memory of Natural Scenes

    ERIC Educational Resources Information Center

    Becker, Mark W.; Rasmussen, Ian P.

    2008-01-01

    Four flicker change-detection experiments demonstrate that scene-specific long-term memory guides attention to both behaviorally relevant locations and objects within a familiar scene. Participants performed an initial block of change-detection trials, detecting the addition of an object to a natural scene. After a 30-min delay, participants…

  1. From network heterogeneities to familiarity detection and hippocampal memory management

    PubMed Central

    Wang, Jane X.; Poe, Gina; Zochowski, Michal

    2009-01-01

    Hippocampal-neocortical interactions are key to the rapid formation of novel associative memories in the hippocampus and consolidation to long term storage sites in the neocortex. We investigated the role of network correlates during information processing in hippocampal-cortical networks. We found that changes in the intrinsic network dynamics due to the formation of structural network heterogeneities alone act as a dynamical and regulatory mechanism for stimulus novelty and familiarity detection, thereby controlling memory management in the context of memory consolidation. This network dynamic, coupled with an anatomically established feedback between the hippocampus and the neocortex, recovered heretofore unexplained properties of neural activity patterns during memory management tasks which we observed during sleep in multiunit recordings from behaving animals. Our simple dynamical mechanism shows an experimentally matched progressive shift of memory activation from the hippocampus to the neocortex and thus provides the means to achieve an autonomous off-line progression of memory consolidation. PMID:18999453

  2. Neuroanatomic organization of sound memory in humans.

    PubMed

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  3. Working Memory and Aging: Separating the Effects of Content and Context

    PubMed Central

    Bopp, Kara L.; Verhaeghen, Paul

    2009-01-01

    In three experiments, we investigated the hypothesis that age-related differences in working memory might be due to the inability to bind content with context. Participants were required to find a repeating stimulus within a single series (no context memory required) or within multiple series (necessitating memory for context). Response time and accuracy were examined in two task domains: verbal and visuospatial. Binding content with context led to longer processing time and poorer accuracy in both age groups, even when working memory load was held constant. Although older adults were overall slower and less accurate than younger adults, the need for context memory did not differentially affect their performance. It is therefore unlikely that age differences in working memory are due to specific age-related problems with content-with-context binding. PMID:20025410

  4. The role of memory representation in the vigilance decrement.

    PubMed

    Caggiano, Daniel M; Parasuraman, Raja

    2004-10-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance-sensitivity decrement over time-is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand.

  5. The effects of free recall testing on subsequent source memory.

    PubMed

    Brewer, Gene A; Marsh, Richard L; Meeks, Joseph T; Clark-Foos, Arlo; Hicks, Jason L

    2010-05-01

    The testing effect is the finding that prior retrieval of information from memory will result in better subsequent memory for that material. One explanation for these effects is that initial free recall testing increases the recollective details for tested information, which then becomes more available during a subsequent test phase. In three experiments we explored this hypothesis using a source-monitoring test phase after the initial free recall tests. We discovered that memory is differentially enhanced for certain recollective details depending on the nature of the free recall task. Thus further research needs to be conducted to specify how different kinds of memorial details are enhanced by free recall testing.

  6. Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory

    PubMed Central

    Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.

    2013-01-01

    Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773

  7. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    PubMed

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  8. Dissociable Contributions within the Medial Temporal Lobe to Encoding of Object-Location Associations

    ERIC Educational Resources Information Center

    Sommer, Tobias; Rose, Michael; Glascher, Jan; Wolbers, Thomas; Buchel, Christian

    2005-01-01

    The crucial role of the medial temporal lobe (MTL) in episodic memory is well established. Although there is little doubt that its anatomical subregions--the hippocampus, peri-, entorhinal and parahippocampal cortex (PHC)--contribute differentially to mnemonic processes, their specific functions in episodic memory are under debate. Data from…

  9. Working Memory Components and Intelligence in Children

    ERIC Educational Resources Information Center

    Tillman, Carin M.; Nyberg, Lilianne; Bohlin, Gunilla

    2008-01-01

    This study investigated, in children aged 6-13 years, how different components of the working memory (WM) system (short-term storage and executive processes), within both verbal and visuospatial domains, relate to fluid intelligence. We also examined the degree of domain-specificity of the WM components as well as the differentiation of storage…

  10. The Hippocampus Supports Encoding of Between-Domain Associations within Working Memory

    ERIC Educational Resources Information Center

    Piekema, Carinne; Kessel, Roy P. C.; Rijpkema, Mark; Fernandez, Guillen

    2009-01-01

    It has been established that the medial temporal lobe, including the hippocampus, is crucial for associative memory. The aim of the current functional magnetic resonance imaging (fMRI) study was to investigate whether the hippocampus is differentially activated for associations between items processed in the same neocortical region (within-domain)…

  11. Low Proliferation and Differentiation Capacities of Adult Hippocampal Stem Cells Correlate with Memory Dysfunction in Humans

    ERIC Educational Resources Information Center

    Coras, Roland; Siebzehnrubl, Florian A.; Pauli, Elisabeth; Huttner, Hagen B.; Njunting, Marleisje; Kobow, Katja; Villmann, Carmen; Hahnen, Eric; Neuhuber, Winfried; Weigel, Daniel; Buchfelder, Michael; Stefan, Hermann; Beck, Heinz; Steindler, Dennis A.; Blumcke, Ingmar

    2010-01-01

    The hippocampal dentate gyrus maintains its capacity to generate new neurons throughout life. In animal models, hippocampal neurogenesis is increased by cognitive tasks, and experimental ablation of neurogenesis disrupts specific modalities of learning and memory. In humans, the impact of neurogenesis on cognition remains unclear. Here, we…

  12. Holographic Compact Disk Read-Only Memories

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi

    1996-01-01

    Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.

  13. Event-Related Potential Correlates of Declarative and Non-Declarative Sequence Knowledge

    ERIC Educational Resources Information Center

    Ferdinand, Nicola K.; Runger, Dennis; Frensch, Peter A.; Mecklinger, Axel

    2010-01-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified…

  14. Kinase Activity in the Olfactory Bulb Is Required for Odor Memory Consolidation

    ERIC Educational Resources Information Center

    Tong, Michelle T.; Kim, Tae-Young P.; Cleland, Thomas A.

    2018-01-01

    Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)--a process that is closely associated…

  15. Processing speed and working memory span: their differential role in superficial and deep memory processes in schizophrenia.

    PubMed

    Brébion, Gildas; Bressan, Rodrigo A; Pilowsky, Lyn S; David, Anthony S

    2011-05-01

    Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort.

  16. Differential contributions of executive and episodic memory functions to problem solving in younger and older adults.

    PubMed

    Vandermorris, Susan; Sheldon, Signy; Winocur, Gordon; Moscovitch, Morris

    2013-11-01

    The relationship of higher order problem solving to basic neuropsychological processes likely depends on the type of problems to be solved. Well-defined problems (e.g., completing a series of errands) may rely primarily on executive functions. Conversely, ill-defined problems (e.g., navigating socially awkward situations) may, in addition, rely on medial temporal lobe (MTL) mediated episodic memory processes. Healthy young (N = 18; M = 19; SD = 1.3) and old (N = 18; M = 73; SD = 5.0) adults completed a battery of neuropsychological tests of executive and episodic memory function, and experimental tests of problem solving. Correlation analyses and age group comparisons demonstrated differential contributions of executive and autobiographical episodic memory function to well-defined and ill-defined problem solving and evidence for an episodic simulation mechanism underlying ill-defined problem solving efficacy. Findings are consistent with the emerging idea that MTL-mediated episodic simulation processes support the effective solution of ill-defined problems, over and above the contribution of frontally mediated executive functions. Implications for the development of intervention strategies that target preservation of functional independence in older adults are discussed.

  17. Effects of capacity limits, memory loss, and sound type in change deafness.

    PubMed

    Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S

    2017-11-01

    Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.

  18. Diffusion tensor imaging detects age related white matter change over a 2 year follow-up which is associated with working memory decline.

    PubMed

    Charlton, R A; Schiavone, F; Barrick, T R; Morris, R G; Markus, H S

    2010-01-01

    Diffusion tensor imaging (DTI) is a sensitive method for detecting white matter damage, and in cross sectional studies DTI measures correlate with age related cognitive decline. However, there are few data on whether DTI can detect age related changes over short time periods and whether such change correlates with cognitive function. In a community sample of 84 middle-aged and elderly adults, MRI and cognitive testing were performed at baseline and after 2 years. Changes in DTI white matter histograms, white matter hyperintensity (WMH) volume and brain volume were determined. Change over time in performance on tests of executive function, working memory and information processing speed were also assessed. Significant change in all MRI measures was detected. For cognition, change was detected for working memory and this correlated with change in DTI only. In a stepwise regression, with change in working memory as the dependent variable, a DTI histogram measure explained 10.8% of the variance in working memory. Change in WMH or brain volume did not contribute to the model. DTI is sensitive to age related change in white matter ultrastructure and appears useful for monitoring age related white matter change even over short time periods.

  19. [Memory and brain--neurobiological correlates of memory disturbances].

    PubMed

    Calabrese, P; Markowitsch, H J

    2003-04-01

    A differentiation of memory is possible on the basis of chronological and contents-related aspects. Furthermore, it is possible to make process-specific subdivisions (encoding, transfer, consolidation, retrieval). The time-related division on the one hand refers to the general differentiation into short-term and long-term memory, and, on the other, to that between anterograde and retrograde memory ("new" and "old memory"; measured from a given time point, usually that when brain damage occurred). Anterograde memory means the successful encoding and storing of new information; retrograde the ability to retrieve successfully acquired and/or stored information. On the contents-based level, memory can be divided into five basic long-term systems--episodic memory, the knowledge system, perceptual, procedural and the priming form of memory. Neural correlates for these divisions are discussed with special emphasis of the episodic and the knowledge systems, based both on normal individuals and brain-damaged subjects. It is argued that structures of the limbic system are important for encoding of information and for its transfer into long-term memory. For this, two independent, but interacting memory circuits are proposed--one of them controlling and integrating primarily the emotional, and the other primarily the cognitive components of newly incoming information. For information storage principally neocortical structures are regarded as important and for the recall of information from the episodic and semantic memory systems the combined action of portions of prefrontal and anterior temporal regions is regarded as essential. Within this fronto-temporal agglomerate, a moderate hemispheric-specificity is assumed to exist with the right-hemispheric combination being mainly engaged in episodic memory retrieval and the left-hemispheric in that of semantic information. Evidence for this specialization comes from the results from focally brain-damaged patients as well as from that functional brain imaging in normal human subjects. Comparing results from imaging studies in memory disturbed patients with brain damage and from patients with a psychiatric diagnosis (e. g., psychogenic amnesia) revealed that both patient groups demonstrate comparable metabolic changes on the brain level. It can therefore be concluded that in neurological patients distinct, identifiable tissue damage is existent, while in psychiatric patients changes in the brain's biochemistry (release of stress hormones, and transmitters) constitute the physiological bases for the memory disturbances.

  20. The development of real-time stability supports visual working memory performance: Young children's feature binding can be improved through perceptual structure.

    PubMed

    Simmering, Vanessa R; Wood, Chelsey M

    2017-08-01

    Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. The consentaneous model of the financial markets exhibiting spurious nature of long-range memory

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kononovicius, A.

    2018-09-01

    It is widely accepted that there is strong persistence in the volatility of financial time series. The origin of the observed persistence, or long-range memory, is still an open problem as the observed phenomenon could be a spurious effect. Earlier we have proposed the consentaneous model of the financial markets based on the non-linear stochastic differential equations. The consentaneous model successfully reproduces empirical probability and power spectral densities of volatility. This approach is qualitatively different from models built using fractional Brownian motion. In this contribution we investigate burst and inter-burst duration statistics of volatility in the financial markets employing the consentaneous model. Our analysis provides an evidence that empirical statistical properties of burst and inter-burst duration can be explained by non-linear stochastic differential equations driving the volatility in the financial markets. This serves as an strong argument that long-range memory in finance can have spurious nature.

  2. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  3. The up and down of sleep: From molecules to electrophysiology.

    PubMed

    Navarro-Lobato, Irene; Genzel, Lisa

    2018-03-12

    Alternations of up and down can be seen across many different levels during sleep. Neural firing-rates, synaptic markers, molecular pathways, and gene expression all show differential up and down regulation across brain areas and sleep stages. And also the hallmarks of sleep - sleep stage specific oscillations - are characterized themselves by up and down as seen within the slow oscillation or theta cycles. In this review, we summarize the up and down of sleep covering molecules to electrophysiology and present different theories how this up and down could be regulated by the up and down of sleep oscillations. Further, we propose a tentative theory how this differential up and down could contribute to various outcomes of sleep related memory consolidation: enhancement of hippocampal representations of very novel memories and cortical consolidation of memories congruent with previous knowledge-networks. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. P-channel differential multiple-time programmable memory cells by laterally coupled floating metal gate fin field-effect transistors

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin

    2018-04-01

    In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.

  5. PLZT block data composers operated in differential phase mode. [lanthanum-modified lead zirconate titanate ceramic device for digital holographic memory

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.

  6. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.

    PubMed

    Ramirez-Villegas, Juan F; Logothetis, Nikos K; Besserve, Michel

    2015-11-17

    Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.

  7. Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events

    PubMed Central

    Ramirez-Villegas, Juan F.; Logothetis, Nikos K.; Besserve, Michel

    2015-01-01

    Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729

  8. Caloric Restriction in Older Adults-Differential Effects of Weight Loss and Reduced Weight on Brain Structure and Function.

    PubMed

    Prehn, Kristin; Jumpertz von Schwartzenberg, Reiner; Mai, Knut; Zeitz, Ulrike; Witte, A Veronica; Hampel, Dierk; Szela, Anna-Maria; Fabian, Sonja; Grittner, Ulrike; Spranger, Joachim; Flöel, Agnes

    2017-03-01

    Dietary modifications such as caloric restriction (CR) have been suggested as a means to improve memory and prevent age-related decline. However, it is unclear whether those effects remain stable over time or are related specifically to negative energy balance during the weight loss phase of CR. Using a randomized interventional design, we investigated changes in recognition memory and neural correlates in postmenopausal obese women (n = 19): 1) after intense weight loss in the course of a 12-week low-caloric diet (reduced body weight and negative energy balance) and 2) after having sustained the reduced weight over 4 more weeks (reduced body weight, but energy balance equilibrium). Participants were contrasted to a control group (n = 18) instructed not to change dietary habits. In the CR group, we found improved recognition memory, paralleled by increased gray matter volume in inferior frontal gyrus and hippocampus, and augmented hippocampal resting-state functional connectivity to parietal areas. Moreover, effects were specific for transient negative energy balance and could not be detected after subsequent weight maintenance. Our data demonstrate for the first time in humans that beneficial effects of CR on brain structure and function are due to weight loss rather than an overall reduced weight. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    PubMed

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  10. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  11. Optical detection of Trypanosoma cruzi in blood samples for diagnosis purpose

    NASA Astrophysics Data System (ADS)

    Alanis, Elvio; Romero, Graciela; Alvarez, Liliana; Martinez, Carlos C.; Basombrio, Miguel A.

    2004-10-01

    An optical method for detection of Trypanosoma Cruzi (T. cruzi) parasites in blood samples of mice infected with Chagas disease is presented. The method is intended for use in human blood, for diagnosis purposes. A thin layer of blood infected by T. cruzi parasites, in small concentrations, is examined in an interferometric microscope in which the images of the vision field are taken by a CCD camera and temporarily stored in the memory of a host computer. The whole sample is scanned displacing the microscope plate by means of step motors driven by the computer. Several consecutive images of the same field are taken and digitally processed by means of image temporal differentiation in order to detect if a parasite is eventually present in the field. Each field of view is processed in the same fashion, until the full area of the sample is covered or until a parasite is detected, in which case an acoustical warning is activated and the corresponding image is displayed permitting the technician to corroborate the result visually. A discussion of the reliability of the method as well as a comparison with other well established techniques are presented.

  12. Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets.

    PubMed

    Moogk, Duane; Zhong, Shi; Yu, Zhiya; Liadi, Ivan; Rittase, William; Fang, Victoria; Dougherty, Janna; Perez-Garcia, Arianne; Osman, Iman; Zhu, Cheng; Varadarajan, Navin; Restifo, Nicholas P; Frey, Alan B; Krogsgaard, Michelle

    2016-07-15

    CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Expression of aromatase in the embryonic brain of the olive ridley sea turtle (Lepidochelys olivacea), and the effect of bisphenol-A in sexually differentiated embryos.

    PubMed

    Gómez-Picos, Patsy; Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Hernández-Cornejo, Rubí; Díaz-Hernández, Verónica; García-Gasca, Alejandra

    2014-01-01

    Brain aromatase participates in several biological processes, such as regulation of the reproductive-endocrine axis, memory, stress, sexual differentiation of the nervous system, male sexual behavior, and brain repair. Here we report the isolation and expression of brain aromatase in olive ridley sea turtle (Lepidochelys olivacea) embryos incubated at male- and female-promoting temperatures (MPT and FPT, respectively), at the thermosensitive period (TSP) and the sex-differentiated period. Also, aromatase expression was assessed in differentiated embryos exposed to bisphenol-A (BPA) during the TSP. BPA is a monomer of polycarbonate plastics and is considered an endocrine-disrupting compound. Normal aromatase expression was measured in both forebrain and hindbrain, showing higher expression levels in the forebrain of differentiated embryos at both incubation temperatures. Although no significant differences were detected in the hindbrain, expression was slightly higher at MPT. BPA did not affect aromatase expression neither in forebrains or hindbrains from embryos incubated at MPT, whereas at FPT an inverted U-shape curve was observed in forebrains with significant differences at lower concentrations, whereas in hindbrains a non-significant increment was observed at higher concentrations. Our data indicate that both incubation temperature and developmental stage are critical factors affecting aromatase expression in the forebrain. Because of the timing and location of aromatase expression in the brain, we suggest that brain aromatase may participate in the imprinting of sexual trends related to reproduction and sexual behavior at the onset of sex differentiation, and BPA exposure may impair aromatase function in the female forebrain.

  14. The organisation of spatial and temporal relations in memory.

    PubMed

    Rondina, Renante; Curtiss, Kaitlin; Meltzer, Jed A; Barense, Morgan D; Ryan, Jennifer D

    2017-04-01

    Episodic memories are comprised of details of "where" and "when"; spatial and temporal relations, respectively. However, evidence from behavioural, neuropsychological, and neuroimaging studies has provided mixed interpretations about how memories for spatial and temporal relations are organised-they may be hierarchical, fully interactive, or independent. In the current study, we examined the interaction of memory for spatial and temporal relations. Using explicit reports and eye-tracking, we assessed younger and older adults' memory for spatial and temporal relations of objects that were presented singly across time in unique spatial locations. Explicit change detection of spatial relations was affected by a change in temporal relations, but explicit change detection of temporal relations was not affected by a change in spatial relations. Younger and older adults showed eye movement evidence of incidental memory for temporal relations, but only younger adults showed eye movement evidence of incidental memory for spatial relations. Together, these findings point towards a hierarchical organisation of relational memory. The implications of these findings are discussed in the context of the neural mechanisms that may support such a hierarchical organisation of memory.

  15. The role of gist and verbatim memory in complex decision making: Explaining the unconscious-thought effect.

    PubMed

    Abadie, Marlène; Waroquier, Laurent; Terrier, Patrice

    2017-05-01

    Previous research showed that the unconscious-thought effect , which refers to an improvement in complex decision making following a distraction period, was moderated by the presentation format of pieces of information about different options. The aim of the current study was to replicate this finding and further examine the memory representations underlying decision making following a distraction or a deliberation period. Results showed that, when the information was presented blocked per option, participants were better able to differentiate the best option from the others after a distraction period than immediately after the information presentation or after a deliberation period. In addition, distracted participants retrieved more gist representations of the options when the information was presented per option. By contrast, participants were better able to differentiate the best option from the others after a deliberation period when the information was presented per attribute. Participants who deliberated also retrieved more verbatim representations when the information was presented per attribute. Finally, mediation analyses indicated that the accuracy of the evaluations of the options depends on gist memory when distracted but on verbatim memory when deliberating. These findings suggest that the effectiveness of distraction or deliberation depends on the memory representations of the different options. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Measurement of overgeneral autobiographical memory: Psychometric properties of the autobiographical memory test in young and older populations

    PubMed Central

    Romero, Dulce; Ricarte, Jorge J.; Serrano, Juan P.; Nieto, Marta; Latorre, Jose M.

    2018-01-01

    The Autobiographical Memory Test (AMT) is the most widely used measure of overgeneral autobiographical memory (OGM). The AMT appears to have good psychometric properties, but more research is needed on the influence and applicability of individual cue words in different languages and populations. To date, no studies have evaluated its usefulness as a measure of OMG in Spanish or older populations. This work aims to analyze the applicability of the AMT in young and older Spanish samples. We administered a Spanish version of the AMT to samples of young (N = 520) and older adults (N = 155). We conducted confirmatory factor analysis (CFA), item response theory-based analysis (IRT) and differential item functioning (DIF). Results confirm the one-factor structure for the AMT. IRT analysis suggests that both groups find the AMT easy given that they generally perform well, and that it is more precise in individuals who score low on memory specificity. DIF analysis finds three items differ in their functioning depending on age group. This differential functioning of these items affects the overall AMT scores and, thus, they should be excluded from the AMT in studies comparing young and older samples. We discuss the possible implications of the samples and cue words used. PMID:29672583

  17. Measurement of overgeneral autobiographical memory: Psychometric properties of the autobiographical memory test in young and older populations.

    PubMed

    Ros, Laura; Romero, Dulce; Ricarte, Jorge J; Serrano, Juan P; Nieto, Marta; Latorre, Jose M

    2018-01-01

    The Autobiographical Memory Test (AMT) is the most widely used measure of overgeneral autobiographical memory (OGM). The AMT appears to have good psychometric properties, but more research is needed on the influence and applicability of individual cue words in different languages and populations. To date, no studies have evaluated its usefulness as a measure of OMG in Spanish or older populations. This work aims to analyze the applicability of the AMT in young and older Spanish samples. We administered a Spanish version of the AMT to samples of young (N = 520) and older adults (N = 155). We conducted confirmatory factor analysis (CFA), item response theory-based analysis (IRT) and differential item functioning (DIF). Results confirm the one-factor structure for the AMT. IRT analysis suggests that both groups find the AMT easy given that they generally perform well, and that it is more precise in individuals who score low on memory specificity. DIF analysis finds three items differ in their functioning depending on age group. This differential functioning of these items affects the overall AMT scores and, thus, they should be excluded from the AMT in studies comparing young and older samples. We discuss the possible implications of the samples and cue words used.

  18. Contextually Mediated Spontaneous Retrieval Is Specific to the Hippocampus

    PubMed Central

    Long, Nicole M.; Sperling, Michael R.; Worrell, Gregory A.; Davis, Kathryn A.; Gross, Robert E.; Lega, Bradley C.; Jobst, Barbara C.; Sheth, Sameer A.; Zaghloul, Kareem; Stein, Joel M.; Kahana, Michael J.

    2018-01-01

    SUMMARY Although it is now well established that the hippocampus supports memory encoding [1, 2], little is known about hippocampal activity during spontaneous memory retrieval. Recent intracranial electroencephalographic (iEEG) work has shown that hippocampal activity during encoding predicts subsequent temporal organization of memories [3], supporting a role in contextual binding. It is an open question, however, whether the hippocampus similarly supports contextually mediated processes during retrieval. Here, we analyzed iEEG recordings obtained from 215 epilepsy patients as they performed a free recall task. To identify neural activity specifically associated with contextual retrieval, we compared correct recalls, intrusions (incorrect recall of either items from prior lists or items not previously studied), and deliberations (matched periods during recall when no items came to mind). Neural signals that differentiate correct recalls from both other retrieval classes reflect contextual retrieval, as correct recalls alone arise from the correct context. We found that in the hippocampus, high-frequency activity (HFA, 44–100 Hz), a proxy for neural activation [4], was greater prior to correct recalls relative to the other retrieval classes, with no differentiation between intrusions and deliberations. This pattern was not observed in other memory-related cortical regions, including DLPFC, thus supporting a specific hippocampal contribution to contextually mediated memory retrieval. PMID:28343962

  19. A Comparison of Computation Span and Reading Span Working Memory Measures' Relations With Problem-Solving Criteria.

    PubMed

    Perlow, Richard; Jattuso, Mia

    2018-06-01

    Researchers have operationalized working memory in different ways and although working memory-performance relationships are well documented, there has been relatively less attention devoted to determining whether seemingly similar measures yield comparable relations with performance outcomes. Our objective is to assess whether two working memory measures deploying the same processes but different item content yield different relations with two problem-solving criteria. Participants completed a computation-based working memory measure and a reading-based measure prior to performing a computerized simulation. Results reveal differential relations with one of the two criteria and support the notion that the two working memory measures tap working memory capacity and other cognitive abilities. One implication for theory development is that researchers should consider incorporating other cognitive abilities in their working memory models and that the selection of those abilities should correspond to the criterion of interest. One practical implication is that researchers and practitioners shouldn't automatically assume that different phonological loop-based working memory scales are interchangeable.

  20. Distinct Effects of Saracatinib on Memory CD8+ T-cell Differentiation

    PubMed Central

    Takai, Shinji; Sabzevari, Helen; Farsaci, Benedetto; Schlom, Jeffrey; Greiner, John W.

    2012-01-01

    Immunologic memory involving CD8+ T-cells is a hallmark of an adaptive antigen-specific immune response and comprises a critical component of protective immunity. Designing approaches that enhance long-term T-cell memory would, for the most part, fortify vaccines and enhance host protection against infectious diseases and, perhaps, cancer immunotherapy. A better understanding of the cellular programs involved in the antigen-specific T-cell response has led to new approaches that target the magnitude and quality of the memory T-cell response. Here we show that T-cells from T-cell receptor transgenic mice for the nucleoprotein of influenza virus NP68 exhibit the distinct phases priming, expansion, contraction, memory - of an antigen-specific T-cell response when exposed in vitro to the cognate peptide. Saracatinib, a specific inhibitor of Src family kinases, administered at low doses during the expansion or contraction phases, increased CD62Lhigh/CD44high central memory CD8+ T-cells and IFN-γ production, while suppressing immunity when added during the priming phase. These effects by saracatinib were not accompanied by the expected decline of Src family kinases, but were accompanied by Akt-mTOR suppression and/or mediated via another pathway. Increased central memory cells by saracatinib were recapitulated in mice using a poxvirus-based influenza vaccine, thus underscoring the importance of dose and timing of the inhibitor in the context of memory T-cell differentiation. Finally, vaccine plus saracatinib treatment showed better protection against tumor challenge. The immune-potentiating effects on CD8+ T-cells by a low dose of saracatinib might afford better protection from pathogen or cancer when combined with vaccine. PMID:22450814

  1. The differential role of cortical protein synthesis in taste memory formation and persistence

    NASA Astrophysics Data System (ADS)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  2. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    PubMed

    Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).

  3. The Respiratory Environment Diverts the Development of Antiviral Memory CD8 T Cells.

    PubMed

    Shane, Hillary L; Reagin, Katie L; Klonowski, Kimberly D

    2018-06-01

    Our understanding of memory CD8 + T cells has been largely derived from acute, systemic infection models. However, memory CD8 + T cells generated from mucosal infection exhibit unique properties and, following respiratory infection, are not maintained in the lung long term. To better understand how infection route modifies memory differentiation, we compared murine CD8 + T cell responses to a vesicular stomatitis virus (VSV) challenge generated intranasally (i.n.) or i.v. The i.n. infection resulted in greater peak expansion of VSV-specific CD8 + T cells. However, this numerical advantage was rapidly lost during the contraction phase of the immune response, resulting in memory CD8 + T cell numerical deficiencies when compared with i.v. infection. Interestingly, the antiviral CD8 + T cells generated in response to i.n. VSV exhibited a biased and sustained proportion of early effector cells (CD127 lo KLRG1 lo ) akin to the developmental program favored after i.n. influenza infection, suggesting that respiratory infection broadly favors an incomplete memory differentiation program. Correspondingly, i.n. VSV infection resulted in lower CD122 expression and eomesodermin levels by VSV-specific CD8 + T cells, further indicative of an inferior transition to bona fide memory. These results may be due to distinct (CD103 + CD11b + ) dendritic cell subsets in the i.n. versus i.v. T cell priming environments, which express molecules that regulate T cell signaling and the balance between tolerance and immunity. Therefore, we propose that distinct immunization routes modulate both the quality and quantity of antiviral effector and memory CD8 + T cells in response to an identical pathogen and should be considered in CD8 + T cell-based vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.

  4. Differential short-term memorisation for vocal and instrumental rhythms.

    PubMed

    Klyn, Niall A M; Will, Udo; Cheong, Yong-Jeon; Allen, Erin T

    2016-07-01

    This study explores differential processing of vocal and instrumental rhythms in short-term memory with three decision (same/different judgments) and one reproduction experiment. In the first experiment, memory performance declined for delayed versus immediate recall, with accuracy for the two rhythms being affected differently: Musicians performed better than non-musicians on clapstick but not on vocal rhythms, and musicians were better on vocal rhythms in the same than in the different condition. Results for the second experiment showed that concurrent sub-vocal articulation and finger-tapping differentially affected the two rhythms and same/different decisions, but produced no evidence for articulatory loop involvement in delayed decision tasks. In a third experiment, which tested rhythm reproduction, concurrent sub-vocal articulation decreased memory performance, with a stronger deleterious effect on the reproduction of vocal than of clapstick rhythms. This suggests that the articulatory loop may only be involved in delayed reproduction not in decision tasks. The fourth experiment tested whether differences between filled and empty rhythms (continuous vs. discontinuous sounds) can explain the different memorisation of vocal and clapstick rhythms. Though significant differences were found for empty and filled instrumental rhythms, the differences between vocal and clapstick can only be explained by considering additional voice specific features.

  5. Recognition and source memory as multivariate decision processes.

    PubMed

    Banks, W P

    2000-07-01

    Recognition memory, source memory, and exclusion performance are three important domains of study in memory, each with its own findings, it specific theoretical developments, and its separate research literature. It is proposed here that results from all three domains can be treated with a single analytic model. This article shows how to generate a comprehensive memory representation based on multidimensional signal detection theory and how to make predictions for each of these paradigms using decision axes drawn through the space. The detection model is simpler than the comparable multinomial model, it is more easily generalizable, and it does not make threshold assumptions. An experiment using the same memory set for all three tasks demonstrates the analysis and tests the model. The results show that some seemingly complex relations between the paradigms derive from an underlying simplicity of structure.

  6. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    PubMed

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  7. Memory and the Moses illusion: failures to detect contradictions with stored knowledge yield negative memorial consequences.

    PubMed

    Bottoms, Hayden C; Eslick, Andrea N; Marsh, Elizabeth J

    2010-08-01

    Although contradictions with stored knowledge are common in daily life, people often fail to notice them. For example, in the Moses illusion, participants fail to notice errors in questions such as "How many animals of each kind did Moses take on the Ark?" despite later showing knowledge that the Biblical reference is to Noah, not Moses. We examined whether error prevalence affected participants' ability to detect distortions in questions, and whether this in turn had memorial consequences. Many of the errors were overlooked, but participants were better able to catch them when they were more common. More generally, the failure to detect errors had negative memorial consequences, increasing the likelihood that the errors were used to answer later general knowledge questions. Methodological implications of this finding are discussed, as it suggests that typical analyses likely underestimate the size of the Moses illusion. Overall, answering distorted questions can yield errors in the knowledge base; most importantly, prior knowledge does not protect against these negative memorial consequences.

  8. Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation.

    PubMed

    Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha

    2008-09-01

    Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.

  9. The relationship between sustained inattentional blindness and working memory capacity.

    PubMed

    Beanland, Vanessa; Chan, Esther Hiu Chung

    2016-04-01

    Inattentional blindness, whereby observers fail to detect unexpected stimuli, has been robustly demonstrated in a range of situations. Originally research focused primarily on how stimulus characteristics and task demands affect inattentional blindness, but increasingly studies are exploring the influence of observer characteristics on the detection of unexpected stimuli. It has been proposed that individual differences in working memory capacity predict inattentional blindness, on the assumption that higher working memory capacity confers greater attentional capacity for processing unexpected stimuli. Unfortunately, empirical investigations of the association between inattentional blindness and working memory capacity have produced conflicting findings. To help clarify this relationship, we examined the relationship between inattentional blindness and working memory capacity in two samples (Ns = 195, 147) of young adults. We used three common variants of sustained inattentional blindness tasks, systematically manipulating the salience of the unexpected stimulus and primary task practice. Working memory capacity, measured by automated operation span (both Experiments 1 & 2) and N-back (Experiment 1 only) tasks, did not predict detection of the unexpected stimulus in any of the inattentional blindness tasks tested. Together with previous research, this undermines claims that there is a robust relationship between inattentional blindness and working memory capacity. Rather, it appears that any relationship between inattentional blindness and working memory is either too small to have practical significance or is moderated by other factors and consequently varies with attributes such as the sample characteristics within a given study.

  10. A continuous dual-process model of remember/know judgments.

    PubMed

    Wixted, John T; Mickes, Laura

    2010-10-01

    The dual-process theory of recognition memory holds that recognition decisions can be based on recollection or familiarity, and the remember/know procedure is widely used to investigate those 2 processes. Dual-process theory in general and the remember/know procedure in particular have been challenged by an alternative strength-based interpretation based on signal-detection theory, which holds that remember judgments simply reflect stronger memories than do know judgments. Although supported by a considerable body of research, the signal-detection account is difficult to reconcile with G. Mandler's (1980) classic "butcher-on-the-bus" phenomenon (i.e., strong, familiarity-based recognition). In this article, a new signal-detection model is proposed that does not deny either the validity of dual-process theory or the possibility that remember/know judgments can-when used in the right way-help to distinguish between memories that are largely recollection based from those that are largely familiarity based. It does, however, agree with all prior signal-detection-based critiques of the remember/know procedure, which hold that, as it is ordinarily used, the procedure mainly distinguishes strong memories from weak memories (not recollection from familiarity).

  11. Just one look: Direct gaze briefly disrupts visual working memory.

    PubMed

    Wang, J Jessica; Apperly, Ian A

    2017-04-01

    Direct gaze is a salient social cue that affords rapid detection. A body of research suggests that direct gaze enhances performance on memory tasks (e.g., Hood, Macrae, Cole-Davies, & Dias, Developmental Science, 1, 67-71, 2003). Nonetheless, other studies highlight the disruptive effect direct gaze has on concurrent cognitive processes (e.g., Conty, Gimmig, Belletier, George, & Huguet, Cognition, 115(1), 133-139, 2010). This discrepancy raises questions about the effects direct gaze may have on concurrent memory tasks. We addressed this topic by employing a change detection paradigm, where participants retained information about the color of small sets of agents. Experiment 1 revealed that, despite the irrelevance of the agents' eye gaze to the memory task at hand, participants were worse at detecting changes when the agents looked directly at them compared to when the agents looked away. Experiment 2 showed that the disruptive effect was relatively short-lived. Prolonged presentation of direct gaze led to recovery from the initial disruption, rather than a sustained disruption on change detection performance. The present study provides the first evidence that direct gaze impairs visual working memory with a rapidly-developing yet short-lived effect even when there is no need to attend to agents' gaze.

  12. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells

    PubMed Central

    Carrette, Florent; Henriquez, Monique L.; Fujita, Yu

    2018-01-01

    T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007

  13. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    PubMed

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. © 2016 Associated Professional Sleep Societies, LLC.

  14. Voluntary and involuntary emotional memory following an analogue traumatic stressor: the differential effects of communality in men and women.

    PubMed

    Kamboj, Sunjeev K; Oldfield, Lucy; Loewenberger, Alana; Das, Ravi K; Bisby, James; Brewin, Chris R

    2014-12-01

    Men and women show differences in performance on emotional processing tasks. Sex also interacts with personality traits to affect information processing. Here we examine effects of sex, and two personality traits that are differentially expressed in men and women - instrumentality and communality - on voluntary and involuntary memory for distressing video-footage. On session one, participants (n = 39 men; 40 women) completed the Bem Sex-Role Inventory, which assesses communal and instrumental traits. After viewing film-footage of death/serious injury, participants recorded daily involuntary memories (intrusions) relating to the footage on an online diary for seven days, returning on day eight for a second session to perform a voluntary memory task relating to the film. Communality interacted with sex such that men with higher levels of communality reported more frequent involuntary memories. Alternatively, a communality × sex interaction reflected a tendency for women with high levels of communality to perform more poorly on the voluntary recognition memory task. The study involved healthy volunteers with no history of significant psychological disorder. Future research with clinical populations will help to determine the generalizability of the current findings. Communality has separate effects on voluntary and involuntary emotional memory. We suggest that high levels of communality in men and women may confer vulnerability to the negative effects of stressful events either through the over-encoding of sensory/perceptual-information in men or the reduced encoding of contextualised, verbally-based, voluntarily accessible representations in women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Tracing Donor-MHC Class II Reactive B cells in Mouse Cardiac Transplantation: Delayed CTLA4-Ig Treatment Prevents Memory Alloreactive B-Cell Generation.

    PubMed

    Yang, Jinghui; Chen, Jianjun; Young, James S; Wang, Qiang; Yin, Dengping; Sciammas, Roger; Chong, Anita S

    2016-08-01

    The dual role of B cells as drivers and suppressors of the immune responses have underscored the need to trace the fate of B cells recognizing donor major histocompatibility complex class I and class II after allograft transplantation. In this study, we used donor class II tetramers to trace the fate of I-E-specific B cells after immunization with BALB/c spleen cells or cardiac transplantation, in naive or sensitized C57BL/6 recipients. We combined this approach with genetic lineage tracing of memory B cells in activation-induced cytidine deaminase regulated Cre transgenic mice crossed to the ROSA26-enhanced yellow fluorescent protein reporter mice to track endogenous I-E-specific memory B cell generation. Immunization with BALB/c splenocytes or heart transplantation induced an expansion and differentiation of I-E-specific B cells into germinal center B cells, whereas BALB/c heart transplantation into sensitized recipients induced the preferential differentiation into antibody-secreting cells. A 10.8-fold increase in the frequency of I-E-specific memory B cells was observed by day 42 postimmunization. Treatment with CTLA4-Ig starting on day 0 or day 7 postimmunization abrogated I-E-specific memory B cell generation and sensitized humoral responses, but not if treatment commenced on day 14. The majority of donor-specific memory B cells are generated between days 7 and 14 postimmunization, thus revealing a flexible timeframe whereby delayed CTLA4-Ig administration can inhibit sensitization and the generation of memory graft-reactive B cells.

  16. Post-learning stress differentially affects memory for emotional gist and detail in naturally cycling women and women on hormonal contraceptives

    PubMed Central

    Nielsen, Shawn E.; Ahmed, Imran; Cahill, Larry

    2014-01-01

    Sex differences in emotional memory have received increasing interest over the past decade. However, to date, no work has explored how a post-learning stressor might modulate the influence of sex hormone status on memory for gist and peripheral detail in an emotional versus neutral context. Here, we tested three predictions. First, compared to naturally cycling women (NC women) in the luteal phase, women on hormonal contraception (HC women) would have significantly blunted HPA reactivity to physical stress. Second, post-learning stress would enhance detail and gist memory from an emotional story in NC women, and finally, post-learning stress would not affect emotional memory for details or gist in HC women. Healthy NC and HC women viewed a brief, narrated story containing neutral or emotionally arousing elements. Immediately after, Cold Pressor Stress (CPS) or a control procedure was administered. One week later, participants received a surprise free recall test for story elements. NC women exhibited significantly greater cortisol increases to CPS compared to HC women. NC women who viewed the emotional story and were administered CPS recalled the most peripheral details overall and more gist from the emotional compared to the neutral story. In HC women, however, the post-learning cortisol release did not affect memory for gist or peripheral details from the emotional or neutral story in any way. Additionally, NC and HC women performed similarly on measures of attention and arousal. These findings suggest that in women, post-learning stress differentially affects memory for emotional information depending on their hormonal contraceptive status. PMID:24841741

  17. Postlearning stress differentially affects memory for emotional gist and detail in naturally cycling women and women on hormonal contraceptives.

    PubMed

    Nielsen, Shawn E; Ahmed, Imran; Cahill, Larry

    2014-08-01

    Sex differences in emotional memory have received increasing interest over the past decade. However, to date, no work has explored how a postlearning stressor might modulate the influence of sex hormone status on memory for gist and peripheral detail in an emotional versus neutral context. Here, we tested 3 predictions. First, compared with naturally cycling (NC) women in the luteal phase, women on hormonal contraception (HC) would have significantly blunted hypothalamic-pituitary-adrenal reactivity to physical stress. Second, postlearning stress would enhance detail and gist memory from an emotional story in NC women, and finally, postlearning stress would not affect emotional memory for details or gist in HC women. Healthy NC and HC women viewed a brief, narrated story containing neutral or emotionally arousing elements. Immediately after, cold pressor stress (CPS) or a control procedure was administered. One week later, participants received a surprise free recall test for story elements. NC women exhibited significantly greater cortisol increases to CPS compared with HC women. NC women who viewed the emotional story and were administered CPS recalled the most peripheral details overall and more gist from the emotional compared with the neutral story. In HC women, however, the postlearning cortisol release did not affect memory for gist or peripheral details from the emotional or neutral story in any way. Additionally, NC and HC women performed similarly on measures of attention and arousal. These findings suggest that in women, postlearning stress differentially affects memory for emotional information depending on their hormonal contraceptive status.

  18. Incidental Memory Encoding Assessed with Signal Detection Theory and Functional Magnetic Resonance Imaging (fMRI).

    PubMed

    Clemens, Benjamin; Regenbogen, Christina; Koch, Kathrin; Backes, Volker; Romanczuk-Seiferth, Nina; Pauly, Katharina; Shah, N Jon; Schneider, Frank; Habel, Ute; Kellermann, Thilo

    2015-01-01

    In functional magnetic resonance imaging (fMRI) studies that apply a "subsequent memory" approach, successful encoding is indicated by increased fMRI activity during the encoding phase for hits vs. misses, in areas underlying memory encoding such as the hippocampal formation. Signal-detection theory (SDT) can be used to analyze memory-related fMRI activity as a function of the participant's memory trace strength (d(')). The goal of the present study was to use SDT to examine the relationship between fMRI activity during incidental encoding and participants' recognition performance. To implement a new approach, post-experimental group assignment into High- or Low Performers (HP or LP) was based on 29 healthy participants' recognition performance, assessed with SDT. The analyses focused on the interaction between the factors group (HP vs. LP) and recognition performance (hits vs. misses). A whole-brain analysis revealed increased activation for HP vs. LP during incidental encoding for remembered vs. forgotten items (hits > misses) in the insula/temporo-parietal junction (TPJ) and the fusiform gyrus (FFG). Parameter estimates in these regions exhibited a significant positive correlation with d('). As these brain regions are highly relevant for salience detection (insula), stimulus-driven attention (TPJ), and content-specific processing of mnemonic stimuli (FFG), we suggest that HPs' elevated memory performance was associated with enhanced attentional and content-specific sensory processing during the encoding phase. We provide first correlative evidence that encoding-related activity in content-specific sensory areas and content-independent attention and salience detection areas influences memory performance in a task with incidental encoding of facial stimuli. Based on our findings, we discuss whether the aforementioned group differences in brain activity during incidental encoding might constitute the basis of general differences in memory performance between HP and LP.

  19. Process Demands of Rejection Mechanisms of Recognition Memory

    ERIC Educational Resources Information Center

    Odegard, Timothy N.; Koen, Joshua D.; Gama, Jorge M.

    2008-01-01

    A surge of research has been conducted to examine memory editing mechanisms that help distinguish accurate from inaccurate memories. In the present experiment, the authors examined the ability of participants to use novelty detection, recollection rejection, and plausibility judgments to reject lures presented on a recognition memory test.…

  20. The effect of the order in which episodic autobiographical memories versus autobiographical knowledge are shared on feelings of closeness.

    PubMed

    Brandon, Nicole R; Beike, Denise R; Cole, Holly E

    2017-07-01

    Autobiographical memories (AMs) can be used to create and maintain closeness with others [Alea, N., & Bluck, S. (2003). Why are you telling me that? A conceptual model of the social function of autobiographical memory. Memory, 11(2), 165-178]. However, the differential effects of memory specificity are not well established. Two studies with 148 participants tested whether the order in which autobiographical knowledge (AK) and specific episodic AM (EAM) are shared affects feelings of closeness. Participants read two memories hypothetically shared by each of four strangers. The strangers first shared either AK or an EAM, and then shared either AK or an EAM. Participants were randomly assigned to read either positive or negative AMs from the strangers. Findings suggest that people feel closer to those who share positive AMs in the same way they construct memories: starting with general and moving to specific.

  1. The role of memory representation in the vigilance decrement

    PubMed Central

    CAGGIANO, DANIEL M.; PARASURAMAN, RAJA

    2005-01-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance—sensitivity decrement over time—is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand. PMID:15732706

  2. To search or to like: Mapping fixations to differentiate two forms of incidental scene memory.

    PubMed

    Choe, Kyoung Whan; Kardan, Omid; Kotabe, Hiroki P; Henderson, John M; Berman, Marc G

    2017-10-01

    We employed eye-tracking to investigate how performing different tasks on scenes (e.g., intentionally memorizing them, searching for an object, evaluating aesthetic preference) can affect eye movements during encoding and subsequent scene memory. We found that scene memorability decreased after visual search (one incidental encoding task) compared to intentional memorization, and that preference evaluation (another incidental encoding task) produced better memory, similar to the incidental memory boost previously observed for words and faces. By analyzing fixation maps, we found that although fixation map similarity could explain how eye movements during visual search impairs incidental scene memory, it could not explain the incidental memory boost from aesthetic preference evaluation, implying that implicit mechanisms were at play. We conclude that not all incidental encoding tasks should be taken to be similar, as different mechanisms (e.g., explicit or implicit) lead to memory enhancements or decrements for different incidental encoding tasks.

  3. Rey's 15-Item Visual Memory Test for the Detection of Malingering: Normative Observations on Patients with Neurological Disorders.

    ERIC Educational Resources Information Center

    Lee, Gregory P.; And Others

    1992-01-01

    To gather normative observations on a visual memory test developed by A. Rey (1964), it was administered to 100 temporal-lobe epilepsy patients with memory deficits and 56 outpatients with neurological disorders. Results suggest a cutoff score of 7 on the memory test may alert the clinician to possible factitious memory complaints. (SLD)

  4. Hold-up power supply for flash memory

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A hold-up power supply for flash memory systems is provided. The hold-up power supply provides the flash memory with the power needed to temporarily operate when a power loss exists. This allows the flash memory system to complete any erasures and writes, and thus allows it to shut down gracefully. The hold-up power supply detects when a power loss on a power supply bus is occurring and supplies the power needed for the flash memory system to temporally operate. The hold-up power supply stores power in at least one capacitor. During normal operation, power from a high voltage supply bus is used to charge the storage capacitors. When a power supply loss is detected, the power supply bus is disconnected from the flash memory system. A hold-up controller controls the power flow from the storage capacitors to the flash memory system. The hold-up controller uses feedback to assure that the proper voltage is provided from the storage capacitors to the flash memory system. This power supplied by the storage capacitors allows the flash memory system to complete any erasures and writes, and thus allows the flash memory system to shut down gracefully.

  5. Extinction during reconsolidation eliminates recovery of fear conditioned to fear-irrelevant and fear-relevant stimuli.

    PubMed

    Thompson, Alina; Lipp, Ottmar V

    2017-05-01

    Extant literature suggests that extinction training delivered during the memory reconsolidation period is superior to traditional extinction training in the reduction of fear recovery, as it targets the original fear memory trace. At present it is debated whether different types of fear memories are differentially sensitive to behavioral manipulations of reconsolidation. Here, we examined post-reconsolidation recovery of fear as a function of conditioned stimulus (CS) fear-relevance, using the unconditioned stimulus (US) to reactivate and destabilize conditioned fear memories. Participants (N = 56; 25 male; M = 24.39 years, SD = 7.71) in the US-reactivation and control group underwent differential fear conditioning to fear-relevant (spiders/snakes) and fear-irrelevant (geometric shapes) CSs on Day 1. On Day 2, participants received either reminded (US-reactivation) or non-reminded extinction training. Tests of fear recovery, conducted 24 h later, revealed recovery of differential electrodermal responding to both classes of CSs in the control group, but not in the US-reactivation group. These findings indicate that the US reactivation-extinction procedure eliminated recovery of extinguished responding not only to fear-irrelevant, but also to fear-relevant CSs. Contrasting previous reports, our findings show that post-reconsolidation recovery of conditioned responding is not a function of CS fear-relevance and that persistent reduction of fear, conditioned to fear-relevant CSs, can be achieved through behavioral manipulations of reconsolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Olfactory memory in the old and very old: relations to episodic and semantic memory and APOE genotype.

    PubMed

    Larsson, Maria; Hedner, Margareta; Papenberg, Goran; Seubert, Janina; Bäckman, Lars; Laukka, Erika J

    2016-02-01

    The neuroanatomical organization that underlies olfactory memory is different from that of other memory types. The present work examines olfactory memory in an elderly population-based sample (Swedish National Study on Aging and Care in Kungsholmen) aged 60-100 years (n = 2280). We used structural equation modeling to investigate whether olfactory memory in old age is best conceptualized as a distinct category, differentiated from episodic and semantic memory. Further, potential olfactory dedifferentiation and genetic associations (APOE) to olfactory function in late senescence were investigated. Results are in support of a 3-factor solution where olfactory memory, as indexed by episodic odor recognition and odor identification, is modeled separately from episodic and semantic memory for visual and verbal information. Increasing age was associated with poorer olfactory memory performance, and observed age-related deficits were further exacerbated for carriers of the APOE ε4 allele; these effects tended to be larger for olfactory memory compared to episodic and semantic memory pertaining to other sensory systems (vision, auditory). Finally, stronger correlations between olfactory and episodic memory, indicating dedifferentiation, were observed in the older age groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. An investigation into prospective memory in children with developmental dyslexia.

    PubMed

    Khan, Azizuddin

    2014-01-01

    Developmental dyslexia hinders reading and writing acquisition of around 5-10% of the children all over the world. However, little is known about role of prospective memory among dyslexics. Prospective memory is realization of delayed intention. Realization of delayed intention requires self initiated process. The present study explored the role of memory (prospective and retrospective memory), meta-memory and attention among dyslexic's children. One hundred and fifteen children (51 dyslexics and 64 normal controls) participated in the study. Prospective and retrospective memory questionnaire, everyday attention questionnaire and meta-memory were administered on children. Analysis of variance was used to analyses the data. All the main effects were significant. Some interactions were also found to be significant. Results suggest that dyslexic's performance on memory (prospective and retrospective memory) was worse than normal control. Meta-memory influences both dyslexics and normal control on prospective and retrospective memory. However, meta-memory affected dyslexics much more than normal control group. Similarly, significant differential effects were observed for simple, difficult and mixed attentional condition among between dyslexics and normal control. Dyslexic's performance was deteriorated as compared to normal control group. The findings of the study are discussed in the light of the existing literature.

  8. An investigation into prospective memory in children with developmental dyslexia

    PubMed Central

    Khan, Azizuddin

    2014-01-01

    Developmental dyslexia hinders reading and writing acquisition of around 5–10% of the children all over the world. However, little is known about role of prospective memory among dyslexics. Prospective memory is realization of delayed intention. Realization of delayed intention requires self initiated process. The present study explored the role of memory (prospective and retrospective memory), meta-memory and attention among dyslexic's children. One hundred and fifteen children (51 dyslexics and 64 normal controls) participated in the study. Prospective and retrospective memory questionnaire, everyday attention questionnaire and meta-memory were administered on children. Analysis of variance was used to analyses the data. All the main effects were significant. Some interactions were also found to be significant. Results suggest that dyslexic's performance on memory (prospective and retrospective memory) was worse than normal control. Meta-memory influences both dyslexics and normal control on prospective and retrospective memory. However, meta-memory affected dyslexics much more than normal control group. Similarly, significant differential effects were observed for simple, difficult and mixed attentional condition among between dyslexics and normal control. Dyslexic's performance was deteriorated as compared to normal control group. The findings of the study are discussed in the light of the existing literature. PMID:25538638

  9. Manipulations of attention dissociate fragile visual short-term memory from visual working memory.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F

    2011-05-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Novel Cysteine-Rich Neurotrophic Factor in "Aplysia" Facilitates Growth, MAPK Activation, and Long-Term Synaptic Facilitation

    ERIC Educational Resources Information Center

    Pu, Lu; Kopec, Ashley M.; Boyle, Heather D.; Carew, Thomas J.

    2014-01-01

    Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in "Aplysia" showed that a TrkB ligand is required for MAPK…

  11. Differential Roles of the Fan-Shaped Body and the Ellipsoid Body in "Drosophila" Visual Pattern Memory

    ERIC Educational Resources Information Center

    Pan, Yufeng; Zhou, Yanqiong; Guo, Chao; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2009-01-01

    The central complex is a prominent structure in the "Drosophila" brain. Visual learning experiments in the flight simulator, with flies with genetically altered brains, revealed that two groups of horizontal neurons in one of its substructures, the fan-shaped body, were required for "Drosophila" visual pattern memory. However,…

  12. Enhanced Noradrenergic Activity Potentiates Fear Memory Consolidation and Reconsolidation by Differentially Recruiting alpha1- and beta-Adrenergic Receptors

    ERIC Educational Resources Information Center

    Gazarini, Lucas; Stern, Cristina A. Jark; Carobrez, Antonio P.; Bertoglio, Leandro J.

    2013-01-01

    Consolidation and reconsolidation are phases of memory stabilization that diverge slightly. Noradrenaline is known to influence both processes, but the relative contribution of alpha1- and beta-adrenoceptors is unclear. The present study sought to investigate this matter by comparing their recruitment to consolidate and/or reconsolidate a…

  13. Neural Correlates of Feigned Memory Impairment are Distinguishable from Answering Randomly and Answering Incorrectly: An fMRI and Behavioral Study

    ERIC Educational Resources Information Center

    Liang, Chun-Yu; Xu, Zhi-Yuan; Mei, Wei; Wang, Li-Li; Xue, Li; Lu, De Jian; Zhao, Hu

    2012-01-01

    Previous functional magnetic resonance imaging (fMRI) studies have identified activation in the prefrontal-parietal-sub-cortical circuit during feigned memory impairment when comparing with truthful telling. Here, we used fMRI to determine whether neural activity can differentiate between answering correctly, answering randomly, answering…

  14. What Makes a Skilled Writer? Working Memory and Audience Awareness during Text Composition

    ERIC Educational Resources Information Center

    Alamargot, Denis; Caporossi, Gilles; Chesnet, David; Ros, Christine

    2011-01-01

    This study investigated the role of working memory capacity as a factor for individual differences in the ability to compose a text with communicative efficiency based on audience awareness. We analyzed its differential effects on the dynamics of the writing processes, as well as on the content of the finished product. Twenty-five graduate…

  15. A manual for PARTI runtime primitives

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel

    1990-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  16. Stimulus-Outcome Learnability Differentially Activates Anterior Cingulate and Hippocampus at Feedback Processing

    ERIC Educational Resources Information Center

    Rodriguez, Paul F.

    2009-01-01

    Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…

  17. Effect of Memory Support and Elicited Production on Fast Mapping of New Words by Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Chapman, Robin S.; Sindberg, Heidi; Bridge, Cynthia; Gigstead, Katherine; Hesketh, Linda

    2006-01-01

    Purpose: The purpose of this study was to determine whether memory support and elicited production differentially benefited fast mapping of new vocabulary (comprehension, production accuracy, and speed) in adolescents with Down syndrome (DS) compared with typically developing (TD) children matched for syntax comprehension. The study also examined…

  18. Visual Working Memory in Deaf Children with Diverse Communication Modes: Improvement by Differential Outcomes

    ERIC Educational Resources Information Center

    Lopez-Crespo, Ginesa; Daza, Maria Teresa; Mendez-Lopez, Magdalena

    2012-01-01

    Although visual functions have been proposed to be enhanced in deaf individuals, empirical studies have not yet established clear evidence on this issue. The present study aimed to determine whether deaf children with diverse communication modes had superior visual memory and whether their performance was improved by the use of differential…

  19. Representational Explanations of "Process" Dissociations in Recognition: The DRYAD Theory of Aging and Memory Judgments

    ERIC Educational Resources Information Center

    Benjamin, Aaron S.

    2010-01-01

    It is widely assumed that older adults suffer a deficit in the psychological processes that underlie remembering of contextual or source information. This conclusion is based in large part on empirical interactions, including disordinal ones, that reveal differential effects of manipulations of memory strength on recognition in young and old…

  20. Differential Time-Dependent Effects of Emotion on Recollective Experience and Memory for Contextual Information

    ERIC Educational Resources Information Center

    Sharot, Tali; Yonelinas, Andrew P.

    2008-01-01

    Emotion has been suggested to slow forgetting via a mechanism that enhances memory consolidation. Here, we investigate whether this time dependent process influences the subjective experience of recollection as well as the ability to retrieve specific contextual details of the study event. To do so we examined recognition for emotional and neutral…

  1. Neuropsychological and SPECT scan findings during and after transient global amnesia: evidence for the differential impairment of remote episodic memory.

    PubMed

    Evans, J; Wilson, B; Wraight, E P; Hodges, J R

    1993-11-01

    A patient had neuropsychological testing during, and at two days and seven weeks after a transient global amnesia (TGA) attack. During the attack she exhibited a characteristically profound anterograde amnesia but a limited remote memory loss; the most striking impairment was a deficit in personal episodic memory revealed by her performance on the Autobiographical Memory Interview. Personal and general semantic information was less impaired although there were indications of a temporal gradient in the impairment. When tested after the attack, she demonstrated normal anterograde and retrograde memory. A SPECT scan performed during TGA showed a focal reduction in cerebral perfusion in the postero-medial temporal lobes bilaterally which had resolved after seven weeks.

  2. Detection of weak signals in memory thermal baths.

    PubMed

    Jiménez-Aquino, J I; Velasco, R M; Romero-Bastida, M

    2014-11-01

    The nonlinear relaxation time and the statistics of the first passage time distribution in connection with the quasideterministic approach are used to detect weak signals in the decay process of the unstable state of a Brownian particle embedded in memory thermal baths. The study is performed in the overdamped approximation of a generalized Langevin equation characterized by an exponential decay in the friction memory kernel. A detection criterion for each time scale is studied: The first one is referred to as the receiver output, which is given as a function of the nonlinear relaxation time, and the second one is related to the statistics of the first passage time distribution.

  3. The fate of object memory traces under change detection and change blindness.

    PubMed

    Busch, Niko A

    2013-07-03

    Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Implementing a bubble memory hierarchy system

    NASA Technical Reports Server (NTRS)

    Segura, R.; Nichols, C. D.

    1979-01-01

    This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.

  5. Dedicated memory structure holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, George L.; Eichenberger, Alexandre E.; O'Brien, John K. P.

    The present disclosure relates generally to a dedicated memory structure (that is, hardware device) holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute.

  6. Modelling neural correlates of working memory: A coordinate-based meta-analysis

    PubMed Central

    Rottschy, C.; Langner, R.; Dogan, I.; Reetz, K.; Laird, A.R.; Schulz, J.B.; Fox, P.T.; Eickhoff, S.B.

    2011-01-01

    Working memory subsumes the capability to memorize, retrieve and utilize information for a limited period of time which is essential to many human behaviours. Moreover, impairments of working memory functions may be found in nearly all neurological and psychiatric diseases. To examine what brain regions are commonly and differently active during various working memory tasks, we performed a coordinate-based meta-analysis over 189 fMRI experiments on healthy subjects. The main effect yielded a widespread bilateral fronto-parietal network. Further meta-analyses revealed that several regions were sensitive to specific task components, e.g. Broca’s region was selectively active during verbal tasks or ventral and dorsal premotor cortex were preferentially involved in memory for object identity and location, respectively. Moreover, the lateral prefrontal cortex showed a division in a rostral and a caudal part based on differential involvement in task-set and load effects. Nevertheless, a consistent but more restricted “core” network emerged from conjunctions across analyses of specific task designs and contrasts. This “core” network appears to comprise the quintessence of regions, which are necessary during working memory tasks. It may be argued that the core regions form a distributed executive network with potentially generalized functions for focusing on competing representations in the brain. The present study demonstrates that meta-analyses are a powerful tool to integrate the data of functional imaging studies on a (broader) psychological construct, probing the consistency across various paradigms as well as the differential effects of different experimental implementations. PMID:22178808

  7. Visual cognition in amnesic H.M.: selective deficits on the What's-Wrong-Here and Hidden-Figure tasks.

    PubMed

    MacKay, Donald G; James, Lori E

    2009-10-01

    Two experiments compared the visual cognition performance of amnesic H.M. and memory-normal controls matched for age, background, intelligence, and education. In Experiment 1 H.M. exhibited deficits relative to the controls in detecting "erroneous objects" in complex visual scenes--for example, a bird flying inside a fishbowl. In Experiment 2 H.M. exhibited deficits relative to the controls in standard Hidden-Figure tasks when detecting unfamiliar targets but not when detecting familiar targets--for example, circles, squares, and right-angle triangles. H.M.'s visual cognition deficits were not due to his well-known problems in explicit learning and recall, inability to comprehend or remember the instructions, general slowness, motoric difficulties, low motivation, low IQ relative to the controls, or working-memory limitations. Parallels between H.M.'s selective deficits in visual cognition, language, and memory are discussed. These parallels contradict the standard "systems theory" account of H.M.'s condition but comport with the hypothesis that H.M. has difficulty representing unfamiliar but not familiar information in visual cognition, language, and memory. Implications of our results are discussed for binding theory and the ongoing debate over what counts as "memory" versus "not-memory."

  8. Analysis of antigen-specific B-cell memory directly ex vivo.

    PubMed

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2004-01-01

    Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.

  9. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce.

    PubMed

    Yakovlev, Igor A; Fossdal, Carl G

    2017-01-01

    Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the formation of epigenetic marks. We suggest that TIR, NBS and LRR domain containing proteins could fulfill more general functions for signal transduction from external environmental stimuli and conversion them into molecular response. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation in Norway spruce.

  10. Comparison of adult age differences in verbal and visuo-spatial memory: the importance of 'pure', parallel and validated measures.

    PubMed

    Kemps, Eva; Newson, Rachel

    2006-04-01

    The study compared age-related decrements in verbal and visuo-spatial memory across a broad elderly adult age range. Twenty-four young (18-25 years), 24 young-old (65-74 years), 24 middle-old (75-84 years) and 24 old-old (85-93 years) adults completed parallel recall and recognition measures of verbal and visuo-spatial memory from the Doors and People Test (Baddeley, Emslie & Nimmo-Smith, 1994). These constituted 'pure' and validated indices of either verbal or visuo-spatial memory. Verbal and visuo-spatial memory declined similarly with age, with a steeper decline in recall than recognition. Unlike recognition memory, recall performance also showed a heightened decline after the age of 85. Age-associated memory loss in both modalities was largely due to working memory and executive function. Processing speed and sensory functioning (vision, hearing) made minor contributions to memory performance and age differences in it. Together, these findings demonstrate common, rather than differential, age-related effects on verbal and visuo-spatial memory. They also emphasize the importance of using 'pure', parallel and validated measures of verbal and visuo-spatial memory in memory ageing research.

  11. Eye Movements and Visual Memory for Scenes

    DTIC Science & Technology

    2005-01-01

    Scene memory research has demonstrated that the memory representation of a semantically inconsistent object in a scene is more detailed and/or complete... memory during scene viewing, then changes to semantically inconsistent objects (which should be represented more com- pletely) should be detected more... semantic description. Due to the surprise nature of the visual memory test, any learning that occurred during the search portion of the experiment was

  12. Memory testing in dementia: how much is enough?

    PubMed

    Derrer, D S; Howieson, D B; Mueller, E A; Camicioli, R M; Sexton, G; Kaye, J A

    2001-01-01

    Analyses of eight widely used memory measures (Word List Acquisition and Recall used in the Alzheimer's Disease Assessment Scale and the Consortium to Establish a Registry for Alzheimer's Disease neuropsychology battery, Wechsler Memory Scale-Revised [WMS-R] Logical Memory I and II, WMS-R Visual Reproduction I and II, the memory scores from the Neurobehavioral Cognitive Status Examination [NCSE], memory scores from the Mini-Mental State Examination [MMSE]), and the MMSE total score showed each to have moderate predictive power in differentiating between patients with mild dementia and healthy normal controls. When these instruments were combined in a logistic regression analysis, three of them had substantial predictive power. Together, the Word List Acquisition, WMS-R Logical Memory II, and WMS-R Visual Reproduction II were 97.26% accurate (100% sensitive and 94.59% specific) in distinguishing these two groups. The Word List Acquisition is a brief test that alone had high accuracy (92%). These memory tests are highly useful in the diagnosis of mild dementia.

  13. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis.

    PubMed

    Carpenter, Stephen M; Yang, Jason D; Lee, Jinhee; Barreira-Silva, Palmira; Behar, Samuel M

    2017-11-01

    Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.

  14. Age effects on explicit and implicit memory

    PubMed Central

    Ward, Emma V.; Berry, Christopher J.; Shanks, David R.

    2013-01-01

    It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favors the single-system view. Implications for the memory systems debate are discussed. PMID:24065942

  15. Selective updating of working memory content modulates meso-cortico-striatal activity.

    PubMed

    Murty, Vishnu P; Sambataro, Fabio; Radulescu, Eugenia; Altamura, Mario; Iudicello, Jennifer; Zoltick, Bradley; Weinberger, Daniel R; Goldberg, Terry E; Mattay, Venkata S

    2011-08-01

    Accumulating evidence from non-human primates and computational modeling suggests that dopaminergic signals arising from the midbrain (substantia nigra/ventral tegmental area) mediate striatal gating of the prefrontal cortex during the selective updating of working memory. Using event-related functional magnetic resonance imaging, we explored the neural mechanisms underlying the selective updating of information stored in working memory. Participants were scanned during a novel working memory task that parses the neurophysiology underlying working memory maintenance, overwriting, and selective updating. Analyses revealed a functionally coupled network consisting of a midbrain region encompassing the substantia nigra/ventral tegmental area, caudate, and dorsolateral prefrontal cortex that was selectively engaged during working memory updating compared to the overwriting and maintenance of working memory content. Further analysis revealed differential midbrain-dorsolateral prefrontal interactions during selective updating between low-performing and high-performing individuals. These findings highlight the role of this meso-cortico-striatal circuitry during the selective updating of working memory in humans, which complements previous research in behavioral neuroscience and computational modeling. Published by Elsevier Inc.

  16. Virtex-5QV Self Scrubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojahn, Christopher K.

    2015-10-20

    This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.

  17. Monotone viable trajectories for functional differential inclusions

    NASA Astrophysics Data System (ADS)

    Haddad, Georges

    This paper is a study on functional differential inclusions with memory which represent the multivalued version of retarded functional differential equations. The main result gives a necessary and sufficient equations. The main result gives a necessary and sufficient condition ensuring the existence of viable trajectories; that means trajectories remaining in a given nonempty closed convex set defined by given constraints the system must satisfy to be viable. Some motivations for this paper can be found in control theory where F( t, φ) = { f( t, φ, u)} uɛU is the set of possible velocities of the system at time t, depending on the past history represented by the function φ and on a control u ranging over a set U of controls. Other motivations can be found in planning procedures in microeconomics and in biological evolutions where problems with memory do effectively appear in a multivalued version. All these models require viability constraints represented by a closed convex set.

  18. A Summary Score for the Framingham Heart Study Neuropsychological Battery

    PubMed Central

    Downer, Brian; Fardo, David W.; Schmitt, Frederick A.

    2015-01-01

    Objective To calculate three summary scores of the Framingham Heart Study neuropsychological battery and determine which score best differentiates between subjects classified as having normal cognition, test-based impaired learning and memory, test-based multidomain impairment, and dementia. Method The final sample included 2,503 participants. Three summary scores were assessed: (a) composite score that provided equal weight to each subtest, (b) composite score that provided equal weight to each cognitive domain assessed by the neuropsychological battery, and (c) abbreviated score comprised of subtests for learning and memory. Receiver operating characteristic analysis was used to determine which summary score best differentiated between the four cognitive states. Results The summary score that provided equal weight to each subtest best differentiated between the four cognitive states. Discussion A summary score that provides equal weight to each subtest is an efficient way to utilize all of the cognitive data collected by a neuropsychological battery. PMID:25804903

  19. A Summary Score for the Framingham Heart Study Neuropsychological Battery.

    PubMed

    Downer, Brian; Fardo, David W; Schmitt, Frederick A

    2015-10-01

    To calculate three summary scores of the Framingham Heart Study neuropsychological battery and determine which score best differentiates between subjects classified as having normal cognition, test-based impaired learning and memory, test-based multidomain impairment, and dementia. The final sample included 2,503 participants. Three summary scores were assessed: (a) composite score that provided equal weight to each subtest, (b) composite score that provided equal weight to each cognitive domain assessed by the neuropsychological battery, and (c) abbreviated score comprised of subtests for learning and memory. Receiver operating characteristic analysis was used to determine which summary score best differentiated between the four cognitive states. The summary score that provided equal weight to each subtest best differentiated between the four cognitive states. A summary score that provides equal weight to each subtest is an efficient way to utilize all of the cognitive data collected by a neuropsychological battery. © The Author(s) 2015.

  20. Memory Alteration Test to Detect Amnestic Mild Cognitive Impairment and Early Alzheimer's Dementia in Population with Low Educational Level.

    PubMed

    Custodio, Nilton; Lira, David; Herrera-Perez, Eder; Montesinos, Rosa; Castro-Suarez, Sheila; Cuenca-Alfaro, José; Valeriano-Lorenzo, Lucía

    2017-01-01

    Background/Aims : Short tests to early detection of the cognitive impairment are necessary in primary care setting, particularly in populations with low educational level. The aim of this study was to assess the performance of Memory Alteration Test (M@T) to discriminate controls, patients with amnestic Mild Cognitive Impairment (aMCI) and patients with early Alzheimer's Dementia (AD) in a sample of individuals with low level of education. Methods : Cross-sectional study to assess the performance of the M@T (study test), compared to the neuropsychological evaluation (gold standard test) scores in 247 elderly subjects with low education level from Lima-Peru. The cognitive evaluation included three sequential stages: (1) screening (to detect cases with cognitive impairment); (2) nosological diagnosis (to determinate specific disease); and (3) classification (to differentiate disease subtypes). The subjects with negative results for all stages were considered as cognitively normal (controls). The test performance was assessed by means of area under the receiver operating characteristic (ROC) curve. We calculated validity measures (sensitivity, specificity and correctly classified percentage), the internal consistency (Cronbach's alpha coefficient), and concurrent validity (Pearson's ratio coefficient between the M@T and Clinical Dementia Rating (CDR) scores). Results : The Cronbach's alpha coefficient was 0.79 and Pearson's ratio coefficient was 0.79 ( p < 0.01). The AUC of M@T to discriminate between early AD and aMCI was 99.60% (sensitivity = 100.00%, specificity = 97.53% and correctly classified = 98.41%) and to discriminate between aMCI and controls was 99.56% (sensitivity = 99.17%, specificity = 91.11%, and correctly classified = 96.99%). Conclusions : The M@T is a short test with a good performance to discriminate controls, aMCI and early AD in individuals with low level of education from urban settings.

  1. Assessment of theory of mind in children with communication disorders: role of presentation mode.

    PubMed

    van Buijsen, Marit; Hendriks, Angelique; Ketelaars, Mieke; Verhoeven, Ludo

    2011-01-01

    Children with communication disorders have problems with both language and social interaction. The theory-of-mind hypothesis provides an explanation for these problems, and different tests have been developed to test this hypothesis. However, different modes of presentation are used in these tasks, which make the results difficult to compare. In the present study, the performances of typically developing children, children with specific language impairments, and children with autism spectrum disorders were therefore compared using three theory-of-mind tests (the Charlie test, the Smarties test, and the Sally-and-Anne test) presented in three different manners each (spoken, video, and line drawing modes). The results showed differential outcomes for the three types of tests and a significant interaction between group of children and mode of presentation. For the typically developing children, no differential effects of presentation mode were detected. For the children with SLI, the highest test scores were consistently evidenced in the line-drawing mode. For the children with ASD, test performance depended on the mode of presentation. Just how the children's non-verbal age, verbal age, and short-term memory related to their test scores was also explored for each group of children. The test scores of the SLI group correlated significantly with their short-term memory, those of the ASD group with their verbal age. These findings demonstrate that performance on theory-of-mind tests clearly depend upon mode of test presentation as well as the children's cognitive and linguistic abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Long lived haptenspecific memory in the newt, Notophthalmus viridescens

    PubMed Central

    Ruben, L. N.

    1983-01-01

    While enhanced long lived secondary humoral immune responses to thymus-dependent (TD) immunogens are known to occur in mammals, they have yet to be characterized in extant ectothermic vertebrates which do not normally generate immunoglobulin isotype diversity. Moreover, examination of memory in such a vertebrate may provide insights into the controversial issue of IgM memory in mammalia. Trinitrophenyl (TNP) conjugated to horse erythrocytes (HRBC) and to lipopolysaccharide (LPS) have been used to study primitive long lived (5 months) memory in the newt, Notophthalmus viridescens. The ability to recall TNP response memory was tested by secondary immunization with hapten conjugates of the same or a different carrier from the one used to initiate the primary response. All responses were monitored by immunocyto-adherence of pooled sensitized spleen cells. While carrier-specific priming was necessary to initiate primary anti-TNP responses when TD carriers (RBC) were used, it was not required when the more rapid secondary responses were tested. No enhanced anti-carrier responses were found. However, carrier-specific suppression of the secondary anti-hapten response was observed. Anamnesis which was both more rapid and intense developed only when TNP-LPS was used as the primary immunogen and anti-hapten memory was recalled with TNP-sheep erythrocytes (SRBC). Daily injections of Cyclosporin A from 1 day before reimmunization, affected the resultant primary (anti-SRBC) and secondary (anti-TNP) responses differentially. Colloidal carbon injection reduced the memory response by one-half. These results suggest that cellular regulatory controls may be involved in newt memory. However, no increase in TNP-specific antigen-binding cell affinity was found in comparisons of primary and secondary responses. Since reimmunization with TNP-LPS failed to produce enhanced responses following TNP-LPS priming, one can conclude that a thymus-independent (TI) carrier of the hapten will stimulate the generation of hapten-specific memory cells in the newt; however, their functional differentiation depends on collaborative events initiated by a TD carrier used to present the hapten. PMID:6822407

  3. Change blindness and visual memory: visual representations get rich and act poor.

    PubMed

    Varakin, D Alexander; Levin, Daniel T

    2006-02-01

    Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.

  4. Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory.

    PubMed

    Maeda, Katsuhiro; Hirose, Daisuke; Okoshi, Natsuki; Shimomura, Kouhei; Wada, Yuya; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji

    2018-03-07

    We report the first direct chirality sensing of a series of chiral hydrocarbons and isotopically chiral compounds (deuterated isotopomers), which are almost impossible to detect by conventional optical spectroscopic methods, by a stereoregular polyacetylene bearing 2,2'-biphenol-derived pendants. The polyacetylene showed a circular dichroism due to a preferred-handed helix formation in response to the hardly detectable hidden chirality of saturated tertiary or chiroptical quaternary hydrocarbons, and deuterated isotopomers. In sharp contrast to the previously reported sensory systems, the chirality detection by the polyacetylene relies on an excess one-handed helix formation induced by the chiral hydrocarbons and deuterated isotopomers via significant amplification of the chirality followed by its static memory, through which chiral information on the minute and hidden chirality can be stored as an excess of a single-handed helix memory for a long time.

  5. High visual working memory capacity in trait social anxiety.

    PubMed

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  6. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.

    PubMed

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2017-11-01

    The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Individual differences in working memory capacity and workload capacity.

    PubMed

    Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta

    2014-01-01

    We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.

  8. Neuropsychology in a Memory Disorder Clinic.

    PubMed

    Ruchinskas, Robert A; Cullum, C Munro

    2018-05-01

    The rationale for and factors related to embedding a neuropsychologist in the midst of a neurology-based memory disorder clinic are discussed. Common conditions encountered are briefly reviewed, along with an evaluation aimed at assisting with differential diagnosis. Advice for neuropsychologists is offered in terms of creating and refining a working model in a neurology clinic and strategies to improve communication and effectiveness are presented.

  9. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    NASA Astrophysics Data System (ADS)

    Wan, Li; Zhou, Qinghua

    2007-10-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.

  10. Differential Regulation of Glutamic Acid Decarboxylase Gene Expression after Extinction of a Recent Memory vs. Intermediate Memory

    ERIC Educational Resources Information Center

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jorg; Pape, Hans-Christian

    2012-01-01

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65…

  11. Brain Activation and Deactivation during Location and Color Working Memory Tasks in 11-13-Year-Old Children

    ERIC Educational Resources Information Center

    Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T.; Korvenoja, Antti; Aronen, Hannu J.; Carlson, Synnove

    2009-01-01

    Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state,…

  12. Memory in Early Onset Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder: Similarities and Differences

    ERIC Educational Resources Information Center

    Udal, Anne H.; Oygarden, Bjorg; Egeland, Jens; Malt, Ulrik F.; Groholt, Berit

    2012-01-01

    Differentiating between early-onset bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) can be difficult. Memory problems are commonly reported in BD, and forgetfulness is among the diagnostic criteria for ADHD. We compared children and adolescents with BD (n = 23), ADHD combined type (ADHD-C; n = 26), BD + ADHD-C (n = 15),…

  13. Autophosphorylation of [alpha]CaMKII is Differentially Involved in New Learning and Unlearning Mechanisms of Memory Extinction

    ERIC Educational Resources Information Center

    Kimura, Ryoichi; Silva, Alcino J.; Ohno, Masuo

    2008-01-01

    Accumulating evidence indicates the key role of [alpha]-calcium/calmodulin-dependent protein kinase II ([alpha]CaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which [alpha]CaMKII may mediate extinction by using…

  14. A manual for PARTI runtime primitives, revision 1

    NASA Technical Reports Server (NTRS)

    Das, Raja; Saltz, Joel; Berryman, Harry

    1991-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  15. Does Differential Visual Exploration Contribute to Visual Memory Impairments in 22Q11.2 Microdeletion Syndrome?

    ERIC Educational Resources Information Center

    Bostelmann, M.; Glaser, B.; Zaharia, A.; Eliez, S.; Schneider, M.

    2017-01-01

    Background: Chromosome 22q11.2 microdeletion syndrome (22q11.2DS) is a genetic syndrome characterised by a unique cognitive profile. Individuals with the syndrome present several non-verbal deficits, including visual memory impairments and atypical exploration of visual information. In this study, we seek to understand how visual attention may…

  16. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  17. A Developmental Study of Conceptual, Semantic Differential, and Acoustical Dimensions as Encoding Categories in Short-Term Memory. Final Report.

    ERIC Educational Resources Information Center

    Pender, Nola J.

    The purpose of this research was to investigate developmental changes in encoding processes. It attempted to determine the extent to which children of varying ages utilize semantic (denotative or connotative) and acoustical encoding categories in a short-term memory task. It appears to be a reasonable assumption that as associational hierarchies…

  18. Examining the Influence of Perceived Stress on Developmental Change in Memory and Perceptual Speed for Adopted and Nonadopted Individuals

    ERIC Educational Resources Information Center

    Ricker, Ashley A.; Corley, Robin; DeFries, John C.; Wadsworth, Sally J.; Reynolds, Chandra A.

    2018-01-01

    The present study prospectively evaluated cumulative early life perceived stress in relation to differential change in memory and perceptual speed from middle childhood to early adulthood. We aimed to identify periods of cognitive development susceptible to the effects of perceived stress among both adopted and nonadopted individuals. The sample…

  19. Duration of the Unconditioned Stimulus in Appetitive Conditioning of Honeybees Differentially Impacts Learning, Long-Term Memory Strength, and the Underlying Protein Synthesis

    ERIC Educational Resources Information Center

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…

  20. Stability in Cohen Grossberg-type bidirectional associative memory neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Cao, Jinde; Song, Qiankun

    2006-07-01

    In this paper, the exponential stability problem is investigated for a class of Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays. By using the analysis method, inequality technique and the properties of an M-matrix, several novel sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are derived. Moreover, the exponential convergence rate is estimated. The obtained results are less restrictive than those given in the earlier literature, and the boundedness and differentiability of the activation functions and differentiability of the time-varying delays are removed. Two examples with their simulations are given to show the effectiveness of the obtained results.

Top