Science.gov

Sample records for detecting evolutionary selection

  1. JCoDA: a tool for detecting evolutionary selection

    PubMed Central

    2010-01-01

    Background The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. Results JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. Conclusions JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary

  2. A real negative selection algorithm with evolutionary preference for anomaly detection

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Chen, Wen; Li, Tao

    2017-04-01

    Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.

  3. Evolutionary Theories of Detection

    SciTech Connect

    Fitch, J P

    2005-04-29

    Current, mid-term and long range technologies for detection of pathogens and toxins are briefly described in the context of performance metrics and operational scenarios. Predictive (evolutionary) and speculative (revolutionary) assessments are given with trade-offs identified, where possible, among competing performance goals.

  4. Soft Selective Sweeps in Evolutionary Rescue

    PubMed Central

    Wilson, Benjamin A.; Pennings, Pleuni S.; Petrov, Dmitri A.

    2017-01-01

    Evolutionary rescue occurs when a population that is declining in size because of an environmental change is rescued from extinction by genetic adaptation. Evolutionary rescue is an important phenomenon at the intersection of ecology and population genetics, and the study of evolutionary rescue is critical to understanding processes ranging from species conservation to the evolution of drug and pesticide resistance. While most population-genetic models of evolutionary rescue focus on estimating the probability of rescue, we focus on whether one or more adaptive lineages contribute to evolutionary rescue. We find that when evolutionary rescue is likely, it is often driven by soft selective sweeps where multiple adaptive mutations spread through the population simultaneously. We give full analytic results for the probability of evolutionary rescue and the probability that evolutionary rescue occurs via soft selective sweeps. We expect that these results will find utility in understanding the genetic signatures associated with various evolutionary rescue scenarios in large populations, such as the evolution of drug resistance in viral, bacterial, or eukaryotic pathogens. PMID:28213477

  5. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  6. Evolutionary games on cycles with strong selection.

    PubMed

    Altrock, P M; Traulsen, A; Nowak, M A

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  7. Molecular selection in a unified evolutionary sequence

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1986-01-01

    With guidance from experiments and observations that indicate internally limited phenomena, an outline of unified evolutionary sequence is inferred. Such unification is not visible for a context of random matrix and random mutation. The sequence proceeds from Big Bang through prebiotic matter, protocells, through the evolving cell via molecular and natural selection, to mind, behavior, and society.

  8. Extrapolating Weak Selection in Evolutionary Games

    PubMed Central

    Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne

    2013-01-01

    In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769

  9. Product Mix Selection Using AN Evolutionary Technique

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Vasant, Pandian

    2009-08-01

    This paper proposes an evolutionary technique for the solution of a real—life industrial problem and particular for the product mix selection problem. The evolutionary technique is a combination of a genetic algorithm that preserves the feasibility of the trial solutions with penalties and some local optimization method. The goal of this paper has been achieved in finding the best near optimal solution for the profit fitness function respect to vagueness factor and level of satisfaction. The findings of the profit values will be very useful for the decision makers in the industrial engineering sector for the implementation purpose. It's possible to improve the solutions obtained in this study by employing other meta-heuristic methods such as simulated annealing, tabu Search, ant colony optimization, particle swarm optimization and artificial immune systems.

  10. Selective evolutionary generation systems: Theory and applications

    NASA Astrophysics Data System (ADS)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  11. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    PubMed

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens.

  12. Strategy selection in evolutionary game dynamics on group interaction networks.

    PubMed

    Tan, Shaolin; Feng, Shasha; Wang, Pei; Chen, Yao

    2014-11-01

    Evolutionary game theory provides an appropriate tool for investigating the competition and diffusion of behavioral traits in biological or social populations. A core challenge in evolutionary game theory is the strategy selection problem: Given two strategies, which one is favored by the population? Recent studies suggest that the answer depends not only on the payoff functions of strategies but also on the interaction structure of the population. Group interactions are one of the fundamental interactive modes within populations. This work aims to investigate the strategy selection problem in evolutionary game dynamics on group interaction networks. In detail, the strategy selection conditions are obtained for some typical networks with group interactions. Furthermore, the obtained conditions are applied to investigate selection between cooperation and defection in populations. The conditions for evolution of cooperation are derived for both the public goods game and volunteer's dilemma game. Numerical experiments validate the above analytical results.

  13. An Evolutionary Perspective of Friendship Selection

    ERIC Educational Resources Information Center

    Coutinho, Savia A.

    2007-01-01

    The research reported in this article investigates whether promiscuity plays a role in same-sex and opposite-sex friend selection. Since same-sex friends share strong similarity and spend time with their friends' mates or potential mates, it becomes important to select same-sex friends who will not be sexual rivals. One way to determine rivalry in…

  14. Adaptation and habitat selection in the eco-evolutionary process.

    PubMed

    Morris, Douglas W

    2011-08-22

    The struggle for existence occurs through the vital rates of population growth. This basic fact demonstrates the tight connection between ecology and evolution that defines the emerging field of eco-evolutionary dynamics. An effective synthesis of the interdependencies between ecology and evolution is grounded in six principles. The mechanics of evolution specifies the origin and rules governing traits and evolutionary strategies. Traits and evolutionary strategies achieve their selective value through their functional relationships with fitness. Function depends on the underlying structure of variation and the temporal, spatial and organizational scales of evolution. An understanding of how changes in traits and strategies occur requires conjoining ecological and evolutionary dynamics. Adaptation merges these five pillars to achieve a comprehensive understanding of ecological and evolutionary change. I demonstrate the value of this world-view with reference to the theory and practice of habitat selection. The theory allows us to assess evolutionarily stable strategies and states of habitat selection, and to draw the adaptive landscapes for habitat-selecting species. The landscapes can then be used to forecast future evolution under a variety of climate change and other scenarios.

  15. Evolutionary Design of a Robotic Material Defect Detection System

    NASA Technical Reports Server (NTRS)

    Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)

    2002-01-01

    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.

  16. Sexual selection: an evolutionary force in plants?

    PubMed

    Skogsmyr, Io; Lankinen, Asa

    2002-11-01

    Sexual selection has traditionally been used to explain exaggerated sexual traits in male animals. Today the concept has been developed and various other sexually related traits have been suggested to evolve in the same manner. In nearly all new areas where the theory of sexual selection has been applied, there has been an intense debate as to whether the application is justified. Is it the case that some scientists are all too ready to employ fashionable ideas? Or are there too many dogmatic researchers refusing to accept that science develops and old ideas are transformed? Maybe the controversies are simply a reflection of the difficulty of defining a theory under constant re-evaluation. Thus, we begin by summarizing the theory of sexual selection in order to assess the influence of sexual selection on the evolution of plant morphology. We discuss empirical findings concerning potentially affected traits. Although we have tried to address criticisms fairly, we still conclude that sexual selection can be a useful tool when studying the evolution of reproductive traits in plants. Furthermore, by including the evidence from an additional kingdom, a fuller understanding of the processes involved in sexual selection can be gained.

  17. Multi-objective tag SNPs selection using evolutionary algorithms.

    PubMed

    Ting, Chuan-Kang; Lin, Wei-Ting; Huang, Yao-Ting

    2010-06-01

    Integrated analysis of single nucleotide polymorphisms (SNPs) and structure variations showed that the extent of linkage disequilibrium is common across different types of genetic variants. A subset of SNPs (called tag SNPs) is sufficient for capturing alleles of bi-allelic and even multi-allelic variants. However, accuracy and power of tag SNPs are affected by several factors, including genotyping failure, errors and tagging bias of certain alleles. In addition, different sets of tag SNPs should be selected for fulfilling requirements of various genotyping platforms and projects. This study formulates the problem of selecting tag SNPs into a four-objective optimization problem that minimizes the total amount of tag SNPs, maximizes tolerance for missing data, enlarges and balances detection power of each allele class. To resolve this problem, we propose evolutionary algorithms incorporated with greedy initialization to find non-dominated solutions considering all objectives simultaneously. This method provides users with great flexibility to extract different sets of tag SNPs for different platforms and scenarios (e.g. up to 100 tags and 10% missing rate). Compared to conventional methods, our method explores larger search space and requires shorter convergence time. Experimental results revealed strong and weak conflicts among these objectives. In particular, a small number of additional tag SNPs can provide sufficient tolerance and balanced power given the low missing and error rates of today's genotyping platforms. The software is freely available at Bioinformatics online and http://cilab.cs.ccu.edu.tw/service_dl.html.

  18. Efficient and scalable Pareto optimization by evolutionary local selection algorithms.

    PubMed

    Menczer, F; Degeratu, M; Street, W N

    2000-01-01

    Local selection is a simple selection scheme in evolutionary computation. Individual fitnesses are accumulated over time and compared to a fixed threshold, rather than to each other, to decide who gets to reproduce. Local selection, coupled with fitness functions stemming from the consumption of finite shared environmental resources, maintains diversity in a way similar to fitness sharing. However, it is more efficient than fitness sharing and lends itself to parallel implementations for distributed tasks. While local selection is not prone to premature convergence, it applies minimal selection pressure to the population. Local selection is, therefore, particularly suited to Pareto optimization or problem classes where diverse solutions must be covered. This paper introduces ELSA, an evolutionary algorithm employing local selection and outlines three experiments in which ELSA is applied to multiobjective problems: a multimodal graph search problem, and two Pareto optimization problems. In all these experiments, ELSA significantly outperforms other well-known evolutionary algorithms. The paper also discusses scalability, parameter dependence, and the potential distributed applications of the algorithm.

  19. Epistasis-Induced Evolutionary Plateaus in Selection Responses.

    PubMed

    Le Rouzic, Arnaud; Álvarez-Castro, José M

    2016-12-01

    Understanding and predicting evolution is a central challenge in both population and quantitative genetics. The amount of genetic variance for quantitative traits available in a population conditions the particular way in which this population will (or will not) evolve under natural or artificial selection. Here, we explore the potential of gene-gene interactions (epistasis) to induce evolutionary plateaus at which evolutionary change virtually collapses for a number of generations, followed by the release of previously cryptic genetic variation. First, we demonstrate theoretically that a wide range of epistatic interactions has the potential to generate temporary decelerations in the course of response to selection. Second, we perform simulations to show that such microevolutionary plateaus may occur in selection responses under empirically based assumptions. Finally, we show that such events can be traced in artificial selection experiments, thus providing further empirical evidence for this phenomenon.

  20. Evolutionary algorithm and modularity for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Bilal, Saoud; Abdelouahab, Moussaoui

    2017-05-01

    Evolutionary algorithms are very used today to resolve problems in many fields. There are few community detection methods in networks based on evolutionary algorithms. In our paper, we develop a new approach of community detection in networks based on evolutionary algorithm. In this approach we use an evolutionary algorithm to find the first community structure that maximizes the modularity. After that we improve the community structure through merging communities to find the final community structure that has the high value of modularity. We provide a general framework for implementing our approach. Compared with the state of art algorithms, simulation results on computer-generated and real world networks reflect the effectiveness of our approach.

  1. Neuro-evolutionary event detection technique for downhole microseismic surveys

    NASA Astrophysics Data System (ADS)

    Maity, Debotyam; Salehi, Iraj

    2016-01-01

    Recent years have seen a significant increase in borehole microseismic data acquisition programs associated with unconventional reservoir developments such as hydraulic fracturing programs for shale oil and gas. The data so acquired is used for hydraulic fracture monitoring and diagnostics and therefore, the quality of the data in terms of resolution and accuracy has a significant impact on its value to the industry. Borehole microseismic data acquired in such environments typically suffer from propagation effects due to the presence of thin interbedded shale layers as well as noise and interference effects. Moreover, acquisition geometry has significant impact on detectability across portions of the sensor array. Our work focuses on developing robust first arrival detection and pick selection workflow for both P and S waves specifically designed for such environments. We introduce a novel workflow for refinement of picks with immunity towards significant noise artifacts and applicability over data with very low signal-to-noise ratio provided some accurate picks have already been made. This workflow utilizes multi-step hybrid detection and classification routine which makes use of a neural network based autopicker for initial picking and an evolutionary algorithm for pick refinement. We highlight the results from an actual field case study including multiple examples demonstrating immunity towards noise and compare the effectiveness of the workflow with two contemporary autopicking routines without the application of the shared detection/refinement procedure. Finally, we use a windowed waveform cross-correlation based uncertainty estimation method for potential quality control purposes. While the workflow was developed to work with the neural network based autopicker, it can be used with any other traditional autopicker and provides significant improvements in pick detection across seismic gathers.

  2. Evolutionary dynamics on graphs: Efficient method for weak selection

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  3. Evolutionary response when selection and genetic variation covary across environments.

    PubMed

    Wood, Corlett W; Brodie, Edmund D

    2016-10-01

    Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes.

  4. Evolutionary stasis in pollen morphogenesis due to natural selection.

    PubMed

    Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri

    2016-01-01

    The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern.

  5. Multiobjective Evolutionary Path Planning via Sugeno-Based Tournament Selection

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Homaifar, Abdollah; Esterline, Albert

    1998-01-01

    This paper introduces a new tournament selection algorithm that can be used for evolutionary path planning systems. The fuzzy (Sugeno) tournament selection algorithm (STSA) described in this paper selects candidate paths (CPs) to be parents and undergo reproduction based on: (1) path feasibility, (2) the euclidean distance of a path from the origin to its destination, and (3) the average change in the slope of a path. In this paper, we provide a detailed description of the fuzzy inference system used in the STSA as well as some examples of its usefulness. We then use 12 instances of our STSA to rank a population of CPs based on the above criteria. We also show how the STSA can obviate the need for the development of an explicit (lexicographic multiobjective) evaluation function and use it to develop multiobjective motion paths.

  6. Multiobjective Evolutionary Path Planning via Sugeno-Based Tournament Selection

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Homaifar, Abdollah; Esterline, Albert

    1998-01-01

    This paper introduces a new tournament selection algorithm that can be used for evolutionary path planning systems. The fuzzy (Sugeno) tournament selection algorithm (STSA) described in this paper selects candidate paths (CPs) to be parents and undergo reproduction based on: (1) path feasibility, (2) the euclidean distance of a path from the origin to its destination, and (3) the average change in the slope of a path. In this paper, we provide a detailed description of the fuzzy inference system used in the STSA as well as some examples of its usefulness. We then use 12 instances of our STSA to rank a population of CPs based on the above criteria. We also show how the STSA can obviate the need for the development of an explicit (lexicographic multiobjective) evaluation function and use it to develop multiobjective motion paths.

  7. Population, evolutionary and genomic consequences of interference selection.

    PubMed Central

    Comeron, Josep M; Kreitman, Martin

    2002-01-01

    Weakly selected mutations are most likely to be physically clustered across genomes and, when sufficiently linked, they alter each others' fixation probability, a process we call interference selection (IS). Here we study population genetics and evolutionary consequences of IS on the selected mutations themselves and on adjacent selectively neutral variation. We show that IS reduces levels of polymorphism and increases low-frequency variants and linkage disequilibrium, in both selected and adjacent neutral mutations. IS can account for several well-documented patterns of variation and composition in genomic regions with low rates of crossing over in Drosophila. IS cannot be described simply as a reduction in the efficacy of selection and effective population size in standard models of selection and drift. Rather, IS can be better understood with models that incorporate a constant "traffic" of competing alleles. Our simulations also allow us to make genome-wide predictions that are specific to IS. We show that IS will be more severe at sites in the center of a region containing weakly selected mutations than at sites located close to the edge of the region. Drosophila melanogaster genomic data strongly support this prediction, with genes without introns showing significantly reduced codon bias in the center of coding regions. As expected, if introns relieve IS, genes with centrally located introns do not show reduced codon bias in the center of the coding region. We also show that reasonably small differences in the length of intermediate "neutral" sequences embedded in a region under selection increase the effectiveness of selection on the adjacent selected sequences. Hence, the presence and length of sequences such as introns or intergenic regions can be a trait subject to selection in recombining genomes. In support of this prediction, intron presence is positively correlated with a gene's codon bias in D. melanogaster. Finally, the study of temporal dynamics of

  8. Detection of signatures of selection using Fst.

    PubMed

    Porto-Neto, Laercio R; Lee, Seung Hwan; Lee, Hak Kyo; Gondro, Cedric

    2013-01-01

    Natural selection has molded the evolution of species across all taxa. Much more recently, on an evolutionary scale, human-oriented selection started to play an important role in shaping organisms, markedly so after the domestication of animals and plants. These selection processes have left traceable marks in the genome. Following from the recent advances in molecular genetics technologies, a number of methods have been developed to detect such signals, termed genomic signatures of selection. In this chapter we discuss a straightforward protocol based on the F ST statistic to identify genomic regions that exhibit high variation in allelic frequency between groups, which is a characteristic of genomic regions that have gone through differential selection. How to define the borders of these regions and further explore its genetic content is then discussed.

  9. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements

    PubMed Central

    Brunet, Tyler D.P.; Doolittle, W. Ford

    2015-01-01

    One of several issues at play in the renewed debate over “junk DNA” is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to “speed evolution” or as an “evolutionary repository” could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness—or are instead junk— is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class. PMID:26253318

  10. Dwarfism in insular sloths: biogeography, selection, and evolutionary rate.

    PubMed

    Anderson, Robert P; Handley, Charles O

    2002-05-01

    The islands of Bocas del Toro, Panama, were sequentially separated from the adjacent mainland by rising sea levels during the past 10,000 years. Three-toed sloths (Bradypus) from five islands are smaller than their mainland counterparts, and the insular populations themselves vary in mean body size. We first examine relationships between body size and physical characteristics of the islands, testing hypotheses regarding optimal body size, evolutionary equilibria, and the presence of dispersal in this system. To do so, we conduct linear regressions of body size onto island area, distance from the mainland, and island age. Second, we retroactively calculate two measures of the evolutionary rate of change in body size (haldanes and darwins) and the standardized linear selection differential, or selection intensity (i). We also test the observed morphological changes against models of evolution by genetic drift. The results indicate that mean body size decreases linearly with island age, explaining up to 97% of the variation among population means. Neither island area nor distance from the mainland is significant in multiple regressions that include island age. Thus, we find no evidence for differential optimal body size among islands, or for dispersal in the system. In contrast, the dependence of body size on island age suggests uniform directional selection for small body size in the insular populations. Although genetic drift cannot be discounted as the cause for this evolution in body size, the probability is small given the consistent direction of evolution (repeated dwarfism). The insular sloths show a sustained rate of evolution similar to those measured in haldanes over tens of generations, appearing to unite micro- and macroevolutionary time scales. Furthermore, the magnitude and rate of this example of rapid differentiation fall within predictions of theoretical models from population genetics. However, the linearity of the relationship between body size and

  11. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles

    SciTech Connect

    Bawazer, Lukmaan A.; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R.; Schwenzer, Birgit; Morse, Daniel E.

    2012-10-29

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  12. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    PubMed

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  13. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    PubMed

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses.

  14. Positive Evolutionary Selection On the RIG-I-Like Receptor Genes in Mammals

    PubMed Central

    Lemos de Matos, Ana; McFadden, Grant; Esteves, Pedro J.

    2013-01-01

    The mammalian RIG-I-like receptors, RIG-I, MDA5 and LGP2, are a family of DExD/H box RNA helicases responsible for the cytoplasmic detection of viral RNA. These receptors detect a variety of RNA viruses, or DNA viruses that express unusual RNA species, many of which are responsible for a great number of severe and lethal diseases. Host innate sentinel proteins involved in pathogen recognition must rapidly evolve in a dynamic arms race with pathogens, and thus are subjected to long-term positive selection pressures to avoid potential infections. Using six codon-based Maximum Likelihood methods, we were able to identify specific codons under positive selection in each of these three genes. The highest number of positively selected codons was detected in MDA5, but a great percentage of these codons were located outside of the currently defined protein domains for MDA5, which likely reflects the imposition of both functional and structural constraints. Additionally, our results support LGP2 as being the least prone to evolutionary change, since the lowest number of codons under selection was observed for this gene. On the other hand, the preponderance of positively selected codons for RIG-I were detected in known protein functional domains, suggesting that pressure has been imposed by the vast number of viruses that are recognized by this RNA helicase. Furthermore, the RIG-I repressor domain, the region responsible for recognizing and binding to its RNA substrates, exhibited the strongest evidence of selective pressures. Branch-site analyses were performed and several species branches on the three receptor gene trees showed evidence of episodic positive selection. In conclusion, by looking for evidence of positive evolutionary selection on mammalian RIG-I-like receptor genes, we propose that a multitude of viruses have crafted the receptors biological function in host defense, specifically for the RIG-I gene, contributing to the innate species-specific resistance

  15. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  16. Design of an Evolutionary Approach for Intrusion Detection

    PubMed Central

    2013-01-01

    A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting

  17. Toward evolutionary graphs with two sexes: a kin selection analysis of a sex allocation problem.

    PubMed

    Wild, Geoff

    2008-09-01

    Evolutionary graphs are used to model the effects of spatial and social structure in social evolutionary problems (e.g. evolutionary games). Recent work has highlighted the fact that evolution on graphs can be understood using kin selection theory. This paper shows how one can use kin selection to study evolutionary graphs inhabited by a diploid sexual organism by means of a simple example. Specifically, we study the well-known sex allocation problem of how best to divide a fixed amount of effort between the production of sons on the one hand and the production of daughters on the other. Like many previous studies, we identify equal investment in sons and daughters as the only phenotype favoured by selection. Our analysis also highlights the advantages and disadvantages of applying kin selection to the study of evolutionary graphs.

  18. Variation and selection: The evolutionary analogy and the convergence of cognitive and behavioral psychology

    PubMed Central

    Morgan, David L.; Morgan, Robin K.; Toth, James M.

    1992-01-01

    The empirical and theoretical work of both operant and cognitive researchers has increasingly appealed to evolutionary concepts. In particular, both traditional operant studies of extinction-induced behavior and cognitive investigations of creativity and problem solving converge on the fundamental evolutionary principles of variation and selection. These contemporary developments and their implications for the alleged preparadigmatic status of psychology are discussed. PMID:22478123

  19. Evolutionary Psychology: A Natural Selection for Music Education?

    ERIC Educational Resources Information Center

    Graham, Rodger

    2006-01-01

    In this viewpoint it is suggested that recent research and authorship in the evolutionary psychology (EP) of music can provide musicians and educators with an enriched understanding of the adaptive role of music in human life. Within a climate of continual educational reform in which music is often marginalised from other mainstream curricular…

  20. Evolutionary Psychology: A Natural Selection for Music Education?

    ERIC Educational Resources Information Center

    Graham, Rodger

    2006-01-01

    In this viewpoint it is suggested that recent research and authorship in the evolutionary psychology (EP) of music can provide musicians and educators with an enriched understanding of the adaptive role of music in human life. Within a climate of continual educational reform in which music is often marginalised from other mainstream curricular…

  1. On the numerical treatment of selected oscillatory evolutionary problems

    NASA Astrophysics Data System (ADS)

    Cardone, Angelamaria; Conte, Dajana; D'Ambrosio, Raffaele; Paternoster, Beatrice

    2017-07-01

    We focus on evolutionary problems whose qualitative behaviour is known a-priori and exploited in order to provide efficient and accurate numerical schemes. For classical numerical methods, depending on constant coefficients, the required computational effort could be quite heavy, due to the necessary employ of very small stepsizes needed to accurately reproduce the qualitative behaviour of the solution. In these situations, it may be convenient to use special purpose formulae, i.e. non-polynomially fitted formulae on basis functions adapted to the problem (see [16, 17] and references therein). We show examples of special purpose strategies to solve two families of evolutionary problems exhibiting periodic solutions, i.e. partial differential equations and Volterra integral equations.

  2. Evolutionary Dynamics of MERS-CoV: Potential Recombination, Positive Selection and Transmission

    PubMed Central

    Zhang, Zhao; Shen, Libing; Gu, Xun

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to beta group of coronavirus and was first discovered in 2012. MERS-CoV can infect multiple host species and cause severe diseases in human. We conducted a series of phylogenetic and bioinformatic analyses to study the evolution dynamics of MERS-CoV among different host species with genomic data. Our analyses show: 1) 28 potential recombinant sequences were detected and they can be classified into seven potential recombinant types; 2) The spike (S) protein of MERS-CoV was under strong positive selection when MERS-CoV transmitted from their natural host to human; 3) Six out of nine positive selection sites detected in spike (S) protein are located in its receptor-binding domain which is in direct contact with host cells; 4) MERS-CoV frequently transmitted back and forth between human and camel after it had acquired the human-camel infection capability. Together, these results suggest that potential recombination events might have happened frequently during MERS-CoV’s evolutionary history and the positive selection sites in MERS-CoV’s S protein might enable it to infect human. PMID:27142087

  3. Analysis of C3 suggests three periods of positive selection events and different evolutionary patterns between fish and mammals.

    PubMed

    Meng, Fanxing; Sun, Yuena; Liu, Xuezhu; Wang, Jianxin; Xu, Tianjun; Wang, Rixin

    2012-01-01

    The third complement component (C3) is a central protein of the complement system conserved from fish to mammals. It also showed distinct characteristics in different animal groups. Striking features of the fish complement system were unveiled, including prominent levels of extrahepatic expression and isotypic diversity of the complement components. The evidences of the involvement of complement system in the enhancement of B and T cell responses found in mammals indicated that the complement system also serves as a bridge between the innate and adaptive responses. For the reasons mentioned above, it is interesting to explore the evolutionary process of C3 genes and to investigate whether the huge differences between aquatic and terrestrial environments affected the C3 evolution between fish and mammals. Analysis revealed that these two groups of animals had experienced different evolution patterns. The mammalian C3 genes were under purifying selection pressure while the positive selection pressure was detected in fish C3 genes. Three periods of positive selection events of C3 genes were also detected. Two happened on the ancestral lineages to all vertebrates and mammals, respectively, one happened on early period of fish evolutionary history. Three periods of positive selection events had happened on C3 genes during history and the fish and mammals C3 genes experience different evolutionary patterns for their distinct living environments.

  4. Analysis of C3 Suggests Three Periods of Positive Selection Events and Different Evolutionary Patterns between Fish and Mammals

    PubMed Central

    Meng, Fanxing; Sun, Yuena; Liu, Xuezhu; Wang, Jianxin; Xu, Tianjun; Wang, Rixin

    2012-01-01

    Background The third complement component (C3) is a central protein of the complement system conserved from fish to mammals. It also showed distinct characteristics in different animal groups. Striking features of the fish complement system were unveiled, including prominent levels of extrahepatic expression and isotypic diversity of the complement components. The evidences of the involvement of complement system in the enhancement of B and T cell responses found in mammals indicated that the complement system also serves as a bridge between the innate and adaptive responses. For the reasons mentioned above, it is interesting to explore the evolutionary process of C3 genes and to investigate whether the huge differences between aquatic and terrestrial environments affected the C3 evolution between fish and mammals. Methodology/Principal Findings Analysis revealed that these two groups of animals had experienced different evolution patterns. The mammalian C3 genes were under purifying selection pressure while the positive selection pressure was detected in fish C3 genes. Three periods of positive selection events of C3 genes were also detected. Two happened on the ancestral lineages to all vertebrates and mammals, respectively, one happened on early period of fish evolutionary history. Conclusions/Significance Three periods of positive selection events had happened on C3 genes during history and the fish and mammals C3 genes experience different evolutionary patterns for their distinct living environments. PMID:22624039

  5. Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm

    PubMed Central

    Huang, Lei; Liao, Li; Wu, Cathy H.

    2016-01-01

    Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273

  6. Using a two-phase evolutionary framework to select multiple network spreaders based on community structure

    NASA Astrophysics Data System (ADS)

    Fu, Yu-Hsiang; Huang, Chung-Yuan; Sun, Chuen-Tsai

    2016-11-01

    Using network community structures to identify multiple influential spreaders is an appropriate method for analyzing the dissemination of information, ideas and infectious diseases. For example, data on spreaders selected from groups of customers who make similar purchases may be used to advertise products and to optimize limited resource allocation. Other examples include community detection approaches aimed at identifying structures and groups in social or complex networks. However, determining the number of communities in a network remains a challenge. In this paper we describe our proposal for a two-phase evolutionary framework (TPEF) for determining community numbers and maximizing community modularity. Lancichinetti-Fortunato-Radicchi benchmark networks were used to test our proposed method and to analyze execution time, community structure quality, convergence, and the network spreading effect. Results indicate that our proposed TPEF generates satisfactory levels of community quality and convergence. They also suggest a need for an index, mechanism or sampling technique to determine whether a community detection approach should be used for selecting multiple network spreaders.

  7. An Evolutionary Algorithm to Generate Ellipsoid Detectors for Negative Selection

    DTIC Science & Technology

    2005-03-21

    Von Zuben [21] have both implemented an AIS using the network immune model. Timmis and Neal [91] applied the model to unsupervised machine learning...and de Castro and Von Zuben [21] applied the model to the problem of clustering and filtering unlabelled numerical data sets. Danger theory is young in...algorithm, clonal selection, is described in the next section. 2.6.1 Clonal Selection. De Castro and Von Zuben produced a clonal selection algorithm

  8. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  9. Trait Associations across Evolutionary Time within a Drosophila Phylogeny: Correlated Selection or Genetic Constraint?

    PubMed Central

    Kellermann, Vanessa; Overgaard, Johannes; Loeschcke, Volker; Kristensen, Torsten Nygaard; Hoffmann, Ary A.

    2013-01-01

    Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance. PMID:24015206

  10. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-09-05

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Selection and evolutionary potential of spring arrival phenology in males and females of a migratory songbird.

    PubMed

    Tarka, M; Hansson, B; Hasselquist, D

    2015-05-01

    The timing of annual life-history events affects survival and reproduction of all organisms. A changing environment can perturb phenological adaptations and an important question is if populations can evolve fast enough to track the environmental changes. Yet, little is known about selection and evolutionary potential of traits determining the timing of crucial annual events. Migratory species, which travel between different climatic regions, are particularly affected by global environmental changes. To increase our understanding of evolutionary potential and selection of timing traits, we investigated the quantitative genetics of arrival date at the breeding ground using a multigenerational pedigree of a natural great reed warbler (Acrocephalus arundinaceus) population. We found significant heritability of 16.4% for arrival date and directional selection for earlier arrival in both sexes acting through reproductive success, but not through lifespan. Mean arrival date advanced with 6 days over 20 years, which is in exact accordance with our predicted evolutionary response based on the breeder's equation. However, this phenotypic change is unlikely to be caused by microevolution, because selection seems mainly to act on the nongenetic component of the trait. Furthermore, demographical changes could also not account for the advancing arrival date. Instead, a strong correlation between spring temperatures and population mean arrival date suggests that phenotypic plasticity best explains the advancement of arrival date in our study population. Our study dissects the evolutionary and environmental forces that shape timing traits and thereby increases knowledge of how populations cope with rapidly changing environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  12. Evolutionary stasis despite selection on a heritable trait in an invasive zooplankton.

    PubMed

    Miehls, A L J; Peacor, S D; Valliant, L; McAdam, A G

    2015-05-01

    Invasive species are one of the greatest threats to ecosystems, and there is evidence that evolution plays an important role in the success or failure of invasions. Yet, few studies have measured natural selection and evolutionary responses to selection in invasive species, particularly invasive animals. We quantified the strength of natural selection on the defensive morphology (distal spine) of an invasive zooplankton, Bythotrephes longimanus, in Lake Michigan across multiple months during three growing seasons. We used multiple lines of evidence, including historic and contemporary wild-captured individuals and palaeoecology of retrieved spines, to assess phenotypic change in distal spine length since invasion. We found evidence of temporally variable selection, with selection for decreased distal spine length early in the growing season and selection for increased distal spine length later in the season. This trend in natural selection is consistent with seasonal changes in the relative strength of non-gape-limited and gape-limited fish predation. Yet, despite net selection for increased distal spine length and a known genetic basis for distal spine length, we observed little evidence of an evolutionary response to selection. Multiple factors likely limit an evolutionary response to selection, including genetic correlations, trade-offs between components of fitness, and phenotypic plasticity.

  13. Detecting natural selection in genomic data.

    PubMed

    Vitti, Joseph J; Grossman, Sharon R; Sabeti, Pardis C

    2013-01-01

    The past fifty years have seen the development and application of numerous statistical methods to identify genomic regions that appear to be shaped by natural selection. These methods have been used to investigate the macro- and microevolution of a broad range of organisms, including humans. Here, we provide a comprehensive outline of these methods, explaining their conceptual motivations and statistical interpretations. We highlight areas of recent and future development in evolutionary genomics methods and discuss ongoing challenges for researchers employing such tests. In particular, we emphasize the importance of functional follow-up studies to characterize putative selected alleles and the use of selection scans as hypothesis-generating tools for investigating evolutionary histories.

  14. Random Drift versus Selection in Academic Vocabulary: An Evolutionary Analysis of Published Keywords

    PubMed Central

    Bentley, R. Alexander

    2008-01-01

    The evolution of vocabulary in academic publishing is characterized via keyword frequencies recorded in the ISI Web of Science citations database. In four distinct case-studies, evolutionary analysis of keyword frequency change through time is compared to a model of random copying used as the null hypothesis, such that selection may be identified against it. The case studies from the physical sciences indicate greater selection in keyword choice than in the social sciences. Similar evolutionary analyses can be applied to a wide range of phenomena; wherever the popularity of multiple items through time has been recorded, as with web searches, or sales of popular music and books, for example. PMID:18728786

  15. Evolutionary-Rough Feature Selection for Face Recognition

    NASA Astrophysics Data System (ADS)

    Mazumdar, Debasis; Mitra, Soma; Mitra, Sushmita

    Elastic Bunch Graph Matching is a feature-based face recognition algorithm which has been used to determine facial attributes from an image. However the dimension of the feature vectors, in case of EBGM, is quite high. Feature selection is a useful preprocessing step for reducing dimensionality, removing irrelevant data, improving learning accuracy and enhancing output comprehensibility.

  16. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure

    PubMed Central

    Webber, Mark A.; Whitehead, Rebekah N.; Mount, Manuella; Loman, Nick J.; Pallen, Mark J.; Piddock, Laura J. V.

    2015-01-01

    Objectives Biocides are widely used to prevent infection. We aimed to determine whether exposure of Salmonella to various biocides could act as a driver of antibiotic resistance. Methods Salmonella enterica serovar Typhimurium was exposed to four biocides with differing modes of action. Antibiotic-resistant mutants were selected during exposure to all biocides and characterized phenotypically and genotypically to identify mechanisms of resistance. Results All biocides tested selected MDR mutants with decreased antibiotic susceptibility; these occurred randomly throughout the experiments. Mutations that resulted in de-repression of the multidrug efflux pump AcrAB-TolC were seen in MDR mutants. A novel mutation in rpoA was also selected and contributed to the MDR phenotype. Other mutants were highly resistant to both quinolone antibiotics and the biocide triclosan. Conclusions This study shows that exposure of bacteria to biocides can select for antibiotic-resistant mutants and this is mediated by clinically relevant mechanisms of resistance prevalent in human pathogens. PMID:25953808

  17. An evolutionary view of plant tissue culture: somaclonal variation and selection.

    PubMed

    Wang, Qin-Mei; Wang, Li

    2012-09-01

    Plants regenerated from in vitro cultures possess an array of genetic and epigenetic changes. This phenomenon is known as 'somaclonal variation' and the frequency of somaclonal variation (SV) is usually elevated far beyond that expected in nature. Initially, the relationship between time in culture and detected SV was found to support the widespread belief that SV accumulates with culture age. However, a few studies indicated that older cultures yielded regenerants with less SV. What leads to this seemed contradiction? In this article, we have proposed a novel in vitro callus selection hypothesis, differentiation bottleneck (D-bottleneck) and dedifferentiation bottleneck (Dd-bottleneck), which consider natural selection theory to be fit for cell population in vitro. The results of multiplication races between the cells with the true-to-type phenotype and the deleterious cells determine the increase/decrease of SV frequencies in calli or regenerants as in vitro culture time goes on. The possibility of interpreting the complex situation of time-related SV by the evolutionary theory is discussed in this paper. In addition, the SV threshold, space-determined hypothesis and D-bottleneck are proposed to interpret the loss of the regenerability through a long period of plant tissue culture (PTC).

  18. Why don't zebras have machine guns? Adaptation, selection, and constraints in evolutionary theory.

    PubMed

    Shanahan, Timothy

    2008-03-01

    In an influential paper, Stephen Jay Gould and Richard Lewontin (1979) contrasted selection-driven adaptation with phylogenetic, architectural, and developmental constraints as distinct causes of phenotypic evolution. In subsequent publications Gould (e.g., 1997a,b, 2002) has elaborated this distinction into one between a narrow "Darwinian Fundamentalist" emphasis on "external functionalist" processes, and a more inclusive "pluralist" emphasis on "internal structuralist" principles. Although theoretical integration of functionalist and structuralist explanations is the ultimate aim, natural selection and internal constraints are treated as distinct causes of evolutionary change. This distinction is now routinely taken for granted in the literature in evolutionary biology. I argue that this distinction is problematic because the effects attributed to non-selective constraints are more parsimoniously explained as the ordinary effects of selection itself. Although it may still be a useful shorthand to speak of phylogenetic, architectural, and developmental constraints on phenotypic evolution, it is important to understand that such "constraints" do not constitute an alternative set of causes of evolutionary change. The result of this analysis is a clearer understanding of the relationship between adaptation, selection and constraints as explanatory concepts in evolutionary theory.

  19. Evolutionary rates for multivariate traits: the role of selection and genetic variation.

    PubMed

    Pitchers, William; Wolf, Jason B; Tregenza, Tom; Hunt, John; Dworkin, Ian

    2014-08-19

    A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gβ), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (β) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates.

  20. Evolutionary rates for multivariate traits: the role of selection and genetic variation

    PubMed Central

    Pitchers, William; Wolf, Jason B.; Tregenza, Tom; Hunt, John; Dworkin, Ian

    2014-01-01

    A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. PMID:25002697

  1. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology.

    PubMed

    Bonier, Frances; Martin, Paul R

    2016-11-30

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution.

  2. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology

    PubMed Central

    2016-01-01

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753

  3. Eco-evolutionary feedback promotes Red Queen dynamics and selects for sex in predator populations.

    PubMed

    Haafke, Julia; Abou Chakra, Maria; Becks, Lutz

    2016-03-01

    Although numerous hypotheses exist to explain the overwhelming presence of sexual reproduction across the tree of life, we still cannot explain its prevalence when considering all inherent costs involved. The Red Queen hypothesis states that sex is maintained because it can create novel genotypes with a selective advantage. This occurs when the interactions between species induce frequent environmental change. Here, we investigate whether coevolution and eco-evolutionary feedback dynamics in a predator-prey system allows for indirect selection and maintenance of sexual reproduction in the predator. Combining models and chemostat experiments of a rotifer-algae system we show a continuous feedback between population and trait change along with recurrent shifts from selection by predation and competition for a limited resource. We found that a high propensity for sex was indirectly selected and was maintained in rotifer populations within environments containing these eco-evolutionary dynamics; whereas within environments under constant conditions, predators evolved rapidly to lower levels of sex. Thus, our results indicate that the influence of eco-evolutionary feedback dynamics on the overall evolutionary change has been underestimated. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives.

    PubMed

    Powell, Glen; Tosh, Colin R; Hardie, Jim

    2006-01-01

    As phloem feeders and major vectors of plant viruses, aphids are important pests of agricultural and horticultural crops worldwide. The processes of aphid settling and reproduction on plants therefore have a direct economic impact, and a better understanding of these events may lead to improved management strategies. Aphids are also important model organisms in the analysis of population differentiation and speciation in animals, and new ideas on plant utilization influence our understanding of the mechanisms generating biological diversity. Recent research suggests that the dominant cues controlling plant preference and initiation of reproduction are detected early during the stylet penetration process, well before the nutrient supply (phloem) is contacted. Aphids regularly puncture cells along the stylet pathway and ingest cytosolic samples, and the cues stimulating settling and parturition likely are metabolites present in peripheral (nonvascular) plant cells. We discuss these findings and their implications for aphid evolution and management.

  5. Evolutionary entropy predicts the outcome of selection: Competition for resources that vary in abundance and diversity.

    PubMed

    Demetrius, Lloyd; Legendre, Stéphane

    2013-02-01

    Competition between individuals for resources which are limited and diverse in composition is the ultimate driving force of evolution. Classical studies of this event contend that the outcome is a deterministic process predicted by the growth rate of the competing types-a tenet called the Malthusian selection principle. Recent studies of competition indicate that the dynamics of selection is a stochastic process, regulated by the population size, the abundance and diversity of the resource, and predicted by evolutionary entropy-a statistical parameter which characterizes the rate at which the population returns to the steady state condition after a random endogenous or exogenous perturbation. This tenet, which we will call the entropic selection principle entails the following relations: This article delineates the analytic, computational and empirical support for this tenet. We show moreover that the Malthusian selection principle, a cornerstone of classical evolutionary genetics, is the limit, as population size and resource abundance tends to infinity of the entropic selection principle. The Malthusian tenet is an approximation to the entropic selection principle-an approximation whose validity increases with increasing population size and increasing resource abundance. Evolutionary entropy is a generic concept that characterizes the interaction dynamics of metabolic entities at several levels of biological organization: cellular, organismic and ecological. Accordingly, the entropic selection principle represents a general rule for explaining the processes of adaptation and evolution at each of these levels.

  6. The effects of stress and sex on selection, genetic covariance, and the evolutionary response.

    PubMed

    Holman, L; Jacomb, F

    2017-08-01

    The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Modes of migration and multilevel selection in evolutionary multiplayer games.

    PubMed

    Pichugin, Yuriy; Gokhale, Chaitanya S; Garcia, Julián; Traulsen, Arne; Rainey, Paul B

    2015-12-21

    The evolution of cooperation in group-structured populations has received much attention, but little is known about the effects of different modes of migration of individuals between groups. Here, we have incorporated four different modes of migration that differ in the degree of coordination among the individuals. For each mode of migration, we identify the set of multiplayer games in which the cooperative strategy has higher fixation probability than defection. The comparison shows that the set of games under which cooperation may evolve generally expands depending upon the degree of coordination among the migrating individuals. Weak altruism can evolve under all modes of individual migration, provided that the benefit to cost ratio is high enough. Strong altruism, however, evolves only if the mode of migration involves coordination of individual actions. Depending upon the migration frequency and degree of coordination among individuals, conditions that allow selection to work at the level of groups can be established. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Combined evolutionary algorithm and minimum classification error training for DHMM-based land mine detection

    NASA Astrophysics Data System (ADS)

    Zhao, Yunxin; Chen, Ping; Gader, Paul D.; Zhang, Yue

    2002-08-01

    Minimum classification error (MCE) training is proposed to improve performance of a discrete hidden Markov model (DHMM) based landmine detection system. The system (baseline) was proposed previously for detection of both metal and nonmetal mines from ground penetrating radar signatures collected by moving vehicles. An initial DHMM model is trained by conventional methods of vector quantization and Baum-Welch algorithm. A sequential generalized probabilistic descent (GPD) algorithm that minimizes an empirical loss function is then used to estimate the landmine/background DHMM parameters, and an evolutionary algorithm based on fitness score of classification accuracy is used to generate and select codebooks. The landmine data of one geographical site was used for model training, and those of two different sites were used for evaluation of system performance. Three scenarios were studied: apply MCE/GPD alone to DHMM estimation, apply EA alone to codebook generation, first apply EA to codebook generation and then apply MCE/GPD to DHMM estimation. Overall, the combined EA and MCE/GPD training led to the best performance. At the same level of detection rate as the baseline DHMM system, the proposed training reduced false alarm rate by a factor of two, indicating significant performance improvement.

  9. Miiuy Croaker Transferrin Gene and Evidence for Positive Selection Events Reveal Different Evolutionary Patterns

    PubMed Central

    Sun, Yueyan; Zhu, Zhihuang; Wang, Rixin; Sun, Yuena; Xu, Tianjun

    2012-01-01

    Transferrin (TF) is a protein that plays a central role in iron metabolism. This protein is associated with the innate immune system, which is responsible for disease defense responses after bacterial infection. The clear link between TF and the immune defense mechanism has led researchers to consider TF as a candidate gene for disease resistance. In this study, the Miichthys miiuy (miiuy croaker) TF gene (MIMI-TF) was cloned and characterized. The gene structure consisted of a coding region of 2070 nucleotides divided into 17 exons, as well as a non-coding region that included 16 introns and spans 6757 nucleotides. The deduced MIMI-TF protein consisted of 689 amino acids that comprised a signal peptide and two lobes (N- and C-lobes). MIMI-TF expression was significantly up-regulated after infection with Vibrio anguillarum. A series of model tests implemented in the CODEML program showed that TF underwent a complex evolutionary process. Branch-site models revealed that vertebrate TF was vastly different from that of invertebrates, and that the TF of the ancestors of aquatic and terrestrial organisms underwent different selection pressures. The site models detected 10 positively selected sites in extant TF genes. One site was located in the cleft between the N1 and N2 domains and was expected to affect the capability of TF to bind to or release iron indirectly. In addition, eight sites were found near the TF exterior. Two of these sites, which could have evolved from the competition for iron between pathogenic bacteria and TF, were located in potential pathogen-binding domains. Our results could be used to further investigate the function of TF and the selective mechanisms involved. PMID:22957037

  10. Analysis of a Schnute postulate-based unified growth mode for model selection in evolutionary computations

    PubMed Central

    Bentil, D.E.; Osei, B.M.; Ellingwood, C.D.; Hoffmann, J.P.

    2007-01-01

    In order to evaluate the feasibility of a combined evolutionary algorithm-information theoretic approach to select the best model from a set of candidate invasive species models in ecology, and/or to evolve the most parsimonious model from a suite of competing models by comparing their relative performance, it is prudent to use a unified model that covers a myriad of situations. Using Schnute’s postulates as a starting point, we present a single, unified model for growth that can be successfully utilized for model selection in evolutionary computations. Depending on the parameter settings, the unified equation can describe several growth mechanisms. Such a generalized model mechanism, which encompasses a suite of competing models, can be successfully implemented in evolutionary computational algorithms to evolve the most parsimonious model that best fits ground truth data. We have done exactly this by testing the effectiveness of our reaction-diffusion-advection (RDA) model in an evolutionary computation model selection algorithm. The algorithm was validated (with success) against field data sets of the Zebra mussel invasion of Lake Champlain in the United States. PMID:17197072

  11. An Evolutionary Analysis of Antigen Processing and Presentation across Different Timescales Reveals Pervasive Selection

    PubMed Central

    Tresoldi, Claudia; Pozzoli, Uberto; De Gioia, Luca; Filippi, Giulia; Riva, Stefania; Menozzi, Giorgia; Colleoni, Marta; Biasin, Mara; Lo Caputo, Sergio; Mazzotta, Francesco; Comi, Giacomo P.; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2014-01-01

    The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP) pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones) and allowed identification of positive selection events in the human lineage. We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin). Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes

  12. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    PubMed

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  13. Comparative Genomic Analysis among Four Representative Isolates of Phytophthora sojae Reveals Genes under Evolutionary Selection

    PubMed Central

    Ye, Wenwu; Wang, Yang; Tyler, Brett M.; Wang, Yuanchao

    2016-01-01

    Comparative genomic analysis is useful for identifying genes affected by evolutionary selection and for studying adaptive variation in gene functions. In Phytophthora sojae, a model oomycete plant pathogen, the related study is lacking. We compared sequence data among four isolates of P. sojae, which represent its four major genotypes. These isolates exhibited >99.688%, >99.864%, and >98.981% sequence identities at genome, gene, and non-gene regions, respectively. One hundred and fifty-three positive selection and 139 negative selection candidate genes were identified. Between the two categories of genes, the positive selection genes were flanked by larger intergenic regions, poorly annotated in function, and less conserved; they had relatively lower transcription levels but many genes had increased transcripts during infection. Genes coding for predicted secreted proteins, particularly effectors, were overrepresented in positive selection. Several RxLR effector genes were identified as positive selection genes, exhibiting much stronger positive selection levels. In addition, candidate genes with presence/absence polymorphism were analyzed. This study provides a landscape of genomic variation among four representative P. sojae isolates and characterized several evolutionary selection-affected gene candidates. The results suggest a relatively covert two-speed genome evolution pattern in P. sojae and will provide clues for identification of new virulence factors in the oomycete plant pathogens. PMID:27746768

  14. The evolutionary forces maintaining a wild polymorphism of Littorina saxatilis: model selection by computer simulations.

    PubMed

    Pérez-Figueroa, A; Cruz, F; Carvajal-Rodríguez, A; Rolán-Alvarez, E; Caballero, A

    2005-01-01

    Two rocky shore ecotypes of Littorina saxatilis from north-west Spain live at different shore levels and habitats and have developed an incomplete reproductive isolation through size assortative mating. The system is regarded as an example of sympatric ecological speciation. Several experiments have indicated that different evolutionary forces (migration, assortative mating and habitat-dependent selection) play a role in maintaining the polymorphism. However, an assessment of the combined contributions of these forces supporting the observed pattern in the wild is absent. A model selection procedure using computer simulations was used to investigate the contribution of the different evolutionary forces towards the maintenance of the polymorphism. The agreement between alternative models and experimental estimates for a number of parameters was quantified by a least square method. The results of the analysis show that the fittest evolutionary model for the observed polymorphism is characterized by a high gene flow, intermediate-high reproductive isolation between ecotypes, and a moderate to strong selection against the nonresident ecotypes on each shore level. In addition, a substantial number of additive loci contributing to the selected trait and a narrow hybrid definition with respect to the phenotype are scenarios that better explain the polymorphism, whereas the ecotype fitnesses at the mid-shore, the level of phenotypic plasticity, and environmental effects are not key parameters.

  15. The evolutionary legacy of size-selective harvesting extends from genes to populations

    PubMed Central

    Uusi-Heikkilä, Silva; Whiteley, Andrew R; Kuparinen, Anna; Matsumura, Shuichi; Venturelli, Paul A; Wolter, Christian; Slate, Jon; Primmer, Craig R; Meinelt, Thomas; Killen, Shaun S; Bierbach, David; Polverino, Giovanni; Ludwig, Arne; Arlinghaus, Robert

    2015-01-01

    Size-selective harvesting is assumed to alter life histories of exploited fish populations, thereby negatively affecting population productivity, recovery, and yield. However, demonstrating that fisheries-induced phenotypic changes in the wild are at least partly genetically determined has proved notoriously difficult. Moreover, the population-level consequences of fisheries-induced evolution are still being controversially discussed. Using an experimental approach, we found that five generations of size-selective harvesting altered the life histories and behavior, but not the metabolic rate, of wild-origin zebrafish (Danio rerio). Fish adapted to high positively size selective fishing pressure invested more in reproduction, reached a smaller adult body size, and were less explorative and bold. Phenotypic changes seemed subtle but were accompanied by genetic changes in functional loci. Thus, our results provided unambiguous evidence for rapid, harvest-induced phenotypic and evolutionary change when harvesting is intensive and size selective. According to a life-history model, the observed life-history changes elevated population growth rate in harvested conditions, but slowed population recovery under a simulated moratorium. Hence, the evolutionary legacy of size-selective harvesting includes populations that are productive under exploited conditions, but selectively disadvantaged to cope with natural selection pressures that often favor large body size. PMID:26136825

  16. Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role

    PubMed Central

    Miklós, István; Zádori, Zoltán

    2012-01-01

    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs. PMID:22319430

  17. Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory.

    PubMed

    Frank, S A

    2012-12-01

    The equations of evolutionary change by natural selection are commonly expressed in statistical terms. Fisher's fundamental theorem emphasizes the variance in fitness. Quantitative genetics expresses selection with covariances and regressions. Population genetic equations depend on genetic variances. How can we read those statistical expressions with respect to the meaning of natural selection? One possibility is to relate the statistical expressions to the amount of information that populations accumulate by selection. However, the connection between selection and information theory has never been compelling. Here, I show the correct relations between statistical expressions for selection and information theory expressions for selection. Those relations link selection to the fundamental concepts of entropy and information in the theories of physics, statistics and communication. We can now read the equations of selection in terms of their natural meaning. Selection causes populations to accumulate information about the environment. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  18. A constrained evolutionary computation method for detecting controlling regions of cortical networks.

    PubMed

    Tang, Yang; Wang, Zidong; Gao, Huijun; Swift, Stephen; Kurths, Jürgen

    2012-01-01

    Controlling regions in cortical networks, which serve as key nodes to control the dynamics of networks to a desired state, can be detected by minimizing the eigenratio R and the maximum imaginary part \\sigma of an extended connection matrix. Until now, optimal selection of the set of controlling regions is still an open problem and this paper represents the first attempt to include two measures of controllability into one unified framework. The detection problem of controlling regions in cortical networks is converted into a constrained optimization problem (COP), where the objective function R is minimized and \\sigma is regarded as a constraint. Then, the detection of controlling regions of a weighted and directed complex network (e.g., a cortical network of a cat), is thoroughly investigated. The controlling regions of cortical networks are successfully detected by means of an improved dynamic hybrid framework (IDyHF). Our experiments verify that the proposed IDyHF outperforms two recently developed evolutionary computation methods in constrained optimization field and some traditional methods in control theory as well as graph theory. Based on the IDyHF, the controlling regions are detected in a microscopic and macroscopic way. Our results unveil the dependence of controlling regions on the number of driver nodes l and the constraint r. The controlling regions are largely selected from the regions with a large in-degree and a small out-degree. When r=+ \\infty, there exists a concave shape of the mean degrees of the driver nodes, i.e., the regions with a large degree are of great importance to the control of the networks when l is small and the regions with a small degree are helpful to control the networks when l increases. When r=0, the mean degrees of the driver nodes increase as a function of l. We find that controlling \\sigma is becoming more important in controlling a cortical network with increasing l. The methods and results of detecting controlling

  19. Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.

    PubMed

    Planqué, R; Powell, S; Franks, N R; van den Berg, J B

    2016-11-01

    Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification.

  20. Dynamic selective environments and evolutionary traps in human-dominated landscapes.

    PubMed

    Rodewald, Amanda D; Shustack, Daniel P; Jones, Todd M

    2011-09-01

    Human activities can alter selective environments in ways that can reduce the usefulness of certain ornamental traits as honest signals of individual quality and, in some cases, may create evolutionary traps, where rapid changes in selective environments result in maladaptive behavioral decisions. Using the sexually dichromatic, socially monogamous Northern Cardinal (Cardinalis cardinalis) as a model, we hypothesized that urbanization would erode the relationship between plumage coloration and reproductive success. Because the exotic Amur honeysuckle (Lonicera maackii) provides carotenoids, is a preferred habitat attribute, and increases vulnerability to nest predation, we predicted the presence of an evolutionary trap, whereby the brightest males would achieve the lowest reproductive success. Working at 14 forests in Ohio, USA, 2006-2008, we measured plumage color, monitored reproduction, and quantified habitat within territories. In rural landscapes, the brightest males bred earliest in the season and secured more preferred territories; however, annual reproduction declined with plumage brightness. Coloration of urban males was not associated with territory attributes or reproduction. Female redness across all landscapes was negatively related to reproduction. Poor reproductive performance of otherwise higher-quality males probably resulted from preferences for honeysuckle, which reduces annual reproduction when used as a nesting substrate early in the season. In this way, exotic shrubs prompted an evolutionary trap that was avoided in urban forests where anthropogenic resources disassociated male color and reproductive phenology and success. Our study illustrates how modified selective environments in human-dominated landscapes might shape microevolutionary processes in wild bird populations.

  1. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances

    PubMed Central

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272

  2. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    PubMed

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

  3. The Role of Evolutionary Selection in the Dynamics of Protein Structure Evolution.

    PubMed

    Gilson, Amy I; Marshall-Christensen, Ahmee; Choi, Jeong-Mo; Shakhnovich, Eugene I

    2017-04-11

    Homology modeling is a powerful tool for predicting a protein's structure. This approach is successful because proteins whose sequences are only 30% identical still adopt the same structure, while structure similarity rapidly deteriorates beyond the 30% threshold. By studying the divergence of protein structure as sequence evolves in real proteins and in evolutionary simulations, we show that this nonlinear sequence-structure relationship emerges as a result of selection for protein folding stability in divergent evolution. Fitness constraints prevent the emergence of unstable protein evolutionary intermediates, thereby enforcing evolutionary paths that preserve protein structure despite broad sequence divergence. However, on longer timescales, evolution is punctuated by rare events where the fitness barriers obstructing structure evolution are overcome and discovery of new structures occurs. We outline biophysical and evolutionary rationale for broad variation in protein family sizes, prevalence of compact structures among ancient proteins, and more rapid structure evolution of proteins with lower packing density. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Eco-evolutionary dynamics in response to selection on life-history

    PubMed Central

    Cameron, Tom C; O'Sullivan, Daniel; Reynolds, Alan; Piertney, Stuart B; Benton, Tim G; Sorci, Gabriele

    2013-01-01

    Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life-history traits (the age- and size-at-maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life-history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age-to-maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (∼ 1.4 vs. 4% change in age-at-maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue. PMID:23565666

  5. Eco-evolutionary dynamics in response to selection on life-history.

    PubMed

    Cameron, Tom C; O'Sullivan, Daniel; Reynolds, Alan; Piertney, Stuart B; Benton, Tim G

    2013-06-01

    Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life-history traits (the age- and size-at-maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life-history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age-to-maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (~ 1.4 vs. 4% change in age-at-maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue.

  6. The limits of weak selection and large population size in evolutionary game theory.

    PubMed

    Sample, Christine; Allen, Benjamin

    2017-03-28

    Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the [Formula: see text] limit, in which weak selection is applied before the large population limit, and the [Formula: see text] limit, in which the order is reversed. Formal mathematical definitions of the [Formula: see text] and [Formula: see text] limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the [Formula: see text] and [Formula: see text] limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

  7. How quickly do brains catch up with bodies? A comparative method for detecting evolutionary lag.

    PubMed Central

    Deaner, R O; Nunn, C L

    1999-01-01

    A trait may be at odds with theoretical expectation because it is still in the process of responding to a recent selective force. Such a situation can be termed evolutionary lag. Although many cases of evolutionary lag have been suggested, almost all of the arguments have focused on trait fitness. An alternative approach is to examine the prediction that trait expression is a function of the time over which the trait could evolve. Here we present a phylogenetic comparative method for using this 'time' approach and we apply the method to a long-standing lag hypothesis: evolutionary changes in brain size lag behind evolutionary changes in body size. We tested the prediction in primates that brain mass contrast residuals, calculated from a regression of pairwise brain mass contrasts on positive pairwise body mass contrasts, are correlated with the time since the paired species diverged. Contrary to the brain size lag hypothesis, time since divergence was not significantly correlated with brain mass contrast residuals. We found the same result when we accounted for socioecology, used alternative body mass estimates and used male rather than female values. These tests do not support the brain size lag hypothesis. Therefore, body mass need not be viewed as a suspect variable in comparative neuroanatomical studies and relative brain size should not be used to infer recent evolutionary changes in body size. PMID:10331289

  8. Evolutionary signals of selection on cognition from the great tit genome and methylome

    PubMed Central

    Laine, Veronika N.; Gossmann, Toni I.; Schachtschneider, Kyle M.; Garroway, Colin J.; Madsen, Ole; Verhoeven, Koen J. F.; de Jager, Victor; Megens, Hendrik-Jan; Warren, Wesley C.; Minx, Patrick; Crooijmans, Richard P. M. A.; Corcoran, Pádraic; Adriaensen, Frank; Belda, Eduardo; Bushuev, Andrey; Cichon, Mariusz; Charmantier, Anne; Dingemanse, Niels; Doligez, Blandine; Eeva, Tapio; Erikstad, Kjell Einar; Fedorov, Slava; Hau, Michaela; Hille, Sabine; Hinde, Camilla; Kempenaers, Bart; Kerimov, Anvar; Krist, Milos; Mand, Raivo; Matthysen, Erik; Nager, Reudi; Norte, Claudia; Orell, Markku; Richner, Heinz; Slagsvold, Tore; Tilgar, Vallo; Tinbergen, Joost; Torok, Janos; Tschirren, Barbara; Yuta, Tera; Sheldon, Ben C.; Slate, Jon; Zeng, Kai; van Oers, Kees; Visser, Marcel E.; Groenen, Martien A. M.

    2016-01-01

    For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species. PMID:26805030

  9. Applying an instance selection method to an evolutionary neural classifier design

    NASA Astrophysics Data System (ADS)

    Khritonenko, Dmitrii; Stanovov, Vladimir; Semenkin, Eugene

    2017-02-01

    In this paper the application of an instance selection algorithm to the design of a neural classifier is considered. A number of existing instance selection methods are presented. A new wrapper-method, whose main difference compared to other approaches is an iterative procedure for selecting training subsets from the dataset, is described. The approach is based on using training subsample selection probabilities for every instance. The value of these probabilities depends on the classification success for each measurement. An evolutionary algorithm for the design of a neural classifier is presented, which was used to test the efficiency of the presented approach. The described approach has been implemented and tested on a set of classification problems. The testing has shown that the presented algorithm allows the computational complexity to be decreased and the quality of the obtained classifiers to be increased. Compared to analogues found in scientific literature, it was shown that the presented algorithm is an effective tool for classification problem solving.

  10. Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection.

    PubMed

    Queller, David C

    2014-05-19

    Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of a population changes not just through its own genetic variance but also through the genetic variance for its fitness that resides in other species, an update of Fisher's fundamental theorem of natural selection. Some similar results, using inclusive fitness, apply to within-species interactions. The models provide a framework for understanding evolutionary conflicts at all levels.

  11. Optimal Wavelengths Selection Using Hierarchical Evolutionary Algorithm for Prediction of Firmness and Soluble Solids Content in Apples

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral scattering is a promising technique for rapid and noninvasive measurement of multiple quality attributes of apple fruit. A hierarchical evolutionary algorithm (HEA) approach, in combination with subspace decomposition and partial least squares (PLS) regression, was proposed to select o...

  12. Difference in evolutionary patterns of strongly or weakly selected characters among ant populations

    PubMed Central

    Imai, Shuichiro; Kobayashi, Kazuya; Ohkubo, Yusaku; Yagi, Norihiro; Hasegawa, Eisuke

    2016-01-01

    Despite being a central issue in evolutionary biology, few studies have examined the stasis of characters in populations with no gene flow. A possible mechanism of such stasis is stabilizing selection with similar peaks in each population. This study examined the evolutionary patterns of morphological characters with and without strong selection in ant populations. We show that compared to a character that seems to be less important, characters that are more important were less variable within and among populations. Microsatellite analyses showed significant genetic differences between populations, implying limited gene flow between them. The observed levels of genetic differentiation cannot be attributed to recent population separations. Thus, the observed differences in morphological variance seem to reflect the degree of selection on each character. The less important character changed proportionately with time, but such a pattern was not observed in more important characters. These results suggest that stabilizing selection maintains morphological stasis between populations of the same species with minimal gene flow independent of divergence times. PMID:27995972

  13. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today.

    PubMed

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an "abstract" without references, compiled by Charles Darwin from a much longer manuscript entitled "Natural Selection." Here, I summarize the five theories that can be extracted from Darwin's monograph, explain the true meaning of the phrase "struggle for life" (i.e., competition and cooperation), and outline Darwin's original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that "selection only eliminates but is not creative" is still alive today. However, I document that August Weismann (Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen (Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this "Weismann-Schmalhausen principle" with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky (Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by prokaryotic microbes. Eubacteria

  14. Predicting evolutionary responses to selection on polyandry in the wild: additive genetic covariances with female extra-pair reproduction.

    PubMed

    Reid, Jane M

    2012-11-22

    The evolutionary forces that underlie polyandry, including extra-pair reproduction (EPR) by socially monogamous females, remain unclear. Selection on EPR and resulting evolution have rarely been explicitly estimated or predicted in wild populations, and evolutionary predictions are vulnerable to bias due to environmental covariances and correlated selection through unmeasured traits. However, evolutionary responses to (correlated) selection on any trait can be directly predicted as additive genetic covariances (cov(A)) with appropriate components of relative fitness. I used comprehensive life-history, paternity and pedigree data from song sparrows (Melospiza melodia) to estimate cov(A) between a female's liability to produce extra-pair offspring and two specific fitness components: relative annual reproductive success (ARS) and survival to recruitment. All three traits showed non-zero additive genetic variance. Estimates of cov(A) were positive, predicting evolution towards increased EPR, but 95% credible intervals overlapped zero. There was therefore no conclusive prediction of evolutionary change in EPR due to (correlated) selection through female ARS or recruitment. Negative environmental covariance between EPR and ARS would have impeded evolutionary prediction from phenotypic selection differentials. These analyses demonstrate an explicit quantitative genetic approach to predicting evolutionary responses to components of (correlated) selection on EPR that should be unbiased by environmental covariances and unmeasured traits.

  15. Unintentional selection, unanticipated insights: introductions, stocking and the evolutionary ecology of fishes.

    PubMed

    Hutchings, J A

    2014-12-01

    Natural environmental change has produced countless opportunities for species to disperse into and persist in habitats where they previously did not exist. Introduction and stocking programmes have facilitated similar sorts of colonization opportunities across considerably greater geographical scales and often in much shorter periods of time. Even though the mechanism of colonization differs, the result can be the same: evolutionary change in the colonizing population in response to novel selection pressures. As a consequence, some human-mediated fish transfers have unintentionally yielded novel research opportunities to study how phenotypes and genes interact with their environment and affect ecological and evolutionary change. The primary purpose here is to explore how work, directly or indirectly involved with human-mediated transfers, has unintentionally yielded novel research and research opportunities in fish ecology and evolution. Insights have produced new knowledge or altered previously held perceptions on topics such as local adaptation, rate of evolutionary change, phenotypic plasticity, alternative reproductive strategies, population structure and colonization probability. Well-documented stocking programmes, especially in terms of history, numbers and original population sources, can provide highly fertile ground for generating further insights on the ecology and evolution of fishes and of the factors likely to influence the success of conservation-based, restoration programmes.

  16. Co-evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection.

    PubMed

    Ford, Suzanne A; Williams, David; Paterson, Steve; King, Kayla C

    2017-04-01

    Microbes that protect their hosts from pathogenic infection are widespread components of the microbiota of both plants and animals. It has been found that interactions between 'defensive' microbes and pathogens can be genotype-specific and even underlie the variation in host resistance to pathogenic infection. These observations suggest a dynamic co-evolutionary association between pathogens and defensive microbes, but direct evidence of co-evolution is lacking. We tested the hypothesis that defensive microbes and pathogens could co-evolve within host populations by co-passaging a microbe with host-defensive properties (Enterococcus faecalis) and a pathogen (Staphylococcus aureus) within Caenorhabditis elegans nematodes. Using both phenotypic and genomic analyses across evolutionary time, we found patterns of pathogen local adaptation and defensive microbe-pathogen co-evolution via fluctuating selection dynamics. Moreover, co-evolution with defensive microbes resulted in more rapid and divergent pathogen evolution compared to pathogens evolved independently in host populations. Taken together, our results indicate the potential for defensive microbes and pathogens to co-evolve, driving interaction specificity and pathogen evolutionary divergence in the absence of host evolution. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. Homosexual mating preferences from an evolutionary perspective: sexual selection theory revisited.

    PubMed

    Gobrogge, Kyle L; Perkins, Patrick S; Baker, Jessica H; Balcer, Kristen D; Breedlove, S Marc; Klump, Kelly L

    2007-10-01

    Studies in evolutionary psychology and sexual selection theory show that heterosexual men prefer younger mating partners than heterosexual women in order to ensure reproductive success. However, previous research has generally not examined differences in mating preferences as a function of sexual orientation or the type of relationship sought in naturalistic settings. Given that homosexual men seek partners for reasons other than procreation, they may exhibit different mating preferences than their heterosexual counterparts. Moreover, mating preferences may show important differences depending on whether an individual is seeking a long-term versus a short-term relationship. The purpose of the present study was to examine these issues by comparing partner preferences in terms of age and relationship type between homosexual and heterosexual men placing internet personal advertisements. Participants included 439 homosexual and 365 heterosexual men who placed internet ads in the U.S. or Canada. Ads were coded for the participant's age, relationship type (longer-term or short-term sexual encounter) sought, and partner age preferences. Significantly more homosexual than heterosexual men sought sexual encounters, although men (regardless of sexual orientation) seeking sexual encounters preferred a significantly wider age range of partners than men seeking longer-term relationships. These findings suggest that partner preferences are independent of evolutionary drives to procreate, since both types of men preferred similar ages in their partners. In addition, they highlight the importance of examining relationship type in evolutionary studies of mating preferences, as men's partner preferences show important differences depending upon the type of relationship sought.

  18. Mutation-selection dynamics and error threshold in an evolutionary model for Turing machines.

    PubMed

    Musso, Fabio; Feverati, Giovanni

    2012-01-01

    We investigate the mutation-selection dynamics for an evolutionary computation model based on Turing machines. The use of Turing machines allows for very simple mechanisms of code growth and code activation/inactivation through point mutations. To any value of the point mutation probability corresponds a maximum amount of active code that can be maintained by selection and the Turing machines that reach it are said to be at the error threshold. Simulations with our model show that the Turing machines population evolve toward the error threshold. Mathematical descriptions of the model point out that this behaviour is due more to the mutation-selection dynamics than to the intrinsic nature of the Turing machines. This indicates that this result is much more general than the model considered here and could play a role also in biological evolution.

  19. Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection

    PubMed Central

    Offman, Marc N; Tournier, Alexander L; Bates, Paul A

    2008-01-01

    Background Automatic protein modelling pipelines are becoming ever more accurate; this has come hand in hand with an increasingly complicated interplay between all components involved. Nevertheless, there are still potential improvements to be made in template selection, refinement and protein model selection. Results In the context of an automatic modelling pipeline, we analysed each step separately, revealing several non-intuitive trends and explored a new strategy for protein conformation sampling using Genetic Algorithms (GA). We apply the concept of alternating evolutionary pressure (AEP), i.e. intermediate rounds within the GA runs where unrestrained, linear growth of the model populations is allowed. Conclusion This approach improves the overall performance of the GA by allowing models to overcome local energy barriers. AEP enabled the selection of the best models in 40% of all targets; compared to 25% for a normal GA. PMID:18673557

  20. On Proportions of Fit Individuals in Population of Mutation-Based Evolutionary Algorithm with Tournament Selection.

    PubMed

    Eremeev, Anton V

    2017-05-10

    In this paper, we consider a fitness-level model of a non-elitist mutation-only evolutionary algorithm (EA) with tournament selection. The model provides upper and lower bounds for the expected proportion of the individuals with fitness above given thresholds. In the case of so-called monotone mutation, the obtained bounds imply that increasing the tournament size improves the EA performance. As corollaries, we obtain an exponentially vanishing tail bound for the Randomized Local Search on unimodal functions and polynomial upper bounds on the runtime of EAs on 2-SAT problem and on a family of Set Cover problems proposed by E. Balas.

  1. Detection Progress of Selected Drugs in TLC

    PubMed Central

    Pyka, Alina

    2014-01-01

    This entry describes applications of known indicators and dyes as new visualizing reagents and various visualizing systems as well as photocatalytic reactions and bioautography method for the detection of bioactive compounds including drugs and compounds isolated from herbal extracts. Broadening index, detection index, characteristics of densitometric band, modified contrast index, limit of detection, densitometric visualizing index, and linearity range of detected compounds were used for the evaluation of visualizing effects of applied visualizing reagents. It was shown that visualizing effect depends on the chemical structure of the visualizing reagent, the structure of the substance detected, and the chromatographic adsorbent applied. The usefulness of densitometry to direct detection of some drugs was also shown. Quoted papers indicate the detection progress of selected drugs investigated by thin-layer chromatography (TLC). PMID:24551853

  2. A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    DTIC Science & Technology

    2011-03-01

    effectiveness [116]: 12. Constants, parameters, numbers (e.g. subsidies, taxes, standards) 11. The sizes of buffers and other stabilizing stocks , relative to...their flows 10. The structure of material stocks and flows (such as transport networks, popu- lation age structures) 9. The lengths of delays...combination of evolutionary raw material–a highly variable stock of information from which to select possible patterns–and a means for experimentation

  3. Detection of selection utilizing molecular phylogenetics: a possible approach.

    PubMed

    Yang, Ming; Wyckoff, Gerald J

    2011-05-01

    The neutral theory of molecular evolution (Kimura 1985) is the basis for most current statistical tests for detecting selection, mainly using polymorphism data within species, divergence data between species, and/or genomic structures like linkage disequilibrium (Wang et al. 2006). In most cases informative tests can only be constructed with ample variations within these parameters and many common tests are difficult to formulate when identity-by-descent is not clear, for example in gene families or repetitive elements. With the current progress being made toward whole-genome sequencing and re-sequencing efforts, as well as protein sequencing via tandem mass spectrometry where genomic sequencing is lacking, we felt it was necessary to re-visit possible methods for rapid screening and detection of evolutionary outliers. These outliers might be of interest for other research, such as candidate gene association studies or genome annotations, drug- and disease-target searches, and functional studies. We focused on methods that would work on both protein and nucleotide data, could be used on large gene or protein domain families, and could be generated quickly in order for "first pass" annotation of large scale data. For these reasons, we chose properties of trees generated routinely in molecular phylogenetic studies; genetic distance, tree shape and balance, and internal node statistics (Heard 1992). Our current research looking at protein domain family data and phylogenetic trees from PFAM (Finn et al. 2008) suggests this approach towards detecting evolutionary outliers is feasible, but additional work will be necessary to determine the parameters that suggest either positive or negative selection is occurring in specific gene families. This is particularly true when other factors such as rapid duplication and deletion of genes containing these domains is taking place, and we suggest phylogenetic statistics may be useful in combination with existing methodologies for

  4. Detecting Amino Acid Sites Under Positive Selection and Purifying Selection

    PubMed Central

    Massingham, Tim; Goldman, Nick

    2005-01-01

    An excess of nonsynonymous over synonymous substitution at individual amino acid sites is an important indicator that positive selection has affected the evolution of a protein between the extant sequences under study and their most recent common ancestor. Several methods exist to detect the presence, and sometimes location, of positively selected sites in alignments of protein-coding sequences. This article describes the “sitewise likelihood-ratio” (SLR) method for detecting nonneutral evolution, a statistical test that can identify sites that are unusually conserved as well as those that are unusually variable. We show that the SLR method can be more powerful than currently published methods for detecting the location of positive selection, especially in difficult cases where the strength of selection is low. The increase in power is achieved while relaxing assumptions about how the strength of selection varies over sites and without elevated rates of false-positive results that have been reported with some other methods. We also show that the SLR method performs well even under circumstances where the results from some previous methods can be misleading. PMID:15654091

  5. Differential Evolutionary Selection and Natural Evolvability Observed in ALT Proteins of Human Filarial Parasites.

    PubMed

    Devoe, Neil C; Corbett, Ian J; Barker, Linsey; Chang, Robert; Gudis, Polyxeni; Mullen, Nathan; Perez, Kailey; Raposo, Hugo; Scholz, John; May, Meghan

    2016-01-01

    The abundant larval transcript (ALT-2) protein is present in all members of the Filarioidea, and has been reported as a potential candidate antigen for a subunit vaccine against lymphatic filariasis. To assess the potential for vaccine escape or heterologous protection, we examined the evolutionary selection acting on ALT-2. The ratios of nonsynonymous (K(a)) to synonymous (K(s)) mutation frequencies (ω) were calculated for the alt-2 genes of the lymphatic filariasis agents Brugia malayi and Wuchereria bancrofti and the agents of river blindness and African eyeworm disease Onchocerca volvulus and Loa loa. Two distinct Bayesian models of sequence evolution showed that ALT-2 of W. bancrofti and L. loa were under significant (P<0.05; P < 0.001) diversifying selection, while ALT-2 of B. malayi and O. volvulus were under neutral to stabilizing selection. Diversifying selection as measured by ω values was notably strongest on the region of ALT-2 encoding the signal peptide of L. loa and was elevated in the variable acidic domain of L. loa and W. bancrofti. Phylogenetic analysis indicated that the ALT-2 consensus sequences formed three clades: the first consisting of B. malayi, the second consisting of W. bancrofti, and the third containing both O. volvulus and L. loa. ALT-2 selection was therefore not predictable by phylogeny or pathology, as the two species parasitizing the eye were selected differently, as were the two species parasitizing the lymphatic system. The most immunogenic regions of L. loa and W. bancrofti ALT-2 sequence as modeled by antigenicity prediction analysis did not correspond with elevated levels of diversifying selection, and were not selected differently than predicted antigenic epitopes in B. malayi and O. volvulus. Measurements of ALT-2 evolvability made by χ2 analysis between alleles that were stable (O. volvulus and B. malayi) and those that were under diversifying selection (W. bancrofti and L. loa) indicated significant (P<0

  6. Differential Evolutionary Selection and Natural Evolvability Observed in ALT Proteins of Human Filarial Parasites

    PubMed Central

    Devoe, Neil C.; Corbett, Ian J.; Barker, Linsey; Chang, Robert; Gudis, Polyxeni; Mullen, Nathan; Perez, Kailey; Raposo, Hugo; Scholz, John; May, Meghan

    2016-01-01

    The abundant larval transcript (ALT-2) protein is present in all members of the Filarioidea, and has been reported as a potential candidate antigen for a subunit vaccine against lymphatic filariasis. To assess the potential for vaccine escape or heterologous protection, we examined the evolutionary selection acting on ALT-2. The ratios of nonsynonymous (K(a)) to synonymous (K(s)) mutation frequencies (ω) were calculated for the alt-2 genes of the lymphatic filariasis agents Brugia malayi and Wuchereria bancrofti and the agents of river blindness and African eyeworm disease Onchocerca volvulus and Loa loa. Two distinct Bayesian models of sequence evolution showed that ALT-2 of W. bancrofti and L. loa were under significant (P<0.05; P < 0.001) diversifying selection, while ALT-2 of B. malayi and O. volvulus were under neutral to stabilizing selection. Diversifying selection as measured by ω values was notably strongest on the region of ALT-2 encoding the signal peptide of L. loa and was elevated in the variable acidic domain of L. loa and W. bancrofti. Phylogenetic analysis indicated that the ALT-2 consensus sequences formed three clades: the first consisting of B. malayi, the second consisting of W. bancrofti, and the third containing both O. volvulus and L. loa. ALT-2 selection was therefore not predictable by phylogeny or pathology, as the two species parasitizing the eye were selected differently, as were the two species parasitizing the lymphatic system. The most immunogenic regions of L. loa and W. bancrofti ALT-2 sequence as modeled by antigenicity prediction analysis did not correspond with elevated levels of diversifying selection, and were not selected differently than predicted antigenic epitopes in B. malayi and O. volvulus. Measurements of ALT-2 evolvability made by χ2 analysis between alleles that were stable (O. volvulus and B. malayi) and those that were under diversifying selection (W. bancrofti and L. loa) indicated significant (P<0

  7. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts.

    PubMed

    Dashtban, M; Balafar, Mohammadali

    2017-03-01

    Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms and artificial intelligence is proposed to identify predictive genes for cancer classification. A filter method was first applied to reduce the dimensionality of feature space followed by employing an integer-coded genetic algorithm with dynamic-length genotype, intelligent parameter settings, and modified operators. The algorithmic behaviors including convergence trends, mutation and crossover rate changes, and running time were studied, conceptually discussed, and shown to be coherent with literature findings. Two well-known filter methods, Laplacian and Fisher score, were examined considering similarities, the quality of selected genes, and their influences on the evolutionary approach. Several statistical tests concerning choice of classifier, choice of dataset, and choice of filter method were performed, and they revealed some significant differences between the performance of different classifiers and filter methods over datasets. The proposed method was benchmarked upon five popular high-dimensional cancer datasets; for each, top explored genes were reported. Comparing the experimental results with several state-of-the-art methods revealed that the proposed method outperforms previous methods in DLBCL dataset. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A standard deviation selection in evolutionary algorithm for grouper fish feed formulation

    NASA Astrophysics Data System (ADS)

    Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul

    2016-10-01

    Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.

  9. Selection of relevant input variables in storm water quality modeling by multiobjective evolutionary polynomial regression paradigm

    NASA Astrophysics Data System (ADS)

    Creaco, E.; Berardi, L.; Sun, Siao; Giustolisi, O.; Savic, D.

    2016-04-01

    The growing availability of field data, from information and communication technologies (ICTs) in "smart" urban infrastructures, allows data modeling to understand complex phenomena and to support management decisions. Among the analyzed phenomena, those related to storm water quality modeling have recently been gaining interest in the scientific literature. Nonetheless, the large amount of available data poses the problem of selecting relevant variables to describe a phenomenon and enable robust data modeling. This paper presents a procedure for the selection of relevant input variables using the multiobjective evolutionary polynomial regression (EPR-MOGA) paradigm. The procedure is based on scrutinizing the explanatory variables that appear inside the set of EPR-MOGA symbolic model expressions of increasing complexity and goodness of fit to target output. The strategy also enables the selection to be validated by engineering judgement. In such context, the multiple case study extension of EPR-MOGA, called MCS-EPR-MOGA, is adopted. The application of the proposed procedure to modeling storm water quality parameters in two French catchments shows that it was able to significantly reduce the number of explanatory variables for successive analyses. Finally, the EPR-MOGA models obtained after the input selection are compared with those obtained by using the same technique without benefitting from input selection and with those obtained in previous works where other data-modeling techniques were used on the same data. The comparison highlights the effectiveness of both EPR-MOGA and the input selection procedure.

  10. Evolutionary switches between two serine codon sets are driven by selection

    PubMed Central

    Rogozin, Igor B.; Belinky, Frida; Pavlenko, Vladimir; Shabalina, Svetlana A.; Kristensen, David M.; Koonin, Eugene V.

    2016-01-01

    Serine is the only amino acid that is encoded by two disjoint codon sets so that a tandem substitution of two nucleotides is required to switch between the two sets. Previously published evidence suggests that, for the most evolutionarily conserved serines, the codon set switch occurs by simultaneous substitution of two nucleotides. Here we report a genome-wide reconstruction of the evolution of serine codons in triplets of closely related species from diverse prokaryotes and eukaryotes. The results indicate that the great majority of codon set switches proceed by two consecutive nucleotide substitutions, via a threonine or cysteine intermediate, and are driven by selection. These findings imply a strong pressure of purifying selection in protein evolution, which in the case of serine codon set switches occurs via an initial deleterious substitution quickly followed by a second, compensatory substitution. The result is frequent reversal of amino acid replacements and, at short evolutionary distances, pervasive homoplasy. PMID:27799560

  11. Evolutionary dynamics of continuous strategy games on graphs and social networks under weak selection.

    PubMed

    Zhong, Weicai; Liu, Jing; Zhang, Li

    2013-02-01

    Understanding the emergence of cooperation among selfish individuals has been a long-standing puzzle, which has been studied by a variety of game models. Most previous studies presumed that interactions between individuals are discrete, but it seems unrealistic in real systems. Recently, there are increasing interests in studying game models with a continuous strategy space. Existing research work on continuous strategy games mainly focuses on well-mixed populations. Especially, little theoretical work has been conducted on their evolutionary dynamics in a structured population. In the previous work (Zhong et al., BioSystems, 2012), we showed that under strong selection, continuous and discrete strategies have significantly different equilibrium and game dynamics in spatially structured populations. In this paper, we further study evolutionary dynamics of continuous strategy games under weak selection in structured populations. By using the fixation probability based stochastic dynamics, we derive exact conditions of natural selection favoring cooperation for the death-birth updating scheme. We also present a network gain decomposition of the game equilibrium, which might provide a new view of the network reciprocity in a quantitative way. Finally, we make a detailed comparison between games using discrete and continuous strategies. As compared to the former, we find that for the latter (i) the same selection conditions are derived for the general 2×2 game; especially, the rule b/c>k in a simplified Prisoner's Dilemma is valid as well; however, (ii) for a coordination game, interestingly, the risk-dominant strategy is disfavored. Numerical simulations have also been conducted to validate our results.

  12. Negative Selection Algorithm for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.

  13. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials

    PubMed Central

    Meyer-Lucht, Yvonne; Otten, Celine; Püttker, Thomas; Sommer, Simone

    2008-01-01

    Background Research on the genetic architecture and diversity of the MHC has focused mainly on eutherian mammals, birds and fish. So far, studies on model marsupials used in laboratory investigations indicated very little or even no variation in MHC class II genes. However, natural levels of diversity and selection are unknown in marsupials as studies on wild populations are virtually absent. We used two endemic South American mouse opossums, Gracilinanus microtarsus and Marmosops incanus, to investigate characteristic features of MHC selection. This study is the first investigation of MHC selection in free-ranging Neotropical marsupials. In addition, the evolutionary history of MHC lineages within the group of marsupials was examined. Results G. microtarsus showed extensive levels of MHC diversity within and among individuals as 47 MHC-DAB alleles and high levels of sequence divergence were detected at a minimum of four loci. Positively selected codon sites were identified, of which most were congruent with human antigen binding sites. The diversity in M. incanus was rather low with only eight observed alleles at presumably two loci. However, these alleles also revealed high sequence divergence. Again, positive selection was identified on specific codon sites, all congruent with human ABS and with positively selected sites observed in G. microtarsus. In a phylogenetic comparison alleles of M. incanus interspersed widely within alleles of G. microtarsus with four alleles being present in both species. Conclusion Our investigations revealed extensive MHC class II polymorphism in a natural marsupial population, contrary to previous assumptions. Furthermore, our study confirms for the first time in marsupials the presence of three characteristic features common at MHC loci of eutherian mammals, birds and fish: large allelic sequence divergence, positive selection on specific sites and trans-specific polymorphism. PMID:18534008

  14. Detection Limits and Selectivity in Electrochemical Detectors.

    ERIC Educational Resources Information Center

    Weber, Stephen G.; Long, John T.

    1988-01-01

    Discusses three aspects of electrochemical detectors: (1) signal and noise generation and signal-to-noise ratio, (2) improvement of qualitative information content, and (3) control of selectivity of the detector. Explains electronic principles of detectors and detection limits. Lists current applications and research. (ML)

  15. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation.

    PubMed

    Menge, Duncan N L; Levin, Simon A; Hedin, Lars O

    2008-02-05

    Symbiotic nitrogen (N) fixing trees are absent from old-growth temperate and boreal ecosystems, even though many of these are N-limited. To explore mechanisms that could select against N fixation in N-limited, old-growth ecosystems, we developed a simple resource-based evolutionary model of N fixation. When there are no costs of N fixation, increasing amounts of N fixation will be selected for until N no longer limits production. However, tradeoffs between N fixation and plant mortality or turnover, plant uptake of available soil N, or N use efficiency (NUE) can select against N fixation in N-limited ecosystems and can thereby maintain N limitation indefinitely (provided that there are losses of plant-unavailable N). Three key traits influence the threshold that determines how large these tradeoffs must be to select against N fixation. A low NUE, high mortality (or turnover) rate and low losses of plant-unavailable N all increase the likelihood that N fixation will be selected against, and a preliminary examination of published data on these parameters shows that these mechanisms, particularly the tradeoff with NUE, are quite feasible in some systems. Although these results are promising, a better characterization of these parameters in multiple ecosystems is necessary to determine whether these mechanisms explain the lack of symbiotic N fixers-and thus the maintenance of N limitation-in old-growth forests.

  16. Evolutionary vestigialization of sex in a clonal plant: selection versus neutral mutation in geographically peripheral populations.

    PubMed Central

    Dorken, Marcel E.; Neville, Kathryn J.; Eckert, Christopher G.

    2004-01-01

    The loss of traits that no longer contribute to fitness is widespread; however, the causative evolutionary mechanisms are poorly understood. Vestigialization could proceed through the fixation of selectively neutral degenerative mutations via genetic drift. Alternatively, selection may facilitate vestigialization if trait loss results in enhanced fitness. We tested these hypotheses using Decodon verticillatus, a clonal plant in which sexual sterility has arisen repeatedly in populations across the northern geographical range limit. We compared growth and survival of replicated genotypes from 7 sexually fertile and 18 sterile populations, over 3 years in a common environment. Survival of sterile genotypes was 53% greater than for fertile genotypes, but there was no difference in biomass accumulation. Almost all mortality, and hence increased performance of sterile genotypes, occurred during simulated overwinter dormancy. These observations suggest that selection has facilitated the vestigialization of sex, and thus do not support the neutral mutation hypothesis. The selective mechanism probably involves the relaxation of a genetic trade-off between sexual reproduction and survival: alleles that increase vegetative performance at the expense of sexual fertility are selected in geographically peripheral populations where sexual reproduction is suppressed by adverse environmental conditions. PMID:15556890

  17. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation

    PubMed Central

    Menge, Duncan N. L.; Levin, Simon A.; Hedin, Lars O.

    2008-01-01

    Symbiotic nitrogen (N) fixing trees are absent from old-growth temperate and boreal ecosystems, even though many of these are N-limited. To explore mechanisms that could select against N fixation in N-limited, old-growth ecosystems, we developed a simple resource-based evolutionary model of N fixation. When there are no costs of N fixation, increasing amounts of N fixation will be selected for until N no longer limits production. However, tradeoffs between N fixation and plant mortality or turnover, plant uptake of available soil N, or N use efficiency (NUE) can select against N fixation in N-limited ecosystems and can thereby maintain N limitation indefinitely (provided that there are losses of plant-unavailable N). Three key traits influence the threshold that determines how large these tradeoffs must be to select against N fixation. A low NUE, high mortality (or turnover) rate and low losses of plant-unavailable N all increase the likelihood that N fixation will be selected against, and a preliminary examination of published data on these parameters shows that these mechanisms, particularly the tradeoff with NUE, are quite feasible in some systems. Although these results are promising, a better characterization of these parameters in multiple ecosystems is necessary to determine whether these mechanisms explain the lack of symbiotic N fixers—and thus the maintenance of N limitation—in old-growth forests. PMID:18223153

  18. Orientation selectivity sharpens motion detection in Drosophila

    PubMed Central

    Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.

    2015-01-01

    SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048

  19. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today

    NASA Astrophysics Data System (ADS)

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an “abstract” without references, compiled by Charles Darwin from a much longer manuscript entitled “Natural Selection.” Here, I summarize the five theories that can be extracted from Darwin’s monograph, explain the true meaning of the phrase “struggle for life” (i.e., competition and cooperation), and outline Darwin’s original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that “selection only eliminates but is not creative” is still alive today. However, I document that August Weismann ( Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen ( Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this “Weismann-Schmalhausen principle” with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky ( Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by

  20. Opportunity for natural selection in a Basque population and its secular trend: evolutionary implications of epidemic mortality.

    PubMed

    Alfonso-Sánchez, Miguel A; Calderón, Rosario; Peña, José A

    2004-06-01

    Analysis of the interaction between mortality patterns and opportunity for natural selection could help to elucidate potential evolutionary implications of epidemic mortality. In this paper secular trends are studied in relation to Crow's index (It) and its components of mortality (Im) and fertility (If), using parish records for family reconstitution in a Basque population. A principal components analysis (91% of the variance accounted for) showed marked quantitative and qualitative variations of Im and If depending on the stage of demographic transition of the population analyzed: In pretransitional societies the opportunity for natural selection is determined mainly by differential prereproductive mortality, whereas in posttransitional societies selection resulting from differential fertility plays a key role. The highest values for the mortality component (range 0.81-1.26) and for the relative contribution of Im, to It (range 47.1-57.2%) were observed in periods with a high incidence of infectious diseases and when the most severe mortality crises were detected (1830-1859, 1860-1889, and 1890-1919). A differential incidence of epidemic mortality was also found at prereproductive ages (before 16 years) and at reproductive ages (16-45 years), which provides strong support for the idea of the long-term genetic consequences of mortality crises.

  1. Detecting genetic drift versus selection in human evolution

    PubMed Central

    Ackermann, Rebecca Rogers; Cheverud, James M.

    2004-01-01

    Recent paleoanthropological discoveries reveal a diverse, potentially speciose human fossil record. Such extensive morphological diversity results from the action of divergent evolutionary forces on an evolving lineage. Here, we apply quantitative evolutionary theory to test whether random evolutionary processes alone can explain the morphological diversity seen among fossil australopith and early Homo crania from the Plio–Pleistocene. We show that although selection may have played an important role in diversifying hominin facial morphology in the late Pliocene, this is not the case during the early evolution of the genus Homo, where genetic drift was probably the primary force responsible for facial diversification. PMID:15604148

  2. Adaptive attunement of selective covert attention to evolutionary-relevant emotional visual scenes.

    PubMed

    Fernández-Martín, Andrés; Gutiérrez-García, Aída; Capafons, Juan; Calvo, Manuel G

    2017-05-01

    We investigated selective attention to emotional scenes in peripheral vision, as a function of adaptive relevance of scene affective content for male and female observers. Pairs of emotional-neutral images appeared peripherally-with perceptual stimulus differences controlled-while viewers were fixating on a different stimulus in central vision. Early selective orienting was assessed by the probability of directing the first fixation towards either scene, and the time until first fixation. Emotional scenes selectively captured covert attention even when they were task-irrelevant, thus revealing involuntary, automatic processing. Sex of observers and specific emotional scene content (e.g., male-to-female-aggression, families and babies, etc.) interactively modulated covert attention, depending on adaptive priorities and goals for each sex, both for pleasant and unpleasant content. The attentional system exhibits domain-specific and sex-specific biases and attunements, probably rooted in evolutionary pressures to enhance reproductive and protective success. Emotional cues selectively capture covert attention based on their bio-social significance. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An evolutionary theory of large-scale human warfare: Group-structured cultural selection.

    PubMed

    Zefferman, Matthew R; Mathew, Sarah

    2015-01-01

    When humans wage war, it is not unusual for battlefields to be strewn with dead warriors. These warriors typically were men in their reproductive prime who, had they not died in battle, might have gone on to father more children. Typically, they are also genetically unrelated to one another. We know of no other animal species in which reproductively capable, genetically unrelated individuals risk their lives in this manner. Because the immense private costs borne by individual warriors create benefits that are shared widely by others in their group, warfare is a stark evolutionary puzzle that is difficult to explain. Although several scholars have posited models of the evolution of human warfare, these models do not adequately explain how humans solve the problem of collective action in warfare at the evolutionarily novel scale of hundreds of genetically unrelated individuals. We propose that group-structured cultural selection explains this phenomenon.

  4. Change Detection via Selective Guided Contrasting Filters

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Rubis, A. Y.; Zheltov, S. Y.

    2017-05-01

    Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All implemented

  5. Contrasted evolutionary constraints on secreted and non-secreted proteomes of selected Actinobacteria

    PubMed Central

    2013-01-01

    Background Actinobacteria have adapted to contrasted ecological niches such as the soil, and among others to plants or animals as pathogens or symbionts. Mycobacterium genus contains mostly pathogens that cause a variety of mammalian diseases, among which the well-known leprosy and tuberculosis, it also has saprophytic relatives. Streptomyces genus is mostly a soil microbe known for its secondary metabolites, it contains also plant pathogens, animal pathogens and symbionts. Frankia, a nitrogen-fixing actinobacterium establishes a root symbiosis with dicotyledonous pionneer plants. Pathogens and symbionts live inside eukaryotic cells and tissues and interact with their cellular environment through secreted proteins and effectors transported through transmembrane systems; nevertheless they also need to avoid triggering host defense reactions. A comparative genome analysis of the secretomes of symbionts and pathogens allows a thorough investigation of selective pressures shaping their evolution. In the present study, the rates of silent mutations to non-silent mutations in secretory proteins were assessed in different strains of Frankia, Streptomyces and Mycobacterium, of which several genomes have recently become publicly available. Results It was found that secreted proteins as a whole have a stronger purifying evolutionary rate (non-synonymous to synonymous substitutions or Ka/Ks ratio) than the non-secretory proteins in most of the studied genomes. This difference becomes statistically significant in cases involving obligate symbionts and pathogens. Amongst the Frankia, secretomes of symbiotic strains were found to have undergone evolutionary trends different from those of the mainly saprophytic strains. Even within the secretory proteins, the signal peptide part has a higher Ka/Ks ratio than the mature part. Two contrasting trends were noticed amongst the Frankia genomes regarding the relation between selection strength (i.e. Ka/Ks ratio) and the codon adaptation

  6. Detecting gene subnetworks under selection in biological pathways.

    PubMed

    Gouy, Alexandre; Daub, Joséphine T; Excoffier, Laurent

    2017-09-19

    Advances in high throughput sequencing technologies have created a gap between data production and functional data analysis. Indeed, phenotypes result from interactions between numerous genes, but traditional methods treat loci independently, missing important knowledge brought by network-level emerging properties. Therefore, detecting selection acting on multiple genes affecting the evolution of complex traits remains challenging. In this context, gene network analysis provides a powerful framework to study the evolution of adaptive traits and facilitates the interpretation of genome-wide data. We developed a method to analyse gene networks that is suitable to evidence polygenic selection. The general idea is to search biological pathways for subnetworks of genes that directly interact with each other and that present unusual evolutionary features. Subnetwork search is a typical combinatorial optimization problem that we solve using a simulated annealing approach. We have applied our methodology to find signals of adaptation to high-altitude in human populations. We show that this adaptation has a clear polygenic basis and is influenced by many genetic components. Our approach, implemented in the R package signet, improves on gene-level classical tests for selection by identifying both new candidate genes and new biological processes involved in adaptation to altitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Novel approach to evolutionary neural network based descriptor selection and QSAR model development

    NASA Astrophysics Data System (ADS)

    Debeljak, Željko; Marohnić, Viktor; Srečnik, Goran; Medić-Šarić, Marica

    2005-12-01

    Capability of evolutionary neural network (ENN) based QSAR approach to direct the descriptor selection process towards stable descriptor subset (DS) composition characterized by acceptable generalization, as well as the influence of description stability on QSAR model interpretation have been examined. In order to analyze the DS stability and QSAR model generalization properties multiple random dataset partitions into training and test set were made. Acceptability criteria proposed by Golbraikh et al. [J. Comput.-Aided Mol. Des., 17 (2003) 241] have been chosen for selection of highly predictive QSAR models from a set of all models produced by ENN for each dataset splitting. All QSAR models that pass Golbraikh's filter generated by ENN for each dataset partition were collected. Two final DS forming principles were compared. Standard principle is based on selection of descriptors characterized by highest frequencies among all descriptors that appear in the pool [J. Chem. Inf. Comput. Sci., 43 (2003) 949]. Search across the model pool for DS that are stable against multiple dataset subsampling i.e. universal DS solutions is the basis of novel approach. Based on described principles benzodiazepine QSAR has been proposed and evaluated against results reported by others in terms of final DS composition and model predictive performance.

  8. PROTECTED POLYMORPHISMS AND EVOLUTIONARY STABILITY OF PATCH-SELECTION STRATEGIES IN STOCHASTIC ENVIRONMENTS

    PubMed Central

    EVANS, STEVEN N.; HENING, ALEXANDRU; SCHREIBER, SEBASTIAN J.

    2015-01-01

    We consider a population living in a patchy environment that varies stochastically in space and time. The population is composed of two morphs (that is, individuals of the same species with different genotypes). In terms of survival and reproductive success, the associated phenotypes differ only in their habitat selection strategies. We compute invasion rates corresponding to the rates at which the abundance of an initially rare morph increases in the presence of the other morph established at equilibrium. If both morphs have positive invasion rates when rare, then there is an equilibrium distribution such that the two morphs coexist; that is, there is a protected polymorphism for habitat selection. Alternatively, if one morph has a negative invasion rate when rare, then it is asymptotically displaced by the other morph under all initial conditions where both morphs are present. We refine the characterization of an evolutionary stable strategy for habitat selection from [Schreiber, 2012] in a mathematically rigorous manner. We provide a necessary and sufficient condition for the existence of an ESS that uses all patches and determine when using a single patch is an ESS. We also provide an explicit formula for the ESS when there are two habitat types. We show that adding environmental stochasticity results in an ESS that, when compared to the ESS for the corresponding model without stochasticity, spends less time in patches with larger carrying capacities and possibly makes use of sink patches, thereby practicing a spatial form of bet hedging. PMID:25151369

  9. Selective visual attention in object detection processes

    NASA Astrophysics Data System (ADS)

    Paletta, Lucas; Goyal, Anurag; Greindl, Christian

    2003-03-01

    Object detection is an enabling technology that plays a key role in many application areas, such as content based media retrieval. Attentive cognitive vision systems are here proposed where the focus of attention is directed towards the most relevant target. The most promising information is interpreted in a sequential process that dynamically makes use of knowledge and that enables spatial reasoning on the local object information. The presented work proposes an innovative application of attention mechanisms for object detection which is most general in its understanding of information and action selection. The attentive detection system uses a cascade of increasingly complex classifiers for the stepwise identification of regions of interest (ROIs) and recursively refined object hypotheses. While the most coarse classifiers are used to determine first approximations on a region of interest in the input image, more complex classifiers are used for more refined ROIs to give more confident estimates. Objects are modelled by local appearance based representations and in terms of posterior distributions of the object samples in eigenspace. The discrimination function to discern between objects is modeled by a radial basis functions (RBF) network that has been compared with alternative networks and been proved consistent and superior to other artifical neural networks for appearance based object recognition. The experiments were led for the automatic detection of brand objects in Formula One broadcasts within the European Commission's cognitive vision project DETECT.

  10. Empirical tests of natural selection-based evolutionary accounts of ADHD: a systematic review.

    PubMed

    Thagaard, Marthe S; Faraone, Stephen V; Sonuga-Barke, Edmund J; Østergaard, Søren D

    2016-10-01

    ADHD is a prevalent and highly heritable mental disorder associated with significant impairment, morbidity and increased rates of mortality. This combination of high prevalence and high morbidity/mortality seen in ADHD and other mental disorders presents a challenge to natural selection-based models of human evolution. Several hypotheses have been proposed in an attempt to resolve this apparent paradox. The aim of this study was to review the evidence for these hypotheses. We conducted a systematic review of the literature on empirical investigations of natural selection-based evolutionary accounts for ADHD in adherence with the PRISMA guideline. The PubMed, Embase, and PsycINFO databases were screened for relevant publications, by combining search terms covering evolution/selection with search terms covering ADHD. The search identified 790 records. Of these, 15 full-text articles were assessed for eligibility, and three were included in the review. Two of these reported on the evolution of the seven-repeat allele of the ADHD-associated dopamine receptor D4 gene, and one reported on the results of a simulation study of the effect of suggested ADHD-traits on group survival. The authors of the three studies interpreted their findings as favouring the notion that ADHD-traits may have been associated with increased fitness during human evolution. However, we argue that none of the three studies really tap into the core symptoms of ADHD, and that their conclusions therefore lack validity for the disorder. This review indicates that the natural selection-based accounts of ADHD have not been subjected to empirical test and therefore remain hypothetical.

  11. A unifying evolutionary framework for infrared-selected obscured and unobscured quasar host haloes

    NASA Astrophysics Data System (ADS)

    DiPompeo, M. A.; Hickox, R. C.; Myers, A. D.; Geach, J. E.

    2017-01-01

    Recent measurements of the dark matter halo masses of infrared-selected obscured quasars are in tension - some indicate that obscured quasars have a higher halo mass compared to their unobscured counterparts, while others find no difference. The former result is inconsistent with the simplest models of quasar unification which rely solely on the viewing angle, while the latter may support such models. Here, using empirical relationships between dark matter halo and supermassive black hole (BH) masses, we provide a simple evolutionary picture which naturally explains these findings and is motivated by more sophisticated merger-driven quasar-fuelling models. The model tracks the growth rate of haloes, with the BH growing in spurts of quasar activity in order to `catch up' with the Mbh-Mstellar-Mhalo relationship. The first part of the quasar phase is obscured and is followed by an unobscured phase. Depending on the luminosity limit of the sample, driven by observational selection effects, a difference in halo masses may or may not be significant. For high-luminosity samples, the difference can be large (a few to 10 times higher masses in obscured quasars), while for lower luminosity samples, the halo mass difference is very small, much smaller than current observational constraints. Such a simple model provides a qualitative explanation for the higher mass haloes of obscured quasars, as well as a rough quantitative agreement with seemingly disparate results.

  12. Covariance based outlier detection with feature selection.

    PubMed

    Zwilling, Chris E; Wang, Michelle Y

    2016-08-01

    The present covariance based outlier detection algorithm selects from a candidate set of feature vectors that are best at identifying outliers. Features extracted from biomedical and health informatics data can be more informative in disease assessment and there are no restrictions on the nature and number of features that can be tested. But an important challenge for an algorithm operating on a set of features is for it to winnow the effective features from the ineffective ones. The powerful algorithm described in this paper leverages covariance information from the time series data to identify features with the highest sensitivity for outlier identification. Empirical results demonstrate the efficacy of the method.

  13. Evolutionary neural networks for anomaly detection based on the behavior of a program.

    PubMed

    Han, Sang-Jun; Cho, Sung-Bae

    2006-06-01

    The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.

  14. A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks.

    PubMed

    Liu, Chenlong; Liu, Jing; Jiang, Zhongzhou

    2014-12-01

    Various types of social relationships, such as friends and foes, can be represented as signed social networks (SNs) that contain both positive and negative links. Although many community detection (CD) algorithms have been proposed, most of them were designed primarily for networks containing only positive links. Thus, it is important to design CD algorithms which can handle large-scale SNs. To this purpose, we first extend the original similarity to the signed similarity based on the social balance theory. Then, based on the signed similarity and the natural contradiction between positive and negative links, two objective functions are designed to model the problem of detecting communities in SNs as a multiobjective problem. Afterward, we propose a multiobjective evolutionary algorithm, called MEAs-SN. In MEAs-SN, to overcome the defects of direct and indirect representations for communities, a direct and indirect combined representation is designed. Attributing to this representation, MEAs-SN can switch between different representations during the evolutionary process. As a result, MEAs-SN can benefit from both representations. Moreover, owing to this representation, MEAs-SN can also detect overlapping communities directly. In the experiments, both benchmark problems and large-scale synthetic networks generated by various parameter settings are used to validate the performance of MEAs-SN. The experimental results show the effectiveness and efficacy of MEAs-SN on networks with 1000, 5000, and 10,000 nodes and also in various noisy situations. A thorough comparison is also made between MEAs-SN and three existing algorithms, and the results show that MEAs-SN outperforms other algorithms.

  15. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms.

    PubMed

    Liu, Min-Yin; Huang, Adam; Huang, Norden E

    2017-01-01

    Sleep spindles are brief bursts of brain activity in the sigma frequency range (11-16 Hz) measured by electroencephalography (EEG) mostly during non-rapid eye movement (NREM) stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1) the lack of common benchmark databases, and (2) the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA), the Strength Pareto Evolutionary Algorithm (SPEA2), to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT), and two Hilbert-Huang transform (HHT) based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726-0.737.

  16. Chaos Enhanced Differential Evolution in the Task of Evolutionary Control of Selected Set of Discrete Chaotic Systems

    PubMed Central

    Pluhacek, Michal; Davendra, Donald; Oplatková Kominkova, Zuzana

    2014-01-01

    Evolutionary technique differential evolution (DE) is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions. PMID:25243230

  17. Detecting signatures of positive selection associated with musical aptitude in the human genome

    PubMed Central

    Liu, Xuanyao; Kanduri, Chakravarthi; Oikkonen, Jaana; Karma, Kai; Raijas, Pirre; Ukkola-Vuoti, Liisa; Teo, Yik-Ying; Järvelä, Irma

    2016-01-01

    Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using three selection methods: haploPS, XP-EHH and FST. Gene ontology classification revealed that the positive selection regions contained genes affecting inner-ear development. Additionally, literature survey has shown that several of the identified genes were known to be involved in auditory perception (e.g. GPR98, USH2A), cognition and memory (e.g. GRIN2B, IL1A, IL1B, RAPGEF5), reward mechanisms (RGS9), and song perception and production of songbirds (e.g. FOXP1, RGS9, GPR98, GRIN2B). Interestingly, genes related to inner-ear development and cognition were also detected in a previous genome-wide association study of musical aptitude. However, the candidate genes detected in this study were not reported earlier in studies of musical abilities. Identification of genes related to language development (FOXP1 and VLDLR) support the popular hypothesis that music and language share a common genetic and evolutionary background. The findings are consistent with the evolutionary conservation of genes related to auditory processes in other species and provide first empirical evidence for signatures of positive selection for abilities that contribute to musical aptitude. PMID:26879527

  18. Detecting signatures of positive selection associated with musical aptitude in the human genome.

    PubMed

    Liu, Xuanyao; Kanduri, Chakravarthi; Oikkonen, Jaana; Karma, Kai; Raijas, Pirre; Ukkola-Vuoti, Liisa; Teo, Yik-Ying; Järvelä, Irma

    2016-02-16

    Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using three selection methods: haploPS, XP-EHH and FST. Gene ontology classification revealed that the positive selection regions contained genes affecting inner-ear development. Additionally, literature survey has shown that several of the identified genes were known to be involved in auditory perception (e.g. GPR98, USH2A), cognition and memory (e.g. GRIN2B, IL1A, IL1B, RAPGEF5), reward mechanisms (RGS9), and song perception and production of songbirds (e.g. FOXP1, RGS9, GPR98, GRIN2B). Interestingly, genes related to inner-ear development and cognition were also detected in a previous genome-wide association study of musical aptitude. However, the candidate genes detected in this study were not reported earlier in studies of musical abilities. Identification of genes related to language development (FOXP1 and VLDLR) support the popular hypothesis that music and language share a common genetic and evolutionary background. The findings are consistent with the evolutionary conservation of genes related to auditory processes in other species and provide first empirical evidence for signatures of positive selection for abilities that contribute to musical aptitude.

  19. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation?

    PubMed

    Gertsch, Jürg

    2016-11-27

    The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed.

  20. Evolutionary significance of selected EDAR variants in Tibetan high-altitude adaptations.

    PubMed

    Shao, Jianming; Raza, Muhammad Sohail; Zhuoma, Basang; Zeng, Changqing

    2017-08-08

    Humans have been exposed to many environmental challenges since their evolutionary origins in Africa and subsequent migrations to the rest of the world. A severe environmental challenge to human migrants was hypoxia caused by low barometric oxygen pressure at high altitudes. Several genome-wide scans have elucidated the genetic basis of human high-altitude adaptations. However, the dearth of functional variant information has led to the successful association of only a few candidate genes. In the present study, we employed a candidate gene approach and re-sequenced the EDAR locus in 45 Tibetan individuals to identify mutations involved in hypoxia adaptation. We identified 10 and five quantitative trait-associated mutations for oxygen saturation (SaO2) and blood platelet count, respectively, at the EDAR locus. Among these, rs10865026 and rs3749110 (associated with SaO2 and platelet count, respectively) were identified as functional candidate targets. These data demonstrate that EDAR has undergone natural selection in recent human history and indicate an important role of EDAR variants in Tibetan high-altitude adaptations.

  1. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  2. Delayed life history effects, multilevel selection, and evolutionary trade-offs in the California tiger salamander.

    PubMed

    Searcy, Christopher A; Gray, Levi N; Trenham, Peter C; Shaffer, H Bradley

    2014-01-01

    Delayed life history effects (DLHEs) occur when fitness in one life stage affects fitness in subsequent life stages. Given their biphasic life cycle, pond-breeding amphibians provide a natural system for studying DLHEs, although these effects are not restricted to species with biphasic life histories. In this study, we used multiple mark-recapture techniques enabled by a large trapping array to monitor components of fitness and resulting DLHEs in a population of the endangered California tiger salamander (Ambystoma californiense). We found that DLHEs are prominent across all life stage transitions and that there is variation in whether selection acts primarily at the individual or cohort level. We also demonstrated that there is more than an order of magnitude variation in mean cohort fitness, providing tremendous variation for DLHEs to act upon. We documented an evolutionary trade-off between mass at emergence and date of emergence, which may play a role in maintaining the variation in mass (fitness) at emergence. A literature review revealed that such high levels of intercohort variation occur in many other pond-breeding amphibians, and that appropriately documenting the magnitude of intercohort variation requires long-term studies (roughly two population turnovers). Given the profound effect that DLHEs can have on population dynamics, quantifying intercohort variation in mean fitness and the level(s) at which selection acts will be very important for developing accurate models of population dynamics. In general, when developing models of population dynamics, more attention should be paid to variation in mean fitness and not just variation in total numbers.

  3. Macroevolutionary patterns of bumblebee body size: detecting the interplay between natural and sexual selection

    PubMed Central

    del Castillo, Raúl Cueva; Fairbairn, Daphne J

    2012-01-01

    Bumblebees and other eusocial bees offer a unique opportunity to analyze the evolution of body size differences between sexes. The workers, being sterile females, are not subject to selection for reproductive function and thus provide a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other natural selection. Using a phylogenetic comparative approach, we explored the allometric relationships among queens, males, and workers in 70 species of bumblebees (Bombus sp.). We found hyperallometry in thorax width for males relative to workers, indicating greater evolutionary divergence of body size in males than in sterile females. This is consistent with the hypothesis that selection for reproductive function, most probably sexual selection, has caused divergence in male size among species. The slope for males on workers was significantly steeper than that for queens on workers and the latter did not depart from isometry, providing further evidence of greater evolutionary divergence in male size than female size, and no evidence that reproductive selection has accelerated divergence of females. We did not detect significant hyperallometry when male size was regressed directly on queen size and our results thus add the genus Bombus to the increasing list of clades that have female-larger sexual size dimorphism and do not conform to Rensch's rule when analyzed according to standard methodology. Nevertheless, by using worker size as a common control, we were able to demonstrate that bumblee species do show the evolutionary pattern underlying Rensch's rule, that being correlated evolution of body size in males and females, but with greater evolutionary divergence in males. PMID:22408725

  4. Hyperspectral Anomaly Detection by Graph Pixel Selection.

    PubMed

    Yuan, Yuan; Ma, Dandan; Wang, Qi

    2016-12-01

    Hyperspectral anomaly detection (AD) is an important problem in remote sensing field. It can make full use of the spectral differences to discover certain potential interesting regions without any target priors. Traditional Mahalanobis-distance-based anomaly detectors assume the background spectrum distribution conforms to a Gaussian distribution. However, this and other similar distributions may not be satisfied for the real hyperspectral images. Moreover, the background statistics are susceptible to contamination of anomaly targets which will lead to a high false-positive rate. To address these intrinsic problems, this paper proposes a novel AD method based on the graph theory. We first construct a vertex- and edge-weighted graph and then utilize a pixel selection process to locate the anomaly targets. Two contributions are claimed in this paper: 1) no background distributions are required which makes the method more adaptive and 2) both the vertex and edge weights are considered which enables a more accurate detection performance and better robustness to noise. Intensive experiments on the simulated and real hyperspectral images demonstrate that the proposed method outperforms other benchmark competitors. In addition, the robustness of the proposed method has been validated by using various window sizes. This experimental result also demonstrates the valuable characteristic of less computational complexity and less parameter tuning for real applications.

  5. Evolutionary Analyses and Natural Selection of Betaine-Homocysteine S-Methyltransferase (BHMT) and BHMT2 Genes.

    PubMed

    Ganu, Radhika S; Ishida, Yasuko; Koutmos, Markos; Kolokotronis, Sergios-Orestis; Roca, Alfred L; Garrow, Timothy A; Schook, Lawrence B

    2015-01-01

    Betaine-homocysteine S-methyltransferase (BHMT) and BHMT2 convert homocysteine to methionine using betaine and S-methylmethionine, respectively, as methyl donor substrates. Increased levels of homocysteine in blood are associated with cardiovascular disease. Given their role in human health and nutrition, we identified BHMT and BHMT2 genes and proteins from 38 species of deuterostomes including human and non-human primates. We aligned the genes to look for signatures of selection, to infer evolutionary rates and events across lineages, and to identify the evolutionary timing of a gene duplication event that gave rise to two genes, BHMT and BHMT2. We found that BHMT was present in the genomes of the sea urchin, amphibians, reptiles, birds and mammals; BHMT2 was present only across mammals. BHMT and BHMT2 were present in tandem in the genomes of all monotreme, marsupial and placental species examined. Evolutionary rates were accelerated for BHMT2 relative to BHMT. Selective pressure varied across lineages, with the highest dN/dS ratios for BHMT and BHMT2 occurring immediately following the gene duplication event, as determined using GA Branch analysis. Nine codons were found to display signatures suggestive of positive selection; these contribute to the enzymatic or oligomerization domains, suggesting involvement in enzyme function. Gene duplication likely occurred after the divergence of mammals from other vertebrates but prior to the divergence of extant mammalian subclasses, followed by two deletions in BHMT2 that affect oligomerization and methyl donor specificity. The faster evolutionary rate of BHMT2 overall suggests that selective constraints were reduced relative to BHMT. The dN/dS ratios in both BHMT and BHMT2 was highest following the gene duplication, suggesting that purifying selection played a lesser role as the two paralogs diverged in function.

  6. Evolutionary and Experimental Assessment of Novel Markers for Detection of Xanthomonas euvesicatoria in Plant Samples

    PubMed Central

    Albuquerque, Pedro; Caridade, Cristina M. R.; Rodrigues, Arlete S.; Marcal, Andre R. S.; Cruz, Joana; Cruz, Leonor; Santos, Catarina L.; Mendes, Marta V.; Tavares, Fernando

    2012-01-01

    Background Bacterial spot-causing xanthomonads (BSX) are quarantine phytopathogenic bacteria responsible for heavy losses in tomato and pepper production. Despite the research on improved plant spraying methods and resistant cultivars, the use of healthy plant material is still considered as the most effective bacterial spot control measure. Therefore, rapid and efficient detection methods are crucial for an early detection of these phytopathogens. Methodology In this work, we selected and validated novel DNA markers for reliable detection of the BSX Xanthomonas euvesicatoria (Xeu). Xeu-specific DNA regions were selected using two online applications, CUPID and Insignia. Furthermore, to facilitate the selection of putative DNA markers, a customized C program was designed to retrieve the regions outputted by both databases. The in silico validation was further extended in order to provide an insight on the origin of these Xeu-specific regions by assessing chromosomal location, GC content, codon usage and synteny analyses. Primer-pairs were designed for amplification of those regions and the PCR validation assays showed that most primers allowed for positive amplification with different Xeu strains. The obtained amplicons were labeled and used as probes in dot blot assays, which allowed testing the probes against a collection of 12 non-BSX Xanthomonas and 23 other phytopathogenic bacteria. These assays confirmed the specificity of the selected DNA markers. Finally, we designed and tested a duplex PCR assay and an inverted dot blot platform for culture-independent detection of Xeu in infected plants. Significance This study details a selection strategy able to provide a large number of Xeu-specific DNA markers. As demonstrated, the selected markers can detect Xeu in infected plants both by PCR and by hybridization-based assays coupled with automatic data analysis. Furthermore, this work is a contribution to implement more efficient DNA-based methods of bacterial

  7. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.

    PubMed

    São Pedro, Simone Lima; Alves, João Marcelo Pereira; Barreto, André Silva; Lima, André Oliveira de Souza

    2015-01-01

    Marine mammals are well adapted to their hyperosmotic environment. Several morphological and physiological adaptations for water conservation and salt excretion are known to be present in cetaceans, being responsible for regulating salt balance. However, most previous studies have focused on the unique renal physiology of marine mammals, but the molecular bases of these mechanisms remain poorly explored. Many genes have been identified to be involved in osmotic regulation, including the aquaporins. Considering that aquaporin genes were potentially subject to strong selective pressure, the aim of this study was to analyze the molecular evolution of seven aquaporin genes (AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP9) comparing the lineages of cetaceans and terrestrial mammals. Our results demonstrated strong positive selection in cetacean-specific lineages acting only in the gene for AQP2 (amino acids 23, 83, 107,179, 180, 181, 182), whereas no selection was observed in terrestrial mammalian lineages. We also analyzed the changes in the 3D structure of the aquaporin 2 protein. Signs of strong positive selection in AQP2 sites 179, 180, 181, and 182 were unexpectedly identified only in the baiji lineage, which was the only river dolphin examined in this study. Positive selection in aquaporins AQP1 (45), AQP4 (74), AQP7 (342, 343, 356) was detected in cetaceans and artiodactyls, suggesting that these events are not related to maintaining water and electrolyte homeostasis in seawater. Our results suggest that the AQP2 gene might reflect different selective pressures in maintaining water balance in cetaceans, contributing to the passage from the terrestrial environment to the aquatic. Further studies are necessary, especially those including other freshwater dolphins, who exhibit osmoregulatory mechanisms different from those of marine cetaceans for the same essential task of maintaining serum electrolyte balance.

  8. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans

    PubMed Central

    São Pedro, Simone Lima; Alves, João Marcelo Pereira; Barreto, André Silva; Lima, André Oliveira de Souza

    2015-01-01

    Background Marine mammals are well adapted to their hyperosmotic environment. Several morphological and physiological adaptations for water conservation and salt excretion are known to be present in cetaceans, being responsible for regulating salt balance. However, most previous studies have focused on the unique renal physiology of marine mammals, but the molecular bases of these mechanisms remain poorly explored. Many genes have been identified to be involved in osmotic regulation, including the aquaporins. Considering that aquaporin genes were potentially subject to strong selective pressure, the aim of this study was to analyze the molecular evolution of seven aquaporin genes (AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP9) comparing the lineages of cetaceans and terrestrial mammals. Results Our results demonstrated strong positive selection in cetacean-specific lineages acting only in the gene for AQP2 (amino acids 23, 83, 107,179, 180, 181, 182), whereas no selection was observed in terrestrial mammalian lineages. We also analyzed the changes in the 3D structure of the aquaporin 2 protein. Signs of strong positive selection in AQP2 sites 179, 180, 181, and 182 were unexpectedly identified only in the baiji lineage, which was the only river dolphin examined in this study. Positive selection in aquaporins AQP1 (45), AQP4 (74), AQP7 (342, 343, 356) was detected in cetaceans and artiodactyls, suggesting that these events are not related to maintaining water and electrolyte homeostasis in seawater. Conclusions Our results suggest that the AQP2 gene might reflect different selective pressures in maintaining water balance in cetaceans, contributing to the passage from the terrestrial environment to the aquatic. Further studies are necessary, especially those including other freshwater dolphins, who exhibit osmoregulatory mechanisms different from those of marine cetaceans for the same essential task of maintaining serum electrolyte balance. PMID:26226365

  9. An evolutionary genome scan for longevity-related natural selection in mammals.

    PubMed

    Jobson, Richard W; Nabholz, Benoit; Galtier, Nicolas

    2010-04-01

    Aging is thought to occur through the accumulation of biochemical damage affecting DNA, proteins, and lipids. The major source of cellular damage involves the generation of reactive oxygen species produced during mitochondrial respiratory activity of the electron transport chain. Energetic metabolism, antioxidative processes, genome maintenance, and cell cycle are the cellular functions most commonly associated with aging, from experimental studies of model organisms. The significance of these experiments with respect to longevity-related selective constraints in nature remains unclear. Here we took a phylogenomic approach to identify the genetic targets of natural selection for elongated life span in mammals. By comparing the nonsynonymous and synonymous evolution of approximately 5.7 million codon sites across 25 species, we identify codons and genes showing a stronger level of amino acid conservation in long-lived than in short-lived lineages. We show that genes involved in lipid composition and (collagen associated) vitamin C binding have collectively undergone increased selective pressure in long-lived species, whereas genes involved in DNA replication/repair or antioxidation have not. Most of the candidate genes experimentally associated with aging (e.g., PolG, Sod, Foxo) have played no detectable role in the evolution of longevity in mammals. A large body of current medical research aims at discovering how to increase longevity in human. In this study, we uncovered the way natural selection has completed this task during mammalian evolution. Cellular membrane and extracellular collagen composition, not genome integrity, have apparently been the optimized features.

  10. A Composite-Likelihood Method for Detecting Incomplete Selective Sweep from Population Genomic Data.

    PubMed

    Vy, Ha My T; Kim, Yuseob

    2015-06-01

    Adaptive evolution occurs as beneficial mutations arise and then increase in frequency by positive natural selection. How, when, and where in the genome such evolutionary events occur is a fundamental question in evolutionary biology. It is possible to detect ongoing positive selection or an incomplete selective sweep in species with sexual reproduction because, when a beneficial mutation is on the way to fixation, homologous chromosomes in the population are divided into two groups: one carrying the beneficial allele with very low polymorphism at nearby linked loci and the other carrying the ancestral allele with a normal pattern of sequence variation. Previous studies developed long-range haplotype tests to capture this difference between two groups as the signal of an incomplete selective sweep. In this study, we propose a composite-likelihood-ratio (CLR) test for detecting incomplete selective sweeps based on the joint sampling probabilities for allele frequencies of two groups as a function of strength of selection and recombination rate. Tested against simulated data, this method yielded statistical power and accuracy in parameter estimation that are higher than the iHS test and comparable to the more recently developed nSL test. This procedure was also applied to African Drosophila melanogaster population genomic data to detect candidate genes under ongoing positive selection. Upon visual inspection of sequence polymorphism, candidates detected by our CLR method exhibited clear haplotype structures predicted under incomplete selective sweeps. Our results suggest that different methods capture different aspects of genetic information regarding incomplete sweeps and thus are partially complementary to each other.

  11. Evolutionary analysis of TLR9 genes reveals the positive selection of extant teleosts in Perciformes.

    PubMed

    Zhu, Zhihuang; Sun, Yuena; Wang, Rixin; Xu, Tianjun

    2013-08-01

    The innate immune system can recognize non-self through pattern recognition receptors. Toll-like receptors were the best-known members of these receptors, and they could sense, recognize, and bind pathogen-associated molecular patterns. TLRs played an important role in innate immune system and were conserved in both invertebrate and vertebrate lineages. Thereinto, TLR9 could detect unmethylated CpG motifs in dsDNA and was expected to undergo coevolution with its microbial ligands. It was known that aquatic and terrestrial organisms dwelled in different environments which contained different pathogens, and they had to adapt to their local environmental conditions. Therefore, we collected TLR9 genes from invertebrate to vertebrate to further explore whether the huge differences between aquatic and terrestrial environments affected the TLR9s evolution between aquatic and terrestrial organisms. Molecular evolution analysis detected positively selected sites in the ancestral lineages of vertebrates, teleosts, and Perciformes but not in the ancestral lineage of mammals. In PAML, site model revealed that extant mammalian TLR9 genes underwent positive selection. However, the positive selection of extant teleosts appeared primarily in Perciformes in which there were 14 positively selected sites. Among these sites, two of them were located on the amino acid insertions of the leucine-rich repeats which could create DNA binding sites, three were found on the convex surface which might possibly affect the flexibility of the TLR solenoids, and six were located on the β-face of concave surface which contained the ligand-binding sites of the TLR solenoids. In other ML methods, we also found three sites under selection that coincided with the codons identified by M8 and these sites were all located in LRRs. The diverse aquatic and terrestrial environments might possess different pathogens to make the living organisms adapt to their local environmental conditions. The positive

  12. Network Models of TEM β-Lactamase Mutations Coevolving under Antibiotic Selection Show Modular Structure and Anticipate Evolutionary Trajectories

    PubMed Central

    Guthrie, Violeta Beleva; Allen, Jennifer; Camps, Manel; Karchin, Rachel

    2011-01-01

    Understanding how novel functions evolve (genetic adaptation) is a critical goal of evolutionary biology. Among asexual organisms, genetic adaptation involves multiple mutations that frequently interact in a non-linear fashion (epistasis). Non-linear interactions pose a formidable challenge for the computational prediction of mutation effects. Here we use the recent evolution of β-lactamase under antibiotic selection as a model for genetic adaptation. We build a network of coevolving residues (possible functional interactions), in which nodes are mutant residue positions and links represent two positions found mutated together in the same sequence. Most often these pairs occur in the setting of more complex mutants. Focusing on extended-spectrum resistant sequences, we use network-theoretical tools to identify triple mutant trajectories of likely special significance for adaptation. We extrapolate evolutionary paths (n = 3) that increase resistance and that are longer than the units used to build the network (n = 2). These paths consist of a limited number of residue positions and are enriched for known triple mutant combinations that increase cefotaxime resistance. We find that the pairs of residues used to build the network frequently decrease resistance compared to their corresponding singlets. This is a surprising result, given that their coevolution suggests a selective advantage. Thus, β-lactamase adaptation is highly epistatic. Our method can identify triplets that increase resistance despite the underlying rugged fitness landscape and has the unique ability to make predictions by placing each mutant residue position in its functional context. Our approach requires only sequence information, sufficient genetic diversity, and discrete selective pressures. Thus, it can be used to analyze recent evolutionary events, where coevolution analysis methods that use phylogeny or statistical coupling are not possible. Improving our ability to assess

  13. Capability of the Maximax&Maximin selection operator in the evolutionary algorithm for a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Tein, Lim Huai

    2016-08-01

    A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.

  14. On the evolutionary status of X-ray selected weak-line T Tauri star candidates in Taurus-Auriga

    NASA Astrophysics Data System (ADS)

    Martín, E. L.; Magazzù, A.

    1999-02-01

    We present lithium observations of 35 stars previously reported by Wichmann et al. (1996) to be possible new weak T Tauri stars (WTTS) discovered by ROSAT in the Taurus-Auriga star-forming region. These stars were identified on the basis of low-resolution optical spectra. We have used our higher resolution spectra for measuring the equivalent widths of the Li i 670.8 nm resonance line, and for revisiting the evolutionary status of these stars. Most ( ~ 85%) of the stars in our sample coming from ROSAT pointed observations are indeed confirmed to be new WTTS, but only a minority ( ~ 22%) of the stars coming from the ROSAT all-sky survey are confirmed as WTTS. There are two reasons why we reject some stars as WTTS. One is that seven of the stars do not have a detectable lithium line at all. The other is that we use a definition different from that Wichmann et al. (1996) for classifying stars as WTTS. In particular, we identify eight stars as post T Tauri stars (PTTS) on the basis of their moderate lithium depletion. Our results confirm that the widely dispersed RASS-selected candidate WTTS tend to be older than the T Tauri stars associated with dark molecular clouds. The presence of PTTS around central Taurus suggests that the clouds may have been forming stars for more than ~ 10 Myr, although at a very low rate. On the basis of the PTTS identified in this work we discuss possible differences between them and the WTTS. We find that PTTS seem to have slightly lower Hα emission equivalent width than WTTS, but the small number of known PTTS prevent us from making a strong conclusion. Based on observations made with the Isaac Newton and the William Herschel telescopes operated on the island of La~Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrof\\'\\i sica de Canarias

  15. The potential for evolutionary responses to cell-lineage selection on growth form and its plasticity in a red seaweed.

    PubMed

    Monro, Keyne; Poore, Alistair G B

    2009-02-01

    Despite much theoretical discussion on the evolutionary significance of intraclonal genetic variation, particularly for modular organisms whose lack of germ-soma segregation allows for variants arising in clonal growth to contribute to evolutionary change, the potential of this variation to fuel adaptation remains surprisingly untested. Given intraclonal variation, mitotic cell lineages, rather than sexual offspring, may frequently act as units of selection. Here, we applied artificial selection to such lineages in the branching red seaweed Asparagopsis armata, targeting aspects of clonal growth form and growth-form plasticity that enhance light acquisition on patchy subtidal reefs and predicting that a genetic basis to intraclonal variation may promote significant responses that cannot accompany phenotypic variation alone. Cell-lineage selection increased variation in branch proliferation among A. armata genets and successfully altered its plasticity to light. Correlated responses in the plasticity of branch elongation, moreover, showed that cell-lineage selection may be transmitted among the plasticities of growth-form traits in A. armata via pleiotropy. By demonstrating significant responses to cell-lineage selection on growth-form plasticity in this seaweed, our study lends support to the notion that intraclonal genetic variation may potentially help clonal organisms to evolve adaptively in the absence of sex and thereby prove surprisingly resilient to environmental change.

  16. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    PubMed Central

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  17. Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks.

    PubMed

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  18. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a fire detector is in a space, it must provide effective detection of fires most likely to occur in the...

  19. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a fire detector is in a space, it must provide effective detection of fires most likely to occur in the...

  20. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a fire detector is in a space, it must provide effective detection of fires most likely to occur in the...

  1. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a fire detector is in a space, it must provide effective detection of fires most likely to occur in the...

  2. Assessment of the relative merits of a few methods to detect evolutionary trends.

    PubMed

    Laurin, Michel

    2010-12-01

    Some of the most basic questions about the history of life concern evolutionary trends. These include determining whether or not metazoans have become more complex over time, whether or not body size tends to increase over time (the Cope-Depéret rule), or whether or not brain size has increased over time in various taxa, such as mammals and birds. Despite the proliferation of studies on such topics, assessment of the reliability of results in this field is hampered by the variability of techniques used and the lack of statistical validation of these methods. To solve this problem, simulations are performed using a variety of evolutionary models (gradual Brownian motion, speciational Brownian motion, and Ornstein-Uhlenbeck), with or without a drift of variable amplitude, with variable variance of tips, and with bounds placed close or far from the starting values and final means of simulated characters. These are used to assess the relative merits (power, Type I error rate, bias, and mean absolute value of error on slope estimate) of several statistical methods that have recently been used to assess the presence of evolutionary trends in comparative data. Results show widely divergent performance of the methods. The simple, nonphylogenetic regression (SR) and variance partitioning using phylogenetic eigenvector regression (PVR) with a broken stick selection procedure have greatly inflated Type I error rate (0.123-0.180 at a 0.05 threshold), which invalidates their use in this context. However, they have the greatest power. Most variants of Felsenstein's independent contrasts (FIC; five of which are presented) have adequate Type I error rate, although two have a slightly inflated Type I error rate with at least one of the two reference trees (0.064-0.090 error rate at a 0.05 threshold). The power of all contrast-based methods is always much lower than that of SR and PVR, except under Brownian motion with a strong trend and distant bounds. Mean absolute value of error

  3. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes

    PubMed Central

    Van Le, Quan; Isbell, Lynne A.; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S.; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates’ heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage. PMID:24167268

  4. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.

    PubMed

    Van Le, Quan; Isbell, Lynne A; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-11-19

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates' heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage.

  5. Molecular population genetics of human CYP3A locus: signatures of positive selection and implications for evolutionary environmental medicine.

    PubMed

    Chen, Xiaoping; Wang, Haijian; Zhou, Gangqiao; Zhang, Xiumei; Dong, Xiaojia; Zhi, Lianteng; Jin, Li; He, Fuchu

    2009-10-01

    The human CYP3A gene cluster codes for cytochrome P450 (CYP) subfamily enzymes that catalyze the metabolism of various exogenous and endogenous chemicals and is an obvious candidate for evolutionary and environmental genomic study. Functional variants in the CYP3A locus may have undergone a selective sweep in response to various environmental conditions. The goal of this study was to profile the allelic structure across the human CYP3A locus and investigate natural selection on that locus. From the CYP3A locus spanning 231 kb, we resequenced 54 genomic DNA fragments (a total of 43,675 bases) spanning four genes (CYP3A4, CYP3A5, CYP3A7, and CYP3A43) and two pseudogenes (CYP3AP1 and CYP3AP2), and randomly selected intergenic regions at the CYP3A locus in Africans (24 individuals), Caucasians (24 individuals), and Chinese (29 individuals). We comprehensively investigated the nucleotide diversity and haplotype structure and examined the possible role of natural selection in shaping the sequence variation throughout the gene cluster. Neutrality tests with Tajima's D, Fu and Li's D* and F*, and Fay and Wu's H indicated possible roles of positive selection on the entire CYP3A locus in non-Africans. Sliding-window analyses of nucleotide diversity and frequency spectrum, as well as haplotype diversity and phylogenetically inferred haplotype structure, revealed that CYP3A4 and CYP3A7 had recently undergone or were undergoing a selective sweep in all three populations, whereas CYP3A43 and CYP3A5 were undergoing a selective sweep in non-Africans and Caucasians, respectively. The refined allelic architecture and selection spectrum for the human CYP3A locus highlight that evolutionary dynamics of molecular adaptation may underlie the phenotypic variation of the xenobiotic disposition system and varied predisposition to complex disorders in which xenobiotics play a role.

  6. Evolutionary game theoretic strategy for optimal drug delivery to influence selection pressure in treatment of HIV-1.

    PubMed

    Wu, Yu; Zhang, Mingjun; Wu, Jing; Zhao, Xiaopeng; Xia, Lijin

    2012-02-01

    Cytotoxic T-lymphocyte (CTL) escape mutation is associated with long-term behaviors of human immunodeficiency virus type 1 (HIV-1). Recent studies indicate heterogeneous behaviors of reversible and conservative mutants while the selection pressure changes. The purpose of this study is to optimize the selection pressure to minimize the long-term virus load. The results can be used to assist in delivery of highly loaded cognate peptide-pulsed dendritic cells (DC) into lymph nodes that could change the selection pressure. This mechanism may be employed for controlled drug delivery. A mathematical model is proposed in this paper to describe the evolutionary dynamics involving viruses and T cells. We formulate the optimization problem into the framework of evolutionary game theory, and solve for the optimal control of the selection pressure as a neighborhood invader strategy. The strategy dynamics can be obtained to evolve the immune system to the best controlled state. The study may shed light on optimal design of HIV-1 therapy based on optimization of adaptive CTL immune response.

  7. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-03-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  8. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-03-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  9. Novel and selective detection of Tabun mimics.

    PubMed

    Jang, Yoon Jeong; Tsay, Olga G; Murale, Dhiraj P; Jeong, Jeong A; Segev, Aviv; Churchill, David G

    2014-07-18

    Detection of nerve agent-related molecules based on BODIPY-salicylaldehyde oxime conjugation was studied. Fluorescence intensity of the B-SAL-OXIME species increases in the presence of DECP, whereas it decreases in the presence of DCP and DEMP (limit of detection = 997 nM). Benzonitrile formation in the novel fluorescent B-SAL-OXIME system was elucidated using model substrates.

  10. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism.

    PubMed

    Le Rouzic, Arnaud; Hansen, Thomas F; Gosden, Thomas P; Svensson, Erik I

    2015-06-01

    A major challenge in evolutionary biology is understanding how stochastic and deterministic factors interact and influence macroevolutionary dynamics in natural populations. One classical approach is to record frequency changes of heritable and visible genetic polymorphisms over multiple generations. Here, we combined this approach with a maximum likelihood-based population-genetic model with the aim of understanding and quantifying the evolutionary processes operating on a female mating polymorphism in the blue-tailed damselfly Ischnura elegans. Previous studies on this color-polymorphic species have suggested that males form a search image for females, which leads to excessive mating harassment of common female morphs. We analyzed a large temporally and spatially replicated data set of between-generation morph frequency changes in I. elegans. Morph frequencies were more stable than expected from genetic drift alone, suggesting the presence of selection toward a stable equilibrium that prevents local loss or fixation of morphs. This can be interpreted as the signature of negative frequency-dependent selection maintaining the phenotypic stasis and genetic diversity in these populations. Our novel analytical approach allows the estimation of the strength of frequency-dependent selection from the morph frequency fluctuations around their inferred long-term equilibria. This approach can be extended and applied to other polymorphic organisms for which time-series data across multiple generations are available.

  11. USING POPULATION GENOMICS TO DETECT SELECTION IN NATURAL POPULATIONS: KEY CONCEPTS AND METHODOLOGICAL CONSIDERATIONS

    PubMed Central

    Hohenlohe, Paul A.; Phillips, Patrick C.; Cresko, William A.

    2010-01-01

    Natural selection shapes patterns of genetic variation among individuals, populations, and species, and it does so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of the action of selection, even beyond traditional model organisms. However, even with nearly complete genomic sequence information, our ability to detect the signature of selection on specific genomic regions depends on choosing experimental and analytical tools appropriate to the biological situation. For example, processes that occur at different timescales, such as sorting of standing genetic variation, mutation-selection balance, or fixed interspecific divergence, have different consequences for genomic patterns of variation. Inappropriate experimental or analytical approaches may fail to detect even strong selection or falsely identify a signature of selection. Here we outline the conceptual framework of population genomics, relate genomic patterns of variation to evolutionary processes, and identify major biological factors to be considered in studies of selection. As data-gathering technology continues to advance, our ability to understand selection in natural populations will be limited more by conceptual and analytical weaknesses than by the amount of molecular data. Our aim is to bring critical biological considerations to the fore in population genomics research and to spur the development and application of analytical tools appropriate to diverse biological systems. PMID:21218185

  12. USING POPULATION GENOMICS TO DETECT SELECTION IN NATURAL POPULATIONS: KEY CONCEPTS AND METHODOLOGICAL CONSIDERATIONS.

    PubMed

    Hohenlohe, Paul A; Phillips, Patrick C; Cresko, William A

    2010-11-01

    Natural selection shapes patterns of genetic variation among individuals, populations, and species, and it does so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of the action of selection, even beyond traditional model organisms. However, even with nearly complete genomic sequence information, our ability to detect the signature of selection on specific genomic regions depends on choosing experimental and analytical tools appropriate to the biological situation. For example, processes that occur at different timescales, such as sorting of standing genetic variation, mutation-selection balance, or fixed interspecific divergence, have different consequences for genomic patterns of variation. Inappropriate experimental or analytical approaches may fail to detect even strong selection or falsely identify a signature of selection. Here we outline the conceptual framework of population genomics, relate genomic patterns of variation to evolutionary processes, and identify major biological factors to be considered in studies of selection. As data-gathering technology continues to advance, our ability to understand selection in natural populations will be limited more by conceptual and analytical weaknesses than by the amount of molecular data. Our aim is to bring critical biological considerations to the fore in population genomics research and to spur the development and application of analytical tools appropriate to diverse biological systems.

  13. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If...

  14. The ghosts of selection past reduces the probability of plastic rescue but increases the likelihood of evolutionary rescue to novel stressors in experimental populations of wild yeast.

    PubMed

    Samani, Pedram; Bell, Graham

    2016-03-01

    Persistence by adaptation is called evolutionary rescue. Evolutionary rescue is more likely in populations that have been previously exposed to lower doses of the same stressor. Environmental fluctuations might also reduce the possibility of rescue, but little is known about the effect of evolutionary history on the likelihood of rescue. In this study, we hypothesised that the ubiquitous operation of generalised stress responses in many organisms increases the likelihood of rescue after exposure to other stressors. We tested this hypothesis with experimental populations that had been exposed to long-term starvation and were then selected on different, unrelated stressors. We found that prior adaptation to starvation imposes contrary effects on the plastic and evolutionary responses of populations to subsequent stressors. When first exposed to new stressors, such populations become extinct more often. If they survive the initial exposure to the new stressors, however, they are more likely to undergo evolutionary rescue. © 2016 John Wiley & Sons Ltd/CNRS.

  15. The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing.

    PubMed

    Jones, Julia C; Fan, Shaohua; Franchini, Paolo; Schartl, Manfred; Meyer, Axel

    2013-06-01

    Next-generation sequencing (NGS) techniques are now key tools in the detection of population genomic and gene expression differences in a large array of organisms. However, so far few studies have utilized such data for phylogenetic estimations. Here, we use NGS data obtained from genome-wide restriction site-associated DNA (RAD) (∼66000 SNPs) to estimate the phylogenetic relationships among all 26 species of swordtail and platyfish (genus Xiphophorus) from Central America. Past studies, both sequence and morphology-based, have differed in their inferences of the evolutionary relationships within this genus, particularly at the species-level and among monophyletic groupings. We show that using a large number of markers throughout the genome, we are able to infer the phylogenetic relationships with unparalleled resolution for this genus. The relationships among all three major clades and species within each of them are highly resolved and consistent under maximum likelihood, Bayesian inference and maximum parsimony. However, we also highlight the current cautions with this data type and analyses. This genus exhibits a particularly interesting evolutionary history where at least two species may have arisen through hybridization events. Here, we are able to infer the paternal lineages of these putative hybrid species. Using the RAD-marker-based tree we reconstruct the evolutionary history of the sexually selected sword trait and show that it may have been present in the common ancestor of the genus. Together our results highlight the outstanding capacity that RAD sequencing data has for resolving previously problematic phylogenetic relationships, particularly among relatively closely related species. © 2013 John Wiley & Sons Ltd.

  16. Microbial Biosensors for Selective Detection of Disaccharides

    USDA-ARS?s Scientific Manuscript database

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  17. Three-dimensional window analysis for detecting positive selection at structural regions of proteins.

    PubMed

    Suzuki, Yoshiyuki

    2004-12-01

    Detection of natural selection operating at the amino acid sequence level is important in the study of molecular evolution. Single-site analysis and one-dimensional window analysis can be used to detect selection when the biological functions of amino acid sites are unknown. Single-site analysis is useful when selection operates more or less constantly over evolutionary time, but less so when selection operates temporarily. One-dimensional window analysis is more sensitive than single-site analysis when the functions of amino acid sites in close proximity in the linear sequence are similar, although this is not always the case. Here I present a three-dimensional window analysis method for detecting selection given the three-dimensional structure of the protein of interest. In the three-dimensional structure, the window is defined as the sphere centered on the alpha-carbon of an amino acid site. The window size is the radius of the sphere. The sites whose alpha-carbons are included in the window are grouped for the neutrality test. The window is moved within the three-dimensional structure by sequentially moving the central site along the primary amino acid sequence. To detect positive selection, it may also be useful to group the surface-exposed sites in the window separately. Three-dimensional window analysis appears not only to be more sensitive than single-site analysis and one-dimensional window analysis but also to provide similar specificity for inferring positive selection in the analyses of the hemagglutinin and neuraminidase genes of human influenza A viruses. This method, however, may fail to detect selection when it operates only on a particular site, in which case single-site analysis may be preferred, although a large number of sequences is required.

  18. Molecular sieve sensors for selective detection at the nanogram level

    DOEpatents

    Bein, Thomas; Brown, Kelly D.; Frye, Gregory C.; Brinker, Charles J.

    1992-01-01

    The invention relates to a selective chemical sensor for selective detection of chemical entities even at the nanogram level. The invention further relates to methods of using the sensor. The sensor comprises: (a) a piezoelectric substrate capable of detecting mass changes resulting from adsorption of material thereon; and (b) a coating applied to the substrate, which selectively sorbs chemical entities of a size smaller than a preselected magnitude.

  19. Evolutionary responses of tree phenology to the combined effects of assortative mating, gene flow and divergent selection

    PubMed Central

    Soularue, J-P; Kremer, A

    2014-01-01

    The timing of bud burst (TBB) in temperate trees is a key adaptive trait, the expression of which is triggered by temperature gradients across the landscape. TBB is strongly correlated with flowering time and is therefore probably mediated by assortative mating. We derived theoretical predictions and realized numerical simulations of evolutionary changes in TBB in response to divergent selection and gene flow in a metapopulation. We showed that the combination of the environmental gradient of TBB and assortative mating creates contrasting genetic clines, depending on the direction of divergent selection. If divergent selection acts in the same direction as the environmental gradient (cogradient settings), genetic clines are established and inflated by assortative mating. Conversely, under divergent selection of the same strength but acting in the opposite direction (countergradient selection), genetic clines are slightly constrained. We explored the consequences of these dynamics for population maladaptation, by monitoring pollen swamping. Depending on the direction of divergent selection with respect to the environmental gradient, pollen filtering owing to assortative mating either facilitates or impedes adaptation in peripheral populations. PMID:24924591

  20. Evolutionary responses of tree phenology to the combined effects of assortative mating, gene flow and divergent selection.

    PubMed

    Soularue, J-P; Kremer, A

    2014-12-01

    The timing of bud burst (TBB) in temperate trees is a key adaptive trait, the expression of which is triggered by temperature gradients across the landscape. TBB is strongly correlated with flowering time and is therefore probably mediated by assortative mating. We derived theoretical predictions and realized numerical simulations of evolutionary changes in TBB in response to divergent selection and gene flow in a metapopulation. We showed that the combination of the environmental gradient of TBB and assortative mating creates contrasting genetic clines, depending on the direction of divergent selection. If divergent selection acts in the same direction as the environmental gradient (cogradient settings), genetic clines are established and inflated by assortative mating. Conversely, under divergent selection of the same strength but acting in the opposite direction (countergradient selection), genetic clines are slightly constrained. We explored the consequences of these dynamics for population maladaptation, by monitoring pollen swamping. Depending on the direction of divergent selection with respect to the environmental gradient, pollen filtering owing to assortative mating either facilitates or impedes adaptation in peripheral populations.

  1. Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals.

    PubMed

    Kawai, Nobuyuki; Koda, Hiroki

    2016-08-01

    Humans quickly detect the presence of evolutionary threats through visual perception. Many theorists have considered humans to be predisposed to respond to both snakes and spiders as evolutionarily fear-relevant stimuli. Evidence supports that human adults, children, and snake-naive monkeys all detect pictures of snakes among pictures of flowers more quickly than vice versa, but recent neurophysiological and behavioral studies suggest that spiders may, in fact, be processed similarly to nonthreat animals. The evidence of quick detection and rapid fear learning by primates is limited to snakes, and no such evidence exists for spiders, suggesting qualitative differences between fear of snakes and fear of spiders. Here, we show that snake-naive Japanese monkeys detect a single snake picture among 8 nonthreat animal pictures (koala) more quickly than vice versa; however, no such difference in detection was observed between spiders and pleasant animals. These robust differences between snakes and spiders are the most convincing evidence that the primate visual system is predisposed to pay attention to snakes but not spiders. These findings suggest that attentional bias toward snakes has an evolutionary basis but that bias toward spiders is more due to top-down, conceptually driven effects of emotion on attention capture. (PsycINFO Database Record

  2. Evolutionary insights into T-type Ca(2+) channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue.

    PubMed

    Smith, Carolyn L; Abdallah, Salsabil; Wong, Yuen Yan; Le, Phuong; Harracksingh, Alicia N; Artinian, Liana; Tamvacakis, Arianna N; Rehder, Vincent; Reese, Thomas S; Senatore, Adriano

    2017-04-03

    Four-domain voltage-gated Ca(2+) (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel's cation permeation properties and find that its pore is less selective for Ca(2+) over Na(+) compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na(+) current by low external Ca(2+) concentrations (i.e., the Ca(2+) block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca(2+) block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca(2+) block and higher Ca(2+) selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure-function properties, ion selectivity, and cellular physiology.

  3. Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs.

    PubMed

    Dassanayake, R S; Silva Gunawardene, Y I N; Tobe, S S

    2007-01-01

    Insect defensins containing cysteine-stabilized alpha/beta motifs (Cs-alpha/beta defensin) are cationic, inducible antibacterial peptides involved in humoral defence against pathogens. To examine trends in molecular evolution of these antimicrobial peptides, sequences similar to the well-characterized Cs-alpha/beta defensin peptide of Anopheles gambiae, using six cysteine residues as landmarks, were retrieved from genomic and protein databases. These sequences were derived from different orders of insects. Genes of insect Cs-alpha/beta defensin appear to constitute a multigene family in which the copy number varies between insect species. Phylogenetic analysis of these sequences revealed two main lineages, one group comprising mainly lepidopteran insects and a second, comprising Hemiptera, Coleoptera, Diptera and Hymenoptera insects. Moreover, the topology of the phylogram indicated dipteran Cs-alpha/beta defensins are diverse, suggesting diversity in immune mechanisms in this order of insects. Overall evolutionary analysis indicated marked diversification and expansion of mature defensin isoforms within the species of mosquitoes relative to non-mosquito defensins, implying the presence of finely tuned immune responses to counter pathogens. The observed higher synonymous substitution rate relative to the nonsynonymous rate in almost all the regions of Cs-alpha/beta defensin of mosquitoes suggests that these peptides are predominately under purifying selection. The maximum-likelihood models of codon substitution indicated selective pressure at different amino acid sites in mosquito mature Cs-alpha/beta defensins is differ and are undergoing adaptive evolution in comparison to non-mosquito Cs-alpha/beta defensins, for which such selection was inconspicuous; this suggests the acquisition of selective advantage of the Cs-alpha/beta defensins in the former group. Finally, this study represents the most detailed report on the evolutionary strategies of Cs

  4. Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue

    PubMed Central

    Smith, Carolyn L.; Abdallah, Salsabil; Le, Phuong; Harracksingh, Alicia N.; Artinian, Liana; Tamvacakis, Arianna N.; Rehder, Vincent; Reese, Thomas S.

    2017-01-01

    Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology. PMID:28330839

  5. Hidden evolution: progress and limitations in detecting multifarious natural selection.

    PubMed

    Johnson, Norman A; Kliman, Richard M

    2002-04-01

    From illustrative examples of research on the best-studied group of species to date, Drosophila melanogaster and its closest relatives, we argue that selection is multifarious, but often hidden. Selective fixation of new, highly advantageous alleles is the most parsimonious explanation for a typical pattern of molecular variation observed in genomic regions characterized by very low recombination: drastically reduced DNA sequence variation within species and typical levels of sequence divergence among species. At the same time, the identity of the gene (or genes) influenced by selection is not just difficult to discern; it may be impossible. Studies of the genetic basis of reproductive isolation demonstrate that, although the D. melanogaster complex species appear virtually identical, dozens of currently unidentified genes contribute to hybrid sterility. We argue that these findings are best explained by selectively-driven functional divergence and demonstrate the multifarious nature of selection. Although multifarious selection certainly occurs, the exact characters responsible for differences in survival and reproductive success are unknown. We do not see these inherent limits as a cause for despair or a problem for evolutionary biology. Instead, we hope to raise awareness of these complexities of evolution by highlighting both the progress and the limitations of characterizing multifarious natural selection.

  6. Evolutionary analysis of classical HLA class I and II genes suggests that recent positive selection acted on DPB1*04:01 in Japanese population.

    PubMed

    Kawashima, Minae; Ohashi, Jun; Nishida, Nao; Tokunaga, Katsushi

    2012-01-01

    The human leukocyte antigen (HLA) genes exhibit the highest degree of polymorphism in the human genome. This high degree of variation at classical HLA class I and class II loci has been maintained by balancing selection for a long evolutionary time. However, little is known about recent positive selection acting on specific HLA alleles in a local population. To detect the signature of recent positive selection, we genotyped six HLA loci, HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1 in 418 Japanese subjects, and then assessed the haplotype homozygosity (HH) of each HLA allele. There were 120 HLA alleles across the six loci. Among the 80 HLA alleles with frequencies of more than 1%, DPB1*04∶01, which had a frequency of 6.1%, showed exceptionally high HH (0.53). This finding raises the possibility that recent positive selection has acted on DPB1*04∶01. The DPB1*04∶01 allele, which was present in the most common 6-locus HLA haplotype (4.4%), A*33∶03-C*14∶03-B*44∶03-DRB1*13∶02-DQB1*06∶04-DPB1*04∶01, seems to have flowed from the Korean peninsula to the Japanese archipelago in the Yayoi period. A stochastic simulation approach indicated that the strong linkage disequilibrium between DQB1*06∶04 and DPB1*04∶01 observed in Japanese cannot be explained without positive selection favoring DPB1*04∶01. The selection coefficient of DPB1*04∶01 was estimated as 0.041 (95% credible interval 0.021-0.077). Our results suggest that DPB1*04∶01 has recently undergone strong positive selection in Japanese population.

  7. DNA Sequence-Based Subtyping and Evolutionary Analysis of Selected Salmonella enterica Serotypes

    PubMed Central

    Sukhnanand, Sharinne; Alcaine, Sam; Warnick, Lorin D.; Su, Wan-Lin; Hof, Jessica; Craver, Mary Pat J.; McDonough, Patrick; Boor, Kathryn J.; Wiedmann, Martin

    2005-01-01

    While serotyping and phage typing have been used widely to characterize Salmonella isolates, sensitive subtyping methods that allow for evolutionary analyses are essential for examining Salmonella transmission, ecology, and evolution. A set of 25 Salmonella enterica isolates, representing five clinically relevant serotypes (serotypes Agona, Heidelberg, Schwarzengrund, Typhimurium, and Typhimurium var. Copenhagen) was initially used to develop a multilocus sequence typing (MLST) scheme for Salmonella targeting seven housekeeping and virulence genes (panB, fimA, aceK, mdh, icdA, manB, and spaN). A total of eight MLST types were found among the 25 isolates sequenced. A good correlation between MLST types and Salmonella serotypes was observed; only one serotype Typhimurium var. Copenhagen isolate displayed an MLST type otherwise typical for serotype Typhimurium isolates. Since manB, fimA, and mdh allowed for the highest subtype discrimination among the initial 25 isolates, we chose these three genes to perform DNA sequencing of an additional 41 Salmonella isolates representing a larger diversity of serotypes. This “three-gene sequence typing scheme” allowed discrimination of 25 sequence types (STs) among a total of 66 isolates; STs correlated well with serotypes and allowed within-serotype differentiation for 9 of the 12 serotypes characterized. Phylogenetic analyses showed that serotypes Kentucky and Newport could each be separated into two distinct, statistically well supported evolutionary lineages. Our results show that a three-gene sequence typing scheme allows for accurate serotype prediction and for limited subtype discrimination among clinically relevant serotypes of Salmonella. Three-gene sequence typing also supports the notion that Salmonella serotypes represent both monophyletic and polyphyletic lineages. PMID:16081897

  8. Selective detection of antibodies in microstructured polymer optical fibers.

    PubMed

    Jensen, Jesper; Hoiby, Poul; Emiliyanov, Grigoriy; Bang, Ole; Pedersen, Lars; Bjarklev, Anders

    2005-07-25

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure was applied to selectively capture either alpha-streptavidin or alpha-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample volumes.

  9. The Hill-Robertson effect: evolutionary consequences of weak selection and linkage in finite populations.

    PubMed

    Comeron, J M; Williford, A; Kliman, R M

    2008-01-01

    The 'Hill-Robertson (HR) effect' describes that linkage between sites under selection will reduce the overall effectiveness of selection in finite populations. Here we discuss the major concepts associated with the HR effect and present results of computer simulations focusing on the linkage effects generated by multiple sites under weak selection. Most models of linkage and selection forecast differences in effectiveness of selection between chromosomes or chromosomal regions involving a number of genes. The abundance and physical clustering of weakly selected mutations across genomes, however, justify the investigation of HR effects at a very local level and we pay particular attention to linkage effects among selected sites of the same gene. Overall, HR effects caused by weakly selected mutations predict differences in effectiveness of selection between genes that differ in exon-intron structures and across genes. Under this scenario, introns might play an advantageous role reducing intragenic HR effects. Finally, we summarize observations that are consistent with local HR effects in Drosophila, discuss potential consequences on population genetic studies and suggest future lines of research.

  10. Can selection on a male mating character result in evolutionary change? A selection experiment on California wild radish, Raphanus sativus.

    PubMed

    Marshall, Diane L; Evans, Ann S

    2016-03-01

    Whenever more pollen grains arrive on stigmas than necessary to fertilize ovules, sexual selection is possible. However, the role of sexual selection remains controversial, in part because of lack of evidence on genetic bases of traits and the response of relevant characters to selection. In an experiment with Raphanus sativus, we selected on tendency to sire seeds in the stylar or basal regions of fruits. This character is likely related to pollen tube growth rate, and seed position affects rates of abortion and seed predation. We measured differences among families in seed siring and related characters and evaluated responses to selection. All replicates showed strong effects of pollen donor family on proportion of seeds sired per fruit in mixed pollinations. Most also showed effects of pollen donor family on number of pollen grains per flower and pollen diameter. Two of four replicates showed a response to selection on position of seeds sired. In responding replicates, we found trade-offs in pollen grain size and number; plants with larger pollen grains sired more seeds in the basal region. Our data suggest a genetic basis for pollen donor ability to sire seeds in competition. The significant response to selection in two replicates shows that position of seeds sired can respond to selection. Thus, all components for sexual selection to occur and affect traits are present. Variation in results among replicates might be due to changes in greenhouse conditions. Environmental effects may contribute to the maintenance of variation in these fitness-related characters. © 2016 Botanical Society of America.

  11. Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease.

    PubMed

    Brüniche-Olsen, Anna; Austin, Jeremy J; Jones, Menna E; Holland, Barbara R; Burridge, Christopher P

    2016-01-01

    Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer--devil facial tumor disease (DFTD)--that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series 'restriction site associated DNA' (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results.

  12. Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease

    PubMed Central

    Brüniche-Olsen, Anna; Austin, Jeremy J.; Jones, Menna E.; Holland, Barbara R.; Burridge, Christopher P.

    2016-01-01

    Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer—devil facial tumor disease (DFTD)—that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series ‘restriction site associated DNA’ (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results. PMID:26930198

  13. Sexual selection and the evolutionary dynamics of the major histocompatibility complex

    PubMed Central

    Jan Ejsmond, Maciej; Radwan, Jacek; Wilson, Anthony B.

    2014-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host–pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host–parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern. PMID:25339723

  14. The ecological–evolutionary interplay: density-dependent sexual selection in a migratory songbird

    PubMed Central

    Ryder, Thomas B; Fleischer, Robert C; Shriver, W Greg; Marra, Peter P

    2012-01-01

    Little is understood about how environmental heterogeneity influences the spatial dynamics of sexual selection. Within human-dominated systems, habitat modification creates environmental heterogeneity that could influence the adaptive value of individual phenotypes. Here, we used the gray catbird to examine if the ecological conditions experienced in the suburban matrix (SM) and embedded suburban parks (SP) influence reproductive strategies and the strength of sexual selection. Our results show that these habitats varied in a key ecological factor, breeding density. Moreover, this ecological factor was closely tied to reproductive strategies such that local breeding density predicted the probability that a nest would contain extra-pair offspring. Partitioning reproductive variance showed that while within-pair success was more important in both habitats, extra-pair success increased the opportunity for sexual selection by 39% at higher breeding densities. Body size was a strong predictor of relative reproductive success and was under directional selection in both habitats. Importantly, our results show that the strength of sexual selection did not differ among habitats at the landscape scale but rather that fine-scale variation in an ecological factor, breeding density, influenced sexual selection on male phenotypes. Here, we document density-dependent sexual selection in a migratory bird and hypothesize that coarse-scale environmental heterogeneity, in this case generated by anthropogenic habitat modification, changed the fine-scale ecological conditions that drove the spatial dynamics of sexual selection. PMID:22837842

  15. Phylogenetic analysis and positive-selection site detecting of vascular endothelial growth factor family in vertebrates.

    PubMed

    He, Wenwu; Tang, Yanyan; Qi, Bin; Lu, Chuansen; Qin, Chao; Wei, Yunfei; Yi, Jiachao; Chen, Mingwu

    2014-02-10

    Vascular endothelial growth factor (VEGF), known to play an important role in vascular homeostasis, vascular integrity and angiogenesis, is little known about the evolutionary relationship of its five members especially the role of gene duplication and natural selection in the evolution of the VEGF family. In this study, seventy-five full-length cDNA sequences from 33 vertebrate species were extracted from the NCBI's GenBank, UniProt protein database and the Ensembl database. By phylogenetic analyses, we investigated the origin, conservation, and evolution of the VEGFs. Five VEGF family members in vertebrates might be formed by gene duplication. The inferred evolutionary transitions that separate members which belong to different gene clusters correlated with changes in functional properties. Selection analysis and protein structure analysis were combined to explain the relationship of the site-specific evolution in the vertebrate VEGF family. Eleven positive selection sites, one transmembrane region and the active sites were detected in this process. © 2013.

  16. Selective optical detection of aromatic vapors

    NASA Astrophysics Data System (ADS)

    Podgorsek, Robert P.; Franke, Hilmar

    2002-02-01

    A sensitive layer system of amorphous Teflon AF on silver has been coated on a glass substrate. With a monochromatic light source the reflectivity of the layer system as a function of the angle of incidence exhibits the surface-plasmon resonance as well as a set of leaky-mode resonances. These optical resonance phenomena are sensitive to small refractive-index changes that may be induced by diffusion of particles into the Teflon AF layer. On the basis of this effect, the aromatic vapors benzene; toluene; and o-, p-, and m-xylene have been investigated with different vapor concentrations. By selection of a distinct angle at a particular resonance, dynamic measurements can be performed. Assuming a diffusion process in accordance with Fick's law, the diffusion profile can be calculated as a function of time. As described by the Lorentz-Lorenz relation a refractive-index profile is induced that consequently interacts with the electromagnetic fields of the optical modes. With the function of the diffusion-induced refractive-index profile the shift of the resonance lines can be calculated from the measured reflectivity change as a function of time. The characteristic diffusion coefficients of the particular vapor allow for a distinction between the different types of aromate, even between the different xylenes.

  17. Embryonic development of goldfish (Carassius auratus): A model for the study of evolutionary change in developmental mechanisms by artificial selection

    PubMed Central

    Tsai, Hsin-Yuan; Chang, Mariann; Liu, Shih-Chieh; Abe, Gembu; Ota, Kinya G

    2013-01-01

    Background: Highly divergent morphology among the different goldfish strains (Carassius auratus) may make it a suitable model for investigating how artificial selection has altered developmental mechanisms. Here we describe the embryological development of the common goldfish (the single fin Wakin), which retains the ancestral morphology of this species. Results: We divided goldfish embryonic development into seven periods consisting of 34 stages, using previously reported developmental indices of zebrafish and goldfish. Although several differences were identified in terms of their yolk size, epiboly process, pigmentation patterns, and development rate, our results indicate that the embryonic features of these two teleost species are highly similar in their overall morphology from the zygote to hatching stage. Conclusions: These results provide an opportunity for further study of the evolutionary relationship between domestication and development, through applying well-established zebrafish molecular biological resources to goldfish embryos. Developmental Dynamics 242:1262–1283, 2013. © 2013 Wiley Periodicals, Inc. Key findings This study provides the first reliable descriptions of normal embryonic stages of wild-type goldfish. The embryonic features of goldfish and zebrafish are almost directly comparable. Goldfish embryos provide a novel model for the investigation of the evolutionary relationship between domestication and development. PMID:23913853

  18. Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence.

    PubMed

    Ingley, Spencer J; Johnson, Jerald B

    2016-03-01

    Natural selection's role in speciation has been of fundamental importance since Darwin first outlined his theory. Recently, work has focused on understanding how selection drives trait divergence, and subsequently reproductive isolation. "Immigrant inviability," a barrier that arises from selection against immigrants in their nonnative environment, appears to be of particular importance. Although immigrant inviability is likely ubiquitous, we know relatively little about how selection acts on traits to drive immigrant inviability, and how important immigrant inviability is at early-versus-late stages of divergence. We present a study evaluating the role of predation in the evolution of immigrant inviability in recently diverged population pairs and a well-established species pair of Brachyrhaphis fishes. We evaluate performance in a high-predation environment by assessing survival in the presence of a predator, and swimming endurance in a low-predation environment. We find strong signatures of local adaptation and immigrant inviability of roughly the same magnitude both early and late in divergence. We find remarkably conserved selection for burst-speed swimming (important in predator evasion), and selection for increased size in low-predation environments. Our results highlight the consistency with which selection acts during speciation, and suggest that similar factors might promote initial population differentiation and maintain differentiation at late stages of divergence.

  19. Excess of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection

    PubMed Central

    Lenz, Tobias L.; Spirin, Victor; Jordan, Daniel M.; Sunyaev, Shamil R.

    2016-01-01

    Deleterious mutations are expected to evolve under negative selection and are usually purged from the population. However, deleterious alleles segregate in the human population and some disease-associated variants are maintained at considerable frequencies. Here, we test the hypothesis that balancing selection may counteract purifying selection in neighboring regions and thus maintain deleterious variants at higher frequency than expected from their detrimental fitness effect. We first show in realistic simulations that balancing selection reduces the density of polymorphic sites surrounding a locus under balancing selection, but at the same time markedly increases the population frequency of the remaining variants, including even substantially deleterious alleles. To test the predictions of our simulations empirically, we then use whole-exome sequencing data from 6,500 human individuals and focus on the most established example for balancing selection in the human genome, the major histocompatibility complex (MHC). Our analysis shows an elevated frequency of putatively deleterious coding variants in nonhuman leukocyte antigen (non-HLA) genes localized in the MHC region. The mean frequency of these variants declined with physical distance from the classical HLA genes, indicating dependency on genetic linkage. These results reveal an indirect cost of the genetic diversity maintained by balancing selection, which has hitherto been perceived as mostly advantageous, and have implications both for the evolution of recombination and also for the epidemiology of various MHC-associated diseases. PMID:27436009

  20. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  1. Analysis of channel confined selective area growth in evolutionary growth of GaN on SiO2

    NASA Astrophysics Data System (ADS)

    Leung, Benjamin; Tsai, Miao-Chan; Song, Jie; Zhang, Yu; Xiong, Kanglin; Yuan, Ge; Coltrin, Michael E.; Han, Jung

    2015-09-01

    Here, we analyze the chemical vapor deposition of semiconductor crystals by selective area growth in a non-planar geometry. Specifically, the growth process in laterally and vertically confined masks forming single-crystal GaN on SiO2 by metal-organic chemical vapor deposition is considered in detail. A textured AlN seed is used to initiate growth of oriented GaN selectively through the mask, allowing the reduction of degrees of freedom by the evolutionary grain selection process. As shown by measurements of growth rates within the mask, the sub micron length scale of the channel opening is comparable to the mean free path of precursors in the gas phase, resulting in transport characteristics that can be described by an intermediate flow regime between continuum and free-molecular. Mass transport is modeled through kinetic theory to explain the growth rate enhancements of more than a factor of two by changes in reactor pressure. The growth conditions that enable the modification of nucleation density within the channel are then discussed, and are measured by electron-back scatter diffraction of the nucleated grains on the AlN seed. Finally, the selectivity behavior using the low fill factor masks needed in these configurations has been optimized by control of precursor flow rates and the H2 enhanced etching of the polycrystalline GaN nuclei.

  2. Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences

    PubMed Central

    Nguyen Ba, Alex N.; Strome, Bob; Hua, Jun Jie; Desmond, Jonathan; Gagnon-Arsenault, Isabelle; Weiss, Eric L.; Landry, Christian R.; Moses, Alan M.

    2014-01-01

    Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication. PMID:25474245

  3. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences.

    PubMed

    Nguyen Ba, Alex N; Strome, Bob; Hua, Jun Jie; Desmond, Jonathan; Gagnon-Arsenault, Isabelle; Weiss, Eric L; Landry, Christian R; Moses, Alan M

    2014-12-01

    Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication.

  4. ATLASGAL-selected massive clumps in the inner Galaxy. III. Dust continuum characterization of an evolutionary sample

    NASA Astrophysics Data System (ADS)

    König, C.; Urquhart, J. S.; Csengeri, T.; Leurini, S.; Wyrowski, F.; Giannetti, A.; Wienen, M.; Pillai, T.; Kauffmann, J.; Menten, K. M.; Schuller, F.

    2017-03-01

    Context. Massive-star formation and the processes involved are still poorly understood. The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive-star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected by their infrared and radio properties to be representative for the whole range of evolutionary stages. Aims: The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. Methods: We determine flux densities from mid-infrared to submillimeter wavelength (8-870 μm) images and use these values to fit their spectral energy distributions and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. Results: We define four distinct source classes from the available continuum data and arrange these into an evolutionary sequence. This begins with sources found to be dark at 70 μm, followed by 24 μm weak sources with an embedded 70 μm source, continues through mid-infrared bright sources and ends with infrared bright sources associated with radio emission (i.e., H ii regions). We find trends for increasing temperature, luminosity, and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. Our sources span temperatures from approximately 11 to 41 K, with bolometric luminosities in the range 57 L⊙-3.8 × 106L⊙. The highest masses reach 4.3 × 104M⊙ and peak column densities up to 1.1 × 1024 cm-1, and therefore have the potential to form the most massive O-type stars. We show that at least 93 sources

  5. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance.

    PubMed

    Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries

    2013-02-01

    Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.

  6. Detecting the Genomic Signature of Divergent Selection in Presence of Gene Flow

    PubMed Central

    Rivas, M. J.; Domínguez-García, S.; Carvajal-Rodríguez, A.

    2015-01-01

    The study of local adaptation is a main focus of evolutionary biology since it may contribute to explain the current species diversity. The genomic scan procedures permit for the first time to study the connection between specific DNA patterns and processes as natural selection, genetic drift, recombination, mutation and gene flow. Accordingly, the information on genomes from non-model organisms increases and the interest on detecting the signal of natural selection in the DNA sequences of different populations also raises. The main goal of the present work is to explore a sequence-based method for detecting natural selection in divergent populations connected by migration. In doing so, we rely on a recently published statistic based upon th e definition of haplotype allelic classes (HAC). The original measure was modified to be more sensitive to intermediate frequencies in non-model species. A linkage-disequilibrium-based method was also assayed and individual-based simulations were performed to test the methods. The results suggest that the HAC-based methods and, specifically, the new proposed method are quite powerful for detecting the footprint of moderate divergent selection. They are also robust to reasonable model misspecification. One obvious advantage of the new algorithm is that it does not require knowledge of the allelic state. PMID:26069460

  7. Identification and analysis of evolutionary selection pressures acting at the molecular level in five forkhead subfamilies.

    PubMed

    Fetterman, Christina D; Rannala, Bruce; Walter, Michael A

    2008-09-24

    Members of the forkhead gene family act as transcription regulators in biological processes including development and metabolism. The evolution of forkhead genes has not been widely examined and selection pressures at the molecular level influencing subfamily evolution and differentiation have not been explored. Here, in silico methods were used to examine selection pressures acting on the coding sequence of five multi-species FOX protein subfamily clusters; FoxA, FoxD, FoxI, FoxO and FoxP. Application of site models, which estimate overall selection pressures on individual codons throughout the phylogeny, showed that the amino acid changes observed were either neutral or under negative selection. Branch-site models, which allow estimated selection pressures along specified lineages to vary as compared to the remaining phylogeny, identified positive selection along branches leading to the FoxA3 and Protostomia clades in the FoxA cluster and the branch leading to the FoxO3 clade in the FoxO cluster. Residues that may differentiate paralogs were identified in the FoxA and FoxO clusters and residues that differentiate orthologs were identified in the FoxA cluster. Neutral amino acid changes were identified in the forkhead domain of the FoxA, FoxD and FoxP clusters while positive selection was identified in the forkhead domain of the Protostomia lineage of the FoxA cluster. A series of residues under strong negative selection adjacent to the N- and C-termini of the forkhead domain were identified in all clusters analyzed suggesting a new method for refinement of domain boundaries. Extrapolation of domains among cluster members in conjunction with selection pressure information allowed prediction of residue function in the FoxA, FoxO and FoxP clusters and exclusion of known domain function in residues of the FoxA and FoxI clusters. Consideration of selection pressures observed in conjunction with known functional information allowed prediction of residue function and

  8. Identification and analysis of evolutionary selection pressures acting at the molecular level in five forkhead subfamilies

    PubMed Central

    2008-01-01

    Background Members of the forkhead gene family act as transcription regulators in biological processes including development and metabolism. The evolution of forkhead genes has not been widely examined and selection pressures at the molecular level influencing subfamily evolution and differentiation have not been explored. Here, in silico methods were used to examine selection pressures acting on the coding sequence of five multi-species FOX protein subfamily clusters; FoxA, FoxD, FoxI, FoxO and FoxP. Results Application of site models, which estimate overall selection pressures on individual codons throughout the phylogeny, showed that the amino acid changes observed were either neutral or under negative selection. Branch-site models, which allow estimated selection pressures along specified lineages to vary as compared to the remaining phylogeny, identified positive selection along branches leading to the FoxA3 and Protostomia clades in the FoxA cluster and the branch leading to the FoxO3 clade in the FoxO cluster. Residues that may differentiate paralogs were identified in the FoxA and FoxO clusters and residues that differentiate orthologs were identified in the FoxA cluster. Neutral amino acid changes were identified in the forkhead domain of the FoxA, FoxD and FoxP clusters while positive selection was identified in the forkhead domain of the Protostomia lineage of the FoxA cluster. A series of residues under strong negative selection adjacent to the N- and C-termini of the forkhead domain were identified in all clusters analyzed suggesting a new method for refinement of domain boundaries. Extrapolation of domains among cluster members in conjunction with selection pressure information allowed prediction of residue function in the FoxA, FoxO and FoxP clusters and exclusion of known domain function in residues of the FoxA and FoxI clusters. Conclusion Consideration of selection pressures observed in conjunction with known functional information allowed

  9. MAE-FMD: multi-agent evolutionary method for functional module detection in protein-protein interaction networks.

    PubMed

    Ji, Jun Zhong; Jiao, Lang; Yang, Cui Cui; Lv, Jia Wei; Zhang, Ai Dong

    2014-09-30

    Studies of functional modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in detecting functional modules. We present a new approach using multi-agent evolution for detection of functional modules in PPI networks. The proposed approach consists of two stages: the solution construction for agents in a population and the evolutionary process of computational agents in a lattice environment, where each agent corresponds to a candidate solution to the detection problem of functional modules in a PPI network. First, the approach utilizes a connection-based encoding scheme to model an agent, and employs a random-walk behavior merged topological characteristics with functional information to construct a solution. Next, it applies several evolutionary operators, i.e., competition, crossover, and mutation, to realize information exchange among agents as well as solution evolution. Systematic experiments have been conducted on three benchmark testing sets of yeast networks. Experimental results show that the approach is more effective compared to several other existing algorithms. The algorithm has the characteristics of outstanding recall, F-measure, sensitivity and accuracy while keeping other competitive performances, so it can be applied to the biological study which requires high accuracy.

  10. Critical-like self-organization and natural selection: two facets of a single evolutionary process?

    PubMed

    Halley, Julianne D; Winkler, David A

    2008-05-01

    We argue that critical-like dynamics self-organize relatively easily in non-equilibrium systems, and that in biological systems such dynamics serve as templates upon which natural selection builds further elaborations. These critical-like states can be modified by natural selection in two fundamental ways, reflecting the selective advantage (if any) of heritable variations either among avalanche participants or among whole systems. First, reproducing (avalanching) units can differentiate, as units adopt systematic behavioural variations. Second, whole systems that are exposed to natural selection can become increasingly or decreasingly critical. We suggest that these interactions between SOC-like dynamics and natural selection have profound consequences for biological systems because they could have facilitated the evolution of division of labour, compartmentalization and computation, key features of biological systems. The logical conclusion of these ideas is that the fractal geometry of nature is anything but coincidental, and that natural selection is itself a fractal process, occurring on many temporal and spatial scales.

  11. Detecting selection in noncoding regions of nucleotide sequences.

    PubMed Central

    Wong, Wendy S W; Nielsen, Rasmus

    2004-01-01

    We present a maximum-likelihood method for examining the selection pressure and detecting positive selection in noncoding regions using multiple aligned DNA sequences. The rate of substitution in noncoding regions relative to the rate of synonymous substitution in coding regions is modeled by a parameter zeta. When a site in a noncoding region is evolving neutrally zeta = 1, while zeta > 1 indicates the action of positive selection, and zeta < 1 suggests negative selection. Using a combined model for the evolution of noncoding and coding regions, we develop two likelihood-ratio tests for the detection of selection in noncoding regions. Data analysis of both simulated and real viral data is presented. Using the new method we show that positive selection in viruses is acting primarily in protein-coding regions and is rare or absent in noncoding regions. PMID:15238543

  12. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain.

    PubMed

    Naito-Matsui, Yuko; Davies, Leela R L; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F; Verhagen, Andrea; Heyser, Charles J; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C; Paton, Adrienne W; Varki, Nissi M; Schnaar, Ronald L; Varki, Ajit

    2017-02-17

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens.

  13. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain*♦

    PubMed Central

    Naito-Matsui, Yuko; Davies, Leela R. L.; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F.; Verhagen, Andrea; Heyser, Charles J.; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C.; Paton, Adrienne W.; Varki, Nissi M.; Schnaar, Ronald L.; Varki, Ajit

    2017-01-01

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens. PMID:28049733

  14. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population

    PubMed Central

    Wandeler, Peter; Camenisch, Glauco

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  15. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    PubMed

    Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  16. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.

    PubMed

    Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D; Bodrossy, Levente; Hobday, Alistair J

    2017-02-01

    Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA.

  17. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    PubMed Central

    Bastolla, Ugo

    2014-01-01

    The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217

  18. Multi-objective entropy evolutionary algorithm for marine oil spill detection using cosmo-skymed satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, M.

    2015-06-01

    Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more vulnerable to temperature variations and much less buoyant in the seawater. This study has demonstrated a design tool for oil spill detection in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA) which based on Pareto optimal solutions. The study also shows that optimization entropy based Multi-Objective Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike and 5 % for sea roughness using the receiver-operational characteristics (ROC) curve. The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite data.

  19. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans

    PubMed Central

    Moretti, S.; Davydov, I.I.; Excoffier, L.

    2017-01-01

    Abstract Gene set enrichment approaches have been increasingly successful in finding signals of recent polygenic selection in the human genome. In this study, we aim at detecting biological pathways affected by positive selection in more ancient human evolutionary history. Focusing on four branches of the primate tree that lead to modern humans, we tested all available protein coding gene trees of the Primates clade for signals of adaptation in these branches, using the likelihood-based branch site test of positive selection. The results of these locus-specific tests were then used as input for a gene set enrichment test, where whole pathways are globally scored for a signal of positive selection, instead of focusing only on outlier “significant” genes. We identified signals of positive selection in several pathways that are mainly involved in immune response, sensory perception, metabolism, and energy production. These pathway-level results are highly significant, even though there is no functional enrichment when only focusing on top scoring genes. Interestingly, several gene sets are found significant at multiple levels in the phylogeny, but different genes are responsible for the selection signal in the different branches. This suggests that the same function has been optimized in different ways at different times in primate evolution. PMID:28333345

  20. The artful mind: sexual selection and an evolutionary neurobiological approach to aesthetic appreciation.

    PubMed

    De Ridder, Dirk; Vanneste, Sven

    2013-01-01

    Based on functional imaging of beauty appreciation in art and of beautiful faces, a heuristic model is presented that proposes that beauty appreciation in art is based on a sexual selection mechanism that led to the preference of beautiful faces. Beauty is linked to sexual selection as a sign of fitness. Beautiful traits, like the peacock's tail, are costly and thereby signal superior genetic quality. Mechanistically, beauty is a construct of the brain that links positive feedback of the reward system with hedonic experience, namely pleasure, which itself might be encoded in the orbito-frontal cortex. The context determines whether a stimulus should lead to further approach or withdrawal in order to maintain a hedonic homeostasis. The fact that aesthetic appreciation of art uses the same circuitry as the aesthetic appreciation of faces suggests that there is no special art circuitry in the brain, but that available networks are used for aesthetic appreciation of art.

  1. Using Structural and Evolutionary Information to Detect and Correct Pyrosequencing Errors in Noncoding RNAs

    PubMed Central

    Reinharz, Vladimir

    2013-01-01

    Abstract The analysis of the sequence–structure relationship in RNA molecules is not only essential for evolutionary studies but also for concrete applications such as error-correction in next generation sequencing (NGS) technologies. The prohibitive sizes of the mutational and conformational landscapes, combined with the volume of data to process, require efficient algorithms to compute sequence–structure properties. In this article, we address the correction of NGS errors by calculating which mutations most increase the likelihood of a sequence to a given structure and RNA family. We introduce RNApyro, an efficient, linear time and space inside–outside algorithm that computes exact mutational probabilities under secondary structure and evolutionary constraints given as a multiple sequence alignment with a consensus structure. We develop a scoring scheme combining classical stacking base-pair energies to novel isostericity scores and apply our techniques to correct pointwise errors in 5s and 16s rRNA sequences. Our results suggest that RNApyro is a promising algorithm to complement existing tools in the NGS error-correction pipeline. PMID:24134390

  2. A Consensus Tree Approach for Reconstructing Human Evolutionary History and Detecting Population Substructure

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Chi; Blelloch, Guy; Ravi, R.; Schwartz, Russell

    The random accumulation of variations in the human genome over time implicitly encodes a history of how human populations have arisen, dispersed, and intermixed since we emerged as a species. Reconstructing that history is a challenging computational and statistical problem but has important applications both to basic research and to the discovery of genotype-phenotype correlations. In this study, we present a novel approach to inferring human evolutionary history from genetic variation data. Our approach uses the idea of consensus trees, a technique generally used to reconcile species trees from divergent gene trees, adapting it to the problem of finding the robust relationships within a set of intraspecies phylogenies derived from local regions of the genome. We assess the quality of the method on two large-scale genetic variation data sets: the HapMap Phase II and the Human Genome Diversity Project. Qualitative comparison to a consensus model of the evolution of modern human population groups shows that our inferences closely match our best current understanding of human evolutionary history. A further comparison with results of a leading method for the simpler problem of population substructure assignment verifies that our method provides comparable accuracy in identifying meaningful population subgroups in addition to inferring the relationships among them.

  3. Bands selection and classification of hyperspectral images based on hybrid kernels SVM by evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Yan; Li, Dong-Sheng

    2016-01-01

    The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.

  4. Evolutionary Endocrinology of Juvenile Hormone Esterase in Gryllus Assimilis: Direct and Correlated Responses to Selection

    PubMed Central

    Zera, A. J.; Zhang, C.

    1995-01-01

    Hemolymph juvenile hormone esterase (JHE) activity on the third day of the last stadium in the cricket, Gryllus assimilis, exhibited a significant response to selection in each of six replicate lines. Mean realized heritability was 0.26 +/- 0.04. The response was due to changes in whole-organism enzyme activity as well as to changes in the proportion of enzyme allocated to the hemolymph compartment. In vivo juvenile hormone metabolism differed between some lines selected for high vs. low enzyme activity. Only minimal differences were observed between lines with respect to hemolymph protein concentration or whole-cricket activity of juvenile hormone epoxide hydrolase, the other major JH-degrading enzyme. Dramatic correlated responses to selection, equal in magnitude to the direct response, were observed for JHE activity on each of three other days of the last juvenile stadium. In contrast, no correlated responses in JHE activity were observed in adults. This indicates that JHE activities throughout the last stadium will evolve as a highly correlated unit independent of adult activities and the evolution of endocrine mechanisms regulating juvenile development can be decoupled from those controlling adult reproduction. This study represents the first quantitative-genetic analysis of naturally occurring endocrine variation in an insect species. PMID:8582618

  5. Evolutionary molecular medicine.

    PubMed

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  6. Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicity of the VP1 gene.

    PubMed

    Tee, Kok Keng; Lam, Tommy Tsan-Yuk; Chan, Yoke Fun; Bible, Jon M; Kamarulzaman, Adeeba; Tong, C Y William; Takebe, Yutaka; Pybus, Oliver G

    2010-04-01

    Human enterovirus 71 (EV-71) is one of the major etiologic causes of hand, foot, and mouth disease (HFMD) among young children worldwide, with fatal instances of neurological complications becoming increasingly common. Global VP1 capsid sequences (n = 628) sampled over 4 decades were collected and subjected to comprehensive evolutionary analysis using a suite of phylogenetic and population genetic methods. We estimated that the common ancestor of human EV-71 likely emerged around 1941 (95% confidence interval [CI], 1929 to 1952), subsequently diverging into three genogroups: B, C, and the now extinct genogroup A. Genealogical analysis revealed that diverse lineages of genogroup B and C (subgenogroups B1 to B5 and C1 to C5) have each circulated cryptically in the human population for up to 5 years before causing large HFMD outbreaks, indicating the quiescent persistence of EV-71 in human populations. Estimated phylogenies showed a complex pattern of spatial structure within well-sampled subgenogroups, suggesting endemicity with occasional lineage migration among locations, such that past HFMD epidemics are unlikely to be linked to continuous transmission of a single strain of virus. In addition, rises in genetic diversity are correlated with the onset of epidemics, driven in part by the emergence of novel EV-71 subgenogroups. Using subgenogroup C1 as a model, we observe temporal strain replacement through time, and we investigate the evidence for positive selection at VP1 immunogenic sites. We discuss the consequences of the evolutionary dynamics of EV-71 for vaccine design and compare its phylodynamic behavior with that of influenza virus.

  7. Evolutionary Pressure of a Receptor Competitor Selects Different Subgroup A Avian Leukosis Virus Escape Variants with Altered Receptor Interactions

    PubMed Central

    Melder, Deborah C.; Pankratz, V. Shane; Federspiel, Mark J.

    2003-01-01

    A complex interaction between the retroviral envelope glycoproteins and a specific cell surface protein initiates viral entry into cells. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a useful experimental system for studying the retroviral entry process and the evolution of receptor usage. In this study, we demonstrate that evolutionary pressure on subgroup A ALV [ALV(A)] entry exerted by the presence of a competitive inhibitor, a soluble form of the ALV(A) Tva receptor linked to a mouse immunoglobulin G tag (quail sTva-mIgG), can select different populations of escape variants. This escape population contained three abundant ALV(A) variant viruses, all with mutations in the surface glycoprotein hypervariable regions: a previously identified variant containing the Y142N mutation in the hr1 region; a new variant with two mutations, W141G in hr1 and K261E in vr3; and another new variant with two mutations, W145R in hr1 and K261E. The W141G K261E and W145R K261E viruses escape primarily by lowering their binding affinities for the quail Tva receptor competitive inhibitor while retaining wild-type levels of binding affinity for the chicken Tva receptor. A secondary phenotype of the new variants was an alteration in receptor interference patterns from that of wild-type ALV(A), indicating that the mutant glycoproteins are possibly interacting with other cellular proteins. One result of these altered interactions was that the variants caused a transient period of cytotoxicity. We could also directly demonstrate that the W141G K261E variant glycoproteins bound significant levels of a soluble form of the TvbS3 ALV receptor in a binding assay. Alterations in the normally extreme specificity of the ALV(A) glycoproteins for Tva may represent an evolutionary first step toward expanding viral receptor usage in response to inefficient viral entry. PMID:12970435

  8. Evolutionary Genetics of Human Enterovirus 71: Origin, Population Dynamics, Natural Selection, and Seasonal Periodicity of the VP1 Gene▿ †

    PubMed Central

    Tee, Kok Keng; Lam, Tommy Tsan-Yuk; Chan, Yoke Fun; Bible, Jon M.; Kamarulzaman, Adeeba; Tong, C. Y. William; Takebe, Yutaka; Pybus, Oliver G.

    2010-01-01

    Human enterovirus 71 (EV-71) is one of the major etiologic causes of hand, foot, and mouth disease (HFMD) among young children worldwide, with fatal instances of neurological complications becoming increasingly common. Global VP1 capsid sequences (n = 628) sampled over 4 decades were collected and subjected to comprehensive evolutionary analysis using a suite of phylogenetic and population genetic methods. We estimated that the common ancestor of human EV-71 likely emerged around 1941 (95% confidence interval [CI], 1929 to 1952), subsequently diverging into three genogroups: B, C, and the now extinct genogroup A. Genealogical analysis revealed that diverse lineages of genogroup B and C (subgenogroups B1 to B5 and C1 to C5) have each circulated cryptically in the human population for up to 5 years before causing large HFMD outbreaks, indicating the quiescent persistence of EV-71 in human populations. Estimated phylogenies showed a complex pattern of spatial structure within well-sampled subgenogroups, suggesting endemicity with occasional lineage migration among locations, such that past HFMD epidemics are unlikely to be linked to continuous transmission of a single strain of virus. In addition, rises in genetic diversity are correlated with the onset of epidemics, driven in part by the emergence of novel EV-71 subgenogroups. Using subgenogroup C1 as a model, we observe temporal strain replacement through time, and we investigate the evidence for positive selection at VP1 immunogenic sites. We discuss the consequences of the evolutionary dynamics of EV-71 for vaccine design and compare its phylodynamic behavior with that of influenza virus. PMID:20089660

  9. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs

    PubMed Central

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R.; Messer, Philipp W.

    2015-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analyzed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used, and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks. PMID:26589239

  10. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs.

    PubMed

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R; Messer, Philipp W

    2016-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analysed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks.

  11. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    PubMed

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance.

  12. Full-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis.

    PubMed

    Thomas, Cristel G; Wang, Wei; Jovelin, Richard; Ghosh, Rajarshi; Lomasko, Tatiana; Trinh, Quang; Kruglyak, Leonid; Stein, Lincoln D; Cutter, Asher D

    2015-05-01

    The nematode Caenorhabditis briggsae is a model for comparative developmental evolution with C. elegans. Worldwide collections of C. briggsae have implicated an intriguing history of divergence among genetic groups separated by latitude, or by restricted geography, that is being exploited to dissect the genetic basis to adaptive evolution and reproductive incompatibility; yet, the genomic scope and timing of population divergence is unclear. We performed high-coverage whole-genome sequencing of 37 wild isolates of the nematode C. briggsae and applied a pairwise sequentially Markovian coalescent (PSMC) model to 703 combinations of genomic haplotypes to draw inferences about population history, the genomic scope of natural selection, and to compare with 40 wild isolates of C. elegans. We estimate that a diaspora of at least six distinct C. briggsae lineages separated from one another approximately 200,000 generations ago, including the "Temperate" and "Tropical" phylogeographic groups that dominate most samples worldwide. Moreover, an ancient population split in its history approximately 2 million generations ago, coupled with only rare gene flow among lineage groups, validates this system as a model for incipient speciation. Low versus high recombination regions of the genome give distinct signatures of population size change through time, indicative of widespread effects of selection on highly linked portions of the genome owing to extreme inbreeding by self-fertilization. Analysis of functional mutations indicates that genomic context, owing to selection that acts on long linkage blocks, is a more important driver of population variation than are the functional attributes of the individually encoded genes. © 2015 Thomas et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Exact solutions for the selection-mutation equilibrium in the Crow-Kimura evolutionary model.

    PubMed

    Semenov, Yuri S; Novozhilov, Artem S

    2015-08-01

    We reformulate the eigenvalue problem for the selection-mutation equilibrium distribution in the case of a haploid asexually reproduced population in the form of an equation for an unknown probability generating function of this distribution. The special form of this equation in the infinite sequence limit allows us to obtain analytically the steady state distributions for a number of particular cases of the fitness landscape. The general approach is illustrated by examples; theoretical findings are compared with numerical calculations. Copyright © 2015. Published by Elsevier Inc.

  14. Combining Crowding Estimation in Objective and Decision Space With Multiple Selection and Search Strategies for Multi-Objective Evolutionary Optimization.

    PubMed

    Xia, Hu; Zhuang, Jian; Yu, Dehong

    2014-03-01

    Many multi-objective evolutionary algorithms (MOEAs) have been successful in approximating the Pareto Front. However, well-distributed solutions in the objective and decision spaces are still required in many real-life applications. In this paper, a novel MOEA is proposed to this problem. Distinct from other MOEAs, the proposed algorithm suggests a framework, which includes two crowding estimation methods, multiple selection methods for mating and search strategies for variation, to improve the MOEA' s searching ability, and the diversity of its solutions. The algorithm emphasizes the importance of using the decision space and the objective space diversities. The objective space crowding and decision space crowding distances are designed using different ideas. To produce new individuals, three different types of mating selections and their respective search strategies are constructed for the main population and the two sparse populations, with the help of the two crowding measurements. Finally, based on the experimental tests on 17 unconstrained multi-objective optimization problems, the proposed algorithm is demonstrated to have better results compared to several state-of-the-art MOEAs. A detailed analysis on the effectiveness and robustness of the framework is also presented.

  15. Extraordinarily high evolutionary rate of pseudogenes: evidence for the presence of selective pressure against changes between synonymous codons.

    PubMed Central

    Miyata, T; Hayashida, H

    1981-01-01

    Comparisons of nucleotide sequences of several pseudogenes described to date, including alpha- and beta-globin and immunoglobulin kappa-type variable domain pseudogenes, with those of functional counterparts revealed that pseudogenes accumulate mutations at an extremely high rate uniformly over their entirety. It is remarkable that the evolutionary rate exceeds the rate of changes between synonymous codons, the highest known rate, in functional genes. Because no pseudogenes appear to function, this result strongly supports the neutral theory. In addition this result apparently indicates the presence of selective pressure against changes between synonymous codons in functional genes. Close examinations of codon utilization patterns in pseudogenes and functional genes revealed a significant correlation between the rate of changes at synonymous codon sites and the strength of bias in code word usage. This implies that even synonymous codon changes are not completely free from selective pressure but are constrained in part, although presumably weakly, depending on the degree of bias in code word usage. We also reexamined alignment between mouse beta h3 (pseudogene) and beta maj sequences and found a unique structure of the beta h3 that is homologous in sequence to the beta maj gene overall but contains a long deletion (about 150 base pairs) in the middle of the gene. PMID:6795634

  16. Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails.

    PubMed

    Duda, T F; Palumbi, S R

    2000-09-01

    In order to investigate the evolution of conotoxin multigene families among two closely related vermivorous CONUS: species, we sequenced 104 four-loop conotoxin mRNAs from two individuals of CONUS: ebraeus and compared these with sequences already obtained from CONUS: abbreviatus. In contrast to the diversity of conotoxin sequences obtained from C. abbreviatus, only two common sequence variants were recovered from C. ebraeus. Segregation patterns of the variants in these two individuals and restriction digests of four-loop conotoxin amplification products from nine additional individuals suggest that the common variants are alleles from a single locus. These two putative alleles differ at nine positions that occur nonrandomly in the toxin-coding region of the sequences. Moreover, all substitutions are at nonsynonymous sites and are responsible for seven amino acid differences among the predicted amino acid sequences of the alleles. These results imply that conotoxin diversity is driven by strong diversifying selection and some form of frequency-dependent or overdominant selection at conotoxin loci, and they suggest that diverse conotoxin multigene families can originate from duplications at polymorphic loci. Furthermore, none of the sequences recovered from C. ebraeus appeared to be orthologs of loci from C. abbreviatus, and attempts to amplify orthologous sequences with locus-specific primers were unsuccessful among these species. These patterns suggest that venoms of closely related CONUS: species may differ due to the differential expression of conotoxin loci.

  17. A Neutrality Test for Detecting Selection on DNA Methylation Using Single Methylation Polymorphism Frequency Spectrum

    PubMed Central

    Wang, Jun; Fan, Chuanzhu

    2015-01-01

    Inheritable epigenetic mutations (epimutations) can contribute to transmittable phenotypic variation. Thus, epimutations can be subject to natural selection and impact the fitness and evolution of organisms. Based on the framework of the modified Tajima’s D test for DNA mutations, we developed a neutrality test with the statistic “Dm” to detect selection forces on DNA methylation mutations using single methylation polymorphisms. With computer simulation and empirical data analysis, we compared the Dm test with the original and modified Tajima’s D tests and demonstrated that the Dm test is suitable for detecting selection on epimutations and outperforms original/modified Tajima’s D tests. Due to the higher resetting rate of epimutations, the interpretation of Dm on epimutations and Tajima’s D test on DNA mutations could be different in inferring natural selection. Analyses using simulated and empirical genome-wide polymorphism data suggested that genes under genetic and epigenetic selections behaved differently. We applied the Dm test to recently originated Arabidopsis and human genes, and showed that newly evolved genes contain higher level of rare epialleles, suggesting that epimutation may play a role in origination and evolution of genes and genomes. Overall, we demonstrate the utility of the Dm test to detect whether the loci are under selection regarding DNA methylation. Our analytical metrics and methodology could contribute to our understanding of evolutionary processes of genes and genomes in the field of epigenetics. The Perl script for the “Dm” test is available at http://fanlab.wayne.edu/ (last accessed December 18, 2014). PMID:25539727

  18. Haplotypes Phased from Population Transcriptomes Detecting Selection in the Initial Adaptation of Miscanthus lutarioriparius to Stressful Environments.

    PubMed

    Zhu, Cai-Yun; Liu, Wei; Kang, Li-Fang; Xu, Qin; Xing, Shi-Lai; Fan, Yang-Yang; Song, Zhi-Hong; Yan, Juan; Li, Jian-Qiang; Sang, Tao

    2017-07-01

    Adaptation is a characteristic that enhances the survival or reproduction of organisms; selection is the critical process leading to adaptive evolution. Therefore, detecting selection is important in studying evolutionary biology. Changes in allele frequency are fundamental to adaptive evolution. The allele frequency of entire genes at the genomic scale is more intensive and precise for analyzing selection effects, compared with simple sequence repeat and single nucleotide polymorphism (SNP) alleles from nuclear gene fragments. Here, we analyzed 29,094 SNPs derived from 80 individuals of 14 L. Liou ex S.L. Chen & Renvoize populations planted near their native habitat (Jiangxia, Hubei Province, JH) and a stressful environment (Qingyang, Gansu Province, QG) to detect selection during initial adaptation. The nucleotide diversity of over 60% of genes was decreased in QG compared with JH, suggesting that most genes were undergoing selection in the stressful environment. We explored a new approach based on haplotype data inferred from RNA-seq data to analyze the change in frequency between two sites and to detect selection signals. In total, 402 and 51 genes were found to be targets of positive and negative selection, respectively. Among these candidate genes, the enrichment of abiotic stress-response genes and photosynthesis-related genes might have been responsible for establishment in the stressful environment. This is the first study assessing the change in allele frequency at the genomic level during adaptation. The method in which allele frequency detects selection during initial adaptation using population RNA-seq data would be useful for developing evolutionary biology. Copyright © 2017 Crop Science Society of America.

  19. Significant Selective Constraint at 4-Fold Degenerate Sites in the Avian Genome and Its Consequence for Detection of Positive Selection

    PubMed Central

    Künstner, Axel; Nabholz, Benoit; Ellegren, Hans

    2011-01-01

    A major conclusion from comparative genomics is that many sequences that do not code for proteins are conserved beyond neutral expectations, indicating that they evolve under the influence of purifying selection and are likely to have functional roles. Due to the degeneracy of the genetic code, synonymous sites within protein-coding genes have previously been seen as “silent” with respect to function and thereby invisible to selection. However, there are indications that synonymous sites of vertebrate genomes are also subject to selection and this is not necessarily because of potential codon bias. We used divergence in ancestral repeats as a neutral reference to estimate the constraint on 4-fold degenerate sites of avian genes in a whole-genome approach. In the pairwise comparison of chicken and zebra finch, constraint was estimated at 24–32%. Based on three-species alignments of chicken, turkey, and zebra finch, lineage-specific estimates of constraint were 43%, 29%, and 24%, respectively. The finding of significant constraint at 4-fold degenerate sites from data on interspecific divergence was replicated in an analysis of intraspecific diversity in the chicken genome. These observations corroborate recent data from mammalian genomes and call for a reappraisal of the use of synonymous substitution rates as neutral standards in molecular evolutionary analysis, for example, in the use of the well-known dN/dS ratio and in inferences on positive selection. We show by simulations that the rate of false positives in the detection of positively selected genes and sites increases several-fold at the levels of constraint at 4-fold degenerate sites found in this study. PMID:22042333

  20. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.

    PubMed

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan

    2015-10-01

    The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences☆

    PubMed Central

    Maan, Martine E.; Sefc, Kristina M.

    2013-01-01

    Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150

  2. Dextran coated silver nanoparticles - Chemical sensor for selective cysteine detection.

    PubMed

    Davidović, Slađana; Lazić, Vesna; Vukoje, Ivana; Papan, Jelena; Anhrenkiel, S Phillip; Dimitrijević, Suzana; Nedeljković, Jovan M

    2017-09-12

    A simple, fast and non-costly method for selective cysteine (Cys) detection, based on optical changes of silver colloids, is developed. For that purpose, stable colloids consisting of silver nanoparticles (Ag NPs) coated with polysaccharide dextran (Dex), isolated from bacterium species Leuconostoc mesenteroides T3, were prepared. The synthesized samples were thoroughly characterized including absorption and FTIR spectroscopy, as well as transmission electron microscopy and X-ray diffraction analysis. The silver colloids display high sensitivity and selectivity towards Cys detection in aqueous solutions. The Ag NPs coated with Dex provide possibility to detect Cys among a dozen amino acids and its detection limit was found to be 12.0μM. The sensing mechanism - red shift of optical absorption - is discussed in terms of the agglomeration of Ag NPs due to formation of hydrogen bonds between Cys molecules attached to different Ag NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air

    PubMed Central

    Llobet, Eduard; Brunet, Jérôme; Pauly, Alain; Ndiaye, Amadou; Varenne, Christelle

    2017-01-01

    This paper presents a focused review on the nanomaterials and associated transduction schemes that have been developed for the selective detection of hydrogen sulfide. It presents a quite comprehensive overview of the latest developments, briefly discusses the hydrogen sulfide detection mechanisms, identifying the reasons for the selectivity (or lack of) observed experimentally. It critically reviews performance, shortcomings, and identifies missing or overlooked important aspects. It identifies the most mature/promising materials and approaches for achieving inexpensive hydrogen sulfide sensors that could be employed in widespread, miniaturized, and inexpensive detectors and, suggests what research should be undertaken for ensuring that requirements are met. PMID:28218674

  4. A model of selective masking in chromatic detection.

    PubMed

    Shepard, Timothy G; Swanson, Emily A; McCarthy, Comfrey L; Eskew, Rhea T

    2016-07-01

    Narrowly tuned, selective noise masking of chromatic detection has been taken as evidence for the existence of a large number of color mechanisms (i.e., higher order color mechanisms). Here we replicate earlier observations of selective masking of tests in the (L,M) plane of cone space when the noise is placed near the corners of the detection contour. We used unipolar Gaussian blob tests with three different noise color directions, and we show that there are substantial asymmetries in the detection contours-asymmetries that would have been missed with bipolar tests such as Gabor patches. We develop a new chromatic detection model, which is based on probability summation of linear cone combinations, and incorporates a linear contrast energy versus noise power relationship that predicts how the sensitivity of these mechanisms changes with noise contrast and chromaticity. With only six unipolar color mechanisms (the same number as the cardinal model), the new model accounts for the threshold contours across the different noise conditions, including the asymmetries and the selective effects of the noises. The key for producing selective noise masking in the (L,M) plane is having more than two mechanisms with opposed L- and M-cone inputs, in which case selective masking can be produced without large numbers of color mechanisms.

  5. Hybrid feature selection for supporting lightweight intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  6. Band selection for change detection from hyperspectral images

    NASA Astrophysics Data System (ADS)

    Liu, Sicong; Du, Qian; Tong, Xiaohua

    2017-05-01

    In this paper, we propose to apply unsupervised band selection to improve the performance of change detection in multitemporal hyperspectral images (HSI-CD). By reducing data dimensionality through finding the most distinctive and informative bands in the difference image, foreground changes may be better detected. Band selection-based dimensionality reduction (BS-DR) technique is considered to investigate in details the following sub-problems in HSI-CD including: 1) the estimated number of multi-class changes; 2) the binary CD; 3) the multiple CD; 4) the change discriminability; 5) the optimal number of selected bands. Thus it contributes at first time a quantitative analysis of the BS-DR approach impacting on the HSI-CD performance. Due to the difficulty of having training samples in an unknown environment, unsupervised band selection and change detection are considered. A pair of real multitemporal hyperspectral Hyperion data set has been used to validate the proposed approach. Experimental results confirmed the effectiveness of selecting a band subset to obtain a satisfactory CD result, comparing with the one using original full bands. In addition, the results also demonstrated that the reduced feature space is capable to maintain sufficient information for detecting the occurred spectrally significant changes. CD performance is enhanced with respect to the increasing of change representative and discriminable capabilities.

  7. Reflections on Behavior Analysis and Evolutionary Biology: A Selective Review of Evolution Since Darwin—The First 150 Years. Edited by M. A. Bell, D. J. Futuyama, W. F. Eanes, & J. S. Levinton

    PubMed Central

    Donahoe, John W

    2012-01-01

    This review focuses on parallels between the selectionist sciences of evolutionary biology and behavior analysis. In selectionism, complex phenomena are interpreted as the cumulative products of relatively simple processes acting over time—natural selection in evolutionary biology and reinforcement in behavior analysis. Because evolutionary biology is the more mature science, an examination of the factors that led to the triumph of natural selection provides clues whereby reinforcement may achieve a similar fate in the science of behavior.

  8. ATLASGAL-selected massive clumps in the inner Galaxy. II. Characterisation of different evolutionary stages and their SiO emission

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Leurini, S.; Wyrowski, F.; Urquhart, J. S.; Menten, K. M.; Walmsley, M.; Bontemps, S.; Wienen, M.; Beuther, H.; Motte, F.; Nguyen-Luong, Q.; Schilke, P.; Schuller, F.; Zavagno, A.; Sanna, C.

    2016-02-01

    Context. The processes leading to the birth of high-mass stars are poorly understood. The key first step to reveal their formation processes is characterising the clumps and cores from which they form. Aims: We define a representative sample of massive clumps in different evolutionary stages selected from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), from which we aim to establish a census of molecular tracers of their evolution. As a first step, we study the shock tracer, SiO, mainly associated with shocks from jets probing accretion processes. In low-mass young stellar objects (YSOs), outflow and jet activity decreases with time during the star formation processes. Recently, a similar scenario was suggested for massive clumps based on SiO observations. Here we analyse observations of the SiO (2-1) and (5-4) lines in a statistically significant sample to constrain the change of SiO abundance and the excitation conditions as a function of evolutionary stage of massive star-forming clumps. Methods: We performed an unbiased spectral line survey covering the 3-mm atmospheric window between 84-117 GHz with the IRAM 30 m telescope of a sample of 430 sources of the ATLASGAL survey, covering various evolutionary stages of massive clumps. A smaller sample of 128 clumps has been observed in the SiO (5-4) transition with the APEX telescope to complement the (2-1) line and probe the excitation conditions of the emitting gas. We derived detection rates to assess the star formation activity of the sample, and we estimated the column density and abundance using both an LTE approximation and non-LTE calculations for a smaller subsample, where both transitions have been observed. Results: We characterise the physical properties of the selected sources, which greatly supersedes the largest samples studied so far, and show that they are representative of different evolutionary stages. We report a high detection rate of >75% of the SiO (2-1) line and a >90% detection

  9. Neural net selection methods for Gabor transform detection filters

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Smokelin, John S.

    1993-08-01

    New Gabor transform (GT) filters to detect candidate object locations independent of the object class, object distortions, and for low contrast objects in clutter are described. A new neural network (NN) technique is described to automate selection of GT parameters and to combine multiple Gabor functions (GFs) into once composite macro GF detection filter. Fusion of real and imaginary GT filter outputs is used to reduce false alarms, (PFA), while maintaining high detection rates (PD). Test results on the TRIM-2 database are provided.

  10. Combining evolutionary algorithms with oblique decision trees to detect bent double galaxies

    SciTech Connect

    Cantu-Paz, E; Kamath, C

    2000-06-22

    Decision trees have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis-parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learnt is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction with deterministic hill climbing and the use of simulated annealing. In this paper, they use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. They demonstrate the technique on a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology, and describe their experiences with several split evaluation criteria.

  11. Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid

    NASA Astrophysics Data System (ADS)

    Padée, Adam; Kurek, Krzysztof; Zaremba, Krzysztof

    2013-08-01

    Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters.

  12. Detecting Bias in Selection for Higher Education: Three Different Methods

    ERIC Educational Resources Information Center

    Kennet-Cohen, Tamar; Turvall, Elliot; Oren, Carmel

    2014-01-01

    This study examined selection bias in Israeli university admissions with respect to test language and gender, using three approaches for the detection of such bias: Cleary's model of differential prediction, boundary conditions for differential prediction and difference between "d's" (the Constant Ratio Model). The university admissions…

  13. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  14. Detecting Bias in Selection for Higher Education: Three Different Methods

    ERIC Educational Resources Information Center

    Kennet-Cohen, Tamar; Turvall, Elliot; Oren, Carmel

    2014-01-01

    This study examined selection bias in Israeli university admissions with respect to test language and gender, using three approaches for the detection of such bias: Cleary's model of differential prediction, boundary conditions for differential prediction and difference between "d's" (the Constant Ratio Model). The university admissions…

  15. Open and closed evolutionary paths for drastic morphological changes, involving serial gene duplication, sub-functionalization, and selection

    PubMed Central

    Abe, Gembu; Lee, Shu-Hua; Li, Ing-Jia; Chang, Chun-Ju; Tamura, Koji; Ota, Kinya G.

    2016-01-01

    Twin-tail goldfish strains are examples of drastic morphological alterations that emerged through domestication. Although this mutation is known to be caused by deficiency of one of two duplicated chordin genes, it is unknown why equivalent mutations have not been observed in other domesticated fish species. Here, we compared the chordin gene morphant phenotypes of single-tail goldfish and common carp (close relatives, both of which underwent chordin gene duplication and domestication). Morpholino-induced knockdown depleted chordin gene expression in both species; however, while knockdown reproduced twin-tail morphology in single-tail goldfish, it had no effect on common carp morphology. This difference can be explained by the observation that expression patterns of the duplicated chordin genes overlap completely in common carp, but are sub-functionalized in goldfish. Our finding implies that goldfish drastic morphological changes might be enhanced by the subsequent occurrence of three different types of evolutionary event (duplication, sub-functionalization, and selection) in a certain order. PMID:27220684

  16. QCM-based aptamer selection and detection of Salmonella typhimurium.

    PubMed

    Wang, Lijun; Wang, Ronghui; Chen, Fang; Jiang, Tieshan; Wang, Hong; Slavik, Michael; Wei, Hua; Li, Yanbin

    2017-04-15

    In this study, quartz crystal microbalance (QCM) was used to select aptamers against Salmonella typhimurium. To increase the success rate of Systematic Evolution of Ligands Exponential Enrichment (SELEX), the affinity of DNA pool in each round was simultaneously tracked using QCM in order to avoid the loss of high-quality aptamers. When the frequency change reached a maximum value after several rounds of selection and counter-selection, the candidate pool was cloned and sequenced. Out of three aptamer candidates, aptamer B5 showed high specificity and binding affinity with dissociation constant (Kd value) of 58.5nM, and was chosen for further studies. Subsequently, a QCM-based aptasensor was developed to detect S. typhimurium. This aptasensor was able to detect 10(3)CFU/mL of S. typhimurium with less than 1h. This study demonstrated QCM-based selection could be more effective selection of aptamers and QCM-based aptasensor could be more sensitive in detecting S. typhimurium.

  17. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection.

    PubMed

    Liu, Bin; Zhang, Deyuan; Xu, Ruifeng; Xu, Jinghao; Wang, Xiaolong; Chen, Qingcai; Dong, Qiwen; Chou, Kuo-Chen

    2014-02-15

    Owing to its importance in both basic research (such as molecular evolution and protein attribute prediction) and practical application (such as timely modeling the 3D structures of proteins targeted for drug development), protein remote homology detection has attracted a great deal of interest. It is intriguing to note that the profile-based approach is promising and holds high potential in this regard. To further improve protein remote homology detection, a key step is how to find an optimal means to extract the evolutionary information into the profiles. Here, we propose a novel approach, the so-called profile-based protein representation, to extract the evolutionary information via the frequency profiles. The latter can be calculated from the multiple sequence alignments generated by PSI-BLAST. Three top performing sequence-based kernels (SVM-Ngram, SVM-pairwise and SVM-LA) were combined with the profile-based protein representation. Various tests were conducted on a SCOP benchmark dataset that contains 54 families and 23 superfamilies. The results showed that the new approach is promising, and can obviously improve the performance of the three kernels. Furthermore, our approach can also provide useful insights for studying the features of proteins in various families. It has not escaped our notice that the current approach can be easily combined with the existing sequence-based methods so as to improve their performance as well. For users' convenience, the source code of generating the profile-based proteins and the multiple kernel learning was also provided at http://bioinformatics.hitsz.edu.cn/main/~binliu/remote/

  18. Pattern Recognition for Selective Odor Detection with Gas Sensor Arrays

    PubMed Central

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  19. Selective detection of bacterial layers with terahertz plasmonic antennas

    PubMed Central

    Berrier, Audrey; Schaafsma, Martijn C.; Nonglaton, Guillaume; Bergquist, Jonas; Rivas, Jaime Gómez

    2012-01-01

    Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate but complex and time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria. PMID:23162730

  20. Site-Selective Surface-Enhanced Raman Detection of Proteins.

    PubMed

    Matteini, Paolo; Cottat, Maximilien; Tavanti, Francesco; Panfilova, Elizaveta; Scuderi, Mario; Nicotra, Giuseppe; Menziani, Maria Cristina; Khlebtsov, Nikolai; de Angelis, Marella; Pini, Roberto

    2017-01-24

    Strategies for protein detection via surface-enhanced Raman spectroscopy (SERS) currently exploit the formation of randomly generated hot spots at the interfaces of metal colloidal nanoparticles, which are clustered together by intrusive chemical or physical processes in the presence of the target biomolecule. We propose a different approach based on selective and quantitative gathering of protein molecules at regular hot spots generated on the corners of individual silver nanocubes in aqueous medium at physiological pH. Here, the protein, while keeping its native configuration, experiences an intense local E-field, which boosts SERS efficiency and detection sensitivity. Uncontrolled signal fluctuations caused by variable molecular adsorption to different particle areas or inside clustered nanoparticles are circumvented. Advanced electron microscopy analyses and computational simulations outline a strategy relying on a site-selective mechanism with superior Raman signal enhancement, which offers the perspective of highly controlled and reproducible routine SERS detection of proteins.

  1. A coupled classification - evolutionary optimization model for contamination event detection in water distribution systems.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2014-03-15

    This study describes a decision support system, alerts for contamination events in water distribution systems. The developed model comprises a weighted support vector machine (SVM) for the detection of outliers, and a following sequence analysis for the classification of contamination events. The contribution of this study is an improvement of contamination events detection ability and a multi-dimensional analysis of the data, differing from the parallel one-dimensional analysis conducted so far. The multivariate analysis examines the relationships between water quality parameters and detects changes in their mutual patterns. The weights of the SVM model accomplish two goals: blurring the difference between sizes of the two classes' data sets (as there are much more normal/regular than event time measurements), and adhering the time factor attribute by a time decay coefficient, ascribing higher importance to recent observations when classifying a time step measurement. All model parameters were determined by data driven optimization so the calibration of the model was completely autonomic. The model was trained and tested on a real water distribution system (WDS) data set with randomly simulated events superimposed on the original measurements. The model is prominent in its ability to detect events that were only partly expressed in the data (i.e., affecting only some of the measured parameters). The model showed high accuracy and better detection ability as compared to previous modeling attempts of contamination event detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  3. [Evolutionary characteristics and positive selection site of hepatitis C virus isolated in intravenous drug users in Pudong new district, Shanghai].

    PubMed

    Wang, Y; Wu, H Y; Zhao, X C; Zhu, W P; Wan, Q; Lu, Y H; Jiang, Q W

    2017-03-10

    Objective: To understand the genotypes of hepatitis C virus (HCV) circulating in intravenous drug users (IDUs) in Pudong new district, Shanghai, and explore the population growth and selection pressure of the HCV strains isolated. Methods: A total of 200 serum specimens sampled from IDUs in local methadone maintenance treatment clinic in Pudong were used for amplification of a HCV NS5B 377-nt partial sequence. Mean evolutionary rate and effective number of infections were estimated based on the 377-nt partial sequences of the HCV strains isolated from IDUs and isolated contemporarily from local voluntary blood donors, men who have sex with men and reported hepatitis C cases by using BEAST software. Selection pressure sites were identified with online Datamonkey software for subsequent comparison with direct-acting antiviral (DAA) drug binding sites. Results: A total of 39 (19.5%) serum specimens were positive for HCV RNA. The genotypes were determined based on the HCV NS5B 377-nt partial sequences as follows: subtype 3a (n=14), 3b (n=13), 1b (n=7), 6a (n=4) and 6n (n=1). The partial sequences of the HCV strains isolated in IDUs shared high homology with the sequences of the HCV strains isolated in other populations. The Bayesian Skyline Plot indicated that the estimated infections with HCV subtype 1b increased exponentially during the 1990s, whereas that of subtypes 3a and 3b increased slowly since the mid-1990s. In the NS5B 377-nt partial sequences of the HCV strains isolated in IDUs, there were two positive selection sites and seventy-eight negative selection sites recognized. The mutation rate was as low as 2.2% in the 377-nt partial sequences corresponding to the known seven DAA drug binding sites. Conclusions: HCV subtype 3a and 3b were the predominant genotypes in the IDUs in Pudong. Subtype 1b was prevalent in different populations and evolved very rapidly, and more infections might be caused, suggesting further attention to its prevention, control and

  4. Evolutionary institutionalism.

    PubMed

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  5. A dynamic evolutionary clustering perspective: Community detection in signed networks by reconstructing neighbor sets

    NASA Astrophysics Data System (ADS)

    Chen, Jianrui; Wang, Hua; Wang, Lina; Liu, Weiwei

    2016-04-01

    Community detection in social networks has been intensively studied in recent years. In this paper, a novel similarity measurement is defined according to social balance theory for signed networks. Inter-community positive links are found and deleted due to their low similarity. The positive neighbor sets are reconstructed by this method. Then, differential equations are proposed to imitate the constantly changing states of nodes. Each node will update its state based on the difference between its state and average state of its positive neighbors. Nodes in the same community will evolve together with time and nodes in the different communities will evolve far away. Communities are detected ultimately when states of nodes are stable. Experiments on real world and synthetic networks are implemented to verify detection performance. The thorough comparisons demonstrate the presented method is more efficient than two acknowledged better algorithms.

  6. Considerations in detecting CDC select agents under field conditions

    NASA Astrophysics Data System (ADS)

    Spinelli, Charles; Soelberg, Scott; Swanson, Nathaneal; Furlong, Clement; Baker, Paul

    2008-04-01

    Surface Plasmon Resonance (SPR) has become a widely accepted technique for real-time detection of interactions between receptor molecules and ligands. Antibody may serve as receptor and can be attached to the gold surface of the SPR device, while candidate analyte fluids contact the detecting antibody. Minute, but detectable, changes in refractive indices (RI) indicate that analyte has bound to the antibody. A decade ago, an inexpensive, robust, miniature and fully integrated SPR chip, called SPREETA, was developed. University of Washington (UW) researchers subsequently developed a portable, temperature-regulated instrument, called SPIRIT, to simultaneously use eight of these three-channel SPREETA chips. A SPIRIT prototype instrument was tested in the field, coupled to a remote reporting system on a surrogate unmanned aerial vehicle (UAV). Two target protein analytes were released sequentially as aerosols with low analyte concentration during each of three flights and were successfully detected and verified. Laboratory experimentation with a more advanced SPIRIT instrument demonstrated detection of very low levels of several select biological agents that might be employed by bioterrorists. Agent detection under field-like conditions is more challenging, especially as analyte concentrations are reduced and complex matricies are introduced. Two different sample preconditioning protocols have been developed for select agents in complex matrices. Use of these preconditioning techniques has allowed laboratory detection in spiked heavy mud of Francisella tularensis at 10 3 CFU/ml, Bacillus anthracis spores at 10 3 CFU/ml, Staphylococcal enterotoxin B (SEB) at 1 ng/ml, and Vaccinia virus (a smallpox simulant) at 10 5 PFU/ml. Ongoing experiments are aimed at simultaneous detection of multiple agents in spiked heavy mud, using a multiplex preconditioning protocol.

  7. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  8. Fluorescein Tri-Aldehyde Promotes the Selective Detection of Homocysteine.

    PubMed

    Barve, Aabha; Lowry, Mark; Escobedo, Jorge O; Thainashmuthu, Josephrajan; Strongin, Robert M

    2016-03-01

    Elevated homocysteine levels are a well-known independent risk factor for cardiovascular disease. To date, relatively few selective fluorescent probes for homocysteine detection have been reported. The lack of sensing reagents and remaining challenges largely derive from issues of sensitivity and/or selectivity. For example, homocysteine is a structural homologue of the more abundant (ca, 20-25 fold) aminothiol cysteine, differing only by an additional methylene group side chain. Fluorescein tri-aldehyde, described herein, has been designed and synthesized as a sensitive and selective fluorophore for the detection of homocysteine in human plasma samples. It responds to analytes selectively via a photoinduced electron transfer (PET) inhibition process that is modulated by predictable analyte-dye product hybridization and ionization states. Mulliken population analysis of fluorescein tri-aldehyde and its reaction products reveals that the characteristic formation of multiple cationic of homocysteine-derived heterocycles leads to enhanced relative negative charge build up on the proximal phenolate oxygen of the fluorophore as a contributing factor to selective emission enhancement.

  9. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    PubMed Central

    Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong

    2013-01-01

    This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875

  10. Environmental Surveillance of Enteroviruses in Central Argentina: First Detection and Evolutionary Analyses of E14.

    PubMed

    Farías, Adrian A; Mojsiejczuk, Laura N; Pisano, María B; Flores, Fernando S; Aguilar, Juan J; Jean, Ana N; Yanes, Laura A; Masachessi, Gisela; Prez, Veronica E; Isa, María B; Campos, Rodolfo H; Ré, Viviana E; Nates, Silvia V

    2017-08-24

    Environmental surveillance is an effective approach to investigate the circulation of human enteroviruses in the population. Enteroviruses E14, CVA9, E-6, E16, E20, E25, E13, and CVA24 were detected in sewage and a watercourse in central Argentina. E14 was the most frequent serotype and was found for the first time in environmental samples in our region. Phylogenetic and coalescence analyses showed at least two recent introduction events.

  11. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors.

    PubMed

    Bohrer, Forest I; Colesniuc, Corneliu N; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C

    2008-03-26

    The use of hydrogen peroxide as a precursor to improvised explosives has made its detection a topic of critical importance. Chemiresistor arrays comprised of 50 nm thick films of metallophthalocyanines (MPcs) are redox selective vapor sensors of hydrogen peroxide. Hydrogen peroxide is shown to decrease currents in cobalt phthalocyanine sensors while it increases currents in nickel, copper, and metal-free phthalocyanine sensors; oxidation and reduction of hydrogen peroxide via catalysis at the phthalocyanine surface are consistent with the pattern of sensor responses. This represents the first example of MPc vapor sensors being oxidized and reduced by the same analyte by varying the metal center. Consequently, differential analysis by redox contrast with catalytic amplification using a small array of sensors may be used to uniquely identify peroxide vapors. Metallophthalocyanine chemiresistors represent an improvement over existing peroxide vapor detection technologies in durability and selectivity in a greatly decreased package size.

  12. Detecting and Measuring Selection from Gene Frequency Data

    PubMed Central

    Vitalis, Renaud; Gautier, Mathieu; Dawson, Kevin J.; Beaumont, Mark A.

    2014-01-01

    The recent advent of high-throughput sequencing and genotyping technologies makes it possible to produce, easily and cost effectively, large amounts of detailed data on the genotype composition of populations. Detecting locus-specific effects may help identify those genes that have been, or are currently, targeted by natural selection. How best to identify these selected regions, loci, or single nucleotides remains a challenging issue. Here, we introduce a new model-based method, called SelEstim, to distinguish putative selected polymorphisms from the background of neutral (or nearly neutral) ones and to estimate the intensity of selection at the former. The underlying population genetic model is a diffusion approximation for the distribution of allele frequency in a population subdivided into a number of demes that exchange migrants. We use a Markov chain Monte Carlo algorithm for sampling from the joint posterior distribution of the model parameters, in a hierarchical Bayesian framework. We present evidence from stochastic simulations, which demonstrates the good power of SelEstim to identify loci targeted by selection and to estimate the strength of selection acting on these loci, within each deme. We also reanalyze a subset of SNP data from the Stanford HGDP–CEPH Human Genome Diversity Cell Line Panel to illustrate the performance of SelEstim on real data. In agreement with previous studies, our analyses point to a very strong signal of positive selection upstream of the LCT gene, which encodes for the enzyme lactase–phlorizin hydrolase and is associated with adult-type hypolactasia. The geographical distribution of the strength of positive selection across the Old World matches the interpolated map of lactase persistence phenotype frequencies, with the strongest selection coefficients in Europe and in the Indus Valley. PMID:24361938

  13. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    PubMed Central

    Alatraktchi, Fatima AlZahra’a; Breum Andersen, Sandra; Krogh Johansen, Helle; Molin, Søren; Svendsen, Winnie E.

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients. PMID:27007376

  14. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry.

    PubMed

    Alatraktchi, Fatima AlZahra'a; Andersen, Sandra Breum; Johansen, Helle Krogh; Molin, Søren; Svendsen, Winnie E

    2016-03-19

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between -1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58-0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R² value of 0.991 across the clinically relevant concentration range of 2-100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients.

  15. Binding-regulated click ligation for selective detection of proteins.

    PubMed

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Selective detection of gold using genetically engineered bacterial reporters.

    PubMed

    Cerminati, Sebastián; Soncini, Fernando C; Checa, Susana K

    2011-11-01

    Salmonella typhimurium harbours a Au-resistance system whose expression is controlled by GolS, a transcriptional regulator of the MerR family that selectively detects Au with high sensitivity. We developed both Salmonella and genetically engineered Escherichia coli strains as Au-selective whole-cell biosensors by coupling the strictly regulated GolS-dependent golB promoter to the gfp reporter gene. The bio-reporters were evaluated under different laboratory conditions and calibrated for their use as selective Au detectors. Due to the intrinsic characteristics of the regulatory protein, the transgenic E. coli sensor exhibits low background, high signal-to-noise ratio, and improved sensitivity for detection of Au ions in a wide range of concentrations (up to 470 nM) with a calculated detection limit of ∼33 nM (6 µg L(-1) or parts per billion) Au(I). The fluorescent Au-sensing bacteria exhibit also minimal interference by chemically related metals such as Cu or Ag that are commonly found in Au deposits. These highly specific and sensitive Au detectors might allow the development of rapid and robust screening tools to improve discovery and extraction procedures.

  17. Robust online tracking via adaptive samples selection with saliency detection

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  18. Selection of advanced technologies for detection of trucks

    NASA Astrophysics Data System (ADS)

    Middleton, Dan

    1998-01-01

    The North American Free Trade Agreement is anticipated an already increasing trend in highway freight movement across the international border between Texas and Mexico. The Texas Department of Transportation is concerned about safeguarding its motoring public and protection of its highway infrastructure. By sponsoring this research, it hopes to improve traffic signal operations, especially at isolated intersections. Recent advances in sensing technologies and signalization enable safer and more efficient intersection control. This research evaluated advanced detection technologies that can be used to increase green time to trucks and reduce their stops and delays. Equipment selection criteria required devices that were reasonably accurate in classification of vehicles under all weather and lighting conditions and determination of vehicle speeds. The research team selected active IR and passive acoustic technologies. Components of the detection system include: an Industrial PC, proprietary boards inside the computer, IR and acoustic detectors, a pole for mounting the selected systems, and a classifier system using pavement sensors for verification purposes. The purpose of the node computer was to interpret signals from detectors, store data, and communicate with the controller cabinet upon detection of a truck.

  19. Interest area selection for navigation based on structured edge detection

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Shang, Ke; Li, ShaoJun; Dou, Hao; Tian, JinWen; Ming, Delie

    2015-12-01

    The scene matching based navigation is an important precision navigation technology for unmanned aerial vehicles (UAV). Selection of interest area where reference image is made has an important influence on the precision of matching result besides the performance of match algorithm. In this paper, a method to select interest area based on structured edge detection is proposed. We use a data driven approach that classifies each pixel with a typical structured edge label. We propose a method that combines these labels into a feature measuring suitable to match of a region. Then a SVM classifier is trained to classify the features and get the final result of the selection of interest area. The experimental result shows that the proposed method is valid and effective.

  20. Variable selection based cotton bollworm odor spectroscopic detection

    NASA Astrophysics Data System (ADS)

    Lü, Chengxu; Gai, Shasha; Luo, Min; Zhao, Bo

    2016-10-01

    Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and RV2 of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and RV2 of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and RV2 of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.

  1. A selective bottleneck shapes the evolutionary mutant spectra of enterovirus A71 during viral dissemination in humans.

    PubMed

    Huang, Sheng-Wen; Huang, Yi-Hui; Tsai, Huey-Pin; Kuo, Pin-Hwa; Wang, Shih-Min; Liu, Ching-Chuan; Wang, Jen-Ren

    2017-09-20

    RNA viruses accumulate mutations to rapidly adapt to environmental changes. Enterovirus A71 (EV-A71) causes various clinical manifestations with occasional severe neurological complications. However, the mechanism by which EV-A71 evolves within the human body is unclear. Utilizing deep sequencing and haplotype analyses of viruses from various tissues of an autopsy patient, we sought to define the evolutionary pathway by which enterovirus A71 evolves fitness for invading the central nervous system in humans. Broad mutant spectra with divergent mutations were observed at the initial infection sites in the respiratory and digestive systems. After viral invasion, we identified a haplotype switch and dominant haplotype, with glycine at VP1 residue 31 in viral particles disseminated into the integumentary and central nervous systems. In vitro viral-growth and fitness analyses indicated that VP1-31G conferred growth and a fitness advantage in human neuronal cells, whereas VP1-31D showed enhanced replication in human colorectal cells. A higher proportion of VP1-31G was also found among fatal cases, suggesting that it may facilitate central nervous system infection in humans. Our data provide the first glimpse of EV-A71 quasispecies from oral tissues to central nervous system within humans, showing broad implications for the surveillance and pathogenesis of this re-emerging viral pathogen.IMPORTANCE EV-A71 continues to be a worldwide burden to public health. Although EV-A71 is the major etiological agent of hand-foot-and-mouth disease, it can also cause neurological pulmonary edema, encephalitis, and even death, especially in children. Understanding selection processes enabling dissemination and accurately estimating EV-A71 diversity during invasion in humans are critical for applications in viral pathogenesis and vaccine studies. Here, we define a selection bottleneck appearing in respiratory and digestive tissues. Glycine substitution at VP1 residue 31 helps viruses break

  2. [Evolutionary medicine: an emergent basic science].

    PubMed

    Spotorno, Angel E

    2005-02-01

    Evolutionary Medicine is an emergent basic science that offers new and varied perspectives to the comprehension of human health. The application of classic evolutionary theories (descent with modification, and natural selection) to the human organism, to its pathogens, and their mutual co-evolution, provides new explanations about why we get sick, how we can prevent this, and how we can heal. Medicine has focused mainly on the proximate or immediate causes of diseases and the treatment of symptoms, and very little on its evolutionary or mediate causes. For instance, the present human genome and phenotypes are essentially paleolithic ones: they are not adapted to modern life style, thus favoring the so-called diseases of civilization (ie: ateroesclerosis, senescence, myopia, phobias, panic attacks, stress, reproductive cancers). With the evolutionary approach, post-modern medicine is detecting better the vulnerabilities, restrictions, biases, adaptations and maladaptations of human body, its actual diseases, and its preventions.

  3. Rapid detection and evolutionary analysis of Legionella pneumophila serogroup 1 sequence type 47.

    PubMed

    Mentasti, M; Cassier, P; David, S; Ginevra, C; Gomez-Valero, L; Underwood, A; Afshar, B; Etienne, J; Parkhill, J; Chalker, V; Buchrieser, C; Harrison, T G; Jarraud, S

    2017-04-01

    Legionella pneumophila serogroup 1 (Lp1) sequence type 47 is the leading cause of legionellosis in north-western Europe, but, surprisingly, it is rarely isolated from environmental samples. Comparative genomics was applied to develop a PCR assay and to better understand the evolution of this strain. Comparative analysis of 36 genomes representative of the Lp species was used to identify specific PCR targets, which were then evaluated in silico on 545 sequenced genomes and in vitro on 436 Legionella strains, 106 respiratory samples, and three environmental samples from proven ST47 sources. Phylogenetic analyses were performed to understand the evolution of ST47. The gene LPO_1073 was characterized as being 100% conserved in all 129 ST47 genomes analysed. A real-time PCR designed to detect LPO_1073 was positive for all 110 ST47 strains tested and agreed with culture and typing results previously obtained for 106 respiratory samples. The three environmental samples were also positive. Surprisingly, 26 of the 44 ST109 strains tested among 342 non-ST47 strains scored positive for LPO_1073. SNP-based phylogenetic analysis was undertaken to understand this result: the PCR-positive ST109 genomes were almost identical to ST47 genomes, with the exception of a recombined region probably acquired by ST47 from a ST62(-like) strain. The genomic analysis allowed the design of a highly specific PCR assay for rapid detection of ST47 strains. Furthermore, it allowed us to uncover the evolution of ST47 strains from ST109 by homologous recombination with ST62. We hypothesize that this recombination generated the leading cause of legionellosis in north-western Europe. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Comparative Genomics Uncovers Unique Gene Turnover and Evolutionary Rates in a Gene Family Involved in the Detection of Insect Cuticular Pheromones

    PubMed Central

    Torres-Oliva, Montserrat; Almeida, Francisca C.; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-01-01

    Chemoreception is an essential process for the survival and reproduction of animals. Many of the proteins responsible for recognizing and transmitting chemical stimuli in insects are encoded by genes that are members of moderately sized multigene families. The members of the CheB family are specialized in gustatory-mediated detection of long-chain hydrocarbon pheromones in Drosophila melanogaster and play a central role in triggering and modulating mating behavior in this species. Here, we present a comprehensive comparative genomic analysis of the CheB family across 12 species of the Drosophila genus. We have identified a total of 102 new CheB genes in the genomes of these species, including a functionally divergent member previously uncharacterized in D. melanogaster. We found that, despite its relatively small repertory size, the CheB family has undergone multiple gain and loss events and various episodes of diversifying selection during the divergence of the surveyed species. Present estimates of gene turnover and coding sequence substitution rates show that this family is evolving faster than any known Drosophila chemosensory family. To date, only other insect gustatory-related genes among these families had shown evolutionary dynamics close to those observed in CheBs. Our findings reveal the high adaptive potential of molecular components of the gustatory system in insects and anticipate a key role of genes involved in this sensory modality in species adaptation and diversification.

  5. Evolutionary Differences in Glycosaminoglycan Fine Structure Detected by Quantitative Glycan Reductive Isotope Labeling*S⃞

    PubMed Central

    Lawrence, Roger; Olson, Sara K.; Steele, Robert E.; Wang, Lianchun; Warrior, Rahul; Cummings, Richard D.; Esko, Jeffrey D.

    2008-01-01

    To facilitate qualitative and quantitative analysis of glycosaminoglycans, we tagged the reducing end of lyase-generated disaccharides with aniline-containing stable isotopes (12C6 and 13C6). Because different isotope tags have no effect on chromatographic retention times but can be discriminated by a mass detector, differentially isotope-tagged samples can be compared simultaneously by liquid chromatography/mass spectrometry and quantified by admixture with known amounts of standards. The technique is adaptable to all types of glycosaminoglycans, and its sensitivity is only limited by the type of mass spectrometer available. We validated the method using commercial heparin and keratan sulfate as well as heparan sulfate isolated from mutant and wild-type Chinese hamster ovary cells, and select tissues from mutant and wild-type mice. This new method provides more robust, reliable, and sensitive means of quantitative evaluation of glycosaminoglycan disaccharide compositions than existing techniques allowing us to compare the chondroitin and heparan sulfate compositions of Hydra vulgaris, Drosophila melanogaster, Caenorhabditis elegans, and mammalian cells. Our results demonstrate significant differences in glycosaminoglycan structure among these organisms that might represent evolutionarily distinct functional motifs. PMID:18818196

  6. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  7. ULTRASENSITIVE HIGH-TEMPERATURE SELECTIVE GAS DETECTION USING PIEZOELECTRIC MICROCANTILEVERS

    SciTech Connect

    Wan Y. Shih; Tejas Patil; Qiang Zhao; Yi-Shi Chiu; Wei-Heng Shih

    2004-03-05

    We have obtained very promising results in the Phase I study. Specifically, for temperature effects, we have established that piezoelectric cantilever sensors could retain their resonance peak strength at high temperatures, i.e., the Q values of the resonance peaks remained above 10 even when the temperature was very close to the Curie temperature. This confirms that a piezoelectric cantilever sensor can be used as a sensor up to its Curie temperature. Furthermore, we have shown that the mass detection sensitivity remained unchanged at different temperatures. For selective gas detection, we have demonstrated selective NH{sub 3} detection using piezoelectric cantilever sensors coated with mesoporous SiO{sub 2}. For high-temperature sensor materials development, we have achieved highly oriented Sr-doped lead titanate thin films that possessed superior dielectric and ferroelectric properties. Such highly oriented films can be microfabricated into high-performance piezoelectric microcantilever sensors that can be used up to 490 C. We have accomplished the goal of Phase I study in exploring the various aspects of a high-temperature gas sensor. We propose to continue the study in Phase II to develop a sensor that is suitable for high-temperature applications using piezoelectrics with a high Curie temperature and by controlling the effects of temperature. The lead titanate based thin film developed in Phase I is good for applications up to 490 C. In phase II, we will develop lithium niobate thin film based cantilevers for applications up to 1000 C.

  8. The evolutionary history of Drosophila buzzatii. XXXIII. Are Opuntia hosts a selective factor for the inversion polymorphism?

    PubMed

    Fanara, J J; Hasson, E; Rodríguez, C; Santos, M; Fontdevila, A

    1996-11-01

    Previous work has shown fitness differences among chromosomal arrangements by means of selection component analysis in two Drosophila buzzatii natural populations, one of which is native to Argentina and the other a colonized population from Carboneras, Spain. Founder effects or niche shifts were proposed to explain the differences observed in the pattern of pleiotropic effects of inversions on fitness components. In this paper, we address the possible role of niche shifts by determining whether differential attraction to, oviposition on, or utilization of the rotting cladodes of two different Opuntia species (O. quimilo and O. ficus-indica) occurred among individuals carrying different second chromosome karyotypes in a natural Argentinian population. Through the analysis of more than 2500 individuals comprising five different life cycle stages associated with the necroses of these two cactus species, we found that the distributions of inversion frequencies in samples of adult flies, third instar larvae and emerging adults collected on both Opuntia species were not significantly different. Likewise, no evidence of differential oviposition was observed. These findings suggest that niche shifts cannot, solely, account for the changes observed in the Carboneras population. In addition, the selection component analysis did not reveal any significant relationship between chromosomal arrangements and the fitness components tested. These results suggest either that fitness differences might be too small to be detected or that the assumptions of the model concerning the mode of selection may not be tenable in the studied population.

  9. Drosophila melanogaster Selection for Survival after Infection with Bacillus cereus Spores: Evolutionary Genetic and Phenotypic Investigations of Respiration and Movement

    PubMed Central

    Ma, Junjie; Benson, Andrew K.; Kachman, Stephen D.; Jacobsen, Deidra J.; Harshman, Lawrence G.

    2013-01-01

    Laboratory populations of D. melanogaster have been subjected to selection for survival after live spores of B. cereus were introduced as a pathogenic agent. The present study was designed to investigate correlated traits: respiration as a metabolic trait and movement as a behavioral trait. An underlying hypothesis was that the evolution of increased survival after B. cereus infection exerts a metabolic cost associated with elevated immunity and this would be detected by increased respiration rates. There was support for this hypothesis in the male response to selection, but not for selected-line females. Two phenotypic effects were also observed in the study. Females especially showed a marked increase in respiration after mating compared to the other assay stages regardless of whether respiration was measured per fly or adjusted by lean mass or dry weight. Given that mating stimulates egg production, it is feasible that elevated metabolism was needed to provision oocytes with yolk. Females also moved less than males, perhaps due to behaviors related to oviposition whereas elevated male activity might be due to behaviors associated with seeking females and courtship. Relatively low movement of females indicated that their elevated respiration after mating was not due to a change in locomotion. PMID:23634317

  10. Multitemporal spectroscopy for crop stress detection using band selection methods

    NASA Astrophysics Data System (ADS)

    Mewes, Thorsten; Franke, Jonas; Menz, Gunter

    2008-08-01

    A fast and precise sensor-based identification of pathogen infestations in wheat stands is essential for the implementation of site-specific fungicide applications. Several works have shown possibilities and limitations for the detection of plant stress using spectral sensor data. Hyperspectral data provide the opportunity to collect spectral reflectance in contiguous bands over a broad range of the electromagnetic spectrum. Individual phenomena like the light absorption of leaf pigments can be examined in detail. The precise knowledge of stress-dependent shifting in certain spectral wavelengths provides great advantages in detecting fungal infections. This study focuses on band selection techniques for hyperspectral data to identify relevant and redundant information in spectra regarding a detection of plant stress caused by pathogens. In a laboratory experiment, five 1 sqm boxes with wheat were multitemporarily measured by a ASD Fieldspec® 3 FR spectroradiometer. Two stands were inoculated with Blumeria graminis - the pathogen causing powdery mildew - and one stand was used to simulate the effect of water deficiency. Two stands were kept healthy as control stands. Daily measurements of the spectral reflectance were taken over a 14-day period. Three ASD Pro Lamps were used to illuminate the plots with constant light. By applying band selection techniques, the three types of different wheat vitality could be accurately differentiated at certain stages. Hyperspectral data can provide precise information about pathogen infestations. The reduction of the spectral dimension of sensor data by means of band selection procedures is an appropriate method to speed up the data supply for precision agriculture.

  11. Bayesian analysis. II. Signal detection and model selection

    NASA Astrophysics Data System (ADS)

    Bretthorst, G. Larry

    In the preceding. paper, Bayesian analysis was applied to the parameter estimation problem, given quadrature NMR data. Here Bayesian analysis is extended to the problem of selecting the model which is most probable in view of the data and all the prior information. In addition to the analytic calculation, two examples are given. The first example demonstrates how to use Bayesian probability theory to detect small signals in noise. The second example uses Bayesian probability theory to compute the probability of the number of decaying exponentials in simulated T1 data. The Bayesian answer to this question is essentially a microcosm of the scientific method and a quantitative statement of Ockham's razor: theorize about possible models, compare these to experiment, and select the simplest model that "best" fits the data.

  12. Evolutionary relationships of West Nile virus detected in mosquitoes from a migratory bird zone of Colombian Caribbean.

    PubMed

    López, Richard Hoyos; Soto, Sandra Uribe; Gallego-Gómez, Juan Carlos

    2015-05-20

    West Nile virus (WNV) is a member of the genus Flavivirus, and it is transmitted between Culex sp. mosquitoes and avian hosts. Equids and humans are commonly infected with WNV as dead-end hosts, and the signs and symptoms of infection range from mild illness to neurologic symptoms as encephalitis, meningitis and sometimes death. Previous phylogenetic studies have classified WNV into six genetically distinct lineages and provided valuable insight on WNV dispersal patterns within the Americas and its emergence in different geographic areas. In this study, we isolated, sequenced and genetically characterized the NS5 and envelope genes for two WNV strains detected from Northern of Colombia. Herein we describe the evolutionary relationships with representative WNV-strains isolated in a variety of epidemic outbreaks and countries, to define the phylogeographic origin and possible implications in the epidemiology of this emergent virus in Colombia. Fragments of the NS5 and Envelope genes were amplified with RT-PCR and sequenced to obtain 1186-nt and 1504-nt portions, respectively. Our sequences were aligned with 46 sequences from WNV-strains collected in the U.S., Mexico and Argentina for phylogenetic reconstruction using Bayesian methods. Sequence analyses identified unique non-synonymous substitutions in the envelope gene of the WNV strains we detected, and our sequences clustered together with those from the attenuated Texas - 2002 genotype. A new strain closely related to attenuated strains collected in Texas during 2002 was identified from Colombia by phylogenetic analysis. This finding may explain the absence of human/equine cases of WNV-encephalitis or severe disease in Colombia and possibly other regions of South America. Follow-up studies are needed in ecosystems used by migratory birds areas and virological/entomological surveillance.

  13. Method for detection of selected chemicals in an open environment

    NASA Technical Reports Server (NTRS)

    Duong, Tuan (Inventor); Ryan, Margaret (Inventor)

    2009-01-01

    The present invention relates to a space-invariant independent component analysis and electronic nose for detection of selective chemicals in an unknown environment, and more specifically, an approach to analysis of sensor responses to mixtures of unknown chemicals by an electronic nose in an open and changing environment. It is intended to fill the gap between an alarm, which has little or no ability to distinguish among chemical compounds causing a response, and an analytical instrument, which can distinguish all compounds present but with no real-time or continuous event monitoring ability.

  14. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  15. A review on Monte Carlo simulation methods as they apply to mutation and selection as formulated in Wright-Fisher models of evolutionary genetics.

    PubMed

    Mode, Charles J; Gallop, Robert J

    2008-02-01

    A case has made for the use of Monte Carlo simulation methods when the incorporation of mutation and natural selection into Wright-Fisher gametic sampling models renders then intractable from the standpoint of classical mathematical analysis. The paper has been organized around five themes. Among these themes was that of scientific openness and a clear documentation of the mathematics underlying the software so that the results of any Monte Carlo simulation experiment may be duplicated by any interested investigator in a programming language of his choice. A second theme was the disclosure of the random number generator used in the experiments to provide critical insights as to whether the generated uniform random variables met the criterion of independence satisfactorily. A third theme was that of a review of recent literature in genetics on attempts to find signatures of evolutionary processes such as natural selection, among the millions of segments of DNA in the human genome, that may help guide the search for new drugs to treat diseases. A fourth theme involved formalization of Wright-Fisher processes in a simple form that expedited the writing of software to run Monte Carlo simulation experiments. Also included in this theme was the reporting of several illustrative Monte Carlo simulation experiments for the cases of two and three alleles at some autosomal locus, in which attempts were to made to apply the theory of Wright-Fisher models to gain some understanding as to how evolutionary signatures may have developed in the human genome and those of other diploid species. A fifth theme was centered on recommendations that more demographic factors, such as non-constant population size, be included in future attempts to develop computer models dealing with signatures of evolutionary process in genomes of various species. A brief review of literature on the incorporation of demographic factors into genetic evolutionary models was also included to expedite and

  16. Evolutionary novelties.

    PubMed

    Wagner, Günter P; Lynch, Vincent J

    2010-01-26

    How novel traits arise in organisms has long been a major problem in biology. Indeed, the sharpest critiques of Darwin's theory of evolution by natural selection often centered on explaining how novel body parts arose. In his response to The Origin of Species, St. George J. Mivart challenged Darwin to explain the origin of evolutionary novelties such as the mammary gland, asking if it was "conceivable that the young of any animal was ever saved from destruction by accidentally sucking a drop of scarcely nutritious fluid from an accidentally hypertrophied cutaneous gland of its mother?" It is only now that modern molecular and genomic tools are being brought to bear on this question that we are finally in a position to answer Mivart's challenge and explain one of the most fundamental questions of biology: how does novelty arise in evolution?

  17. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes.

    PubMed

    Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong

    2016-02-18

    The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic

  18. Bayesian Variable Selection for Detecting Adaptive Genomic Differences Among Populations

    PubMed Central

    Riebler, Andrea; Held, Leonhard; Stephan, Wolfgang

    2008-01-01

    We extend an Fst-based Bayesian hierarchical model, implemented via Markov chain Monte Carlo, for the detection of loci that might be subject to positive selection. This model divides the Fst-influencing factors into locus-specific effects, population-specific effects, and effects that are specific for the locus in combination with the population. We introduce a Bayesian auxiliary variable for each locus effect to automatically select nonneutral locus effects. As a by-product, the efficiency of the original approach is improved by using a reparameterization of the model. The statistical power of the extended algorithm is assessed with simulated data sets from a Wright–Fisher model with migration. We find that the inclusion of model selection suggests a clear improvement in discrimination as measured by the area under the receiver operating characteristic (ROC) curve. Additionally, we illustrate and discuss the quality of the newly developed method on the basis of an allozyme data set of the fruit fly Drosophila melanogaster and a sequence data set of the wild tomato Solanum chilense. For data sets with small sample sizes, high mutation rates, and/or long sequences, however, methods based on nucleotide statistics should be preferred. PMID:18245358

  19. Selective detection and quantification of carbon nanotubes in soil.

    PubMed

    Jeong, Junhoe; Lee, Yong-ju; Hwang, Yu sik; Hong, In Seok

    2015-09-01

    Carbon nanotubes (CNTs) have been widely applied in many industrial fields. As world production of CNTs increases, the risk of environmental exposure to CNTs also increases. Therefore, to evaluate the impact on the environment, many cell and animal studies have reported on the toxicity of CNTs. It is important to determine the degree of contamination of CNTs in soil and to find the pollution pathways for assessment of the environmental toxicity of CNTs. However, selective detection methods for CNTs in soil or water have rarely been reported. In the present study, a novel technique was developed to quantify the amount of CNTs in soil mixtures using fluorescent SYBR Green I dye after isolation of the CNTs with specific DNA oligomers. As a result, a limit of detection of CNTs in soil was obtained in the range of 250 ppb. This limit can easily be extended to the level of 10 ppb using magnetic well plates with a greater capacity. This method also worked well in the presence of graphene oxide and could be applied to the detection of CNTs in a variety of surroundings (e.g., fish and other tissues). © 2015 SETAC.

  20. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    SciTech Connect

    Ziqiang Wang; Edward S. Yeung

    2001-08-06

    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.

  1. Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection

    PubMed Central

    O'Neill, Christopher J; Swain, David L; Kadarmideen, Haja N

    2010-01-01

    The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of ‘production diseases’ in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment. PMID:25567936

  2. Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection.

    PubMed

    O'Neill, Christopher J; Swain, David L; Kadarmideen, Haja N

    2010-09-01

    The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of 'production diseases' in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment.

  3. Impact of informative band selection on target detection performance

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Hamed; Valadan Zoej, Mohammad Javad; Mojaradi, Barat

    2011-11-01

    In this paper, the effect of dimensionality reduction of hyperspectral data on 10 subpixel target detectors is investigated. The genetic algorithm (GA) and wavelet feature extraction methods are used for dimensionality reduction as they maintain physically meaningful bands and physical structure of the spectra, respectively. In the former case, the wrapper method is used to improve subpixel target detectors' results in terms of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Meanwhile, in the latter case, the AUC is used as a criterion to choose the optimum level of wavelet decomposition. Experimental results obtained from a real-world hyperspectral data and a challenging synthetic dataset approved that band selection with the wrapper method is more efficient than using target detection methods without dimensionality reduction, especially in the presence of difficult targets at subpixel level.

  4. Statistical feature selection for enhanced detection of brain tumor

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Colen, Rivka R.

    2014-09-01

    Feature-based methods are widely used in the brain tumor recognition system. Robust of early cancer detection is one of the most powerful image processing tools. Specifically, statistical features, such as geometric mean, harmonic mean, mean excluding outliers, median, percentiles, skewness and kurtosis, have been extracted from brain tumor glioma to aid in discriminating two levels namely, Level I and Level II using fluid attenuated inversion recovery (FLAIR) sequence in the diagnosis of brain tumor. Statistical feature describes the major characteristics of each level from glioma which is an important step to evaluate heterogeneity of cancer area pixels. In this paper, we address the task of feature selection to identify the relevant subset of features in the statistical domain, while discarding those that are either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between Level I and Level II. We apply a Decision Structure algorithm to find the optimal combination of nonhomogeneity based statistical features for the problem at hand. We employ a Naïve Bayes classifier to evaluate the performance of the optimal statistical feature based scheme in terms of its glioma Level I and Level II discrimination capability and use real-data collected from 17 patients have a glioblastoma multiforme (GBM). Dataset provided from 3 Tesla MR imaging system by MD Anderson Cancer Center. For the specific data analyzed, it is shown that the identified dominant features yield higher classification accuracy, with lower number of false alarms and missed detections, compared to the full statistical based feature set. This work has been proposed and analyzed specific GBM types which Level I and Level II and the dominant features were considered as feature aid to prognostic indicators. These features were selected automatically to be better able to determine prognosis from classical imaging studies.

  5. Selective detection of Escherichia coli DNA using fluorescent carbon spindles.

    PubMed

    Roy, Anurag; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-04-28

    We investigate the interaction of hydrophilic blue emitting carbon spindles with various deoxyribonucleic acids (DNA) having different base pair compositions, such as Herring testes (HT), calf thymus (CT), Escherichia coli (EC) and Micrococcus lysodeikticus (ML) DNA, to understand the mode of interaction. Interestingly, the fluorescent carbon spindles selectively interacted with E. coli DNA resulting in enhanced fluorescence of the former. Interaction of the same carbon with other DNAs exhibited insignificant changes in fluorescence. In addition, in the presence of EC DNA, the D band in the Raman spectrum attributed to the defect state completely disappeared, resulting in enhanced crystallinity. Microscopy images confirmed the wrapping of DNA on the carbon spindles leading to the assembly of spindles in the form of flowers. Dissociation of double-stranded DNA occurred upon interaction with carbon spindles, resulting in selective E. coli DNA interaction. The carbon spindles also exhibited a similar fluorescence enhancement upon treating with E. coli bacteria. These results confirm the possibility of E. coli detection in water and other liquid foods using such fluorescent carbon.

  6. Active link selection for efficient semi-supervised community detection

    PubMed Central

    Yang, Liang; Jin, Di; Wang, Xiao; Cao, Xiaochun

    2015-01-01

    Several semi-supervised community detection algorithms have been proposed recently to improve the performance of traditional topology-based methods. However, most of them focus on how to integrate supervised information with topology information; few of them pay attention to which information is critical for performance improvement. This leads to large amounts of demand for supervised information, which is expensive or difficult to obtain in most fields. For this problem we propose an active link selection framework, that is we actively select the most uncertain and informative links for human labeling for the efficient utilization of the supervised information. We also disconnect the most likely inter-community edges to further improve the efficiency. Our main idea is that, by connecting uncertain nodes to their community hubs and disconnecting the inter-community edges, one can sharpen the block structure of adjacency matrix more efficiently than randomly labeling links as the existing methods did. Experiments on both synthetic and real networks demonstrate that our new approach significantly outperforms the existing methods in terms of the efficiency of using supervised information. It needs ~13% of the supervised information to achieve a performance similar to that of the original semi-supervised approaches. PMID:25761385

  7. Phylogenomic analyses of nuclear genes reveal the evolutionary relationships within the BEP clade and the evidence of positive selection in Poaceae.

    PubMed

    Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua

    2013-01-01

    BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.

  8. Phylogenomic Analyses of Nuclear Genes Reveal the Evolutionary Relationships within the BEP Clade and the Evidence of Positive Selection in Poaceae

    PubMed Central

    Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua

    2013-01-01

    BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family. PMID:23734211

  9. Evolutionary Fingerprinting of Genes

    PubMed Central

    Kosakovsky Pond, Sergei L.; Scheffler, Konrad; Gravenor, Michael B.; Poon, Art F.Y.; Frost, Simon D.W.

    2010-01-01

    Over time, natural selection molds every gene into a unique mosaic of sites evolving rapidly or resisting change—an “evolutionary fingerprint” of the gene. Aspects of this evolutionary fingerprint, such as the site-specific ratio of nonsynonymous to synonymous substitution rates (dN/dS), are commonly used to identify genetic features of potential biological interest; however, no framework exists for comparing evolutionary fingerprints between genes. We hypothesize that protein-coding genes with similar protein structure and/or function tend to have similar evolutionary fingerprints and that comparing evolutionary fingerprints can be useful for discovering similarities between genes in a way that is analogous to, but independent of, discovery of similarity via sequence-based comparison tools such as Blast. To test this hypothesis, we develop a novel model of coding sequence evolution that uses a general bivariate discrete parameterization of the evolutionary rates. We show that this approach provides a better fit to the data using a smaller number of parameters than existing models. Next, we use the model to represent evolutionary fingerprints as probability distributions and present a methodology for comparing these distributions in a way that is robust against variations in data set size and divergence. Finally, using sequences of three rapidly evolving RNA viruses (HIV-1, hepatitis C virus, and influenza A virus), we demonstrate that genes within the same functional group tend to have similar evolutionary fingerprints. Our framework provides a sound statistical foundation for efficient inference and comparison of evolutionary rate patterns in arbitrary collections of gene alignments, clustering homologous and nonhomologous genes, and investigation of biological and functional correlates of evolutionary rates. PMID:19864470

  10. Genomic resources and their influence on the detection of the signal of positive selection in genome scans.

    PubMed

    Manel, S; Perrier, C; Pratlong, M; Abi-Rached, L; Paganini, J; Pontarotti, P; Aurelle, D

    2016-01-01

    Genome scans represent powerful approaches to investigate the action of natural selection on the genetic variation of natural populations and to better understand local adaptation. This is very useful, for example, in the field of conservation biology and evolutionary biology. Thanks to Next Generation Sequencing, genomic resources are growing exponentially, improving genome scan analyses in non-model species. Thousands of SNPs called using Reduced Representation Sequencing are increasingly used in genome scans. Besides, genome sequences are also becoming increasingly available, allowing better processing of short-read data, offering physical localization of variants, and improving haplotype reconstruction and data imputation. Ultimately, genome sequences are also becoming the raw material for selection inferences. Here, we discuss how the increasing availability of such genomic resources, notably genome sequences, influences the detection of signals of selection. Mainly, increasing data density and having the information of physical linkage data expand genome scans by (i) improving the overall quality of the data, (ii) helping the reconstruction of demographic history for the population studied to decrease false-positive rates and (iii) improving the statistical power of methods to detect the signal of selection. Of particular importance, the availability of a high-quality reference genome can improve the detection of the signal of selection by (i) allowing matching the potential candidate loci to linked coding regions under selection, (ii) rapidly moving the investigation to the gene and function and (iii) ensuring that the highly variable regions of the genomes that include functional genes are also investigated. For all those reasons, using reference genomes in genome scan analyses is highly recommended. © 2015 John Wiley & Sons Ltd.

  11. Detection of selective antibacterial peptides by the Polarity Profile method.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón-González, Jorge Alberto

    2013-01-01

    Antimicrobial peptides occupy a prominent place in the production of pharmaceuticals, because of their effective contribution to the protection of the immune system against almost all types of pathogens. These peptides are thoroughly studied by computational methods designed to shed light on their main functions. In this paper, we propose a computational approach, named the Polarity Profile method that represents an improvement to the former Polarity Index method. The Polarity Profile method is very effective in detecting the subgroup of antibacterial peptides called selective cationic amphipathic antibacterial peptides (SCAAP) that show high toxicity towards bacterial membranes and exhibit almost zero toxicity towards mammalian cells. Our study was restricted to the peptides listed in the antimicrobial peptides database (APD2) of December 19, 2012. Performance of the Polarity Profile method is demonstrated through a comparison to the former Polarity Index method by using the same sets of peptides. The efficiency of the Polarity Profile method exceeds 85% taking into account the false positive and/or false negative peptides.

  12. Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin.

    PubMed

    Pawar, Madhuri K; Tayade, Kundan C; Sahoo, Suban K; Mahulikar, Pramod P; Kuwar, Anil S; Chaudhari, Bhushan L

    2016-07-15

    Fluorescent siderophore pyoverdin (PVD) was produced from a soil isolate Pseudomonas monteilii strain MKP 213. The PVD was purified near to homogeneity and applied for the fluorescent chemosensing of various antibiotics in aqueous solution (pH=7.0). Upon addition of ciprofloxacin, PVD showed new UV-vis absorption bands at 252 and 321nm due to an internal charge transfer mechanism. Also, the addition of ciprofloxacin induced a highly selective fluorescence enhancement of PVD with a 13nm blue shift from 458 to 445nm. The combination of a long peptide chain along with the chromophore unit of PVD generates a converging cleft for ciprofloxacin recognition with LOD and LOQ of 7.13μM and 21.6μM, respectively without interference from other studied antibiotics. The association constant (Ka) of PVD with ciprofloxacin was calculated to be as low as 1.40×10(5)M(-1) using Benesi-Hildebrand plot depicting its significance in detection. The pharmaceutical tablet analysis measures the sensing with negligible matrix effect and quantitative recovery.

  13. Spectroscopic detection of metals ions using a novel selective sensor

    NASA Astrophysics Data System (ADS)

    Peralta-Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfan, N.

    2011-09-01

    Colorimetric chemosensors are simple, economical and practical optical approach for detecting toxic metal ions (Hg2+, Pb2+, Ni2+, etc.) in the environment. In this work, we present a simple but highly specific organic compound 4-chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for divalent metal ions in H2O. The mechanism of the interaction between L1 and various metal-ions has been established by UV-vis absorption and emission spectroscopic experiments that indicate favorable coordination of metal ions with L1 in different solvents. Experimental results indicate that the shape of the electronic transition band of L1 (receptor compound) changed after the interaction with divalent metal-ions, such as Hg2+, Pb2+, Mn2+, Co2+, Cu2+, and Ni2+ in aqueous solution. We found that L1 have a considerable selectivity for Ni2+ ions, even in presence of other metals ions when mixtures of DMSO/H2O as are used as solvents. L1, which has been targeted for sensing transition metal ions, exhibits binding-induced color changes from yellow to pink observed even by the naked eye in presence of Ni2+ ions.

  14. Conditional entropy in variation-adjusted windows detects selection signatures associated with expression quantitative trait loci (eQTLs)

    PubMed Central

    2015-01-01

    Background Over the past 50,000 years, shifts in human-environmental or human-human interactions shaped genetic differences within and among human populations, including variants under positive selection. Shaped by environmental factors, such variants influence the genetics of modern health, disease, and treatment outcome. Because evolutionary processes tend to act on gene regulation, we test whether regulatory variants are under positive selection. We introduce a new approach to enhance detection of genetic markers undergoing positive selection, using conditional entropy to capture recent local selection signals. Results We use conditional logistic regression to compare our Adjusted Haplotype Conditional Entropy (H|H) measure of positive selection to existing positive selection measures. H|H and existing measures were applied to published regulatory variants acting in cis (cis-eQTLs), with conditional logistic regression testing whether regulatory variants undergo stronger positive selection than the surrounding gene. These cis-eQTLs were drawn from six independent studies of genotype and RNA expression. The conditional logistic regression shows that, overall, H|H is substantially more powerful than existing positive-selection methods in identifying cis-eQTLs against other Single Nucleotide Polymorphisms (SNPs) in the same genes. When broken down by Gene Ontology, H|H predictions are particularly strong in some biological process categories, where regulatory variants are under strong positive selection compared to the bulk of the gene, distinct from those GO categories under overall positive selection. . However, cis-eQTLs in a second group of genes lack positive selection signatures detectable by H|H, consistent with ancient short haplotypes compared to the surrounding gene (for example, in innate immunity GO:0042742); under such other modes of selection, H|H would not be expected to be a strong predictor.. These conditional logistic regression models are

  15. Conditional entropy in variation-adjusted windows detects selection signatures associated with expression quantitative trait loci (eQTLs).

    PubMed

    Handelman, Samuel K; Seweryn, Michal; Smith, Ryan M; Hartmann, Katherine; Wang, Danxin; Pietrzak, Maciej; Johnson, Andrew D; Kloczkowski, Andrzej; Sadee, Wolfgang

    2015-01-01

    Over the past 50,000 years, shifts in human-environmental or human-human interactions shaped genetic differences within and among human populations, including variants under positive selection. Shaped by environmental factors, such variants influence the genetics of modern health, disease, and treatment outcome. Because evolutionary processes tend to act on gene regulation, we test whether regulatory variants are under positive selection. We introduce a new approach to enhance detection of genetic markers undergoing positive selection, using conditional entropy to capture recent local selection signals. We use conditional logistic regression to compare our Adjusted Haplotype Conditional Entropy (H|H) measure of positive selection to existing positive selection measures. H|H and existing measures were applied to published regulatory variants acting in cis (cis-eQTLs), with conditional logistic regression testing whether regulatory variants undergo stronger positive selection than the surrounding gene. These cis-eQTLs were drawn from six independent studies of genotype and RNA expression. The conditional logistic regression shows that, overall, H|H is substantially more powerful than existing positive-selection methods in identifying cis-eQTLs against other Single Nucleotide Polymorphisms (SNPs) in the same genes. When broken down by Gene Ontology, H|H predictions are particularly strong in some biological process categories, where regulatory variants are under strong positive selection compared to the bulk of the gene, distinct from those GO categories under overall positive selection. . However, cis-eQTLs in a second group of genes lack positive selection signatures detectable by H|H, consistent with ancient short haplotypes compared to the surrounding gene (for example, in innate immunity GO:0042742); under such other modes of selection, H|H would not be expected to be a strong predictor.. These conditional logistic regression models are adjusted for Minor allele

  16. The evolutionary analysis on complement genes reveals that fishes C3 and C9 experience different evolutionary patterns.

    PubMed

    Wang, Shanchen; Wang, Rixin; Xu, Tianjun

    2013-12-01

    Complement is a humoral factor of innate immunity and plays an essential role in altering the host of the presence of potential pathogens and clearing of invading microorganisms. The third complement component (C3) not only is regarded as the crossing of the three pathways of complement activation, but also serves one of the bridges linking innate and acquired immunity. The nine complement component (C9) can combine with C5b, C6, C7 and C8 to form MAC which bounds to the surface of microorganisms to kill them. The evidence of evolution on C3 genes which have multiple functions and plays central role in innate immunity was documented in our previous study. Now we were interested in the evolution of C9 genes which were the terminal complement components. For these reasons, we want to explore the evolutionary patterns of C9 and whether C3 and C9 experience different evolutionary patterns. In our study, we used the sliding window method to separately calculate the values of ω among fishes and mammals of C3 and C9 codons. In order to detect the positive selection sites, we used the maximum likelihood (ML) method to study the evolutionary pattern on C3 and C9 genes. Positive selection sites were detected in mammalian C9 genes and no positive selection sites were detected in fishes C9 genes. However, no positive selection sites were detected in mammalian C3 genes and positive selection sites were detected in fishes C3 genes. The result indicated that C3 and C9 had different evolutionary patterns on mammals and fishes. In conclusion, different living environments lead to different evolutionary patterns on C3 and C9 in mammals and fishes. Besides, different complement components may have different evolutionary patterns on mammals and fishes.

  17. Evolutionary consequences of fishing and their implications for salmon

    PubMed Central

    Hard, Jeffrey J; Gross, Mart R; Heino, Mikko; Hilborn, Ray; Kope, Robert G; Law, Richard; Reynolds, John D

    2008-01-01

    We review the evidence for fisheries-induced evolution in anadromous salmonids. Salmon are exposed to a variety of fishing gears and intensities as immature or maturing individuals. We evaluate the evidence that fishing is causing evolutionary changes to traits including body size, migration timing and age of maturation, and we discuss the implications for fisheries and conservation. Few studies have fully evaluated the ingredients of fisheries-induced evolution: selection intensity, genetic variability, correlation among traits under selection, and response to selection. Most studies are limited in their ability to separate genetic responses from phenotypic plasticity, and environmental change complicates interpretation. However, strong evidence for selection intensity and for genetic variability in salmon fitness traits indicates that fishing can cause detectable evolution within ten or fewer generations. Evolutionary issues are therefore meaningful considerations in salmon fishery management. Evolutionary biologists have rarely been involved in the development of salmon fishing policy, yet evolutionary biology is relevant to the long-term success of fisheries. Future management might consider fishing policy to (i) allow experimental testing of evolutionary responses to exploitation and (ii) improve the long-term sustainability of the fishery by mitigating unfavorable evolutionary responses to fishing. We provide suggestions for how this might be done. PMID:25567639

  18. Detecting Individual Sites Subject to Episodic Diversifying Selection

    PubMed Central

    Murrell, Ben; Wertheim, Joel O.; Moola, Sasha; Weighill, Thomas; Scheffler, Konrad; Kosakovsky Pond, Sergei L.

    2012-01-01

    The imprint of natural selection on protein coding genes is often difficult to identify because selection is frequently transient or episodic, i.e. it affects only a subset of lineages. Existing computational techniques, which are designed to identify sites subject to pervasive selection, may fail to recognize sites where selection is episodic: a large proportion of positively selected sites. We present a mixed effects model of evolution (MEME) that is capable of identifying instances of both episodic and pervasive positive selection at the level of an individual site. Using empirical and simulated data, we demonstrate the superior performance of MEME over older models under a broad range of scenarios. We find that episodic selection is widespread and conclude that the number of sites experiencing positive selection may have been vastly underestimated. PMID:22807683

  19. Evolutionary Theory of Mate Selection and Partners of Trans People: A Qualitative Study Using Interpretative Phenomenological Analysis

    ERIC Educational Resources Information Center

    Forde, Amanda

    2011-01-01

    Despite much research into mate selection, non-heterosexual populations are often only included for comparison purposes, while trans people and their partners are overlooked. This study attempts to address this using qualitative methodology to explore the mate selection of the partners of trans people. Six participants were recruited from online…

  20. IMRT QA: Selecting gamma criteria based on error detection sensitivity

    SciTech Connect

    Steers, Jennifer M.; Fraass, Benedick A.

    2016-04-15

    Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose

  1. Feature Extraction and Selection From the Perspective of Explosive Detection

    SciTech Connect

    Sengupta, S K

    2009-09-01

    -dimensional attenuation images with a voxel resolution of the order of one quarter of a milimeter. In the task of feature extraction and subsequent selection of an appropriate subset thereof, several important factors need to be considered. Foremost among them are: (1) Definition of the sampling unit from which the features will be extracted for the purpose of detection/ identification of the explosives. (2) The choice of features ( given the sampling unit) to be extracted that can be used to signal the existence / identity of the explosive. (3) Robustness of the computed features under different inspection conditions. To attain robustness, invariance under the transformations of translation, scaling, rotation and change of orientation is highly desirable. (4) The computational costs in the process of feature extraction, selection and their use in explosive detection/ identification In the search for extractable features, we have done a thorough literature survey with the above factors in mind and come out with a list of features that could possibly help us in meeting our objective. We are assuming that features will be based on sampling units that are single CT slices of the target. This may however change when appropriate modifications should be made to the feature extraction process. We indicate below some of the major types of features in 2- or 3-dimensional images that have been used in the literature on application of pattern recognition (PR) techniques in image understanding and are possibly pertinent to our study. In the following paragraph, we briefly indicate the motivation that guided us in the choice of these features, and identify the nature of the constraints. The principal feature types derivable from an image will be discussed in section 2. Once the features are extracted, one must select a subset of this feature set that will retain the most useful information and remove any redundant and irrelevant information that may have a detrimental effect on the

  2. Evolutionary Consequences of Male Driven Sexual Selection and Sex-Biased Fitness Modifications in Drosophila melanogaster and Members of the simulans Clade

    PubMed Central

    Jagadeeshan, Santosh; Haerty, Wilfried; Moglinicka, Monika; Ahuja, Abha; De Vito, Scot; Singh, Rama S.

    2015-01-01

    Males have evolved a variety of behavioral, morphological, and physiological traits to manipulate their mates in order to maximize their chances of success. These traits are bound to influence how females respond to male behaviors and influence the nature of sexual selection/conflict. A common consequence of aggressive male mating strategies in Drosophila melanogaster is the reduction of female lifespan. Our study shows that this is common across members of the simulans clade. Reduced life expectancy of females implies that female contribution to a population is less than that of males per generation. Fitness differences between the sexes in every generation will invariably affect overall population fitness. How natural selection responds to the female deaths and thereby the unequal fitness of the sexes has rarely been addressed. We shed light on this issue and provide evidence, which suggests that additional gains of fitness by males due to their longevity and continued mating may provide one explanation as to why the loss of female fitness may be “invisible” (effectively neutral) to natural selection. Male driven sexual selection and additional, transgenerational gains of male fitness can be an important force of evolutionary change and need to be tested with other organisms. PMID:26421208

  3. Protein interface classification by evolutionary analysis

    PubMed Central

    2012-01-01

    Background Distinguishing biologically relevant interfaces from lattice contacts in protein crystals is a fundamental problem in structural biology. Despite efforts towards the computational prediction of interface character, many issues are still unresolved. Results We present here a protein-protein interface classifier that relies on evolutionary data to detect the biological character of interfaces. The classifier uses a simple geometric measure, number of core residues, and two evolutionary indicators based on the sequence entropy of homolog sequences. Both aim at detecting differential selection pressure between interface core and rim or rest of surface. The core residues, defined as fully buried residues (>95% burial), appear to be fundamental determinants of biological interfaces: their number is in itself a powerful discriminator of interface character and together with the evolutionary measures it is able to clearly distinguish evolved biological contacts from crystal ones. We demonstrate that this definition of core residues leads to distinctively better results than earlier definitions from the literature. The stringent selection and quality filtering of structural and sequence data was key to the success of the method. Most importantly we demonstrate that a more conservative selection of homolog sequences - with relatively high sequence identities to the query - is able to produce a clearer signal than previous attempts. Conclusions An evolutionary approach like the one presented here is key to the advancement of the field, which so far was missing an effective method exploiting the evolutionary character of protein interfaces. Its coverage and performance will only improve over time thanks to the incessant growth of sequence databases. Currently our method reaches an accuracy of 89% in classifying interfaces of the Ponstingl 2003 datasets and it lends itself to a variety of useful applications in structural biology and bioinformatics. We made the

  4. SNP Detection from De Novo Transcriptome Sequencing in the Bivalve Macoma balthica: Marker Development for Evolutionary Studies

    PubMed Central

    Becquet, Vanessa; Belkhir, Khalid; Bierne, Nicolas; Garcia, Pascale

    2012-01-01

    Hybrid zones are noteworthy systems for the study of environmental adaptation to fast-changing environments, as they constitute reservoirs of polymorphism and are key to the maintenance of biodiversity. They can move in relation to climate fluctuations, as temperature can affect both selection and migration, or remain trapped by environmental and physical barriers. There is therefore a very strong incentive to study the dynamics of hybrid zones subjected to climate variations. The infaunal bivalve Macoma balthica emerges as a noteworthy model species, as divergent lineages hybridize, and its native NE Atlantic range is currently contracting to the North. To investigate the dynamics and functioning of hybrid zones in M. balthica, we developed new molecular markers by sequencing the collective transcriptome of 30 individuals. Ten individuals were pooled for each of the three populations sampled at the margins of two hybrid zones. A single 454 run generated 277 Mb from which 17K SNPs were detected. SNP density averaged 1 polymorphic site every 14 to 19 bases, for mitochondrial and nuclear loci, respectively. An scan detected high genetic divergence among several hundred SNPs, some of them involved in energetic metabolism, cellular respiration and physiological stress. The high population differentiation, recorded for nuclear-encoded ATP synthase and NADH dehydrogenase as well as most mitochondrial loci, suggests cytonuclear genetic incompatibilities. Results from this study will help pave the way to a high-resolution study of hybrid zone dynamics in M. balthica, and the relative importance of endogenous and exogenous barriers to gene flow in this system. PMID:23300636

  5. Contrasting evolutionary histories of MHC class I and class II loci in grouse--effects of selection and gene conversion.

    PubMed

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-05-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  6. Evolutionary response to selection on clutch size in a long-term study of the mute swan.

    PubMed

    Charmantier, Anne; Perrins, Christopher; McCleery, Robin H; Sheldon, Ben C

    2006-03-01

    Life-history traits in wild populations are often regarded as being subject to directional selection, and the existence of substantial variation and microevolutionary stasis of these characters is therefore a problem in need of explanation. Avian clutch size is an archetypal life-history trait in this context, and many studies have sought to test explanations for stasis in clutch size. Surprisingly, there are many fewer studies that used long-term data to ask how selection acts on clutch size, particularly in a multivariate framework. In this article, we report selection, inheritance, and evolution of clutch size over 25 years in a colony of mute swans using a multivariate quantitative genetic framework to control for correlations with breeding time. We show that clutch size is influenced by both additive genetic and permanent environmental effects and that selection acts on clutch size in combination with breeding time. Natural selection on clutch size is strongly directional, favoring larger clutches, and we observe an increase in clutch size of 0.35 standard deviations, consistent with the expected response based on selection and inheritance of clutch size. We hypothesize that these changes result from recent relaxation of food constraints and predation risks experienced by this colony.

  7. Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion

    PubMed Central

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens. PMID:26860199

  8. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  9. Evolutionary thinking

    PubMed Central

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  10. Plastic scintillators modifications for a selective radiation detection

    SciTech Connect

    Hamel, Matthieu; Bertrand, Guillaume H.V.; Carrel, Frederick; Coulon, Romain; Dumazert, Jonathan; Montbarbon, Eva; Sguerra, Fabien

    2015-07-01

    Recent developments of plastic scintillators are reviewed, from January 2000 to June 2015. All examples are distributed into the main application, i.e. how the plastic scintillator was modified to enhance the detection towards a given radiation particle. The main characteristics of these newly created scintillators and their detection properties are given. (authors)

  11. PosiGene: automated and easy-to-use pipeline for genome-wide detection of positively selected genes

    PubMed Central

    Bens, Martin

    2017-01-01

    Abstract Many comparative genomics studies aim to find the genetic basis of species-specific phenotypic traits. A prevailing strategy is to search genome-wide for genes that evolved under positive selection based on the non-synonymous to synonymous substitution ratio. However, incongruent results largely due to high false positive rates indicate the need for standardization of quality criteria and software tools. Main challenges are the ortholog and isoform assignment, the high sensitivity of the statistical models to alignment errors and the imperative to parallelize large parts of the software. We developed the software tool PosiGene that (i) detects positively selected genes (PSGs) on genome-scale, (ii) allows analysis of specific evolutionary branches, (iii) can be used in arbitrary species contexts and (iv) offers visualization of the results for further manual validation and biological interpretation. We exemplify PosiGene's performance using simulated and real data. In the simulated data approach, we determined a false positive rate <1%. With real data, we found that 68.4% of the PSGs detected by PosiGene, were shared by at least one previous study that used the same set of species. PosiGene is a user-friendly, reliable tool for reproducible genome-wide identification of PSGs and freely available at https://github.com/gengit/PosiGene. PMID:28334822

  12. Contaminant detection on poultry carcasses using hyperspectral data: Part I. Algorithms for selection of individual wavebands

    NASA Astrophysics Data System (ADS)

    Nakariyakul, Songyot; Casasent, David P.

    2007-09-01

    Contaminant detection on chicken carcasses is an important product inspection application. The four contaminant types of interest contain three types of feces from different gastrointestinal regions (duodenum, ceca, and colon) and ingesta (undigested food) from the gizzard. Use of automated or semi-automated inspection systems for detecting fecal contaminant regions is of great interest. Hyperspectral data provided by ARS (Athens, GA) were used to examine detection of contaminants on carcasses. We address quasi-optimal algorithms for selecting a set of spectral bands (wavelengths) in hyperspectral data for on-line contaminant detection (feature selection). We introduce our new improved forward floating selection (IFFS) algorithm and compare its performance to that of other state-of-the-art feature selection algorithms. Our initial results indicate that our method gives an excellent detection rate and performs better than other feature selection algorithms. We also show that combination feature selection algorithms perform worse.

  13. Evolutionary screening and adsorption behavior of engineered M13 bacteriophage and derived dodecapeptide for selective decoration of gold interfaces.

    PubMed

    Causa, F; Della Moglie, R; Iaccino, E; Mimmi, S; Marasco, D; Scognamiglio, P L; Battista, E; Palmieri, C; Cosenza, C; Sanguigno, L; Quinto, I; Scala, G; Netti, P A

    2013-01-01

    There is a growing interest in identifying biomacromolecules such as proteins and peptides to functionalize metallic surfaces through noncovalent binding. One method for functionalizing materials without fundamentally changing their inherent structure is using biorecognition moieties. Here, we proved a general route to select a biomolecule adhesive motif for surface functionalization by comprehensively screening phage displayed peptides. In particular, we selected a genetically engineered M13 bacteriophage and a linear dodecapeptide derived from its pIII domain for recognizing gold surfaces in a specific and selective manner. In the phage context, we demonstrated the adhesive motif was capable to adsorb on gold in a preferential way with a morphological and viscoelastic signature of the adsorbed layer as evidenced by QCM-D and AFM investigations. Out of the phage context, the linear dodecapeptide is reproducibly found to adhere to the gold surface, and by quantitative SPR measurements, high affinity constants (K(eq)~10(6)M(-1), binding energy ~-8 kcal/mol) were determined. We proved that the interactions occurring at gold interface were mainly hydrophobic as a consequence of high frequency of hydrophobic residues in the peptide sequence. Moreover, by CD, molecular dynamics and steered molecular dynamics, we demonstrated that the molecular flexibility only played a minor role in the peptide adsorption. Such noncovalent but specific modification of inorganic surfaces through high affinity biomolecule adsorption represents a general strategy to modulate the functionality of multipurpose metallic surfaces.

  14. The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Mandel, I.

    2016-08-01

    We explore the predictions for detectable gravitational-wave signals from merging binary black holes formed through chemically homogeneous evolution in massive short-period stellar binaries. We find that ˜500 events per year could be detected with advanced ground-based detectors operating at full sensitivity. We analyse the distribution of detectable events, and conclude that there is a very strong preference for detecting events with nearly equal components (mass ratio >0.66 at 90 per cent confidence in our default model) and high masses (total source-frame mass between 57 and 103 M⊙ at 90 per cent confidence). We consider multiple alternative variations to analyse the sensitivity to uncertainties in the evolutionary physics and cosmological parameters, and conclude that while the rates are sensitive to assumed variations, the mass distributions are robust predictions. Finally, we consider the recently reported results of the analysis of the first 16 double-coincident days of the O1 LIGO (Laser Interferometer Gravitational-wave Observatory) observing run, and find that this formation channel is fully consistent with the inferred parameters of the GW150914 binary black hole detection and the inferred merger rate.

  15. Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope.

    PubMed

    Hao, Ning; Chen, Yutao; Xia, Ming; Tan, Ming; Liu, Wu; Guan, Xiaotao; Jiang, Xi; Li, Xuemei; Rao, Zihe

    2015-02-01

    Human noroviruses (huNoVs) recognize histo-blood group antigens (HBGAs) as attachment factors, in which genogroup (G) I and GII huNoVs use distinct binding interfaces. The genetic and evolutionary relationships of GII huNoVs under selection by the host HBGAs have been well elucidated via a number of structural studies; however, such relationships among GI NoVs remain less clear due to the fact that the structures of HBGA-binding interfaces of only three GI NoVs with similar binding profiles are known. In this study the crystal structures of the P dimers of a Lewis-binding strain, the GI.8 Boxer virus (BV) that does not bind the A and H antigens, in complex with the Lewis b (Le(b)) and Le(y) antigens, respectively, were determined and compared with those of the three previously known GI huNoVs, i.e. GI.1 Norwalk virus (NV), GI.2 FUV258 (FUV) and GI.7 TCH060 (TCH) that bind the A/H/Le antigens. The HBGA binding interface of BV is composed of a conserved central binding pocket (CBP) that interacts with the β-galactose of the precursor, and a well-developed Le epitope-binding site formed by five amino acids, including three consecutive residues from the long P-loop and one from the S-loop of the P1 subdomain, a feature that was not seen in the other GI NoVs. On the other hand, the H epitope/acetamido binding site observed in the other GI NoVs is greatly degenerated in BV. These data explain the evolutionary path of GI NoVs selected by the polymorphic human HBGAs. While the CBP is conserved, the regions surrounding the CBP are flexible, providing freedom for changes. The loss or degeneration of the H epitope/acetamido binding site and the reinforcement of the Le binding site of the GI.8 BV is a typical example of such change selected by the host Lewis epitope.

  16. Strong selection against hybrids at a hybrid zone in the Ensatina ring species complex and its evolutionary implications.

    PubMed

    Alexandrino, João; Baird, Stuart J E; Lawson, Lucinda; Macey, J Robert; Moritz, Craig; Wake, David B

    2005-06-01

    The analysis of interactions between lineages at varying levels of genetic divergence can provide insights into the process of speciation through the accumulation of incompatible mutations. Ring species, and especially the Ensatina eschscholtzii system exemplify this approach. The plethodontid salamanders E. eschscholtzii xanthoptica and E. eschscholtzii platensis hybridize in the central Sierran foothills of California. We compared the genetic structure across two transects (southern and northern Calaveras Co.), one of which was resampled over 20 years, and examined diagnostic molecular markers (eight allozyme loci and mitochondrial DNA) and a diagnostic quantitative trait (color pattern). Key results across all studies were: (1) cline centers for all markers were coincident and the zones were narrow, with width estimates of 730 m to 2000 m; (2) cline centers at the northern Calaveras transect were coincident between 1981 and 2001, demonstrating repeatability over five generations; (3) there were very few if any putative F1s, but a relatively high number of backcrossed individuals in the central portion of transects; and (4) we found substantial linkage disequilibrium in all three studies and strong heterozygote deficit both in northern Calaveras, in 2001, and southern Calaveras. Both linkage disequilibrium and heterozygote deficit showed maximum values near the center of the zones. Using estimates of cline width and dispersal, we infer strong selection against hybrids. This is sufficient to promote accumulation of differences at loci that are neutral or under divergent selection, but would still allow for introgression of adaptive alleles. The evidence for strong but incomplete isolation across this centrally located contact is consistent with theory suggesting a gradual increase in postzygotic incompatibility between allopatric populations subject to divergent selection and reinforces the value of Ensatina as a system for the study of divergence and speciation

  17. Evolutionary awareness.

    PubMed

    Gorelik, Gregory; Shackelford, Todd K

    2014-08-27

    In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  18. Stereochemical and Regiochemical Trends in the Selective Detection of Saccharides

    PubMed Central

    Jiang, Shan; Escobedo, Jorge O.; Kim, Kyu Kwang; Alptürk, Onur; Samoei, George K.; Fakayode, Sayo O.; Warner, Isiah M.; Rusin, Oleksandr; Strongin, Robert M.

    2009-01-01

    Several discreet sugar–boronate complexes exist in solution. This is due to the complex equilibria between isomeric species of even the simplest monosaccharides. In the current investigation, we determine the regio- and stereochemical features of the various equilibrating sugar isomers that induce signal transduction in boronic acid chemosensors such as 1 as well as 2 and 3. We present a unique example of a chemosensor (1) that is selective for ribose, adenosine, nucleotides, nucleosides, and congeners. As a result of this study, we are able to predict and achieve selective fluorescence and colorimetric responses to specific disaccharides as a consequence of their terminal sugar residue linkage patterns and configurations. We also find that the combined use of chemosensors exhibiting complementary reactivities may be used cooperatively to obtain enhanced selectivity for ribose and rare saccharides. PMID:16967973

  19. Medical genetic polymorphisms as markers of evolutionary forces within the human genome: hypotheses focusing on natural selection in the Basque population.

    PubMed

    Bauduer, Frédéric; Degioanni, Anna; Dutour, Olivier

    2009-02-01

    Natural selection, drift, and gene flow are the three major evolutionary forces at the origin of genetic diversity among human populations. To further explore these mechanisms, we present an innovative approach using various medical genetic markers and focusing on the Basque population. From this study we can confirm the important role of drift in this endogamous human group and can report some disorders related to founder effects. Most important, the peculiar distribution of various polymorphisms, such as blood group O, factor V Leiden, DF508, C282Y, and CCR5 D32 mutations, which are implicated in resistance to infection, hemostasis, or iron conservation, could be interpreted as an adaptive profile. Multidisciplinary data have shown that the Neolithic period arrived significantly later in this southwestern corner of Europe. We hypothesize that the long-lasting Paleolithic mode of life, especially regarding nutrition and microbial exposure, was at the origin of this selective pressure within this population of ancient local ancestry. This approach could open new avenues in the field of population genetics.

  20. Critical reflections on evolutionary psychology and sexual selection theory as explanatory account of emergence of sex differences in psychopathology: comment on Martel (2013).

    PubMed

    Hankin, Benjamin L

    2013-11-01

    Martel (2013) proposed a metatheory, based on sexual selection theory and broad evolutionary psychological (EP) principles, to account for well-known sex differences in the emergence of common behavioral and certain internalizing disorders across childhood and adolescence, respectively. In this comment, I first enumerate several strengths and then offer 2 primary critiques about Martel's proposal. Martel provides an exceptional, integrative review that organizes several disparate literatures that hold promise to enhance understanding of such sex differences. At the same time, I raise critical questions regarding EP generally, and sexual selection theory specifically, as the metatheoretical framework chosen to bind together these different influences and mechanisms as drivers of the sex difference in different psychopathologies. Indeed, it is not clear that EP is necessary--nor does it provide unique explanatory power-to explicate the emergence of sex differences in internalizing and externalizing disorders among youth. Moreover, Martel's EP-based proposal pertains to adolescent-onset depression and social phobia but does not provide an explanation for known sex differences in other common childhood-onset and early adult-onset anxiety disorders.

  1. Changes in selection and evolutionary responses in migratory brown trout following the construction of a fish ladder.

    PubMed

    Haugen, Thrond Oddvar; Aass, Per; Stenseth, Nils Christian; Vøllestad, Leif Asbjørn

    2008-05-01

    Brown trout (Salmo trutta) are extensively harvested and its habitat highly influenced by human encroachments. Using a 40-year time series of mark-recapture data we estimate vital rates for a piscivorous trout population. This population spawns upstream of a waterfall, which historically acted as a migration barrier for smaller trout. In 1966, the waterfall was dammed and a fish ladder constructed. All fish ascending the fish ladder were individually tagged and measured for a variety of traits. The fish ladder overall favoured access to upstream spawning areas for middle-sized trout, resulting in stabilizing selection acting on size at spawning. Over time, natural and fishing mortality have varied, with fishing mortality generally decreasing and natural mortality increasing. The average and, particularly, variance in size-at-first-spawning, and growth rates during the first years of lake residence have all decreased over the 1966-2003 period. These changes are all consistent with a shift from directional to stabilizing selection on age and size at spawning. Estimated rates of phenotypic change are relatively high, in particular for size at first spawning, adding further support for the growing notion that human interference may lead to rapid life-history trait evolution.

  2. BMD Loci Contribute to Ethnic and Developmental Differences in Skeletal Fragility across Populations: Assessment of Evolutionary Selection Pressures

    PubMed Central

    Medina-Gómez, Carolina; Chesi, Alessandra; Heppe, Denise H.M.; Zemel, Babette S.; Yin, Jia-Lian; Kalkwarf, Heidi J.; Hofman, Albert; Lappe, Joan M.; Kelly, Andrea; Kayser, Manfred; Oberfield, Sharon E.; Gilsanz, Vicente; Uitterlinden, André G.; Shepherd, John A.; Jaddoe, Vincent W.V.; Grant, Struan F.A.; Lao, Oscar; Rivadeneira, Fernando

    2015-01-01

    Bone mineral density (BMD) is a highly heritable trait used both for the diagnosis of osteoporosis in adults and to assess bone health in children. Ethnic differences in BMD have been documented, with markedly higher levels in individuals of African descent, which partially explain disparity in osteoporosis risk across populations. To date, 63 independent genetic variants have been associated with BMD in adults of Northern-European ancestry. Here, we demonstrate that at least 61 of these variants are predictive of BMD early in life by studying their compound effect within two multiethnic pediatric cohorts. Furthermore, we show that within these cohorts and across populations worldwide the frequency of those alleles associated with increased BMD is systematically elevated in individuals of Sub-Saharan African ancestry. The amount of differentiation in the BMD genetic scores among Sub-Saharan and non-Sub-Saharan populations together with neutrality tests, suggest that these allelic differences are compatible with the hypothesis of selective pressures acting on the genetic determinants of BMD. These findings constitute an explorative contribution to the role of selection on ethnic BMD differences and likely a new example of polygenic adaptation acting on a human trait. PMID:26226985

  3. How competition affects evolutionary rescue

    PubMed Central

    Osmond, Matthew Miles; de Mazancourt, Claire

    2013-01-01

    Populations facing novel environments can persist by adapting. In nature, the ability to adapt and persist will depend on interactions between coexisting individuals. Here we use an adaptive dynamic model to assess how the potential for evolutionary rescue is affected by intra- and interspecific competition. Intraspecific competition (negative density-dependence) lowers abundance, which decreases the supply rate of beneficial mutations, hindering evolutionary rescue. On the other hand, interspecific competition can aid evolutionary rescue when it speeds adaptation by increasing the strength of selection. Our results clarify this point and give an additional requirement: competition must increase selection pressure enough to overcome the negative effect of reduced abundance. We therefore expect evolutionary rescue to be most likely in communities which facilitate rapid niche displacement. Our model, which aligns to previous quantitative and population genetic models in the absence of competition, provides a first analysis of when competitors should help or hinder evolutionary rescue. PMID:23209167

  4. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system

    PubMed Central

    Shinomiya, Kazunori; Takemura, Shin-ya; Rivlin, Patricia K.; Plaza, Stephen M.; Scheffer, Louis K.; Meinertzhagen, Ian A.

    2015-01-01

    Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin. PMID:26217193

  5. Selected References on Asbestos: Its Nature, Hazards, Detection, and Control.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC.

    This document provides teachers with sources of information about the nature, hazards, detection, and control of asbestos. Because many school buildings include asbestos-containing materials, teachers and other school personnel must be aware of the potential dangers to students and to themselves and take steps to have asbestos hazards contained or…

  6. Evolutionary branching under slow directional evolution.

    PubMed

    Ito, Hiroshi C; Dieckmann, Ulf

    2014-11-07

    Evolutionary branching is the process by which ecological interactions induce evolutionary diversification. In asexual populations with sufficiently rare mutations, evolutionary branching occurs through trait-substitution sequences caused by the sequential invasion of successful mutants. A necessary and sufficient condition for evolutionary branching of univariate traits is the existence of a convergence stable trait value at which selection is locally disruptive. Real populations, however, undergo simultaneous evolution in multiple traits. Here we extend conditions for evolutionary branching to bivariate trait spaces in which the response to disruptive selection on one trait can be suppressed by directional selection on another trait. To obtain analytical results, we study trait-substitution sequences formed by invasions that possess maximum likelihood. By deriving a sufficient condition for evolutionary branching of bivariate traits along such maximum-likelihood-invasion paths (MLIPs), we demonstrate the existence of a threshold ratio specifying how much disruptive selection in one trait direction is needed to overcome the obstruction of evolutionary branching caused by directional selection in the other trait direction. Generalizing this finding, we show that evolutionary branching of bivariate traits can occur along evolutionary-branching lines on which residual directional selection is sufficiently weak. We then present numerical analyses showing that our generalized condition for evolutionary branching is a good indicator of branching likelihood even when trait-substitution sequences do not follow MLIPs and when mutations are not rare. Finally, we extend the derived conditions for evolutionary branching to multivariate trait spaces.

  7. Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation.

    PubMed

    Chisholm, Rebecca H; Lorenzi, Tommaso; Lorz, Alexander; Larsen, Annette K; de Almeida, Luís Neves; Escargueil, Alexandre; Clairambault, Jean

    2015-03-15

    In recent experiments on isogenetic cancer cell lines, it was observed that exposure to high doses of anticancer drugs can induce the emergence of a subpopulation of weakly proliferative and drug-tolerant cells, which display markers associated with stem cell-like cancer cells. After a period of time, some of the surviving cells were observed to change their phenotype to resume normal proliferation and eventually repopulate the sample. Furthermore, the drug-tolerant cells could be drug resensitized following drug washout. Here, we propose a theoretical mechanism for the transient emergence of such drug tolerance. In this framework, we formulate an individual-based model and an integro-differential equation model of reversible phenotypic evolution in a cell population exposed to cytotoxic drugs. The outcomes of both models suggest that nongenetic instability, stress-induced adaptation, selection, and the interplay between these mechanisms can push an actively proliferating cell population to transition into a weakly proliferative and drug-tolerant state. Hence, the cell population experiences much less stress in the presence of the drugs and, in the long run, reacquires a proliferative phenotype, due to phenotypic fluctuations and selection pressure. These mechanisms can also reverse epigenetic drug tolerance following drug washout. Our study highlights how the transient appearance of the weakly proliferative and drug-tolerant cells is related to the use of high-dose therapy. Furthermore, we show how stem-like characteristics can act to stabilize the transient, weakly proliferative, and drug-tolerant subpopulation for a longer time window. Finally, using our models as in silico laboratories, we propose new testable hypotheses that could help uncover general principles underlying the emergence of cancer drug tolerance.

  8. Visible light-induced ion-selective optodes based on a metastable photoacid for cation detection.

    PubMed

    Patel, Parth K; Chumbimuni-Torres, Karin Y

    2016-01-07

    A new platform of ion-selective optodes is presented here to detect cations under thermodynamic equilibrium via ratiometric analysis. This novel platform utilizes a 'one of a kind' visible light-induced metastable photoacid as a reference ion indicator to achieve activatable and controllable sensors. These ion-selective optodes were studied in terms of their stability, sensitivity, selectivity, and theoretical aspects.

  9. Applying evolutionary anthropology.

    PubMed

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution.

  10. Applying Evolutionary Anthropology

    PubMed Central

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  11. Paleoanthropology and evolutionary theory.

    PubMed

    Tattersall, Ian

    2012-01-01

    Paleoanthropologists of the first half of the twentieth century were little concerned either with evolutionary theory or with the technicalities and broader implications of zoological nomenclature. In consequence, the paleoanthropological literature of the period consisted largely of a series of descriptions accompanied by authoritative pronouncements, together with a huge excess of hominid genera and species. Given the intellectual flimsiness of the resulting paleoanthropological framework, it is hardly surprising that in 1950 the ornithologist Ernst Mayr met little resistance when he urged the new postwar generation of paleoanthropologists to accept not only the elegant reductionism of the Evolutionary Synthesis but a vast oversimplification of hominid phylogenetic history and nomenclature. Indeed, the impact of Mayr's onslaught was so great that even when developments in evolutionary biology during the last quarter of the century brought other paleontologists to the realization that much more has been involved in evolutionary histories than the simple action of natural selection within gradually transforming lineages, paleoanthropologists proved highly reluctant to follow. Even today, paleoanthropologists are struggling to reconcile an intuitive realization that the burgeoning hominid fossil record harbors a substantial diversity of species (bringing hominid evolutionary patterns into line with that of other successful mammalian families), with the desire to cram a huge variety of morphologies into an unrealistically minimalist systematic framework. As long as this theoretical ambivalence persists, our perception of events in hominid phylogeny will continue to be distorted.

  12. DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits.

    PubMed

    Karhunen, M; Merilä, J; Leinonen, T; Cano, J M; Ovaskainen, O

    2013-07-01

    Approaches and tools to differentiate between natural selection and genetic drift as causes of population differentiation are of frequent demand in evolutionary biology. Based on the approach of Ovaskainen et al. (2011), we have developed an R package (DRIFTSEL) that can be used to differentiate between stabilizing selection, diversifying selection and random genetic drift as causes of population differentiation in quantitative traits when neutral marker and quantitative genetic data are available. Apart from illustrating the use of this method and the interpretation of results using simulated data, we apply the package on data from three-spined sticklebacks (Gasterosteus aculeatus) to highlight its virtues. DRIFTSEL can also be used to perform usual quantitative genetic analyses in common-garden study designs. © 2013 John Wiley & Sons Ltd.

  13. Detection of thermoactinomyces species in selected agricultural substrates from Queensland.

    PubMed

    Brinkmann, C M; Neuman, C; Katouli, M; Kurtböke, D I

    2014-05-01

    Selected overheated substrates commercially available for public use in sub-tropical Queensland, Australia were screened for the presence of Thermoactinomyces species using an air sampler. All substrates with the exception of tea tree mulch were found to contain Thermoactinomyces species. Subsequent 16S rDNA oligonucleotide sequencing of the selected eight isolates indicated that some of these species were closely related to previously reported allergenic Thermoactinomyces vulgaris and Laceyella sacchari. In view of this, the isolates were tested to determine their adhesion ability and cytotoxicity to human lung cells (calu-3 cells). The results indicated that all eight isolates were highly adherent and showed cytotoxicity to this cell line. These findings might indicate that the presence of such species in overheated agricultural materials may constitute a public health risk if storage and handling conditions are not optimal and do not meet criteria defined for sub-tropical climates.

  14. Radiography by selective detection of scatter field velocity components

    NASA Technical Reports Server (NTRS)

    Jacobs, Alan M. (Inventor); Dugan, Edward T. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  15. First detections of FS Canis Majoris stars in clusters. Evolutionary state as constrained by coeval massive stars

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Trombley, C.; Davies, B.; Figer, D. F.

    2015-03-01

    Context. FS CMa stars are low-luminosity objects showing the B[e] phenomenon whose evolutionary state remains a puzzle. These stars are surrounded by compact disks of warm dust of unknown origin. Hitherto, membership of FS CMa stars to coeval populations has never been confirmed. Aims: The discovery of low-luminosity line emitters in the young massive clusters Mercer 20 and Mercer 70 prompts us to investigate the nature of such objects. We intend to confirm membership to coeval populations in order to characterize these emission-line stars through the cluster properties. Methods: Based on ISAAC/VLT medium-resolution spectroscopy and NICMOS/HST photometry of massive cluster members, new characterizations of Mercer 20 and Mercer 70 are performed. Coevality of each cluster and membership of the newly-discovered B[e] objects are investigated using our observations as well as literature data of the surroundings. Infrared excess and narrow-band photometric properties of the B[e] stars are also studied. Results: We confirm and classify 22 new cluster members, including Wolf-Rayet stars and blue hypergiants. Spectral types (O9-B1.5 V) and radial velocities of B[e] objects are compatible with the remaining cluster members, while emission features of Mg ii, Fe ii], and [Fe ii] are identified in their spectra. The ages of these stars are 4.5 and 6 Myr, and they show mild infrared excesses. Conclusions: We confirm the presence of FS CMa stars in the coeval populations of Mercer 20 and Mercer 70. We discuss the nature and evolutionary state of FS CMa stars, discarding a post-AGB nature and introducing a new hypothesis about mergers. A new search method for FS CMa candidates in young massive clusters based on narrow-band Paschen-α photometry is proposed and tested in photometric data of other clusters, yielding three new candidates. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program IDs 083.D

  16. Maritime Anomaly Detection: Domain Introduction and Review of Selected Literature

    DTIC Science & Technology

    2011-10-01

    operators, not to fully replace them. The amount of data that enters a system is typically astronomical , and a single person cannot manage and...2.3.2.2. Natural language processing The use of structured data is very common today. However, a huge portion of the relevant data is in...Current gaps in MAD are identified from the data and information, processing and systems perspectives. The selected literature review is structured

  17. Selective detection of linear features in geological remote sensing data

    NASA Astrophysics Data System (ADS)

    Parikh, Jo Ann; DaPonte, John S.; DiNicola, Emily G.; Pedersen, Robert A.

    1992-09-01

    One of the major problems in the development of computer-assisted systems for geologic mapping is how to individualize the system to meet user needs. Ideally, the system should be responsive to specifications of desired types of output structures. Also, the system should be able to incorporate the user's knowledge of regional characteristics into the feature extraction/selection and classification components. Automatic techniques for classification of remote sensing data typically require relatively large, labeled training sets which are well- organized with respect to the desired mapping between input and output patterns. The present paper focuses on the feature extraction/selection component of the system. Kohonen self- organizing feature maps in conjunction with image processing procedures for linear feature extraction are used for explorative data analysis, feature selection, and construction of exemplar patterns. The results of training Kohonen feature maps with different pattern sets and different feature combinations provide insight into the nature of pattern relationships which enables the user to develop sets of positive and negative training patterns for the classification component.

  18. Synthetic receptors for selectively detecting erythrocyte ABO subgroups.

    PubMed

    Seifner, Alexandra; Lieberzeit, Peter; Jungbauer, Christof; Dickert, Franz L

    2009-10-05

    Surface imprinting techniques with erythrocytes as templates yield polymer coatings with selective recognition sites towards red blood cells. The resulting cavities in the respective surface exhibit selectivity between blood subgroups as shown by Quartz Crystal Microbalance (QCM) measurements. Mass sensitive effects in the kilohertz range could be observed for concentrations down to 0.5 x 10(8) cells/mL. Frequency response as well as recovery of the sensor took place within a few minutes, indicating that no covalent binding is involved. Linear concentration dependence over a defined region provides ideal conditions for cross selectivity measurements. A1 imprinted sensor coatings resulted in an effect of 40 kHz when exposed to the template blood group, while A2 erythrocytes yielded just 11% of that value on the same layer. Furthermore, A2 imprinted coatings incorporated only one third the amount of A1 erythrocytes as compared to A2 ones. Therefore, imprinted materials depict the entire cell surface and utilize it for recognition, whereas natural antibodies bind on the defined antigen position and thus usually cannot distinguish between cells carrying different amounts of them.

  19. Reagent Selection Methodology for a Novel Explosives Detection Platform

    ScienceCinema

    None

    2016-07-12

    This video describes research being conducted by Dr. Marvin Warner, a research scientist at Pacific Northwest National Laboratory, in the individual pieces of antibodies used to set up a chemical reaction that will give off light just by mixing reagents together with a sample that contains an explosive molecule. This technology would help detect if explosives are present with just the use of a handheld system or container.

  20. Introgression and selection shaped the evolutionary history of sympatric sister-species of coral reef fishes (genus: Haemulon).

    PubMed

    Bernal, Moisés A; Gaither, Michelle R; Simison, W Brian; Rocha, Luiz A

    2017-01-01

    Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister-species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site-associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister-species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174-0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.

  1. Persistence of evolutionary memory: primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling.

    PubMed

    Kream, Richard M; Sheehan, Melinda; Cadet, Patrick; Mantione, Kirk J; Zhu, Wei; Casares, Federico; Stefano, George B

    2007-12-01

    Biochemical, molecular and pharmacological evidence for two unique six-transmembrane helical (TMH) domain opiate receptors expressed from the micro opioid receptor (MOR) gene have been shown. Designated micro3 and micro4 receptors, both protein species are Class A rhodopsin-like members of the superfamily of G-protein coupled receptors but are selectively tailored to mediate the cellular regulatory effects of endogenous morphine and related morphinan alkaloids via stimulation of nitric oxide (NO) production and release. Both micro3 and micro4 receptors lack an amino acid sequence of approximately 90 amino acids that constitute the extracellular N-terminal and TMH1 domains and part of the first intracellular loop of the micro1 receptor, but retain the empirically defined ligand binding pocket distributed across conserved TMH2, TMH3, and TMH7 domains of the micro1 sequence. Additionally, the receptor proteins are terminated by unique intracellular C-terminal amino acid sequences that serve as putative coupling or docking domains required for constitutive NO synthase activation. Because the recognition profile of micro3 and micro4 receptors is restricted to rigid benzylisoquinoline alkaloids typified by morphine and its extended family of chemical congeners, it is hypothesized that conformational stabilization provided by interaction of extended extracellular N-terminal protein domains and the extracellular loops is required for binding of endogenous opioid peptides as well as synthetic flexible opiate alkaloids.

  2. Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection

    PubMed Central

    Fedrigo, Olivier; Babbitt, Courtney C.; Wortham, Matthew; Tewari, Alok K.; London, Darin; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Parker, Stephen C. J.; Margulies, Elliott H.; Wray, Gregory A.; Furey, Terrence S.; Crawford, Gregory E.

    2012-01-01

    Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. PMID:22761590

  3. Feature Selection and Pedestrian Detection Based on Sparse Representation

    PubMed Central

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony. PMID:26295480

  4. Feature Selection and Pedestrian Detection Based on Sparse Representation.

    PubMed

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.

  5. The Integration of Color-Selective Mechanisms in Symmetry Detection

    PubMed Central

    Wu, Chia-Ching; Chen, Chien-Chung

    2017-01-01

    We studied how the visual system detects multicolor symmetric patterns by manipulating the number of colors in an image in both isoluminance and luminance conditions. With a two-interval forced choice noise masking paradigm, we presented a noise mask in both intervals of each trial. A vertically symmetric target was randomly presented in one interval while a noise control was presented in the other. The task of the observers was to determine which interval contained the target. The target detection threshold was measured at various noise mask densities, which was found to decrease 1.4- to 2.5-fold as the number of colors in the image went up at median to high noise densities across different conditions. In addition, this color facilitation effect was greater in luminance conditions than in isoluminance conditions. Our data cannot be explained by the probability summation theory or simple signal-to-noise ratio. We therefore propose a computational model that incorporates a linear chromatic symmetry register, a nonlinear transducer response, noise manipulation and a multiple channel decision making process. This model suggests that the increment of the number of colors reduces the interference to the symmetry channels produced by noise, and in turn facilitates symmetry detection. PMID:28230091

  6. Not only for egg yolk--functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins.

    PubMed

    Morandin, Claire; Havukainen, Heli; Kulmuni, Jonna; Dhaygude, Kishor; Trontti, Kalevi; Helanterä, Heikki

    2014-08-01

    Vitellogenin (Vg), a storage protein, has been extensively studied for its egg-yolk precursor role, and it has been suggested to be fundamentally involved in caste differences in social insects. More than one Vg copy has been reported in several oviparous species, including ants. However, the number and function of different Vgs, their phylogenetic relatedness, and their role in reproductive queens and nonreproductive workers have been studied in few species only. We studied caste-biased expression of Vgs in seven Formica ant species. Only one copy of conventional Vg was identified in Formica species, and three Vg homologs, derived from ancient duplications, which represent yet undiscovered Vg-like genes. We show that each of these Vg-like genes is present in all studied Hymenoptera and some of them in other insects as well. We show that after each major duplication event, at least one of the Vg-like genes has experienced a period of positive selection. This, combined with the observation that the Vg-like genes have acquired or lost specific protein domains suggests sub- or neofunctionalization between Vg and the duplicated genes. In contrast to earlier studies, Vg was not consistently queen biased in its expression, and the caste bias of the three Vg-like genes was highly variable among species. Furthermore, a truncated and Hymenoptera-specific Vg-like gene, Vg-like-C, was consistently worker biased. Multispecies comparisons are essential for Vg expression studies, and for gene expression studies in general, as we show that expression and also, putative functions cannot be generalized even among closely related species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Cavitands: Molecules With Enhanced Selectivity for Chem/Bio Detection

    DTIC Science & Technology

    2005-10-01

    cavities do not complex aromatic vapors, the pyrazine bridged cavitands (PzCav) show intermediate selectivity whereas the quinoxaline bridged cavitands...as NMR and X-ray crystallography by his group9-11. Three cavitands named MeCav (for methylene bridged), PzCav ( pyrazine bridged) and QxCav...OOO OOO O O N NN NN N O R RRR OO OOO O O R RRR NN OOO OOO O O N NN NN N FIGURE 1. The three cavitands MeCav (methylene bridged), PzCav ( pyrazine

  8. Illumination, wavelength selection, and detection in fluorescence microscopy.

    PubMed

    Spring, K R

    1991-07-01

    The presently available devices for the illumination, changing of wavelengths, and detection of the resultant fluorescence of biological samples viewed in the light microscope have been described and compared. The optimal choice for illumination is a xenon arc lamp with a filter wheel wavelength selector. The optimal choice for an imaging detector is an intensified CCD (charge-coupled-device) camera. These combinations produce the most rapid, stable, and reproducible results when fluorescence measurements are made on living epithelial cells or isolated renal tubules. Techniques for the simultaneous acquisition of fluorescence and differential interference contrast (DIC) images have also been described and compared.

  9. An FPGA implementation to detect selective cationic antibacterial peptides.

    PubMed

    Polanco González, Carlos; Nuño Maganda, Marco Aurelio; Arias-Estrada, Miguel; del Rio, Gabriel

    2011-01-01

    Exhaustive prediction of physicochemical properties of peptide sequences is used in different areas of biological research. One example is the identification of selective cationic antibacterial peptides (SCAPs), which may be used in the treatment of different diseases. Due to the discrete nature of peptide sequences, the physicochemical properties calculation is considered a high-performance computing problem. A competitive solution for this class of problems is to embed algorithms into dedicated hardware. In the present work we present the adaptation, design and implementation of an algorithm for SCAPs prediction into a Field Programmable Gate Array (FPGA) platform. Four physicochemical properties codes useful in the identification of peptide sequences with potential selective antibacterial activity were implemented into an FPGA board. The speed-up gained in a single-copy implementation was up to 108 times compared with a single Intel processor cycle for cycle. The inherent scalability of our design allows for replication of this code into multiple FPGA cards and consequently improvements in speed are possible. Our results show the first embedded SCAPs prediction solution described and constitutes the grounds to efficiently perform the exhaustive analysis of the sequence-physicochemical properties relationship of peptides.

  10. An FPGA Implementation to Detect Selective Cationic Antibacterial Peptides

    PubMed Central

    Polanco González, Carlos; Nuño Maganda, Marco Aurelio; Arias-Estrada, Miguel; del Rio, Gabriel

    2011-01-01

    Exhaustive prediction of physicochemical properties of peptide sequences is used in different areas of biological research. One example is the identification of selective cationic antibacterial peptides (SCAPs), which may be used in the treatment of different diseases. Due to the discrete nature of peptide sequences, the physicochemical properties calculation is considered a high-performance computing problem. A competitive solution for this class of problems is to embed algorithms into dedicated hardware. In the present work we present the adaptation, design and implementation of an algorithm for SCAPs prediction into a Field Programmable Gate Array (FPGA) platform. Four physicochemical properties codes useful in the identification of peptide sequences with potential selective antibacterial activity were implemented into an FPGA board. The speed-up gained in a single-copy implementation was up to 108 times compared with a single Intel processor cycle for cycle. The inherent scalability of our design allows for replication of this code into multiple FPGA cards and consequently improvements in speed are possible. Our results show the first embedded SCAPs prediction solution described and constitutes the grounds to efficiently perform the exhaustive analysis of the sequence-physicochemical properties relationship of peptides. PMID:21738652

  11. Evolutionary developmental psychology.

    PubMed

    King, Ashley C; Bjorklund, David F

    2010-02-01

    The field of evolutionary developmental psychology can potentially broaden the horizons of mainstream evolutionary psychology by combining the principles of Darwinian evolution by natural selection with the study of human development, focusing on the epigenetic effects that occur between humans and their environment in a way that attempts to explain how evolved psychological mechanisms become expressed in the phenotypes of adults. An evolutionary developmental perspective includes an appreciation of comparative research and we, among others, argue that contrasting the cognition of humans with that of nonhuman primates can provide a framework with which to understand how human cognitive abilities and intelligence evolved. Furthermore, we argue that several aspects of childhood (e.g., play and immature cognition) serve both as deferred adaptations as well as imparting immediate benefits. Intense selection pressure was surely exerted on childhood over human evolutionary history and, as a result, neglecting to consider the early developmental period of children when studying their later adulthood produces an incomplete picture of the evolved adaptations expressed through human behavior and cognition.

  12. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly.

    PubMed

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-06-03

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail.

  13. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly

    PubMed Central

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-01-01

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail. PMID:27255426

  14. Proteomics in evolutionary ecology.

    PubMed

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  15. Geographic Variation in the Acoustic Traits of Greater Horseshoe Bats: Testing the Importance of Drift and Ecological Selection in Evolutionary Processes

    PubMed Central

    Sun, Keping; Luo, Li; Kimball, Rebecca T.; Wei, Xuewen; Jin, Longru; Jiang, Tinglei; Li, Guohong; Feng, Jiang

    2013-01-01

    Patterns of intraspecific geographic variation of signaling systems provide insight into the microevolutionary processes driving phenotypic divergence. The acoustic calls of bats are sensitive to diverse evolutionary forces, but processes that shape call variation are largely unexplored. In China, Rhinolophus ferrumequinum displays a diverse call frequency and inhabits a heterogeneous landscape, presenting an excellent opportunity for this kind of research. We quantified geographic variation in resting frequency (RF) of echolocation calls, estimated genetic structure and phylogeny of R. ferrumequinum populations, and combined this with climatic factors to test three hypotheses to explain acoustic variation: genetic drift, cultural drift, and local adaptation. Our results demonstrated significant regional divergence in frequency and phylogeny among the bat populations in China's northeast (NE), central-east (CE) and southwest (SW) regions. The CE region had higher frequencies than the NE and SW regions. Drivers of RF divergence were estimated in the entire range and just the CE/NE region (since these two regions form a clade). In both cases, RF divergence was not correlated with mtDNA or nDNA genetic distance, but was significantly correlated with geographic distance and mean annual temperature, indicating cultural drift and ecological selection pressures are likely important in shaping RF divergence among different regions in China. PMID:23950926

  16. Taste detection and discrimination performance of rats following selective desalivation.

    PubMed

    Brosvic, G M; Hoey, N E

    1990-11-01

    Taste sensitivity and responsivity, two-tastant and taste-mixture discrimination performance, and taste preferences were examined prior to and after the selective desalivation of 48 male Long-Evans rats. Altered preference behavior was observed in rats after removal of the major salivary glands, as well as after removal of only the submandibular-sublingual complexes. In 9 of 12 desalivated rats, decreased sensitivity and increased responsivity to near-threshold sodium chloride solutions were observed, although these changes were less than one-half an order of magnitude. No between-group differences in performance on two-tastant and taste-mixture discrimination tasks were observed. These results suggest that decrements in absolute sensitivity do not result in concomitant deficits in the discrimination of taste qualities.

  17. Selection of peptides for serological detection of equine infectious anemia.

    PubMed

    Santos, E M; Cardoso, R; Souza, G R L; Goulart, L R; Heinemann, M B; Leite, R C; Reis, J K P

    2012-08-13

    Equine infectious anemia caused by equine infectious anemia virus is an important disease due to its high severity and incidence in animals. We used a phage display library to isolate peptides that can be considered potential markers for equine infectious anemia diagnosis. We selected peptides using IgG purified from a pool comprised of 20 sera from animals naturally infected with equine infectious anemia virus. The diagnostic potential of these peptides was investigated by ELISA, Western blot and dot blot with purified IgG and serum samples. Based on the results, we chose a peptide mimetic for glycoprotein gp45 epitopes of equine infectious anemia virus, with potential for use as an antigen in indirect diagnostic assays. Synthesis of this peptide has possible applications for the development of new diagnostic tools for this disease.

  18. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1985-05-20

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.

  19. Urban Detection, Delimitation and Morphology: Comparative Analysis of Selective "MEGACITIES"

    NASA Astrophysics Data System (ADS)

    Alhaddad, B.; Arellano, B. E.; Roca, J.

    2012-08-01

    Over the last 50 years, the world has faced an impressive growth of urban population. The walled city, close to the outside, an "island"for economic activities and population density within the rural land, has led to the spread of urban life and urban networks in almost all the territory. There was, as said Margalef (1999), "a topological inversion of the landscape". The "urban" has gone from being an island in the ocean of rural land vastness, to represent the totally of the space in which are inserted natural and rural "systems". New phenomena such as the fall of the fordist model of production, the spread of urbanization known as urban sprawl, and the change of scale of the metropolis, covering increasingly large regions, called "megalopolis" (Gottmann, 1961), have characterized the century. However there are no rigorous databases capable of measuring and evaluating the phenomenon of megacities and in general the process of urbanization in the contemporary world. The aim of this paper is to detect, identify and analyze the morphology of the megacities through remote sensing instruments as well as various indicators of landscape. To understand the structure of these heterogeneous landscapes called megacities, land consumption and spatial complexity needs to be quantified accurately. Remote sensing might be helpful in evaluating how the different land covers shape urban megaregions. The morphological landscape analysis allows establishing the analogies and the differences between patterns of cities and studying the symmetry, growth direction, linearity, complexity and compactness of the urban form. The main objective of this paper is to develop a new methodology to detect urbanized land of some megacities around the world (Tokyo, Mexico, Chicago, New York, London, Moscow, Sao Paulo and Shanghai) using Landsat 7 images.

  20. Evolutionary Adaptations to Dietary Changes

    PubMed Central

    Luca, F.; Perry, G.H.; Di Rienzo, A.

    2014-01-01

    Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human populations. In this review, we provide a brief overview of the major dietary shifts that occurred during hominin evolution, and we discuss the methods and approaches used to identify signals of natural selection in patterns of sequence variation. We then review the results of studies aimed at detecting the genetic loci that played a major role in dietary adaptations and conclude by outlining the potential of future studies in this area. PMID:20420525

  1. Evolutionary adaptations to dietary changes.

    PubMed

    Luca, F; Perry, G H; Di Rienzo, A

    2010-08-21

    Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human populations. In this review, we provide a brief overview of the major dietary shifts that occurred during hominin evolution, and we discuss the methods and approaches used to identify signals of natural selection in patterns of sequence variation. We then review the results of studies aimed at detecting the genetic loci that played a major role in dietary adaptations and conclude by outlining the potential of future studies in this area.

  2. Evolutionary Computing

    SciTech Connect

    Patton, Robert M; Cui, Xiaohui; Jiao, Yu; Potok, Thomas E

    2008-01-01

    The rate at which information overwhelms humans is significantly more than the rate at which humans have learned to process, analyze, and leverage this information. To overcome this challenge, new methods of computing must be formulated, and scientist and engineers have looked to nature for inspiration in developing these new methods. Consequently, evolutionary computing has emerged as new paradigm for computing, and has rapidly demonstrated its ability to solve real-world problems where traditional techniques have failed. This field of work has now become quite broad and encompasses areas ranging from artificial life to neural networks. This chapter focuses specifically on two sub-areas of nature-inspired computing: Evolutionary Algorithms and Swarm Intelligence.

  3. Toward an evolutionary definition of cheating.

    PubMed

    Ghoul, Melanie; Griffin, Ashleigh S; West, Stuart A

    2014-02-01

    The term "cheating" is used in the evolutionary and ecological literature to describe a wide range of exploitative or deceitful traits. Although many find this a useful short hand, others have suggested that it implies cognitive intent in a misleading way, and is used inconsistently. We provide a formal justification of the use of the term "cheat" from the perspective of an individual as a maximizing agent. We provide a definition for cheating that can be applied widely, and show that cheats can be broadly classified on the basis of four distinctions: (i) whether cooperation is an option; (ii) whether deception is involved; (iii) whether members of the same or different species are cheated; and (iv) whether the cheat is facultative or obligate. Our formal definition and classification provide a framework that allow us to resolve and clarify a number of issues, regarding the detection and evolutionary consequences of cheating, as well as illuminating common principles and similarities in the underlying selection pressures.

  4. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1991-09-10

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level. 5 figures.

  5. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, Joseph R.; Otagawa, Takaaki

    1991-01-01

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level.

  6. Direct alkalinity detection with ion-selective chronopotentiometry.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Xie, Xiaojiang; Bakker, Eric

    2014-07-01

    We explore the possibility to directly measure pH and alkalinity in the sample with the same sensor by imposing an outward flux of hydrogen ions from an ion-selective membrane to the sample solution by an applied current. The membrane consists of a polypropylene-supported liquid membrane doped with a hydrogen ionophore (chromoionophore I), ion exchanger (KTFBP), and lipophilic electrolyte (ETH 500). While the sample pH is measured at zero current, alkalinity is assessed by chronopotentiometry at anodic current. Hydrogen ions expelled from the membrane undergo acid-base solution chemistry and protonate available base in the diffusion layer. With time, base species start to be depleted owing to the constant imposed hydrogen ion flux from the membrane, and a local pH change occurs at a transition time. This pH change (potential readout) is correlated to the concentration of the base in solution. As in traditional chronopotentiometry, the observed square root of transition time (τ) was found to be linear in the concentration range of 0.1 mM to 1 mM, using the bases tris(hydroxymethyl)aminomethane, ammonia, carbonate, hydroxide, hydrogen phosphate, and borate. Numerical simulations were used to predict the concentration profiles and the chronopotentiograms, allowing the discussion of possible limitations of the proposed method and its comparison with volumetric titrations of alkalinity. Finally, the P-alkalinity level is measured in a river sample to demonstrate the analytical usefulness of the proposed method. As a result of these preliminary results, we believe that this approach may become useful for the in situ determination of P-alkalinity in a range of matrixes.

  7. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  8. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  9. Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions.

    PubMed

    Forzani, Erica S; Li, Xiulan; Zhang, Peiming; Tao, Nongjian; Zhang, Ruth; Amlani, Islamshah; Tsui, Raymond; Nagahara, Larry A

    2006-11-01

    A method to functionalize single-walled carbon nanotubes (SWNTs) in a field-effect transistor (FET) device for the selective detection of heavy-metal ions is presented. In this method, peptide-modified polymers were electrochemically deposited onto SWNTs and the selective detection of metal ions was demonstrated by choosing appropriate peptide sequences. The signal transduction mechanism of the peptide-modified SWNT-FETs has also been studied.

  10. Evolutionary Conservation of Orthoretroviral Long Terminal Repeats (LTRs) and ab initio Detection of Single LTRs in Genomic Data

    PubMed Central

    Benachenhou, Farid; Jern, Patric; Oja, Merja; Sperber, Göran; Blikstad, Vidar; Somervuo, Panu; Kaski, Samuel; Blomberg, Jonas

    2009-01-01

    Background Retroviral LTRs, paired or single, influence the transcription of both retroviral and non-retroviral genomic sequences. Vertebrate genomes contain many thousand endogenous retroviruses (ERVs) and their LTRs. Single LTRs are difficult to detect from genomic sequences without recourse to repetitiveness or presence in a proviral structure. Understanding of LTR structure increases understanding of LTR function, and of functional genomics. Here we develop models of orthoretroviral LTRs useful for detection in genomes and for structural analysis. Principal Findings Although mutated, ERV LTRs are more numerous and diverse than exogenous retroviral (XRV) LTRs. Hidden Markov models (HMMs), and alignments based on them, were created for HML- (human MMTV-like), general-beta-, gamma- and lentiretroviruslike LTRs, plus a general-vertebrate LTR model. Training sets were XRV LTRs and RepBase LTR consensuses. The HML HMM was most sensitive and detected 87% of the HML LTRs in human chromosome 19 at 96% specificity. By combining all HMMs with a low cutoff, for screening, 71% of all LTRs found by RepeatMasker in chromosome 19 were found. HMM consensus sequences had a conserved modular LTR structure. Target site duplications (TG-CA), TATA (occasionally absent), an AATAAA box and a T-rich region were prominent features. Most of the conservation was located in, or adjacent to, R and U5, with evidence for stem loops. Several of the long HML LTRs contained long ORFs inserted after the second A rich module. HMM consensus alignment allowed comparison of functional features like transcriptional start sites (sense and antisense) between XRVs and ERVs. Conclusion The modular conserved and redundant orthoretroviral LTR structure with three A-rich regions is reminiscent of structurally relaxed Giardia promoters. The five HMMs provided a novel broad range, repeat-independent, ab initio LTR detection, with prospects for greater generalisation, and insight into LTR structure, which may

  11. Detection of Bacillus cereus on selected retail chicken products.

    PubMed

    Smith, D P; Berrang, M E; Feldner, P W; Phillips, R W; Meinersmann, R J

    2004-08-01

    Samples from five chicken meat products, obtained at retail stores, were evaluated for the presence of Bacillus cereus. The products tested were as follows: breaded, fully cooked, frozen nuggets (NUGGETS); breaded, fully cooked, frozen tenders (TENDERS); fully cooked, frozen, white-meat fajita-style strips (STRIPS); raw, refrigerated, boneless, skinless, marinated breast fillets (FILLETS); and raw, refrigerated, cut-up, tray-pack bone-in parts (PARTS), either split breasts or thighs. Four packages of each item were obtained on three different days (n = 60). Frozen and refrigerated products were held overnight in their respective environments as appropriate; then packages were opened aseptically, and a total of 25 g of tissue was excised from multiple pieces within a package. The 25-g samples were enriched in 225 ml of Trypticase soy-polymixin broth for 18 to 24 h at 30 degrees C and then plated on mannitol-egg yolk-polymixin agar and incubated for 18 to 24 h at 30 degrees C. Colonies characteristic of B. cereus were chosen and replated for isolation on mannitol-egg yolk-polymixin agar. Suspect colonies were confirmed as Bacillus spp. by Gram stain, hemolysis on blood agar, and a biochemical test strip. Isolates were further confirmed as B. cereus using Bacteriological Analytical Manual procedures, including tests for motility, rhizoid growth, hemolysis, and protein toxin crystal production. B. cereus was detected in 27 of 60 total samples. By product, the prevalence levels were as follows: NUGGETS, 11 of 12 positive; TENDERS, 8 of 12 positive; STRIPS, 6 of 12 positive; FILLETS, 0 of 12 positive; and PARTS, 2 of 12 positive. Isolates were tested by PCR for presence of the toxin-encoding genes bceT, nheABC, hblACD, and cytK. Results indicate that B. cereus organisms were present on four of the five retail poultry products tested in this study, with the highest rates reported for the three fully cooked items, especially the two breaded products. All strains isolated

  12. Evolutionary dynamics in structured populations

    PubMed Central

    Nowak, Martin A.; Tarnita, Corina E.; Antal, Tibor

    2010-01-01

    Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces. PMID:20008382

  13. Modeling Network Intrusion Detection System Using Feature Selection and Parameters Optimization

    NASA Astrophysics Data System (ADS)

    Kim, Dong Seong; Park, Jong Sou

    Previous approaches for modeling Intrusion Detection System (IDS) have been on twofold: improving detection model(s) in terms of (i) feature selection of audit data through wrapper and filter methods and (ii) parameters optimization of detection model design, based on classification, clustering algorithms, etc. In this paper, we present three approaches to model IDS in the context of feature selection and parameters optimization: First, we present Fusion of Genetic Algorithm (GA) and Support Vector Machines (SVM) (FuGAS), which employs combinations of GA and SVM through genetic operation and it is capable of building an optimal detection model with only selected important features and optimal parameters value. Second, we present Correlation-based Hybrid Feature Selection (CoHyFS), which utilizes a filter method in conjunction of GA for feature selection in order to reduce long training time. Third, we present Simultaneous Intrinsic Model Identification (SIMI), which adopts Random Forest (RF) and shows better intrusion detection rates and feature selection results, along with no additional computational overheads. We show the experimental results and analysis of three approaches on KDD 1999 intrusion detection datasets.

  14. Electrolyte-gated organic field-effect transistor for selective reversible ion detection.

    PubMed

    Schmoltner, Kerstin; Kofler, Johannes; Klug, Andreas; List-Kratochvil, Emil J W

    2013-12-17

    An ion-sensitive electrolyte-gated organic field-effect transistor for selective and reversible detection of sodium (Na(+) ) down to 10(-6) M is presented. The inherent low voltage - high current operation of these transistors in combination with a state-of-the-art ion-selective membrane proves to be a novel, versatile modular sensor platform.

  15. Sequence-selective DNA detection using multiple laminar streams: a novel microfluidic analysis method.

    PubMed

    Yamashita, Kenichi; Yamaguchi, Yoshiko; Miyazaki, Masaya; Nakamura, Hiroyuki; Shimizu, Hazime; Maeda, Hideaki

    2004-02-01

    On-site detection methods for DNA have been demanded in the pathophysiology field. Such analysis requires a simple and accurate method, rather than high-throughput. This report describes a novel microfluidic analysis method and its application for simple sequence-selective DNA detection. The method uses a microchannel device with a serpentine structure. Sequence-specific binding of probe DNA can be detected at one side of the microchannel. This method is capable of sequence-specific detection of DNA with high accuracy. Single base mutations can also be analyzed. Combination of laminar stream and laminar secondary flow in the microchannel enable specific detection of probe-bound DNA.

  16. Selective detection and characterization of nanoparticles from motor vehicles.

    PubMed

    Johnston, Murray V; Klems, Joseph P; Zordan, Christopher A; Pennington, M Ross; Smith, James N

    2013-02-01

    distance or transit time from emission to sampling increased, the size distribution shifted to a larger particle size, which confirmed the source assignments. To determine the distribution of emissions from individual vehicles, we correlated camera images with the spike contribution to particle number concentration at each time point. A small percentage of motor vehicles were found to emit a disproportionally large concentration of nanoparticles, and these high emitters included both spark-ignition (SI) and heavy-duty diesel (HDD) vehicles. In addition to characterizing the contribution of the spikes (local sources) to the ambient number concentration, we developed a method to determine the net contribution of motor vehicles (all sources) to the total mass concentration of ambient nanoparticles. To do this, we correlated the concentration of spikes with measurements of fast changes in the chemical composition of nanoparticles measured with the nano aerosol mass spectrometer (NAMS; built by the Johnston group). The NAMS irradiates individual, size-selected nanoparticles with a high-energy laser pulse to generate a mass spectrum consisting of multiply charged atomic ions. The elemental composition of each particle was determined from the ion signal intensities of each element. However, overlapping mass-to-charge ratios (m/z) at 4 m/z (O(+4) and C(+3)) and at 8 m/z (O(+2) and S(+4)) needed to be separated into their component ions to obtain a representative composition. To do this, we developed a method to deconvolute these ion signals using sucrose and ammonium sulfate [(NH4)2SO4] as calibration standards. With this approach, the differences between the expected and measured elemental mole fractions of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) for a variety of test particles were generally much less than 10%. Ambient nanoparticles were found to consist mostly of C, O, N, and S. Many particles also contained silicon (Si). The elemental compositions were apportioned

  17. Optimal Intermittence in Search Strategies under Speed-Selective Target Detection

    NASA Astrophysics Data System (ADS)

    Campos, Daniel; Méndez, Vicenç; Bartumeus, Frederic

    2012-01-01

    Random search theory has been previously explored for both continuous and intermittent scanning modes with full target detection capacity. Here we present a new class of random search problems in which a single searcher performs flights of random velocities, the detection probability when it passes over a target location being conditioned to the searcher speed. As a result, target detection involves an N-passage process for which the mean search time is here analytically obtained through a renewal approximation. We apply the idea of speed-selective detection to random animal foraging since a fast movement is known to significantly degrade perception abilities in many animals. We show that speed-selective detection naturally introduces an optimal level of behavioral intermittence in order to solve the compromise between fast relocations and target detection capability.

  18. A New Multiplex-PCR for Urinary Tract Pathogen Detection Using Primer Design Based on an Evolutionary Computation Method.

    PubMed

    García, Liliana Torcoroma; Cristancho, Laura Maritza; Vera, Erika Patricia; Begambre, Oscar

    2015-10-01

    This work describes a new strategy for optimal design of Multiplex-PCR primer sequences. The process is based on the Particle Swarm Optimization-Simplex algorithm (Mult-PSOS). Diverging from previous solutions centered on heuristic tools, the Mult-PSOS is selfconfigured because it does not require the definition of the algorithm's initial search parameters. The successful performance of this method was validated in vitro using Multiplex- PCR assays. For this validation, seven gene sequences of the most prevalent bacteria implicated in urinary tract infections were taken as DNA targets. The in vitro tests confirmed the good performance of the Mult-PSOS, with respect to infectious disease diagnosis, in the rapid and efficient selection of the optimal oligonucleotide sequences for Multiplex-PCRs. The predicted sequences allowed the adequate amplification of all amplicons in a single step (with the correct amount of DNA template and primers), reducing significantly the need for trial and error experiments. In addition, owing to its independence from the initial selection of the heuristic constants, the Mult-PSOS can be employed by non-expert users in computational techniques or in primer design problems.

  19. Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates.

    PubMed

    Shelke, Amit; Kundu, Tribikram; Amjad, Umar; Hahn, Katrin; Grill, Wolfgang

    2011-03-01

    Selective modes of guided Lamb waves are generated in a laminated aluminum plate for damage detection using a broadband piezoelectric transducer structured with a rigid electrode. Appropriate excitation frequencies and modes for inspection are selected from theoretical and experimental dispersion curves. Dispersion curves are obtained experimentally by short time Fourier transform of the transient signals. Sensitivity of antisymmetric and symmetric modes for delamination detection are investigated. The antisymmetric mode is found to be more reliable for delamination detection. Unlike other studies, in which the attenuation of the propagating waves is related to the extent of the internal damage, in this investigation, the changes in the time-of-flight (TOF) of guided Lamb waves are related to the damage progression. The mode conversion phenomenon of Lamb waves during progressive delamination is investigated. Close matching between the theoretical and experimentally derived dispersion curves and TOF assures the reliability of the results presented here.

  20. Structural Variant Detection by Large-scale Sequencing Reveals New Evolutionary Evidence on Breed Divergence between Chinese and European Pigs

    PubMed Central

    Zhao, Pengju; Li, Junhui; Kang, Huimin; Wang, Haifei; Fan, Ziyao; Yin, Zongjun; Wang, Jiafu; Zhang, Qin; Wang, Zhiquan; Liu, Jian-Feng

    2016-01-01

    In this study, we performed a genome-wide SV detection among the genomes of thirteen pigs from diverse Chinese and European originated breeds by next genetation sequencing, and constrcuted a single-nucleotide resolution map involving 56,930 putative SVs. We firstly identified a SV hotspot spanning 35 Mb region on the X chromosome specifically in the genomes of Chinese originated individuals. Further scrutinizing this region by large-scale sequencing data of extra 111 individuals, we obtained the confirmatory evidence on our initial finding. Moreover, thirty five SV-related genes within the hotspot region, being of importance for reproduction ability, rendered significant different evolution rates between Chinese and European originated breeds. The SV hotspot identified herein offers a novel evidence for assessing phylogenetic relationships, as well as likely explains the genetic difference of corresponding phenotypes and features, among Chinese and European pig breeds. Furthermore, we employed various SVs to infer genetic structure of individuls surveyed. We found SVs can clearly detect the difference of genetic background among individuals. This clues us that genome-wide SVs can capture majority of geneic variation and be applied into cladistic analyses. Characterizing whole genome SVs demonstrated that SVs are significantly enriched/depleted with various genomic features. PMID:26729041

  1. Selective detection of 5-formyl-2'-deoxycytidine in DNA using a fluorogenic hydroxylamine reagent.

    PubMed

    Guo, Pu; Yan, Shengyong; Hu, Jianlin; Xing, Xiwen; Wang, Changcheng; Xu, Xiaowei; Qiu, Xiaoyu; Ma, Wen; Lu, Chunjiang; Weng, Xiaocheng; Zhou, Xiang

    2013-07-05

    Fluorogenic hydroxylamine reagents were used for detecting 5-fC through a labeling pathway. Chemical synthesis, HPLC, denaturing PAGE, and DNA MS were applied to testify that the probe reacted with 5-fC with oligodeoxynucleotide selectivity to achieve 5-fC detection conveniently and quantificationally with the method of fluorescence. The feasibility of fluorescently detecting 5-fC in a genome was also investigated.

  2. [Detecting selection signatures on X chromosome in pig through high density SNPs].

    PubMed

    Ma, Yun-Long; Zhang, Qin; Ding, Xiang-Dong

    2012-10-01

    In the process of domestic pig breeding, many important economic traits were subject to strong artificial se-lection pressure. With the availability of high density single nucleotide polymorphism (SNP) markers in farm animals, selection occurring in those traits could be traced by detecting selection signatures on genome, and the genes experiencing selection can also be further mined based on selection signatures. Due to the special characteristic of X chromosome, many approaches of genetic analysis fitted for autosome are not plausible for X chromosome. Fortunately, detecting selection signature provides an effective tool to settle such situation. In this study, the Cross Population Extend Haplotype Homozygosity Test (XP-EHH) was implemented to identify selection signatures on chromosome X in three pig breeds (Landrace, Songliao, and Yorkshire) using high density SNPs, and the genes located within selection signature regions were revealed through bioinformatic analysis. In total, 29, 13, and 15 selection signature regions, with 3.59, 4.92, and 4.07 SNPs on average in each region, were identified in Landrace, Songliao, and Yorkshire, respectively. Some overlaps of selection signature regions were observed between Songliao and Landrace, and between Landrace and Yorkshire, while no overlaps between Yorkshire and Songliao were found. Bioinformatic analysis revealed that many genes in the selection signature regions were related to reproduction and immune traits, and some of them have not been reported in pigs, which might serve as important candidate genes in future study.

  3. Sequential Model Selection based Segmentation to Detect DNA Copy Number Variation

    PubMed Central

    Hu, Jianhua; Zhang, Liwen; Wang, Huixia Judy

    2016-01-01

    Summary Array-based CGH experiments are designed to detect genomic aberrations or regions of DNA copy-number variation that are associated with an outcome, typically a state of disease. Most of the existing statistical methods target on detecting DNA copy number variations in a single sample or array. We focus on the detection of group effect variation, through simultaneous study of multiple samples from multiple groups. Rather than using direct segmentation or smoothing techniques, as commonly seen in existing detection methods, we develop a sequential model selection procedure that is guided by a modified Bayesian information criterion. This approach improves detection accuracy by accumulatively utilizing information across contiguous clones, and has computational advantage over the existing popular detection methods. Our empirical investigation suggests that the performance of the proposed method is superior to that of the existing detection methods, in particular, in detecting small segments or separating neighboring segments with differential degrees of copy-number variation. PMID:26954760

  4. Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations.

    PubMed

    Jones, Matthew R; Forester, Brenna R; Teufel, Ashley I; Adams, Rachael V; Anstett, Daniel N; Goodrich, Betsy A; Landguth, Erin L; Joost, Stéphane; Manel, Stéphanie

    2013-12-01

    Uncovering the genetic basis of adaptation hinges on the ability to detect loci under selection. However, population genomics outlier approaches to detect selected loci may be inappropriate for clinal populations or those with unclear population structure because they require that individuals be clustered into populations. An alternate approach, landscape genomics, uses individual-based approaches to detect loci under selection and reveal potential environmental drivers of selection. We tested four landscape genomics methods on a simulated clinal population to determine their effectiveness at identifying a locus under varying selection strengths along an environmental gradient. We found all methods produced very low type I error rates across all selection strengths, but elevated type II error rates under "weak" selection. We then applied these methods to an AFLP genome scan of an alpine plant, Campanula barbata, and identified five highly supported candidate loci associated with precipitation variables. These loci also showed spatial autocorrelation and cline patterns indicative of selection along a precipitation gradient. Our results suggest that landscape genomics in combination with other spatial analyses provides a powerful approach for identifying loci potentially under selection and explaining spatially complex interactions between species and their environment. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  5. Culturomics as a data playground for tests of selection: Mathematical approaches to detecting selection in word use.

    PubMed

    Sindi, Suzanne S; Dale, Rick

    2016-09-21

    In biological evolution traits may rise and fall in frequency due to genetic drift, where variant frequencies change by chance, or by selection where advantageous variants will rise in frequency. The neutral model of evolution, first developed by Kimura in the 1960s, has become the standard against which selection is detected. While the balance between these two important forces - drift and selection - has been well established in biology there are other domains where the contribution of these processes is still coming together. Although the idea of natural selection has been applied to the cultural domain since the time of Darwin, it has proven more challenging to positively identify cultural traits under selection both because of a lack of established tests for selection and a lack of large cultural data sets. However, in recent years with the accumulation of large cultural data sets many cultural features from pre-history pottery to modern baby names have been shown to evolve according to the neutral theory. But there is accumulating empirical evidence from cultural processes suggesting that the neutral theory alone cannot account for all features of the data. As such, there has been a renewed interest in determining whether there is selection amidst drift. Here we analyze a subset English word frequencies, and determine whether frequency change reveals processes of selection. Inspired by the Moran and Wright-Fisher models in population genetics, we developed a neutral model of word frequency variation to assess when linguistic data appears to depart from neutral evolution. As such, our model represents a possible "test for selection" in the linguistic domain. We explore how the distribution of word use has changed for sets of words in English for more than 100 years (1901-2008) as expressed in vocabulary usage in published books, made available by Google Ngram. When comparing empirical word frequency changes to our neutral model we find pervasive and systematic

  6. Whole genome detection of signature of positive selection in African cattle reveals selection for thermotolerance.

    PubMed

    Taye, Mengistie; Lee, Wonseok; Caetano-Anolles, Kelsey; Dessie, Tadelle; Hanotte, Olivier; Mwai, Okeyo Ally; Kemp, Stephen; Cho, Seoae; Oh, Sung Jong; Lee, Hak-Kyo; Kim, Heebal

    2017-07-27

    As African indigenous cattle evolved in a hot tropical climate, they have developed an inherent thermotolerance; survival mechanisms include a light-colored and shiny coat, increased sweating, and cellular and molecular mechanisms to cope with high environmental temperature. Here, we report the positive selection signature of genes in African cattle breeds which contribute for their heat tolerance mechanisms. We compared the genomes of five indigenous African cattle breeds with the genomes of four commercial cattle breeds using cross-population composite likelihood ratio (XP-CLR) and cross-population extended haplotype homozygosity (XP-EHH) statistical methods. We identified 296 (XP-EHH) and 327 (XP-CLR) positively selected genes. Gene ontology analysis resulted in 41 biological process terms and six Kyoto Encyclopedia of Genes and Genomes pathways. Several genes and pathways were found to be involved in oxidative stress response, osmotic stress response, heat shock response, hair and skin properties, sweat gland development and sweating, feed intake and metabolism, and reproduction functions. The genes and pathways identified directly or indirectly contribute to the superior heat tolerance mechanisms in African cattle populations. The result will improve our understanding of the biological mechanisms of heat tolerance in African cattle breeds and opens an avenue for further study. © 2017 Japanese Society of Animal Science.

  7. Site-selective imination of an anthracenone sensor: selective fluorescence detection of barium(II).

    PubMed

    Basa, Prem N; Bhowmick, Arundhati; Schulz, Mariah M; Sykes, Andrew G

    2011-10-07

    Site-selective imination of anthraquinone-based macrocyclic crown ethers using titanium tetrachloride as the catalyst yields imines where only the external carbonyl group of the anthraquinone forms Schiff-bases. The following aromatic amines yield monomeric compounds (aniline, 4-nitroaniline, 4-pyrrolaniline, and 1,3-phenylenediamine). Reaction of 2 equiv of the macrocyclic anthraquinone host with 1,2- and 1,4-phenylenediamine yields dimeric imine compounds. The 1,2-diimino host acts as a luminescence sensor, exhibiting enhanced selectivity for Ba(II) ion. Spectroscopic data indicate that two barium ions coordinate to the sensor. Due to E/Z isomerization of the imine, the monomeric complexes are nonluminescent. Restricted rotation about the 1,2 oriented C═N groups or other noncovalent/coordinate-covalent interactions acting between neighboring crown ether rings may inhibit E/Z isomerization in this example, which is different from current examples that employ coordination of a metal cation with a chelating imine nitrogen atom to suppress E/Z isomerization and activate luminescence. The 1,4-diimino adduct, where the crown rings remain widely separated, remains nonluminescent.

  8. Joint skewness and its application in unsupervised band selection for small target detection.

    PubMed

    Geng, Xiurui; Sun, Kang; Ji, Luyan; Tang, Hairong; Zhao, Yongchao

    2015-04-15

    Few band selection methods are specially designed for small target detection. It is well known that the information of small targets is most likely contained in non-Gaussian bands, where small targets are more easily separated from the background. On the other hand, correlation of band set also plays an important role in the small target detection. When the selected bands are highly correlated, it will be unbeneficial for the subsequent detection. However, the existing non-Gaussianity-based band selection methods have not taken the correlation of bands into account, which generally result in high correlation of obtained bands. In this paper, combining the third-order (third-order tensor) and second-order (correlation) statistics of bands, we define a new concept, named joint skewness, for multivariate data. Moreover, we also propose an easy-to-implement approach to estimate this index based on high-order singular value decomposition (HOSVD). Based on the definition of joint skewness, we present an unsupervised band selection for small target detection for hyperspectral data, named joint skewness band selection (JSBS). The evaluation results demonstrate that the bands selected by JSBS are very effective in terms of small target detection.

  9. Joint Skewness and Its Application in Unsupervised Band Selection for Small Target Detection

    PubMed Central

    Geng, Xiurui; Sun, Kang; Ji, Luyan; Tang, Hairong; Zhao, Yongchao

    2015-01-01

    Few band selection methods are specially designed for small target detection. It is well known that the information of small targets is most likely contained in non-Gaussian bands, where small targets are more easily separated from the background. On the other hand, correlation of band set also plays an important role in the small target detection. When the selected bands are highly correlated, it will be unbeneficial for the subsequent detection. However, the existing non-Gaussianity-based band selection methods have not taken the correlation of bands into account, which generally result in high correlation of obtained bands. In this paper, combining the third-order (third-order tensor) and second-order (correlation) statistics of bands, we define a new concept, named joint skewness, for multivariate data. Moreover, we also propose an easy-to-implement approach to estimate this index based on high-order singular value decomposition (HOSVD). Based on the definition of joint skewness, we present an unsupervised band selection for small target detection for hyperspectral data, named joint skewness band selection (JSBS). The evaluation results demonstrate that the bands selected by JSBS are very effective in terms of small target detection. PMID:25873018

  10. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants

    PubMed Central

    Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.

    2016-01-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206

  11. A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective Antigen

    DTIC Science & Technology

    2014-08-01

    A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective Antigen...A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective Antigen...AND SUBTITLE A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective

  12. Detecting and characterizing genomic signatures of positive selection in global populations.

    PubMed

    Liu, Xuanyao; Ong, Rick Twee-Hee; Pillai, Esakimuthu Nisha; Elzein, Abier M; Small, Kerrin S; Clark, Taane G; Kwiatkowski, Dominic P; Teo, Yik-Ying

    2013-06-06

    Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global populations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin pigmentation, or cause sickle cell anemia. We have developed a long-range-haplotype method for identifying genomic signatures of positive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplotypes that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to systematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from 14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence and that the majority of shared signals stem from the same evolutionary event.

  13. Gene discovery, evolutionary affinity and molecular detection of Oxyspirura petrowi, an eye worm parasite of game birds

    PubMed Central

    2013-01-01

    Background Oxyspirura petrowi appears to be emerging as a nematode parasite that could negatively impact Northern Bobwhite quail individuals and populations within Texas and other regions of the United States. Despite this eye worm's potential importance in the conservation of wild quail, little is known about the general biology and genome composition of O. petrowi. To fill the knowledge gap, we performed a small scale random genome sequence survey, sequenced its 18S rRNA and the intergenic region between the 18S and 28S rRNA genes, studied its phylogenetic affinity, and developed a PCR protocol for the detection of this eye worm. Results We have generated ~240 kb of genome sequence data derived from 348 clones by a random genome survey of an O. petrowi genomic library. The eye worm genome is AT-rich (i.e., 62.2% AT-content), and contains a high number of microsatellite sequences. The discovered genes encode a wide-range of proteins including hypothetical proteins, enzymes, nematode-specific proteins. Phylogenetic analysis based on 18S rRNA sequences indicate that the Spiruroidea is paraphyletic, in which Oxyspirura and its closely related species are sisters to the filarial nematodes. We have also developed a PCR protocol based on the ITS2 sequence that allows sensitive and specific detection of eye worm DNA in feces. Using this newly developed protocol, we have determined that ~28% to 33% of the fecal samples collected from Northern Bobwhites and Scaled Quail in Texas in the spring of 2013 are O. petrowi positive. Conclusions The O. petrowi genome is rich in microsatellite sequences that may be used in future genotyping and molecular fingerprinting analysis. This eye worm is evolutionarily close to the filarial nematodes, implying that therapeutic strategies for filariasis such as Loa loa would be referential in developing treatments for the Thelazoidea parasites. Our qPCR-based survey has confirmed that O. petrowi infection is of potential concern to quail

  14. Detecting Directional Selection in the Presence of Recent Admixture in African-Americans

    PubMed Central

    Lohmueller, Kirk E.; Bustamante, Carlos D.; Clark, Andrew G.

    2011-01-01

    We investigate the performance of tests of neutrality in admixed populations using plausible demographic models for African-American history as well as resequencing data from African and African-American populations. The analysis of both simulated and human resequencing data suggests that recent admixture does not result in an excess of false-positive results for neutrality tests based on the frequency spectrum after accounting for the population growth in the parental African population. Furthermore, when simulating positive selection, Tajima's D, Fu and Li's D, and haplotype homozygosity have lower power to detect population-specific selection using individuals sampled from the admixed population than from the nonadmixed population. Fay and Wu's H test, however, has more power to detect selection using individuals from the admixed population than from the nonadmixed population, especially when the selective sweep ended long ago. Our results have implications for interpreting recent genome-wide scans for positive selection in human populations. PMID:21196524

  15. Detecting directional selection in the presence of recent admixture in African-Americans.

    PubMed

    Lohmueller, Kirk E; Bustamante, Carlos D; Clark, Andrew G

    2011-03-01

    We investigate the performance of tests of neutrality in admixed populations using plausible demographic models for African-American history as well as resequencing data from African and African-American populations. The analysis of both simulated and human resequencing data suggests that recent admixture does not result in an excess of false-positive results for neutrality tests based on the frequency spectrum after accounting for the population growth in the parental African population. Furthermore, when simulating positive selection, Tajima's D, Fu and Li's D, and haplotype homozygosity have lower power to detect population-specific selection using individuals sampled from the admixed population than from the nonadmixed population. Fay and Wu's H test, however, has more power to detect selection using individuals from the admixed population than from the nonadmixed population, especially when the selective sweep ended long ago. Our results have implications for interpreting recent genome-wide scans for positive selection in human populations.

  16. Mitochondrial DNA Detects a Complex Evolutionary History with Pleistocene Epoch Divergence for the Neotropical Malaria Vector Anopheles nuneztovari Sensu Lato

    PubMed Central

    Scarpassa, Vera Margarete; Conn, Jan E.

    2011-01-01

    Cryptic species and lineages characterize Anopheles nuneztovari s.l. Gabaldón, an important malaria vector in South America. We investigated the phylogeographic structure across the range of this species with cytochrome oxidase subunit I (COI) mitochondrial DNA sequences to estimate the number of clades and levels of divergence. Bayesian and maximum-likelihood phylogenetic analyses detected four groups distributed in two major monophyletic clades (I and II). Samples from the Amazon Basin were clustered in clade I, as were subclades II-A and II-B, whereas those from Bolivia/Colombia/Venezuela were restricted to one basal subclade (II-C). These data, together with a statistical parsimony network, confirm results of previous studies that An. nuneztovari is a species complex consisting of at least two cryptic taxa, one occurring in Colombia and Venezuela and the another occurring in the Amazon Basin. These data also suggest that additional incipient species may exist in the Amazon Basin. Divergence time and expansion tests suggested that these groups separated and expanded in the Pleistocene Epoch. In addition, the COI sequences clearly separated An. nuneztovari s.l. from the closely related species An. dunhami Causey, and three new records are reported for An. dunhami in Amazonian Brazil. These findings are relevant for vector control programs in areas where both species occur. Our analyses support dynamic geologic and landscape changes in northern South America, and infer particularly active divergence during the Pleistocene Epoch for New World anophelines. PMID:22049039

  17. A new sensitive and selective fluorescence probe for detection of cyanide.

    PubMed

    Duan, Yi-Long; Zheng, Yan-Song

    2013-03-30

    A class of new fluorescence probe α-p-trifluoroacetamidophenyl-4-alkoxycinnamonitrile for detection of cyanide anion was synthesized by the trifluoroacetylation of the fluorophore α-p-aminophenyl-4-alkoxycinnamonitrile. It was found that the probe could selectively detect cyanide anions, even in the presence of hydrogen sulfite and dicarbonate anions which were reported to easily interfere with the detection. The concentration of the cyanide anions that could be detected was as low as 1.0 μM. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Novel pyrazoline-based selective fluorescent probe for the detection of hydrazine.

    PubMed

    Zheng, Xiao-Xin; Wang, Sheng-Qing; Wang, Hao-Yan; Zhang, Rong-Rong; Liu, Jin-Ting; Zhao, Bao-Xiang

    2015-03-05

    A novel pyrazoline-based fluorescent probe, 2-[4-(3,5-diphenyl-4,5-dihydro-pyrazol-1-yl)-benzylidene]-malononitrile, with a simple structure and low detection limit (6.16×10(-6)M) for the detection of hydrazine is designed and synthesized. The probe responds selectively to hydrazine over other molecules with marked fluorescence enhancement. The probe can detect hydrazine effectively at pH 5.0-9.0 with a special emission wavelength at 520nm. Moreover, the probe can be used to detect hydrazine from variety of natural source water.

  19. Selective immobilization and detection of DNA on biopolymer supports for the design of microarrays.

    PubMed

    Kargl, R; Vorraber, V; Ribitsch, V; Köstler, S; Stana-Kleinschek, K; Mohan, T

    2015-06-15

    DNA immobilization for the manufacturing of microarrays requires sufficient probe density, low unspecific binding and high interaction efficiency with complementary strands that are detected from solutions. Many of these important parameters are affected by the surface chemistry and the blocking steps conducted during DNA spotting and hybridization. This work describes an alternative method to selectively immobilize probes and to detect DNA on biocompatible, hydrophilic cellulose coated supports with low unspecific binding, high selectivity and appropriate sensitivity. It takes advantage of a relatively selective adsorption of water soluble polysaccharides on a solid cellulose matrix. Single strands of DNA were conjugated to this soluble polysaccharide and subsequently micro-spotted on solid cellulose thin films that were coated on glass and polymer slides. This resulted in adsorptively bound DNA-probes that were used to detect complementary, labelled DNA strands with different lengths and sequences by hybridization. The interaction of the DNA-conjugates with cellulose surfaces and the selectivity of hybridization were investigated by a quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence scanning. The method of non-covalent immobilization of DNA probes on an uncharged, non-reactive, hydrophilic support lowers the unspecific binding and the number of handling steps required to conduct the experiments for the detection of DNA on microarrays. Simultaneously selectivity, hybridization efficiency and detection limits are maintained. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection.

    PubMed

    Cai, Zhongyu; Sasmal, Aniruddha; Liu, Xinyu; Asher, Sanford A

    2017-10-04

    Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochemically important lectin, jacalin, play significant roles in many biological functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here we report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection of lectin proteins. The copolymerization of a vinyl linked carbohydrate monomer with acrylamide and acrylic acid forms a carbohydrate hydrogel that shows specific "multivalent" binding to lectin proteins. The resulting carbohydrate hydrogels are attached to 2-D photonic crystals (PCs) that brightly diffract visible light. This diffraction provides an optical readout that sensitively monitors the hydrogel volume. We utilize lactose, galactose, and mannose containing hydrogels to fabricate a series of 2-D PC sensors that show strong selective binding to the lectin proteins ricin, jacalin, and concanavalin A (Con A). This binding causes a carbohydrate hydrogel shrinkage which significantly shifts the diffraction wavelength. The resulting 2-D PC sensors can selectively detect the lectin proteins ricin, jacalin, and Con A. These unoptimized 2-D PC hydrogel sensors show a limit of detection (LoD) of 7.5 × 10(-8) M for ricin, a LoD of 2.3 × 10(-7) M for jacalin, and a LoD of 3.8 × 10(-8) M for Con A, respectively. This sensor fabrication approach may enable numerous sensors for the selective detection of numerous lectin proteins.

  1. Selective cultivation and rapid detection of Staphylococcus aureus by computer vision.

    PubMed

    Wang, Yong; Yin, Yongguang; Zhang, Chaonan

    2014-03-01

    In this paper, we developed a selective growth medium and a more rapid detection method based on computer vision for selective isolation and identification of Staphylococcus aureus from foods. The selective medium consisted of tryptic soy broth basal medium, 3 inhibitors (NaCl, K2 TeO3 , and phenethyl alcohol), and 2 accelerators (sodium pyruvate and glycine). After 4 h of selective cultivation, bacterial detection was accomplished using computer vision. The total analysis time was 5 h. Compared to the Baird-Parker plate count method, which requires 4 to 5 d, this new detection method offers great time savings. Moreover, our novel method had a correlation coefficient of greater than 0.998 when compared with the Baird-Parker plate count method. The detection range for S. aureus was 10 to 10(7) CFU/mL. Our new, rapid detection method for microorganisms in foods has great potential for routine food safety control and microbiological detection applications. © 2014 Institute of Food Technologists®

  2. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.

    PubMed

    Ma, Yingxin; Li, Hao; Peng, Shan; Wang, Leyu

    2012-10-02

    Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated.

  3. A survey of methods and tools to detect recent and strong positive selection.

    PubMed

    Pavlidis, Pavlos; Alachiotis, Nikolaos

    2017-12-01

    Positive selection occurs when an allele is favored by natural selection. The frequency of the favored allele increases in the population and due to genetic hitchhiking the neighboring linked variation diminishes, creating so-called selective sweeps. Detecting traces of positive selection in genomes is achieved by searching for signatures introduced by selective sweeps, such as regions of reduced variation, a specific shift of the site frequency spectrum, and particular LD patterns in the region. A variety of methods and tools can be used for detecting sweeps, ranging from simple implementations that compute summary statistics such as Tajima's D, to more advanced statistical approaches that use combinations of statistics, maximum likelihood, machine learning etc. In this survey, we present and discuss summary statistics and software tools, and classify them based on the selective sweep signature they detect, i.e., SFS-based vs. LD-based, as well as their capacity to analyze whole genomes or just subgenomic regions. Additionally, we summarize the results of comparisons among four open-source software releases (SweeD, SweepFinder, SweepFinder2, and OmegaPlus) regarding sensitivity, specificity, and execution times. In equilibrium neutral models or mild bottlenecks, both SFS- and LD-based methods are able to detect selective sweeps accurately. Methods and tools that rely on LD exhibit higher true positive rates than SFS-based ones under the model of a single sweep or recurrent hitchhiking. However, their false positive rate is elevated when a misspecified demographic model is used to represent the null hypothesis. When the correct (or similar to the correct) demographic model is used instead, the false positive rates are considerably reduced. The accuracy of detecting the true target of selection is decreased in bottleneck scenarios. In terms of execution time, LD-based methods are typically faster than SFS-based methods, due to the nature of required arithmetic.

  4. On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations.

    PubMed

    González-Rodríguez, Aldemar; Munilla, Sebastián; Mouresan, Elena F; Cañas-Álvarez, Jhon J; Díaz, Clara; Piedrafita, Jesús; Altarriba, Juan; Baro, Jesús Á; Molina, Antonio; Varona, Luis

    2016-10-28

    Procedures for the detection of signatures of selection can be classified according to the source of information they use to reject the null hypothesis of absence of selection. Three main groups of tests can be identified that are based on: (1) the analysis of the site frequency spectrum, (2) the study of the extension of the linkage disequilibrium across the length of the haplotypes that surround the polymorphism, and (3) the differentiation among populations. The aim of this study was to compare the performance of a subset of these procedures by using a dataset on seven Spanish autochthonous beef cattle populations. Analysis of the correlations between the logarithms of the statistics that were obtained by 11 tests for detecting signatures of selection at each single nucleotide polymorphism confirmed that they can be clustered into the three main groups mentioned above. A factor analysis summarized the results of the 11 tests into three canonical axes that were each associated with one of the three groups. Moreover, the signatures of selection identified with the first and second groups of tests were shared across populations, whereas those with the third group were more breed-specific. Nevertheless, an enrichment analysis identified the metabolic pathways that were associated with each group; they coincided with canonical axes and were related to immune response, muscle development, protein biosynthesis, skin and pigmentation, glucose metabolism, fat metabolism, embryogenesis and morphology, heart and uterine metabolism, regulation of the hypothalamic-pituitary-thyroid axis, hormonal, cellular cycle, cell signaling and extracellular receptors. We show that the results of the procedures used to identify signals of selection differed substantially between the three groups of tests. However, they can be classified using a factor analysis. Moreover, each canonical factor that coincided with a group of tests identified different signals of selection, which could be

  5. Evolutionary foundations for cancer biology

    PubMed Central

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles—cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations—provide a foundation for understanding, preventing, and treating cancer. PMID:23396885

  6. Evolutionary inevitability of sexual antagonism.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2014-02-07

    Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.

  7. Evolutionary foundations for cancer biology.

    PubMed

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  8. Detection of selection signatures in dairy and beef cattle using high-density genomic information.

    PubMed

    Zhao, Fuping; McParland, Sinead; Kearney, Francis; Du, Lixin; Berry, Donagh P

    2015-06-19

    Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs. Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes

  9. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates

    PubMed Central

    Belanov, Sergei S.; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E.

    2015-01-01

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009–2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009–2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. PMID:26615216

  10. Locus-specific ancestry to detect recent response to selection in admixed Swiss Fleckvieh cattle.

    PubMed

    Khayatzadeh, N; Mészáros, G; Utsunomiya, Y T; Garcia, J F; Schnyder, U; Gredler, B; Curik, I; Sölkner, J

    2016-12-01

    Identification of selection signatures is one of the current endeavors of evolutionary genetics. Admixed populations may be used to infer post-admixture selection. We calculated local ancestry for Swiss Fleckvieh, a composite of Simmental (SI) and Red Holstein Friesian (RHF), to infer such signals. Illumina Bovine SNP50 BeadChip data for 300 admixed, 88 SI and 97 RHF bulls were used. The average RHF ancestry across the whole genome was 0.70. To identify regions with high deviation from average, we considered two significance thresholds, based on a permutation test and extreme deviation from normal distribution. Regions on chromosomes 13 (46.3-47.3 Mb) and 18 (18.7-25.9 Mb) passed both thresholds in the direction of increased SI. Extended haplotype homozygosity within (iHS) and between (Rsb) populations was calculated to explore additional patterns of pre- and post-admixture selection signals. The Rsb score of admixed and SI was significant in a wide region of chromosome 18 (6.6-24.6 Mb) overlapped with one area of strong local ancestry deviation. FTO, with pleiotropic effect on milk and fertility, NOD2 on dairy and NKD1 and SALL1 on fertility traits are located there. Genetic differentiation of RHF and SI (Fst ), an alternative indicator of pre-admixture selection in pure populations, was calculated. No considerable overlap of peaks of local ancestry deviations and Fst was observed. We found two regions with significant signatures of post-admixture selection in this very young composite, applying comparatively stringent significance thresholds. The signals cover relatively large genomic areas and did not allow pinpointing of the gene(s) responsible for the apparent shift in ancestry proportions. © 2016 Stichting International Foundation for Animal Genetics.

  11. Selective detection of 1000 B. anthracis spores within 15 minutes using a peptide functionalized SERS assay.

    PubMed

    Farquharson, Stuart; Shende, Chetan; Smith, Wayne; Huang, Hermes; Inscore, Frank; Sengupta, Atanu; Sperry, Jay; Sickler, Todd; Prugh, Amber; Guicheteau, Jason

    2014-12-21

    A surface-enhanced Raman spectroscopy (SERS) assay has been designed to detect Bacillus anthracis spores. The assay consists of silver nanoparticles embedded in a porous glass structure that have been functionalized with ATYPLPIR, a peptide developed to discriminately bind B. anthracis versus other species of Bacillus. Once bound, acetic acid was used to release the biomarker dipicolinic acid from the spores, which was detected by SERS through the addition of silver colloids. This SERS assay was used to selectively bind B. anthracis with a 100-fold selectivity versus B. cereus, and to detect B. anthracis Ames at concentrations of 1000 spores per mL within 15 minutes. The SERS assay measurements provide a basis for the development of systems that can detect spores collected from the air or from water supplies.

  12. A Novel Fluorescent Probe for the Highly Selective and Sensitive Detection of Palladium in Aqueous Medium.

    PubMed

    Ma, Zhiwei; Wang, Xiao; Sun, Yanling; Liu, Juntao; Tong, Yan; Liu, Zhijing

    2016-11-01

    Based on the Pd(0)-catalyzed Tsuji-Trost allylic oxidative insertion reaction, we developed a fluorescent probe PdL1 for sensing Pd(0). As expected, probe PdL1 exhibited high selectivity and excellent sensitivity in both absorbance and fluorescence detection of Pd(0) in CH3CH2OH/PBS (10 mM, pH = 7.4, 6:4, v/v) solution. The detection limit was calculated to be as low as 15 nM, which can meet the selective requirements for practical application.

  13. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.

    PubMed

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-04-29

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.

  14. Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols.

    PubMed

    Zhang, Xiaoyan; Lomora, Mihai; Einfalt, Tomaz; Meier, Wolfgang; Klein, Noreen; Schneider, Dirk; Palivan, Cornelia G

    2016-05-01

    We introduce active surfaces generated by immobilizing protein-polymer nanoreactors on a solid support for sensitive sugar alcohols detection. First, such selective nanoreactors were engineered in solution by simultaneous encapsulation of specific enzymes in copolymer polymersomes, and insertion of membrane proteins for selective conduct of sugar alcohols. Despite the artificial surroundings, and the thickness of the copolymer membrane, functionality of reconstituted Escherichia coli glycerol facilitator (GlpF) was preserved, and allowed selective diffusion of sugar alcohols to the inner cavity of the polymersome, where encapsulated ribitol dehydrogenase (RDH) enzymes served as biosensing entities. Ribitol, selected as a model sugar alcohol, was detected quantitatively by the RDH-nanoreactors with GlpF-mediated permeability in a concentration range of 1.5-9 mM. To obtain "active surfaces" for detecting sugar alcohols, the nanoreactors optimized in solution were then immobilized on a solid support: aldehyde groups exposed at the compartment external surface reacted via an aldehyde-amino reaction with glass surfaces chemically modified with amino groups. The nanoreactors preserved their architecture and activity after immobilization on the glass surface, and represent active biosensing surfaces for selective detection of sugar alcohols, with high sensitivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines

    PubMed Central

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-01-01

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561

  16. Highly selective fluorescent and colorimetric chemosensor for detection of Hg2 + ion in aqueous media

    NASA Astrophysics Data System (ADS)

    Zareh Jonaghani, Mohammad; Zali-Boeini, Hassan

    2017-05-01

    A highly efficient and selective fluorescent and colorimetric chemosensor based on naphthothiazole skeleton was synthesized and its colorimetric and fluorescent properties were investigated. The sensor displays a rapid and highly selective colorimetric and fluorescence response toward Hg2 + without interference with other metal ions in CH3CN/H2O mixture (50/50, v/v). The detection limit for the fluorescent chemosensor S1 toward Hg2 + was 3.42 × 10- 8 M.

  17. Multi-Layer Approach for the Detection of Selective Forwarding Attacks

    PubMed Central

    Alajmi, Naser; Elleithy, Khaled

    2015-01-01

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable. PMID:26610499

  18. Multi-Layer Approach for the Detection of Selective Forwarding Attacks.

    PubMed

    Alajmi, Naser; Elleithy, Khaled

    2015-11-19

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable.

  19. Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection

    NASA Astrophysics Data System (ADS)

    Salamatova, T.; Zhukov, V.

    2017-02-01

    The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.

  20. Surface-Enhanced Raman Spectroscopy-Based Approach for Ultrasensitive and Selective Detection of Hydrazine.

    PubMed

    Gu, Xin; Camden, Jon P

    2015-07-07

    A probe mediated SERS-based strategy is developed to selectively detect hydrazine with superb sensitivity. Ortho-phthaldialdehyde, a simple probe, reacts specifically with hydrazine to form phthalazine, a molecule that possesses a larger Raman cross section and better affinity toward the SERS substrate. We observed a limit of detection of 8.5 × 10(-11) M. Our method shows both qualitative and quantitative measurement of hydrazine with high sensitivity, low cost, and fast analysis time.

  1. Scedo-Select III: a new semi-selective culture medium for detection of the Scedosporium apiospermum species complex.

    PubMed

    Pham, Trâm; Giraud, Sandrine; Schuliar, Gaëlle; Rougeron, Amandine; Bouchara, Jean-Philippe

    2015-06-01

    The Scedosporium apiospermum complex is responsible for a large variety of infections in human. Members of this complex have become emerging fungal pathogens with an increasing occurrence in patients with underlying conditions such as immunosuppression or cystic fibrosis. A better knowledge of these fungi and of the sources of contamination of the patients is required and more accurate detection methods from the environment are needed. In this context, a highly selective culture medium was developed in the present study. Thus, various aliphatic, cyclic, or aromatic compounds were tested as the sole carbon source, in combination with some inorganic nitrogen sources and fungicides. The best results were obtained with 4-hydroxy-benzoate combined with ammonium sulfate and the fungicides dichloran and benomyl. This new culture medium called Scedo-Select III was shown to support growth of all species of the S. apiospermum complex. Subsequently, this new culture medium was evaluated successfully on water and soil samples, exhibiting higher sensitivity and selectivity than the previously described SceSel+ culture medium. Therefore, this easy-to-prepare and synthetic semi-selective culture medium may be useful to clarify the ecology of these fungi and to identify their reservoirs in patients' environment.

  2. Evolutionary Dynamics of Biological Games

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.; Sigmund, Karl

    2004-02-01

    Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.

  3. Evolutionary Dynamics of Abundant Stop Codon Readthrough

    PubMed Central

    Jungreis, Irwin; Kellis, Manolis

    2016-01-01

    Translational stop codon readthrough emerged as a major regulatory mechanism affecting hundreds of genes in animal genomes, based on recent comparative genomics and ribosomal profiling evidence, but its evolutionary properties remain unknown. Here, we leverage comparative genomic evidence across 21 Anopheles mosquitoes to systematically annotate readthrough genes in the malaria vector Anopheles gambiae, and to provide the first study of abundant readthrough evolution, by comparison with 20 Drosophila species. Using improved comparative genomics methods for detecting readthrough, we identify evolutionary signatures of conserved, functional readthrough of 353 stop codons in the malaria vector, Anopheles gambiae, and of 51 additional Drosophila melanogaster stop codons, including several cases of double and triple readthrough and of readthrough of two adjacent stop codons. We find that most differences between the readthrough repertoires of the two species arose from readthrough gain or loss in existing genes, rather than birth of new genes or gene death; that readthrough-associated RNA structures are sometimes gained or lost while readthrough persists; that readthrough is more likely to be lost at TAA and TAG stop codons; and that readthrough is under continued purifying evolutionary selection in mosquito, based on population genetic evidence. We also determine readthrough-associated gene properties that predate readthrough, and identify differences in the characteristic properties of readthrough genes between clades. We estimate more than 600 functional readthrough stop codons in mosquito and 900 in fruit fly, provide evidence of readthrough control of peroxisomal targeting, and refine the phylogenetic extent of abundant readthrough as following divergence from centipede. PMID:27604222

  4. Eigenvalue-weighting and feature selection for computer-aided polyp detection in CT colonography

    NASA Astrophysics Data System (ADS)

    Zhu, Hongbin; Wang, Su; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2010-03-01

    With the development of computer-aided polyp detection towards virtual colonoscopy screening, the trade-off between detection sensitivity and specificity has gained increasing attention. An optimum detection, with least number of false positives and highest true positive rate, is desirable and involves interdisciplinary knowledge, such as feature extraction, feature selection as well as machine learning. Toward that goal, various geometrical and textural features, associated with each suspicious polyp candidate, have been individually extracted and stacked together as a feature vector. However, directly inputting these high-dimensional feature vectors into a learning machine, e.g., neural network, for polyp detection may introduce redundant information due to feature correlation and induce the curse of dimensionality. In this paper, we explored an indispensable building block of computer-aided polyp detection, i.e., principal component analysis (PCA)-weighted feature selection for neural network classifier of true and false positives. The major concepts proposed in this paper include (1) the use of PCA to reduce the feature correlation, (2) the scheme of adaptively weighting each principal component (PC) by the associated eigenvalue, and (3) the selection of feature combinations via the genetic algorithm. As such, the eigenvalue is also taken as part of the characterizing feature, and the necessary number of features can be exposed to mitigate the curse of dimensionality. Learned and tested by radial basis neural network, the proposed computer-aided polyp detection has achieved 95% sensitivity at a cost of average 2.99 false positives per polyp.

  5. Menopause: an evolutionary perspective.

    PubMed

    Austad, S N

    1994-01-01

    Evolutionary biologists classify theories of menopause as either: 1) adaptive, suggesting that female reproductive cessation results from its selective advantage, in that the increased risk of personal reproduction late in life makes it biologically more advantageous to rechannel reproductive energy into helping existing descendents, or 2) nonadaptive, indicating menopause is an artifact of the relatively recent dramatic increase in human longevity. With the possible exception of pilot whales, no mammals studied to date are known to commonly exhibit reproductive cessation in nature. To demonstrate adaptive menopause, one would need to establish both that the longevity of preagricultural humans commonly allowed them to exhibit menopause, and that postreproductive females could assist their descendents sufficiently to compensate for the loss of personal reproduction. The data on longevity of preagricultural humans with respect to the adaptive menopause hypothesis are mixed. Evolutionary models evaluated with data from modern hunting-gathering or agricultural humans fail to find that humans can assist their descendents sufficiently to offset the evolutionary cost of ceasing reproduction. However, assuming the human body has been physiologically adapted to the conditions extant during the vast majority of human history, it may be well worth pursuing how the signs and symptoms of menopause are affected by dietary, exercise, and reproductive hormone regimes mimicking those of the late Paleolithic era.

  6. Evolutionary mysteries in meiosis.

    PubMed

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.

  7. Detection of genomic signatures of recent selection in commercial broiler chickens.

    PubMed

    Fu, Weixuan; Lee, William R; Abasht, Behnam

    2016-08-26

    Identification of the genomic signatures of recent selection may help uncover causal polymorphisms controlling traits relevant to recent decades of selective breeding in livestock. In this study, we aimed at detecting signatures of recent selection in commercial broiler chickens using genotype information from single nucleotide polymorphisms (SNPs). A total of 565 chickens from five commercial purebred lines, including three broiler sire (male) lines and two broiler dam (female) lines, were genotyped using the 60K SNP Illumina iSelect chicken array. To detect genomic signatures of recent selection, we applied two methods based on population comparison, cross-population extended haplotype homozygosity (XP-EHH) and cross-population composite likelihood ratio (XP-CLR), and further analyzed the results to find genomic regions under recent selection in multiple purebred lines. A total of 321 candidate selection regions spanning approximately 1.45 % of the chicken genome in each line were detected by consensus of results of both XP-EHH and XP-CLR methods. To minimize false discovery due to genetic drift, only 42 of the candidate selection regions that were shared by 2 or more purebred lines were considered as high-confidence selection regions in the study. Of these 42 regions, 20 were 50 kb or less while 4 regions were larger than 0.5 Mb. In total, 91 genes could be found in the 42 regions, among which 19 regions contained only 1 or 2 genes, and 9 regions were located at gene deserts. Our results provide a genome-wide scan of recent selection signatures in five purebred lines of commercial broiler chickens. We found several candidate genes for recent selection in multiple lines, such as SOX6 (Sex Determining Region Y-Box 6) and cTR (Thyroid hormone receptor beta). These genes may have been under recent selection due to their essential roles in growth, development and reproduction in chickens. Furthermore, our results suggest that in some candidate regions, the same or

  8. Impact of Amplified Fragment Length Polymorphism Size Homoplasy on the Estimation of Population Genetic Diversity and the Detection of Selective Loci

    PubMed Central

    Caballero, Armando; Quesada, Humberto; Rolán-Alvarez, Emilio

    2008-01-01

    AFLP markers are becoming one of the most popular tools for genetic analysis in the fields of evolutionary genetics and ecology and conservation of genetic resources. The technique combines a high-information content and fidelity with the possibility of carrying out genomewide scans. However, a potential problem with this technique is the lack of homology of bands with the same electrophoretic mobility, what is known as fragment-size homoplasy. We carried out a theoretical analysis aimed at quantifying the impact of AFLP homoplasy on the estimation of within- and between-neutral population genetic diversity in a model of a structured finite population with migration among subpopulations. We also investigated the performance of a currently used method (DFDIST software) to detect selective loci from the comparison between genetic differentiation and heterozygosis of dominant molecular markers, as well as the impact of AFLP homoplasy on its effectiveness. The results indicate that the biases produced by homoplasy are: (1) an overestimation of the frequency of the allele determining the presence of the band, (2) an underestimation of the degree of differentiation between subpopulations, and (3) an overestimation or underestimation of the heterozygosis, depending on the allele frequency of the markers. The impact of homoplasy is quickly diminished by reducing the number of fragments analyzed per primer combination. However, substantial biases on the expected heterozygosity (up to 15–25%) may occur with ∼50–100 fragments per primer combination. The performance of the DFDIST software to detect selective loci from dominant markers is highly dependent on the number of selective loci in the genome and their average effects, the estimate of genetic differentiation chosen to be used in the analysis, and the critical bound probability used to detect outliers. Overall, the results indicate that the software should be used with caution. AFLP homoplasy can produce a

  9. Unsupervised Spectral-Spatial Feature Selection-Based Camouflaged Object Detection Using VNIR Hyperspectral Camera

    PubMed Central

    2015-01-01

    The detection of camouflaged objects is important for industrial inspection, medical diagnoses, and military applications. Conventional supervised learning methods for hyperspectral images can be a feasible solution. Such approaches, however, require a priori information of a camouflaged object and background. This letter proposes a fully autonomous feature selection and camouflaged object detection method based on the online analysis of spectral and spatial features. The statistical distance metric can generate candidate feature bands and further analysis of the entropy-based spatial grouping property can trim the useless feature bands. Camouflaged objects can be detected better with less computational complexity by optical spectral-spatial feature analysis. PMID:25879073

  10. Specific determination of benzene in urine using dynamic headspace and mass-selective detection.

    PubMed

    Ljungkvist, G; Lärstad, M; Mathiasson, L

    1999-01-08

    A method for the determination of benzene in urine was developed, based on dynamic headspace and preconcentration of the analyte on a solid sorbent. The subsequent analysis by thermal desorption of the sorbent, capillary gas chromatography and mass-selective detection ascertained a low limit of detection (6.5 ng/l) and a highly specific determination. The limit of detection is an order of magnitude lower than that reported earlier and allows reliable quantitation of occupational exposure and of most environmental exposures. Samples could be stored frozen for at least a month without significant loss.

  11. Study of vegetation index selection and changing detection thresholds in land cover change detection assessment using change vector analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy; Tran, Giang

    2012-07-01

    In recent years, Vietnamese rapidly developing economy has led to speedy changes in land cover. The study of changing detection of land cover plays an important role in making the strategy of the managers. There are two main approaches in changing detection research by using remote sensing and GIS: post- classification change detection analysis approach and pre-classification changing spectral determination approach. Each has their own different advantages and disadvantages. The second one is further divided into: Image Differencing, Multi-date Principal Component Analysis (MPCA); Change Vector Analysis (CVA). In this study, researchers introduce CVA method. This method is based on two important index to show the primary feature of land cover, such as: vegetation index (NDVI-) and barren land index (-BI). Ability to apply methods of CVA has been mentioned in the studies [1, 2, 3, and 4]. However, in these studies did not mention the NDVI index selection and changing detection threshold in changing detection assessment? This paper proposes application to solve these two problems.

  12. Selective detection of target proteins by peptide-enabled graphene biosensor.

    PubMed

    Khatayevich, Dmitriy; Page, Tamon; Gresswell, Carolyn; Hayamizu, Yuhei; Grady, William; Sarikaya, Mehmet

    2014-04-24

    Direct molecular detection of biomarkers is a promising approach for diagnosis and monitoring of numerous diseases, as well as a cornerstone of modern molecular medicine and drug discovery. Currently, clinical applications of biomarkers are limited by the sensitivity, complexity and low selectivity of available indirect detection methods. Electronic 1D and 2D nano-materials such as carbon nanotubes and graphene, respectively, offer unique advantages as sensing substrates for simple, fast and ultrasensitive detection of biomolecular binding. Versatile methods, however, have yet to be developed for simultaneous functionalization and passivation of the sensor surface to allow for enhanced detection and selectivity of the device. Herein, we demonstrate selective detection of a model protein against a background of serum protein using a graphene sensor functionalized via self-assembling multifunctional short peptides. The two peptides are engineered to bind to graphene and undergo co-assembly in the form of an ordered monomolecular film on the substrate. While the probe peptide displays the bioactive molecule, the passivating peptide prevents non-specific protein adsorption onto the device surface, ensuring target selectivity. In particular, we demonstrate a graphene field effect transistor (gFET) biosensor which can detect streptavidin against a background of serum bovine albumin at less than 50 ng/ml. Our nano-sensor design, allows us to restore the graphene surface and utilize each sensor in multiple experiments. The peptide-enabled gFET device has great potential to address a variety of bio-sensing problems, such as studying ligand-receptor interactions, or detection of biomarkers in a clinical setting.

  13. Thermodynamics and evolutionary genetics

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2010-03-01

    Thermodynamics and evolutionary genetics have something in common. Thus, the randomness of mutation of cells may be likened to the random thermal fluctuations in a gas. And the probabilistic nature of entropy in statistical thermodynamics can be carried over to a population of haploid and diploid cells without any conceptual change. The energetic potential wells in which the atoms of a liquid are caught correspond to selective advantages for some phenotype over others. Thus, the eventual stable state in a population comes about as a compromise in the universal competition between entropy and energy.

  14. Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots.

    PubMed

    Dutta Chowdhury, Ankan; Doong, Ruey-An

    2016-08-17

    The good stability, low cytotoxicity, and excellent photoluminescence property of graphene quantum dots (GQDs) make them an emerging class of promising materials in various application fields ranging from sensor to drug delivery. In the present work, the dopamine-functionalized GQDs (DA-GQDs) with stably bright blue fluorescence were successfully synthesized for low level Fe(3+) ions detection. The as-synthesized GQDs are uniform in size with narrow-distributed particle size of 4.5 ± 0.6 nm and high quantum yield of 10.2%. The amide linkage of GQDs with dopamine, confirmed by using XPS and FTIR spectra, results in the specific interaction between Fe(3+) and catechol moiety of dopamine at the interfaces for highly sensitive and selective detection of Fe(3+). A linear range of 20 nM to 2 μM with a detection limit of 7.6 nM is obtained for Fe(3+) detection by DA-GQDs. The selectivity of DA-GQDs sensing probe is significantly excellent in the presence of other interfering metal ions. In addition, the reaction mechanism for Fe(3+) detection based on the complexation and oxidation of dopamine has been proposed and validated. Results obtained in this study clearly demonstrate the superiority of surface functionalized GQDs to Fe(3+) detection, which can pave an avenue for the development of high performance and robust sensing probes for detection of metal ions and other organic metabolites in environmental and biomedical applications.

  15. Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism.

    PubMed

    Dinda, Diptiman; Gupta, Abhisek; Shaw, Bikash Kumar; Sadhu, Suparna; Saha, Shyamal Kumar

    2014-07-09

    Among different nitro compounds, trinitrophenol (TNP) is the most common constituent to prepare powerful explosives all over the world. A few works on the detection of nitro explosives have already been reported in the past few years; however, selectivity is still in its infant stage. As all the nitroexplosives are highly electron deficient in nature, it is very difficult to separate one from a mixture of different nitro compounds by the usual photoinduced electron transfer (PET) mechanism. In the present work, we have used a bright luminescent, 2,6-diamino pyridine functionalized graphene oxide (DAP-RGO) for selective detection of TNP in the presence of other nitro compounds. The major advantage of using this material over other reported materials is not only to achieve very high fluorescence quenching of ∼96% but also superior selectivity >80% in the detection of TNP in aqueous medium via both fluorescence resonance energy transfer and PET mechanisms. Density functional theory calculations also suggest the occurrence of an effective proton transfer mechanism from TNP to DAP-RGO, resulting in this tremendous fluorescence quenching compared to other nitro compounds. We believe this graphene based composite will emerge a new class of materials that could be potentially useful for selective detection, even for trace amounts of nitro explosives in water.

  16. Hyperspectral imaging-based classification and wavebands selection for internal defect detection of pickling cucumbers

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging is useful for detecting internal defect of pickling cucumbers. The technique, however, is not yet suitable for high-speed online implementation due to the c