Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15
Hermosillo, Edyth; Coes, Alissa L.
2017-03-01
Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.
Coles, J.F.
1996-01-01
Concentrations of organochlorine compounds and trace elements were assayed in fish tissue collected from the Connecticut, Housatonic, and Thames River Basins Study Unit, 1992-94. These data were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the study unit. Ancillary data included are land-use categories by percentage of the sampling-site basins and the size, gender, and age of the individual fish collected for this study. Concentrations of 28 organochlorine compounds in composited whole fish samples were measured at 32 sites, and concentrations of 22 trace elements in composited fish liver samples were measured at 14 of the 32 sites. Most frequently detected organochlorines were DDT related compounds at 31 sites, total PCBs at 28 sites, and chlordane related compounds at 25 sites. Concentrations of total PCBs in fish tissue were generally higher at the large river sites than at the smaller tributary sites. Concentrations of chlordane-related compounds in fish tissue were higher at sites from more urbanized basins than at sites from predominately agriculture and forested basins. Concentrations of the DDT related compounds were undifferentiated among sites comprising different land uses. Trace elements detected at all 14 sites included boron, copper, iron, manganese, molybdenum, selenium, and zinc. Trace elements detected at 10 or more sites included arsenic, mercury, silver, strontium, and vanadium. Antimony, beryllium, and uranium were not detected at any site.
Friedman, J.D.; Huth, P.C.; Smiley, D.
1990-01-01
Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart Thomas; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-04-01
The Cretaceous witnessed intervals of profound perturbation named "Oceanic Anoxic Events (OAEs)" characterized by volcanic injection of large amounts of CO2, ocean anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a number of nannofossil species. To detect the cause/s of such changes in the fossil record is challenging. Evidence of a correspondence between intervals of high trace metals concentrations and nannofossil dwarfism may be suggestive for a negative effect of these elements on nannoplankton biocalcification process. In order to verify the hypothesis that anomalously high quantities of essential and/or toxic metals were the cause of coccolith dwarfism, we explored the toxicities of a mixture of trace metals on four living coccolithophores species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The trace metals tested were chosen based upon concentration peaks identified in the geological record and upon known trace metal interaction with living coccolithophores algae. Our results demonstrate a species-specific response to trace metal enrichment in living coccolithophores: E. huxleyi, G. oceanica and C. pelagicus showed a decrease in their growth rate with progressively and exponentially increased trace metal concentrations, while P. carterae is unresponsive to trace metal content. Furthermore, E. huxleyi, G. oceanica and C. pelagicus evidenced a decrease in the cell diameter. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccolith of G. oceanica showed a decrease in size only at the highest trace metal concentrations tested. P. carterae size was unresponsive for changing trace metal concentration. Our results on living coccolithophore algae, demonstrate that elevated trace metal concentrations not only affect growth but also coccolith size and/or weight and that there are large differences between different species. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions. Following the laboratory experiment results, elevated trace metal conditions in the past oceans could have caused at least part of the observed morphological changes detected during some Mesozoic OAEs.
Carter, L.F.; Anderholm, S.K.
1997-01-01
The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.
Total-reflection X-ray fluorescence studies of trace elements in biomedical samples
NASA Astrophysics Data System (ADS)
Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.
2004-08-01
Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.
Evaluation of trace element status of organic dairy cattle.
Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M
2018-06-01
The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.
NASA Technical Reports Server (NTRS)
Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.
2001-01-01
A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.
Maret, Terry R.; Skinner, K.D.
2000-01-01
Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.
2014-07-09
Rivera. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection , International Journal of Spectroscopy, (09 2012): 0. doi: 10.1155...Highly Sensitive Filter Paper Substrate for SERS Field Detection of Trace Threat Chemicals”, PITTCON-2013: Forensic Analysis in the Lab and Crime Scene...the surface. In addition, built-in algorithms were used for nearly real-time sample detection . Trace and bulk concentrations of the other substances
Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.
2000-01-01
In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.
Rusk, Brian; Koenig, Alan; Lowers, Heather
2011-01-01
Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.
NASA Astrophysics Data System (ADS)
Tsapin, A.; Jones, S.; Petkov, M.; Borchardt, D.; Anderson, M.
2017-03-01
A study was conducted to determine the efficacy of using silica aerogel to collect and concentrate ambient trace organics for spectroscopic analysis. Silica aerogel was exposed to atmospheres containing trace amounts of polycyclic aromatic and aliphatic hydrocarbons. The organics present were concentrated in the aerogels by factors varying from 10 to more than 1000 over the levels found in the atmospheres, depending on the specific organic present. Since silica aerogel is transparent over a wide range of optical and near infrared wavelengths, UV-induced fluorescence, Raman and infrared spectroscopies were used to detect and identify the organics collected by the aerogel. Measurements were conducted to determine the sensitivity of these spectroscopic methods for determining organics concentrated by aerogels and the effectiveness of this method for identifying systems containing multiple organic species. Polycyclic aromatic hydrocarbons (PAHs) were added to simulated Mars regolith and then vaporized by modest heating in the presence of aerogel. The aerogels adsorbed and concentrated the PAHs, which were detected by induced fluorescence and Raman and FTIR spectroscopies.
Romanok, Kristin M.; Fischer, Jeffrey M.; Riva-Murray, Karen; Brightbill, Robin; Bilger, Michael
2006-01-01
As part of the National Water-Quality Assessment (NAWQA) program activities in the Delaware River Basin (DELR), samples of fish tissue from 21 sites and samples of bed sediment from 35 sites were analyzed for a suite of organic compounds and trace elements. The sampling sites, within subbasins ranging in size from 11 to 600 square miles, were selected to represent 5 main land-use categories in the DELR -forest, low-agricultural, agricultural, urban, and mixed use. Samples of both fish tissue and bed sediment were also collected from 4 'large-river' sites that represented drainage areas ranging from 1,300 to 6,800 square miles, areas in which the land is used for a variety of purposes. One or more of the organochlorine compounds-DDT and chlordane metabolites, polychlorinated biphenyls (total PCBs), and dieldrin- were detected frequently in samples collected over a wide geographic area. One or more of these compounds were detected in fish-tissue samples from 92 percent of the sites and in bed-sediment samples from 82 percent of the sites. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in whole white suckers and in bed sediment were significantly related to urban/industrial basin characteristics, such as percentage of urban land use and population density. Semi-volatile organic compounds (SVOCs)-total polycyclic aromatic hydrocarbons (PAHs), total phthalates, and phenols- were detected frequently in bed-sediment samples. All three types of SVOCs were detected in samples from at least one site in each land-use category. The highest detection rates and concentrations typically were in samples from sites in the urban and mixed land-use categories, as well as from the large-river sites. Concentrations of total PAHs and total phthalates in bed-sediment samples were found to be statistically related to percentages of urban land use and to population density in the drainage areas represented by the sampling sites. The samples of fish tissue and bed sediment collected throughout the DELR were analyzed for a large suite of trace elements, but results of the analyses for eight elements-arsenic, cadmium, chromium, copper, lead, nickel, mercury, and zinc- that are considered contaminants of concern are described in this report. One or more of the eight trace elements were detected in samples from every fish tissue and bed-sediment sampling site, and all of the trace elements were detected in samples from 97 percent of the bed-sediment sites. The concentrations of organic compounds and trace elements in the DELR samples were compared to applicable guidelines for the protection of wildlife and other biological organisms. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in fish-tissue samples from 14 sites exceeded one or more of the Wildlife Protective Guidelines established by the New York State Department of Environmental Conservation. Concentrations of one or more organic compounds in samples from 16 bed-sediment sites exceeded the Threshold Effects Concentrations (TEC) of the Canadian Sediment Quality Guidelines, and concentrations of one or more of the eight trace elements in samples from 38 bed-sediment sites exceeded the TEC. (The TEC is the concentration below which adverse biological effects in freshwater ecosystems are expected to be rare.) Concentrations of organic compounds in samples from some bed-sediment sites exceeded the Canadian Probable Effects Concentrations (PEC), and concentrations of trace elements in samples from 18 sites exceeded the PEC. (The PEC is the concentration above which adverse effects to biological organisms are expected to occur frequently). Concentrations of organic compounds and trace elements in samples from the DELR were compared to similar data from other NAWQA study units in the northeastern United States and also data from the Mobile River (Alabama) Basin and the Northern Rockies Intermontane Basin study units. Median concentrations of to
Tadayon, Saeid
1995-01-01
Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.
Batch methods for enriching trace impurities in hydrogen gas for their further analysis
Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.
2014-07-15
Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.
Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.
2017-01-01
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065
Parliman, D.J.
2004-01-01
In 2001, the National Guard Bureau and the U.S. Geological Survey began a project to compile hydrogeologic data and determine presence or absence of soil, surface-water, and ground-water contamination at the Idaho Army National Guard Orchard Training Area in southwestern Idaho. Between June 2002 and April 2003, a total of 114 soil, surface-water, ground-water, precipitation, or dust samples were collected from 68 sample sites (65 different locations) in the Orchard Training Area (OTA) or along the vehicle corridor to the OTA. Soil and water samples were analyzed for concentrations of selected total trace metals, major ions, nutrients, explosive compounds, semivolatile organics, and petroleum hydrocarbons. Water samples also were analyzed for concentrations of selected dissolved trace metals and major ions. Distinguishing naturally occurring large concentrations of trace metals, major ions, and nutrients from contamination related to land and water uses at the OTA was difficult. There were no historical analyses for this area to compare with modern data, and although samples were collected from 65 locations in and near the OTA, sampled areas represented only a small part of the complex OTA land-use areas and soil types. For naturally occurring compounds, several assumptions were made?anomalously large concentrations, when tied to known land uses, may indicate presence of contamination; naturally occurring concentrations cannot be separated from contamination concentrations in mid- and lower ranges of data; and smallest concentrations may represent the lowest naturally occurring range of concentrations and (or) the absence of contaminants related to land and water uses. Presence of explosive, semivolatile organic (SVOC), and petroleum hydrocarbon compounds in samples indicates contamination from land and water uses. In areas along the vehicle corridor and major access roads within the OTA, most trace metal, major ion, and nutrient concentrations in soil samples were not in the upper 10th percentile of data, but concentrations of 25 metals, ions, or nutrients were in the upper 10th percentile in a puddle sample near the heavy equipment maneuvering area, MPRC-H. The largest concentrations of tin, ammonia, and nitrite plus nitrate (as nitrogen) in water from the OTA were detected in a sample from this puddle. Petroleum hydrocarbons were the most common contaminant, detected in all soil and surface-water samples. An SVOC, bis (2-ethylhexyl) phthalate, a plasticizer, was detected at a site along the vehicle corridor. In Maneuver Areas within the OTA, many soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of cobalt, iron, mercury, titanium, sodium, ammonia, or total phosphorus were detected in 6 of 13 soil samples outside the Tadpole Lake area. The largest concentrations of aluminum, arsenic, beryllium, nickel, selenium, silver, strontium, thallium, vanadium, chloride, potassium, sulfate, and nitrite plus nitrate were detected in soil samples from the Tadpole Lake area. Water from Tadpole Lake contained the largest total concentrations of 19 trace metals, 4 major ions, and 1 nutrient. Petroleum hydrocarbons were detected in 5 soil samples and water from Tadpole Lake. SVOCs related to combustion of fuel or plasticizers were detected in 1 soil sample. Explosive compounds were detected in 1 precipitation sample.In the Impact Area within the OTA, most soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of barium, chromium, copper, manganese, lead, or orthophosphate were detected in 6 of the 18 soil samples. Petroleum hydrocarbons were detected in 4 soil samples, SVOCs in 6 samples, and explosive compounds in 4 samples. In the mobilization and training equipment site (MATES) compound adjacent to the OTA, all soil and water samples contained at lea
Fiber Optic Magnetic Sensor Research.
1983-02-28
Appendix D, of a Fabry - Perot photothermal trace detection apparatus. B. Transductive components Given the current state of the art in materials technology...1982 Petuchowski of 0 304 Fabry - Perot photothermal trace detection APPEDIX D AJ. Campillo US Naval Research Laboratory. Washinglon. D.C 20373 S. J...change, which is proportional to the trace species absorption and concentration, is measured interferomeincally in a stabilized Fabry - Perot cavity, An
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salcedo, D.; Laskin, Alexander; Shutthanandan, V.
The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measuredmore » ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple point sources, probably industrial, in Mexico City which are variable in time and space, in agreement with previous studies.« less
Rapid detection of trace amounts of surfactants using nanoparticles in fluorometric assays
NASA Astrophysics Data System (ADS)
Härmä, Harri; Laakso, Susana; Pihlasalo, Sari; Hänninen, Pekka; Faure, Bertrand; Rana, Subhasis; Bergström, Lennart
2010-01-01
Rapid microtiter assays that utilize the time-resolved fluorescence resonance energy transfer or quenching of dye-labeled proteins adsorbed onto the surfaces of polystyrene or maghemite nanoparticles have been developed for the detection and quantification of trace amounts of surfactants at concentrations down to 10 nM.Rapid microtiter assays that utilize the time-resolved fluorescence resonance energy transfer or quenching of dye-labeled proteins adsorbed onto the surfaces of polystyrene or maghemite nanoparticles have been developed for the detection and quantification of trace amounts of surfactants at concentrations down to 10 nM. Electronic supplementary information (ESI) available: Experimental details and Fig. S1 and S2. See DOI: 10.1039/b9nr00172g
Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa
NASA Astrophysics Data System (ADS)
Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri
2017-03-01
Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1-2. 5 and PM2. 5-10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.
Photoacoustic Effect of Ethene: Sound Generation due to Plant Hormone Gases.
NASA Astrophysics Data System (ADS)
Park, Han Jung; Ide, David; University of Tennessee at Chattanooga Team
2017-01-01
Ethene, which is produced in plants as they mature, was used to study its photoacoustic properties using photoacoustic spectroscopy. Detection of trace amounts, with N2 gas, of the ethylene gas were also applied. The gas was tested in various conditions: temperature, concentration of the gas, gas cell length, and power of the laser, were varied to determine their effect on the photoacoustic signal, the ideal conditions to detect trace gas amounts, and concentration of ethylene produced by an avocado and banana. A detection limit of 10 ppm was determined for pure C2H4. A detection of 5% and 13% (by volume) concentration of ethylene were produced for a ripening avocado and banana, respectively, in closed space.
Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue.
Geng, Fei; Zhao, Huaping; Fu, Qun; Mi, Yan; Miao, Likun; Li, Wei; Dong, Yulian; Wu, Minghong; Lei, Yong
2018-07-20
In comparison to conventional spectroscopic techniques based on chromatography, surface-enhanced Raman spectroscopy (SERS) enables the rapid identification and detection of trace pesticide residues present in trace amounts in the environment and foods. Herein, a facile approach to fabricate unique gold nanochestnuts (GNCs) as an ultra-sensitive SERS substrate for detecting trace pesticide residues has been developed based on anodic aluminum oxide (AAO) templates. The GNCs are synthesized through the galvanic replacement of Ag on the top of Ni nanorod arrays. The as-prepared GNCs have well-controlled structural parameters, and importantly have unique anisotropic morphologies that benefit the enhancement in SERS performance. As a result, rhodamine 6 G (R6G) can be efficiently detected with GNCs as the SERS substrate even with a concentration of only 10 -12 M, and the Raman enhancement factor reaches up to 5.4 × 10 9 at this concentration. Further SERS measurement of thiram indicates a remarkable SERS-active sensitivity of the as-prepared GNCs with a detection limit of thiram up to 10 -14 M. The GNCs also exhibit a high signal-to-noise ratio.
Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Baudelet, Matthieu; Yu, Jin; Bossu, Myriam; Jovelet, Julien; Wolf, Jean-Pierre; Amodeo, Tanguy; Fréjafon, Emeric; Laloi, Patrick
2006-10-01
Using femtosecond laser-induced breakdown spectroscopy, the authors have analyzed five different species of bacterium. Line emissions from six trace mineral elements, Na, Mg, P, K, Ca, and Fe, have been clearly detected. Their intensities correspond to relative concentrations of these elements contained in the analyzed samples. The authors demonstrate that the concentration profile of trace elements allows unambiguous discrimination of different bacteria. Quantitative differentiation has been made by representing bacteria in a six-dimension hyperspace with each of its axis representing a detected trace element. In such hyperspace, representative points of different species of bacterium are gathered in different and distinct volumes.
Burton, Carmen A.
2002-01-01
Organcochlorine compounds, semivolatile-organic compounds (SVOC), and trace elements were analyzed in reservoir sediment cores, streambed sediment, and fish tissue in the Santa Ana River Basin as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Three reservoirs were sampled in areas that have different degrees of urbanization. Streambed sediment and fish tissue collected at 12 sites were divided into two groups, urban and nonurban. More organochlorine compounds were detected in reservoir sediment cores, streambed sediment and fish tissue, and at higher concentrations at urban sites than at nonurban sites. At all sites, except West Street Basin, concentrations of organochlorine compounds were lower than the probable-effect concentration (PEC). At the highly urbanized West Street Basin, chlordane and p,p'-DDE exceeded the PEC throughout the historical record. The less stringent threshold-effect concentration (TEC) was exceeded for six compounds at eight sites. Most of the organochlorine compounds detected in streambed sediment and fish tissue were at urban sites on the Santa Ana River as opposed to its tributaries, suggesting accumulation and persistence in the river. More SVOCs were detected in reservoir sediment cores and streambed sediment, and at higher concentrations, at urban sites than at nonurban sites. At all the sites, except West Street Basin, concentrations of SVOCs were lower than the PEC. At West Street Basin, chrysene, pyrene, and total polycyclic-aromatic hydrocarbons exceeded the PEC throughout the historical record. The TEC was exceeded for 10 compounds at 3 sites. Most of the SVOCs were detected in streambed sediment at urban sites on tributaries to the Santa Ana River rather than the mainstem itself. The less frequent occurrence and lower concentrations in the Santa Ana River suggest that SVOCs are less persistent than organochlorine compounds, possibly as a result of volatization, gradation, or dilution. Most trace-element detections in reservoir sediment cores and streambed sediment were at urban sites, and the concentrations were generally higher than at nonurban sites. Lead and zinc exceeded their PECs at West Street Basin throughout the historical record; copper exceeded its PEC at Canyon Lake, an area of urban growth. The TEC was exceeded for 10 compounds at 11 sites. Frequency of detection and concentration did not differ between tributary and Santa Ana River sites, which may be attributed to the fact that trace elements occur naturally. Four trace elements (arsenic, copper, mercury, and selenium) had higher concentrations in fish tissue at nonurban sites than at urban sites. Concentrations decreased over time for organochlorine compounds at all three reservoirs, probably a result of the discontinued use of many of the compounds. Decreasing trends in SVOCs and trace elements were observed at West Street Basin, but increasing trends were observed at Canyon Lake. Concentrations of organochlorine compounds, SVOCs, and trace elements were higher during periods of above average rainfall at both West Street Basin and Canyon Lake.
Temple, Whitney B.; Johnson, Henry M.
2011-01-01
The U.S. Geological Survey analyzed pesticide and trace-element concentration data from the Hood River basin collected by the Oregon Department of Environmental Quality (ODEQ) from 1999 through 2009 to determine the distribution and concentrations of pesticides in the basin's surface waters. Instream concentrations were compared to (1) national and State water-quality standards established to protect aquatic organisms and (2) concentrations that cause sublethal or lethal effects in order to assess their potential to adversely affect the health of salmonids and their prey organisms. Three salmonid species native to the basin are listed as "threatened" under the U.S. Endangered Species Act: bull trout, steelhead, and Chinook salmon. A subset of 16 sites was sampled every year by the ODEQ for pesticides, with sample collection targeted to months of peak pesticide use in orchards (March-June and September). Ten pesticides and four pesticide degradation products were analyzed from 1999 through 2008; 100 were analyzed in 2009. Nineteen pesticides were detected: 11 insecticides, 6 herbicides, and 2 fungicides. Two of four insecticide degradation products were detected. All five detected organophosphate insecticides and the one detected organochlorine insecticide were present at concentrations exceeding water-quality standards, sublethal effects thresholds, or acute toxicity values in one or more samples. The frequency of organophosphate detection in the basin decreased during the period of record; however, changes in sampling schedule and laboratory reporting limits hindered clear analysis of detection frequency trends. Detected herbicide and fungicide concentrations were less than water-quality standards, sublethal effects thresholds, or acute toxicity values. Simazine, the most frequently detected pesticide, was the only herbicide detected at concentrations within an order of magnitude (factor of 10) of concentrations that impact salmonid olfaction. Some detected pesticides are of concern, not for their toxicity alone, but for their ability to potentiate the harmful impacts of other pesticides, particularly organophosphates, on salmonids or their prey. Many samples contained mixtures of pesticides, but the effects to salmonids of relevant mixtures at environmentally realistic concentrations for the basin are unknown. Trace-element concentration data, although limited, indicate that eight trace elements are also of concern for their potential to harm salmonid health. The dataset is limited with regard to the spatial and seasonal distribution of pesticides and trace elements in all salmonid-bearing streams, the presence of particle-bound pesticides, and the presence of several unmonitored pesticides known to be used in the basin.
Profile of Some Trace Elements in the Liver of Camels, Sheep, and Goats in the Sudan
Ibrahim, Ibrahim Abdullah; Shamat, Ali Mahmoud; Hussien, Mohammed Osman; El Hussein, Abdel Rahim Mohammed
2013-01-01
One hundred camels (Camelus dromedaries) and fifty sheep and goats being adult, male, and apparently healthy field animals were studied to provide data regarding the normal values of some hepatic trace elements. Liver samples were collected during postmortem examination, digested, and analyzed for Cu, Zn, Fe, Co, and Mn using atomic absorption spectrophotometry. The results showed that the differences in mean liver concentrations of Cu, Zn, Fe, and Co between camels, sheep, and goats were statistically significant (P < 0.05). Hepatic Cu, Fe, and Co concentrations were higher in camels than in sheep and goats. All liver samples were adequate for Fe and Co, whereas only camel liver was adequate for Cu. In camels, hepatic Zn concentration was inadequately lower than that in sheep and goats. No difference in Mn concentration was detected between camels, sheep, and goats. All liver samples were inadequate compared to free-ranging herbivores. In camels, significant correlation (r 2 = −0.207, P value = 0.04) was detected between Zn and Co, whereas in sheep significant correlation (r 2 = −0.444, P value = 0.026) was detected between Zn and Mn. No significant correlation between trace elements was detected in goats. PMID:26464909
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.
2009-01-01
Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element concentrations. Strontium and barium were the most frequently detected and usually were present in the highest concentrations. Iron and manganese were the next most commonly detected and next highest in concentrations. Iron concentrations were the most variable with respect to the range of variations (both within local networks and aquifer-wide) and with respect to the disparity between magnitude of concentrations (detections) and the frequency of samples below reporting limits (nondetections). Antimony, beryllium, cadmium, silver, and thallium were detected too infrequently for substantial interpretation of their occurrence or distributions or potential human-health implications. For those elements that were more frequently detected, there are some geographic patterns in their occurrence that primarily reflect climate effects. The highest concentrations of several elements were found in the West-Central glacial framework area (High Plains and northern Plains areas). There are few important patterns for any element in relation to land use, well type, or network type. Shallow land-use (monitor) wells had iron concentrations generally lower than the glacial aquifer system wells overall and much lower than major-aquifer survey wells, which comprise mostly private- and public-supply wells. Unlike those for iron, concentration patterns for manganese were similar among shallow land-use wells and major-aquifer survey wells. An apparent relation between low pH and relatively low concentrations of many elements, except lead, may be more indicative of the relatively low dissolved-solids content in wells in the Northeastern United States that comprise the majority of low pH wells, than of a pH dependent pattern. Iron and manganese have higher concentrations and larger ranges of concentrations especially under more reducing conditions. Dissolved oxygen and well depth were related to iron and manganese concentrations. Redox conditions also affect several trace elements such
Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA.
Ali, Sazan; Chaspoul, Florence; Anderson, Loundou; Bergé-Lefranc, David; Achard, Vincent; Perrin, Jeanne; Gallice, Philippe; Guichaoua, Marie
2017-02-01
Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.
Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne
2008-01-01
The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of aluminum, cadmium, chromium, nickel, selenium, and zinc exceeded the Texas Surface Water Quality Standards criteria for aquatic life-use protection or human health. The only trace elements detected in the water samples at concentrations exceeding the Texas Surface Water Quality Standards criterion for human health (fish consumption use) was lead at one site and mercury at 10 of 12 sites. Relatively high mercury concentrations distributed throughout the area might indicate sources of mercury in addition to abandoned mining areas. Streambed-sediment samples were collected from 12 sites and analyzed for 44 major and trace elements. In general, the trace elements detected in streambed-sediment samples were low in concentration, interpreted as consistent with background concentrations. Concentrations at two sites, however, were elevated compared to Texas Commission on Environmental Quality criteria. Concentrations of antimony, arsenic, cadmium, lead, silver, and zinc in the sample from San Carlos Creek downstream from La Esperanza (San Carlos) Mine exceeded the Texas Commission on Environmental Quality screening levels for sediment. The sample from Rough Run Draw, downstream from the Study Butte Mine, also showed elevated concentrations of arsenic, cadmium, and lead, but these concentrations were much lower than those in the San Carlos Creek sample and did not exceed screening levels. Elevated concentrations of multiple trace elements in streambed-sediment samples from San Carlos Creek and Rough Run Draw indicate that San Carlos Creek, and probably Rough Run Draw, have been adversely affected by mining activities. Fourteen mine-tailing samples from 11 mines were analyzed for 25 major and trace elements. All trace elements except selenium and thallium were detected in one or more samples. The highest lead concentrations were detected in tailings samples from the Boquillas, Puerto Rico, La Esperanza (San Carlos), and Tres Marias Mines, as might be expected because the tailings ar
Becker, M.F.
1997-01-01
In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above the analytical detection levels and, if present, in the soil samples are at concentrations below the detection level of the analytical method used. Organochlorine pesticides, total polychlorinated biphenyls, and polyaromatic hydrocarbons were not detected in any of the semipermeable membrane devices at the analytical detection levels.
Thomas, Lashun K.; Journey, Celeste A.; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.
2011-01-01
A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed sediment samples from most nonreference sites exceeded concentrations in samples from reference sites at Fort Gordon. Bed sediments from one of the nonreference sites sampled contained the highest concentrations of copper and lead with elevated levels of zinc and chromium relative to reference sites. The percentage change of major ions, trace elements, and total organic carbon that had been detected at sites previously sampled in May 1998 and current bed sediment sites ranged from -4 to 8 percent with an average percentage change of less than 1 percent. Concentrations of major ions and trace elements in bed sediments exceeded probable effect levels for aquatic life (based on the amphipod Hyalella azteca) established by the U.S. Environmental Protection Agency at 46 and 69 percent of the current and previously sampled locations, respectively. The greatest frequency of exceedances for major ions and trace elements in bed sediments was observed for lead. Concentrations of semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls were detected in bed sediment samples at 94 percent of the sites currently sampled. Detections of these organic compounds were reported with greater frequency in bed sediments at upstream sampling locations, when compared to downstream locations. The greatest number of detections of these compounds was reported for bed sediment samples collected from two creeks above a lake. The percentage change of semivolatile organic compounds detected at previously sampled and current bed sediment sites ranged from -68 to 100 percent with the greatest percentage increase reported for one of the creeks above the lake. Concentrations of semivolatile organic compounds and polychlorinated biphenyls in bed sediments exceeded aquatic life criteria established by the U.S. Environmental Protection Agency at three sites. Contaminant compounds exceeding aquatic life criteria included fluoranthene, phenanthrene, anthracene, benzo(a)anthracene
Ivahnenko, Tamara; Szabo, Zoltan; Hall, G.S.
1996-01-01
Water samples were collected during 1993 from 22 public supply wells screened in the Kirkwood-Cohansey aquifer system; concentrations of 18 trace elements were determined primarily by using inductively coupled plasma-mass spectrometry (ICP-MS) techniques, though graphite furnace atomic adsorption, hydride generation, and cold- vapor flameless atomic adsorption techniques were used for thallium, arsenic, and mercury, respectively, at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL). In addition, laboratory measurements of alkalinity and turbidity were made. The ground-water samples were collected by using ultra-clean sampling protocols developed by the USGS for collecting ground-water samples in areas with water containing low concentrations of trace elements. This technique is based on recently gained experience in sampling surface water for these elements. Field parameters (water temperature, specific conductance, pH, and dissolved-oxygen concentration) were monitored prior to sample collection. Three equipment blanks were collected to ensure that low-level trace-element contamination did not occur during sample collection. One split sample and a commercially- prepared reference standard were submitted to the NWQL o evaluate laboratory precision and accuracy, respectively. Trace-element concentrations in 10 sample splits and one equipment blank were also determined at the Rutgers University Chemistry Department laboratory. Results of the ICP-MS analyses and cold vapor flameless atomic absorption indicated that five trace elements-- cobalt, copper, lead, mercury, and nickel--were detectable in low concentrations (<0.1-29 mg/L) in most of the samples from the 22 wells, and four elements--aluminum, barium, manganese and zinc--were detected in higher concentrations than the other elements (30-710 mg/L for aluminum; 4-180 mg/L for barium, manganese, and zinc). The remaining nine trace elements were present in concentrations consistently lower than the minimum reporting limit. Turbidity was low (less than 1 nephelometric turbidity unit (NTU)), indicating that the trace-element concentrations were present in the dissolved phase and ideally would be reproducible in the absence of highly variable concentrations of particulates. The concentration of lead in one sample exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 mg/L; concentrations ranged from <1 to 16 mg/L. Mercury was frequently detected; concentrations ranged from <0.1 to 1.1 mg/L but did not exceed the USEPA maximum contaminant level. Results of analyses of the equipment blanks indicated that samples collected by using the new ultra-clean sampling protocols were free of low-level (< 1mg/L) trace-element contamination. The analysis of the split sample sent to the NWQL had a difference of 5 percent or less for all constituents except aluminum, for which the analysis had a difference of 10 percent. Results of ICP-MS analyses of split water samples sent to the Rutgers University Chemistry Department laboratory were, in general, in good agreement (within 10 percent) with those of the NWQL. Results of the analysis of the commercial standard agreed (within 5 percent) with the known concentrations of the trace elements. The quality-assurance data (three blanks, one split sample, and one standard), although not statistically evaluated because of the small data set, indicate that the measured trace-element concentrations are precise and accurate and that the samples were free of contamination at the microgram-per-liter level of contamination.
Measurement of trace nitrate concentrations in seawater by ion chromatography with valve switching
NASA Astrophysics Data System (ADS)
Du, Juan; Fa, Yun; Zheng, Yue; Li, Xuebing; Du, Fanglin; Yang, Haiyan
2014-05-01
An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix fl owed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity ( R >0.99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability (RSD<5%, n =6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.
Costa, R A; Torres, J; Vingada, J V; Eira, C
2016-07-15
This study presents the first data on trace element and organic pollutant concentrations in the Critically Endangered Balearic shearwater Puffinus mauretanicus collected in 2010 and 2011 in Portugal. Trace element levels were below the threshold levels for adverse effects on birds, despite the Hg concentrations in feathers (4.35μg·g-1ww). No significant differences were detected between individuals from 2010 and 2011 except for Se concentrations in liver, feathers and muscle (higher in 2010) and Ag in liver and muscle (higher in 2011). No significant differences were detected in total concentrations of organochlorine compounds in Balearic shearwaters between years, although PCB congeners -101 and -180 presented higher concentrations in individuals from 2010. The PCB congeners -138, -153 and -180, and 4.4-DDE were detected in all individuals. This study on toxic elements and organic pollutants in wintering Balearic shearwaters provides baseline data from which deviations can be detected in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coiner, R.L.; Pope, L.M.; Mehl, H.E.
2010-01-01
An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria
Further developments in oxidation of methane traces with radiofrequency discharge
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. J.
1977-01-01
The radiofrequency discharge, previously shown to oxidize trace levels of methane in oxygen, was studied with contaminated air at 50, 600, and 760 torr. As with oxygen, the concentration of methane traces could be reduced by several orders of magnitude, and no organic reaction products were detected in the effluent; however, substantial concentrations of NOx (0.1-6%) were formed during treatment. The concentration of NOx was decreased by using a large diameter electrode. There is evidence that the process will oxidize N2 and NO as well as organic impurities in oxygen or oxygen/inert gas atmospheres.
Oxidation of contaminative methane traces with radio-frequency discharge
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. L.
1976-01-01
An 11.8 MHz glow discharge was used to oxidize trace levels of methane in oxygen. The concentration of methane can be reduced by three orders of magnitude. The effects of power (0-400 W), flow rate (10-1000 cc-STP/min) and concentration (70-8000 ppm) were investigated at pressures ranging from 50 torr to almost 1 atm. No organic reaction products were detected in the treated gas stream. The process may prove useful for the removal of atmospheric trace contaminants at ambient pressure.
Qing, De-Kui; Mengüç, M Pinar; Payne, Fred A; Danao, Mary-Grace C
2003-06-01
Fluorescence correlation spectroscopy (FCS) is adapted for a new procedure to detect trace amounts of Escherichia coli in water. The present concept is based on convective diffusion rather than Brownian diffusion and employs confocal microscopy as in traditional FCS. With this system it is possible to detect concentrations as small as 1.5 x 10(5) E. coli per milliliter (2.5 x 10(-16) M). This concentration corresponds to an approximately 1.0-nM level of Rhodamine 6G dyes. A detailed analysis of the optical system is presented, and further improvements for the procedure are discussed.
Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHELAN, JAMES M.
2002-05-01
Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include:more » landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.« less
Chumbimuni-Torres, Karin Y.; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric
2008-01-01
Potentiometric sensors are today sufficiently well understood and optimized to reach ultra-trace level (sub-nanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination (EMPM) of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth coated electrodes, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte. PMID:18570385
Hydrocyclone/Filter for Concentrating Biomarkers from Soil
NASA Technical Reports Server (NTRS)
Ponce, Adrian; Obenhuber, Donald
2008-01-01
The hydrocyclone-filtration extractor (HFE), now undergoing development, is a simple, robust apparatus for processing large amounts of soil to extract trace amounts of microorganisms, soluble organic compounds, and other biomarkers from soil and to concentrate the extracts in amounts sufficient to enable such traditional assays as cell culturing, deoxyribonucleic acid (DNA) analysis, and isotope analysis. Originally intended for incorporation into a suite of instruments for detecting signs of life on Mars, the HFE could also be used on Earth for similar purposes, including detecting trace amounts of biomarkers or chemical wastes in soils.
Liu, Anne; Fong, Amie; Becket, Elinne; Yuan, Jessica; Tamae, Cindy; Medrano, Leah; Maiz, Maria; Wahba, Christine; Lee, Catherine; Lee, Kim; Tran, Katherine P; Yang, Hanjing; Hoffman, Robert M; Salih, Anya; Miller, Jeffrey H
2011-03-01
Many studies have examined the evolution of bacterial mutants that are resistant to specific antibiotics, and many of these focus on concentrations at and above the MIC. Here we ask for the minimum concentration at which existing resistant mutants can outgrow sensitive wild-type strains in competition experiments at antibiotic levels significantly below the MIC, and we define a minimum selective concentration (MSC) in Escherichia coli for two antibiotics, which is near 1/5 of the MIC for ciprofloxacin and 1/20 of the MIC for tetracycline. Because of the prevalence of resistant mutants already in the human microbiome, allowable levels of antibiotics to which we are exposed should be below the MSC. Since this concentration often corresponds to low or trace levels of antibiotics, it is helpful to have simple tests to detect such trace levels. We describe a simple ultrasensitive test for detecting the presence of antibiotics and genotoxic agents. The test is based on the use of chromogenic proteins as color markers and the use of single and multiple mutants of Escherichia coli that have greatly increased sensitivity to either a wide range of antibiotics or specific antibiotics, antibiotic families, and genotoxic agents. This test can detect ciprofloxacin at 1/75 of the MIC.
Anderholm, S.K.
1996-01-01
This report describes the quality of shallow ground water in an agricultural area in the San Luis Valley, Colorado, and discusses how natural and human factors affect the quality of shallow ground water. Thirty-five wells were installed, and water samples were collected from these wells and analyzed for selected dissolved common constituents, nutrients, trace elements, radionuclides, and synthetic organic compounds. The San Luis Valley is a high intermontane valley that is partially drained by the Rio Grande. The San Luis Valley land-use study area was limited to a part of the valley where the depth to water is generally less than 25 feet. The area where the 35 monitor wells were installed was further limited to the part of the study area where center-pivot overhead sprinklers are used to irrigate crops. Precipitation, runoff from adjacent mountainous areas, and ground-water inflow from the adjacent mountainous areas are the main sources of water to the aquifers in the San Luis Valley. Discharge of water from the shallow, unconfined aquifer in the valley is mainly from evapotranspiration. The dominant land use in the San Luis Valley is agriculture, although nonirrigated land and residential land are interspersed with agricultural land. Alfalfa, native hay, barley, wheat, potatoes, and other vegetables are the main crops. Dissolved-solids concentrations in shallow ground water sampled ranged from 75 to 1,960 milligrams per liter. The largest median concentration of cations was for calcium, and the largest median concentration of anions was for bicarbonate in shallow ground water in the San Luis Valley. Calcium concentrations ranged from 7.5 to 300 milligrams per liter, and bicarbonate concentrations ranged from 28 to 451 milligrams per liter. Nitrite plus nitrate concentrations ranged from less than 0.1 to 58 milligrams per liter as N; water from 11 wells had nitrite plus nitrate concentrations greater than 10 milligrams per liter as N. With the exception of the following trace elements--aluminum, barium, iron, manganese, molybdenum, and uranium--the concentrations of trace elements were less than 10 micrograms per liter in 90 percent of the samples. All trace-element concentrations measured were below the maximum contaminant levels set by the U.S. Environmental Protection Agency. Five samples exceeded the proposed maximum contaminant level of 0.02 milligram per liter for uranium. All samples collected exceeded the proposed maximum contaminant level for radon-222. The volatile organic compound methyltertbutylether was detected in one sample at a concentration of 0.6 microgram per liter. Of the pesticides analyzed for, one or more were detected in water from 5 of the 35 wells sampled. Metribuzin was the most commonly detected pesticide and was detected in water from three wells at concentrations ranging from an estimated 0.005 to 0.017 microgram per liter. Metolachlor (detected in one sample at a concentration of 0.072 microgram per liter), prometon (detected in one sample at a concentration of 0.01 microgram per liter), and p,p'-DDE (detected in one sample at an estimated concentration of 0.002 microgram per liter) were the other pesticides detected. The U.S. Environmental Protection Agency lifetime health advisory for metolachlor, metribuzin, and prometon is 100 micrograms per liter, which is much larger than the concentrations measured in the shallow ground water sampled for this study. The elevated nitrite plus nitrate concentrations in shallow ground water are indicative of leaching of fertilizers from the land surface. This conclusion is consistent with conclusions made in other investigations of the San Luis Valley. On the basis of areal distribution and range of trace-element concentrations, human activities have not caused widespread trace-element contamination in the shallow grou
Ruhl, P.M.; Smith, K.E.
1996-01-01
The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers were analyzed to obtain information about the occurrence and distribution of trace element contaminants in the Albemarle-Pamlico Drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. All but 3 of the 22 trace elements that were analyzed were detected. Although all 10 of the U.S. Environmental Protection Agency (U.S. EPA) priority pollutants were detected in the tissues sampled, they were present in relatively low concentrations. Concentrations of U.S. EPA priority pollutants in Asiatic clams collected in the Albemarle-Pamlico Drainage Basin are similar to concentrations observed in other NAWQA study units in the southeastern United States. Mercury (a U.S. EPA priority pollutant) was widely detected, being present in 29 of 30 tissue samples, but concentrations did not exceed the FDA action level for mercury of a risk-based screening value for the general public. Mercury concentrations in Asiatic clams were similar to concentrations in other NAWQA study areas in the Southeast.
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; ...
2014-11-04
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.
In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less
Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W
2012-06-01
The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.
Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays
NASA Astrophysics Data System (ADS)
Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.
2011-08-01
This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.
Resonant photoacoustic detection of NO2 traces with a Q-switched green laser
NASA Astrophysics Data System (ADS)
Slezak, Verónica; Codnia, Jorge; Peuriot, Alejandro L.; Santiago, Guillermo
2003-01-01
Resonant photoacoustic detection of NO2 traces by means of a high repetition pulsed green laser is presented. The resonator is a cylindrical Pyrex glass cell with a measured Q factor 380 for the first radial mode in air at atmospheric pressure. The system is calibrated with known mixtures in dry air and a minimum detectable volume concentration of 50 parts in 109 is obtained (S/N=1). Its sensitivity allows one to detect and quantify NO2 traces in the exhaust gases of cars. Previously, the analysis of gas adsorption and desorption on the walls and of changes in the sample composition is carried out in order to minimize errors in the determination of NO2 content upon application of the extractive method. The efficiency of catalytic converters of several models of automobiles is studied and the NO2 concentration in samples from exhausts of different types of engine (gasoline, diesel, and methane gas) at idling operation are measured.
Effect of censoring trace-level water-quality data on trend-detection capability
Gilliom, R.J.; Hirsch, R.M.; Gilroy, E.J.
1984-01-01
Monte Carlo experiments were used to evaluate whether trace-level water-quality data that are routinely censored (not reported) contain valuable information for trend detection. Measurements are commonly censored if they fall below a level associated with some minimum acceptable level of reliability (detection limit). Trace-level organic data were simulated with best- and worst-case estimates of measurement uncertainty, various concentrations and degrees of linear trend, and different censoring rules. The resulting classes of data were subjected to a nonparametric statistical test for trend. For all classes of data evaluated, trends were most effectively detected in uncensored data as compared to censored data even when the data censored were highly unreliable. Thus, censoring data at any concentration level may eliminate valuable information. Whether or not valuable information for trend analysis is, in fact, eliminated by censoring of actual rather than simulated data depends on whether the analytical process is in statistical control and bias is predictable for a particular type of chemical analyses.
Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing
Nikodem, Michal; Wysocki, Gerard
2012-01-01
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389
Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.
Nikodem, Michal; Wysocki, Gerard
2012-11-28
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.
Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy
Chai, Changhoon; Takhistov, Paul
2010-01-01
The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560
Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection
Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano
2006-01-01
Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.
Wilson, Jennifer T.
2011-01-01
Elevated concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. This report describes an assessment of selected sediment-associated contaminants in samples collected in Bexar County from sites on the following streams: Medio Creek, Medina River, Elm Creek, Martinez Creek, Chupaderas Creek, Leon Creek, Salado Creek, and San Antonio River. During 2007-09, the U.S. Geological Survey periodically collected surficial streambed-sediment samples during base flow and suspended-sediment (large-volume suspended-sediment) samples from selected streams during stormwater runoff. All sediment samples were analyzed for major and trace elements and for organic compounds including halogenated organic compounds and polycyclic aromatic hydrocarbons (PAHs). Selected contaminants in streambed and suspended sediments in watersheds of the eight major streams in Bexar County were assessed by using a variety of methods—observations of occurrence and distribution, comparison to sediment-quality guidelines and data from previous studies, statistical analyses, and source indicators. Trace elements concentrations were low compared to the consensus-based sediment-quality guidelines threshold effect concentration (TEC) and probable effect concentration (PEC). Trace element concentrations were greater than the TEC in 28 percent of the samples and greater than the PEC in 1.5 percent of the samples. Chromium concentrations exceeded sediment-quality guidelines more frequently than concentrations of any other constituents analyzed in this study (greater than the TEC in 69 percent of samples and greater than the PEC in 8 percent of samples). Mean trace element concentrations generally are lower in Bexar County samples compared to concentrations in samples collected during previous studies in the Austin and Fort Worth, Texas, areas, but considering the relatively large ranges and standard deviations associated with the concentrations measured in all three areas, the trace element concentrations are similar. On the basis of Mann-Whitney U test results, the presence of a military installation in a watershed was associated with statistically significant higher chromium, mercury, and zinc concentrations in streambed sediments compared to concentrations of the same elements in a watershed without a military installation. Halogenated organic compounds analyzed in sediment samples included pesticides (chlordane, dieldrin, DDT, DDD, and DDE), polychlorinated biphenyls (PCBs), and brominated flame retardants. Three or more halogenated organic compounds were detected in each sediment sample, and 66 percent of all concentrations were less than the respective interim reporting levels. Halogenated organic compound concentrations were mostly low compared to consensus-based sediment quality guidelines-;TECs were exceeded in 11 percent of the analyses and PECs were exceeded in 1 percent of the analyses. Chlordane compounds were the most frequently detected halogenated organic compounds with one or more detections of chlordane compounds in every watershed; concentrations were greater than the TEC in 6 percent of the samples. Dieldrin was detected in 50 percent of all samples, however all concentrations were much less than the TEC. The DDT compounds (p,p'-DDT, p,p'-DDD, and p,p'-DDE) were detected less frequently than some other halogenated organic compounds, however most detections exceeded the TECs. p,p'-DDT was detected in 13 percent of the samples (TEC exceeded in 67 percent); p,p'-DDD was detected in 19 percent of the samples (TEC exceeded in 78 percent); and p,p'-DDE was detected in 35 percent of the samples (TEC exceeded in 53 percent). p,p'-DDE concentrations in streambed-sediment samples correlate positively with population density and residential, commercial, and transportation land use. One or more PCB congeners were detected in
Chang, Lin; Bi, Pengyu; Li, Xiaochen; Wei, Yun
2015-06-15
A novel trace analytical method based on solvent sublation (SS) and gas chromatography-mass spectrometry (GC-MS) was developed for the trace determination of twenty-two phthalate esters (PAEs) from plastic beverage packaging. In the solvent sublation section, the effects of solution pH, NaCl concentration, nitrogen flow rate, and sublation time on the sublation efficiency were investigated in detail, and the optimal conditions were obtained. The trace PAEs migrated from plastic beverage packaging to food simulants were separated and concentrated by solvent sublation, and then the trace target compounds in the concentrated solution were analyzed by GC-MS. According to the European Union Regulation, the food simulants including distilled water for the normal beverages and acetic acid solution (3%) for the acetic beverage of yogurt were prepared for migration tests. The trace analysis method showed good linearity, low limits of detection (LODs) of 1.6-183.5 ng/L, and satisfied recoveries (67.3-113.7%). Copyright © 2015 Elsevier Ltd. All rights reserved.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.
Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.
Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J
2014-12-02
The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.
Kennedy, Ben W.; Hall, Cassidee C.
2009-01-01
In 2002-03, the U.S. Geological Survey collected samples of streambed sediment at 18 sites in the lower Chena River watershed for analysis of selected nutrients, traces elements, and organic compounds. The purpose of the project was to provide Federal, State, and local agencies as well as neighborhood committees, with information for consideration in plans to improve environmental conditions in the watershed. The exploratory sampling program included analysis of streambed sediment from the Chena River and Chena Slough, a tributary to the Chena River. Results were compared to streambed-sediment guidelines for the protection of aquatic life and to 2001-02 sediment data from Noyes Slough, a side channel of the lower Chena River. The median total phosphorus concentration in Chena Slough sediment samples, 680 milligrams per kilogram (mg/kg), was two orders of magnitude greater than median total phosphorus concentration in Chena River sediment samples of 5.2 mg/kg. Median concentrations of chloride and sulfate also were greater in Chena Slough samples. Low concentrations of nitrate were detected in most of the Chena Slough samples; nitrate concentrations were below method reporting limits or not detected in Chena River sediment samples. Streambed-sediment samples were analyzed for 24 trace elements. Arsenic, nickel, and zinc were the only trace elements detected in concentrations that exceeded probable-effect levels for the protection of aquatic life. Concentrations of arsenic in Chena Slough samples ranged from 11 to 70 mg/kg and concentrations in most of the samples exceeded the probable-effect guideline for arsenic of 17 mg/kg. Arsenic concentrations in samples from the Chena River ranged from 9 to 12 mg/kg. The background level for arsenic in the lower Chena River watershed is naturally elevated because of significant concentrations of arsenic in local bedrock and ground water. Sources of elevated concentrations of zinc in one sample, and of nickel in two samples, are unknown. With the exception of elevated arsenic levels in samples from Chena Slough, the occurrence and concentration of trace elements in the streambed sediments of Chena Slough and Chena River were similar to those in Noyes Slough sediment. Sediment samples were analyzed for 78 semivolatile organic compounds and 32 organochlorine pesticides and polychlorinated biphenyls (PCBs). Low concentrations of dimethylnaphthalene and p-Cresol were detected in most Chena Slough and Chena River sediment samples. The number of semivolatile organic compounds detected ranged from 5 to 21 in most Chena Slough sediment samples. In contrast, three or fewer semivolatile organic compounds were detected in Chena River sediment samples, most likely because chemical-matrix interference resulted in elevated reporting limits for organochlorine compounds in the Chena River samples. Low concentrations of fluoranthene, pyrene, and phenanthrene were detected in Chena Slough sediment. Relatively low concentrations of DDT or its degradation products, DDD and DDE, were detected in all Chena Slough samples. Concentrations of total DDT (DDT+DDD+DDE) in two Chena Slough sediment samples exceeded the effectsrange median aquatic-life criteria of 46.1 micrograms per kilogram (ug/kg). DDT concentrations in Chena River streambed-sediment samples were less than 20 ug/kg. Low concentrations of PCB were detected in two Chena Slough streambed-sediment samples. None of the concentrations of the polychlorinated biphenyls or semivolatile organic compounds for which the samples were analyzed exceeded available guidelines for the protection of aquatic life. With the exception of elevated total DDT in two Chena Slough samples, the occurrence and concentration of organochlorine compounds in Chena Slough and Chena River sediment were similar to those in samples collected from Noyes Slough in 2001-02.
Newbury, Dale E; Ritchie, Nicholas W M
2016-06-01
Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
National Trends in Trace Metals Concentrations in Ambient Particulate Matter
NASA Astrophysics Data System (ADS)
McCarthy, M. C.; Hafner, H. R.; Charrier, J. G.
2007-12-01
Ambient measurements of trace metals identified as hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2006 were analyzed for long-term trends. Trace metals analyzed include lead, manganese, arsenic, chromium, nickel, cadmium, and selenium. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Trend periods were required to be at least five years. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time or spatially. In addition, routine ambient monitoring methods had method detection limits (MDLs) too high to adequately measure concentrations for trends analysis. Differences between measurement methods at urban and rural sites also confound trends analyses. Improvements in MDLs, and a better understanding of comparability between networks, are needed to better quantify trends in trace metal concentrations in the future.
MacCoy, Dorene E.; Domagalski, Joseph L.
1999-01-01
Elevated levels of trace elements and hydrophobic organic compounds were detected in streambed sediments and aquatic biota [Asiatic clam (Corbicula fluminea) or bottom-feeding fish] of the Sacramento River Basin, California, during October and November 1995. Trace elements detected included cadmium, copper, mercury, lead, and zinc. Elevated levels of cadmium, copper, and zinc in the upper Sacramento River are attributed to a mining land use, and elevated levels of zinc and lead in an urban stream, and possibly in the lower Sacramento River, are attributed to urban runoff processes. Elevated levels of mercury in streambed sediment are attributed to either past mercury mining or to the use of mercury in past gold mining operations. Mercury mining was an important land use within the Coast Ranges in the past and gold mining was an important land use of the Sierra Nevada in the past. Mercury was the only trace element found in elevated levels in the tissue of aquatic biota, and those levels also could be attributed to either mining or urban runoff. Hydrophobic organic compounds also were detected in streambed sediments and aquatic biota. The most frequently detected compounds were DDT and its breakdown products, dieldrin, oxychlordane, and toxaphene. Differences were found in the types of compounds detected at agricultural sites and the urban site. Although both types of sites had measurable concentrations of DDT or its breakdown products, the urban site also had measurable concentrations of pesticides used for household pest control. Few semivolatile compounds were detected in the streambed sediments of any site. The semivolatile compound p-cresol, a coal-tar derivative associated with road maintenance, was found in the highest concentration.
Trends in trace organic and metal concentrations in the Pechora and Kara Seas and adjacent rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, J.M.; Champ, M.A.; Wade, T.L.
1995-12-31
Trace organic (pesticides, PCBs, PAHs and dioxin/furan) and trace metal concentrations have been measured in surficial sediment and tissue (i.e., clam, fish liver and flesh) samples from the Pechora and Kara Seas and their adjacent rivers -- Pechora, Ob and Yenisey Rivers. Total PAH, PCB and total DDT and chlordane concentrations ranged in surficial sediments from n.d. to 810 ppb, n.d.--8.7 ppb, n.d.--1.2 ppb, and n.d.--1.2 ppb, respectively, in a suite of 40 samples from the Kara Sea and its adjacent rivers. The highest concentrations of many of the trace organic and metal contaminants were found in the lower partmore » of the Yenisey River below the salt wedge. Some trace metals (As for example) were elevated in the Pechora River dispositional plume region. Dioxin ranged from 1.36 to 413 ppt in a subset of 20 sediment samples. Higher trace organic contaminant concentrations compared to sediments were found in tissue samples from the region, especially fish liver samples. Concentrations as high as 1,114 ppb total PAHs, 89 ppb chlordane, 1,011 ppb for total DDT and 663 ppb PCBs were found in some fish liver samples. Dioxin concentrations in tissue samples ranged from 11.7 to 61 ppt. Concentrations of many trace organic and metal contaminants in these Russian marginal seas are influenced by inputs from these large Arctic rivers. Many organic contaminant concentrations in sediments are low, however detecting these compounds in tissue show they are bioavailable.« less
NASA Astrophysics Data System (ADS)
Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.
2018-04-01
The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.
Trace elements in lesser scaup (Aythya affinis) from the Mississippi flyway
Custer, Christine M.; Custer, T.W.; Anteau, M.J.; Afton, A.D.; Wooten, D.E.
2003-01-01
Previous research reported that concentrations of selenium in the livers of 88a??95% of lesser scaup from locations in Lake Erie, Lake St. Clair, and Lake Michigan, USA were either elevated (10a??33 A?g/g dry weight [dw]) or in the potentially harmful range (>33 A?g/g dw). In order to determine the geographic extent of these high selenium concentrations, we collected lesser scaup in Louisiana, Arkansas, Illinois, Minnesota, Wisconsin, and Manitoba and analyzed the livers for 19 trace elements. We found that all trace element concentrations, except for selenium, generally were low. Arsenic, which usually is not detected in liver samples, was detected in Louisiana and may be related to past agricultural usages. Chromium, which also is not usually detected, was only present in lesser scaup from Arkansas and may be related to fertilizer applications. Cadmium and mercury concentrations did not differ among locations and concentrations were low. Selenium concentrations in Arkansas (geometric mean=4.2 A?g/g dw) were significantly lower than those in Louisiana (10.7 A?g/g dw), Illinois (10.5 A?g/g dw), and Minnesota (8.0 A?g/gdw); concentrations in Wisconsin and Manitoba were intermediate (6.6 and 6.5 A?g/g dw). About 25% of lesser scaup livers contained elevated selenium concentrations; however, none were in the harmful range. We concluded that selenium concentrations in lesser scaup in the Mississippi Flyway are elevated in some individuals, but not to the extent that has been documented in the industrial portions of the Great Lakes.
Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.
Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver
2017-04-04
The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.
Frenzel, Steven A.
2000-01-01
Organochlorines, semivolatile organic compounds (SVOCs), and trace elements were investigated in streambed sediments and fish tissues at selected sites in the Cook Inlet Basin, Alaska, during 1998. At most sites, SVOCs and organochlorine compounds were either not detected or detected at very low concentrations. Chester Creek at Arctic Boulevard at Anchorage, which was the only site sampled with a significant degree of development in the watershed, had elevated levels of many SVOCs in streambed sediment. Coring of sediments from two ponds on Chester Creek confirmed the presence of elevated concentrations of a variety of organic compounds. Moose Creek, a stream with extensive coal deposits in its watershed, had low concentrations of numerous SVOCs in streambed sediment. Three sites located in national parks or in a national wildlife refuge had no detectable concentrations of SVOCs. Trace elements were analyzed in both streambed sediments and tissues of slimy sculpin. The two media provided similar evidence for elevated concentrations of cadmium, lead, and zinc at Chester Creek. In this study, 'probable effect levels '(PELs) were determined from sediments finer than 0.063 millimeters, where concentrations tend to be greatest. Arsenic and chromium concentrations exceeded the PEL at eight and six sites respectively. Zinc exceeded the PEL at one site. Cadmium and copper concentrations were smaller than the PEL at all sites. Mercury concentrations in streambed sediments from the Deshka River were near the PEL, and selenium concentrations at that site also appear to be elevated above background levels. At half the sites where slimy sculpin were sampled, selenium concentrations were at levels that may cause adverse effects in some species.
Relation between urbanization and water quality of streams in the Austin area, Texas
Veenhuis, J.E.; Slade, R.M.
1990-01-01
The ratio of the number of samples with detectable concentrations to the total number of samples analyzed for 18 inorganic trace elements and the concentrations of many of these minor constituents increased with increasing development classifications. Twenty-two of the 42 synthetic organic compounds for which samples were analyzed were detected in one or more samples. The compounds were detected more frequently and in larger concentrations at the sites with more urban classifications.
Hornewer, Nancy J.
2014-01-01
Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited samples. Low-level organochlorine pesticides and polychlorinated biphenyls were not detected in any of the samples. Only one polycyclic aromatic hydrocarbon compound was detected at a concentration greater than the reporting level for one San Juan composited sample. Gross alpha and gross beta radionuclides were detected at concentrations greater than reporting levels for all samples. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for water samples.
Chumbimuni-Torres, Karin Y; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric
2008-08-01
Potentiometric sensors are today sufficiently well understood and optimized to reach ultratrace level (subnanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth-coated electrode, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte.
Waddell, Kidd M.; Giddings, Elise M.
2004-01-01
A study to determine the occurrence and distribution of trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds in sediment and in fish tissue was conducted in the Great Salt Lake Basins study unit of the National Water-Quality Assessment (NAWQA) program during 1998-99. Streambed-sediment and fish-tissue samples were collected concurrently at 11 sites and analyzed for trace-element concentration. An additional four sites were sampled for streambed sediment only and one site for fish tissue only. Organic compounds were analyzed from streambed-sediment and fish-tissue samples at 15 sites concurrently.Bed-sediment cores from lakes, reservoirs, and Farmington Bay collected by the NAWQA program in 1998 and by other researchers in 1982 were used to examine historical trends in trace-element concentration and to determine anthropogenic sources of contaminants. Cores collected in 1982 from Mirror Lake, a high-mountain reference location, showed an enrichment of arsenic, cadmium, copper, lead, tin, and zinc in the surface sediments relative to the deeper sediments, indicating that enrichment likely began after about 1900. This enrichment was attributed to atmospheric deposition during the period of metal-ore mining and smelting. A core from Echo Reservoir, in the Weber River Basin, however, showed a different pattern of trace-element concentration that was attributed to a local source. This site is located downstream from the Park City mining district, which is the most likely historical source of trace elements. Cores collected in 1998 from Farmington Bay show that the concentration of lead began to increase after 1842 and peaked during the mid-1980s and has been in decline since. Recent sediments deposited during 1996-98 indicate a 41- to 62-percent reduction since the peak in the mid-1980s.The concentration of trace elements in streambed sediment was greatest at sites that have been affected by historic mining, including sites on Little Cottonwood Creek in the Jordan River basin, Silver Creek in the Weber River basin, and the Weber River below the confluence with Silver Creek. There was significant correlation of lead concentrations in streambed sediment and fish tissue, but other trace elements did not correlate well. Streambed sediment and fish tissue collected from sites in the Bear River basin, which is predominantly rangeland and agriculture, generally had low concentrations of most elements.Sediment-quality guidelines were used to assess the relative toxicity of streambed-sediment sites to aquatic communities. Sites affected by mining exceeded the Probable Effect Concentration (PEC), the concentration at which it is likely there will be a negative effect on the aquatic community, for arsenic, cadmium, copper, lead, silver, mercury, and zinc. Sites that were not affected by mining did not exceed these criteria. Concentrations of trace elements in samples collected from the Great Salt Lake Basins study unit (GRSL) are high compared to those of samples collected nationally with the NAWQA program. Nine of 15 streambed-sediment samples and 11 of 14 fish-tissue samples had concentrations of at least one trace element greater than the concentration of 90 percent of the samples collected nationally during 1993-2000.Organic compounds that were examined in streambed sediment and fish-tissue samples also were examined in bed-sediment cores. A bed-sediment core from Farmington Bay of Great Salt Lake showed an increase in total polycyclic aromatic hydrocarbon (PAH) concentrations coincident with the increase in population in Salt Lake Valley, which drains into this bay. Analysis of streambed-sediment samples showed that the highest concentrations of PAHs were detected at urban sites, including two sites in the lower Jordan River (the Jordan River flows into Farmington Bay), the Weber River at Ogden Bay, and the Provo River near Provo. Other organic compounds detected in streambed sediment in the lower Jordan River were PCBs, DDT compounds, and chlordane compounds.Organic compounds were detected more frequently in fish tissue than in streambed sediment. Chlordane compounds and PCBs were detected more frequently at urban sites. DDT compounds were detected at 13 of 15 sites including urban and agricultural sites. Concentrations of total DDT in fish tissue exceeded the guideline for protection of fish-eating wildlife at two urban sites. The concentration of organic compounds in the GRSL study unit is low compared with that of samples collected nationally.
Florida seagrass habitat evaluation: A comparative survey for chemical quality
Contaminant concentrations were determined for media associated with 13 Florida seagrass beds. Concentrations of 10 trace metals were more commonly detected in surface water, sediment and two seagrass species than PAHs, pesticides and PCBs. Concentrations of copper and arsenic ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, C.; Vowinkel, E.F.; Nawyn, J.P.
The relation of water quality to hydrogeology and land use was evaluated using analysis of water samples from 71 wells in the northern part of the Potomac-Raritan-Magothy aquifer system in New Jersey. The sampling network was evaluated for variations in hydrogeology. Well depths, pumping rates, and the number of wells in the confined and unconfined parts of the aquifer system did not differ among land-use groups. The influences of hydrogeologic factors on water quality were evaluated without considering land use. Shallow wells had the highest specific conductance and major ion concentrations. Water from wells in the unconfined part of themore » aquifer system had the highest dissolved organic carbon concentration. Dissolved oxygen and nitrate concentrations were lowest, trace metals concentrations were highest, and phenols were detected most frequently in groundwater from undeveloped land. Major ions and trace metals concentrations were lowest, dissolved oxygen and copper concentrations were highest, and pesticides were most frequently detected in groundwater from agricultural land. Nitrate concentrations were highest and orthophosphate, nitrite, and purgeable organics were detected most frequently in groundwater from urban land. These water quality data were compared to data from the same aquifer system in southern New Jersey. Frequencies of detection of purgeable organics among land-use groups were similar in the northern and southern areas. 69 refs., 23 figs., 16 tab.« less
Accumulation of polycyclic aromatic hydrocarbons by Neocalanus copepods in Port Valdez, Alaska.
Carls, Mark G; Short, Jeffrey W; Payne, James
2006-11-01
Sampling zooplankton is a useful strategy for observing trace hydrocarbon concentrations in water because samples represent an integrated average over a considerable effective sampling volume and are more representative of the sampled environment than discretely collected water samples. We demonstrate this method in Port Valdez, Alaska, an approximately 100 km(2) basin that receives about 0.5-2.4 kg of polynuclear aromatic hydrocarbons (PAH) per day. Total PAH (TPAH) concentrations (0.61-1.31 microg/g dry weight), composition, and spatial distributions in a lipid-rich copepod, Neocalanus were consistent with the discharge as the source of contamination. Although Neocalanus acquire PAH from water or suspended particulate matter, total PAH concentrations in these compartments were at or below method detection limits, demonstrating plankton can amplify trace concentrations to detectable levels useful for study.
Peterson, David A.; Boughton, Gregory K.
2000-01-01
A comprehensive water-quality investigation of the Yellowstone River Basin began in 1997, under the National Water-Quality Assessment (NAWQA) Program. Twenty-four sampling sites were selected for sampling of fish tissue and bed sediment during 1998. Organic compounds analyzed included organochlorine insecticides and their metabolites and total polychlorinated biphenyls (PCBs) from fish-tissue and bed-sediment samples, and semivolatile organic compounds from bed-sediment samples. A broad suite of trace elements was analyzed from both fish-tissue and bed-sediment samples, and a special study related to mercury also was conducted. Of the 12 organochlorine insecticides and metabolites detected in the fish-tissue samples, the most compounds per site were detected in samples from integrator sites which represent a mixture of land uses. The presence of DDT, and its metabolites DDD and DDE, in fish collected in the Yellowstone Park area likely reflects long-term residual effects from historical DDT-spraying programs for spruce budworm. Dieldrin, chlordane, and other organic compounds also were detected in the fish-tissue samples. The compound p, p'-DDE was detected at 71 percent of the sampling sites, more than any other compound. The concentrations of total DDT in fish samples were low, however, compared to concentrations from historical data from the study area, other NAWQA studies in the Rocky Mountains, and national baseline concentrations. Only 2 of the 27 organochlorine insecticides and metabolites and total PCBs analyzed in bed sediment were detected. Given that 12 of the compounds were detected in fish-tissue samples, fish appeared to be more sensitive indicators of contamination than bed sediment.Concentrations of some trace elements in fish and bed sediment were higher at sites in mineralized areas than at other sites. Concentrations of selenium in fish tissue from some sites were above background levels. Concentrations of arsenic, chromium, copper, and lead in some of the bed-sediment samples potentially exceeded criteria for the protection of aquatic life.
Soluble trace elements and total mercury in Arctic Alaskan snow
Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.
1997-01-01
Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.
Faustorilla, Maria Vilma; Chen, Zuliang; Dharmarajan, Rajarathnam; Naidu, Ravendra
2017-09-01
Assessment of total petroleum hydrocarbons (TPHs) from contaminated sites demands routine and reliable measurement at trace levels. However, the detection limits of these methods need to be improved. This study developed the programmable temperature vaporization-large volume injection (PTV-LVI) method to quantify TPHs through gas chromatography-flame ionization detection. This configuration enhances the method sensitivity for trace level detections through large volume injections and pre-concentration of analytes along the injection liner. The method was evaluated for the three commonly observed hydrocarbon fractions: C10-C14, C15-C28 and C29-C36. In comparison with conventional injection methods (splitless and pulsed splitless), PTV-LVI showed R2 values > 0.999 with enhanced limits of detection and limits of quantification values. The method was applied to real samples for routine environmental monitoring of TPHs in an Australian contaminated site characterized by refueling station. Analysis of groundwater samples in the area showed a wide range of TPH concentrations as follows: 66-1,546,000 (C10-C14), 216-22,762 (C15-C28) and 105-2,103 (C29-C36) μg/L. This method has detected trace levels, thereby measuring a wider concentration range of TPHs. These more accurate measurements can lead to the appropriate application of risk assessments and remediation techniques. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tornes, Lan H.
2005-01-01
Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination. For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less than 1,000 microsiemens per centimeter. Concentrations of pesticides that were detected and that had regulatory limits were less than the cited water-quality guidelines, standards, and criteria. Concentrations of compounds that were detected generally were less than the sediment- quality standards and criteria. The data considered in this report generally provide a good baseline from which to evaluate changes in water-quality conditions. However, because many of the trace elements detected, including lead and mercury, may have been the result of sample contamination, additional data are needed to confirm that trace-element concentrations generally are low. Concentrations of major ions, including sulfate, and specific conductance may continue to approach drinking-water standards during periods of low flow because the streams, particularly those in the western part of the basin, are sustained mostly by ground-water discharge that generally has large dissolved-solids concentrations.
Aksoy, Laçine; Sözbilir, Nalan Bayşu
2015-10-01
The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.
Censoring approach to the detection limits in X-ray fluorescence analysis
NASA Astrophysics Data System (ADS)
Pajek, M.; Kubala-Kukuś, A.
2004-10-01
We demonstrate that the effect of detection limits in the X-ray fluorescence analysis (XRF), which limits the determination of very low concentrations of trace elements and results in appearance of the so-called "nondetects", can be accounted for using the statistical concept of censoring. More precisely, the results of such measurements can be viewed as the left random censored data, which can further be analyzed using the Kaplan-Meier method correcting the data for the presence of nondetects. Using this approach, the results of measured, detection limit censored concentrations can be interpreted in a nonparametric manner including the correction for the nondetects, i.e. the measurements in which the concentrations were found to be below the actual detection limits. Moreover, using the Monte Carlo simulation technique we show that by using the Kaplan-Meier approach the corrected mean concentrations for a population of the samples can be estimated within a few percent uncertainties with respect of the simulated, uncensored data. This practically means that the final uncertainties of estimated mean values are limited in fact by the number of studied samples and not by the correction procedure itself. The discussed random-left censoring approach was applied to analyze the XRF detection-limit-censored concentration measurements of trace elements in biomedical samples.
Trace level detection of analytes using artificial olfactometry
NASA Technical Reports Server (NTRS)
Wong, Bernard (Inventor); Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor)
2001-01-01
The present invention provides a device for detecting the presence of an analyte, wherein said analyte is a microorganism marker gas. The device comprises a sample chamber having a fluid inlet port for the influx of the microorganism marker gas; a fluid concentrator in flow communication with the sample chamber, wherein the fluid concentrator has an absorbent material capable of absorbing the microorganism marker gas and thereafter releasing a concentrated microorganism marker gas; and an array of sensors in fluid communication with the concentrated microorganism marker gas. The sensor array detects and identifies the marker gas upon its release from fluid concentrate.
Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng
2014-08-01
Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.
Trace level detection of analytes using artificial olfactometry
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor); Wong, Bernard (Inventor)
2002-01-01
The present invention provides a device for detecting the presence of an analyte, such as for example, a lightweight device, including: a sample chamber having a fluid inlet port for the influx of the analyte; a fluid concentrator in flow communication with the sample chamber wherein the fluid concentrator has an absorbent material capable of absorbing the analyte and capable of desorbing a concentrated analyte; and an array of sensors in fluid communication with the concentrated analyte to be released from the fluid concentrator.
Ehsanpour, Maryam; Afkhami, Majid; Khoshnood, Reza; Reich, Kimberly J
2014-06-01
This study was conducted to determine trace metal concentrations (Cd, Cu, Zn, Pb and Hg) in blood and three egg fractions from Eretmochelys imbricata nesting on Qeshm Island in Iran. The results showed detectable levels of all analytes in all fractions. Pb and Hg were detectable in the blood and eggs, reflecting a maternal transfer. With the exception of Cu and Pb, analyzed elements in eggs were concentrated in yolk. Only Zn in blood had a significant correlation with the body size and weight (p < 0.01). It appears that Hawksbill sea turtles can regulate Zn concentrations through homeostatic processes to balance metabolic requirements. The relatively low concentrations of metals in blood support the knowledge that E. imbricata feed mainly on the low trophic levels. All essential and non-essential elements were detectable in blood and in eggs of the hawksbill, reflecting a maternal transfer. Consequently, movement patterns, home ranges of foraging grounds, and availability of food could explain variations in trace element concentrations among female turtles.
Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.
2016-01-01
Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.
Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.
2016-01-01
Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270
NASA Astrophysics Data System (ADS)
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-01
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-15
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.
Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I
2016-08-01
The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.
[Remote sensing of atmospheric trace gas by airborne passive FTIR].
Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun
2006-12-01
The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.
Bradley, P.M.; Chapelle, F.H.; Vroblesky, D.A.
1993-01-01
In groundwater from a petroleum hydrocarbon-contaminated aquifer. Substantial accumulation of aliphatic organic acids occurred only in methanogenic microcosms, and only trace amounts of acetic acid were detected in sulfate-reducing microcosms. This pattern parallels field observations in which high organic acid concentrations were detected in methanogenic zones, but only low concentrations of acetic acid were detected in sulfate-reducing zones. -from Authors
NASA Astrophysics Data System (ADS)
Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.
2017-07-01
We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.
Trace contaminant concentrations in the Kara Sea and its adjacent rivers, Russia.
Sericano, J L; Brooks, J M; Champ, M A; Kennicutt, M C; Makeyev, V V
2001-11-01
Trace organic (chlorinated pesticides, PCBs, PAHs and dioxins/furans) and trace metal concentrations were measured in surficial sediment and biological tissues (i.e., worms, crustaceans, bivalve molluscs, and fish livers) collected from the Russian Arctic. Total DDT, chlordane, PCB and PAH concentrations ranged from ND to 1.2, ND to <0.1, ND to 1.5 and <20-810 ng g(-1), respectively, in a suite of 40 surficial sediment samples from the Kara Sea and the adjacent Ob and Yenisey Rivers. High sedimentary concentrations of contaminants were found in the lower part of the Yenisey River below the salt wedge. Total dioxins/furans were analysed in a subset of 20 sediment samples and ranged from 1.4 to 410 pg g(-1). The highest trace organic contaminant concentrations were found in organisms, particularly fish livers. Concentrations as high as 89 ng g(-1) chlordane; 1010 ng g(-1) total DDTs; 460 ng g(-1) total PCBs; and 1110 ng g(-1) total PAH, were detected. A subset of 11 tissue samples was analysed for dioxins and furans with total concentrations ranging from 12 to 61 pg g(-1). Concentrations of many trace organic and metal contaminants in the Kara Sea appear to originate from riverine sources and atmospheric transport from more temperate areas. Most organic contaminant concentrations in sediments were low; however, contaminants are being concentrated in organisms and may pose a health hazard for inhabitants of coastal villages.
Knight, R.R.; Powell, J.R.
2001-01-01
The U.S. Geological Survey, as part of the National Water-Quality Assessment Program, evaluated the occurrence and distribution of organochlorine pesticides, polychlorinated biphenyls, and trace elements in fish tissue in samples collected in the lower Tennessee River Basin study unit. Fish tissue analysis provides a time-averaged measurement of contaminants as well as a direct measurement of the contaminants that bioaccumulate in fish tissue. Bioaccumulation of contaminants in fish tissue may result in concentrations that can affect human, wildlife, or aquatic health. Data for two types of tissue analyses were evaluated to assess the occurrence and distribution of contaminants: whole fish for organochlorine pesticides and polychlorinated biphenyls and fish fillets for organochlorine pesticides, polychlorinated biphenyls, and trace elements. The fish tissue data analyzed for this study cover an 18-year span including data collected in 1998 by the U.S. Geological Survey as part of the National Water-Quality Assessment Program; data collected from 1980 through 1997 by the Tennessee Valley Authority; and data collected from 1992 through 1997 by the Tennessee Department of Environment and Conservation. Concentration data for constituents that are on the U.S. Environmental Protection Agency Priority Pollutant List were summarized and compared against existing action levels or guidelines.From the list of organochlorine pesticide compounds analyzed, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), a breakdown product of dichlorodiphenyltrichloroethane (DDT), was the most commonly detected compound with detections at 83 percent of the sites sampled. Eleven p,p'-DDE samples exceeded action levels or guidelines with concentrations ranging from 0.20 to 12.8 milligrams per kilogram. Five other organochlorine compounds, p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), dieldrin, endrin, chlordane, and polychlorinated biphenyls, also exceeded action levels and guidelines, but the detection frequencies at sampling sites generally were less than 70 percent. Mercury, the only trace element to exceed a guideline, was detected at 51 of 102 sites sampled for trace elements. Selenium was detected in fish fillet samples from 70 of 102 sites sampled, which was more sites than for any other trace element; however, selenium did not exceed the 50 micrograms per gram U.S. Environmental Protection Agency screening criteria. Arsenic and cadmium also were detected at 44 and 54 percent of the sampling sites, respectively.
High throughput liquid absorption preconcentrator sampling instrument
Zaromb, Solomon; Bozen, Ralph M.
1992-01-01
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.
High-throughput liquid-absorption preconcentrator sampling methods
Zaromb, Solomon
1994-01-01
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.
High throughput liquid absorption preconcentrator sampling instrument
Zaromb, S.; Bozen, R.M.
1992-12-22
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.
High-throughput liquid-absorption preconcentrator sampling methods
Zaromb, S.
1994-07-12
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.
Miniature Tunable Laser Spectrometer for Detection of a Trace Gas
NASA Technical Reports Server (NTRS)
Christensen, Lance E. (Inventor)
2017-01-01
An open-path laser spectrometer (OPLS) for measuring a concentration of a trace gas, the OPLS including an open-path multi-pass analysis region including a first mirror, a second mirror at a distance and orientation from the first mirror, and a support structure for locating the mirrors, a laser coupled to the analysis region and configured to emit light of a wavelength range and to enable a plurality of reflections of the emitted light between the mirrors, a detector coupled to the analysis region and configured to detect a portion of the emitted light impinging on the detector and to generate a corresponding signal, and an electronic system coupled to the laser and the detector, and configured to adjust the wavelength range of the emitted light from the laser based on the generated signal, and to measure the concentration of the trace gas based on the generated signal.
Suzuki, Taku T; Sakaguchi, Isao
2016-01-01
Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.
Wang, Bronwen; Owens, Victoria; Bailey, Elizabeth; Lee, Greg
2011-01-01
We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska. Reported parameters include pH, conductivity, water temperature, major cation and anion concentrations, and trace-element concentrations. We collected the samples as part of a multiyear U.S. Geological Survey project entitled "Geologic and Mineral Deposit Data for Alaskan Economic Development." Data presented here are from samples collected in June and August 2008. Minimal interpretation accompanies this data release. This is the fourth release of aqueous geochemical data from this project; data from samples collected in 2004, 2005, and 2006 were published previously. The data in this report augment but do not duplicate or supersede the previous data releases. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample sites were selected on the basis of landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the study area is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry of these samples ranges from Ca2+-Mg2+ dominated to a mix of Ca2+-Mg2+-Na++K2+. In most cases, analysis of duplicate samples showed good agreement for the major cation and major anions with the exception of the duplicate samples at site 08TA565. At site 08TA565, Ca, Mg, Cl, and CaCO3 exceeded 25 percent and the concentrations of trace elements As, Fe and Mn also exceeded 25 percent in this duplicate pair. Chloride concentration varied by more than 25 percent in 5 of the 11 duplicated samples. Trace-element concentrations in these samples generally were at or near the detection limit for the method used and, except for Co at site 08TA565, generally good agreement was determined between duplicate samples for elements with detectable concentrations. Major-ion concentrations were below detection limits in all field blanks, and the trace-element concentrations also were generally below detection limits; however, Co, Mn, Na, Zn, Cl, and Hg were detected in one or more field blank samples.
Quality of ground water in Clark County, Washington, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turney, G.L.
1990-01-01
Water samples were collected from 76 wells throughout Clark County, in southwest Washington, during April and May 1988, and were analyzed from concentrations of major ions, silica, nitrate, phosphorus, aluminum, manganese, radon, and bacteria. Samples from 20 wells were analyzed for concentrations of trace elements and organic compounds, including most of those on the US Environmental Protection Agency (USEPA) priority pollutant list. Dissolved solids concentrations range from 12 to 245 mg/L, with a median concentration of 132 mg/L. The major dissolved constituents are calcium, bicarbonate, and silica, and, in some samples, sodium. Nitrate concentrations exceeded 1.0 mg/L throughout the Vancouvermore » urban area, and were as large as 6.7 mg/L. Comparison with limited historical data indicates that nitrate concentrations were somewhat correlated, possibly indicating similar sources. Volatile organic compound, including tetrachloroethane and 1,1,1-trichloroethane, were detected in samples from three wells in the Vancouver area. Trace amounts of volatile organic compounds were reported in samples from several other wells, but at concentrations too close to analytical detection limits to ascertain that they were in the groundwater. Trace elements and radiochemical constituents were present at small levels indicating natural sources for these constituents. Only pH, turbidity, iron, manganese, and total coliform bacteria had values that did not meet USEPA Drinking Water Standards.« less
Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.
Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming
2014-11-10
A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11 cm-1 Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12 cm-1 has been obtained by averaging about 100 spectra recorded in 2 h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-07-01
The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
Real-time explosive particle detection using a cyclone particle concentrator.
Hashimoto, Yuichiro; Nagano, Hisashi; Takada, Yasuaki; Kashima, Hideo; Sugaya, Masakazu; Terada, Koichi; Sakairi, Minoru
2014-06-30
There is a need for more rapid methods for the detection of explosive particles. We have developed a novel real-time analysis technique for explosive particles that uses a cyclone particle concentrator. This technique can analyze sample surfaces for the presence of particles from explosives such as TNT and RDX within 3 s, which is much faster than is possible by conventional methods. Particles are detached from the sample surface with air jet pulses, and then introduced into a cyclone particle concentrator with a high pumping speed of about 80 L/min. A vaporizer placed at the bottom of the cyclone particle concentrator immediately converts the particles into a vapor. The vapor is then ionized in the atmospheric pressure chemical ionization (APCI) source of a linear ion trap mass spectrometer. An online connection between the vaporizer and a mass spectrometer enables high-speed detection within a few seconds, compared with the conventional off-line heating method that takes more than 10 s to raise the temperature of a sample filter unit. Since the configuration enriched the number density of explosive particles by about 80 times compared with that without the concentrator, a sub-ng amount of TNT particles on a surface was detectable. The detection limit of our technique is comparable with that of an explosives trace detector using ion mobility spectrometry. The technique will be beneficial for trace detection in security applications, because it detects explosive particles on the surface more speedily than conventional methods. Copyright © 2014 John Wiley & Sons, Ltd.
Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment.
Murray, Kyle E; Thomas, Sheeba M; Bodour, Adria A
2010-12-01
Organic chemicals have been detected at trace concentrations in the freshwater environment for decades. Though the term trace pollutant indicates low concentrations normally in the nanogram or microgram per liter range, many of these pollutants can exceed an acceptable daily intake (ADI) for humans. Trace pollutants referred to as emerging contaminants (ECs) have recently been detected in the freshwater environment and may have adverse human health effects. Analytical techniques continue to improve; therefore, the number and frequency of detections of ECs are increasing. It is difficult for regulators to restrict use of pollutants that are a human health hazard; scientists to improve treatment techniques for higher priority pollutants; and the public to modify consumption patterns due to the vast number of ECs and the breadth of literature on the occurrence, use, and toxicity. Hence, this paper examines literature containing occurrence and toxicity data for three broad classes of trace pollutants and ECs (industrials, pesticides, and pharmaceuticals and personal care products (PPCPs)), and assesses the relevance of 71 individual compounds. The evaluation indicates that widely used industrials (BPF) and PPCPs (AHTN, HHCB, ibuprofen, and estriol) occur frequently in samples from the freshwater environment but toxicity data were not available; thus, it is important to establish their ADI. Other widely used industrials (BDE-47, BDE-99) and pesticides (benomyl, carbendazim, aldrin, endrin, ethion, malathion, biphenthrin, and cypermethrin) have established ADI values but occurrence in the freshwater environment was not well documented. The highest priority pollutants for regulation and treatment should include industrials (PFOA, PFOS and DEHP), pesticides (diazinon, methoxychlor, and dieldrin), and PPCPs (EE2, carbamazepine, βE2, DEET, triclosan, acetaminophen, and E1) because they occur frequently in the freshwater environment and pose a human health hazard at environmental concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-10-01
The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.
Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane.
Wang, Meiling; Meng, Guowen; Huang, Qing; Li, Mingtao; Li, Zhongbo; Tang, Chaolong
2011-01-21
A sensitive and selective fluorescent membrane for rapid detection of trace 2,2',4,5,5'-pentachlorinated biphenyl (PCB101) has been achieved by immobilizing the fluorophore phenyl isothiocyanate (PITC) onto porous anodic aluminium oxide (AAO) membrane (denoted as PITC@AAO). The fluorescence of the PITC@AAO membrane is obviously enhanced after titrating the analyte PCB101 into the membrane, being ascribed to the halogen-bonding interaction between the fluorophore PITC and the analyte PCB101. The fluorescence intensity increases with the PCB101 concentration in the low range below 1 ppm, and there exists an approximate linear relationship between the relative fluorescence intensity and the PCB101 concentration in the low range of 1-6 ppb. Moreover, the PITC@AAO membrane shows good selectivity; for example, it is insensitive to common structural analogs (polychlorinated aromatics). The mechanisms of the fluorescence enhancement and the better sensitivity and selectivity of the PITC@AAO membrane to PCB101 than that of PITC/n-hexane solution are also discussed. This work demonstrates that trace (in ppb range) PCBs can be detected by simple fluorescence measurement.
Optimizing detector geometry for trace element mapping by X-ray fluorescence.
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2015-05-01
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2016-01-01
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825
Optimizing detector geometry for trace element mapping by X-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C
2016-10-15
Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.
McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.
2014-01-01
With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136
Shi, Xiaofeng; Liu, Shu; Han, Xiaohong; Ma, Jun; Jiang, Yongchao; Yu, Guifeng
2015-05-01
In this study, a gold colloid solution whose parameters were optimized, and without any surfactants, was developed as a surface-enhanced Raman scattering (SERS) substrate for the detection of trace-level polycyclic aromatic hydrocarbons (PAHs). A gold colloid solution with 57 nm gold particles and pH 13 was prepared to be the SERS substrate. It had impressive enhancement that was two orders of magnitude higher than that of a gold colloid solution with 57 nm gold particles and without pH change (pH 6). Even with a compact field-based Raman spectrometer, naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were detected, with limits of detection at 6.8 nM, 3.4 nM, 1.8 nM, 0.68 nM (680 pM), and 0.44 nM (440 pM), respectively. The significant enhancement was ascribed to an electromagnetic mechanism and a charge-transfer mechanism. Quantitative analyses for these five PAHs in water were also performed. The SERS intensities of PAHs were found to have good linear dependence relations with the concentrations in low concentration. This high-sensitivity, easily prepared substrate offers a promising technology for the quantitative detection of trace-level PAHs.
Fernandez, Mario; Marot, M.E.; Holmes, C.W.
1999-01-01
This report summarizes a reconnaissance study, conducted July 20-30, 1998, of chemical and physical characteristics of recently deposited bottom sediments in the Caloosahatchee River and Estuary. Recently deposited sediments were identified using an isotopic chronometer, Beryllium-7 (7Be), a short-lived radioisotope. Fifty-nine sites were sampled in an area that encompasses the Caloosahatchee River (River) about three miles upstream from the Franklin Lock (S-79), the entire tidally affected length of the river (estuary), and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound in Lee County, Florida. Bottom sediments were sampled for 7Be at 59 sites. From the results of the 7Be analysis, 30 sites were selected for physical and chemical analysis. Sediments were analyzed for particle size, total organic carbon (TOC), trace elements, and toxic organic compounds, using semiquantitative methods for trace elements and organic compounds. The semiquantitative scans of trace elements indicated that cadmium, copper, lead, and zinc concentrations, when normalized to aluminum, were above the natural background range at 24 of 30 sites. Particle size and TOC were used to characterize sediment deposition patterns and organic content. Pesticides, polychlorinated biphenyls (PCBs), and carcinogenic polycyclic aromatic hydrocarbons (CaPAHs) were determined at 30 sites using immunoassay analysis. The semiquantitative immunoassay analyses of toxic organic compounds indicated that all of the samples contained DDT, cyclodienes as chlordane (pesticides), and CaPAHs. PCBs were not detected. Based on analyses of the 30 sites, sediments at 10 of these sites were analyzed for selected trace elements and toxic organic compounds, including pesticides, PCBs, and PAHs, using quantitative laboratory procedures. No arsenic or cadmium was detected. Zinc was detected at two sites with concentrations greater than the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects (Florida Department of Environmental Protection's Sediment Quality Assessment Guidelines). Organochlorine pesticides were detected at four sites at concentrations below the reporting limits; there were no organophosphorus pesticides or PCBs detected. PAHs were detected at eight sites; however, only four sites had concentrations above the reporting limit.
Detecting Traces of Life in the Plume of Enceladus
NASA Astrophysics Data System (ADS)
Krolikowski, Daniel M.; Lunine, Jonathan I.
2015-01-01
Saturn's moon Enceladus presents one of the most promising bodies in the solar system on which to detect (at least traces of) extraterrestrial life. We present a study of biomarkers in the plume. A variety of potential biomarkers were considered and their applicability to the plume was assessed. Our study focused primarily on the relative abundances of hydrocarbons to methane, and amino acids. Concentrations of these biomarkers were estimated by combining data from studies of methanogenic and hydrothermal communities with a plume density model. We studied mass spectrometry as a possible means to detect these indicators of life. We performed a parameterized study by considering mass spectrometers with a sensitivity of 10, 100, and 1000 times that of Cassini's mass spectrometer. Promisingly, the concentration of biogenic hydrocarbons is around an order of magnitude higher than the detection threshold of the most sensitive mass spectrometer we considered. Therefore, analysis of such hydrocarbons on a future mission is a promising approach to detecting biochemical processes within Enceladus.
Bonnot, Karine; Bernhardt, Pierre; Hassler, Dominique; Baras, Christian; Comet, Marc; Keller, Valérie; Spitzer, Denis
2010-04-15
Among various methods for landmine detection, as well as soil and water pollution monitoring, the detection of explosive compounds in air is becoming an important and inevitable challenge for homeland security applications, due to the threatening increase in terrorist explosive bombs used against civil populations. However, in the last case, there is a crucial need for the detection of vapor phase traces or subtraces (in the ppt range or even lower). A novel and innovative generator for explosive trace vapors was designed and developed. It allowed the generation of theoretical concentrations as low as 0.24 ppq for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in air according to Clapeyron equations. The accurate generation of explosive concentrations at subppt levels was verified for RDX and 2,4,6-trinitrotoluene (TNT) using a gas chromatograph coupled to an electron capture detector (GC-ECD). First, sensing material experiments were conducted on a nanostructured tungsten oxide. The sensing efficiency of this material determined as its adsorption capacity toward 54 ppb RDX was calculated to be five times higher than the sensing efficiency of a 54 ppb TNT vapor. The material sensing efficiency showed no dependence on the mass of material used. The results showed that the device allowed the calibration and discrimination between materials for highly sensitive and accurate sensing detection in air of low vapor pressure explosives such as TNT or RDX at subppb levels. The designed device and method showed promising features for nanosensing applications in the field of ultratrace explosive detection. The current perspectives are to decrease the testing scale and the detection levels to ppt or subppt concentration of explosives in air.
Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg
2006-01-01
We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project 'Geologic and Mineral Deposit Data for Alaskan Economic Development.' Data presented here are from samples collected in June and July of 2005. The data are being released at this time with minimal interpretation. This is the second release of aqueous geochemical data from this project; 2004 aqueous geochemical data were published previously (Wang and others, 2006). The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. In general, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. With the exception of a total mercury concentration of 0.33 ng/L detected in a field blank, field blank major-ion and trace-elements concentrations were below detection.
Trace elements in soil and biota in confined disposal facilities for dredged material
Beyer, W.N.; Miller, G.; Simmers, J.W.
1990-01-01
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.
Abuelo, Angel; Hernandez, Joaquín; Alves-Nores, Víctor; Benedito, José L; Castillo, Cristina
2016-12-01
There has been some recent criticism about the reliability of the assays commonly used to measure oxidant status in cattle, because some recent publications suggested that the concentration of different trace elements influences the results of these assays. The aim of this study was to test the correlation in 502 bovine serum samples between the concentration of several trace elements (Br, Co, Cr, Cu, Fe, I, Mn, Mo, Ni, Se, Sr, V and Zn) and markers of oxidant status (reactive oxygen species (ROS) and total serum antioxidant capacity (SAC)). The Oxidative Stress index (OSi) was also calculated as ROS/SAC. Some significant correlations were found, although weak (|ρ| < 0.50). Therefore, the relationships observed might be attributed to the different pro- and antioxidant effect of the different elements rather than to the assays detecting these elements instead of the oxidised molecules or total antioxidant potential, respectively. The OSi was poorly correlated (|ρ| ≤ 0.36) with the concentration of the studied trace elements, and therefore, its use is recommended to assess shifts in the systemic redox balance.
Young, Sharon M; Gryder, Laura K; David, Winnie B; Teng, Yuanxin; Gerstenberger, Shawn; Benyshek, Daniel C
2016-08-01
Maternal placentophagy has recently emerged as a rare but increasingly popular practice among women in industrialized countries who often ingest the placenta as a processed, encapsulated supplement, seeking its many purported postpartum health benefits. Little scientific research, however, has evaluated these claims, and concentrations of trace micronutrients/elements in encapsulated placenta have never been examined. Because the placenta retains beneficial micronutrients and potentially harmful toxic elements at parturition, we hypothesized that dehydrated placenta would contain detectable concentrations of these elements. To address this hypothesis, we analyzed 28 placenta samples processed for encapsulation to evaluate the concentration of 14 trace minerals/elements using inductively coupled plasma mass spectrometry. Analysis revealed detectable concentrations of arsenic, cadmium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, rubidium, selenium, strontium, uranium, and zinc. Based on one recommended daily intake of placenta capsules (3300 mg/d), a daily dose of placenta supplements contains approximately 0.018 ± 0.004 mg copper, 2.19 ± 0.533 mg iron, 0.005 ± 0.000 mg selenium, and 0.180 ± 0.018 mg zinc. Based on the recommended dietary allowance (RDA) for lactating women, the recommended daily intake of placenta capsules would provide, on average, 24% RDA for iron, 7.1% RDA for selenium, 1.5% RDA for zinc, and 1.4% RDA for copper. The mean concentrations of potentially harmful elements (arsenic, cadmium, lead, mercury, uranium) were well below established toxicity thresholds. These results indicate that the recommended daily intake of encapsulated placenta may provide only a modest source of some trace micronutrients and a minimal source of toxic elements. Copyright © 2016 Elsevier Inc. All rights reserved.
Clark, Gregory M.; Maret, Terry R.
1998-01-01
Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected in all three bed-sediment samples, ranged from 1.1 micrograms per kilogram dry weight in C.J. Strike Reservoir to 11 micrograms per kilogram dry weight in Brownlee Reservoir at Burnt River. Data from this study, compared with data collected in the upper Snake River Basin from 1992 to 1994, indicates that, in general, organochlorine concentrations in fish tissue and bed sediment increased from the headwaters of the Snake River in Wyoming downstream to Brownlee Reservoir. The largest trace-element concentrations in fish tissue were in liver samples from carp from Brownlee Reservoir at Burnt River and suckers from the Boise River near Twin Springs. Concentrations of most trace elements were larger in livers than in the sport- fish fillets. However, mercury concentrations were generally larger in the sportfish fillets; they ranged from 0.08 microgram per gram wet weight in yellow perch from C.J. Strike Reservoir to 0.32 microgram per gram wet weight in channel catfish from Brownlee Reservoir at Burnt River. None of the trace-element concentrations in fillets exceeded median international standards or U.S. Food and Drug Administration action levels. Large trace-element concentrations in the upper Snake River Basin were reported in liver samples from suckers from headwater streams, probably a result of historical mining and weathering of metal-rich rocks. Concentrations of most trace elements in the bed-sediment samples were largest in Brownlee Reservoir at Mountain Man Lodge. Concentrations of arsenic, cadmium, chromium, copper, nickel, and zinc in bed sediment from the Mountain Man Lodge site exceeded either the threshold effect level or probable effect level established by the Canadian Government for the protection of benthic life. Arsenic, chromium, copper, and nickel concentrations in bed sediment from Brownlee Reservoir at Burnt River and chromium, copper, and nickel in bed sediment from C.J. Strike Reservoir also exceeded the threshold effect level.
Wu, Yan Yan; Shen, Yu; Huang, Hui; Yang, Xian Qing; Zhao, Yong Qiang; Cen, Jian Wei; Qi, Bo
2017-01-01
Sthenoteuthis oualaniensis is a species of cephalopod that is becoming economically important in the South China Sea. As, Cd, Cr, Cu, Hg, Pb, and Zn concentrations were determined in the mantle, arms, and digestive gland of S. oualaniensis from 31 oceanographic survey stations in the central and southern South China Sea. Intraspecific and interspecific comparisons with previous studies were made. Mean concentrations of trace elements analyzed in arms and mantle were in the following orders: Zn > Cu > Cd > Cr > As > Hg. In digestive gland, the concentrations of Cd and Cu exceed that of Zn. All the Pb concentrations were under the detected limit.
Utsunomiya, Satoshi; Jensen, Keld A; Keeler, Gerald J; Ewing, Rodney C
2004-04-15
Exposure to airborne particulates containing low concentrations of heavy metals, such as Pb, As, and Se, may have serious health effects. However, little is known about the speciation and particle size of these airborne metals. Fine- and ultrafine particles with heavy metals in aerosol samples from the Detroit urban area, Michigan, were examined in detail to investigate metal concentrations and speciation. The characterization of individual particles was completed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with conventional high-resolution TEM techniques. The trace elements, Pb, As, La, Ce, Sr, Zn, Cr, Se, Sn, Y, Zr, Au, and Ag, were detected, and the elemental distributions were mapped in situ atthe nanoscale. The crystal structures of the particles containing Pb, Sr, Zn, and Au were determined from their electron diffraction patterns. Based on the characterization of the representative trace element particles, the potential health effects are discussed. Most of the trace element particles detected in this study were within a range of 0.01-1.0 microm in size, which has the longest atmospheric residence time (approximately 100 days). Increased chemical reactivity owing to the size of nanoparticles may be expected for most of the trace metal particles observed.
Rajan, Jay Prakash; Singh, Kshetrimayum Birla; Kumar, Sanjiv; Mishra, Raj Kumar
2014-09-01
To determine the trace elements content in the selected medicinal plants, namely, Eryngium foetidum L., Mimosa pudica L., Polygonum plebeium, and Prunus cerasoides D. Don traditionally used by the natives of the Mizoram, one of the north eastern states in India as their folklore medicines for curing skin diseases like eczema, leg and fingers infection, swelling and wound. A 3 MeV proton beam of proton induced X-ray emission technique, one of the most powerful techniques for its quick multi elemental trace analysis capability and high sensitivity was used to detect and characterized for trace elements. The studies revealed that six trace elements, namely, Fe, Zn, Cu, Mn, V, and Co detected in mg/L unit were present in varying concentrations in the selected medicinal plants with high and notable concentration of Fe, Zn, Mn and appreciable amount of the Cu, Co and V in all the plants. The results of the present study support the therapeutic usage of these medicinal plants in the traditional practices for curing skin diseases since they are found to contain appreciable amount of the Fe, Zn, Cu, Mn, V and Co. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Trace analysis of high-purity graphite by LA-ICP-MS.
Pickhardt, C; Becker, J S
2001-07-01
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.
Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter
2018-05-29
Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.
Use of Synchrotron X-ray Fluorescence to Measure Trace Metal Distribution in the Brain
NASA Astrophysics Data System (ADS)
Linkous, D.; Flinn, J. M.; Lanzirotti, A.; Frederickson, C.; Jones, B. F.; Bertsch, P. M.
2002-12-01
X26A, National Synchrotron Light Source, was used to quantitatively evaluate the spatial distribution of trace metals, such as Zn and Cu, in brain tissue. X-ray microprobe techniques offer distinct advantages over other analytical methods by allowing analyses to be done in-situ with little or no chemical pretreatment and low detection limits (about 1 ppm). In the context of neuroscience, SXRF can provide non-destructive measurements of specific metal concentrations and distribution within nerve (brain) tissue. Neuronal tissue from organisms having undergone different normal or experimental conditions may be compared, with analytical capacities not limited by binding states of the metal (i.e., vesicular or enzymatic), as is the case with staining techniques.. Whole regions of tissue may be scanned for detectable trace metals at spatial resolutions of 10um or less using focused monochromatic x-ray beams. Here special attention has been given to zinc because it is the most common trace metal in the brain, and levels have been increasing in the environment. In this investigation, zinc concentrations present within the hilus of a rat hippocampus, and to a lesser extent in the cortex, have been shown to increase following long-term ingestion of zinc-enhanced drinking water that was associated with deficits in spatial memory. Concomitantly, copper concentrations in the internal capsule were comparatively lower. Other first order transition metals, Cr, V, Mn, and Co were not detected. In contrast, elevated levels of Zn, Cu, and Fe have been seen in amyloid plaques associated with Alzheimer's disease.
Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg
2011-01-01
We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle, Alaska. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project entitled ?Geologic and Mineral Deposit Data for Alaskan Economic Development.? Data presented here are from samples collected in June and July 2006. The data are being released at this time with minimal interpretation. This is the third release of aqueous geochemical data from this project; aqueous geochemical data from samples collected in 2004 and 2005 were published previously. The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountains quadrangle is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. Generally, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. All field blank major-ion and trace-element concentrations were below detection.
Censoring: a new approach for detection limits in total-reflection X-ray fluorescence
NASA Astrophysics Data System (ADS)
Pajek, M.; Kubala-Kukuś, A.; Braziewicz, J.
2004-08-01
It is shown that the detection limits in the total-reflection X-ray fluorescence (TXRF), which restrict quantification of very low concentrations of trace elements in the samples, can be accounted for using the statistical concept of censoring. We demonstrate that the incomplete TXRF measurements containing the so-called "nondetects", i.e. the non-measured concentrations falling below the detection limits and represented by the estimated detection limit values, can be viewed as the left random-censored data, which can be further analyzed using the Kaplan-Meier (KM) method correcting for nondetects. Within this approach, which uses the Kaplan-Meier product-limit estimator to obtain the cumulative distribution function corrected for the nondetects, the mean value and median of the detection limit censored concentrations can be estimated in a non-parametric way. The Monte Carlo simulations performed show that the Kaplan-Meier approach yields highly accurate estimates for the mean and median concentrations, being within a few percent with respect to the simulated, uncensored data. This means that the uncertainties of KM estimated mean value and median are limited in fact only by the number of studied samples and not by the applied correction procedure for nondetects itself. On the other hand, it is observed that, in case when the concentration of a given element is not measured in all the samples, simple approaches to estimate a mean concentration value from the data yield erroneous, systematically biased results. The discussed random-left censoring approach was applied to analyze the TXRF detection-limit-censored concentration measurements of trace elements in biomedical samples. We emphasize that the Kaplan-Meier approach allows one to estimate the mean concentrations being substantially below the mean level of detection limits. Consequently, this approach gives a new access to lower the effective detection limits for TXRF method, which is of prime interest for investigation of metallic impurities on the silicon wafers.
Wind tunnel simulation of air pollution dispersion in a street canyon.
Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek
2002-01-01
Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
NASA Astrophysics Data System (ADS)
Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.
2014-03-01
LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.
Flow injection trace gas analysis method for on-site determination of organoarsenicals
Aldstadt, III, Joseph H.
1997-01-01
A method for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere.
Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990
Rinella, F.A.
1993-01-01
Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.
Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; ...
2016-04-13
Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. Lastly, we demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less
Landmeyer, J.E.
1994-01-01
Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.
Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada.
Carrara, Cherilyn; Ptacek, Carol J; Robertson, William D; Blowes, David W; Moncur, Michael C; Sverko, Ed; Backus, Sean
2008-04-15
Three high volume septic systems in Ontario, Canada, were examined to assess the potential for onsite wastewatertreatment systems to release pharmaceutical compounds to the environment and to evaluate the mobility of these compounds in receiving aquifers. Wastewater samples were collected from the septic tanks, and groundwater samples were collected below and down gradient of the infiltration beds and analyzed for a suite of commonly used pharmaceutical and trace organic compounds. The septic tank samples contained elevated concentrations of several pharmaceutical compounds. Ten of the 12 compounds analyzed were detected in groundwater at one or more sites at concentrations in the low ng L(-1) to low microg L(-1) range. Large differences among the sites were observed in both the number of detections and the concentrations of the pharmaceutical compounds. Of the compounds analyzed, ibuprofen, gemfibrozil, and naproxen were observed to be transported atthe highest concentrations and greatest distances from the infiltration source areas, particularly in anoxic zones of the plumes.
Ground-Water Quality in Western New York, 2006
Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.
2008-01-01
Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical. Sulfate concentrations exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 250 milligrams per liter (mg/L) in three samples, and chloride concentrations exceeded the SMCL of 250 mg/L in two samples. Sodium concentrations exceeded the USEPA Drinking Water Health Advisory of 60 mg/L in nine samples. Iron concentrations exceeded the SMCL of 300 ug/L (micrograms per liter) in 14 filtered samples, and manganese exceeded the USEPA SMCL of 50 ug/L in 15 filtered samples, as well as the New York State MCL of 300 ug/L in 1 filtered sample. Arsenic exceeded the USEPA MCL of 10 ug/L in two samples, aluminum exceeded the SMCL for aluminum of 50 ug/L in one sample, and lead exceeded the MCL of 15 ug/L in one sample. Radon-222 exceeded the proposed USEPA MCL of 300 picocuries per liter in 24 samples. Any detection of coliform bacteria indicates a violation of New York State health regulations; total coliform was detected in 12 samples, and Escherichia coli was detected in 2 samples. The plate counts for heterotrophic bacteria exceeded the MCL (500 colony-forming units per milliliter) in four samples.
LeBlanc, Lawrence A.; Schroeder, Roy A.; Orlando, James L.; Kuivila, Kathyrn M.
2004-01-01
A study of pesticide distribution and transport within the Salton Sea Basin, California, was conducted from September 2001 to October 2002. Sampling for the study was done along transects for the three major rivers that flow into the Salton Sea Basin: the New and Alamo Rivers at the southern end of the basin and the Whitewater River at the northern end. Three stations were established on each river: an outlet station approximately 1 mile upstream of the river discharge, a near-shore station in the river delta, and off-shore station in the Salton Sea. Water and suspended and bed sediments were collected at each station in October 2001, March-April 2002, and September 2002, coinciding with peak pesticide applications in the fall and spring. Fourteen current-use pesticides were detected in the water column. Concentrations of dissolved pesticides typically decreased from the outlets to the sea in all three rivers, consistent with the off-shore transport of pesticides from the rivers to the sea. Dissolved concentrations ranged from the limits of detection to 151 nanograms per liter (ng/L); however, diazinon, eptam (EPTC), and malathion were detected at much higher concentrations (940?3,830 ng/L) at the New and Alamo River outlet and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and eptam were higher during the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring. Current-use pesticides also were detected on suspended and bed sediments in concentrations ranging from method detection limits to 106 ng/g (nanograms per gram). Chlorpyrifos, dacthal, eptam, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number and concentrations of pesticides associated with suspended sediments frequently were similar for the river outlet and near-shore sites, consistent with the downstream transport of sediment-associated pesticides out of the rivers. Seasonal trends in pesticide concentration were similar to those for dissolved concentrations in fall 2001 and spring 2002, but not in fall 2002. Generally, the pesticides detected in the suspended sediments were the same pesticides detected in the bed sediments, and concentrations were similar, especially at the Alamo River outlet site in spring 2002 and fall 2002. Pesticides generally were not detected in sediments from the off-shore sites; however, the samples from these sites also had greater incidences of matrix interference during analysis. Sediment-associated pesticide concentrations were above equilibrium in water, suggesting a bound fraction of sediment-associated pesticides that are resistant to desorption. Concentrations of trace elements and other inorganic constituents in suspended sediments collected during the fall 2001 followed expected trends with dilution of river-derived minerals owing to highly organic autochthonous production within the Salton Sea Basin. However, calculation of enrichment ratios provided evidence for the bioconcentration of several trace elements, notably selenium in the off-shore biota.
NASA Astrophysics Data System (ADS)
Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.
2016-09-01
Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.
Molybdenite Mineral Evolution: A Study Of Trace Elements Through Time
NASA Astrophysics Data System (ADS)
McMillan, M. M.; Downs, R. T.; Stein, H. J.; Zimmerman, A.; Beitscher, B. A.; Sverjensky, D. A.; Papineau, D.; Armstrong, J. T.; Hazen, R. M.
2010-12-01
Mineral evolution explores changes through time in Earth’s near-surface mineralogy, including diversity of species, relative abundances of species, and compositional ranges of major, minor and trace elements. Such studies elucidate the co-evolution of the geosphere and biosphere. Accordingly, we investigated trace and minor elements in molybdenite (MoS2) with known ages from 3 billion years to recent. Molybdenite, the commonest mineral of Mo, may prove to be a useful case study as a consequence of its presence in Earth’s early history, the effects of oxidation on Mo mobility, and the possible role of Mo mineral coevolution with biology via its role in the nitrogen fixation enzyme nitrogenase. We employed ICPMS, SEM and electron microprobe analyses to detect trace and minor elements. We detected significant amounts of Mn and Cu (~100 ppm) and greater amounts of Fe, W, and Re (to ~4000 ppm). Molybdenites commonly contain micro inclusions, resulting in local concentrations in otherwise homogeneous samples. Inhomogeneities in Fe, Zn and Sn concentrations, for example, point to the presence of pyrite, sphalerite and cassiterite inclusions, respectively. Analyses examined as a function of time reveal that samples containing significant concentrations (>200 ppm, compared to average values < 100 ppm) of W and Re formed primarily within the last billion years. These trends may reflect changes in the mobility of W and Re in oxic hydrothermal fluids at shallow crustal conditions following the Great Oxidation Event.
Radiorespirometric assays for the detection of biogenic sulfides from sulfate-reducing bacteria.
de Queiroz, J C; de Melo Ferreira, A C; da Costa, A C A
2013-04-01
The detection of trace concentrations of biogenic sulfides can be carried out through radiorespirometric assays. The objective of this work was to improve the methodology for detection of H2 S in trace concentrations, to correlate with sulfate-reducing bacterial activity. Serial dilutions of synthetic sea water with a pure culture of Desulfovibrio alaskensis, a mixed anaerobic microbial culture and a natural saline sample from a petroleum offshore platform indicated that dilutions were followed, accordingly, by sulfate reduction. Tests performed indicated that increasing the time of incubation of a mixed anaerobic microbial culture contributed to an increase in the sulfate reduction rates, as well as the amount of carbon source and inoculum. The technique here developed proved to be a rapid test for the detection of biogenic sulfides, particularly those associated with corrosion products, being an useful tool for monitoring and controlling oil/water storage tanks, petroleum continental platforms and several types of reservoirs. © 2013 The Society for Applied Microbiology.
Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection
Matisová, Eva; Hrouzková, Svetlana
2012-01-01
Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important. PMID:23202677
A robust and reliable optical trace oxygen sensor
NASA Astrophysics Data System (ADS)
McDowell, G. R.; Holmes-Smith, A. S.; Uttamlal, M.; Mitchell, C.; Shannon, P. H.
2017-05-01
In applications of nitrogen (N2) generation, industrial gas manufacturing and food packaging there is a need to ensure oxygen (O2) is absent from the environment, even at the lowest concentration levels. Therefore, there has been an increased growth in the development of trace O2 parts per million (ppm) sensors over the past decade to detect and quantify the concentration of molecular O2 in the environment whether it be dissolved or gaseous O2. The majority of commercially available trace O2 sensors are based on electrochemical, zirconia and paramagnetic technologies. Here, the development of a luminescence-based optical trace O2 sensor is presented. Luminescence-based sensing is now regarded as one of the best techniques for the detection and quantification of O2. This is due to the high detection sensitivity, no O2 is consumed and there are a vast array of luminescent indicators and sensing platforms (polymers) that can be selected to suit the desired application. The sensor will be shown to operate from -30 °C to +60 °C in the 0-1000 ppm and/or 0-1200 μbar partial pressure of oxygen (ppO2) range and is equipped with temperature and pressure compensation. The luminescence non-depleting principle, sensor specifications and miniaturized nature offers an attractive alternative to other sensing technologies and advantages over other luminescence-based O2 ppm sensors.
Pope, Larry M.
1998-01-01
An examination of Cheney Reservoir bottom sediment was conducted in August 1997 to describe long-term trends and document the occurrence of selected constituents at concentrations that may be detrimental to aquatic organisms. Average concentrations of total phosphorus in bottom-sediment cores ranged from 94 to 674 milligrams per kilogram and were statistically related to silt- and (or) clay-size particles. Results from selected sampling sites in Cheney Reservoir indicate an increasing trend in total phosphorus concentrations. This trend is probably of nonpoint-source origin and may be related to an increase in fertilizer sales in the area, which more than doubled between 1965 and 1996, and to livestock production. Few organochlorine compounds were detected in bottom-sediment samples from Cheney Reservoir. DDT, its degradation products DDD and DDE, and dieldrin had detectable concentrations in the seven samples that were analyzed. DDT and DDD were each detected in one sample at concentrations of 1.0 and 0.65 microgram per kilogram, respectively. By far, the most frequently detected organochlorine insecticide was DDE, which was detected in all seven samples, ranging in concentration from 0.31 to 1.3 micrograms per kilogram. A decreasing trend in DDE concentrations was evident in sediment-core data from one sampling site. Dieldrin was detected in one sample from each of two sampling sites at concentrations of 0.21 and 0.22 micrograms per kilogram. Polychlorinated biphenyls were not detected in any bottom-sediment sample analyzed. Selected organophosphate, chlorophenoxy-acid, triazine, and acetanilide pesticides were analyzed in 18 bottom-sediment samples. Of the 23 pesticides analyzed, only the acetanilide herbicide metolachlor was detected (in 22 percent of the samples). Seven bottom-sediment samples were analyzed for major metals and trace elements. The median and maximum concentrations of arsenic and chromium, the maximum concentration of copper, and all concentrations of nickel in the seven samples were in the range where adverse effects to aquatic organisms occasionally occur. No time trends in trace elements were discernable in the August 1997 data.
Trace detection of analytes using portable raman systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M. Kathleen; Hotchkiss, Peter J.; Martin, Laura E.
Apparatuses and methods for in situ detection of a trace amount of an analyte are disclosed herein. In a general embodiment, the present disclosure provides a surface-enhanced Raman spectroscopy (SERS) insert including a passageway therethrough, where the passageway has a SERS surface positioned therein. The SERS surface is configured to adsorb molecules of an analyte of interest. A concentrated sample is caused to flow over the SERS surface. The SERS insert is then provided to a portable Raman spectroscopy system, where it is analyzed for the analyte of interest.
Detection of trace nitric oxide concentrations using 1-D laser-induced fluorescence imaging
NASA Astrophysics Data System (ADS)
Yoo, J.; Lee, T.; Jeffries, J. B.; Hanson, R. K.
2008-06-01
Spectrally resolved laser-induced fluorescence (LIF) with one-dimensional spatial imaging was investigated as a technique for detection of trace concentrations of nitric oxide (NO) in high-pressure flames. Experiments were performed in the burnt gases of premixed methane/argon/oxygen flames with seeded NO (15 to 50 ppm), pressures of 10 to 60 bar, and an equivalence ratio of 0.9. LIF signals were dispersed with a spectrometer and recorded on a 2-D intensified CCD array yielding both spectral resolution and 1-D spatial resolution. This method allows isolation of NO-LIF from interference signals due to alternative species (mainly hot O2 and CO2) while providing spatial resolution along the line of the excitation laser. A fast data analysis strategy was developed to enable pulse-by-pulse NO concentration measurements from these images. Statistical analyses as a function of laser energy of these single-shot data were used to determine the detection limits for NO concentration as well as the measurement precision. Extrapolating these results to pulse energies of ˜ 16 mJ/pulse yielded a predicted detection limit of ˜ 10 ppm for pressures up to 60 bar. Quantitative 1-D LIF measurements were performed in CH4/air flames to validate capability for detection of nascent NO in flames at 10-60 bar.
Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.
2001-01-01
Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.
Koltun, G.F.; Helsel, Dennis R.
1986-01-01
Identical stream-bottom material samples, when fractioned to the same size by different techniques, may contain significantly different trace-metal concentrations. Precision of techniques also may differ, which could affect the ability to discriminate between size-fractioned bottom-material samples having different metal concentrations. Bottom-material samples fractioned to less than 0.020 millimeters by means of three common techniques (air elutriation, sieving, and settling) were analyzed for six trace metals to determine whether the technique used to obtain the desired particle-size fraction affects the ability to discriminate between bottom materials having different trace-metal concentrations. In addition, this study attempts to assess whether median trace-metal concentrations in size-fractioned bottom materials of identical origin differ depending on the size-fractioning technique used. Finally, this study evaluates the efficiency of the three size-fractioning techniques in terms of time, expense, and effort involved. Bottom-material samples were collected at two sites in northeastern Ohio: One is located in an undeveloped forested basin, and the other is located in a basin having a mixture of industrial and surface-mining land uses. The sites were selected for their close physical proximity, similar contributing drainage areas, and the likelihood that trace-metal concentrations in the bottom materials would be significantly different. Statistically significant differences in the concentrations of trace metals were detected between bottom-material samples collected at the two sites when the samples had been size-fractioned by means of air elutriation or sieving. Statistical analyses of samples that had been size fractioned by settling in native water were not measurably different in any of the six trace metals analyzed. Results of multiple comparison tests suggest that differences related to size-fractioning technique were evident in median copper, lead, and iron concentrations. Technique-related differences in copper concentrations most likely resulted from contamination of air-elutriated samples by a feed tip on the elutriator apparatus. No technique-related differences were observed in chromium, manganese, or zinc concentrations. Although air elutriation was the most expensive sizefractioning technique investigated, samples fractioned by this technique appeared to provide a superior level of discrimination between metal concentrations present in the bottom materials of the two sites. Sieving was an adequate lower-cost but more laborintensive alternative.
Dolan, Kevin J; Ciesielski, Tomasz M; Lierhagen, Syverin; Eulaers, Igor; Nygård, Torgeir; Johnsen, Trond V; Gómez-Ramírez, Pilar; García-Fernández, Antonio J; Bustnes, Jan O; Ortiz-Santaliestra, Manuel E; Jaspers, Veerle L B
2017-10-01
Information on trace element pollution in the terrestrial environment and its biota is limited compared to the marine environment. In the present study, we collected body feathers and blood of 37 Northern goshawk (Accipiter gentilis) nestlings from Tromsø (northern Norway), Trondheim (central Norway), and Murcia (southeastern Spain) to study regional exposure, hypothesizing the potential health risks of metals and other trace elements. Blood and body feathers were analyzed by a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) for aluminum (Al), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg) and lead (Pb). The influence of regional differences, urbanization and agricultural land usage in proximity to the nesting Northern goshawks was investigated using particular spatial analysis techniques. Most trace elements were detected below literature blood toxicity thresholds, except for elevated concentrations (mean ± SD µgml -1 ww) found for Zn (5.4 ± 1.5), Cd (0.00023 ± 0.0002), and Hg (0.021 ± 0.01). Corresponding mean concentrations in feathers (mean ± SD µgg -1 dw) were 82.0 ± 12.4, 0.0018 ± 0.002, and 0.26 ± 0.2 for Zn, Cd and Hg respectively. Multiple linear regressions indicated region was a significant factor influencing Al, Zn, Se and Hg feather concentrations. Blood Cd and Hg concentrations were significantly influenced by agricultural land cover. Urbanization did not have a significant impact on trace element concentrations in either blood or feathers. Overall metal and trace element levels do not indicate a high risk for toxic effects in the nestlings. Levels of Cd in Tromsø and Hg in Trondheim were however above sub-lethal toxic threshold levels. For holistic risk assessment purposes it is important that the concentrations found in the nestlings of this study indicate that terrestrial raptors are exposed to various trace elements. Copyright © 2017 Elsevier Inc. All rights reserved.
Device for sampling and enriching impurities in hydrogen comprising hydrogen-permeable membrane
Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon D. H.; Kumar, Romesh
2017-01-31
Provided herein are methods and devices to enrich trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentration of impurities so as to allow the detection of the impurities using commonly-available detection methods.
Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe
Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.
1981-01-01
Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...
2015-01-01
We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
Optimizing detector geometry for trace element mapping by X-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris
We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
Bilandžić, Nina; Dežđek, Danko; Sedak, Marija; Dokić, Maja; Solomun, Božica; Varenina, Ivana; Knežević, Zorka; Slavica, Alen
2010-11-01
Trace elements concentrations (As, Cd, Cu, Pb and Hg) were determined in the liver, kidney and muscle of 28 red fox (Vulpes vulpes) and 16 stone marten (Martes foina) from suburban and rural habitats from Croatia. Rural and suburban habitats affected Cd and Hg levels in the muscle, liver and kidney of red fox. Significant differences in metal concentrations in the muscle, liver and kidney were detected among species. Suburban stone marten accumulated the highest levels of trace elements (mg/kg w.w.): in muscle 0.019 for Hg; in liver 0.161 for Cd, 36.1 for Cu and 0.349 for Pb; in kidney 1.34 for Cd and 0.318 for Pb. Values observed were higher than those found in suburban red fox and therefore, may represent an important bioindicator for the accumulation of toxic metals in urbanized habitats.
TSUKANO, Kenji; SUZUKI, Kazuyuki; NODA, Jun; YANAGISAWA, Makio; KAMEDA, Kazunari; SERA, Koichiro; NISHI, Yasunobu; SHIMAMORI, Toshio; MORIMOTO, Yasuyo; YOKOTA, Hiroshi; ASAKAWA, Mitsuhiko
2017-01-01
The purpose of this study was to compare the concentration of trace elements in the plasma of sea turtles that inhabited the suburban (Okinawa Main Island, n=8) and the rural coast (Yaeyama Island, n=57) in Okinawa, Japan. Particle induced X-ray emission allowed detection of 20 trace and major elements. The wild sea turtles in the suburban coast in Okinawa were found to have high concentrations of Pb, Si and Ti in the plasma when compared to the rural area but there were no significant changes in the Al, As and Hg concentrations. These results may help to suggest the status of some elements in a marine environment. Further, monitoring the plasma trace and major element status in sea turtles can be used as a bio-monitoring approach by which specific types of elements found here could indicate effects that are related to human activities. PMID:29070764
Wilson, Jennifer T.
2003-01-01
Bottom-sediment cores were collected from four sites in Caddo Lake in East Texas during May 2002 for analyses of radionuclides (for age dating), organochlorine pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and major and trace elements, and to describe the occurrence and trends of these sediment-associated contaminants. The Goose Prairie Creek and Harrison Bayou sites receive drainage from an area that includes parts of the now-closed Longhorn Army Ammunitions Plant. The mid-lake site is relatively close to dense oil and gas operations in the lake. The Carter Lake site receives minimal discharge from developed areas. Sediment age (deposition) dates represented in the cores ranged from 1940 to 2002. The only organochlorine compounds detected in all core samples were the DDT degradation products DDE or DDD, and PCB Aroclors 1242, 1254, and 1260 were detected only at the Goose Prairie Creek site. One or more of the DDE concentrations at all sites exceeded a consensus-based threshold effect concentration (on benthic biota), but none exceeded a consensus-based probable effect concentration. The Goose Prairie Creek site had significant downward trends in concentrations of organochlorine compounds, except for no trend in DDE concentrations. The Ammunitions Plant is a possible historical source of the few organochlorine compounds detected at the Goose Prairie Creek and Harrison Bayou sites. PAH concentrations at all sites were below respective threshold effect concentrations. Highest PAH concentrations at all four sites were of C2- alkylated naphthalenes. Nearly all statistically significant PAH trends in the cores were downward. On the basis of PAH source-indicator ratios, the majority of PAH compounds appear to have originated from uncombusted sources such as leaks or spills from oil and gas operations or vehicles (automobiles, boats, aircraft) in the Caddo Lake area. Concentrations of several of the eight trace elements with threshold effect concentrations and probable effect concentrations (among 26 analyzed) were above the respective threshold effect concentrations, but all, except one lead concentration at the Goose Prairie Creek site (deposited about 1961), were below respective probable effect concentrations. Among trace element concentrations at the four sites, lead and mercury were consistently relatively high at the Goose Prairie Creek site. Again the Ammunitions Plant, because of its proximity and history of industrial activities, is the suspected primary source. Statistically significant trends in trace element concentrations were mixed, but more were downward than upward. Computations to indicate the dominant source (atmospheric fallout or drainage area) of mercury to the Caddo Lake sediment core sites (except Carter Lake) indicate that about one-third of the mercury at the Goose Prairie Creek site might result from drainage area sources. No drainage area sources were indicated for the Harrison Bayou and mid-lake sites. Arsenic, cadmium, and zinc concentrations were highest at the Carter Lake site. No relation between the relatively higher trace element concentrations and any potential source of contamination in the Carter Lake drainage area (for example, oil and gas operations, a road, a boat ramp) is indicated.
Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.
Wegwu, Matthew O; Omeodu, Stephen I
2010-07-01
The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.
Spark discharge trace element detection system
Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz
1988-01-01
A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.
Spark discharge trace element detection system
Adler-Golden, S.; Bernstein, L.S.; Bien, F.
1988-08-23
A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.
NASA Astrophysics Data System (ADS)
Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu
2016-11-01
Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.
Frenzel, S.A.
1988-01-01
Physical, chemical, and biological characteristics of the Boise River were examined from October 1987 to March 1988 to determine whether trace elements in effluents from two Boise wastewater treatment facilities were detrimental to aquatic communities. Cadmium, chromium, hexavalent chromium, cyanide, lead, nickel, and silver concentrations in the Boise River were less than or near analytical detection levels and were less than chronic toxicity criteria when detectable. Arsenic, copper, and zinc were detected in concentrations less than chronic toxicity criteria. Concentrations of trace elements in bottom material generally were small and could not be attributed to effluents from wastewater treatment facilities. From October to December 1987, mean density of benthic invertebrates colonizing artificial substrates was from 6,100 individuals/substrate downstream from the West Boise wastewater treatment facility to 14,000 individuals per substrate downstream from the Lander Street wastewater treatment facility. From January to March 1988 , mean density of benthic invertebrates colonizing artificial substrates was from 7,100 individuals per substrate downstream from the West Boise facility to 10,000 individuals per substrate near Star. Insect communities upstream and downstream from the wastewater treatment facilities were strongly associated, and coeffients of community loss indicated that effluents had benign enriching effects. Distribution of mayflies indicates that trace-element concentrations in effluents did not adversely affect intolerant organisms in the Boise River. Condition factor of whitefish was significantly increased downstream from the Lander Street wastewater treatment facility and was significantly decreased downstream from the West Boise wastewater treatment facility.
Scientists, especially environmental scientists often encounter trace level concentrations that are typically reported as less than a certain limit of detection, L. Type 1, left-censored data arise when certain low values lying below L are ignored or unknown as they cannot be mea...
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1974-01-01
Samples of ASTM type A jet fuel were analyzed for trace-element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vandium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1975-01-01
Samples of ASTM type A jet fuel were analyzed for trace element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vanadium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
Flow injection trace gas analysis method for on-site determination of organoarsenicals
Aldstadt, J.H. III
1997-06-24
A method is described for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere. 2 figs.
The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations
NASA Technical Reports Server (NTRS)
Brasseur, G.; Derudder, A.
1987-01-01
The response of the atmosphere to emissions of chlorofluorocarbons (CFCs) and other chlorocarbons, and to increasing concentrations of other radiatively active trace gases such as CO2, CH4, and N2O is calculated by a coupled chemical-radiative transport one-dimensional model. It is shown that significant reductions in the ozone concentration and in the temperature are expected in the upper stratosphere as a result of increasing concentrations of active chlorine produced by photodecomposition of the CFCs. The ozone content is expected to increase in the troposphere, as a consequence of increasing concentrations of methane and nitrogen oxides. Due to enhanced greenhouse effects, the Earth's surface should warm up by several degrees. The amplitude and even the sign of future changes in the ozone column are difficult to predict as they are strongly scenario-dependent. An early detection system to prevent noticeable ozone changes as a result of increasing concentrations of source gases should thus be based on a continuous monitoring of the ozone amount in the upper stratosphere rather than on measurements of the ozone column only. Measurements of NOx, Clx, and HOx are also required for unambiguous trend detection and interpretation.
A measurement system for the atmospheric trace gases CH4 and CO
NASA Technical Reports Server (NTRS)
Condon, E. P.
1977-01-01
A system for measuring ambient clean air levels of the atmospheric trace gases methane and carbon monoxide is described. The analytical method consists of a gas chromatographic technique that incorporates sample preconcentration with catalytic conversion of CO to CH4 and subsequent flame ionization detection of these gases. The system has sufficient sensitivity and repeatability to make the precise measurements required to establish concentration profiles for CO and CH4 in the planetary boundary layer. A discussion of the bottle sampling program being conducted to obtain the samples for the concentration profiles is also presented.
Detection and Monitoring of Toxic Chemical at Ultra Trace Level by Utilizing Doped Nanomaterial
Khan, Sher Bahadar; Rahman, Mohammed M.; Akhtar, Kalsoom; Asiri, Abdullah M.
2014-01-01
Composite nanoparticles were synthesized by eco-friendly hydrothermal process and characterized by different spectroscopic techniques. All the spectroscopic techniques suggested the synthesis of well crystalline optically active composite nanoparticles with average diameter of ∼30 nm. The synthesized nanoparticles were applied for the development of chemical sensor which was fabricated by coating the nanoparticles on silver electrode for the recognition of phthalimide using simple I–V technique. The developed sensor exhibited high sensitivity (1.7361 µA.mM−1.cm−2), lower detection limit (8.0 µM) and long range of detection (77.0 µM to 0.38 M). Further the resistances of composite nanoparticles based sensor was found to be 2.7 MΩ which change from 2.7 to 1.7 with change in phthalimide concentration. The major advantages of the designed sensor over existing sensors are its simple technique, low cost, lower detection limit, high sensitivity and long range of detection. It can detect phthalimide even at trace level and sense over wide range of concentrations. Therefore the composite nanoparticals would be a better choice for the fabrication of phthalimide chemical sensor and would be time and cost substituted implement for environmental safety. PMID:25329666
Madejón, P; Ciadamidaro, L; Marañón, T; Murillo, J M
2013-01-01
Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.
Mars Spark Source Prototype Developed
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.
2000-01-01
The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.
Method and apparatus for detecting and measuring trace impurities in flowing gases
Taylor, Gene W.; Dowdy, Edward J.
1979-01-01
Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.
Low, Walton H.; Mullins, William H.
1990-01-01
Increased concern about the quality of irrigation drainage and its potential effects on human health, fish, and wildlife prompted the Department of the Interior to begin a program during late 1985 to identify irrigation-induced water-quality problems that might exist in the Western States. During `988, the Task Group on Irrigation Drainage selected the American Falls Reservoir area, Idaho, for study to determine whether potentially toxic concentrations of trace elements or organochlorine compounds existed in water, bottom sediment, and biota. The 91-square mile American Falls Reservoir has a total capacity of 1.7 million acre-feet and is used primarily for irrigation-water supply and power generation. Irrigated land upstream from the reservoir totals about 550,000 acres. Total water inflow to the reservoir is about 5.8 million acre-feet per year, of which about 63 percent is from surface-water runoff, 33 percent is from ground-water discharge, and about 4 percent is from ungaged tributaries, canals, ditches, sloughs, and precipitation. Ground-water discharge to the reservoir originates, in part, from irrigation of land upstream from and adjacent to the reservoir. The 1988 water year was a drought year, and water discharge was about 34 percent less than during 1939-88. Water samples were collected during the post-irrigation (October 1987) and irrigation (July 1988) seasons and were analyzed for major ions and trace elements. Bottom-sediment samples were collected during the irrigation season and were analyzed for trace elements and organochlorine compounds. Biota samples were collected during May, June, July, and August 1988 and were analyzed for trace elements and organochlorine compounds. Dissolved-solids concentrations in water ranged from 216 to 561 milligrams per liter. The similarity of dissolved-solids concentrations between the irrigation and post-irrigation seasons can be attributed to the large volume of ground-water discharge in the study area. Most trace-element concentrations in water were near analytical reporting limits; none exceeded State or Federal water-quality standards or criteria. Trace elements that were present at all sites in analytically detectable concentrations (in micrograms per liter) included arsenic (2 to 7), boron (40 to 130), uranium (0.7 to 3.5), vanadium (1 to 6) and zinc (less than 3 to 42). The ranges of arsenic, cadmium, and mercury concentrations in water analyzed during previous investigations. Selenium concentrations ranged from less than 1 (the reporting limit) to 6 micrograms per liter and did not exceed State of Federal water-quality standards or criteria. Concentrations of most trace elements in bottom sediment were similar to geometric mean concentrations in study area soils and were within the expected 95-percent range of concentrations in soils in the Western United States. Mercury concentrations in 9 of the 18 bottom-sediment samples exceeded the 95th-percentile concentration for mercury in area soils. Selenium concentration for selenium in area soils and, in 1 sample, exceeded the upper limit of the expected 95-percent range for selenium in Western United States soils. Most organochlorine compunds in bottom sediment were lower than analytical reporting limits. Only DDE (0.2 micrograms per kilogram) and DDT (0.3 micrograms per kilogram) were detected in bottom sediment from the Portneuf River. Except for mercury and selenium, concentrations of most trace elements in biota were not considered high enough to be harmful to humans or wildlife. Some mercury concentrations in fish exceeded the U.S. Fish and Wildlife Service National Contaminant Biomonitoring Program 85th-percentile concentration and were at levels that might not be safe for human consumption, especially for pregnant women. Elevated mercury concentrations in fish-eating waterbirds, such as double-crested cormorants, indicates biomagnification in the food chain. Selenium concentrations generally were low except in mallard livers (6.6 to 41.8 micrograms per gram, dry weight). This range is within the range of selenium concentrations (19 to 43 micrograms per gram, dry weight) reported in livers of ducks from Kesterson National Wildlife Refuge, California, where waterbird deformities, moralities, and reproductive impairment were observed. Selenium concentrations in mayfly nymphs were at or near dietary concentrations (5 to 8 micrograms per gram, dry weight) that had adverse reproductive effects on mallards during laboratory toxicity studies. p,p'DDE was detected in all waterbird eggs and juvenile mallared carcasses. Highest concentrations were in cormorant eggs (0.59 to 5.70 micrograms per gram, wet weight). p,p'DDE concentrations in four of five cormorant eggs exceeded the National Academy of Sciences, National Academy of Engineering criterion for protection of aquatic wildlife (1 microgram per gram, wet weight, for p,p'DDT and its metabolites). p,p'DDE was detected in all fish samples except rainbow trout. p,p'DDE was detected in one sample of Utah suckers. No concentrations of p,p'DDE or p,p'DDT in fish exceeded the criterion for protection of aquatic life. Total PCB's were detected in all cormorant eggs and all fish samples. PCB's were not detected in other waterbird eggs. PCB concentrations in cormorant eggs (0.28 to 1.8 micro per gram, wet weight) were lower than concentrations that would be expected to cause adverse effects. Two of the three carp samples contained PCB concntrations higher than the recommended level for protection of fish and wildlife (0.4 micrograms per gram, wet weight). Eggshell thinning was noted in cormorant and mallard eggs but was not considered great enough to cause reporductive problems. Observations of the general health of fish and waterbird populations during the study indicated that the area did not appear to have a serious contaminant problem that could be associated with irrigation grainage. No waterbird or fish die-offs were observed, and nesting waterbird populations were noted to be increasing. Selenium concentrations in mallard livers, however, are of concern, as are p,p'DDE residues in cormorant eggs.
Method and apparatus for phase for and amplitude detection
Cernosek, Richard W.; Frye, Gregory C.; Martin, Stephen J.
1998-06-09
A new class of techniques been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration.
Gill, Amy C.; Robinson, John A.; Redmond, Jymalyn E.; Bradley, Michael W.
2008-01-01
The watershed of Fivemile Creek (FMC), a tributary to the Locust Fork of the Black Warrior River, is located north of Birmingham, Alabama. Areas that have been previously coal-mined border the creek, and portions of the upper watershed have been and are currently (2007) being used for industrial and urban uses. The U.S. Geological Survey (USGS), in cooperation with the City of Tarrant, the Freshwater Land Trust, and the Jefferson County Commission, conducted a water-quality assessment of 12 sites along FMC during 2003?2005. Water samples were analyzed for basic physical and chemical properties and concentrations of major ions, nutrients, fecal indicator bacteria, organic wastewater compounds, pesticides, trace elements, and semivolatile organic compounds. Streambed-sediment samples were analyzed for concentrations of trace elements and semivolatile organic compounds. Benthic invertebrate communities were evaluated for taxonomic composition and relation to water-quality conditions. Nutrient concentrations in the FMC watershed reflect the influences of natural and anthropogenic sources. Concentrations of total nitrogen in all samples and total Kjeldahl nitrogen in at least one sample each collected from FMC at Hewitt Park, FMC below Springdale Road, FMC at Lewisburg, FMC near Republic, FMC at Brookside, and FMC at Linn Crossing exceeded U.S. Environmental Protection Agency (USEPA) ecoregion nutrient criteria. Total phosphorus concentrations in about 58 percent of all samples were above the ecoregion nutrient criteria. Concentrations of chlorophyll a, an indicator of algal biomass, in the FMC watershed were below the appropriate USEPA ecoregion criteria. Fecal indicator bacteria concentrations occasionally exceeded criteria established by the Alabama Department of Environmental Management (ADEM) and the USEPA to protect human health and aquatic life. Median fecal-coliform concentrations equaled or exceeded USEPA criteria at four of the six sites with multiple samples. Maximum Escherichia coli (E. coli) concentrations usually occurred during high-flow conditions and exceeded the single-sample criterion for infrequently-used whole-body contact (576 colonies per 100 milliliters) at all but one site. Median E. coli concentrations for two of the seven sites with multiple samples exceeded USEPA criteria. Twenty-nine samples were collected from sites along FMC and analyzed by the USGS National Water Quality Laboratory for the presence of 57 organic wastewater compounds. Forty-six of the 57 organic wastewater compounds, representing all 11 general-use categories, were detected in samples from FMC. All detections of organic wastewater compounds were estimated below laboratory reporting limits except for several detections of the herbicide bromacil. Herbicides accounted for approximately 62 percent of the number of pesticide detections in the FMC study area. Two herbicides, atrazine and simazine, were detected most frequently, in 100 percent of the surface-water samples. Fipronil sulfide was the most commonly detected insecticide-derived compound, occurring in 52 percent of the surface-water samples. Concentrations of one insecticide, dieldrin, exceeded the USEPA?s health advisory level for drinking water in one sample at FMC at Hewitt Park and in one sample at FMC below Springdale Road. Concentrations of carbaryl in two samples and malathion in one sample exceeded aquatic-life criteria. Only a few trace element concentrations measured in FMC exceeded established standards or criteria. Some concentrations of aluminum and manganese were above secondary drinking-water standards. One cadmium concentration and three selenium concentrations measured at FMC at Lewisburg exceeded ADEM chronic aquatic-life criteria. Streambed-sediment samples were collected at seven sites along FMC, and analyzed for selected semivolatile organic compounds and trace elements. Forty-nine of 98 semivolatile organic compounds were detected in stre
Assessment of potable water quality including organic, inorganic, and trace metal concentrations.
Nahar, Mst Shamsun; Zhang, Jing
2012-02-01
The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management. © Springer Science+Business Media B.V. 2011
Ayenimo, Joseph G; Adeloju, Samuel B
2016-02-01
A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Becker, Mark F.; Bruce, Breton W.; Pope, Larry M.; Andrews, William J.
2002-01-01
A network of 74 randomly distributed domestic water-supply wells completed in the central High Plains aquifer was sampled and analyzed from April to August 1999 as part of the High Plains Regional Ground-Water Study conducted by the U. S. Geological Survey National Water-Quality Assessment Program to provide a broad-scale assessment of the ground-water-quality in this part of the High Plains aquifer. Water properties were relatively consistent across the aquifer, with water being alkaline and well oxidized. Water was mostly of the calcium and magnesium-bicarbonate type and very hard. Sulfate concentrations in water from three wells and chloride concentration in water from one well exceeded Secondary Maximum Contaminant Levels. Fluoride concentration was equal to the Maximum Contaminant Level in one sample. Nitrate concentrations was relatively small in most samples, with the median concentration of 2.3 milligrams per liter. Dissolved organic carbon concentration was relatively low, with a median concentration of 0.5 milligram per liter. The Maximum Contaminant Level set by the U.S. Environmental Protection Agency for nitrate as nitrogen of 10 milligrams per liter was exceeded by water samples from three wells. Most samples contained detectable concentrations of the trace elements aluminum, arsenic, barium, chromium, molybdenum, selenium, zinc, and uranium. Only a few samples had trace element concentrations exceeding Maximum Contaminant Levels. Fifty-five of the samples had radon concentrations exceeding the proposed Maximum Contaminant Level of 300 picocuries per liter. The greatest radon concentrations were detected where the Ogallala Formation overlies sandstones, shales and limestones of Triassic, Jurassic, or Cretaceous age. Volatile organic compounds were detected in 9 of 74 samples. Toluene was detected in eight of those nine samples. All volatile organic compound concentrations were substantially less than Maximum Contaminant Levels. Detections of toluene may have been artifacts of the sampling and analytical processes. Pesticides were detected in 18 of the 74 water samples. None of the pesticide concentrations exceeded Maximum Contaminant Levels. The most frequently detected pesticides were atrazine and its metabolite deethylatrazine, which were detected in water from 15 and 17 wells, respectively. Most of the samples with a detectable pesticide had at least two detectable pesticides. Six of the samples had more than two detectable pesticides. Tritium concentrations was greater than 0.5 tritium unit in 10 of 51 samples, indicating recent recharge to the aquifer. Twenty-one of the samples that had nitrate concentrations greater than 4.0 milligrams per liter were assumed to have components of recent recharge. Detection of volatile organic compounds was not associated with those indicators of recent recharge, with most of volatile organic compounds being detected in water from wells with small tritium and nitrate concentrations. Detection of pesticides was associated with greater tritium or nitrate concentrations, with 16 of the 18 wells producing water with pesticides also having tritium or nitrate concentrations indicating recent recharge.
Applications of Kalman filtering to real-time trace gas concentration measurements
NASA Technical Reports Server (NTRS)
Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.
2002-01-01
A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.
Counting individual ions in the air by tagging them with particles
NASA Astrophysics Data System (ADS)
Gorbunov, B.
2017-07-01
The quantification of ultra-low concentrations of molecules and ions in gases is of fundamental and practical importance for science and technology, for example, the detection of explosives in airports or biomarkers in medical diagnostics. Often the Faraday cup is employed to transfer ion concentrations in an electric current that is then amplified and measured. One of the main challenges is to increase the sensitivity of detection. A novel concept has been developed that enables detection of individual ions in gases by tagging them with neutral nano-objects. The concentration of ionized molecules was measured and a detection limit of 5 cm-3 was observed. It is anticipated that this concept opens doors for advances in detection sensitivity for many applications including security, medical diagnostic, trace chemical analysis.
Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis
NASA Astrophysics Data System (ADS)
Chen, Yanmin; Ge, Fengyan; Guang, Shanyi; Cai, Zaisheng
2018-04-01
The large-scale surface enhanced Raman scattering (SERS) cotton fabrics were fabricated based on traditional woven ones using a dyeing-like method of vat dyes, where silver nanoparticles (Ag NPs) were in-situ synthesized by 'dipping-reducing-drying' process. By controlling the concentration of AgNO3 solution, the optimal SERS cotton fabric was obtained, which had a homogeneous close packing of Ag NPs. The SERS cotton fabric was employed to detect p-Aminothiophenol (PATP). It was found that the new fabric possessed excellent reproducibility (about 20%), long-term stability (about 57 days) and high SERS sensitivity with a detected concentration as low as 10-12 M. Furthermore, owing to the excellent mechanical flexibility and good absorption ability, the SERS cotton fabric was employed to detect carbaryl on the surface of an apple by simply swabbing, which showed great potential in fast trace analysis. More importantly, this study may realize large-scale production with low cost by a traditional cotton fabric.
Chemical quality of precipitation at Greenville, Maine
Smath, J.A.; Potter, T.L.
1987-01-01
Weekly composite precipitation samples were collected at a rural site located in Greenville, Maine for analysis of trace metals and organic compounds. Samples collected during February 1982, through May 1984, were analyzed for cadmium, chromium, copper, lead, mercury, nickel, and zinc and during February 1982, through March 1983, for chlorinated hydrocarbon pesticides, pthalate ester plasticizers, and polychlorinated biphenyls. Deposition rates were computed. Data reported by the NADP (National Atmospheric Deposition Program) was used to evaluate the general chemical quality of the precipitation. The precipitation had relatively high concentrations of hydrogen ions, sulfate, and nitrate, compared to other constituents. Of the trace metals included for analysis, only copper, lead, and zinc were consistently detected. Lead concentrations exceeded the U.S. EPA recommended limit for domestic water supply in three samples. High deposition rates for some of the metals were episodic. Alpha-hexachlorocyclohexane was the only organic compound that was consistently detected (maximum 120 nanograms/L). None of the other organic compounds were detected in any of the samples. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Góźdź, S.; Majewska, U.; Pajek, M.
2007-07-01
The total reflection X-ray fluorescence method was applied to study the trace element concentrations in human breast malignant and breast benign neoplasm tissues taken from the women who were patients of Holycross Cancer Centre in Kielce (Poland). These investigations were mainly focused on the development of new possibilities of cancer diagnosis and therapy monitoring. This systematic comparative study was based on relatively large (˜ 100) population studied, namely 26 samples of breast malignant and 68 samples of breast benign neoplasm tissues. The concentrations, being in the range from a few ppb to 0.1%, were determined for thirteen elements (from P to Pb). The results were carefully analysed to investigate the concentration distribution of trace elements in the studied samples. The measurements of concentration of trace elements by total reflection X-ray fluorescence were limited, however, by the detection limit of the method. It was observed that for more than 50% of elements determined, the concentrations were not measured in all samples. These incomplete measurements were treated within the statistical concept called left-random censoring and for the estimation of the mean value and median of censored concentration distributions, the Kaplan-Meier estimator was used. For comparison of concentrations in two populations, the log-rank test was applied, which allows to compare the censored total reflection X-ray fluorescence data. Found statistically significant differences are discussed in more details. It is noted that described data analysis procedures should be the standard tool to analyze the censored concentrations of trace elements analysed by X-ray fluorescence methods.
Groundwater Quality in Central New York, 2007
Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.
2009-01-01
Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color units. Sulfate concentrations exceeded the USEPA SMCL and the New York State MCL of 250 milligrams per liter (mg/L) in two samples, and chloride concentrations exceeded the USEPA SMCL and the New York State MCL of 250 mg/L in two samples. Sodium concentrations exceeded the USEPA Drinking Water Health Advisory of 60 mg/L in eight samples. Iron concentrations exceeded the USEPA SMCL and the New York State MCL of 300 micrograms per liter (ug/L) in 10 filtered samples. Manganese exceeded the USEPA SMCL of 50 ug/L in 10 filtered samples and the New York State MCL of 300 ug/L in 1 filtered sample. Barium exceeded the MCL of 2,000 ug/L in one sample, and aluminum exceeded the SMCL of 50 ug/L in three samples. Radon-222 exceeded the proposed USEPA MCL of 300 picocuries per liter in 12 samples. One sample from a private residential well had a trichloroethene concentration of 50.8 ug/L, which exceeded the MCL of 5 ug/L. Any detection of coliform bacteria indicates a potential violation of New York State health regulations; total coliform bacteria were detected in 19 samples, and fecal coliform bacteria were detected in one sample. The plate counts for heterotrophic bacteria exceeded the MCL (500 colony-forming units per milliliter) in three samples.
Yanosky, T.M.; Carmichael, J.K.
1993-01-01
Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also were detected in a silver maple growing next to the willow, but not in another silver maple growing 150 meters farther to the west. An oak growing in the southwestern part of the study area contained large concentrations of calcium and several trace elements, and some trees south of the abandoned site contained large concentrations of phosphorus or potassium. Concentrations of trace metals and nutrients in some trees may be related to wood-preserving activities at the site and possibly to remedial efforts conducted during the early to mid 1980's.However, the possibility cannot be discounted that large concentrations of some elements are from sources other than the wood-preserving facility, or in part from flooding of the South Fork Forked Deer River.
Skytte, Lilian; Rasmussen, Kaare Lund
2013-07-30
Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.
McKee, Lester J; Gilbreath, Alicia N
2015-08-01
Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.
Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth
2010-01-01
Trace-element quality-control samples (for example, source-solution blanks, field blanks, and field replicates) were collected as part of a statewide investigation of groundwater quality in California, known as the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB) to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Trace-element field blanks were collected to evaluate potential bias in the corresponding environmental data. Bias in the environmental data could result from contamination in the field during sample collection, from the groundwater coming into contact with contaminants on equipment surfaces or from other sources, or from processing, shipping, or analyzing the samples. Bias affects the interpretation of environmental data, particularly if any constituents are present solely as a result of extrinsic contamination that would have otherwise been absent from the groundwater that was sampled. Field blanks were collected, analyzed, and reviewed to identify and quantify extrinsic contamination bias. Data derived from source-solution blanks and laboratory quality-control samples also were considered in evaluating potential contamination bias. Eighty-six field-blank samples collected from May 2004 to January 2008 were analyzed for the concentrations of 25 trace elements. Results from these field blanks were used to interpret the data for the 816 samples of untreated groundwater collected over the same period. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). The detection frequency and the 90th percentile concentration at greater than 90 percent confidence were determined from the field-blank data for each trace element, and these results were compared to each constituent's long-term method detection level (LT-MDL) to determine whether a study reporting level (SRL) was necessary to ensure that no more than 10 percent of the detections in groundwater samples could be attributed solely to contamination bias. Only two of the trace elements analyzed, Li and Se, had zero detections in the 86 field blanks. Ten other trace elements (Sb, As, Be, B, Cd, Co, Mo, Ag, Tl, and U) were detected in fewer than 5 percent of the field blanks. The field-blank results for these constituents did not necessitate establishing SRLs. Of the 13 constituents that were detected in more than 5 percent of the field blanks, six (Al, Ba, Cr, Mn, Hg, and V) had field-blank results that indicated a need for SRLs that were at or below the highest laboratory reporting levels (LRL) used during the sampling period; these SRLs were needed for concentrations between the LT-MDLs and LRLs. The other seven constituents with detection frequencies above 5 percent (Cu, Fe, Pb, Ni, Sr, W, and Zn) had field-blank results that necessitated SRLs greater than the highest LRLs used during the study period. SRLs for these seven constituents, each set at the 90th percentile of their concentrations in the field blanks, were at least an order of magnitude below the regulatory thresholds established for drinking water for health or aesthetic purposes; therefore, reporting values below the SRLs as less than or equal to (=) the measured value would not prevent the identification of values greater than the drinking-water thresholds. The SRLs and drinking-water thresholds, respectively, for these 7 trace elements are Cu (1.7 ?g/L and 1,300
Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.
2001-01-01
Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish were low, with the exceptions of chromium, copper, mercury, and selenium; however, these concentrations are not at levels of concern. Concentrations of all trace elements analyzed in whole caddisfly larvae also were low compared to those reported in the literature. During 1998, a total of 48 species of macroinvertebrates were identified at each of two sampled sites, with similar numbers of genera represented at both: 41 at Keshena and 44 at Langlade. The percentage EPT (Ephemeroptera, Plecoptera, and Trichoptera) was 52 at Keshena and 77 at Langlade; these relatively large percentages suggest very good to excellent water quality at these sites. A total of 52 algal taxa were identified at the Wolf River near Langlade. Diatoms made up 96 percent of the algal biomass. A total of 58 algal taxa were identified at Keshena, including 48 diatom taxa (83 percent). Although diatoms accounted for just 22 percent of the algal relative abundance, in cells per square centimeter, diatoms contributed 91 percent of the total algal biomass. The overall biological integrity of the Keshena and Langlade sites, based on diversity, siltation, and pollution indexes for diatoms is excellent.
Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro
2012-08-01
Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.
Skrobialowski, S.C.
1996-01-01
Spatial distributions of metals and trace elements, nutrients, and pesticides and polychiorinated biphenyls (PCB's) in bed sediment were characterized using data collected from 1969 through 1990 and stored in the U.S. Geological Survey's National Water Data Storage and Retrieval (WATSTORE) system and the U.S. Environmental Protection Agency's Storage and Retrieval (STORET) system databases. Bed-sediment data from WATSTORE and STORET were combined to form a single database of 1,049 records representing 301 sites. Data were examined for concentrations of 16 metals and trace elements, 4 nutrients, 10 pesticides, and PCB's. Maximum bed-sediment concentrations were evaluated relative to sediment-quality guidelines developed by the National Oceanic and Atmospheric Administration, the Ontario Ministry of Environment and Energy, and the Virginia Department of Environmental Quality. Sites were not selected randomly; therefore, results should not be interpreted as representing average conditions. Many sites were located in or around lakes and reservoirs, urban areas, and areas where special investigations were conducted. Lakes and reservoirs function as effective sediment traps, and elevated concentrations of some constituents occurred at these sites. High concentrations of many metals and trace elements also occurred near urban areas where streams receive runoff or inputs from industrial, residential, and municipal activities. Elevated nutrient concentrations occurred near lakes, reservoirs, and the mouths of major rivers. The highest concentrations of arsenic, beryllium, chromium, iron. mercury, nickel, and selenium occurred in the Roanoke River Basin and may be a result of geologic formations or accumulations of bed sediment in lakes and reservoirs. The highest concentrations of cadmium, lead, and thallium were detected in the Chowan River Basin; copper and zinc were reported highest in the Neuse River Basin. Total phosphorus and total ammonia plus organic nitrogen concentrations exceeded the sediment evaluation guidelines in each major river basin, possibly resulting from wastewater inputs and agricultural applications. Exceedances of pesticide guidelines were detected in the upper Neuse River Basin near Falls Lake and in the lower Tar River Basin.
Carratalà, Anna; Rusinol, Marta; Hundesa, Ayalkibet; Biarnes, Mar; Rodriguez-Manzano, Jesus; Vantarakis, Apostolos; Kern, Anita; Suñen, Ester; Girones, Rosina; Bofill-Mas, Sílvia
2012-10-01
Poultry farming may introduce pathogens into the environment and food chains. High concentrations of chicken/turkey parvoviruses were detected in chicken stools and slaughterhouse and downstream urban wastewaters by applying new PCR-based specific detection and quantification techniques. Our results confirm that chicken/turkey parvoviruses may be useful viral indicators of poultry fecal contamination.
Liu, Yang; Gu, Ming; Alocilja, Evangelyn C; Chakrabartty, Shantanu
2010-11-15
An ultra-reliable technique for detecting trace quantities of biomolecules is reported. The technique called "co-detection" exploits the non-linear redundancy amongst synthetically patterned biomolecular logic circuits for deciphering the presence or absence of target biomolecules in a sample. In this paper, we verify the "co-detection" principle on gold-nanoparticle-based conductimetric soft-logic circuits which use a silver-enhancement technique for signal amplification. Using co-detection, we have been able to demonstrate a great improvement in the reliability of detecting mouse IgG at concentration levels that are 10(5) lower than the concentration of rabbit IgG which serves as background interference. Copyright © 2010 Elsevier B.V. All rights reserved.
Anderholm, Scott K.
1997-01-01
This report describes the quality of shallow ground water and the relations between land use and the quality of that shallow ground water in an urban area in and adjacent to Albuquerque, New Mexico. Water samples were collected from 24 shallow wells. Samples were analyzed for selected common constituents, nutrients, trace elements, radionuclides, volatile organic compounds, and pesticides. The study area, which is in the Albuquerque Basin in central New Mexico, was limited to the Rio Grande flood plain; depth to water in this area generally is less than 25 feet. The amount and composition of recharge to the shallow ground-water system are important factors that affect shallow ground-water composition in this area. Important sources of recharge that affect shallow ground-water quality in the area include infiltration of surface water, which is used in agricultural land-use areas to irrigate crops, and infiltration of septic-system effluent in residential areas. Agricultural land use represents about 28 percent of the area, and residential land use represents about 35 percent of the total study area. In most of the study area, agricultural land use is interspersed with residential land use and neither is the dominant land use in the area. Land use in the study area historically has been changing from agricultural to urban. The composition of shallow ground water in the study area varies considerably. The dissolved solids concentration in shallow ground water in the study area ranges from 272 to 1,650 milligrams per liter, although the relative percentages of selected cations and anions do not vary substantially. Calcium generally is the dominant cation and bicarbonate generally is the dominant anion. Concentrations of nutrients generally were less than 1 milligram per liter. The concentration of many trace elements in shallow ground water was below or slightly above 1 microgram per liter and there was little variation in the concentrations. Barium, iron, manganese, molybdenum, and uranium were the only trace elements analyzed for that had median concentrations greater than 5 micrograms per liter. Volatile organic compounds were detected in 5 of 24 samples. Cis-1,2-dichloroethene and 1,1-dichloroethane were the most commonly detected volatile organic compounds (detected in two samples each). Pesticides were detected in 8 of 24 samples. Prometon was the most commonly detected pesticide (detected in 5 of 24 samples). Concentrations of volatile organic compounds and pesticides detected were much smaller than any U.S. Environmental Protection Agency standards that have been established. Infiltration of surface water and the evaporation or transpiration of this water, which partially is the result of past and present agricultural land use, seem to affect the concentrations of common constituents in shallow ground water in the study area. The small excess chloride in shallow ground water relative to surface water that has been affected by evaporation or transpiration could be due to mixing of shallow ground water with small amounts of precipitation/bulk deposition or septic-system effluent. Infiltration of septic-system effluent (residential land use) has affected the shallow ground-water composition in parts of the study area on the basis of the small dissolved oxygen concentrations, large dissolved organic carbon concentrations, and excess chloride. Despite the loading of nitrogen to the shallow ground-water system as the result of infiltration of septic-system effluent, the small nitrogen concentrations in shallow ground water probably are due to the small dissolved oxygen concentrations and relatively large dissolved organic carbon concentrations. The small concentrations and lack of variation of most trace elements indicate that land use has not substantially affected the concentration
Method and apparatus for phase and amplitude detection
Cernosek, R.W.; Frye, G.C.; Martin, S.J.
1998-06-09
A new class of techniques has been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration. 12 figs.
Yüksel, Sezin; Schwenke, Almut M; Soliveri, Guido; Ardizzone, Silvia; Weber, Karina; Cialla-May, Dana; Hoeppener, Stephanie; Schubert, Ulrich S; Popp, Jürgen
2016-10-05
In the present study, an ultra-sensitive and highly reproducible novel SERS-based capillary platform was developed and utilized for the trace detection of tetrahydrocannabinol (THC). The approach combines the advantages of microwave-assisted nanoparticle synthesis, plasmonics and capillary forces. By employing a microwave-assisted preparation method, glass capillaries were reproducibly coated with silver nanoparticles in a batch fabrication process that required a processing time of 3 min without needing to use any pre-surface modifications or add surfactants. The coated capillaries exhibited an excellent SERS activity with a high reproducibility and enabled the detection of low concentrations of target molecules. At the same time, only a small amount of analyte and a short and simple incubation process was required. The developed platform was applied to the spectroscopic characterization of tetrahydrocannabinol (THC) and its identification at concentration levels down to 1 nM. Thus, a highly efficient detection system for practical applications, e.g., in drug monitoring/detection, is introduced, which can be fabricated at low cost by using microwave-assisted batch synthesis techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers.
Metcalfe, Chris; Hoque, M Ehsanul; Sultana, Tamanna; Murray, Craig; Helm, Paul; Kleywegt, Sonya
2014-03-01
Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven "indicator compounds" which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L(-1) concentrations, which are not considered to be a threat to human health.
Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth
2012-01-01
Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used to provide context for the results. Relative-concentrations (sample concentration divided by benchmark concentration) were used for evaluating groundwater. A relative-concentration greater than 1.0 indicates a concentration greater than the benchmark and is classified as high. The relative-concentration threshold for classifying inorganic constituents as moderate or low was 0.5; for organic constituents the threshold between moderate and low was 0.1. Aquifer-scale proportion was used as the primary metric for assessing the quality of untreated groundwater for the study units. High aquifer-scale proportion is defined as the areal percentage of the primary aquifers with a high relative-concentration for a particular constituent or class of constituents. Moderate and low aquifer-scale proportions were defined as the areal percentage of the primary aquifers with moderate and low relative-concentrations, respectively. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable for the two study units in the southern San Joaquin Valley (within 90 percent confidence intervals). The status assessment showed that inorganic constituents were more prevalent than organic constituents and that relative-concentrations were higher for inorganic constituents than for organic constituents. For inorganic constituents with human-health benchmarks, the relative-concentration of at least one constituent in the SESJ study unit was high in 30 percent of the primary aquifers. In the KERN study unit, the relative-concentration of at least one constituent was high in 23 percent of the primary aquifers. In the SESJ and KERN study units, the inorganic constituents with human-health benchmarks detected at high relative-concentrations in more than 2 percent of the primary aquifers were arsenic, boron, vanadium, nitrate, uranium, and gross alpha radioactivity. Additional constituents with human-health benchmarks—antimony, radium, and fluoride—were detected at high relative-concentrations in the KERN study unit. For inorganic constituents with aesthetic benchmarks (secondary maximum contaminant levels, SMCLs), the relative-concentration of at least one constituent in the SESJ study unit was high in 6.6 percent of the primary aquifers. In the KERN study unit, the relative-concentration of at least one constituent was high in 22 percent of the primary aquifers. Inorganic constituents with aesthetic benchmarks detected at high relative-concentrations in the primary aquifers in the SESJ and KERN study units were iron and manganese. Additional constituents with aesthetic benchmarks—total dissolved solids (TDS), sulfate, and chloride—were detected at high relative-concentrations in the KERN study unit. In contrast, the status assessment for organic constituents with human-health benchmarks showed that relative-concentrations were high in 4.8 percent and 2.1 percent of the primary aquifers in the SESJ and KERN study units, respectively. The special-interest constituent, perchlorate, was detected at high relative-concentrations in 1.2 percent of the primary aquifers in the SESJ study unit. Twenty-eight of the 78 VOCs (not including fumigants) analyzed were detected. Of these 28 VOCs, benzene had high relative-concentrations in the SESJ study unit, and relative-concentrations for the other 27 VOCs were moderate and low. Five of the 10 fumigants were detected; 1,2-dibromo-3-chloropropane (DBCP) was the only fumigant with high relative-concentrations in the SESJ and KERN study units. Of the 136 pesticides and pesticide degradates analyzed, 33 were detected. Human-health benchmarks were established for eighteen of the detected pesticides. Dieldrin was detected at moderate relative-concentrations in the SESJ and KERN study units. All other pesticides detected with human-health benchmarks were present at low relative-concentrations. The detection frequencies for two of these pesticides—simazine and atrazine—were greater than or equal to 10 percent in the SESJ and KERN study units. The understanding assessment of groundwater quality included an analysis of correlations of selected water-quality constituents or classes of constituents with potential explanatory factors. The understanding assessment indicated that the concentrations of many trace elements and major ions were correlated to well depth, groundwater age, and/or geochemical conditions. Many trace elements were positively correlated with depth. Arsenic, boron, vanadium, fluoride, manganese, and iron concentrations increased with well depth or depth to top-of-perforations. The concentrations for these trace elements also were higher in older (pre-modern) groundwater. In contrast, uranium concentrations decreased with increasing depth and groundwater age. Most trace elements were correlated to geochemical conditions. Arsenic, antimony, boron, fluoride, manganese, and iron concentrations generally were higher wherever the pH of the groundwater was greater than 7.6. Concentrations for these constituents generally were higher at low concentrations of dissolved oxygen (DO). Uranium was the exception; uranium concentrations generally were lower at high pH and at high concentrations of DO. Nitrate concentrations generally were lower in deeper wells. Nitrate concentrations also were higher in groundwater with higher DO. Total dissolved solids, sulfate, and chloride concentrations were higher in the KERN study unit than in the SESJ study unit. Total dissolved solids were negatively correlated with pH in the KERN study unit. Total dissolved solids and sulfate were higher in areas with more agricultural land use. Chloride concentrations increased with depth to top-of-perforations in the KERN study unit. Organic constituents and constituents of special interest, like many inorganic constituents, were correlated with well depth, groundwater age, and DO. Unlike most trace elements, however, solvent and pesticide detections, and total trihalomethanes (THM), DBCP, and perchlorate concentrations decreased with increasing well depth. Volatile organic compound, solvent, and pesticide detections, and THM concentrations also were lower in older (pre-modern) groundwater than in modern-age groundwater. Solvent detections and total THM, DBCP, and perchlorate concentrations increased with increasing DO concentrations.
Mulware, Stephen Juma
2015-01-01
The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.
[Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].
Zhou, L Z; Fu, S; Gao, S Q; He, G W
2016-06-20
To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.
Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather
2015-01-01
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
NASA Technical Reports Server (NTRS)
1997-01-01
Based on a Small Business Innovation Research contract from the Jet Propulsion Laboratory, TracePro is state-of-the-art interactive software created by Lambda Research Corporation to detect stray light in optical systems. An image can be ruined by incidental light in an optical system. To maintain image excellence from an optical system, stray light must be detected and eliminated. TracePro accounts for absorption, specular reflection and refraction, scattering and aperture diffraction of light. Output from the software consists of spatial irradiance plots and angular radiance plots. Results can be viewed as contour maps or as ray histories in tabular form. TracePro is adept at modeling solids such as lenses, baffles, light pipes, integrating spheres, non-imaging concentrators, and complete illumination systems. The firm's customer base includes Lockheed Martin, Samsung Electronics and other manufacturing, optical, aerospace, and educational companies worldwide.
Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media
NASA Astrophysics Data System (ADS)
Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.
2015-06-01
Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.
He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J
2010-09-13
The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.
Qian, Mingrong; Wu, Huizhen; Wang, Jianmei; Zhang, Hu; Zhang, Zulin; Zhang, Yongzhi; Lin, Hui; Ma, Junwei
2016-07-15
The occurrence of seven trace elements and forty three antibiotics was investigated in manure-based fertilizers from the Zhejiang province of China. These trace elements included copper, zinc, arsenic, chromium, mercury, lead and cadmium. The targeted antibiotics included four groups: sulfonamides, tetracyclines, fluoroquinolones and chloramphenicols. The median amounts of copper, zinc, arsenic, chromium, mercury, lead and cadmium in the analyzed samples were 160, 465, 7.9, 21.2, 0.3, 8.1 and 0.6mg·kg(-1), respectively. Seventeen antibiotics were detected. Enrofloxacin was the most frequently detected compound, with a detection rate of 39.3% and concentrations ranging from 6.7μg·kg(-1) to 4091μg·kg(-1). Based on the referred loading rates in agricultural soil, 10% of the collected manure-based fertilizer samples might pose a high potential ecological risk due to the presence of antibiotics. Copyright © 2016. Published by Elsevier B.V.
Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides.
Qu, Yunhe; Min, Hong; Wei, Yinyin; Xiao, Fei; Shi, Guoyue; Li, Xiaohua; Jin, Litong
2008-08-15
In this paper, Au-TiO2/Chit modified electrode was prepared with Au-TiO2 nanocomposite (Au-TiO2) and Chitosan (Chit) as a conjunct. The Au-TiO2 nanocomposite and the films were characterized by electrochemical and spectroscopy methods. A set of experimental conditions was also optimized for the film's fabrication. The electrochemical and electrocatalytic behaviors of Au-TiO2/Chit modified electrode to trace organophosphates (OPs) insecticides such as parathion were discussed in this work. By differential pulse voltammetry (DPV) measurement, the current responses of Au-TiO2/Chit modified electrode were linear with parathion concentration ranging from 1.0 ng/ml to 7.0 x 10(3)ng/ml with the detection limit of 0.5 ng/ml. In order to evaluate the performance of the detection system, we also examined the real samples successfully in this work. It exhibited a sensitive, rapid and easy-to-use method for the fast determination of trace OPs insecticides.
Trace elements levels in the serum, urine, and semen of patients with infertility.
Sağlam, Hasan Salih; Altundağ, Hüseyin; Atik, Yavuz Tarık; Dündar, Mustafa Şahin; Adsan, Öztug
2015-01-01
Studies suggest that trace elements may have an adverse impact on male reproduction, even at low levels. We tried to investigate the relationships between these metals and semen quality in various body fluids among men with infertility. A total of 255 samples of blood, semen, and urine were collected from 85 men suffering from infertility. Inductively coupled plasma-optical emission spectrometry was used for the determination of 22 trace elements. We compared the results of the semen parameters with the results of the element determinations. Because of the high proportion of samples with values lower than the limit of detection for a number of the elements, only 8 of a total 22 trace elements were determined in the samples. When the concentrations of sperm were classified according to the World Health Organization's guidelines for normospermia, oligospermia, and azoospermia, statistically significant differences were found among Zn, Ca, Al, Cu, Mg, Se, and Sr concentrations in various serum, sperm, and urine samples (P < 0.05). In the present study, we found significant correlations between concentrations of Zn, Ca, Al, Cu, Mg, Se, and Sr and semen parameters in various body fluids.
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.
1994-01-01
We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.
Deng, Biyang; Liu, Yang; Yin, Huihui; Ning, Xi; Lu, Hua; Ye, Li; Xu, Quanxiu
2012-03-15
The reaction between formaldehyde and ammonium ion to produce hexamethylenetetramine is well known. The reaction conditions are very easily controlled in situ and the experiment operation is very simple. However, such derivatization reaction for trace formaldehyde determination using capillary electrophoresis (CE) electrochemiluminescence (ECL) has not been reported before. In this study, the application of ammoniun sulfate as derivatization reagent to in-situ determination of formaldehyde in air was reported. Based on ECL enhancement of tris(2,2'-bipyridyl)ruthenium(II) with hexamethylenetetramine, a novel approach for the determination of ultra-trace formaldehyde in air using CE coupled with on-line ECL of tris(2,2'-bipyridyl)ruthenium(II) has been developed. The parameters affecting separation and detection such as detection potential, concentration and pH of phosphate buffer, and electrokinetic voltage, were investigated. Under the optimal conditions, the linear concentration range of formaldehyde in air was from 0.48 μg/m(3) to 96 mg/m(3) (linear range covering 5 orders of magnitude). The limit of detection (3σ) was 0.15 μg/m(3). The relative standard deviations of peak height and migration time for six consecutive injection of 1 ng/mL formaldehyde derivative were 0.9% and 0.8%, respectively. The recoveries of formaldehyde in air were between 99.3% and 101%. Copyright © 2012 Elsevier B.V. All rights reserved.
Carratalà, Anna; Rusinol, Marta; Hundesa, Ayalkibet; Biarnes, Mar; Rodriguez-Manzano, Jesus; Vantarakis, Apostolos; Kern, Anita; Suñen, Ester; Bofill-Mas, Sílvia
2012-01-01
Poultry farming may introduce pathogens into the environment and food chains. High concentrations of chicken/turkey parvoviruses were detected in chicken stools and slaughterhouse and downstream urban wastewaters by applying new PCR-based specific detection and quantification techniques. Our results confirm that chicken/turkey parvoviruses may be useful viral indicators of poultry fecal contamination. PMID:22904047
McPherson, Ann K.; Abrahamsen, Thomas A.; Journey, Celeste A.
2002-01-01
The U.S. Geological Survey conducted a 16-month investigation of water quality, aquatic-community structure, bed sediment, and fish tissue in Village and Valley Creeks, two urban streams that drain areas of highly intensive residential, commercial, and industrial land use in Birmingham, Alabama. Water-quality data were collected between February 2000 and March 2001 at four sites on Village Creek, three sites on Valley Creek, and at two reference sites near Birmingham?Fivemile Creek and Little Cahaba River, both of which drain less-urbanized areas. Stream samples were analyzed for major ions, nutrients, fecal bacteria, trace and major elements, pesticides, and selected organic constituents. Bed-sediment and fish-tissue samples were analyzed for trace and major elements, pesticides, polychlorinated biphenyls, and additional organic compounds. Aquatic-community structure was evaluated by conducting one survey of the fish community and in-stream habitat and two surveys of the benthic-invertebrate community. Bed-sediment and fish-tissue samples, benthic-invertebrates, and habitat data were collected between June 2000 and October 2000 at six of the nine water-quality sites; fish communities were evaluated in April and May 2001 at the six sites where habitat and benthic-invertebrate data were collected. The occurrence and distribution of chemical constituents in the water column and bed sediment provided an initial assessment of water quality in the streams. The structure of the aquatic communities, the physical condition of the fish, and the chemical analyses of fish tissue provided an indication of the cumulative effects of water quality on the aquatic biota. Water chemistry was similar at all sites, characterized by strong calcium-bicarbonate component and magnesium components. Median concentrations of total nitrogen and total phosphorus were highest at the headwaters of Valley Creek and lowest at the reference site on Fivemile Creek. In Village Creek, median concentrations of nitrite and ammonia increased in a downstream direction. In Valley Creek, median concentrations of nitrate, nitrite, ammonia, organic nitrogen, suspended phosphorus, and orthophosphate decreased in a downstream direction. Median concentrations of Escherichia coli and fecal coliform bacteria were highest at the most upstream site of Valley Creek and lowest at the reference site on Fivemile Creek. Concentrations of enterococci exceeded the U.S. Environmental Protection Agency criterion in 80 percent of the samples; concentrations of Escherichia coli exceeded the criterion in 56 percent of the samples. Concentrations of bacteria at the downstream sites on Village and Valley Creeks were elevated during high flow rather than low flow, indicating the presence of nonpoint sources. Surface-water samples were analyzed for chemical compounds that are commonly found in wastewater and urban runoff. The median number of wastewater indicators was highest at the most upstream site on Valley Creek and lowest at the reference site on Fivemile Creek. Concentrations of total recoverable cadmium, copper, lead, and zinc in surface water exceeded acute and chronic aquatic life criteria in up to 24 percent of the samples that were analyzed for trace and major elements. High concentrations of trace and major elements in the water column were detected most frequently during high flow, indicating the presence of nonpoint sources. Of the 24 pesticides detected in surface water, 17 were herbicides and 7 were insecticides. Atrazine, simazine, and prometon were the most commonly detected herbicides; diazinon, chlorpyrifos, and carbaryl were the most commonly detected insecticides. Concentrations of atrazine, carbaryl, chlorpyrifos, diazinon, and malathion periodically exceeded criteria for the protection of aquatic life. Trace-element priority pollutants, pesticides, and other organic compounds were detected in higher concentrations in bed sediment at the Village and Valley Creek sites t
NASA Astrophysics Data System (ADS)
Evans, G. N.; Tivey, M. K.; Seewald, J.; Rouxel, O. J.; Monteleone, B.
2016-12-01
Analyses of trace elements (Ag, As, Co, Mn, and Zn) hosted in the chalcopyrite linings of `black smoker' chimneys using secondary ion mass spectrometry (SIMS) have been combined with data for trace metal concentrations in corresponding vent fluids to investigate fluid-mineral partitioning of trace elements. Goals of this research include development of proxies for fluid chemistry based on mineral trace element content. The use of SIMS allows for the measurement of trace elements below the detection limits of electron microprobe and at the necessary spatial resolution (20 microns) to examine fine-grained and mixed-mineral samples. Results indicate that the chalcopyrite linings of many `black smoker' chimneys are homogeneous with respect to Ag, Mn, Co, and Zn. Minerals picked from samples exhibiting homogeneity with respect to specific elements were dissolved and analyzed by solution inductively coupled plasma mass spectrometry (ICP-MS) for use as working standards. Results also document a strong correlation between the Ag content of chalcopyrite and the Ag:Cu ratio of the corresponding hydrothermal fluid. This supports systematic partitioning of Ag into chalcopyrite as a substitute for Cu, providing a proxy for fluid Ag concentration. Additionally, the Ag content of chalcopyrite correlates with fluid pH, particularly at pH>3, and thus represents an effective proxy for fluid pH. Application of these proxies to chimney samples provides an opportunity to better identify hydrothermal conditions even when fluids have not been sampled, or not fully analyzed.
Kulongoski, Justin T.; Belitz, Kenneth; Dawson, Barbara J.
2006-01-01
Ground-water samples were analyzed for major and minor ions, trace elements, nutrients, volatile organic compounds, pesticides and pesticide degradates, waste-water indicators, dissolved methane, nitrogen, carbon dioxide and noble gases (in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, oxygen-18, deuterium and helium-4) also were measured in the samples to help identify the source and age of the ground water. Results show that no anthropogenic constituents were detected at concentrations higher than those levels set for regulatory purposes, and relatively few naturally-occurring constituents were detected at concentrations greater than regulatory levels. In this study, 21 of the 88 volatile organic compounds (VOCs) and gasoline additives and (or) oxygenates investigated were detected in ground-water samples, however, detected concentrations were one-half to one-forty-thousandth the maximum contaminant levels (MCL). Thirty-two percent of the randomized wells sampled had at least a single detection of a VOC or gasoline additive and (or) oxygenate. The most frequently detected compounds were chloroform, found in 12 of the 84 randomized wells; carbon disulfide, found in 8 of the 84 randomized wells; and toluene, found in 4 of the 84 randomized wells. Trihalomethanes were the most frequently detected class of VOCs. Nine of the 122 pesticides and (or) pesticide degradates investigated were detected in ground-water samples, however, concentrations were one-seventieth to one-eight-hundredth the MCLs. Seventeen percent of the randomized wells sampled had at least a single detection of pesticide and pesticide degradate. Herbicides were the most frequently detected class of pesticides. The most frequently detected compound was simazine, found in 8 of the 84 of the randomized wells. Chlordiamino-s-triazine and deisopropyl atrazine were both found in 2 of the 84 randomized wells sampled. Thirteen out of 63 compounds that may be indicative of the prescence of waste-water were detected in ground-water samples. Twenty-six percent of the randomized wells sampled for waste-water indicators had at least one detection. Isophorone was the most frequently detected in 6 of the 84 randomized wells. Bisphenol-A, caffeine, and indole each were detected in 3 of the 84 randomized wells. Major and minor ions and dissolved solids (DS) samples were collected at 33 public-supply wells; 3 samples had DS concentrations above the secondary maximum contaminant level (SMCL) of 500 mg/L. Ground-water samples from 32 public-supply wells were analyzed for trace elements. Arsenic concentrations above the MCL of 10 μg/L were measured at 4 public-supply wells, boron concentrations above the detection level for the purpose of reporting (DLR) of 100 μg/L were measured at 19 wells. Iron concentrations above the SMCL of 300 μg/L were measured at 7 wells, a lead concentration above the California notification level (NL) of 15 μg/L at one well, and manganese concentrations above the SMCL of 50 μg/L were measured at 17 wells. Vanadium concentrations above the DLR of 3 μg/L were measured at 9 public-supply wells; and chromium(VI) concentrations above the DLR of 1 μg/L were measured at 48 public-supply wells. Major and minor ions and dissolved solids (DS) samples were collected at 33 public-supply wells; 3 samples had DS concentrations above the secondary maximum contaminant level (SMCL) of 500 mg/L. Ground-water samples from 32 public-supply wells were analyzed for trace elements. Arsenic concentrations above the MCL of 10 μg/L were measured at 4 public-supply wells, boron concentrations above the detection level for the purpose of reporting (DLR) of 100 μg/L were measured at 19 wells. Iron concentrations above the SMCL of 300 μg/L were measured at 7 wells, a lead concentration above the California notification level (NL) of 15 μg/L at one well, and manganese concentrations above the SMCL of 50 μg/L were measured at 17 wells. Vanadium concentrations above the DLR of 3 μg/L were measured at 9 public-supply wells; and chromium(VI) concentrations above the DLR of 1 μg/L were measured at 48 public-supply wells. Microbial constituents were analyzed in 22 ground-water samples. Total coliform was detected in three wells. Counts ranged from 2 colonies per 100 mL to 20 colonies per 100 mL. MCLs for microbial constituents are based on reoccurring detection, and will be monitored during future sampling.
NASA Astrophysics Data System (ADS)
Carvalho, Filipe; Schulte, Lothar
2017-04-01
Metal pollution is normally associated with modern day industrialization. However, evidences of anthropogenic metal pollution date back to the Palaeolithic, were the domestication of fire contributed to an increase of trace metals released from the burning wood. Large-scale metal pollution started during the Roman period with the increase of mining and smelting activities. The production of metals during this period was quite rudimentary and highly polluting, contributing to a raise of metal concentrations in the atmosphere and subsequently in sediments and soils. Towards the modern period, production methods were improved, especially since the industrial revolution, but continued to release pollutants to the environment. The aim of this study is to identify periods of increased mining activity though the analysis of sedimentary records. For this purpose, we study the geochemical response of trace metals in sedimentary cores from the Aare and Lütschine delta plains, located at the Bernese Alps. The focus of this analysis is the detection of metal concentration anomalies from the last 3000 years. The analysis is based on the X-Ray Fluorescence (AVATECH XRF core scanner) response of the chemical elements copper (Cu), zinc (Zn) and lead (Pb) contained in eight cores with depths down to 10 meter. All data was filtered in order to remove the noise from natural processes such as the increase of trace metal concentrations in organic rich horizons and to select the highest peaks of these metals. Results show similar trends in all the analysed cores and indicate three major pulses of trace metal concentration during the Roman Period, Early Medieval Age and a general increase of metal concentration during the Modern era, which can evidence mining and smelting activities. Periods of lower trace metal concentrations and shifts in concentration trends relate accurately with central Europe social and economic transitions, migratory events and significant demographic variations. It is also possible to identify some trace metal peaks during the late Neolithic period. The findings of archaeological sites from this region support the assumption of these possible early pollution periods.
Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.
2008-01-01
In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg/kg. Comparing the mean mercury concentration present in post-hurricane samples with regional background data from the U.S. Geological Survey National Geochemical Dataset, indicates that mercury concentrations in post-hurricane sediment generally are larger. Sequential extraction analysis of 51 samples for arsenic indicate that 54.5 percent of the total arsenic concentration is contained in the extremely mobile iron-manganese oxide fraction. Pesticide and polychlorinated biphenyl Arochlor concentrations in post-hurricane samples were small. Prometon was the most frequently detected pesticide with concentrations ranging from 2.4 to 193 micrograms per kilogram (µg/kg). Methoxychlor was present in 22 samples with a concentration ranging from 3.5 to 3,510 µg/kg. Although methoxychlor had the largest detected pesticide concentration, it was well below the U.S. Environmental Protection Agency’s High-Priority Screening Level for residential soils. Arochlor congeners were not detected for any sample above the minimum detection level of 7.9 µg/kg.
Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique
NASA Astrophysics Data System (ADS)
Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir
2018-03-01
The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.
Batchu, Sudha Rani; Ramirez, Cesar E; Gardinali, Piero R
2015-05-01
Because of its widespread consumption and its persistence during wastewater treatment, the artificial sweetener sucralose has gained considerable interest as a proxy to detect wastewater intrusion into usable water resources. The molecular resilience of this compound dictates that coastal and oceanic waters are the final recipient of this compound with unknown effects on ecosystems. Furthermore, no suitable methodologies have been reported for routine, ultra-trace detection of sucralose in seawater as the sensitivity of traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is limited by a low yield of product ions upon collision-induced dissociation (CID). In this work, we report the development and field test of an alternative analysis tool for sucralose in environmental waters, with enough sensitivity for the proper quantitation and confirmation of this analyte in seawater. The methodology is based on automated online solid-phase extraction (SPE) and high-resolving-power orbitrap MS detection. Operating in full scan (no CID), detection of the unique isotopic pattern (100:96:31 for [M-H](-), [M-H+2](-), and [M-H+4](-), respectively) was used for ultra-trace quantitation and analyte identification. The method offers fast analysis (14 min per run) and low sample consumption (10 mL per sample) with method detection and confirmation limits (MDLs and MCLs) of 1.4 and 5.7 ng/L in seawater, respectively. The methodology involves low operating costs due to virtually no sample preparation steps or consumables. As an application example, samples were collected from 17 oceanic and estuarine sites in Broward County, FL, with varying salinity (6-40 PSU). Samples included the ocean outfall of the Southern Regional Wastewater Treatment Plant (WWTP) that serves Hollywood, FL. Sucralose was detected above MCL in 78% of the samples at concentrations ranging from 8 to 148 ng/L, with the exception of the WWTP ocean outfall (at pipe end, 28 m below the surface) where the measured concentration was 8418 ± 3813 ng/L. These results demonstrate the applicability of this monitoring tool for the trace-level detection of this wastewater marker in very dilute environmental waters.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
Justus, B.G.; Stanton, Gregory P.
2005-01-01
The Fort Chaffee Maneuver Training Center is a facility used to train as many as 50,000 Arkansas National Guardsmen each year. Due to the nature of ongoing training and also to a poor understanding of environmental procedures that were practiced in the World War II era, areas within Fort Chaffee have the potential to be sources of a large number of contaminants. Because some streams flow on to Fort Chaffee, there is also the potential for sources that are off post to affect environmental conditions on post. This study evaluates constituent concentrations in water, fish tissue, and bed sediment collected from waterbodies on Fort Chaffee between September 2002 and July 2004. Constituent concentrations detected in the three media and measured at nine stream sites and four lake sites were compared to national and regional criteria when available. Two of the larger streams, Big and Vache Grasse Creeks, were sampled at multiple sites. All three sampled media were analyzed for insecticides, PCBs, explosives, and trace elements. Additionally, water samples were analyzed for nutrients and herbicides. The different constituents detected in the three sample media (water, fish tissue, and bed sediment) indicate that land-use activities both on and off post are influencing environmental conditions. Contaminants such as explosives that were sometimes detected in water samples have an obvious relation to military training; however, the occurrence and locations of some nutrients, insecticides, and trace elements suggest that land use both on and off post also could be influencing environmental conditions to some degree. Constituent concentrations at sites on Vache Grasse Creek, and particularly the most upstream site, which was located immediately downstream from an off-post wastewater-treatment facility, indicate that environmental conditions were being influenced by an off-post source. The most upstream site on Vache Grasse Creek had both the highest number of detections and the highest concentrations detected of all sites sampled. Event-mean storm concentrations and storm loads calculated from storm-flow samples at two sites each for Big and Vache Grasse Creeks indicate that storm loads were highest at the two Vache Grasse Creek sites for 24 of the 25 constituents detected. Further evaluation by normalizing storm loads at Big Creek to storm loads at Vache Grasse Creek by stream flow indicate that event loads at Vache Grasse Creek were about two or more times higher than those on Big Creek for 15 of the 25 constituents measured. Low concentrations of arsenic and lead were detected in water samples, but all detections for the two trace elements occurred in samples collected at the upstream site on Vache Grasse Creek. The nickel concentration in fish livers collected from the upstream site on Vache Grasse Creek was 45 percent higher than the median of a national study of 145 sites. Mercury concentrations in edible fish tissue, which are a widespread concern in the United States, exceeded an USEPA criterion for methylmercury of 300 ?g/kg in four of nine samples; however, concentrations are typical of mercury concentrations in fish tissues for the State of Arkansas. Constituent concentrations at some sites indicate that environmental conditions are being influenced by on-post activities. Of the 55 (excluding total organic carbon) organic constituents analyzed in water samples, only 10 were detected above the minimum detection limit but four of those were explosives. Bed-sediment samples from one site located on Grayson Creek, and nearest the administrative and residential (cantonment) area, had detections for arsenic, copper, lead, manganese, nickel, and zinc that were above background concentrations, and concentrations for arsenic and nickel at this site exceeded lowest effect level criteria established by the U.S. Environmental Protection Agency. The site on Grayson Creek also had the only detections of DDT metabolites in bed sedi
Lambing, J.H.; Jones, W.E.; Sutphin, J.W.
1988-01-01
Concentrations of trace elements, radiochemicals, and pesticides in the Bowdoin National Wildlife Refuge lakes generally were not substantially larger than those in the water supplied from Dodson South Canal or in irrigation drainage. Concentrations of arsenic (47 micrograms/L), uranium (43 microg/L), and vanadium (51 microg/L) in Dry Lake Unit, and boron (1,000 microg/L) in Lake Bowdoin were notably larger than at other sites. Zinc concentrations in an irrigation drain (56 microg/L) and two shallow domestic wells (40 and 47 microg/L) were elevated relative to other sites. Concentrations of gross alpha radiation (64 picocuries/L) and gross beta radiation (71 picocuries/L) were elevated in Dry Lake Unit. Pesticides concentrations at all sites were 0.08 microg/L or less. Water use guidelines concentrations for boron, cadmium, uranium, zinc, and gross alpha radiation were slightly exceeded at several sites. In general, trace-constituent concentrations measured in the water do not indicate any potential toxicity problems in Bowdoin National Wildlife Refuge; however, highwater conditions in 1986 probably caused dilution of dissolved constituents compared to recent dry years. Trace element concentrations in bottom sediments of the refuge lakes were generally similar to background concentrations in the soils. The only exception was Dry Lake Unit, which had concentrations of chromium (99 micrograms/g), copper (37 microg/g), nickel (37 microg/g), vanadium (160 microg/g), and zinc (120 microg/g) that were about double the mean background concentrations. The maximum selenium concentration in bottom sediment was 0.6 microg/g. Pesticide concentrations in bottom sediments were less than analytical detection limits at all sites. With few exceptions, concentrations of trace elements and pesticides in biota generally were less than values known to produce harmful effects on growth or reproduction. (Lantz-PTT)
Potential sources of analytical bias and error in selected trace element data-quality analyses
Paul, Angela P.; Garbarino, John R.; Olsen, Lisa D.; Rosen, Michael R.; Mebane, Christopher A.; Struzeski, Tedmund M.
2016-09-28
Potential sources of analytical bias and error associated with laboratory analyses for selected trace elements where concentrations were greater in filtered samples than in paired unfiltered samples were evaluated by U.S. Geological Survey (USGS) Water Quality Specialists in collaboration with the USGS National Water Quality Laboratory (NWQL) and the Branch of Quality Systems (BQS).Causes for trace-element concentrations in filtered samples to exceed those in associated unfiltered samples have been attributed to variability in analytical measurements, analytical bias, sample contamination either in the field or laboratory, and (or) sample-matrix chemistry. These issues have not only been attributed to data generated by the USGS NWQL but have been observed in data generated by other laboratories. This study continues the evaluation of potential analytical bias and error resulting from matrix chemistry and instrument variability by evaluating the performance of seven selected trace elements in paired filtered and unfiltered surface-water and groundwater samples collected from 23 sampling sites of varying chemistries from six States, matrix spike recoveries, and standard reference materials.Filtered and unfiltered samples have been routinely analyzed on separate inductively coupled plasma-mass spectrometry instruments. Unfiltered samples are treated with hydrochloric acid (HCl) during an in-bottle digestion procedure; filtered samples are not routinely treated with HCl as part of the laboratory analytical procedure. To evaluate the influence of HCl on different sample matrices, an aliquot of the filtered samples was treated with HCl. The addition of HCl did little to differentiate the analytical results between filtered samples treated with HCl from those samples left untreated; however, there was a small, but noticeable, decrease in the number of instances where a particular trace-element concentration was greater in a filtered sample than in the associated unfiltered sample for all trace elements except selenium. Accounting for the small dilution effect (2 percent) from the addition of HCl, as required for the in-bottle digestion procedure for unfiltered samples, may be one step toward decreasing the number of instances where trace-element concentrations are greater in filtered samples than in paired unfiltered samples.The laboratory analyses of arsenic, cadmium, lead, and zinc did not appear to be influenced by instrument biases. These trace elements showed similar results on both instruments used to analyze filtered and unfiltered samples. The results for aluminum and molybdenum tended to be higher on the instrument designated to analyze unfiltered samples; the results for selenium tended to be lower. The matrices used to prepare calibration standards were different for the two instruments. The instrument designated for the analysis of unfiltered samples was calibrated using standards prepared in a nitric:hydrochloric acid (HNO3:HCl) matrix. The instrument designated for the analysis of filtered samples was calibrated using standards prepared in a matrix acidified only with HNO3. Matrix chemistry may have influenced the responses of aluminum, molybdenum, and selenium on the two instruments. The best analytical practice is to calibrate instruments using calibration standards prepared in matrices that reasonably match those of the samples being analyzed.Filtered and unfiltered samples were spiked over a range of trace-element concentrations from less than 1 to 58 times ambient concentrations. The greater the magnitude of the trace-element spike concentration relative to the ambient concentration, the greater the likelihood spike recoveries will be within data control guidelines (80–120 percent). Greater variability in spike recoveries occurred when trace elements were spiked at concentrations less than 10 times the ambient concentration. Spike recoveries that were considerably lower than 90 percent often were associated with spiked concentrations substantially lower than what was present in the ambient sample. Because the main purpose of spiking natural water samples with known quantities of a particular analyte is to assess possible matrix effects on analytical results, the results of this study stress the importance of spiking samples at concentrations that are reasonably close to what is expected but sufficiently high to exceed analytical variability. Generally, differences in spike recovery results between paired filtered and unfiltered samples were minimal when samples were analyzed on the same instrument.Analytical results for trace-element concentrations in ambient filtered and unfiltered samples greater than 10 and 40 μg/L, respectively, were within the data-quality objective for precision of ±25 percent. Ambient trace-element concentrations in filtered samples greater than the long-term method detection limits but less than 10 μg/L failed to meet the data-quality objective for precision for at least one trace element in about 54 percent of the samples. Similarly, trace-element concentrations in unfiltered samples greater than the long-term method detection limits but less than 40 μg/L failed to meet this data-quality objective for at least one trace-element analysis in about 58 percent of the samples. Although, aluminum and zinc were particularly problematic, limited re-analyses of filtered and unfiltered samples appeared to improve otherwise failed analytical precision.The evaluation of analytical bias using standard reference materials indicate a slight low bias for results for arsenic, cadmium, selenium, and zinc. Aluminum and molybdenum show signs of high bias. There was no observed bias, as determined using the standard reference materials, during the analysis of lead.
Mataba, Gordian Rocky; Verhaert, Vera; Blust, Ronny; Bervoets, Lieven
2016-03-15
The aim of the present study was to assess the distribution of trace elements in the aquatic ecosystem of the Thigithe river. Samples of surface water, sediment and fish were collected up- and downstream of the North Mara Gold Mine (Tanzania) and following trace elements were analysed: As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Trace element concentrations in surface water were below or near the detection limit. Regarding the sediments, relative high concentrations of arsenic at all sites and high levels of mercury at a site downstream of the mine where artisanal mining is performed were observed. Trace element concentrations in Ningu fish tissues (Labeo victorianus) were comparable to slightly higher than levels in fishes from unpolluted environments. For none of the measured human health risk by consumption of fish from the Thigithe river is expected when the Tanzanian average amount of 17 g/day is consumed. However, for Hg and As the advised maximum daily consumption of Ningu fish was lower than 100g. As a result fishermen and people living along the shores of the river consuming more fish than the average Tanzanian fish consumption set by the FAO (2005) are possibly at risk. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.
1976-01-01
Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.
Chen, Y C; Sun, M C
2001-01-01
This study demonstrates the feasibility of combining solid-phase extraction (SPE) with surface-assisted laser desorption/ionization (SALDI) mass spectrometry to determine trace quaternary ammonium surfactants in water. The trace surfactants in water were directly concentrated on the surface of activated carbon sorbent in SPE. The activated carbon sorbent was then mixed with the SALDI liquid for SALDI analysis. No SPE elution procedure was necessary. Experimental results indicate that the surfactants with longer chain alkyl groups exhibit higher sensitivities than those with shorter chain alkyl groups in SPE-SALDI analysis. The detection limit for hexadecyltrimethylammonium bromide is around 10 ppt in SPE-SALDI analysis by sampling 100 mL of aqueous solution, while that of tetradecyltrimethylammonium bromide is about 100 ppt. The detection limit for decyltrimethylammonium bromide and dodecyltrimethylammonium bromide is in the low-ppb range. Copyright 2001 John Wiley & Sons, Ltd.
Accumulation of contaminants in fish from wastewater treatment wetlands
Barber, L.B.; Keefe, S.H.; Antweiler, Ronald C.; Taylor, Howard E.; Wass, R.D.
2006-01-01
Increasing demands on water resources in arid environments make reclamation and reuse of municipal wastewater an important component of the water budget. Treatment wetlands can be an integral part of the water-reuse cycle providing both water-quality enhancement and habitat functions. When used for habitat, the bioaccumulation potential of contaminants in the wastewater is a critical consideration. Water and fish samples collected from the Tres Rios Demonstration Constructed Wetlands near Phoenix, Arizona, which uses secondary-treated wastewater to maintain an aquatic ecosystem in a desert environment, were analyzed for hydrophobic organic compounds (HOC) and trace elements. Semipermeable membrane devices (SPMD) were deployed to investigate uptake of HOC. The wetlands effectively removed HOC, and concentrations of herbicides, pesticides, and organic wastewater contaminants decreased 40-99% between inlet and outlet. Analysis of Tilapia mossambica and Gambusia affinis indicated accumulation of HOC, including p,p???-DDE and trans-nonachlor. The SPMD accumulated the HOC detected in the fish tissue as well as additional compounds. Trace-element concentrations in whole-fish tissue were highly variable, but were similar between the two species. Concentrations of HOC and trace elements varied in different fish tissue compartments, and concentrations in Tilapia liver tissue were greater than those in the whole organism or filet tissue. Bioconcentration factors for the trace elements ranged from 5 to 58 000 and for the HOC ranged from 530 to 150 000. ?? 2006 American Chemical Society.
Selected Organochlorines in Human Blood and Urine in the South of the Russian Far East.
Tsygankov, Vasiliy Yu; Khristoforova, Nadezhda K; Lukyanova, Olga N; Boyarova, Margarita D; Kiku, Pavel F; Yarygina, Marina V
2017-10-01
The trace OCP concentrations, such as α-, β-, and γ-HCH, DDT and its metabolites (DDD and DDE) in blood and urine of residents from the south of the Russian Far East was revealed. A large range of OCPs was found in the urine: α- and γ-isomers of HCH, DDT and DDE. The only β-HCH was detected in the blood; this indicates its persistence and the difficulty of excretion this substance from the organism. The total trace OCP concentration, found in the biological fluids of residents of the south of the Russian Far East, providing further evidence that these organic contaminants persist in the environment.
1991-09-01
9H and tungsten silicides may also be present in the microstructure. The non-SiC eiemental concentrations for NC-203 would not be expected to exceed...lesser amounts of yttrium silicate and tungsten silicide . Trace amounts of a-Si 3N4 , silicon oxynitride, tungsten-iron- silicide , and yttrium silicon...SiC ESK On this sample, we detect Silicon, Carbon, and also Oxygen and Nitrogen, as well as Calcium and Sodium traces. After ionic etching up to about
Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.
2014-01-01
A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.
Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A
2014-03-01
A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Herut, Barak; Kress, Nurit; Shefer, Edna; Hornung, Hava
1999-12-01
The trace element contamination levels in mollusks were evaluated for different marine coastal sites in the Mediterranean (Israeli coast), Red (Israeli coast) and North (German coast) Seas. Three bivalve species (Mactra corallina, Donax sp, and Mytilus edulis) and two gastropod species (Patella sp.and Cellana rota) were sampled at polluted and relatively clean sites, and their soft tissue analyzed for Hg, Cd, Zn, Cu, Mn and Fe concentrations. Representative samples were screened for organic contaminants [(DDE), polychlorinated biphenyls PCBs and polycyclic aromatic hydrocarbons (PAHs)] which exhibited very low concentrations at all sites. In the Red Sea, the gastropod C. rota showed low levels of Hg (below detection limit) and similar Cd concentrations at all the examined sites, while other trace elements (Cu, Zn, Mn, Fe) were slightly enriched at the northern beach stations. Along the Mediterranean coast of Israel, Hg and Zn were enriched in two bivalves (M. corallina and Donax sp.) from Haifa Bay, both species undergoing a long-term decrease in Hg based on previous studies. Significant Cd and Zn enrichment was detected in Patella sp. from the Kishon River estuary at the southern part of Haifa Bay. In general, Patella sp. and Donax sp. specimens from Haifa Bay exhibited higher levels of Cd compared to other sites along the Israeli Mediterranean coast, attributed to the enrichment of Cd in suspended particulate matter. Along the German coast (North Sea) M. edulis exhibited higher concentrations of Hg and Cd at the Elbe and Eider estuaries, but with levels below those found in polluted sites elsewhere.
Monitoring trace elements in Antarctic penguin chicks from South Shetland Islands, Antarctica.
Jerez, Silvia; Motas, Miguel; Benzal, Jesús; Diaz, Julia; Barbosa, Andrés
2013-04-15
The concentration of human activities in the near-shore ecosystems from the northern Antarctic Peninsula area can cause an increasing bioavailability of pollutants for the vulnerable Antarctic biota. Penguin chicks can reflect this potential impact in the rookeries during the breeding season. They also can reflect biomagnification phenomena since they are on the top of the Antarctic food chain. The concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were measured by ICP-MS in samples of liver, kidney, muscle, bone, feather and stomach content of gentoo, chinstrap and Adélie penguin chicks (n=15 individuals) collected opportunistically in the Islands of King George and Deception (South Shetland Islands, Antarctica). The detected levels of some trace elements were not as low as it could be expected in the isolated Antarctic region. Penguin chicks can be useful indicators of trace elements abundance in the study areas. Carcasses of Antarctic penguin chicks were used to evaluate the bioavailability of trace elements in the Islands of King George and Deception. Copyright © 2013 Elsevier Ltd. All rights reserved.
Trace elements in lake sediment, macrozoobenthos, and fish near a coal ash disposal basin
Hatcher, Charles O.; Ogawa, Roann E.; Poe, Thomas P.; French, John R. P.
1992-01-01
Of the 29 trace elements examined, arsenic and cobalt were significantly (p <0.05) more concentrated in sediment nearest the coal ash basin except in spring, when little or no difference was detected. Arsenic and bromine were significantly higher in oligochaetes, and selenium was significantly higher in both oligochaetes and chironomids taken from proximal stations than in those taken from reference stations. Selenium, bromine, cobalt, nickel, and chromium were higher in young-of-the-year brown bullheads taken nearer the disposal basin in fall 1983. Selenium was higher in adult spottail shiners taken at the proximal station in spring 1984, and bromine was higher in yearling white bass from the proximal station in fall 1983 and 1984. None of the trace elements was higher in adult yellow perch or adult brown bullheads at any time. Fewer spottail shiners and yearling white bass were caught close to the disposal basin than far away, which may indicate avoidance by these fish of increased concentrations of trace elements contained within the ash effluent.
Beta-trace protein in ascites and pleural effusions: limits of CSF leakage detection.
Dietzel, Joanna; Krebs, Alexander; Böttcher, Dominique; Sieb, Manuela; Glocker, Michael O; Lüdemann, Jan; Roser, Markus; Dressel, Alexander
2012-06-10
Rhino- and/or otoliquorrhea can be diagnosed by detecting beta-trace protein (β-TP) in nasal or ear secretions, as β-TP is found in high concentrations in cerebrospinal fluid (CSF) but not in serum. CSF fistulae following trauma or surgery can also occur at other anatomical sites, resulting in CSF leakage into the thoracic and abdominal cavities. By analogy, determination of ß-TP has also been used to diagnose CSF admixture in pleural effusions and ascites. However, no systematic study has yet evaluated the concentrations of β-TP in such fluids in the absence of CSF. To determine the validity of β-TP determination as a marker for the presence of CSF, we investigated β-TP concentrations in pleural effusions and ascites without CSF admixture. Patients from whom samples of ascites or pleural effusion and a paired plasma sample were available were investigated. One hundred sixty-four patients were prospectively recruited. ß-TP concentrations were determined by nephelometry. Mass spectrometric proteome analysis confirmed the presence of ß-TP in the samples. Median β-TP concentrations detected in ascites and pleural effusions (range, 0.014-26.5 mg/L, median 2.29 mg/L) exceeded the corresponding plasma concentrations 2.6-fold. According to cutoffs published to diagnose rhino- and otoliquorrhea, between 6.1% and 95.7% of the specimens would have been erroneously rated CSF-positive. Protein analysis confirmed the presence of β-TP in pleural effusion and ascites. Ascites and pleural effusion contain high concentrations of β-TP that exceed the levels in corresponding plasma. Therefore, β-TP is not a specific marker for the presence of CSF in these fluids.
Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.
Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A
2017-09-01
The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.
Forbes, Thomas P; Staymates, Matthew; Sisco, Edward
2017-08-07
Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s -1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.
Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua
2016-01-01
A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909–0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06–2 ng/L and 0.2–6 ng/L for OCPs and 0.02–3 ng/L and 0.06–7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65–9.89% for OCPs and 0.98–13.99% for PYPs, respectively. Average recoveries were in the range of 47.74–120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67–31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis. PMID:26883080
NASA Astrophysics Data System (ADS)
Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua
2016-02-01
A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909-0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06-2 ng/L and 0.2-6 ng/L for OCPs and 0.02-3 ng/L and 0.06-7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65-9.89% for OCPs and 0.98-13.99% for PYPs, respectively. Average recoveries were in the range of 47.74-120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67-31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis.
Groundwater quality in the Mohawk River Basin, New York, 2011
Nystrom, Elizabeth A.; Scott, Tia-Marie
2013-01-01
Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (1 sample), pH (1 sample), sodium (9 samples), chloride (1 sample), sulfate (2 samples), dissolved solids (7 samples), aluminum (3 samples), iron (8 samples), manganese (6 samples), radon-222 (10 samples), and bacteria (5 samples). Fecal coliform bacteria and Escherichia coli (E. coli) were each detected in one sample. Concentrations of fluoride, nitrate, nitrite, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and uranium, and gross alpha activities, did not exceed existing drinking-water standards in any of the samples collected. Methane concentrations in two samples were greater than 28 milligrams per liter, and the maximum measured concentration was 44.3 milligrams per liter.
Hagerman, Amy D; Ward, Michael P; Anderson, David P; Looney, J Chris; McCarl, Bruce A
2013-07-01
In this study our aim was to value the benefits of rapid effective trace-back capability-based on a livestock identification system - in the event of a foot and mouth disease (FMD) outbreak. We simulated an FMD outbreak in the Texas High Plains, an area of high livestock concentration, beginning in a large feedlot. Disease spread was simulated under different time dependent animal tracing scenarios. In the specific scenario modeled (incursion of FMD within a large feedlot, detection within 14 days and 90% effective tracing), simulation suggested that control costs of the outbreak significantly increase if tracing does not occur until day 10 as compared to the baseline of tracing on day 2. In addition, control costs are significantly increased if effectiveness were to drop to 30% as compared to the baseline of 90%. Results suggest potential benefits from rapid effective tracing in terms of reducing government control costs; however, a variety of other scenarios need to be explored before determining in which situations rapid effective trace-back capability is beneficial. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wade, Terry L.; Soliman, Yousra; Sweet, Stephen T.; Wolff, Gary A.; Presley, Bobby J.
2008-12-01
The concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace elements were determined for surface (top 2 cm) sediment samples collected during the deep Gulf of Mexico benthos (DGoMB) study .These elements and compounds are known to be toxic to organisms at high concentrations and may affect biological communities. There is no indication of major anthropogenic input of the elements Be, Co, Cr, Fe, Si, Tl, V, K, Mg, Ca, Sr and Zn, based on normalization to Al. The concentrations of these metals in the sediment are a function of the relative amounts of trace-metal-rich Mississippi River-derived silicate material and trace-metal-poor plankton-derived carbonate. This is not true for the elements Ba, Ni, Pb, Cd, As, Cu and Mn, whose concentrations show considerable scatter when normalized to Al and a general enrichment. On a normalized basis, Mn is enriched 5-10 fold, Cu and Ni 2-3 fold and Pb 2 fold over Mississippi River-derived material. These enrichments are likely the result of remobilization of metals from depths in the sediment column where reducing conditions exist. The Ba concentrations at selected sites are higher than those of average clay-rich sediments, but are typical of sediments from near oil well platforms in the northern Gulf of Mexico. In the case of Ba, it seems likely that the enrichments, as high as a factor of 10, are due to disposal of oil well drilling mud. The Ba-enriched samples are from the three shallowest water sites in the Mississippi Trough (sites MT1, 2 and 3) and from site C1 and WC5. All are in an area of intense petroleum exploration and development. PAH concentrations are also elevated at MT1, MT3 and C1. The total PAH concentration ranged from not detected (ND) to 1033 ng/g with a mean of 140 ng/g. Even at the sites most enriched in PAHs and trace elements, the concentrations are not at the levels expected to adversely affect the biota. However, these predicted non-effects are based on research using mostly near-shore estuarine species, not on the indigenous species at the sampling sites.
NASA Astrophysics Data System (ADS)
Wrable-Rose, Madeline; Primera-Pedrozo, Oliva M.; Pacheco-Londoño, Leonardo C.; Hernandez-Rivera, Samuel P.
2010-12-01
This research examines the surface contamination properties, trace sample preparation methodologies, detection systems response and generation of explosive contamination standards for trace detection systems. Homogeneous and reproducible sample preparation is relevant for trace detection of chemical threats, such as warfare agents, highly energetic materials (HEM) and toxic industrial chemicals. The objective of this research was to develop a technology capable of producing samples and standards of HEM with controlled size and distribution on a substrate to generate specimens that would reproduce real contamination conditions. The research activities included (1) a study of the properties of particles generated by two deposition techniques: sample smearing deposition and inkjet deposition, on gold-coated silicon, glass and stainless steel substrates; (2) characterization of composition, distribution and adhesion characteristics of deposits; (3) evaluation of accuracy and reproducibility for depositing neat highly energetic materials such as TNT, RDX and ammonium nitrate; (4) a study of HEM-surface interactions using FTIR-RAIRS; and (5) establishment of protocols for validation of surface concentration using destructive methods such as HPLC.
Li, FuKai; Gong, AiJun; Qiu, LiNa; Zhang, WeiWei; Li, JingRui; Liu, Yu; Liu, YuNing; Yuan, HuiTing
2017-01-01
The determination of trace rare-earth elements (REEs) can be used for the assessment of environmental pollution, and is of great significance to the study of toxicity and toxicology in animals and plants. N, N, N', N'-tetraoctyl diglycolamide (TODGA) is an environmental friendly extractant that is highly selective to REEs. In this study, an analytical method was developed for the simultaneous determination of 16 trace REEs in simulated water samples by inductively coupled plasma optical emission spectroscopy (ICP-OES). With this method, TODGA was used as the extractant to perform the liquid-liquid extraction (LLE) sample pretreatment procedure. All 16 REEs were extracted from a 3 M nitric acid medium into an organic phase by a 0.025 M TODGA petroleum ether solution. A 0.03 M ethylenediaminetetraacetic acid disodium salt (EDTA) solution was used for back-extraction to strip the REEs from the organic phase into the aqueous phase. The aqueous phase was concentrated using a vacuum rotary evaporator and the concentration of the 16 REEs was detected by ICP-OES. Under the optimum experimental conditions, the limits of detection (3σ, n = 7) for the REEs ranged from 0.0405 ng mL-1 (Nd) to 0.5038 ng mL-1 (Ho). The relative standard deviations (c = 100 ng mL-1, n = 7) were from 0.5% (Eu) to 4.0% (Tm) with a linear range of 4-1000 ng mL-1 (R2 > 0.999). The recoveries of 16 REEs ranged from 95% to 106%. The LLE-ICP-OES method established in this study has the advantages of simple operation, low detection limits, fast analysis speed and the ability to simultaneously determine 16 REEs, thereby acting as a viable alternative for the simultaneous detection of trace amounts of REEs in water samples.
Li, FuKai; Qiu, LiNa; Zhang, WeiWei; Li, JingRui; Liu, Yu; Liu, YuNing; Yuan, HuiTing
2017-01-01
The determination of trace rare-earth elements (REEs) can be used for the assessment of environmental pollution, and is of great significance to the study of toxicity and toxicology in animals and plants. N, N, N′, N′-tetraoctyl diglycolamide (TODGA) is an environmental friendly extractant that is highly selective to REEs. In this study, an analytical method was developed for the simultaneous determination of 16 trace REEs in simulated water samples by inductively coupled plasma optical emission spectroscopy (ICP-OES). With this method, TODGA was used as the extractant to perform the liquid-liquid extraction (LLE) sample pretreatment procedure. All 16 REEs were extracted from a 3 M nitric acid medium into an organic phase by a 0.025 M TODGA petroleum ether solution. A 0.03 M ethylenediaminetetraacetic acid disodium salt (EDTA) solution was used for back-extraction to strip the REEs from the organic phase into the aqueous phase. The aqueous phase was concentrated using a vacuum rotary evaporator and the concentration of the 16 REEs was detected by ICP-OES. Under the optimum experimental conditions, the limits of detection (3σ, n = 7) for the REEs ranged from 0.0405 ng mL-1 (Nd) to 0.5038 ng mL-1 (Ho). The relative standard deviations (c = 100 ng mL-1, n = 7) were from 0.5% (Eu) to 4.0% (Tm) with a linear range of 4–1000 ng mL-1 (R2 > 0.999). The recoveries of 16 REEs ranged from 95% to 106%. The LLE-ICP-OES method established in this study has the advantages of simple operation, low detection limits, fast analysis speed and the ability to simultaneously determine 16 REEs, thereby acting as a viable alternative for the simultaneous detection of trace amounts of REEs in water samples. PMID:28945788
Wang, Guannan; Su, Xingguang
2010-06-01
A novel, highly sensitive technology for the detection, enrichment, and separation of trace amounts of target DNA was developed on the basis of amino-modified fluorescent magnetic composite nanoparticles (AFMN). In this study, the positively charged amino-modified composite nanoparticles conjugate with the negatively charged capture DNA through electrostatic binding. The optimal combination of AFMN and capture DNA was measured by dynamic light scattering (DLS) and UV-vis absorption spectroscopy. The highly sensitive detection of trace amounts of target DNA was achieved through enrichment by means of AFMN. The detection limit for target DNA is 0.4 pM, which could be further improved by using a more powerful magnet. Because of their different melting temperatures, single-base mismatched target DNA could be separated from perfectly complementary target DNA. In addition, the photoluminescence (PL) signals of perfectly complementary target DNA and single-base mismatched DNA as well as the hybridization kinetics of different concentrations of target DNA at different reaction times have also been studied. Most importantly, the detection, enrichment, and separation ability of AFMN was further verified with milk. Simple and satisfactory results were obtained, which show the great potential in the fields of mutation identification and clinical diagnosis.
Tabatadze, T; Zhorzholiani, L; Kherkheulidze, M; Kandelaki, E; Ivanashvili, T
2015-11-01
Our study aims evaluation of level of essential trace elements and heavy metals in the hair samples of children with autistic spectrum disorder (ASD) and identification of changes that are associated with autistic spectrum disorders. Case-control study was conducted at Child Development Center of Iashvili Children's Central Hospital (LD).We studied 60 children aged from 4 to 5 years old. The concentrations of 28 elements among (Ca,Zn, K, Fe, Cu, Se, Mn, Cr, S, Br, Cl, Co, Ag, V, Ni, Rb, Mo, Sr, Ti, Ba, Pb, As, Hg, Cd, Sb, Zr, Sn, Bi) them trace elements and toxic metals) were determined in scalp hair samples of children (n=30) with autistic spectrum disorder (ASD) and from control group of healthy children (n=30) with matched sex and age. Micro-elemental status was detected in the hair, with roentgen-fluorescence spectrometer method (Method MBИ 081/12-4502-000, Apparatus ALVAX- CIP, USA - UKRAIN) .To achieve the similarity of study and control groups, pre and postnatal as well as family and social history were assessed and similar groups were selected. Children with genetic problems, malnourished children, children from families with social problems were excluded from the study. The diagnosis of ASD were performed by pediatrician and psychologist (using M-CHAT and ADOS) according to DSM IV (Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric association) criteria. The study was statistically analyzed using computer program SPSS 19. Deficiencies of essential trace microelements revealed in both group, but there was significant difference between control and studied groups. The most deficient element was zinc (92% in target and 20% in control), then - manganese (55% and 8%) and selenium (38% and 4%). In case of cooper study revealed excess concentration of this element only in target group in 50% of cases. The contaminations to heavy metals were detected in case of lead (78% and 16), mercury (43% and 10%) and cadmium (38% and 8%). The study statistical results indicated, that deficient concentrations of trace elements such as zinc, manganese, molybdenum and selenium in hair significantly linked with ASD (Kramer's V was 0,740; 0,537; 0,333; 0,417 accordingly). In case of cooper we got excess levels of this element and this data was highly linked with autism spectrum disorder. We got high associations and significant values between of lead, mercury and cadmium concentrations and ASD. Study results indicate that there are significant differences of hair essential trace elements concentrations in children with autism spectrum disorder comparing with healthy children group. The result obtained also showed high contamination to heavy metals such as lead, mercury and cadmium in ASD children compared to healthy ones. So, our study demonstrated alteration in levels of toxic heavy metals and essential trace elements in children with autistic spectrum disorders as compared to healthy children. This suggests a possible pathophysiological role of heavy metals and trace elements in the genesis of symptoms of autism spectrum disorders.
REVIEW OF METHODS FOR REMOTE SENSING OF ATMOSPHERIC EMISSIONS FROM STATIONARY SOURCES
The report reviews the commercially available and developing technologies for the application of remote sensing to the measurement of source emissions. The term 'remote sensing technology', as applied in the report, means the detection or concentration measurement of trace atmosp...
Pyo, Dongjin; Hahn, Jong Hoon
2009-01-01
Routine monitoring of microcystin in natural waters is difficult because the concentration of the toxin is usually lower than the detection limits. As a more sensitive detection method for microcystin, we developed a microchip based enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibodies. New monoclonal antibodies against the microcystin leucine-arginine variant (MCLR), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa, were prepared from cloned hybridoma cell lines. We used keyhole limpet hemocyanin(KLH)-conjugated MCLR as an immunogen for the production of mouse monoclonal antibody. The immunization, cell fusion, and screening of hybridoma cells producing anti-MCLR antibody were conducted. Since the ELISA test was highly sensitive, the newly developed microchip based ELISA can be suitable for the trace analysis of cyanobacterial hepatotoxins, microcystins in water. The linear responses of monoclonal antibodies with different concentrations of microcystin LR were established between 0.025 and 0.3 ng/mL.
Chung, Y T; Ling, Y C; Yang, C S; Sun, Y C; Lee, P L; Lin, C Y; Hong, C C; Yang, M H
2007-12-01
We have developed an on-line analytical system involving microdialysis (MD) sampling, a carbohydrate membrane desalter (CMD), and an inductively coupled plasma mass spectrometer (ICPMS) system for the simultaneous determination of multiple trace metals in the extracellular fluid (ECF) in the brains of anesthetized rats. The microdialysate that perfused from the animal at a flow rate of 0.5 microL/min was on-line transferred to the CMD to remove the high-sodium matrix, followed by ICPMS measurement. The role of the CMD in this on-line system was investigated in detail. With prior addition of EDTA to the microdialysate to form anionic complexes of the metal analytes and the use of NH4Cl as a regenerant to exchange Na(+) with NH4(+) ions, both quantitative recovery of the trace metal analytes and quantitative removal of the sodium matrix could be achieved. Two experimental modes of the monitoring system were constructed. For those metals (e.g., Cu, Zn, and Mn) that existed at (sub)nanogram-per-milliliter concentrations in the microdialysate, the temporal resolution was 10 min when using a 10 microL loop for sample collection, followed by CMD and ICPMS; for those elements (e.g., Ca and Mg) that existed at microgram-per-milliliter levels (or greater), near-real-time analysis was possible because the microdialysate could be led, bypassing the sample loop, directly to the CMD for desalting without any time delay. Further improvement of the temporal resolution for the low-concentration elements was not possible without decreasing the detection limits of mass detection. Among the eight trace metals tested using this on-line system, the method detection limits for Cu, Zn, Mn, Co, Ni, and Pb reached subnanogram-per-milliliter levels; for electrolyte species such as Ca and Mg, the detection limits were in the range of 50-100 ng/mL. Analytical accuracy, expressed as spike recovery, was 100% +/- 15% for all of the elements tested. We demonstrate the applicability of the proposed system through the successful measurement of the basal values of Ca, Mg, Cu, Zn, and Mn in the ECF of a living rat brain and through in vivo monitoring of the concentration profiles of Mn and Pt in the ECF after the injection of drugs (MnCl2 and cisplatin) into the rats. This microdialysis system is the first to offer real-time, in vivo monitoring of trace elements such as Ca and Mg.
Clark, Stewart F.; Chalmers, Ann; Mack, Thomas J.; Denner, Jon C.
2005-01-01
The Ethan Allen Firing Range of the Vermont Army National Guard is a weapons-testing and training facility in a mountainous region of Vermont that has been in operation for about 80 years. The hydrologic framework and water quality of the facility were assessed between October 2002 and December 2003. As part of the study, streamflow was continuously measured in the Lee River and 24 observation wells were installed at 19 locations in the stratified drift and bedrock aquifers to examine the hydrogeology. Chemical analyses of surface water, ground water, streambed sediment, and fish tissue were collected to assess major ions, trace elements, nutrients, and volatile and semivolatile compounds. Sampling included 5 surface-water sites sampled during moderate and low-flow conditions; streambed-sediment samples collected at the 5 surface-water sites; fish-tissue samples collected at 3 of the 5 surface-water sites; macroinvertebrates collected at 4 of the 5 surface-water sites; and ground-water samples collected from 10 observation wells, and samples collected at all surface- and ground-water sites. The hydrogeologic framework at the Ethan Allen Firing Range is dominated by the upland mountain and valley setting of the site. Bedrock wells yield low to moderate amounts of water (0 to 23 liters per minute). In the narrow river valleys, layered stratified-drift deposits of sand and gravel of up to 18 meters thick fill the Lee River and Mill Brook Valleys. In these deposits, the water table is generally within 3 meters below the land surface and overall ground-water flow is from east to west. Streamflow in the Lee River averaged 0.72 cubic meters per second (25.4 cubic feet per second) between December 2002 and December 2003. Streams are highly responsive to precipitation events in this mountainous environment and a comparison with other nearby watersheds shows that Lee River maintains relatively high streamflow during dry periods. Concentrations of trace elements and nutrients in surface-water samples are well below freshwater-quality guidelines for the protection of aquatic life. Brook-trout samples collected in 1992 and 2003 show trace-metal concentrations have decreased over the past 11 years. concentrations in water samples are well below levels that restrict swimming at all five stream sites at moderate and low-flow conditions and in all observation wells. Comparisons among surface-water, streambed-sediment, and biological samples collected in 2003 to earlier studies at the Ethan Allen Firing Range indicate water-quality conditions are similar or have improved over the past 15 years. Ground water in the stratified-drift aquifers at the facility is well buffered with relatively high alkalinities and pH greater than 6. Concentrations of arsenic, cadmium, chromium, lead, nickel, uranium, and zinc were below detection levels in ground-water samples. Barium, cobalt, copper, iron, manganese, molybdenum, and strontium were the only trace elements detected in ground-water samples. Cobalt and iron were detected at low levels in two wells near Mill Brook, and copper was detected at the detection limit in one of these wells. These same two wells had concentrations of barium and manganese 2 to 10 times greater than other ground-water samples. Concentrations of nutrients are at or below detection levels in most ground-water samples. Volatile organic compounds and semivolatile organic compounds were not detected in any water samples from the Ethan Allen Firing Range.
Inorganic trace analysis by mass spectrometry
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine; Dietze, Hans-Joachim
1998-10-01
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.
Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies
Misra, S.K.; Dybowska, A.; Berhanu, D.; Croteau, M.-N.; Luoma, S.N.; Boccaccini, A.R.; Valsami-Jones, E.
2012-01-01
This work presents results on synthesis of isotopically enriched (99% 65Cu) copper oxide nanoparticles and its application in ecotoxicological studies. 65CuO nanoparticles were synthesized as spheres (7 nm) and rods (7 ?? 40 nm). Significant differences were observed between the reactivity and dissolution of spherical and rod shaped nanoparticles. The extreme sensitivity of the stable isotope tracing technique developed in this study allowed determining Cu uptake at exposure concentrations equivalent to background Cu concentrations in freshwater systems (0.2-30 ??g/L). Without a tracer, detection of newly accumulated Cu was impossible, even at exposure concentrations surpassing some of the most contaminated water systems (>1 mg/L). ?? 2011 American Chemical Society.
Sanal, Hasan; Güler, Zehra; Park, Young W
2011-01-01
The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.
2014-01-01
The survival rate of lung cancer can be significantly improved by monitoring biomarkers in exhaled air that indicate diseases in early stage, so it is very important to develop micro analytical systems which can offer a fast, on-site, real-time detecting biomarkers in exhaled air. In this paper, a mini-gas chromatography (GC)-photo-ionization detector (PID) system integrated with a micro GC column and a micro pre-concentrator was developed for forming an inexpensive, fast, and non-invasive diagnostic tool for lung cancer. This system has very strong concentrate ability owing to its integrated micro pre-concentrator, which make the detection of trace components in exhaled air very easy. In addition, the integrated micro GC column can separate complex mixtures, which overcome low resolution and poor anti-interference ability of other instruments. The results indicated that the mini-GC-PID system can effectively separate and detect the biomarkers at parts-per-billion (ppb) level. PMID:25339856
Li, Bing; Qu, Changsheng; Bi, Jun
2012-06-01
Organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), dibutyl phthalate (DNBP) and di-2-ethylhexyl phthalate (DEHP) were all detectable in surface water in Jiangsu Province, China. Concentrations of OCPs ranged from 5.13 to 8.15 ng/L. PAHs were found ranging from 14.7 to 24.5 ng/L. Concentrations of DNBP and DEHP ranged from 16 to 5,857.5 ng/L and 556 to 15,670.7 ng/L, respectively. Greater than 70 % of chemicals were removed in water treatment processes. The carcinogenic risks posed by trace organic pollutants through tap water ingestion were lower than 10(-6), and the noncarcinogenic risks were less than 10(-5).
Pope, Larry M.; Bruce, Breton W.; Hansen, Cristi V.
2001-01-01
Water samples from 20 randomly selected domestic water-supply wells completed in the Quaternary deposits of south-central Kansas were collected as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment Program. The samples were analyzed for about 170 water-quality constituents that included physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticides, volatile organic compounds, and radon. The purpose of this study was to provide a broad overview of ground-water quality in a major geologic subunit of the High Plains aquifer. Water from five wells (25 percent) exceeded the 500-milligrams-per-liter of dissolved solids Secondary Maximum Contaminant Level for drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well each. The source of these dissolved solids was probably natural processes. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Water from 15 percent of the sampled wells had concentrations of nitrate greater than the 10-milligram-per-liter Maximum Contaminant Level for drinking water. Water from 80 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter), which is more than what might be expected for natural background concentrations. This enrichment may be the result of synthetic fertilizer applications, the addition of soil amendment (manure) on cropland, or livestock production. Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Only arsenic was detected in one well sample at a concentration (240 micrograms per liter) that exceeded its proposed Maximum Contaminant Level (5.0 micrograms per liter). Additionally, one concentration of iron and two concentrations of manganese were larger than the Secondary Maximum Contaminant Levels of 300 and 50 micrograms per liter, respectively. Some occurrences of trace elements may have originated from human-related sources; however, the generally small concentrations that were measured probably reflect mostly natural sources for these constituents. A total of 47 pesticide compounds from several classes of herbicides and insecticides that included triazine, organophosphorus, organochlorine, and carbamate compounds and three pesticide degradation products were analyzed in ground-water samples during this study. Water from 50 percent of the wells sampled had detectable concentrations of one or more of these 47 compounds. The herbicide atrazine and its degradation product deethylatrazine were detected most frequently (in water from eight and nine wells, respectively); other pesticides detected were the insecticides carbofuran (in water from one well) and diazinon (in water from one well), and the herbicide metolachlor (in water from two wells). However, all concentrations of these compounds were small and substantially less than established Maximum Contaminant Levels. The use of pesticides in crop production probably is largely responsible for the occurrence of pesticides in the ground-water samples collected during this study. Although concentrations of detected pesticides were small (relative to established Maximum Contaminant Levels), the synergistic effect of these concentrations and long-term exposure to multiple pesticides on human health are unknown. Water samples from the Quaternary deposits were analyzed for 85 volatile organic compounds. Water from two wells (10 percent) had a detectable concentration of a volatile organic compound. Chloroform was detected at concen-trations of 0.18 and 0.25 microgram per liter, substantially less than the 100-microgram-per-liter Maximum Contaminant Level for total trihalomethanes. In general, the occurrence and detectio
Ground-Water Quality in the Genesee River Basin, New York, 2005-2006
Eckhardt, David A.V.; Reddy, J.E.; Tamulonis, Kathryn L.
2007-01-01
Water samples were collected from 7 community water system wells and 15 private domestic wells throughout the Genesee River Basin in New York State (downstream from the Pennsylvania border) from October 2005 through March 2006 and analyzed to characterize the chemical quality of ground water in the basin. The wells were selected to represent areas of greatest ground-water use and to provide a representative sampling from the 2,439 square-mile basin area in New York. Samples were analyzed for five physical properties and 226 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, and bacteria. The results show that ground water used for drinking water is generally of good quality in the Genesee River Basin, although concentrations of seven constituents exceeded drinking water standards. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; the anions that were detected in the greatest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrient was nitrate, and nitrate concentrations were greater in samples from sand and gravel aquifers than in samples from bedrock aquifers. The trace elements barium, boron, cobalt, copper, and nickel were detected in every sample; the highest concentrations were barium, boron, chromium, iron, manganese, strontium, and lithium. Fourteen pesticides including seven pesticide degradates were detected in water from 12 of the 22 wells, but none of the concentrations exceeded Maximum Contaminant Levels (MCLs). Eight volatile organic compounds (VOCs) were detected in six samples, but none of the concentrations exceeded MCLs. Seven chemical analytes and three types of bacteria were present in concentrations that exceeded Federal and New York State water-quality standards, which are typically identical. Sulfate concentrations exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 250 milligrams per liter (mg/L) in three samples; the chloride SMCL (250 mg/L) was exceeded in one sample. Sodium concentrations exceeded the USEPA Drinking Water Health Advisory of 60 mg/L in five samples. The SMCL for iron (300 ug/L) was exceeded in 11 filtered samples; the USEPA SMCL for manganese (50 ug/L) was exceeded in 10 filtered samples, and the New York State MCL (300 ug/L) was exceeded in 1 filtered sample. The MCL for aluminum (200 ug/L) was exceeded in 1 sample, and the MCL for arsenic (10 ug/L) was exceeded in 1 sample. Radon-222 exceeded the proposed USEPA MCL of 300 picocuries per liter in 16 samples. Any detection of total coliform or fecal coliform bacteria is considered a violation of New York State health regulations; in this study, total coliform was detected in eight samples; fecal coliform was detected in two samples, and Escherichia coli was detected in one sample.
Contaminants in arctic snow collected over northwest Alaskan sea ice
Garbarino, J.R.; Snyder-Conn, E.; Leiker, T.J.; Hoffman, G.L.
2002-01-01
Snow cores were collected over sea ice from four northwest Alaskan Arctic estuaries that represented the annual snowfall from the 1995-1996 season. Dissolved trace metals, major cations and anions, total mercury, and organochlorine compounds were determined and compared to concentrations in previous arctic studies. Traces (<4 nanograms per liter, ng L-1) of cis- and trans-chlordane, dimethyl 2,3,5,6-tetrachloroterephthalate, dieldrin, endosulfan II, and PCBs were detected in some samples, with endosulfan I consistently present. High chlorpyrifos concentrations (70-80 ng L-1) also were estimated at three sites. The snow was highly enriched in sulfates (69- 394 mg L-1), with high proportions of nonsea salt sulfates at three of five sites (9 of 15 samples), thus indicating possible contamination through long-distance transport and deposition of sulfate-rich atmospheric aerosols. Mercury, cadmium, chromium, molybdenum, and uranium were typically higher in the marine snow (n = 15) in relation to snow from arctic terrestrial studies, whereas cations associated with terrigenous sources, such as aluminum, frequently were lower over the sea ice. One Kasegaluk Lagoon site (Chukchi Sea) had especially high concentrations of total mercury (mean = 214 ng L-1, standard deviation = 5 ng L-1), but no methyl mercury was detected above the method detection limit (0.036 ng L-1) at any of the sites. Elevated concentrations of sulfate, mercury, and certain heavy metals might indicate mechanisms of contaminant loss from the arctic atmosphere over marine water not previously reported over land areas. Scavenging by snow, fog, or riming processes and the high content of deposited halides might facilitate the loss of such contaminants from the atmosphere. Both the mercury and chlorpyrifos concentrations merit further investigation in view of their toxicity to aquatic organisms at low concentrations.
Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.
2015-01-01
Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050
Rao, Gottipaty N; Karpf, Andreas
2010-09-10
A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.
IDENTIFICATION OF POLLUTANTS IN A MUNICIPAL WELL USING HIGH RESOLUTION MASS SPECTROMETRY
An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra were foun...
What is the true meaning of the federal minimum disinfectant residual requirement, “detectable”, especially as it relates to chloramines. Are “detectable” but trace concentrations of chloramines primarily measures of organic chloramines which have little disinfectant action. Th...
Methods were developed for the extraction from soil, identification, confirmation and quantitation by LC/MS/MS of trace levels of perfluorinated octanoic acid (PFOA), perfluorinated nonanoic acid (PFNA) and perfluorinated decanoic acid (PFDA). Whereas PFOA, PFNA and PFDA all can...
Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin
2015-03-01
Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.
Yager, Tracy J.B.; Crock, James G.; Smith, David B.; Furlong, Edward T.; Hageman, Philip L.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with Metro Wastewater Reclamation District (Metro District), studied biosolids composition and the effects of biosolids applications on groundwater quality and trace-element concentrations in crops of the Metro District properties near Deer Trail, Colorado, during 2004 through 2010. Priority parameters for each monitoring component included the nine trace elements regulated by Colorado for biosolids (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc); other constituents also were analyzed. All concentrations for the priority parameters in monthly biosolids samples were less than Colorado regulatory limits, and the concentrations were relatively consistent. Biosolids likely were the largest source of nitrogen and phosphorus on the Metro District properties. Plutonium isotopes were not detected in the biosolids, but many organic wastewater compounds (organic wastewater compounds: wastewater indicators, pharmaceuticals, and hormones) were detected in substantial concentrations relative to minimum reporting levels and various surface-water concentrations. Bismuth, copper, mercury, nitrogen, phosphorus, silver, biogenic sterols, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals, and plasticizers would be the most likely biosolids signature to indicate the presence of Metro District biosolids in soil or streambed sediment from the study area. Antimony, cadmium, cobalt, copper, molybdenum, nickel, nitrogen, phosphorus, selenium, tungsten, vanadium, zinc, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals or their degradates, and plasticizers would be the most likely biosolids signature for groundwater and surface water in the study area. More biosolids-signature components detected and larger concentration differences from untreated materials, baseline, and blank samples indicate more evidence of biosolids presence or effects. Although the inorganic constituent concentrations were relatively large in samples from one monitoring well, the concentrations of organic wastewater compounds in groundwater samples were not correspondingly large. Concentrations of organic wastewater compounds in the groundwater samples from all five monitoring wells were less than the minimum reporting levels with only a few detections. Some of the organic wastewater compounds detected could have anthropogenic sources that are not biosolids. Concentrations of priority parameters in groundwater varied spatially and temporally but generally were less than Colorado regulatory limits. Concentrations of dissolved nitrate, arsenic, and selenium, in addition to chloride, sulfate, total dissolved solids, boron, iron, manganese, and uranium, in samples from some wells exceeded the Colorado standards. Concentrations of dissolved nitrate (three wells), molybdenum (one well), selenium (two wells), and uranium (one well) in shallow groundwater had significant (alpha = 0.05) upward trends in some parts of the study area. The biosolids-signature results indicate that the aquifers intercepted by the five routinely sampled wells likely have received some recharge through treated (biosolids-applied) fields or biosolids-affected ponds. Adverse effects from this biosolids-related recharge range from few (if any) at one well to large and significantly (alpha = 0.05) increasing nitrate concentrations at another well. A statistical evaluation of five paired wheat-grain samples from treated (biosolids-applied) fields and untreated (control) fields did not indicate any evidence that biosolids applications significantly (alpha = 0.05 or 0.10) increased concentration of any of these constituents in wheat grain. The wheat-grain concentrations from this study were similar to those from other studies for fields in North America where no biosolids were applied. The data for the limited crop samples indicate that biosolids applications are not increasing the concentrations of arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, sulfur, and zinc in mature wheat grain from the study area.
Volatile organic compounds discrimination based on dual mode detection
NASA Astrophysics Data System (ADS)
Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua
2018-06-01
We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.
Volatile organic compounds discrimination based on dual mode detection.
Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua
2018-06-15
We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r ) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I-f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r ) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI-Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.
Improved electron probe microanalysis of trace elements in quartz
Donovan, John J.; Lowers, Heather; Rusk, Brian G.
2011-01-01
Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.
Wojtecki, Rudy J; Yuen, Alexander Y; Zimmerman, Thomas G; Jones, Gavin O; Horn, Hans W; Boday, Dylan J; Hedrick, James L; García, Jeannette M
2015-08-07
The detection of trace amounts (<10 ppb) of heavy metals in aqueous solutions is described using 1,3,5-hexahydro-1,3,5-triazines (HTs) as chemical indicators and a low cost fluorimeter-based detection system. This method takes advantage of the inherent properties of HTs to coordinate strongly with metal ions in solution, a fundamental property that was studied using a combination of analytical tools (UV-Vis titrations, (1)H-NMR titrations and computational modeling). Based on these fundamental studies that show significant changes in the HT UV signature when a metal ion is present, HT compounds were used to prepare indicator strips that resulted in significant fluorescence changes when a metal was present. A portable and economical approach was adopted to test the concept of utilizing HTs to detect heavy metals using a fluorimeter system that consisted of a low-pressure mercury lamp, a photo-detector, a monolithic photodiode and an amplifier, which produces a voltage proportional to the magnitude of the visible fluorescence emission. Readings of the prepared HT test strips were evaluated by exposure to two different heavy metals at the safe threshold concentration described by the U.S. Environmental Protection Agency (EPA) for Cr(3+) and Ag(2+) (100 μg L(-1) and 6.25, respectively). This method of detection could be used to the presence of either metal at these threshold concentrations.
NASA Astrophysics Data System (ADS)
Cao Dao, Tran; Kieu, Ngoc Minh; Quynh Ngan Luong, Truc; Cao, Tuan Anh; Hai Nguyen, Ngoc; Le, Van Vu
2018-06-01
It is well known that cyanide is an extremely toxic lethal poison with human death within minutes after exposure to only 300 ppm cyanide. On the other hand, cyanide is released into the environment (mainly through waste water) every day from various human activities. Therefore, rapid, sensitive and cost-effective cyanide trace detection is an urgent need. Surface-enhanced Raman scattering (SERS) is a method that meets these requirements. It should be noted, however, that in this technique SERS substrates, which are usually made of gold or silver, will be leached with aqueous cyanide by the formation of complexes between gold or silver with cyanide. This will cause the SERS spectrum of cyanide to be modified. When determining cyanide concentrations by SERS analysis, this spectral modification should be taken into account. This report presents the SERS spectral modification of aqueous cyanide traces (in ppm and lower concentration range) when the SERS substrates used are flower-like silver micro-structures.
The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil.
Gomes, Luiz Eduardo de Oliveira; Correa, Lucas Barreto; Sá, Fabian; Neto, Renato Rodrigues; Bernardino, Angelo Fraga
2017-07-15
Over 50 million cubic meters of mining tailings were released in the Rio Doce basin after the collapse of the Fundão dam (Samarco) in November 2015. Predicting significant impacts on the Rio Doce estuary, we sampled sediments to investigate short-term impacts on the benthic assemblages and trace metal accumulation on estuarine sediments. With the arrival of the tailing plumes in the estuary, we detected a predominance of clay particles and increased trace metal concentrations of up to 5 times in some areas. The rapid sedimentation after the impact also impacted estuarine macrofaunal assemblages through loss surface-dwelling taxa. As expected, the impacts on benthic assemblages observed up to 3days after the arrival of tailings were not clearly associated with trace metal concentrations, but long-term effects need to be studied. We recommend that the high spatial variability within the estuary be considered in future impact assessment studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Swancar, Amy
1996-01-01
Reuse of treated wastewater for golf course irrigation is an increasingly popular water management option in Florida, where growth has put stress on potable water supplies. Surface water, ground water, and irrigation water were sampled at three pairs of golf courses quarterly for one year to determine if pesticides were present, and the effect of irrigation with treated effluent on ground-water quality, with an emphasis on interactions of effluent with pesticides. In addition to the six paired golf courses, which were in central Florida, ground water was sampled for pesticides and other constituents at three more golf courses in other parts of the State. This study was the first to analyze water samples from Florida golf courses for a broad range of pesticides. Statistical methods based on the percentage of data above detection limits were used to determine the effects of irrigation with reclaimed water on ground-water quality. Shallow ground water at golf courses irrigated with treated effluent has higher concentrations of chloride, lower concentrations of bicarbonate, and lower pH than ground water at golf courses irrigated with water from carbonate aquifers. There were no statistically significant differences in nutrient concentrations in ground water between paired golf courses grouped by irrigation water type at a 95 percent confidence level. The number of wells where pesticides occurred was significantly higher at the paired golf courses using ground water for irrigation than at ones using reclaimed water. However, the limited occurrences of individual pesticides in ground water make it difficult to correlate differences in irrigation- water quality with pesticide migration to the water table. At some of the golf courses, increased pesticide occurrences may be associated with higher irrigation rates, the presence of well-drained soils, and shallow depths to the surficial aquifer. Pesticides used by golf courses for turf grass maintenance were detected in ground water on seven of nine golf courses studied and in 52 percent of ground-water samples. Concentrations of pesticides in ground water at golf courses were generally low relative to gegulatory guidelines, with 45 percent of all occurrences at trace levels and 92 percent under the maximum contaminant level or guidance concentration. Two of the nine golf courses had not pesticides detectedc in ground water, and a third had only two occurrences, which were at trace levels. Theere were six occurrences of concentrations of arsenic, bentazon, or acephate in ground water above the maximum contaminant level or guidance concentration. Additionally, the following pesticides were detected in ground water from at least one site; atrazine, bromacil, diazinon, diuron, fenamiphos, metalaxyl, oxydiazon, and simazine. The fenamiphos metabolites, fenamiphos sulfoxide and fenamiphos sulfone, also were detected in ground water. Samples from wastewater treatment plants contained trace levels of atrazine, bromacil, and gamma-BHC (Lindane). Concentrations of pesticides in golf course ponds were generally low, with 60 percent of all occurrences at trace levels. All but one of the pond samples collected during the study contained at least one pesticide. The most commonly occurring pesticides in golf course ponds were: atrazine, fenamiphos and fenamiphos sulfoxide, and diuron.
Ground-Water Quality in the Mohawk River Basin, New York, 2006
Nystrom, Elizabeth A.
2008-01-01
Water samples were collected from 27 wells from August through November 2006 to characterize ground-water quality in the Mohawk River Basin. The Mohawk River Basin covers 3,500 square miles in central New York; most of the basin is underlain by sedimentary bedrock, including shale, sandstone, and carbonates. Sand and gravel form the most productive aquifers in the basin. Samples were collected from 13 sand and gravel wells and 14 bedrock wells, including production and domestic wells. The samples were collected and processed through standard U.S. Geological Survey procedures and were analyzed for 226 physical properties and constituents, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds, and bacteria. Many constituents were not detected in any sample, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water quality standards, including color (1 sample), pH (2 samples), sodium (11 samples), chloride (2 samples), fluoride (1 sample), sulfate (1 sample), aluminum (2 samples), arsenic (2 samples), iron (10 samples), manganese (10 samples), radon-222 (12 samples), and bacteria (6 samples). Dissolved oxygen concentrations were greater in samples from sand and gravel wells (median 5.6 milligrams per liter [mg/L]) than from bedrock wells (median 0.2 mg/L). The pH was typically neutral or slightly basic (median 7.3); the median water temperature was 11?C. The ions with the highest concentrations were bicarbonate (median 276 mg/L), calcium (median 58.9 mg/L), and sodium (median 41.9 mg/L). Ground water in the basin is generally very hard (180 mg/L as CaCO3 or greater), especially in the Mohawk Valley and areas with carbonate bedrock. Nitrate-plus-nitrite concentrations were generally higher samples from sand and gravel wells (median concentration 0.28 mg/L as N) than in samples from bedrock wells (median < 0.06 mg/L as N), although no concentrations exceeded established State or Federal drinking-water standards of 10 mg/L as N for nitrate and 1 mg/L as N for nitrite. Ammonia concentrations were higher in samples from bedrock wells (median 0.349 mg/L as N) than in those from samples from sand and gravel wells (median 0.006 mg/L as N). The trace elements with the highest concentrations were strontium (median 549 micrograms per liter [?g/L]), iron (median 143 ?g/L), boron (median 35 ?g/L), and manganese (median 31.1 ?g/L). Concentrations of several trace elements, including boron, copper, iron, manganese, and strontium, were higher in samples from bedrock wells than those from sand and gravel wells. The highest radon-222 activities were in samples from bedrock wells (maximum 1,360 pCi/L); 44 percent of all samples exceeded a proposed U.S. Environmental Protection Agency drinking water standard of 300 pCi/L. Nine pesticides and pesticide degradates were detected in six samples at concentrations of 0.42 ?g/L or less; all were herbicides or their degradates, and most were degradates of alachlor, atrazine, and metolachlor. Six volatile organic compounds were detected in four samples at concentrations of 0.8 ?g/L or less, including four trihalomethanes, tetrachloroethene, and toluene; most detections were in sand and gravel wells and none of the concentrations exceeded drinking water standards. Coliform bacteria were detected in six samples but fecal coliform bacteria, including Escherichia coli, were not detected in any sample.
Trace elements in muscle of three fish species from Todos os Santos Bay, Bahia State, Brazil.
de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, William Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso
2017-03-01
In this study, an analysis was performed on the concentrations of the trace elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in muscle of two carnivorous and one planktivorous fish species collected at Todos os Santos Bay (BTS). The accumulation order of the trace elements in Lutjanus analis was Al >Zn >Fe >Cr >Ba >Ni. In Cetengraulis edentulus, the order was Al >Fe >Zn >Cr >Ni >Mn >As. In the species Diapterus rhombeus, the order was Al >Fe >Zn >Cr >Ni >Mn >Cd. To determine the risk related to the consumption of fish, toxicity guidelines were used as standard references. It was observed that the species C. edentulus contained concentrations of As exceeding WHO limits, but these concentrations were acceptable according to the Agência Nacional de Vigilância Sanitária (ANVISA) guidelines. Cd levels were found only in D. rhombeus and in low concentrations according to the determinations of WHO and ANVISA. Pb levels were not detected in any of the three fish species. The analyzed elements did not differ statistically according to the species and feeding habits. The results point to possible risks of human contamination by As related to the consumption of the fish species C. edentulus from the BTS.
Schultz, M.M.; Furlong, E.T.
2008-01-01
Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.
A ppb level sensitive sensor for atmospheric methane detection
NASA Astrophysics Data System (ADS)
Xia, Jinbao; Zhu, Feng; Zhang, Sasa; Kolomenskii, Alexandre; Schuessler, Hans
2017-11-01
A high sensitivity sensor, combining a multipass cell and wavelength modulation spectroscopy in the near infrared spectral region was designed and implemented for trace gas detection. The effective length of the multipass cell was about 290 meters. The developed spectroscopic technique demonstrates an improved sensitivity of methane in ambient air and a relatively short detection time compared to previously reported sensors. Home-built electronics and software were employed for diode laser frequency modulation, signal lock-in detection and processing. A dual beam scheme and a balanced photo-detector were implemented to suppress the intensity modulation and noise for better detection sensitivity. The performance of the sensor was evaluated in a series of measurements ranging from three hours to two days. The average methane concentration measured in ambient air was 2.01 ppm with a relative error of ± 2.5%. With Allan deviation analysis, it was found that the methane detection limit of 1.2 ppb was achieved in 650 s. The developed sensor is compact and portable, and thus it is well suited for field measurements of methane and other trace gases.
Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were evaluated for potential contamination bias by using the same approach developed by Olsen and others (2010). Some data collected by the National Water-Quality Assessment (NAWQA) Program for the Southern California Coastal Drainages study unit were included to supplement the GAMA-PBP data. The detection frequency and upper threshold of potential contamination bias (BD-90/90) were determined from field-blank and equipment-blank data for each trace element. The BD-90/90 is the 90th percentile concentration of potential extrinsic contamination calculated by using the binomial probability distribution for greater than 90 percent confidence. Additionally, data from laboratory blanks and blind blanks analyzed by the National Water Quality Laboratory (NWQL) during water years 2010 through 2013, and compiled by the USGS Branch of Quality Systems (BQS), were considered for each trace element. These results were compared to each constituent’s reporting level to determine whether an SRL was necessary to minimize the potential for detections in the groundwater samples, attributed principally to contamination bias. Results of the evaluation were used to set SRLs for trace-element data for about 1,135 samples of groundwater collected by the GAMA-PBP between October 2009 and March 2013. Ten trace elements analyzed (Sb, As, Be, B, Cd, Li, Se, Ag, Tl, and U) had blank results that did not necessitate establishing SRLs during this review or the review by Olsen and others (2010). Five trace elements analyzed (Al, Ba, Cr, Sr, and V) had blank results that necessitated establishing an SRL during the previous review but did not need an SRL starting October 2009. One trace element (Fe) had field and laboratory-blank results that necessitated keeping the previous SRL (6 micrograms per liter [μg/L]). Two trace elements (Ni and W) had quality-control results that warranted decreasing the previous SRL, and five trace elements (Cu, Pb, Mn, Mo, and Zn) had field, laboratory, or blind blank results that warranted establishing an SRL for the first time or increasing the previous SRL. SRLs for Cu (2.1 μg/L), Pb (0.82 μg/L), Mn (0.66 μg/L), Mo (0.023 μg/L), Ni (0.21 μg/L), W (0.023 μg/L), and Zn (6.2 μg/L) were changed to these levels starting October 2009, based on the BD-90/90 concentration for field blanks or the 99th percentile concentration for laboratory or blind blanks. The SRL for Fe was maintained at 6 μg/L, based on the minimum laboratory reporting level for iron. SRLs for these eight constituents were at least an order of magnitude below the regulatory benchmarks established for drinking water for health and aesthetic purposes; therefore, the practice of reporting concentrations below the SRLs as less than or equal to (≤) the measured value would not prevent the identification of values greater than the drinking-water benchmarks. Co was detected in 99 percent of field blanks, and with a BD-90/90 concentration of 0.38 μg/L, all groundwater results starting October 2009 were coded as “reviewed and rejected.” Co does not currently have a regulatory benchmark for drinking water. The primary sources of contamination for trace elements inferred from this review are the equipment or processes used in the field to collect the samples or in the laboratory. In particular, contamination in field blanks of Co and Mn was attributed to the high-capacity 0.45-micrometer pore-size capsule filters that were in regular use beginning in October 2009 by several USGS programs, including the GAMA-PBP and NAWQA Program, for filtering samples for analysis of trace elements. The SRLs determined in this report are intended to be used for GAMA groundwater-quality data for samples collected October 2009 through March 2013, or for as long as quality-control data indicate contamination similar to what was observed in this report; quality-control data should be continuously reviewed and SRLs re-assessed on at least a study-unit basis.
Understanding Fire Through Improved Technology
NASA Technical Reports Server (NTRS)
2004-01-01
Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.
NASA Astrophysics Data System (ADS)
Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Cheng, Ying; Wang, Junzhuan; Shi, Yi; Xu, Dongsheng; Xin, Yu
2015-01-01
Wafer-scale three-dimensional (3D) surface enhancement Raman scattering (SERS) substrates were prepared using the plasma etching and ion sputtering methods that are completely compatible with well-established silicon device technologies. The substrates are highly sensitive with excellent uniformity and reproducibility, exhibiting an enhancement factor up to 1012 with a very low relative standard deviation (RSD) around 5%. These are attributed mainly to the uniform-distributed, multiple-type high-density hot spots originating from the structural characteristics of Ag nanoparticles (NPs) decorated Si nanocone (NC) arrays. We demonstrate that the trace dimethyl phthalate (DMP) at a concentration of 10-7 M can be well detected using this SERS substrate, showing that the AgNPs-decorated SiNC arrays can serve as efficient SERS substrates for phthalate acid esters (PAEs) detection with high sensitivity.
NASA Astrophysics Data System (ADS)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason
2015-01-01
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 μm) at a 10 Hz repetition rate. The sensor was designed for operation in multiple modes, including gas sensing within a multi-pass Heriott cell and intracavity absorption sensing using the ECQCL compliance voltage. In addition, the ECQCL compliance voltage was used to reduce effects of long-term drifts in the ECQCL output power. The sensor was characterized for noise, drift, and detection of chemicals including ammonia, methanol, ethanol, isopropanol, Freon- 134a, Freon-152a, and diisopropyl methylphosphonate (DIMP). We also present use of the sensor for mobile detection of ammonia downwind of cattle facilities, in which concentrations were recorded at 1-s intervals.
The TraceDetect's SafeGuard is designed to automatically measure total arsenic concentrations in drinking water samples (including raw water and treated water) over a range from 1 ppb to over 100 ppb. Once the operator has introduced the sample vial and selected "measure&qu...
Ground-Water Quality in the St. Lawrence River Basin, New York, 2005-06
Nystrom, Elizabeth A.
2007-01-01
The Federal Clean Water Act requires that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major river basins each year. To characterize the quality of ground water in the St. Lawrence River Basin in northern New York, water samples were collected from 14 domestic and 11 production wells between August 2005 and January 2006. Eight of the wells were finished in sand and gravel and 17 wells were finished in bedrock. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 229 constituents and physical properties, including inorganic constituents, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Sixty-six constituents were detected above laboratory reporting levels. Concentrations of most compounds at most sites were within drinking water standards established by the U.S. Environmental Protection Agency and New York State Department of Health, but a few compounds exceeded drinking water standards at some sites. Water in the basin is generally hard to very hard (hardness equal to 121 mg/L as CaCO3 or greater); hardness and alkalinity were generally higher in the St. Lawrence Valley than in the Adirondack Mountains. The cation with the highest median concentration was calcium; the anion with the highest median concentration was bicarbonate. The concentration of chloride in one sample exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard; the concentration of sulfate in one sample also exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency Maximum Contaminant Level. The trace elements detected with the highest median concentrations were strontium, barium, and iron. Concentration of trace elements in several samples exceeded U.S. Environmental Protection Agency Secondary Drinking Water Standards, including aluminum (50 micrograms per liter, 4 samples), iron (300 micrograms per liter, 5 samples), and manganese (50 micrograms per liter, 4 samples). The concentration of uranium in one sample from a domestic well finished in crystalline bedrock was three times the U.S. Environmental Protection Agency Maximum Contaminant Level of 30 micrograms per liter. The median concentration of radon-222 was 600 picoCuries per liter, but concentrations as high as 18,800 picoCuries per liter were detected; two wells with high radon concentrations also had high uranium concentrations. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a Maximum Contaminant Level of 300 picoCuries per liter along with an Alternative Maximum Contaminant Level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed Maximum Contaminant Level in 60 percent of samples and exceeded the proposed Alternative Maximum Contaminant Level in 8 percent of samples. Six pesticides and pesticide degradates were detected; all were amide or triazine herbicides or degradates. Five volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria, including Escherichia coli, were detected in three wells finished in carbonate bedrock.
Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M
2015-07-01
Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn
2015-01-01
Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334
Emara, Elshaimaa M; Imam, Hisham; Hassan, Mouyed A; Elnaby, Salah H
2013-12-15
Analysis of trace elements in mammalian hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during growth. Using LIBS technique, Na, K, Ca, Mg, Si, Fe, Pb and Zn were detected in a single strand of horse hair. The results obtained through LIBS technique on hair samples were compared with the traditional technique (AAS) on digested acidified solution of the same samples. The effects of the experimental parameters on the emission lines were studied and the local thermodynamic equilibrium (LTE) in produced plasma was investigated. The transient plasma condition was verified at specific time region (1500-2000 ns) in the plasma evolution corresponding to its dynamic expanding characteristic. The relative mass concentrations of Fe and Zn were calculated by setting the concentration of C as the calibration. The information obtained from the trace elements' spectra of horse hair in this study substantiates the potential of hair as a biomarker. © 2013 Elsevier B.V. All rights reserved.
Zaksas, Nataliya; Gluhcheva, Yordanka; Sedykh, Sergey; Madzharova, Maria; Atanassova, Nina; Nevinsky, Georgy
2013-01-01
Cobalt (Co) is a transition metal and an essential trace element, required for vitamin B(12) biosynthesis, enzyme activation and other biological processes, but toxic in high concentrations. There is lack of data for the effect of long-term Co(II) treatment on the concentrations of other trace elements. We estimate the influence of cobalt chloride (CoCl(2)) on the relative content of different metals in mouse plasma using two-jet arc plasmatron atomic emission and on the total protein content. On average, the content of different elements in the plasma of 2-month-old balb/c mice (control group) decreased in the order: Ca>Mg>Si>Fe>Zn>Cu≥Al≥B. The treatment of mice for 60 days with CoCl(2) (daily dose 125 mg/kg) did not appreciably change the relative content of Ca, Cu, and Zn, while a 2.4-fold statistically significant decrease in the content of B and significant increase in the content of Mg (1.4-fold), Al and Fe (2.0-fold) and Si (3.2-fold) was found. A detectable amount of Mo was observed only for two control mice, while the plasma of 9 out of 16 mice of the treated group contained this metal. The administration of Co made its concentration detectable in the plasma of all mice of the treated group, but the relative content varied significantly. The treatment led to a 2.2-fold decrease in the concentration of the total plasma protein. Chronic exposure to CoCl(2) affects homeostasis as well as the concentrations and metabolism of other essential elements, probably due to competition of Co ions for similar binding sites within cells, altered signal transduction and protein biosynthesis. Long-term treatment also leads to significant weight changes and reduces the total protein concentration. The data may be useful for an understanding of Co toxicity, its effect on the concentration of other metal ions and different physiological processes. Copyright © 2012 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
McClintock, J. B.; Amsler, C. D.; Amsler, M. O.; Duquette, A.; Angus, R. A.; Hall-Spencer, J. M.; Milazzo, M.
2014-04-01
There is concern that the use of natural volcanic CO2 vents as analogs for studies of the impacts of ocean acidification on marine organisms are biased due to physiochemical influences other than seawater pH alone. One issue that has been raised is whether potentially harmful trace elements in sediments that are rendered more soluble and labile in low pH environments are made more bioavailable, and sequestered in the local flora and fauna at harmful levels. In order to evaluate this hypothesis, we analyzed the concentrations of trace elements in shells (an established proxy for tissues) of four species of gastropods (two limpets, a topshell and a whelk) collected from three sites in Levante Bay, Vulcano Island. Each sampling site increased in distance from the primary CO2 vent and thus represented low, moderate, and ambient seawater pH conditions. Concentrations of As, Cd, Co, Cr, Hg, Mo, Ni, Pb, and V measured in shells using ICP-OES were below detection thresholds for all four gastropod species at all three sites. However, there were measurable concentrations of Sr, Mn, and U in the shells of the limpets Patella caerulea, P. rustica, and the snail Osilinus turbinatus, and similarly, Sr, Mn, U, and also Zn in the shells of the whelk Hexaplex trunculus. Levels of these elements were within the ranges measured in gastropod shells in non-polluted environments, and with the exception of U in the shells of P. caerulea, where the concentration was significantly lower at the collecting site closest to the vent (low pH site), there were no site-specific spatial differences in concentrations for any of the trace elements in shells. Thus trace element enhancement in sediments in low-pH environments was not reflected in greater bioaccumulations of potentially harmful elements in the shells of common gastropods.
Dermauw, V; Dierenfeld, E; Du Laing, G; Buyse, J; Brochier, B; Van Gucht, S; Duchateau, L; Janssens, G P J
2015-06-01
Small-scale urban dairy farms (n = 16) in and around Jimma, Ethiopia with cross-bred (Bos indicus × Bos taurus) cows were enrolled in a double-blinded intervention study to investigate the effect of a trace element supplementation programme on trace element status and milk concentrations as well as performance [body condition score (BCS), milk yield, leptin], milk composition, antioxidant status (ferric-reducing ability of plasma (FRAP), thiobarbituric acid-reactive substances (TBARS)], blood biochemistry, serum proteins and immune response (antibody titre upon rabies vaccination). The farms were allocated to a (1) placebo or (2) Cu, Zn, Se, Co and I supplementation treatment for 150 d. On days 0 and 120, four lactating cows per farm were sampled for milk and plasma, and on day 150 for serum, following primo-vaccination. Cu deficiency was present in 17% and marginal Se deficiency in 30% of initially sampled cows, while no Zn shortage was detected. Over 120 days, trace element supplementation caused a bigger increase in plasma Se and Cu concentrations, but also a larger decrease of plasma Fe concentrations. A larger increase in milk Se concentrations was observed in the supplemented group, whereas none of the other elements were affected. BCS decreased more over time in the supplemented group. None of the other parameters of performance and antioxidant status nor milk composition or blood biochemistry was affected by treatment. Antibody response to rabies vaccination did not differ between groups, whereas α1-globulins tended to be lower and β-globulins tended to be higher in the supplemented group. In conclusion, despite improved Cu and Se status and Se concentrations in milk, cows on tropical urban dairy farms did not seem to benefit from trace element supplementation, with respect to the parameters investigated. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Hill, Shannon B; Faradzhev, Nadir S; Powell, Cedric J
2017-12-01
We discuss the problem of quantifying common sources of statistical uncertainties for analyses of trace levels of surface contamination using X-ray photoelectron spectroscopy. We examine the propagation of error for peak-area measurements using common forms of linear and polynomial background subtraction including the correlation of points used to determine both background and peak areas. This correlation has been neglected in previous analyses, but we show that it contributes significantly to the peak-area uncertainty near the detection limit. We introduce the concept of relative background subtraction variance (RBSV) which quantifies the uncertainty introduced by the method of background determination relative to the uncertainty of the background area itself. The uncertainties of the peak area and atomic concentration and of the detection limit are expressed using the RBSV, which separates the contributions from the acquisition parameters, the background-determination method, and the properties of the measured spectrum. These results are then combined to find acquisition strategies that minimize the total measurement time needed to achieve a desired detection limit or atomic-percentage uncertainty for a particular trace element. Minimization of data-acquisition time is important for samples that are sensitive to x-ray dose and also for laboratories that need to optimize throughput.
de Roda Husman, Ana Maria; Lodder-Verschoor, Froukje; van den Berg, Harold H J L; Le Guyader, Françoise S; van Pelt, Hilde; van der Poel, Wim H M; Rutjes, Saskia A
2007-04-01
Detection of pathogenic viruses in oysters implicated in gastroenteritis outbreaks is often hampered by time-consuming, specialist virus extraction methods. Five virus RNA extraction methods were evaluated with respect to performance characteristics and sensitivity on artificially contaminated oyster digestive glands. The two most promising procedures were further evaluated on bioaccumulated and naturally contaminated oysters. The most efficient method was used to trace the source in an outbreak situation. Out of five RNA extraction protocols, PEG precipitation and the RNeasy Kit performed best with norovirus genogroup III-spiked digestive glands. Analyzing 24-h bioaccumulated oysters revealed a slightly better sensitivity with PEG precipitation, but the RNeasy Kit was less prone to concentrate inhibitors. The latter procedure demonstrated the presence of human noroviruses in naturally contaminated oysters and oysters implicated in an outbreak. In this outbreak, in four out of nine individually analyzed digestive glands, norovirus was detected. In one of the oysters and in one of the fecal samples of the clinical cases, identical norovirus strains were detected. A standard and rapid virus extraction method using the RNeasy Kit appeared to be most useful in tracing shellfish as the source in gastroenteritis outbreaks, and to be able to make effective and timely risk management decisions.
Trace detection of oxygen--ionic liquids in gas sensor design.
Baltes, N; Beyle, F; Freiner, S; Geier, F; Joos, M; Pinkwart, K; Rabenecker, P
2013-11-15
This paper presents a novel electrochemical membrane sensor on basis of ionic liquids for trace analysis of oxygen in gaseous atmospheres. The faradaic response currents for the reduction of oxygen which were obtained by multiple-potential-step-chronoamperometry could be used for real time detection of oxygen down to concentrations of 30 ppm. The theoretical limit of detection was 5 ppm. The simple, non-expensive sensors varied in electrolyte composition and demonstrated a high sensitivity, a rapid response time and an excellent reproducibility at room temperature. Some of them were continuously used for at least one week and first results promise good long term stability. Voltammetric, impedance and oxygen detection studies at temperatures up to 200 °C (in the presence and absence of humidity and CO2) revealed also the limitations of certain ionic liquids for some electrochemical high temperature applications. Application areas of the developed sensors are control and analysis processes of non oxidative and oxygen free atmospheres. Copyright © 2013 Elsevier B.V. All rights reserved.
Sloto, R.A.; Helmke, M.F.
2011-01-01
Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.
NASA Astrophysics Data System (ADS)
Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen
2014-05-01
Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was humidified. The difference in perceived CO concentration showed a clear correlation to the water vapor content in the sample air. For COS we could show that changes in water vapor also impacted on the perceived COS concentrations; the raise of the water vapor concentration would lead to an increasing underestimation of the COS concentration. Drying the air using a Nafion Dryer before entering the COS/CO Analyzer eliminated any water vapor induced artifacts and showed no adverse effects on the quality of the conducted measurements. *Integrated cavity output spectroscopy
Swarzenski, Christopher M.
2003-01-01
The quality of water and bottom material in the Barataria Preserve of Jean Lafitte National Historical Park and Preserve, Louisiana, was surveyed from March 1999 to May 2000. Organochlorine, chlorophenoxy acid, and organophosphorus pesticides; polychlorinated biphenyls (PCB?s); and trace elements were analyzed in surface water and bottom material from three sites previously sampled in a 1981-82 survey. Surface water at six sites was sampled and analyzed for selected nutrients and major inorganic ions based on their importance to human health, the health of the marshes of the Barataria Preserve, or their usefulness in tracking the circulation of Mississippi River water in the Barataria Preserve. Southern Louisiana was in a moderate to severe drought during most of the sampling period, which elevated salinity in the Barataria Preserve for at least 8 months. Specific conductance values were less than 3,000 ?S/cm (microsiemens per centimeter at 25 degrees Celsius) in surface water throughout the Barataria Preserve from March through September 1999. Specific conductance values increased over the next 2 months and then remained between 5,000 and 6,000 ?S/cm. The herbicide 2,4-D was detected in water at the two sites sampled in August 1999 but not at any site during the two other sampling times. Iron, manganese, and the trace elements copper, nickel, and zinc were detected in dissolved and whole-water samples at all three sites. Nitrite+ nitrate, as nitrogen, concentrations ranged from less than 0.002 to 0.19 mg/L (milligrams per liter). Ammonia, as nitrogen, concentrations ranged from less than 0.01 to 0.16 mg/L. Orthophosphate, as phosphorus, concentrations ranged from less than 0.002 to 0.14 mg/L. Calcium, magnesium, potassium, sulfate, and chloride concentrations in surface water were elevated due to the marine influence on the composition of surface water in the Barataria Preserve during the sampling period. Sulfate and chloride concentrations reached 379 and 2,830 mg/L, respectively. Polychlorinated biphenyls, chlordane, and DDT were detected in bottom material. Trace elements were detected in bottom material at all three of the sampled sites. Arsenic concentrations ranged from 4 to 9 ?g/g (micrograms per gram) and lead concentrations from 20 to 31 ?g/g. Mercury concentrations also were above laboratory reporting levels (LRL?s) for bottom material at all three sites. The herbicide 2,4-D was detected in surface water during both surveys. Other organic compounds were not detected in surface water. Mercury and chromium were detected in surface water at all three sites during the 1981-82 survey but were below LRL?s during the 1999-2000 survey. Changes in chemical characteristics of bottom material occurred during the years between the 1981-82 and 1999-2000 surveys. DDT decreased in the bottom material at Bayou Segnette near Barataria. DDE, a degradation product, increased at this site, indicating that over time, DDT concentrations are decreasing in bottom material. PCB?s were present in similar concentrations (Bayou Segnette near Barataria) or increased (Bayou Segnette 4.6 miles below Westwego) from 1981-82 to 1999-2000. Cadmium concentrations consistently decreased by half or more at all three sites from 1981-82 to 1999-2000. Mercury concentrations were consistently lower at all three sites in the 1999-2000 survey, but the differences from the 1981-82 survey were small. Chromium concentrations increased at two of the three sites from 1981-82 to the present survey. At the third site, no chromium value was available for the earlier survey. Concentrations of copper and nickel increased in bottom material at the two sites on Bayou Segnette, but decreased at Kenta Canal northwest of Westwego. Probable Effects Levels (PEL?s) and Interim Sediment Quality Guidelines (ISQG?s) concentrations, as tabulated by the Canadian Council of Ministers of the
McGuire, Virginia L.; Ryter, Derek W.; Flynn, Amanda S.
2012-01-01
The U.S. Geological Survey, in cooperation with the Papio-Missouri River Natural Resources District (PMRNRD), conducted this study to map the water-level altitude of 2009 within the Elkhorn River Valley, Missouri River Valley, and Platte River Valley alluvial aquifers; to present the predevelopment potentiometric-surface altitude within the Dakota aquifer; and to describe the age and quality of groundwater in the five principal aquifers of the PMRNRD in eastern Nebraska using data collected from 1992 to 2009. In addition, implications of alternatives to the current PMRNRD groundwater-quality monitoring approach are discussed. In the PMRNRD, groundwater altitude, relative to National Geodetic Vertical Datum of 1929, ranged from about 1,080 feet (ft) to 1,180 ft in the Elkhorn River Valley alluvial aquifer and from about 960 ft to 1,080 ft in the Missouri River Valley and Platte River Valley alluvial aquifers. In the PMRNRD, the estimated altitude of the potentiometric surface of the Dakota aquifer, predevelopment, ranged from about 1,100 ft to 1,200 ft. To assess groundwater age and quality, groundwater samples were collected from a total of 217 wells from 1992 to 2009 for analysis of various analytes. Groundwater samples collected in the PMRNRD from 1992 to 2009 and interpreted in this report were analyzed for age-dating analytes (chlorofluorocarbons), dissolved gases, major ions, trace elements, nutrients, stable isotope ratios, pesticides and pesticide degradates, volatile organic compounds, explosives, and 222radon. Apparent groundwater age was estimated from concentrations of chlorofluorocarbons measured in samples collected in 2000. Apparent groundwater-recharge dates ranged from older than 1940 in samples from wells screened in the Missouri River Valley alluvial aquifer to the early 1980s in samples from wells screened in the Dakota aquifer. Concentrations of major ions in the most recent sample per well collected from 1992 to 2009 indicate that the predominant water type was calcium bicarbonate. Samples from 4 wells exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Drinking Water Regulation (SDWR) for sulfate [250 milligrams per liter (mg/L)], and samples from 4 wells exceeded the USEPA Drinking Water Advisory Table for sodium (30-60 mg/L). Eighteen of the 21 trace elements analyzed in samples from PMRNRD wells have USEPA drinking-water standards. Sixteen of the trace elements with USEPA standards were detected in the selected samples. In the samples selected for trace-element analysis, the only trace-element concentration that exceeded an enforceable USEPA drinking-water standard, the Maximum Contaminant Level (MCL), was for arsenic; arsenic concentration exceeded the USEPA MCL of 10 micrograms per liter (μg/L) in 4 percent of the samples. Trace-element concentrations that exceeded the USEPA SDWR or Lifetime Health Advisory level were iron (46 percent of the samples were greater than USEPA SDWR of 300 μg/L), manganese (70 percent of the samples were greater than USEPA SDWR of 50 μg/L), and strontium (4 percent of the samples were greater than USEPA Lifetime Health Advisory level of 4,000 μ/L). The concentration of nitrate plus nitrite as nitrogen (nitrate-N) in the most recent nutrient samples collected from the network wells and from one randomly selected well in the well nests from 1992 to 2009 for most wells (80 percent) ranged from less than 0.06 to 8.55 mg/L, with a median value of 0.12 mg/L. Concentrations of nitrate-N in 13 (7 percent) nutrient samples, 1992 to 2009, were greater than or equal to the USEPA MCL and Nebraska Title-118 standard of 10 mg/L, and concentrations of nitrate-N in 35 (18 percent) nutrient samples, 1992 to 2009, were greater than or equal to 5 mg/L, which is the PMRNRD action level for possible management implementation to reduce nitrate concentrations in groundwater. Of the 61 pesticides or pesticide degradates analyzed from 2007 to 2009, 21 were detected. Three of the 21 pesticides detected (alachlor, atrazine, and metolachlor) have established health-based criteria; all detections of these compounds were at concentrations less than their USEPA standards. From 2007 to 2009, 1 or more pesticide compounds were detected in 16 of the 82 network wells and in 18 of the 26 wells in well nests. From 2007 to 2009, the individual pesticide compounds that were detected most frequently were alachlor ethane sulfonic acid, a degradate of alachlor; deethylcyanazine acid, a degradate of cyanazine; and atrazine. Analytes with concentrations that exceeded 30 percent of the applicable Nebraska Title-118 standard were identified so that the PMRNRD can plan to monitor groundwater in the area and consider possible actions should the analyte concentrations continue to rise. The analytical results from the most recent samples collected in the network wells and all the wells in well nests from 1992 to 2009 indicate that, in at least 1 sample, there was a concentration that exceeded 30 percent of the Nebraska Title-118 standard for at least 1 of 3 major ions (chloride, fluoride, and sulfate), 1 nutrient (nitrate-N), 1 pesticide (atrazine), or 3 trace elements (arsenic, iron, and manganese). In addition, 30 percent of the USEPA MCL or Nebraska Title-118 standard for gross alpha activity likely was exceeded in samples from three wells screened in the Dakota aquifer. Study findings indicate that some alternatives to the current PMRNRD groundwater-sampling approach that could be considered are to collect fewer samples for nutrient analysis and to collect samples periodically for determining concentrations of additional analytes, particularly the analytes with concentrations that were at least 30 percent or more than the Nebraska Title-118 standard.
NASA Astrophysics Data System (ADS)
Ivanov, M. P.; Tolmachev, Yu. A.
2018-05-01
We consider the most feasible ways to significantly improve the sensitivity of spectroscopic methods for detection and measurement of trace concentrations of greenhouse gas molecules in the atmosphere. The proposed methods are based on combining light fluxes from a number of spectral components of the specified molecule on the same photodetector, taking into account the characteristic features of the transmission spectrum of devices utilizing multipath interference effects.
Quality of bottom material and elutriates in the lower Willamette River, Portland Harbor, Oregon
Fuhrer, Gregory J.
1989-01-01
In October 1983 the U.S. Geological Survey, in cooperation with the U.S. Army Corp of Engineers, collected bottom-material and water samples from Portland Harbor, Oregon to determine concentrations of trace metals and organic compounds in elutriate-test filtrate and bottom material. Of the trace metals examined in bottom material, concentrations of cadmium slightly exceed those of local rocks, whereas lead and zinc exceedance is substantially larger. Of the organochlorine compounds examined in bottom material chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were detected and quantified in at least 30% of the samples tested. A large DDT concentration (2,700 microgram/kilogram) near Doane Lake outlet is indicative of recent contamination. Polychlorinated biphenyls are ubiquitous in bottom sediments; median concentrations are nearly 65 micrograms/kilogram and as large as 550 microgram/kilogram. PCB loading to the Columbia River from Willamette River suspended sediment has been estimated to be 72 kilograms/year, nearly five times the PCB dredge load of 15 kilogram/year. The acid and base-neutral extractable di-n-butyl phthalate and bis (2-ethylhexyl)phthalate occur in sediments of Terminal No. 2 in concentrations as large as 1,965 and 2,200 micrograms/kilogram, respectively. Of the trace metals examined in both standard and oxic elutriate-test filtrate, only copper concentration in an oxic elutriate-test filtrate (19 micrograms/L) exceeded the water quality criteria (5.7 micrograms/L). (USGS)
Quantitative detection of the respective concentrations of chiral compounds with weak measurements
NASA Astrophysics Data System (ADS)
Xie, Linguo; Qiu, Xiaodong; Luo, Lan; Liu, Xiong; Li, Zhaoxue; Zhang, Zhiyou; Du, Jinglei; Wang, Deqiang
2017-11-01
In this letter, we determine the respective concentrations of glucose and fructose in the mixed chiral solution by simultaneously measuring the optical rotation angle (ORA) and the refractive index change (RIC) with weak measurements. The photonic spin Hall effect (PSHE) serves as a probe in our scheme. The measurement of ORA is based on the high sensitivity of the amplification factor to the polarization state in weak measurements. The measurement of RIC is based on the rapid variation of spin splitting of the PSHE. The measurement precision of the respective concentrations can be achieved to be 0.02 mg/ml. This method can detect traces of enantiomeric impurities and has a potential application in chiral sensing.
Wang, Zhongshun; Feng, Lei; Xiao, Dongyang; Li, Ning; Li, Yao; Cao, Danfeng; Shi, Zuosen; Cui, Zhanchen; Lu, Nan
2017-11-09
The performance of surface-enhanced Raman scattering (SERS) for detecting trace amounts of analytes depends highly on the enrichment of the diluted analytes into a small region that can be detected. A super-hydrophobic delivery (SHD) process is an excellent process to enrich even femtomolar analytes for SERS detection. However, it is still challenging to easily fabricate a low detection limit, high sensitivity and reproducible SHD-SERS substrate. In this article, we present a cost-effective and fewer-step method to fabricate a SHD-SERS substrate, named the "silver nanoislands on silica spheres" (SNOSS) platform. It is easily prepared via the thermal evaporation of silver onto a layer of super-hydrophobic paint, which contains single-scale surface-fluorinated silica spheres. The SNOSS platform performs reproducible detection, which brings the relative standard deviation down to 8.85% and 5.63% for detecting 10 -8 M R6G in one spot and spot-to-spot set-ups, respectively. The coefficient of determination (R 2 ) is 0.9773 for R6G. The SNOSS platform can be applied to the quantitative detection of analytes whose concentrations range from sub-micromolar to femtomolar levels.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1990-01-01
Trace element abundance determinations were performed using synchrotron X-ray fluorescence on nine particles collected from the stratosphere and classified as cosmic. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging from 1.3 to 38 times the C1 concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere.
Griffiths, Alexander M.; Lambelet, Myriam; Little, Susan H.; Stichel, Torben; Wilson, David J.
2016-01-01
The neodymium (Nd) isotopic composition of seawater has been used extensively to reconstruct ocean circulation on a variety of time scales. However, dissolved neodymium concentrations and isotopes do not always behave conservatively, and quantitative deconvolution of this non-conservative component can be used to detect trace metal inputs and isotopic exchange at ocean–sediment interfaces. In order to facilitate such comparisons for historical datasets, we here provide an extended global database for Nd isotopes and concentrations in the context of hydrography and nutrients. Since 2010, combined datasets for a large range of trace elements and isotopes are collected on international GEOTRACES section cruises, alongside classical nutrient and hydrography measurements. Here, we take a first step towards exploiting these datasets by comparing high-resolution Nd sections for the western and eastern North Atlantic in the context of hydrography, nutrients and aluminium (Al) concentrations. Evaluating those data in tracer–tracer space reveals that North Atlantic seawater Nd isotopes and concentrations generally follow the patterns of advection, as do Al concentrations. Deviations from water mass mixing are observed locally, associated with the addition or removal of trace metals in benthic nepheloid layers, exchange with ocean margins (i.e. boundary exchange) and/or exchange with particulate phases (i.e. reversible scavenging). We emphasize that the complexity of some of the new datasets cautions against a quantitative interpretation of individual palaeo Nd isotope records, and indicates the importance of spatial reconstructions for a more balanced approach to deciphering past ocean changes. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035258
Detection of vehicle-based improvised explosives using ultra-trace detection equipment
NASA Astrophysics Data System (ADS)
Fisher, Mark; Sikes, John; Prather, Mark; Wichert, Clint
2005-05-01
Vehicle-borne improvised explosive devices (VBIEDs) have become the weapon of choice for insurgents in Iraq. At the same time, these devices are becoming increasingly sophisticated and effective. VBIEDs can be difficult to detect during visual inspection of vehicles. This is especially true when explosives have been hidden behind a vehicle"s panels, inside seat cushions, under floorboards, or behind cargo. Even though the explosive may not be visible, vapors of explosive emanating from the device are often present in the vehicle, but the current generation of trace detection equipment has not been sensitive enough to detect these low concentrations of vapor. This paper presents initial test results using the Nomadics Fido sensor for detection of VBIEDs. The sensor is a small, explosives detector with unprecedented levels of sensitivity for detection of nitroaromatic explosives. Fido utilizes fluorescence quenching of novel polymer materials to detect traces of explosive vapor emanating from targets containing explosives. These materials, developed by collaborators at the Massachusetts Institute of Technology (MIT), amplify the quenching response that occurs when molecules of explosive bind to films of the polymer. These materials have enabled development of sensors with performance approaching that of canines trained to detect explosives. The ability of the sensor to detect explosives in vehicles and on persons who have recently been in close proximity to explosives has recently been demonstrated. In these tests, simulated targets were quickly and easily detected using a Fido sensor in conjunction with both direct vapor and swipe sampling methods. The results of these tests suggest that chemical vapor sensing has utility as a means of screening vehicles for explosives at checkpoints and on patrols.
Fujii, Roger
1988-01-01
Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. Water enters the ponds from the MD-1 pumping station at pond 1 and flows through the system terminating at pond 10. The water samples increased in specific conductance (21,700 to 90,200 microsiemens/centimeter) and concentrations of total arsenic (110 to 420 microg/L), total recoverable boron (12,000 to 80,000 microg/L) and total recoverable molybdenum (1,200 to 5,500 microg/L) going from pond 1 to pond 10, respectively. Pesticides were not detected in water from any of the ponds sampled. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. The only pesticides detected in bottom sediment samples from the evaporation ponds were DDD and DDE, with maximum concentration of 0.8 microg/kilogram. (Author 's abstract)
Clark, Robert J.; Meier, A.L.; Riddle, G.; ,
1990-01-01
One objective of the International Falls and Roseau, Minnesota, CUSMAP projects was to develop a means of conducting regional-scale geochemical surveys in areas where bedrock is buried beneath complex glacially derived overburden. Partial analysis of B-horizon soils offered hope for detecting subtle hydromorphic trace-element dispersion patterns. An enzyme-based partial leach selectively removes metals from oxide coatings on the surfaces of soil materials without attacking their matrix. Most trace-element concentrations in the resulting solutions are in the part-per-trillion to low part-per-billion range, necessitating determinations by inductively coupled plasma/mass spectrometry. The resulting data show greater contrasts for many trace elements than with other techniques tested. Spatially, many trace metal anomalies are locally discontinuous, but anomalous trends within larger areas are apparent. In many instances, the source for an anomaly seems to be either basal till or bedrock. Ground water flow is probably the most important mechanism for transporting metals toward the surface, although ionic diffusion, electrochemical gradients, and capillary action may play a role in anomaly dispersal. Sample sites near the Rainy Lake-Seine River fault zone, a regional shear zone, often have anomalous concentrations of a variety of metals, commonly including Zn and/or one or more metals which substitute for Zn in sphalerite (Cd, Ge, Ga, and Sn). Shifts in background concentrations of Bi, Sb, and As show a trend across the area indicating a possible regional zoning of lode-Au mineralization. Soil anomalies of Ag, Co, and Tl parallel basement structures, suggesting areas that may have potential for Cobalt/Thunder Baytype silver viens. An area around Baudette, Minnesota, which is underlain by quartz-chlorite-carbonate-altered shear zones, is anomalous in Ag, As, Bi, Co, Mo, Te, Tl, and W. Anomalies of Ag, As, Bi, Te, and W tend to follow the fault zones, suggesting potential for lode-Au deposits. Soil anomalies of Co, Mo, and Tl appear to follow northwest-striking structures that cross the shear zones, suggesting that Thunder Bay-type mineralization may have overprinted earlier mineralization along the shear zones.
Groundwater quality in the Upper Hudson River Basin, New York, 2012
Scott, Tia-Marie; Nystrom, Elizabeth A.
2014-01-01
Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were detected in one sample with a maximum of 2 colony-forming units per 100 milliliters. Water quality in the Upper Hudson River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (1 sample), pH (3 samples), sodium (3 samples), chloride (1 sample), dissolved solids (1 sample), arsenic (1 sample), iron (2 samples), manganese (2 samples), uranium (1 sample), radon-222 (12 samples), and gross beta activities (3 samples). Total coliform bacteria were each detected in one sample. Concentrations of fluoride, sulfate, nitrate, nitrite, aluminum, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and gross alpha activities did not exceed existing drinking-water standards in any of the samples collected. Methane concentration in one sample was greater than 28 milligrams per liter, with a concentration of 35.1 milligrams per liter.
Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V
2014-05-06
The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).
Gu, Binghe; Meldrum, Brian; McCabe, Terry; Phillips, Scott
2012-01-01
A theoretical treatment was developed and validated that relates analyte concentration and mass sensitivities to injection volume, retention factor, particle diameter, column length, column inner diameter and detection wavelength in liquid chromatography, and sample volume and extracted volume in solid-phase extraction (SPE). The principles were applied to improve sensitivity for trace analysis of clopyralid in drinking water. It was demonstrated that a concentration limit of detection of 0.02 ppb (μg/L) for clopyralid could be achieved with the use of simple UV detection and 100 mL of a spiked drinking water sample. This enabled reliable quantitation of clopyralid at the targeted 0.1 ppb level. Using a buffered solution as the elution solvent (potassium acetate buffer, pH 4.5, containing 10% of methanol) in the SPE procedures was found superior to using 100% methanol, as it provided better extraction recovery (70-90%) and precision (5% for a concentration at 0.1 ppb level). In addition, the eluted sample was in a weaker solvent than the mobile phase, permitting the direct injection of the extracted sample, which enabled a faster cycle time of the overall analysis. Excluding the preparation of calibration standards, the analysis of a single sample, including acidification, extraction, elution and LC run, could be completed in 1 h. The method was used successfully for the determination of clopyralid in over 200 clopyralid monoethanolamine-fortified drinking water samples, which were treated with various water treatment resins. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
CO2 lidar for measurements of trace gases and wind velocities
NASA Technical Reports Server (NTRS)
Hess, R. V.
1982-01-01
CO2 lidar systems technology and signal processing requirements relevant to measurement needs and sensitivity are discussed. Doppler processing is similar to microwave radar, with signal reception controlled by a computer capable of both direct and heterodyne operations. Trace gas concentrations have been obtained with the NASA DIAL system, and trace gas transport has been determined with Doppler lidar measurements for wind velocity and turbulence. High vertical resolution measurement of trace gases, wind velocity, and turbulence are most important in the planetary boundary layer and in regions between the PBL and the lower stratosphere. Shear measurements are critical for airport operational safety. A sensitivity analysis for heterodyne detection with the DIAL system and for short pulses using a Doppler lidar system is presented. The development of transient injection locking techniques, as well as frequency stability by reducing chirp and catalytic control of closed cycle CO2 laser chemistry, is described.
Liu, Changqi; Chhabra, Guneet S; Zhao, Jing; Zaffran, Valerie D; Gupta, Sahil; Roux, Kenneth H; Gradziel, Thomas M; Sathe, Shridhar K
2017-10-01
A commercially available monoclonal antibody (mAb)-based direct sandwich enzyme-linked immunosorbent assay (ELISA) kit (BioFront Technologies, Tallahassee, Fla., U.S.A.) was compared with an in-house developed mAb 4C10-based ELISA for almond detection. The assays were comparable in sensitivity (limit of detection < 1 ppm full fat almond, limit of quantification < 5 ppm full fat almond), specificity (no cross-reactivity with 156 tested foods at a concentration of 100000 ppm whole sample), and reproducibility (intra- and interassay variability < 15% CV). The target antigens were stable and detectable in whole almond seeds subjected to autoclaving, blanching, frying, microwaving, and dry roasting. The almond recovery ranges for spiked food matrices were 84.3% to 124.6% for 4C10 ELISA and 81.2% to 127.4% for MonoTrace ELISA. The almond recovery ranges for commercial and laboratory prepared foods with declared/known almond amount were 30.9% to 161.2% for 4C10 ELISA and 38.1% to 207.6% for MonoTrace ELISA. Neither assay registered any false-positive or negative results among the tested commercial and laboratory prepared samples. Ability to detect and quantify trace amounts of almonds is important for improving safety of almond sensitive consumers. Two monoclonal antibody-based ELISAs were compared for almond detection. The information is useful to food industry, regulatory agencies, scientific community, and almond consumers. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-01
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02878k
Deeds, Daniel A.; Kulongoski, Justin T.; Belitz, Kenneth
2012-01-01
Twenty-four halogenated volatile organic compounds (hVOCs) and SF6 were measured in groundwater samples collected from 312 wells across California at concentrations as low as 10–12 grams per kilogram groundwater. The hVOCs detected are predominately anthropogenic (i.e., “ahVOCs”) and as such their distribution delineates where groundwaters are impacted and susceptible to human activity. ahVOC detections were broadly consistent with air-saturated water concentrations in equilibrium with a combination of industrial-era global and regional hVOC atmospheric abundances. However, detection of ahVOCs in nearly all of the samples collected, including ancient groundwaters, suggests the presence of a sampling or analytical artifact that confounds interpretation of the very-low concentration ahVOC data. To increase our confidence in ahVOC detections we establish screening levels based on ahVOC concentrations in deep wells drawing ancient groundwater in Owens Valley. Concentrations of ahVOCs below the Owens Valley screening levels account for a large number of the detections in prenuclear groundwater across California without significant loss of ahVOC detections in shallow, recently recharged groundwaters. Over 80% of the groundwaters in this study contain at least one ahVOC after screening, indicating that the footprint of human industry is nearly ubiquitous and that most California groundwaters are vulnerable to contamination from land-surface activities.
Quality of water in the White River and Lake Tapps, Pierce County, Washington, May-December 2010
Embrey, S.S.; Wagner, R.J.; Huffman, R.L.; Vanderpool-Kimura, A. M.; Foreman, J.R.
2012-01-01
Water samples collected at the Allan Yorke, Snag Island, and Lake Outlet study sites were screened for the presence of more than 250 organic chemicals. A total of 14 compounds were detected in trace amounts (or determined to be present) at one or more of the 3 sites. The Allan Yorke site had 9 detections, the Snag Island site had 10 detections, and the Lake Outlet site had 5 detections of compounds mostly belonging to the group of wastewater indicator chemicals. Compounds detected (or with verified presence) at all three sites included the herbicide 2,4-D, the insecticide and mosquito repellant DEET, the herbicide fluridone used for Eurasian watermilfoil eradication, and the herbicide prometon. The largest concentrations of these compounds were in samples from the Allan Yorke site; the lowest concentrations were from the Lake Outlet site.
Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei; Tittel, Frank K.; Li, Chunguang
2016-02-25
Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH 4 and C 2H 6 concentration measurements with a 3.7-W power consumption.
An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra wer...
STATISTICAL EVALUATION OF AN ANALYTICAL GC/MS METHOD FOR THE DETERMINATION OF LONG CHAIN FATTY ACIDS
In-depth evaluation of an analytical method to detect and quantify long chain fatty acids (C8 - C16) at trace level concentrations (25-1000 µg/l) is presented. The method requires derivatization of the acids with methanolic boron trifluoride, separation, and...
Nomngongo, Philiswa N; Catherine Ngila, J; Kamau, Joseph N; Msagati, Titus A M; Marjanovic, Ljiljana; Moodley, Brenda
2013-07-17
Chelex-100, Dowex 50W-x8 and Dowex MAC-3 exchange resins were investigated for separation and pre-concentration of trace amounts of Cd, Cr, Cu, Fe, Mn, Pb, Ti and Zn in alcohols with respect to retention and desorption characteristics. Dowex 50W-x8 was found to be the best sorbent with percentages recoveries >95%. In addition, Chelex-100 appeared to be suitable for the pre-concentration of Cu, Fe and Zn, whereas Dowex MAC-3 was selective for Cu and Fe. Therefore, Dowex 50W-x8 was used for further investigations. The relative standard deviations <4% (n=20), limits of detection and quantification were 0.1-1.2 μg L(-1) and 0.3-1.5 μg L(-1), respectively. The SPE method was validated against a certified reference material and the results were in agreement with certified values. The accuracy of the optimized method was verified by the recovery test in the spiked alcohol samples. The accuracy and spike recovery test for different metal ions were in the range 98-102% and 95-105%, respectively. The optimized method was applied to the separation and pre-concentration of metal ions in different commercial alcohol samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Míguez, Diana M; Huertas, Raquel; Carrara, María V; Carnikián, Agustín; Bouvier, María E; Martínez, María J; Keel, Karen; Pioda, Carolina; Darré, Elena; Pérez, Ramiro; Viera, Santiago; Massa, Enrique
2012-04-01
Bioassays of two sites along the Rio Negro in Uruguay indicate ecotoxicity, which could be attributable to trace concentrations of lead in river sediments. Monthly samples at two sites at Baygorria and Bonete locations were analyzed for both particle size and lead. Lead was determined by atomic spectrometry in river water and sediment and particle size by sieving and sedimentation. Data showed that Baygorria's sediments have greater percentage of clay than Bonete's (20.4 and 5.8%, respectively). Lead was measurable in Baygorria's sediments, meanwhile in Bonete's, it was always below the detection limit. In water samples, lead was below detection limit at both sites. Bioassays using sub-lethal growth and survival test with Hyalella curvispina amphipod, screening with bioluminescent bacteria Photobacterium leiognathi, and acute toxicity bioassay with Pimephales promelas fish indicated toxicity at Baygorria, with much less effect at Bonete. Even though no lethal effects could be demonstrated, higher sub-lethal toxicity was found in samples from Baygorria site, showing a possible concentration of the contaminant in the clay fraction.
Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules
Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang
2014-01-01
Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499
Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming
2012-08-21
The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.
Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery
Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; ...
2015-11-28
In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimummore » detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg -1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg -1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species.« less
Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette
In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimummore » detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg -1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg -1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species.« less
Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery.
Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; Williams, Michael; Gelatt, Thomas; Bell, Justin; Johnson, Thomas E
2016-02-01
In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimum detectable activity concentrations of (137)Cs and (134)Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq (134)Cs kg(-1) f.w. (95% CI: 35.9-38.5) and 141.2 mBq (137)Cs kg(-1) f.w. (95% CI: 135.5-146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25-0.28). The Fukushima nuclear accident released (134)Cs and (137)Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both (134)Cs and (137)Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace (134)Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species. Published by Elsevier Ltd.
Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua
2014-01-01
The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.
Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua
2014-01-01
The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869
Anderholm, Scott K.
2002-01-01
As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th
Photoacoustic Spectroscopy for Trace Vapor Detection and Standoff Detection of Explosives
2016-08-01
ARL-RP-0577 ● AUG 2016 US Army Research Laboratory Photoacoustic Spectroscopy for Trace Vapor Detection and Standoff Detection...Photoacoustic Spectroscopy for Trace Vapor Detection and Standoff Detection of Explosives by Ellen L Holthoff and Paul M Pellegrino Sensors and Electron...
Hart, Robert J.; Taylor, Howard E.; Antweiler, Ronald C.; Fisk, Greg G.; Anderson, G.M.; Roth, D.A.; Flynn, Marilyn E.; Peart, D.B.; Truini, Margot; Barber, L.B.
2005-01-01
Side canyons of Lake Powell are the most popular recreation areas of the Glen Canyon National Recreation Area in Arizona and Utah. There are more than 90 side canyons that are tributaries to the main lake body of Lake Powell. Near Bullfrog and Halls Crossing marinas in Utah, visitors frequent Knowles, Forgotten, and Moqui Canyons to fish, boat, camp, and hike the sandstone formations for which Lake Powell is famous. Areas of recreational activity are greatest near beaches in side canyons. Emissions from houseboats, personal watercraft, speedboats, and from some nonboating recreational activities introduce contaminants to the lake and to beach areas. The U.S. Geological Survey documented concentrations of trace elements, volatile organic compounds, organic wastewater contaminants, and other byproducts of fuel-based contaminants in water and bed material in Knowles, Forgotten, and Moqui Canyons during the summers of 2001 and 2002. Field work was conducted during four trips when recreational use was at a minimum (before Memorial Day in May) and when it was at a maximum (near Labor Day in September). Knowles Canyon was treated as a control; therefore, public access by motorcraft was not permitted during the study. Electric-powered or oar-powered research boats were used to collect samples and measure properties in Knowles Canyon. Record-low reservoir elevations during 2000-2002 limited the availability of camping and day-use beaches in Forgotten and Moqui Canyons. Although more beach areas were exposed during this period, the steep slopes of the beaches made it difficult to use the beaches for camping purposes. Side canyon waters of Knowles, Forgotten, and Moqui Canyons were similarly stratified (physically and chemically) during the study from natural advective and convective reservoir processes. Metalimnetic oxygen minimas were observed in September 2001 and 2002 in the side canyons and the main body of Lake Powell. Chemical concentrations of several organic constituents were elevated in Forgotten and Moqui Canyons during the high-use period in September of 2001 and 2002 compared with concentrations during the low-use period in May of 2001 and 2002. Concentrations of some constituents decreased from the mouth of each canyon to the canyon's headwaters, indicating that there could be a mechanism for constituent removal or that the main body of Lake Powell is not in equilibrium with the headwaters of the side canyons. Concentrations of volatile organic compounds, such as benzene, toluene, ethylbenzene, and xylene (BTEX compounds), were highest in the upper reaches of Forgotten and Moqui Canyons where visitor use was greatest. Trace amounts of some organic wastewater compounds, including cholesterol, N,N-diethyl-meta-toluamide (DEET), and ethylenediaminetetraacetic acid (EDTA), were measured in Forgotten and Moqui Canyons. Except for minor concentrations of some volatile organic compounds and cholesterol, contamination from visitor use in Knowles Canyon was not detected, most likely because the canyon was closed to access. Concentrations of some organic compounds in bed material sampled in the side canyons near popular beach areas, including polyaromatic hydrocarbons, were above the laboratory detection limits. Several other constituents were present in trace amounts. Benzyl n-butylphthalate and bis (2 ethyl)-phthalate were detected at concentrations above laboratory detection limits. Numerous trace elements were detected above laboratory detection limits in Knowles, Forgotten, and Moqui Canyons. All water samples from the side canyon transects had low colony counts of Escherichia coli (E. coli); the highest count was less than one-fourth of the U.S. Environmental Protection Agency recommended limit for recreational water. Four water samples collected near beaches in Moqui Canyon had E. coli colony counts that exceeded the U.S. Environmental Protection Agency recommended limit.
Ming, Liang; Xi, Xia; Chen, Tingting; Liu, Jie
2008-01-01
We have developed a simple, convenient and inexpensive voltammetric method for determining trace Sudan I contamination in chili powder, based on the catalyzed electrochemical reduction of Sudan I at the carbon nanotube modified electrode. Under optimized conditions, the method exhibited acceptable analytical performance in terms of linearity (over the concentration range 6.0×10−7 to 7.5×10−5 M, r = 0.9967), detection limit (2.0×10−7 M) and reproducibility (RSD = 4.6%, n=10, for 2.0×10−5 M Sudan I). PMID:27879800
LaFleur, Alesha D; Schug, Kevin A
2011-06-24
Recent methods of separation and detection for the quantification of trace-level concentrations of selected endocrine disrupting compounds (EDCs) from aqueous systems are reviewed. A brief introduction of the selected EDCs (natural and synthetic estrogens and plastics-derived xenoestrogens), including their characteristics and importance, is presented. Sample preparation and extraction trends are discussed. Various types of separation techniques are presented, with the express goal of emphasizing time and cost-effective methods that isolate and quantify trace-levels of multiple endocrine disruptors from aqueous systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Investigation of Ground-Water Availability and Quality in Orange County, North Carolina
Cunningham, William L.; Daniel, Charles C.
2001-01-01
A countywide inventory was conducted of 649 wells in nine hydrogeologic units in Orange County, North Carolina. As a result of this inventory, estimates of ground-water availability and use were calculated, and water-quality results were obtained from 51 wells sampled throughout the County from December 1998 through January 1999. The typical well in Orange County has an average depth of 208 feet, an average casing length of 53.6 feet, a static water level of 26.6 feet, a yield of 17.6 gallons per minute, and a well casing diameter of 6.25 inches. The saturated thickness of the regolith averages 27.0 feet and the yield per foot of total well depth averages 0.119 gallon per minute per foot. Two areas of the County are more favorable for high-yield wells—a west-southwest to east-northeast trending area in the northwestern part of the County, and a southwest to northeast trending area in the southwestern part of the County. Well yields in Orange County show little correlation with topographic or hydrogeologic setting.Fifty-one sampling locations were selected based on (a) countywide areal distribution, (b) weighted distribution among hydrogeologic units, and (c) permission from homeowners. The list of analytes for the sampling program consisted of common anions and cations, metals and trace elements, nutrients, organic compounds, and radon. Samples were screened for the presence of fuel compounds and pesticides by using immuno-assay techniques. Dissolved oxygen, pH, temperature, specific conductance, and alkalinity were measured in the field. The median pH was 6.9, which is nearly neutral, and the median hardness was 75 milligrams per liter calcium carbonate. The median dissolved solids concentration was 125 milligrams per liter, and the median specific conductance was 175 microsiemens per centimeter at 25 degrees Celsius. Orange County ground water is classified as a calcium-bicarbonate type.High nutrient concentrations were not found in samples collected for this study. Nitrate was detected in 82 percent of the samples at concentrations ranging up to 7.2 milligrams per liter, although the median concentration was 0.49 milligram per liter; all other samples had a concentration of 2.9 milligrams per liter or less. In general, trace elements were detected infrequently or at concentrations less than State drinking-water standards. However, exceedances of North Carolina drinking-water standards were observed for iron (3 exceedances of 51 analyses, detection up to 1,100 micrograms per liter), manganese (12 exceedances of 51 analyses, detection up to 890 micrograms per liter), and zinc (4 exceedances of 31 analyses, detection up to 4,900 micrograms per liter). Lead was detected in 8 of 31 samples with a concentration up to 3.5 micrograms per liter. Zinc, manganese, iron, and copper were the most frequently detected trace metals at 100, 94, 80, and 61 percent, respectively. Lead, arsenic, bromide, alum inum, and selenium were detected in 13 to 26 percent of the analyses. No benzene, toluene, ethylbenzene, and xylene (BTEX) or atrazine compounds were detected in any of the samples.Radon activities in ground water can be high because of the rock units present in Orange County. Radon activity ranged from 38 to 4,462 picocuries per liter countywide, with a median activity of 405 picocuries per liter. Median radon activities in Orange County were highest in felsic rocks (487 picocuries per liter) and lowest in mafic rocks (357 picocuries per liter). When evaluated by individual hydrogeologic units, the median radon activity was highest in the phyllite unit (1,080 picocuries per liter in 2 samples) and the felsic metaigneous unit (571 picocuries per liter in 13 samples).Overall, water-quality data in Orange County indicate few drinking-water concerns. No organic contaminants analyzed (total BTEX and atrazine) or excessive nutrient concentrations were detected, and few exceedances of North Carolina drinking- water standards were detected.
Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.
2012-01-01
Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).
Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006
Nystrom, Elizabeth A.
2007-01-01
The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The trace elements detected with the highest median concentrations were strontium and iron in unfiltered water and strontium and barium in filtered water. Concentrations of trace elements in several samples exceeded U.S. Environmental Protection Agency secondary drinking-water standards, including aluminum (50-200 micrograms per liter, three wells), arsenic (10 micrograms per liter, one well), iron (300 micrograms per liter, three wells), and manganese (50 micrograms per liter, four wells). The median concentration of radon-222 was 1,580 picoCuries per liter. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a maximum contaminant level of 300 picoCuries per liter along with an alternative maximum contaminant level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed maximum contaminant level in all 19 of the samples and exceeded the proposed alternative maximum contaminant level in 1 sample. Eleven pesticides and pesticide degradates were detected in samples from ten wells; all were herbicides or herbicide degradates. Three volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria were detected in samples from five wells, four of which were finished in sand and gravel; Escherichia coli was not detected in any sample.
Wang, Bronwen; Mueller, Seth; Bailey, Elizabeth; Lee, Greg
2006-01-01
We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000 quadrangle. Samples were collected as part of the multi-year U.S. Geological Survey's project -- Geologic and Mineral Deposit Data for Alaskan Economic Development. Data presented here are from water samples collected primarily in the northeastern part of the Taylor Mountains quadrangle. The data include samples taken from the Taylor Mountains C1, C2, D1, D2, and D4 1:63,360 scale quadrangles. The data are being released at this time with minimal interpretation. Site selection was based on a regional sampling strategy that focused on first and second order drainages. Water sampling site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and the cursory field review of the mineralogy from the pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50% of the anionic charge can be attibuted to sulfate ( SO42-). The major-cation chemistry range from Ca/Mg dominated to a mix of Ca/Mg/Na+K. Good agreement was found between the major cation and anions in the duplicate samples. Many trace elements were at or near the method detection limit in these samples but good agreement was found between duplicate samples for elements with detectable concentrations. Major ion concentrations were below detection in all field blanks and the trace elements concentrations generally were below detection. However, Ta (range 0.9 -.1 ug/L) and Zn (1 to 3.5 ug/L) were detected in all blanks and Ba ( 0.24 ug/L) and Th (0.2 ug/L) were detected in one blank. There was good agreement between dupilicate total- and methyl- mercury and DOC samples; however, total mercury, methyl-mercury and dissolve organic carbon (DOC) were detected in the blank at 2.35 ng/L, 0.07 ng/L and 0.57 mg/L, respectively.
Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.
2003-01-01
An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.
A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark
2013-05-20
The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected withinmore » a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.« less
Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.
1998-01-01
The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.
Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa
2015-06-01
In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell experiments with controlled the temperature were performed to validate the sensing strategy. Here the Wavelength Modulation Spectroscopy (WMS) strategy was usually used to measure lower gas concentration for high noise immunity to the non-absorption transmission losses. The great agreement 2f signal with the calibrated concentration is within the uncertainty at different temperatures by using simple digital signal processing such as multiple averages, wavelet analysis and so on. The denoise processing has a great advantage in application and implementation over other noise suppression techniques. The result provided a good basis for trace ammonia escape detection based on tunable diode laser absorption spectroscopy.
Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu
2006-01-01
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.
Bailón-Pérez, M I; García-Campaña, A M; del Olmo-Iruela, M; Gámiz-Gracia, L; Cruces-Blanco, C
2009-11-20
A sensitive and reliable method using capillary HPLC with UV-diode array detection (DAD) has been developed and validated for the trace determination of residues of 10 beta-lactam antibiotics of human and veterinary use, in milk, chicken meat and environmental water samples. The analytes included ampicillin, amoxicillin, penicillin V, penicillin G, cloxacillin, oxacillin, dicloxacillin, nafcillin, piperacillin and clavulanic acid. Legal levels are regulated by the EU Council regulation 2377/90 in animal edible tissues for these compounds. For food analysis, a solid-phase extraction (SPE) procedure consisting in a tandem of Oasis HLB and Alumina N cartridges was applied for off-line preconcentration and cleanup. For water analysis, the first step was only necessary. The limits of detection for the studied compounds were between 0.04-0.06 microg l(-1) for water samples and 0.80-1.40 microg l(-1) (or microg kg(-1)) in the case of foods derived from animals. Average recoveries for fortified samples at different concentration levels ranged between 82.9% and 98.2%, with relative standard deviations (RSDs) lower than 9%. The method showed the advantages of capillary HPLC for the detection of these widely applied antibiotics in different samples at very low concentration levels.
Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection
Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Chen, Yunfa
2018-01-01
Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance (RL), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage (VOUT) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous VOUT amplification process. PMID:29509659
Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection.
Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Han, Ning; Chen, Yunfa
2018-03-06
Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance ( R L ), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage ( V OUT ) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous V OUT amplification process.
NASA Astrophysics Data System (ADS)
Sandler, A.; Brenner, I. B.; Halicz, L.
1988-02-01
Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.
Trace metal release after minimally-invasive repair of pectus excavatum.
Fortmann, Caroline; Göen, Thomas; Krüger, Marcus; Ure, Benno M; Petersen, Claus; Kübler, Joachim F
2017-01-01
Several studies have shown a high incidence of metal allergy after minimally-invasive repair of pectus excavatum (MIRPE). We postulated that MIRPE is associated with a significant release of trace metal ions, possibly causing the allergic symptoms. We evaluated the concentration with chromium, cobalt and nickel in blood, urine and tissue in patients prior to MIRPE and in patients who underwent an explantation of the stainless-steel bar(s) after three years. Our study group consisted of 20 patients (mean age 19 years) who had bar explantation and our control group included 20 patients (mean age 16 years) prior to MIRPE. At the time of bar removal we detected significantly elevated concentrations of chromium and nickel in the tissue compared to patients prior to the procedure (p<0,001). We also found a significant increase in the levels of chromium in urine and nickel in blood in patients three years post MIRPE (p<0,001). Four patients temporarily developed symptoms of metal allergy, all had elevated metal values in blood and urine at explantation. Minimally-invasive repair of pectus excavatum can lead to a significant trace metal exposure.
Ferreira, Marisa; Monteiro, Silvia S; Torres, Jordi; Oliveira, Isabel; Sequeira, Marina; López, Alfredo; Vingada, José; Eira, Catarina
2016-03-01
The coastal preferences of harbour porpoise (Phocoena phocoena) intensify their exposure to human activities. The harbour porpoise Iberian population is presently very small and information about the threats it endures is vital for the conservation efforts that are being implemented to avoid local extinction. The present study explored the possible relation between the accumulation of trace elements by porpoises and their sex, body length, nutritional state, presence of parasites and gross pathologies. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and selenium (Se) were evaluated in 42 porpoises stranded in Portugal between 2005 and 2013. Considering European waters, porpoises stranded in Portugal present the highest Hg concentrations and the lowest Cd concentrations, which may reflect dietary preferences and the geographic availability of these pollutants. While no effect of sex on trace element concentrations was detected, there was a positive relationship between porpoise body length and the concentration of Cd, Hg and Pb. Animals in worse nutritional condition showed higher levels of Zn. Harbour porpoises with high parasite burdens showed lower levels of Zn and As in all analysed tissues and also lower levels of renal Ni, while those showing gross pathologies presented higher Zn and Hg levels. This is the first data on the relationship between trace elements and health-related variables in porpoises from southern European Atlantic waters, providing valuable baseline information about the contamination status of this vulnerable population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Organohalogen contaminants and trace metals in North-East Atlantic porbeagle shark (Lamna nasus).
Bendall, Victoria A; Barber, Jonathan L; Papachlimitzou, Alexandra; Bolam, Thi; Warford, Lee; Hetherington, Stuart J; Silva, Joana F; McCully, Sophy R; Losada, Sara; Maes, Thomas; Ellis, Jim R; Law, Robin J
2014-08-15
The North-East Atlantic porbeagle (Lamna nasus) population has declined dramatically over the last few decades and is currently classified as 'Critically Endangered'. As long-lived, apex predators, they may be vulnerable to bioaccumulation of contaminants. In this study organohalogen compounds and trace elements were analysed in 12 specimens caught as incidental bycatch in commercial gillnet fisheries in the Celtic Sea in 2011. Levels of organohalogen contaminants were low or undetectable (summed CB and BDE concentrations 0.04-0.85 mg kg(-1)wet weight). A notably high Cd concentration (7.2 mg kg(-1)wet weight) was observed in one mature male, whereas the range observed in the other samples was much lower (0.04-0.26 mg kg(-1)wet weight). Hg and Pb concentrations were detected only in single animals, at 0.34 and 0.08 mg kg(-1)wet weight, respectively. These contaminant levels were low in comparison to other published studies for shark species. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Uemoto, Michihisa; Makino, Masanori; Ota, Yuji; Sakaguchi, Hiromi; Shimizu, Yukari; Sato, Kazuhiro
2018-01-01
Minor and trace metals in aluminum and aluminum alloys have been determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) as an interlaboratory testing toward standardization. The trueness of the measured data was successfully investigated to improve the analytical protocols, using certified reference materials of aluminum. Their precision could also be evaluated, feasible to estimate the uncertainties separately. The accuracy (trueness and precision) of the data were finally in good agreement with the certified values and assigned uncertainties. Repeated measurements of aluminum solutions with different concentrations of the analytes revealed the relative standard deviations of the measurements with concentrations, thus enabling their limits of quantitation. They differed separately and also showed slightly higher values with an aluminum matrix than those without one. In addition, the upper limit of the detectable concentration of silicon with simple acid digestion was estimated to be 0.03 % in the mass fraction.
Paulson, A.J.
2005-01-01
The concentrations of 22 elements also were measured in the suspended matter of Raritan and Lower New York Bays and brackish water sources. The elemental composition of the suspended matter in surface and bottom waters was correlated with Fe concentrations, which ranged between 50 and 900 μmol g− 1. Statistical differences among the geographical regions were detected in the relationships of Ti, Ni, Co, As, and U with Fe, with particulate As being an especially strong geochemical indicator of Raritan River particles. The geochemical signatures of Lower New York Bay particles were similar to those of Upper New York Bay. The geochemical signatures of Raritan River particles were distinctly different than those of the Upper New York Bay, but the influence of Raritan River particles appeared to be limited to only inner Raritan Bay. This study illustrates the utility of trace elements for characterization of physical processes in complex estuaries.
Outerbridge, Mark E; O'Riordan, Ruth; Fort, Douglas J; Davenport, John
2016-01-15
Total petroleum hydrocarbons, PAH and various trace metal residues were extracted and analyzed from fresh whole diamondback terrapin (Malaclemys terrapin) eggs, whole brackish-water gastropods (terrapin prey) and benthic sediment from anchialine pond environments in Bermuda inhabited by terrapins. Gastropods and terrapin eggs showed higher concentrations of trace metals and organic contaminants than sediments. Conversely, PAHs were mostly found within the sediment and smaller amounts detected in gastropods and terrapin eggs. Results indicated that contaminants in prey were transferred to terrapin eggs, and that concentrations of several contaminants exceeded potentially toxic concentrations for aquatic vertebrates. Necropsy of unhatched eggs from nests that had yielded viable hatchlings showed significantly compromised embryonic development. Bermudian diamondback terrapins reside and feed in brackish wetland habitats characterized by widespread, multifactorial contamination. This study suggests that environmental contamination plays a role in the recorded low hatching success in terrapin eggs in Bermuda. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin
2015-05-01
Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.
NASA Astrophysics Data System (ADS)
Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun
2014-05-01
Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote environments. The concentrations, however, are not as high as determined in the Northern Hemisphere, suggesting a less drastic impact. That is also reflected in air quality data from the major cities.
Murray, L.C.; Keoughan, K.M.
1990-01-01
Unlined hazardous-waste disposal sites at the U.S. Marine Corps Air Station, Cherry Point, North Carolina, are located near drinking-water supply wells that tap the Castle Hayne aquifer. Hydrogeologic and water-quality data were collected near 2 of these sites from 12 monitoring wells installed in May through June 1987. Near the northernmost landfill site, differences in hydraulic head between the surficial, intermediate Yorktown, and Castle Hayne aquifers indicate a potential for migration of contaminants downward into the intermediate Yorktown and Castle Hayne aquifers. Movement would be impeded, however, by two confining units of silty sand to sandy clay that separate these aquifers. Geophysical and lithologic data show the upper confining unit to be approximately 26 feet thick near this landfill. Near the southernmost landfill, these confining units are thin and discontinuous in an area that coincides with the location of a buried paleochannel. Static water-level data collected in this area indicate that both the Castle Hayne and Yorktown aquifers discharge into the surficial aquifer, minimizing the potential for downward contaminant movement. Ground water in the surficial aquifer at both landfills moves laterally away from nearby drinking-water supply wells and toward Slocum Creek, a tributary of the Neuse River. Concentrations of organic compounds and trace inorganic constituents included on the U.S. Environmental Protection Agency?s list of priority pollutants were determined for water samples from the surficial and Yorktown aquifers. High concentrations of two purgeable organic compounds, trichloroethylene and 1,2-dichloroethene (4,600 and 4,800 micrograms per liter, respectively), were detected in water samples collected from the surficial aquifer near the southernmost landfill; much smaller concentrations of trichloroethylene and 1,2-dichloroethene were detected in samples from wells in the Yorktown aquifer (up to 16 and 12 micrograms per liter, respectively). These compounds may have migrated into the Yorktown aquifer from the surficial aquifer during periods of pumping from nearby drinking-water supply wells if the pumping were sufficient to reverse the hydraulic head between these aquifers. Only trace amounts of organic compounds were detected in the surficial and Yorktown aquifers near the northernmost landfill. Trace metals were detected in most of the wells sampled near both landfills, but none exceeded U.S. Environmental Protection Agency drinking-water standards except for iron and manganese. Highest concentrations of priority pollutant metals detected were for zinc (60 micrograms per liter) and chromium (36 micrograms per liter).
Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei
2016-06-15
An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.
Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey, 1984
Hochreiter, J.J.; Kozinski, Jane
1985-01-01
The surface water and surficial-bed material at seven stations on three streams in Logan Township, Gloucester County, New Jersey, were sampled in the fall of 1984. Samples of water were analyzed for volatile organic compounds, trace metals, and organochlorine and organophosphorous compounds. Surficial-bed material was analyzed for extractable trace metals and organochlorine compounds. Water samples from two closely spaced sampling locations along Raccoon Creek contained elevated concentrations of methylene chloride (455 and 1800 micrograms/L, respectively), a volatile organic solvent. Bed-material samples taken from Little Timber and Birch Creeks contained elevated levels of trace metals and organochlorine compounds, including polychlorinated biphenyls (PCB's). Contaminant concentrations in bed-material samples taken from Raccoon Creek were much lower than those found previously by the U.S. Geological Survey in 1980. Only a trace of PCB 's was detected in any bed material sample taken from Racoon Creek. Gas chromatographic flame-ionization detector scans, performed on solvent extracts of all water and sediment samples, were useful in characterizing the presence or absence of organic contaminants in those samples. Changes in the character of organic contamination along the reaches of two streams were apparent when the fingerprints of chromatograms representing upstream sites were compared to those representing downstream sites. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Matthews, M.; Wasserburg, G.J.; Chen, J.H.
1993-01-01
A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographic and trace element analyses on a suite of Pleistocene samples that had previously been studied from [sup 234]U, [sup 230]Th, and U-[sup 230]Th ages (Chen et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles aremore » highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial [delta][sup 234]U, are generally correlated (Chen et al., 1991). As all these diagenetic changes involve the recystallization and deposition of aragonite, the authors infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the [sup 234]U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U-[sup 230]Th dating. The basic problem of identifying a priori unaltered coral skeletons for [sup 230]Th dating is not yet resolved. 64 refs., 16 figs., 5 tabs.« less
Online, real-time detection of volatile emissions from plant tissue.
Harren, Frans J M; Cristescu, Simona M
2013-01-01
Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.
Online, real-time detection of volatile emissions from plant tissue
Harren, Frans J. M.; Cristescu, Simona M.
2013-01-01
Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants. PMID:23429357
Trace gas transport out of the Indian Summer Monsoon
NASA Astrophysics Data System (ADS)
Tomsche, Laura; Pozzer, Andrea; Zimmermann, Peter; Parchatka, Uwe; Fischer, Horst
2016-04-01
The trace gas transport out of the Indian summer monsoon was investigated during the aircraft campaign OMO (Oxidation Mechanism Observations) with the German research aircraft HALO (High Altitude and Long Range Research Aircraft) in July/August 2015. HALO was based at Paphos/Cyprus and also on Gan/Maledives. Flights took place over the Mediterranean Sea, the Arabian Peninsula and the Arabian Sea. In this work the focus is on the distribution of carbon monoxide (CO) and methane (CH4) in the upper troposphere. They were measured with the laser absorption spectrometer TRISTAR on board of HALO. During the Indian summer monsoon strong convection takes place over India and the Bay of Bengal. In this area the population is high accompanied by many emission sources e.g. wetlands and cultivation of rice. Consequently the boundary layer is polluted containing high concentrations of trace gases like methane and carbon monoxide. Due to vertical transport these polluted air masses are lifted to the upper troposphere. Here they circulate with the so called Asian monsoon anticyclone. In the upper troposphere polluted air masses lead to a change in the chemical composition thus influence the chemical processes. Furthermore the anticyclone spreads the polluted air masses over a larger area. Thus the outflow of the anticyclone in the upper troposphere leads to higher concentrations of trace gases over the Arabian Sea, the Arabian Peninsula and also over the eastern part of North Africa and the eastern part of the Mediterranean Sea. During OMO higher concentrations of methane and carbon monoxide were detected at altitudes between 11km and 15km. The highest measured concentrations of carbon monoxide and methane were observed over Oman. The CO concentration in the outflow of the monsoon exceeds background levels by 10-15ppb. However the enhancement in the concentration is not obviously connected to the monsoon due to the natural variability in the troposphere. The enhancement in the methane concentration (30-40ppb) is more obviously connected to the monsoon because it is much higher than the natural variability. Consequently methane is a very good tracer for the monsoon influenced air masses. Beside flights into the outflow of the Indian summer monsoon, there were also measurements of background concentrations in the upper troposphere in air not influenced by the monsoon. Profiles have shown that the high concentrations of trace gases are only observed in the upper troposphere. The high concentrations in the upper troposphere cannot be explained by vertical transport form local ground sources.
Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago
2017-07-01
This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.
Chelatable trace zinc causes low, irreproducible KDAC8 activity.
Toro, Tasha B; Edenfield, Samantha A; Hylton, Brandon J; Watt, Terry J
2018-01-01
Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data. Copyright © 2017 Elsevier Inc. All rights reserved.
Risk assessment is a crucial component of the site remediation decision-making process. Some current EPA methods do not have detection limits low enough for risk assessment of many VOCs (e.g., EPA Region 3 Risk Based Concentration levels, EPA Region 9 Preliminary Remediation Goa...
Chemoresistive sensors based on multi-walled carbon nanotubes (MWCNTs)functionalized with SnO2 nanocrystals have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO2 nanocrystals act as active sites for the chem...
Degradation of Nitroguanidine in Soils
1985-01-01
columns. Nitroguanidine was biodegraded if sufficient supplemental carbon was provided in the wastewater. The primary product formed during the... biodegradation of nitroguanidine in soil was ammonia. Only trace concentration of nitrosoguanidine were detected and no significant levels of other organic...low cost treatment option for these wastewaters. In addition, preliminary work was performed to evaluate the biodegradability of guanidine nitrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.
This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less
Ingle, Mary E; Bloom, Michael S; Parsons, Patrick J; Steuerwald, Amy J; Kruger, Pamela; Fujimoto, Victor Y
2017-02-01
A hypothesis-generating pilot study exploring associations between essential trace elements measured in follicular fluid (FF) and urine and in vitro fertilization (IVF) endpoints. We recruited 58 women undergoing IVF between 2007 and 2008, and measured cobalt, chromium, copper, manganese, molybdenum, and zinc in FF (n = 46) and urine (n = 45) by inductively coupled plasma mass spectrometry (ICP-MS). We used multivariable regression models to assess the impact of FF and urine trace elements on IVF outcomes, adjusted for age, body mass index, race, and cigarette smoking. Trace elements were mostly present at lower concentrations in FF than in urine. The average number of oocytes retrieved was positively associated with higher urine cobalt, chromium, copper, and molybdenum concentrations. FF chromium and manganese were negatively associated with the proportion of mature oocytes, yet urine manganese had a positive association. FF zinc was inversely associated with average oocyte fertilization. Urine trace elements were significant positive predictors for the total number of embryos generated. FF copper predicted lower embryo fragmentation while urine copper was associated with higher embryo cell number and urine manganese with higher embryo fragmentation. No associations were detected for implantation, pregnancy, or live birth. Our results suggest the importance of trace elements in both FF and urine for intermediate, although not necessarily clinical, IVF endpoints. The results differed using FF or urine biomarkers of exposure, which may have implications for the design of clinical and epidemiologic investigations. These initial findings will form the basis of a more definitive future study.
Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.
2011-01-01
Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.
Tsutsumi, T; Nagata, S; Hasegawa, A; Ueno, Y
2000-07-01
Trace amounts of microcystins (MCs) in drinking water should be monitored because of their potential hazard for human health as an environmental tumor promoter. We describe here a new clean-up tool with immunoaffinity column (IAC) for determination of trace amounts of MCs (from pg to microg/litre) in tap water. The water samples were concentrated with IAC clean-up and MCs levels were determined by HPLC with UV detection or enzyme-linked immunosorbent assay (ELISA). In the combination with HPLC analysis, mean recovery of microcystin-LR (MCLR),-RR and-YR spiked to tap water were 91.8%, 77.3% and 86.4%, respectively, in the range 2.5-100 microg/litre. The chromatogram of MCs-spiked tap water sample cleaned up with IAC showed effective elimination of the impurities compared to that with octadecyl silanized cartridge, which had been cleaned up with a conventional method. Also, in the combination with highly sensitive ELISA, mean recovery of MCLR spiked to tap water was 80% in the range 0.1-1000 ng/litre. The combined methods developed here can detect pg to microg/litre of MCs in tap water. The overall results indicated that IAC will be suitable as a clean-up tool for trace amounts of MCs in tap water.
Aydın Urucu, Oya; Dönmez, Şeyda; Kök Yetimoğlu, Ece
2017-01-01
A novel method was developed for determination of trace amounts of lead in water and food samples. Solidified floating organic drop microextraction was used to preconcentrate the lead ion. After the analyte was complexed with 1-(2-pyridylazo)-2-naphthol, undecanol and acetonitrile were added as extraction and dispersive solvent, respectively. Variables such as pH, volumes of extraction and dispersive solvents, and concentration of chelating agent were optimized. Under the optimum conditions, the detection limit of Pb (II) was determined as 0.042 µ g L -1 with an enrichment factor of 300. The relative standard deviation is <10%. Accuracy of the developed procedure was evaluated by the analysis of certified reference material of human hair (NCS DC 73347) and wastewater (SPS-WW2) with satisfactory results. The developed procedure was then successfully applied to biscuit and water samples for detection of Pb (II) ions.
Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.
Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei
2017-06-01
We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68 kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.
Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2007-08
Oden, Jeannette H.; Oden, Timothy D.; Szabo, Zoltan
2010-01-01
In the summers of 2007 and 2008, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, completed an initial reconnaissance-level survey of naturally occurring contaminants (arsenic, other selected trace elements, and radionuclides) in water from municipal supply wells in the Houston area. The purpose of this reconnaissance-level survey was to characterize source-water quality prior to drinking water treatment. Water-quality samples were collected from 28 municipal supply wells in the Houston area completed in the Evangeline aquifer, Chicot aquifer, or both. This initial survey is part of ongoing research to determine concentrations, spatial extent, and associated geochemical conditions that might be conducive for mobility and transport of these constituents in the Gulf Coast aquifer system in the Houston area. Samples were analyzed for major ions (calcium, magnesium, potassium, sodium, bromide, chloride, fluoride, silica, and sulfate), selected chemically related properties (residue on evaporation [dissolved solids] and chemical oxygen demand), dissolved organic carbon, arsenic species (arsenate [As(V)], arsenite [As(III)], dimethylarsinate [DMA], and monomethylarsonate [MMA]), other trace elements (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc), and selected radionuclides (gross alpha- and beta-particle activity [at 72 hours and 30 days], carbon-14, radium isotopes [radium-226 and radium-228], radon-222, tritium, and uranium). Field measurements were made of selected physicochemical (relating to both physical and chemical) properties (oxidation-reduction potential, turbidity, dissolved oxygen concentration, pH, specific conductance, water temperature, and alkalinity) and unfiltered sulfides. Dissolved organic carbon and chemical oxygen demand are presented but not discussed in the report. Physicochemical properties, major ions, and trace elements varied considerably. The pH ranged from 7.2 to 8.1 (median 7.6); specific conductance ranged from 314 to 856 microsiemens per centimeter at 25 degrees Celsius, with a median of 517 microsiemens per centimeter; and alkalinity ranged from 126 to 324 milligrams per liter as calcium carbonate (median 167 milligrams per liter). The range in oxidation-reduction potential was large, from -212 to 244 millivolts, with a median of -84.6 millivolts. The largest ranges in concentration for filtered major ion constituents were obtained for cations sodium and calcium and for anions chloride and bicarbonate (bicarbonate was calculated from the measured alkalinity). Filtered arsenic was detected in all 28 samples, ranging from 0.58 to 15.3 micrograms per liter (median 2.5 micrograms per liter), and exceeded the maximum contaminant level established by the U.S. Environmental Protection Agency of 10 micrograms per liter in 2 of the 28 samples. As(III) was the most frequently detected arsenic specie. As(III) concentrations ranged from less than 0.6 to 14.9 micrograms arsenic per liter. The range in concentrations for the arsenic species As(V) was from less than 0.8 to 3.3 micrograms arsenic per liter. Barium, boron, lithium, and strontium were detected in quantifiable (equal to or greater than the laboratory reporting level) concentrations in all samples and molybdenum in all but one sample. Filtered iron, manganese, nickel, and vanadium were each detected in at least 18 of the 28 samples. All other selected trace elements were each detected in 16 or fewer samples. Radionuclides were detected in most samples. The gross alpha-particle activities at 30 days and 72 hours ranged from R-0.94 to 15.5 and R-1.1 to 17.2 picocuries per liter, respectively ('R' indicates nondetected result less than the sample-specific critical level). The combined radium (radium-226 plus radium-228) concentrations ranged from an estimat
Advanced selective non-invasive ketone body detection sensors based on new ionophores
NASA Astrophysics Data System (ADS)
Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.
2014-12-01
New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.
Priest, Sherlyn; McSwain, Kristen Bukowski
2002-01-01
Fort Gordon military installation, a U.S. Department of the Army facility, is located in east-central Georgia southwest of Augusta. The military base operates a three-phase unlined landfill?Gibson Road Landfill? to store a variety of wastes. Phases I and II stored only household wastes, and these phases were discontinued during the mid?1990s. Fort Gordon currently (1999) operates Phase III of the landfill that stores only construction and demolition debris. Water-quality monitoring detected selected trace elements and organic compounds exceeding the maximum contaminant levels of the U.S. Environmental Protection Agency, National Primary Drinking Water Standards. The selected trace elements and organic compounds detected showed that contamination of ground water had occurred in the vicinity of the landfill. In 1999, the U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, began an assessment of the hydrogeology and water quality in shallow ground water in the vicinity of the Gibson Road Landfill to delineate the extent of a ground-water contamination plume in the vicinity of the landfill. Hydrogeologic units in the Augusta area include the Upper Three Runs aquifer, the Gordon aquifer, the Millers Pond aquifer, and the Dublin aquifer. Only the shallowest aquifer, Upper Three Runs, was penetrated during this study. The Upper Three Runs aquifer is composed of sediments of the Barnwell Group. Mostly, these sediments are highly permeable fine to medium, well-sorted sand with lenses of clay. Ground-water flow is from northwest to southeast and generally was unaffected by seasonal variation during the period of study (June?November 1999). Water-table altitudes in the landfill area for the study period ranged from 394 feet (ft) to 445 ft above sea level. Ground-water samples analyzed for organic compounds and selected trace elements by a U. S. Environmental Protection Agency (USEPA) approved statistical test revealed that increases in contaminant concentrations above the detection limits had occurred during March and September 1999 in five wells?one of which is located upgradient. These organic compounds, respective increases in concentration, and the wells in which they were detected are: methylene chloride?wells 28AA29 (24 parts per billion [ppb] and 46 ppb), 28AA30 (86 ppb and 130 ppb), and 28AA31 (240 ppb and 140 ppb); 1,1-dichloroethene?well 28AA31 (10 ppb and 5.7 ppb); 1,1-dichloroethane? wells 28AA30 (81 ppb and 140 ppb) and 28AA31 (200 ppb and 130 ppb); and 1,1,1-trichloroethane?well 28AA31 (61 ppb and 37 ppb). Although in some wells the concentration decreased from March to September, the median concentrations were still higher in certain groups. Trace element compounds, their respective increases in concentration, and the wells in which they were detected are: chromium?well 28AA30 (1,190 ppb), vanadium?well 28AA30 (104 ppb); barium?wells 28AA27 (42.2 ppb) and 28AA32 (140 ppb), and beryllium?well 28AA30 (6.3 ppb). These increases occurred in September, with the exception of chromium in well 28AA30, which occurred in March. Although a statistical test indicated increases in contaminant concentrations had occurred, water from wells 28AA27, 28AA30, 28AA31, and 28AA32 had a decrease in contaminant concentrations from February 1998 to September 1999. U.S. Environmental Protection Agency, National Primary Drinking Water Regulations Maximum Contaminant Levels (PMCLs), formerly (MCLs) were exceeded in water from four wells for organic compounds and in five wells by selected trace elements during the February 1998, March 1999, and September 1999 sampling periods. The concentrations for the following organic compounds and the associated wells are: methylene chloride (PMCL is 5 ppb)?wells 28AA27 (February, 37 ppb; March, 24 ppb; and September, 9.6 ppb), 28AA29 (February, 20 ppb; March, 24 ppb; and September, 46 ppb), 28AA
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Zhan, Da; Wang, Ke; Hang, Weiwei
2018-01-01
A micro-scale gas sensor based on mass-sensitive film bulk acoustic resonator is demonstrated for the detection of trace formaldehyde at room temperature. The composites mixed with multiwalled carbon nanotubes and polyethyleneimine (MWNTs-PEI) were coated on the resonator surface as the sensitive layer to specifically absorb formaldehyde molecules using a facile spray process. The influence of spraying processes on the formaldehyde sensing properties were investigated. Different response behaviors were determined by both the chemical absorption between formaldehyde molecules and the amine functional groups on PEI and the increase of absorption surface came from the nanostructure. The combination of high frequency of the film bulk acoustic resonator (~4.3 GHz) and the specific absorbability of MWNTs-PEI composites provided a high sensitivity in the detections of trace formaldehyde. The obtained ultra-low limit of detection was as low as 60 ppb with linear response, quick response/recovery time, good reproducibility and selectivity. The proposed sensor shows potential as a portable and convenient gas-sensing system for monitoring the low-level concentration of indoor air pollution.
Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.
2013-01-01
The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.
Lee, L.; Helsel, D.
2005-01-01
Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.
[Trace detection of ammonia at 1.531 microm].
Jia, Hui; Guo, Xiao-Yong; Cai, Ting-Dong; Zhao, Wei-Xiong; Wang, Lei; Tan, Tu; Zhang, Wei-Jun; Gao, Xiao-Ming
2009-12-01
A compact instrument based on the off-axis integrated-cavity output spectroscopy (ICOS) technology was developed for sensitive measurements of gas mixing ratios (ammonia in air) at room temperature by using fiber-coupled distributed feedback (DFB) diode laser operating at 1.531 microm. The absorption line of ammonia at 6 528.764 cm(-1) was chosen for trace detection. The mirrors' effective reflectivity R2 of 0.996 9 was first calibrated by carbon dioxide under this condition, and the cavity 35.8 cm in length as an absorption cell could yield an optical path of presumably 115.46 m. As a result, a minimum detectable concentration of approximately 2.66 ppmv (S/N-3) at the total pressure of 100 torr was obtained. Then the lock-in amplifier was added in the system to acquire the second harmonic signal by combination of wavelength modulation technology, which could better suppress background noise and improve the signal-to-noise ratio, and a detection limit of 0.293 ppmv (S/N-3) was achieved eventually. This work demonstrated the potential of the system for a range of atmospheric species sensing in the future.
Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang
2016-01-01
It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071
NASA Astrophysics Data System (ADS)
Denis, Carole M. M.; Demouchy, Sylvie; Alard, Olivier
2018-03-01
Experimental studies have shown that hydrogen embedded as a trace element in mantle mineral structures affects the physical properties of mantle minerals and rocks. Nevertheless, hydrogen concentrations in mantle minerals are much lower than predicted by hydrogen solubilities obtained experimentally at high pressure and temperature. Here, we report textural analyses and major and trace element concentrations (including hydrogen) in upper mantle minerals from a spinel-bearing composite xenolith (dunite and pyroxenite) transported by silica-undersaturated mafic alkaline lavas from the San Carlos volcanic field (Arizona, USA). Our results suggest that the composite xenolith results from the percolation-reaction of a basaltic liquid within dunite channels, and is equilibrated with respect to trace elements. Equilibrium temperatures range between 1011 and 1023 °C. Hydrogen concentrations (expressed in ppm H2O by weight) obtained from unpolarized and polarized Fourier transform infrared spectroscopy are low, with average values <2 ppm H2O, 24 ppm H2O, and 53 ppm H2O for olivine, orthopyroxene, and clinopyroxene, respectively; hydrogen concentrations in olivine are below the detection limit. These low hydrogen concentrations are consistent with depletion by high melt-rock ratio interactions. Clinopyroxene hydrogen concentrations are homogeneous, whereas polarized infrared profile measurements across single-crystals of orthopyroxene reveal hydrogen-depleted rims, which are interpreted as the result of dehydration by ionic diffusion, possibly triggered by melt-rock interactions. We conclude that pyroxenes, like olivine, are unreliable hydrogen proxies, and that the remaining hydrogen concentrations observed in peridotites might only represent the 'tip of the iceberg' of the water stored in the Earth's upper mantle.
The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba
Mayzel, Boaz; Aizenberg, Joanna; Ilan, Micha
2014-01-01
Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat's coral reefs. PMID:24759635
NASA Astrophysics Data System (ADS)
Yong, Cheng
2018-03-01
The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
In 1994, the NASQAN (National Stream Quality Accounting Network) programme was redesigned as a flux-based water-quality monitoring network for the Mississippi, Columbia, Colorado, and Rio Grande Basins. As the new programme represented a departure from the original, new sampling, processing, analytical, and data handling procedures had to be selected/developed to provide data on discharge, suspended sediment concentration, and the concentrations of suspended sediment and dissolved trace elements. Annual suspended sediment fluxes were estimated by summing daily instantaneous fluxes based on predicted suspended sediment concentrations derived from discharge-based log-log regression (rating-curve) models. The models were developed using both historical and current site-specific discharge and suspended sediment concentrations. Errors using this approach typically are less than ?? 10% for the 3-year reporting period; however, the magnitude of the errors increases substantially for temporal spans shorter than 1 year. Total, rather than total-recoverable, suspended sediment-associated trace element concentrations were determined by direct analysis of material dewatered from large-volume whole-water samples. Site-specific intra- and inter-annual suspended sediment-associated chemical variations were less (typically by no more than a factor of two) than those for either discharge or suspended sediment concentrations (usually more than 10-fold). The concentrations, hence the annual fluxes, for suspended sediment-associated phosphorus and organic carbon, determined by direct analyses, were higher than those determined using a more traditional paired, whole-water/filtered-water approach (by factors ranging from 1.5- to 10-fold). This may be important for such issues as eutrophication and coastal productivity. Filtered water-associated (dissolved) trace element concentrations were markedly lower than those determined during the historical NASQAN programme; many were below their respective detection limits. This resulted from the use of clean sampling, processing, and analytical protocols. Hence, the fluxes for filtered water-associated (dissolved) Ag, Pb, Co, V, Be, Sb, and Se, as well as the total (filtered water plus suspended sediment-associated) fluxes for these constituents, could not be estimated.
Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L
2018-07-15
Previously to the modernization of the municipal solid waste incinerator (MSWI) of Campdorà (Girona, Catalonia, Spain) two sampling campaigns (2015 and 2016) were conducted. In each campaign, 8 soil and 4 air samples (PM 10 and total particle phase and gas phase) were collected. The levels of As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Tl and V, and PCDD/Fs were analysed at different distances and wind directions around the MSWI. Environmental levels of trace elements and PCDD/Fs were used to assess exposure and health risks (carcinogenic and non-carcinogenic) for the population living around the facility. In soils, no significant differences were observed for trace elements and PCDD/Fs between both campaigns. In air, significant higher levels of As, Cd, Co, Mn, Ni, Pb, Tl and V were detected in 2016. Regarding soil levels, only Cd (distances) and As, Cu, Mn, and Ni (wind directions) showed significant differences. No differences were noted in the concentrations of trace elements and PCDD/Fs in air levels with respect to distances and directions to the MSWI. No differences were registered in air levels (elements and PCDD/Fs) between points influenced by MSWI emissions and background point. However some differences in congener profile were noted regarding from where back-trajectories come from (HYSPLIT model results), pointing some influence of Barcelona metropolitan area. The concentrations of trace elements and PCDD/Fs were similar -or even lower- than those reported around other MSWIs in Catalonia and various countries. Non-carcinogenic risks were below the safety limit (HQ<1). In turn, carcinogenic risks due to exposure to trace elements and PCDD/Fs were in acceptable ranges, according to national and international standard regulations. Copyright © 2018 Elsevier B.V. All rights reserved.
Biomonitor of Environmental Stress: Coral Trace Metal Analysis
NASA Astrophysics Data System (ADS)
Grumet, N.; Hughen, K.
2006-12-01
Tropical reef corals are extremely sensitive to changes in environmental conditions and, as a result of environmental degradation and global climate change, coral reefs around the globe are severely threatened. Increased human population and development in tropical regions is leading to higher turbidity and silt loading from terrestrial runoff, increased pesticides and nutrients from agricultural land-use and sewage, and the release of toxic trace metals to coastal waters from industrial pollution. The uptake of these metals and nutrients within the coral skeletal aragonite is a sensitive biomonitor of environmental stresses on coral health. We analyzed 18 trace metals from the surface of coral skeletons collected in Bermuda, Indonesia and Belize to assess a range of threats to coral reef health - including climate change, agricultural runoff and pesticides, and coastal development and tourism. This surface sample network also includes samples representing 4 different coral species. Trace metal analysis was performed on an inductively coupled plasma mass spectrometer (ICP-MS) to a high degree of accuracy and precision at extremely low (ppb) concentrations using a protocol we developed for samples less than 2 mg. Proper cleaning techniques were employed to minimize blank level concentrations for ultra-trace metal ICP-MS solution analysis. However, Zn/Ca and Ni/Ca concentrations remain below analytical detection limits. Initial results indicate that sea surface temperature proxies (e.g., Sr/Ca, B/Ca and Mg/Ca) display similar ratios between the different sites, whereas those metals associated with anthropogenic activities, such as Co, Pb and Cu, are site-specific and are linked to individual environmental stressors. Results from this study will be applied to down core trace metal records in the future. In doing so, we aim to understand the impacts of compounding environmental stresses on coral health, and to identify regional threshold values beyond which corals become susceptible to disease, bleaching and death.
Optical sensing: recognition elements and devices
NASA Astrophysics Data System (ADS)
Gauglitz, Guenter G.
2012-09-01
The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.
Water-quality trend analysis and sampling design for streams in North Dakota, 1971-2000
Vecchia, Aldo V.
2003-01-01
This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historical water-quality trends in selected dissolved major ions, nutrients, and dissolved trace metals for 10 streams in southwestern and eastern North Dakota and to develop an efficient sampling design to monitor future water-quality trends. A time-series model for daily streamflow and constituent concentration was used to identify significant concentration trends, separate natural hydroclimatic variability in concentration from variability that could have resulted from anthropogenic causes, and evaluate various sampling designs to monitor future water-quality trends. The interannual variability in concentration as a result of variability in streamflow, referred to as the annual concentration anomaly, generally was high for all constituents and streams used in the trend analysis and was particularly sensitive to the severe drought that occurred in the late 1980's and the very wet period that began in 1993 and has persisted to the present (2002). Although climatic conditions were similar across North Dakota during the trend-analysis period (1971-2000), significant differences occurred in the annual concentration anomalies from constituent to constituent and location to location, especially during the drought and the wet period. Numerous trends were detected in the historical constituent concentrations after the annual concentration anomalies were removed. The trends within each of the constituent groups (major ions, nutrients, and trace metals) showed general agreement among the streams. For most locations, the largest dissolved major-ion concentrations occurred during the late 1970's and concentrations in the mid- to late 1990's were smaller than concentrations during the late 1970's. However, the largest concentrations for three of the Missouri River tributaries and one of the Red River of the North tributaries occurred during the mid- to late 1990's. Concentration trends for total ammonia plus organic nitrogen showed close agreement among the streams for which that constituent was evaluated. The largest concentrations occurred during the early 1980's, and the smallest concentrations occurred during the early 1990's. Nutrient data were not available for the early 1970's or late 1990's. Although a detailed analysis of the causes of the trends was beyond the scope of this report, a preliminary analysis of cropland, livestock-inventory, and oil-production data for 1971-2000 indicated the concentration trends may be related to the livestock-inventory and oil-production activities in the basins. Dissolved iron and manganese concentrations for the southwestern North Dakota streams generally remained stable during 1971-2000. However, many of the recorded concentrations for those streams were less than the detection limit, and trends that were masked by censoring may have occurred. Several significant trends were detected in dissolved iron and manganese concentrations for the eastern North Dakota streams. Concentrations for those streams either remained stable or increased during most of the 1970's and then decreased rapidly for about 2 years beginning in the late 1970's. The concentrations were relatively stable from the early 1980's to 2000 except at two locations where dissolved iron concentrations increased during the early 1990's. The most efficient overall sampling designs for the detection of annual trends (that is, trends that occur uniformly during the entire year) consisted of balanced designs in which the sampling dates and the number of samples collected remained fixed from year to year and in which the samples were collected throughout the year rather than in a short timespan. The best overall design for the detection of annual trends consisted of three samples per year, with samples collected near the beginning of December, April, and August. That design had acceptable sensitivity for the detection of trends in most constituents at all locations. Little improvement in sensitivity was achieved by collecting more than three samples per year.The sampling designs that were first evaluated for annual trends also were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three seasons--April through August, August through December, and December through April. Design results indicated that an average of one extra sample per station per year resulted in an efficient design for detecting seasonal trends. However, allocation of the extra samples varied depending on the station, month, and constituent group (major ions, nutrients, and trace metals).
Heavy metals in hair of wild canids from the Brazilian Cerrado.
Curi, Nelson Henrique de Almeida; Brait, Carlos Henrique Hoff; Antoniosi Filho, Nelson Roberto; Talamoni, Sônia Aparecida
2012-06-01
In this study, we aimed to assess whether free-ranging wild canids are exposed to heavy metals in one of the most developed and populated regions of Brazil. Hair of 26 wild canids (maned wolves Chrysocyon brachyurus, crab-eating foxes Cerdocyon thous, and hoary foxes Lycalopex vetulus) from the Cerrado biome in Southeast Brazil were analyzed by spectrophotometry to detect cadmium, chromium, and lead, and also the essential copper, iron, manganese, and zinc traces. All samples showed traces of copper, iron, manganese, and zinc. Non-essential lead was detected in 57% (2.35 ± 0.99 mg/kg), and chromium in 88% (2.98 ± 1.56 mg/kg) of samples. Cadmium traces (detection limit 0.8 mg/kg) were not found. Crab-eating foxes had more copper, iron, and manganese in hair than maned wolves. Correlations among element levels differed between maned wolves and crab-eating foxes. Concentrations of chromium and lead were outstandingly higher than in wild canids from other areas. Addressing the causes of such levels and the impacts of the heavy metal pollution in Neotropical ecosystems is urgent for animal health and conservation purposes. We argue that heavy metal pollution should be considered as dangerous threats to wildlife health in Brazil and recommend hair sampling as a biomonitoring tool for heavy metals in Neotropical terrestrial mammals.
Abraham, Michael H.
2010-01-01
We have measured concentration detection (i.e., psychometric) functions to determine the odor detectability of homologous aliphatic aldehydes (propanal, butanal, hexanal, octanal, and nonanal) and helional. Subjects (16 ≤ n ≤ 18) used a 3-alternative forced-choice procedure against carbon-filtered air (blanks), under an ascending concentration approach. Generation, delivery, and control of each vapor were achieved via an 8-station vapor delivery device. Gas chromatography served to quantify the concentrations presented. Group and individual functions were modeled by a sigmoid (logistic) equation. Odor detection thresholds (ODTs) were defined as the concentration producing a detectability (P) halfway (P = 0.5) between chance (P = 0.0) and perfect detection (P = 1.0). ODTs decreased with carbon chain length: 2.0, 0.46, 0.33, and 0.17 ppb, respectively, from propanal to octanal, but the threshold increased for nonanal (0.53 ppb), revealing maximum sensitivity for the 8-carbon member. The strong olfactory receptor (OR) ligands octanal and helional (0.14 ppb) showed the lowest thresholds. ODTs fell at the lower end of previously reported values. Interindividual variability (ODT ratios) amounted to a factor ranging from 10 to 50, lower than typically reported, and was highest for octanal and hexanal. The behavioral dose–response functions emerge at concentrations 2–5 orders of magnitude lower than those required for functions tracing the activation of specific human ORs by the same aldehydes in cell/molecular studies, after all functions were expressed as vapor concentrations. PMID:20190010
Trace-element concentrations in streambed sediment across the conterminous United States
Rice, Karen C.
1999-01-01
Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined: arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.
Mahler, Barbara J.; Van Metre, Peter C.; Wilson, Jennifer T.
2004-01-01
Samples of creek bed sediment collected near seal-coated parking lots in Austin, Texas, by the City of Austin during 2001–02 had unusually elevated concentrations of polycyclic aromatic hydrocarbons (PAHs). To investigate the possibility that PAHs from seal-coated parking lots might be transported to urban creeks, the U.S. Geological Survey, in cooperation with the City of Austin, sampled runoff and scrapings from four test plots and 13 urban parking lots. The surfaces sampled comprise coal-tar-emulsion-sealed, asphalt-emulsion-sealed, unsealed asphalt, and unsealed concrete. Particulates and filtered water in runoff and surface scrapings were analyzed for PAHs. In addition, particulates in runoff were analyzed for major and trace elements. Samples of all three media from coal-tar-sealed parking lots had concentrations of PAHs higher than those from any other types of surface. The mean total PAH concentration in particulates in runoff from parking lots in use were 3,500,000, 620,000, and 54,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed (asphalt and concrete combined) lots, respectively. The probable effect concentration sediment quality guideline is 22,800 micrograms per kilogram. The mean total PAH (sum of detected PAHs) concentration in filtered water from parking lots in use was 8.6 micrograms per liter for coal-tar-sealed lots; the one sample analyzed from an asphalt-sealed lot had a concentration of 5.1 micrograms per liter and the one sample analyzed from an unsealed asphalt lot was 0.24 microgram per liter. The mean total PAH concentration in scrapings was 23,000,000, 820,000, and 14,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed asphalt lots, respectively. Concentrations of lead and zinc in particulates in runoff frequently exceeded the probable effect concentrations, but trace element concentrations showed no consistent variation with parking lot surface type.
D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E
1999-09-01
Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.
Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su
2014-09-01
This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal
2009-10-15
Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.
Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.
Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta
2018-02-24
Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.
Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019
Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo
2017-04-01
Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10-15 years with annual resolution. In the present study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the "a posteriori" reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellin, M. J.; Veryovkin, I. V.; Levine, J.
2010-01-01
There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.
Determination of trace arsenic on hanging copper amalgam drop electrode.
Piech, Robert; Baś, Bogusław; Niewiara, Ewa; Kubiak, Władysław W
2007-04-30
Hanging copper amalgam drop electrode has been applied for trace determination of arsenic by cathodic stripping analysis. Detection limit for As(III) as low as 0.33nM (0.02mug/L) at deposition time (240s) could be obtained. For seven successive determinations of As(III) at concentration of 5nM relative standard deviation was 2.5% (n=7). Interferences from selected metals and surfactant substances were examined. Absence of copper ions in sample solution causes easier optimization and makes method less vulnerable on contamination. The developed method was validated by analysis of certified reference materials (CRMs) and applied to arsenic determinations in natural water samples.
A search for biogenic trace gases in the atmosphere of Mars
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Mckay, Christopher P.
1989-01-01
The detection of certain trace gases in the atmosphere of Mars may serve as a possible indicator of microbial life on the surface of Mars. Candidate biogenic gases include methane CH4, ammonia NH3, nitrous oxide N2O, and several reduced sulfur species. Chemical thermodynamic equilibrium and photochemical calculations preclude the presence of these gases in any measurable concentrations in the atmosphere of Mars in the absence of biogenic production. A search for these gases utilizing either high resolution (spectral and spatial) spectroscopy from a Mars orbiter, such as the Observer, and or in situ measurements from a Mars lander or rover, is proposed.
Quality of ground water in the Puget sound region, Washington, 1981
Turney, G.L.
1986-01-01
Groundwater from more than 100 sites in the Puget Sound region, Washington, was sampled and analyzed in 1981 for pH, specific conductance, and concentrations of fecal coliform bacteria, major ions, and dissolved iron, manganese, and nitrate. 20% of the samples were analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were calcium bicarbonate and calcium-magnesium bicarbonate. Some wells in San Juan and Island Counties contained sodium chloride as a result of seawater intrusion. Dissolved solids concentrations were generally < 150 mg/L. Iron concentrations > 300 micrograms/L in 14% of all samples. Manganese concentrations > 50 micrograms/L in 40% of all samples. Trace-metal concentrations were generally < 10 mg/L , except for barium, copper, lead, and zinc. Nitrate concentrations were < 1.0 mg/L in water for over 75% of the sites. Concentrations > 1.0 mg/L in samples from Skagit, Whatcom , and Pierce Counties, were probably due to agricultural activities or septic tanks. Fecal coliform bacteria were detected in isolated instances. EPA drinking water regulations were exceeded only in isolated instances, except for widespread excessive iron and manganese concentrations. The historical data for the region were also evaluated for the same constituents. There are quantitative differences between historical and 1981 data, but they may be due to inconsistencies in data collection and analytical methods. (Author 's abstract)
Peng, Chuyu; He, Man; Chen, Beibei; Huang, Lijin; Hu, Bin
2017-11-20
A novel magnetic sulfur-doped porous carbon (MSPC) was fabricated via a simple one-step carbonization of a mixture of sucrose, basic magnesium sulfate whiskers and Fe 3 O 4 @SiO 2 nanoparticles. Due to the high S content, the prepared MSPC possessed high adsorption capacity for Hg 2+ (343 mg g -1 ) with good selectivity. Based on this, a method coupling magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of trace Hg 2+ in environmental water samples. Various parameters such as pH, desorption solvent and its concentration, desorption volume and time, sample volume, and adsorption time that affect the determination have been optimized. Under the optimal conditions, a high enrichment factor of 100-fold was obtained, the limit of detection (LOD) was found to be 0.52 pg mL -1 with a relative standard deviation (c = 10 pg mL -1 , n = 7) of 7.1%, and a good linearity was obtained within the concentration range of 2-5000 pg mL -1 for Hg 2+ . Besides, the proposed method has very fast adsorption/desorption kinetics, target Hg 2+ could be rapidly adsorbed on the prepared MSPC in 2 min and desorbed from the MSPC in 2 min with the assistance of a permanent magnet. Therefore, the proposed method of MSPE-ICP-MS exhibits good application potential in the determination of trace Hg 2+ in environmental water samples.
Nong, Chunyan; Niu, Zongliang; Li, Pengyao; Wang, Chunping; Li, Wanyu; Wen, Yingying
2017-04-15
Dual-cloud point extraction (dCPE) was successfully developed for simultaneous extraction of trace sulfonamides (SAs) including sulfamerazine (SMZ), sulfadoxin (SDX), sulfathiazole (STZ) in urine and water samples. Several parameters affecting the extraction were optimized, such as sample pH, concentration of Triton X-114, extraction temperature and time, centrifugation rate and time, back-extraction solution pH, back-extraction temperature and time, back-extraction centrifugation rate and time. High performance liquid chromatography (HPLC) was applied for the SAs analysis. Under the optimum extraction and detection conditions, successful separation of the SAs was achieved within 9min, and excellent analytical performances were attained. Good linear relationships (R 2 ≥0.9990) between peak area and concentration for SMZ and STZ were optimized from 0.02 to 10μg/mL, for SDX from 0.01 to 10μg/mL. Detection limits of 3.0-6.2ng/mL were achieved. Satisfactory recoveries ranging from 85 to 108% were determined with urine, lake and tap water spiked at 0.2, 0.5 and 1μg/mL, respectively, with relative standard deviations (RSDs, n=6) of 1.5-7.7%. This method was demonstrated to be convenient, rapid, cost-effective and environmentally benign, and could be used as an alternative tool to existing methods for analysing trace residues of SAs in urine and water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Munn, M.D.; Cox, S.E.; Dean, C.J.
1995-01-01
Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.
Lambing, J.H.
1987-01-01
A sampling program was conducted at six stream sites. The purpose of the study was to collect baseline data on concentrations of suspended sediment and selected trace metals in streamflow. Included in this report are tables of daily data for mean streamflow, suspended sediment concentration, and suspended sediment discharge at two streamflow gaging stations on the Clark Fork; periodic data for instantaneous streamflow, onsite water quality, and trace metal and suspended sediment concentrations in the Clark Fork and tributaries; and summary statistics for all the water quality data. Also included are graphs for each site showing median concentrations of trace metals, relationship of concentrations of trace metals to suspended sediment, and median concentrations of trace metals in suspended sediments. Hydrographs for two sites on the main stem show daily mean streamflow, suspended sediment concentration, and suspended sediment discharge for the period of study. (Author 's abstract)
Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.
Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.
2001-01-01
Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There is a clear trend of decreasing PAH and trace metal contaminant concentrations with distance from the STP outfall.Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2>0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ??PAHs and ??PCBs are potentially toxic and/or bi
NASA Astrophysics Data System (ADS)
Fortner, Sarah K.; Lyons, W. Berry
2018-04-01
Here we present a synthesis of the trace element chemistry in melt on the surface Canada Glacier, Taylor Valley, McMurdo Dry Valleys (MDV), Antarctica ( 78°S). The MDV is largely ice-free. Low accumulation rates, strong winds, and proximity to the valley floor make these glaciers dusty in comparison to their inland counterparts. This study examines both supraglacial melt streams and cryoconite holes. Supraglacial streams on the lower Canada Glacier have median dissolved (<0.4 µm) concentrations of Fe, Mn, As, Cu, and V of 71.5, 75.5, 3.7, 4.6, and 4.3 nM. All dissolved Cd concentrations and the vast majority of Pb values are below our analytical detection (i.e. 0.4 and 0.06 nM). Chemical behavior did not follow similar trends for eastern and western draining waters. Heterogeneity likely reflects distinctions eolian deposition, rock:water ratios, and hydrologic connectivity. Future increases in wind-delivered sediment will likely drive dynamic responses in melt chemistry. For elements above detection limits, dissolved concentrations in glacier surface melt are within an order of magnitude of concentrations observed in proglacial streams (i.e. flowing on the valley floor). This suggests that glacier surfaces are an important source of downstream chemistry. The Fe enrichment of cryoconite water relative to N, P, or Si exceeds enrichment observed in marine phytoplankton. This suggests that the glacier surface is an important source of Fe to downstream ecosystems.
Vítek, Petr; Jehlička, Jan; Edwards, Howell G M; Hutchinson, Ian; Ascaso, Carmen; Wierzchos, Jacek
2012-12-01
Raman spectroscopy is being adopted as a nondestructive instrumentation for the robotic exploration of Mars to search for traces of life in the geological record. Here, miniaturized Raman spectrometers of two different types equipped with 532 and 785 nm lasers for excitation, respectively, were compared for the detection of microbial biomarkers in natural halite from the hyperarid region of the Atacama Desert. Measurements were performed directly on the rock as well as on the homogenized, powdered samples prepared from this material-the effects of this sample preparation and the excitation wavelength employed in the analysis are compared and discussed. From these results, 532 nm excitation was found to be superior for the analysis of powdered specimens due to its high sensitivity toward carotenoids and hence a higher capability for their detection at relatively low concentration in bulk powdered specimens. For the same reason, this wavelength was a better choice for the detection of carotenoids in direct measurements made on the rock samples. The 785 nm excitation wavelength, in contrast, proved to be more sensitive toward the detection of scytonemin.
Ultrasensitive detection of atmospheric trace gases using frequency modulation spectroscopy
NASA Technical Reports Server (NTRS)
Cooper, David E.
1986-01-01
Frequency modulation (FM) spectroscopy is a new technique that promises to significantly extend the state-of-the-art in point detection of atmospheric trace gases. FM spectroscopy is essentially a balanced bridge optical heterodyne approach in which a small optical absorption or dispersion from an atomic or molecular species of interest generates an easily detected radio frequency (RF) signal. This signal can be monitored using standard RF signal processing techniques and is, in principle, limited only by the shot noise generated in the photodetector by the laser source employed. The use of very high modulation frequencies which exceed the spectral width of the probed absorption line distinguishes this technique from the well-known derivative spectroscopy which makes use of low (kHz) modulation frequencies. FM spectroscopy was recently extended to the 10 micron infrared (IR) spectral region where numerous polyatomic molecules exhibit characteristic vibrational-rotational bands. In conjunction with tunable semiconductor diode lasers, the quantum-noise-limited sensitivity of the technique should allow for the detection of absorptions as small as .00000001 in the IR spectral region. This sensitivity would allow for the detection of H2O2 at concentrations as low as 1 pptv with an integration time of 10 seconds.
Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin
2016-01-01
In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012
A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde
NASA Astrophysics Data System (ADS)
Cofer, Wesley R.; Edahl, Robert A.
This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH 2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g. CH 2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH 2O at global background levels (˜ 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH 2O, once concentrated, is accomplished using high performance liquid chromatography (HPLC) with ultraviolet photometric detection. The CH 2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H 2SO 4 acidified aqueous solution, is detected as CH 2O.
A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Edahl, R. A., Jr.
1986-01-01
This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g., CH2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH2O at global background levels (about 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH2O, once concentrated, is accomplished using high performance liquid chromatography with ultraviolet photometric detection. The CH2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H2SO4 acidified aqueous solution, is detected as CH2O.
Nowell, Lisa H.; Ludtke, Amy S.; Mueller, David K.; Scott, Jonathon C.
2012-01-01
Beach water and sediment samples were collected along the Gulf of Mexico coast to assess differences in contaminant concentrations before and after landfall of Macondo-1 well oil released into the Gulf of Mexico from the sinking of the British Petroleum Corporation's Deepwater Horizon drilling platform. Samples were collected at 70 coastal sites between May 7 and July 7, 2010, to document baseline, or "pre-landfall" conditions. A subset of 48 sites was resampled during October 4 to 14, 2010, after oil had made landfall on the Gulf of Mexico coast, called the "post-landfall" sampling period, to determine if actionable concentrations of oil were present along shorelines. Few organic contaminants were detected in water; their detection frequencies generally were low and similar in pre-landfall and post-landfall samples. Only one organic contaminant--toluene--had significantly higher concentrations in post-landfall than pre-landfall water samples. No water samples exceeded any human-health benchmarks, and only one post-landfall water sample exceeded an aquatic-life benchmark--the toxic-unit benchmark for polycyclic aromatic hydrocarbons (PAH) mixtures. In sediment, concentrations of 3 parent PAHs and 17 alkylated PAH groups were significantly higher in post-landfall samples than pre-landfall samples. One pre-landfall sample from Texas exceeded the sediment toxic-unit benchmark for PAH mixtures; this site was not sampled during the post-landfall period. Empirical upper screening-value benchmarks for PAHs in sediment were exceeded at 37 percent of post-landfall samples and 22 percent of pre-landfall samples, but there was no significant difference in the proportion of samples exceeding benchmarks between paired pre-landfall and post-landfall samples. Seven sites had the largest concentration differences between post-landfall and pre-landfall samples for 15 alkylated PAHs. Five of these seven sites, located in Louisiana, Mississippi, and Alabama, had diagnostic geochemical evidence of Macondo-1 oil in post-landfall sediments and tarballs. For trace and major elements in water, analytical reporting levels for several elements were high and variable. No human-health benchmarks were exceeded, although these were available for only two elements. Aquatic-life benchmarks for trace elements were exceeded in 47 percent of water samples overall. The elements responsible for the most exceedances in post-landfall samples were boron, copper, and manganese. Benchmark exceedances in water could be substantially underestimated because some samples had reporting levels higher than the applicable benchmarks (such as cobalt, copper, lead and zinc) and some elements (such as boron and vanadium) were analyzed in samples from only one sampling period. For trace elements in whole sediment, empirical upper screening-value benchmarks were exceeded in 57 percent of post-landfall samples and 40 percent of pre-landfall samples, but there was no significant difference in the proportion of samples exceeding benchmarks between paired pre-landfall and post-landfall samples. Benchmark exceedance frequencies could be conservatively high because they are based on measurements of total trace-element concentrations in sediment. In the less than 63-micrometer sediment fraction, one or more trace or major elements were anthropogenically enriched relative to national baseline values for U.S. streams for all sediment samples except one. Sixteen percent of sediment samples exceeded upper screening-value benchmarks for, and were enriched in, one or more of the following elements: barium, vanadium, aluminum, manganese, arsenic, chromium, and cobalt. These samples were evenly divided between the sampling periods. Aquatic-life benchmarks were frequently exceeded along the Gulf of Mexico coast by trace elements in both water and sediment and by PAHs in sediment. For the most part, however, significant differences between pre-landfall and post-landfall samples were limited to concentrations of PAHs in sediment. At five sites along the coast, the higher post-landfall concentrations of PAHs were associated with diagnostic geochemical evidence of Deepwater Horizon Macondo-1 oil.
Chance Encounter with a Stratospheric Kerosene Rocket Plume From Russia Over California
NASA Technical Reports Server (NTRS)
Newman, P. A.; Wilson, J. C.; Ross, M. N.; Brock, C. A.; Sheridan, P. J.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.; Loewenstein, M.; Podolske, J. R.;
2000-01-01
A high-altitude aircraft flight on April 18, 1997 detected an enormous aerosol cloud at 20 km altitude near California (37 N). Not visually observed, the cloud had high concentrations of soot and sulfate aerosol, and was over 180 km in horizontal extent. The cloud was probably a large hydrocarbon fueled vehicle, most likely from rocket motors burning liquid oxygen and kerosene. One of two Russian Soyuz rockets could have produced the cloud: a launch from the Baikonur Cosmodrome, Kazakhstan on April 6; or from Plesetsk, Russia on April 9. Parcel trajectories and long-lived trace gas concentrations suggest the Baikonur launch as the cloud source. Cloud trajectories do not trace the Soyuz plume from Asia to North America, illustrating the uncertainties of point-to-point trajectories. This cloud encounter is the only stratospheric measurement of a hydrocarbon fuel powered rocket.
Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico
Wilson, Jennifer T.; Van Metre, Peter C.
2000-01-01
Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.
Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy
NASA Astrophysics Data System (ADS)
Batanova, V. G.; Sobolev, A. V.; Magnin, V.
2018-01-01
Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample were found to be identical (within internal precision) to reference values, suggesting that achieved precision and accuracy are similar. The spatial resolution of EPMA in a silicate matrix, even at very extreme conditions (accelerating voltage 25 kV), does not exceed 7 - 8 μm and thus is still better than laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS) of similar precision. These make the electron microprobe an indispensable method with applications in experimental petrology, geochemistry and cosmochemistry.
Edmonds, Robert J.; Gellenbeck, Dorinda J.
2002-01-01
The U.S. Geological Survey collected and analyzed ground-water samples in the West Salt River Valley from 64 existing wells selected by a stratified-random procedure. Samples from an areally distributed group of 35 of these wells were used to characterize overall ground-water quality in the basin-fill aquifer. Analytes included the principal inorganic constituents, trace constituents, pesticides, and volatile organic compounds. Additional analytes were tritium, radon, and stable isotopes of hydrogen and oxygen. Analyses of replicate samples and blank samples provided evidence that the analyses of the ground-water samples were adequate for interpretation. The median concentration of dissolved solids in samples from the 35 wells was 560 milligrams per liter, which exceeded the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level for drinking water. Eleven of the 35 samples had a nitrate concentration (as nitrogen) that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Pesticides were detected in eight samples; concentrations were below the Maximum Contaminant Levels. Deethylatrazine was most commonly detected. The pesticides were detected in samples from wells in agricultural or urban areas that have been irrigated. Concentrations of all trace constituents, except arsenic, were less than the Maximum Contaminant Levels. The concentration of arsenic exceeded the Maximum Contaminant Level of 50 micrograms per liter in two samples. Nine monitoring wells were constructed in an area near Buckeye to assess the effects of agricultural land use on shallow ground water. The median concentration of dissolved solids was 3,340 milligrams per liter in samples collected from these wells in August 1997. The nitrate concentration (as nitrogen) exceeded the Maximum Contaminant Level (10 milligrams per liter) in samples from eight of the nine monitoring wells in August 1997 and again in February 1998. Analyses of all samples collected from the monitoring wells indicated low concentrations of pesticides and volatile organic compounds. The most frequently detected pesticides were deethylatrazine and atrazine. Trichloromethane (chloroform) and tetrachloroethene (PCE) were the most frequently detected volatile organic compounds in the monitoring wells. Two compounds [dieldrin and 1,1-dichloro-2,2-bis(p-dichlorodiphenyl)ethylene (DDE)], decomposition products of two banned pesticides, aldrin and dichlorodiphenylethylene (DDT), were detected at low concentrations in samples analyzed for the agricultural land-use study. In the West Salt River Valley, a high concentration of the heavier oxygen isotope?oxygen-18?in ground water generally indicates effects of evaporation on recharge water from irrigation. Wells in undeveloped areas and wells that have openings beneath a confining bed generally yield ground water that is free of the effects of irrigation seepage. Samples from these wells did not contain detectable concentrations of pesticides. The median concentrations of nitrate (as nitrogen) and dissolved solids in samples from wells in undeveloped areas were 1.7 milligrams per liter and 257 milligrams per liter, respectively. The median concentrations of nitrate (as nitrogen) and dissolved solids in samples from wells that yield water from below confining beds were 2.0 and 747 milligrams per liter, respectively.
Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F.
2012-01-01
Pennsylvanian coals in the Appalachian Basin host pyrite that is locally enriched in potentially toxic trace elements such as As, Se, Hg, Pb, and Ni. A comparison of pyrite-rich coals from northwestern Alabama, eastern Kentucky, and West Virginia reveals differences in concentrations and mode of occurrence of trace elements in pyrite. Pyrite occurs as framboids, dendrites, or in massive crystalline form in cell lumens or crosscutting veins. Metal concentrations in pyrite vary over all scales, from microscopic to mine to regional, because trace elements are inhomogeneously distributed in the different morphological forms of pyrite, and in the multiple generations of sulfide mineral precipitates. Early diagenetic framboidal pyrite is usually depleted in As, Se, and Hg, and enriched in Pb and Ni, compared to other pyrite forms. In dendritic pyrite, maps of As distribution show a chemical gradient from As-rich centers to As-poor distal branches, whereas Se concentrations are highest at the distal edges of the branches. Massive crystalline pyrite that fills veins is composed of several generations of sulfide minerals. Pyrite in late-stage veins commonly exhibits As-rich growth zones, indicating a probable epigenetic hydrothermal origin. Selenium is concentrated at the distal edges of veins. A positive correlation of As and Se in pyrite veins from Kentucky coals, and of As and Hg in pyrite-filled veins from Alabama coals, suggests coprecipitation of these elements from the same fluid. In the Kentucky coal samples (n = 18), As and Se contents in pyrite-filled veins average 4200 ppm and 200 ppm, respectively. In Alabama coal samples, As in pyrite-filled veins averages 2700 ppm (n = 34), whereas As in pyrite-filled cellular structures averages 6470 ppm (n = 35). In these same Alabama samples, Se averages 80 ppm in pyrite-filled veins, but was below the detection limit in cell structures. In samples of West Virginia massive pyrite, As averages 1700 ppm, and Se averages 270 ppm (n = 24). The highest concentration of Hg (≤ 102 ppm) is in Alabama pyrite veins. Improved detailed descriptions of sulfide morphology, sulfide mineral paragenesis, and trace-element concentration and distribution allow more informed predictions of: (1) the relative rate of release of trace elements during weathering of pyrite in coals, and (2) the relative effectiveness of various coal-cleaning procedures of removing pyrite. For example, trace element-rich pyrite has been shown to be more soluble than stoichiometric pyrite, and fragile fine-grained pyrite forms such as dendrites and framboids are more susceptible to dissolution and disaggregation but less amenable to removal during coal cleaning.
PIXE analysis of sand and soil from Ulaanbaatar and Karakurum, Mongolia
NASA Astrophysics Data System (ADS)
Markwitz, A.; Barry, B.; Shagjjamba, D.
2008-09-01
Twenty-one sand and soil samples were collected at the surface from 22 to 25 June 2007 at sampling sites from Ulaanbaatar to Karakurum, Mongolia. The sand samples were collected from constantly changing sand dunes which may still contain salt from prehistoric oceans. The dry sand and soil samples were processed for PIXE and PIGE analyses. A clear division between soils and sand become apparent in the silicon results. Concentrations of all bulk elements in human habitation samples and of Si, Al, K and Fe in dry lake/flood plain samples are similar to those in the soils and sands. Among elements which could be regarded as being at trace concentrations the average S concentration in the soils is 0.9 g kg-1 whereas it is not detected in the sand samples. Zinc and Cu concentrations are both higher in the soils than the sands and are strongly correlated. A surprising presence of uranium at a concentration of 350 mg kg-1 was detected in the PIXE measurement on one of the dry lake samples. Gamma spectrometry confirmed the presence of U in this sample and also at a lower level in a sample from the lake shore, but in none of the other samples. Further, the gamma spectrometry showed that 238U decay products were present only at a level corresponding to about 3 mg kg-1 U for a system in radioactive equilibrium, a figure which is typical for U in the earth's crust. Disequilibria between 238U and its decay products occur naturally but such a high degree of separation at high concentration would be unique if confirmed. PIXE and PIGE measurements of these samples highlight the difficulty in correlating trace element measurements with occurrence of indicators of sea salt in air particulate samples.
NASA Astrophysics Data System (ADS)
Ventrillard-Courtillot, Irene; Gonthiez, Thierry; Clerici, Christine; Romanini, Daniel
2009-11-01
We demonstrate a first application, of optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) to breath analysis in a medical environment. Noninvasive monitoring of trace species in exhaled air was performed simultaneous to spirometric measurements on patients at Bichat Hospital (Paris). The high selectivity of the OF-CEAS spectrometer and a time response of 0.3 s (limited by sample flow rate) allowed following the evolution of carbon monoxide and methane concentrations during individual respiratory cycles, and resolving variations among different ventilatory patterns. The minimum detectable absorption on this time scale is about 3×10-10 cm-1. At the working wavelength of the instrument (2.326 μm), this translates to concentration detection limits of ~1 ppbv (45 picomolar, or ~1.25 μg/m3) for CO and 25 ppbv for CH4, well below concentration values found in exhaled air. This same instrument is also able to provide measurement of NH3 concentrations with a detection limit of ~10 ppbv however, at present, memory effects do not allow its measurement on fast time scales.
Cram, Silke; Ponce De León, Claudia A; Fernández, Pilar; Sommer, Irene; Rivas, Hilda; Morales, Luis Miguel
2006-10-01
Possible contaminants produced by the Petroleos Mexicanos (PEMEX) marine oil complex in the vicinity of the Cayo Arcas (Mexico) coral reef ecosystem were evaluated by analyzing sediments and sea water for hydrocarbons and metal elements. We found that the concentrations of aliphatic hydrocarbons in the sea water were generally low, with the highest values detected near the oil station; the concentration of polycyclic aromatic hydrocarbons (PAHs) was generally below the detection limit. The hydrocarbons found in the sediments seem to have a pyrogenic origin, and were probably produced by marine traffic in the study area. The total PAH concentration did not exceed the NOAA criteria, although levels of some individual PAHs did. The only metal detected in the sea water at high concentrations was nickel. The Ni/V ratio in the sediments indicates the contribution of crude oil to the system. The high content of Ni and Zn was attributed to the ballast waters from the oil tankers that load at the station's monobuoys. The presence of fine sediments that commonly originate from terrestrial ecosystems supported this assumption.
Ben, Weiwei; Qiang, Zhimin; Adams, Craig; Zhang, Heqing; Chen, Liping
2008-08-22
Little is known about the contamination level of antibiotics in swine wastewater in China. The highly complex matrix of swine wastewater, which generally has a chemical oxygen demand (COD) concentration as high as 15,000 mg/L, makes it difficult to detect antibiotics at trace levels. In this work, a highly selective and sensitive analytical method was developed for simultaneous determination of three classes of commonly used veterinary antibiotics including five sulfonamides, three tetracyclines and one macrolide in swine wastewater using solid-phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS). The method detection limits (MDL) in the swine wastewater were determined to be between 5 and 91 ng/L, depending on specific antibiotics. Except sulfamethizole, all the other eight antibiotics were detected in the swine wastewaters collected from three concentrated swine feeding plants located in the Beijing (China) area, showing a concentration range of 0.62-32.67 microg/L. These results reveal the representative concentration levels of selected antibiotics in the swine wastewaters of Beijing area.
Fluoride-Containing Metabolites after Methoxyflurane Anesthesia,
Methoxyflurane (2,2-dichloro-1,1-difluoroethyl methyl ether) has been used for about 12 years for analgesia and anesthesia in surgery and obstetrics...Interest in methoxyflurane fluorometabolites arose when markedly elevated serum fluoride concentrations in a nephrotoxic patient were traced to the...use of methoxyflurane anesthesia for surgery. These high fluoride levels were peculiar in that the ionselective fluoride electrode did not detect a
Toxicological relevance of pharmaceuticals in drinking water.
Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A
2010-07-15
Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.
Wilson, Heather M.; Petersen, Margaret R.; Troy, Declan
2004-01-01
In 1996, we measured concentrations of arsenic, barium, cadmium, lead, mercury, and selenium in blood of adult king (Somateria spectabilis) and spectacled (Somateria fischeri) eiders and duckling spectacled eiders from northern Alaska, USA. Concentrations of selenium exceeded background levels in all adults sampled and 9 of 12 ducklings. Mercury was detected in all adult spectacled eiders and 5 of 12 ducklings. Lead concentrations were above the clinical toxicity threshold in one duckling (0.64 ppm) and two adult female spectacled eiders (0.54 and 4.30 ppm). Concentrations of cadmium and mercury varied between species; barium, cadmium, mercury, and selenium varied between sexes. In female spectacled eiders, mercury concentrations increased during the breeding season and barium and selenium levels decreased through the breeding season. Selenium declined at 2.3 ± 0.9% per day and levels were lower in spectacled eiders arriving to the breeding grounds in northern Alaska than in western Alaska. The variation in selenium levels between breeding areas may be explained by differences in timing and routes of spring migration. Most trace elements for which we tested were not at levels currently considered toxic to marine birds. However, the presence of mercury and elevated lead in ducklings and adult female spectacled eiders suggests these metals are available on the breeding grounds.
Plasmonic trace sensing below the photon shot noise limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooser, Raphael C.; Lawrie, Benjamin J.
Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less
Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.
1987-01-01
The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.
Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei
2018-02-01
A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB 6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10 -6 -10 -3 ) products. Boron (B), tantalum (Ta), and tungsten (W)-originating from the emitter, keeper, and orifice of the hollow cathode-are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.
Plasmonic trace sensing below the photon shot noise limit
Pooser, Raphael C.; Lawrie, Benjamin J.
2015-12-09
Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less
NASA Astrophysics Data System (ADS)
Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei
2018-02-01
A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.
A survey of air quality in Singapore
NASA Astrophysics Data System (ADS)
Lai, Y. K.; Tang, S. M.
1993-04-01
Ambient aerosol samples were collected near an industrial area in Singapore during the period of July 91 to January 92. The sampling site was a highway at a height of about 20 m. PIXE analysis of these samples was carried out using 1.8 MeV protons. Thirteen trace elements were observed, ranging from Si to Pb. Among these, Cl and S had the highest concentrations. The former was attributed to the sea-salt particles and the latter could be due to the presence of oil refineries in the vicinity. Pb was found to be below the detection limit of 30 ngm -3 in most of the samples analysed. This is likely due to the fact that unleaded petrol was used by many cars in Singapore and that the sampling point was quite a distance away from the ground level. The observed variations in concentration for most of the trace elements were well-correlated with traffic intensity and meteorological conditions. Time variation patterns on weekdays and during weekends were also observed. A higher level of pollutants was detected during the period when there were prolonged forest fires in the nearby islands in Indonesia.
NASA Astrophysics Data System (ADS)
Mirabi, Ali; Shokuhi Rad, Ali; Khodadad, Hadiseh
2015-09-01
Magnetic nanocomposites surface (MNCS) which has anionic surfactant sodium dodecyl sulfate (SDS) coating and has undergone dithiooxamide treatment as the sorbent could be an easy and useful method to extract and make a pre-concentrated in detecting the copper ions before they are determined via the flame atomic absorption spectrometry (FAAS). The influences of the experimental parameters such as the pH of the sample, the type and concentration of the eluent, dithiooxamide concentration and volume, amount of sorbent and the interactions of ions with respect to the copper ion detection have been studied. The calibration graph was linear in the range of 2-600 ng ml-1 with detection limit of 0.2 ng ml-1. Relative standard deviation (RSD) for 6 replicate measurements was 1.8%. This method of detection has been applied to the determination of Cu ions at levels in real samples such as wheat flour, tomatoes, potatoes, red beans, oat, tap water, river water and sea water with satisfactory results.
Zhang, Hua; Jiang, Yinghui; Wang, Min; Wang, Peng; Shi, Guangxun; Ding, Mingjun
2017-01-01
Surface water samples were collected from 20 sampling sites throughout the Ganjiang River during pre-monsoon, monsoon, and post-monsoon seasons, and the concentrations of dissolved trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS) for the spatial and seasonal variations, risk assessment, source identification, and categorization for risk area. The result demonstrated that concentrations of the elements exhibited significant seasonality. The high total element concentrations were detected at sites close to the intensive mining and urban activities. The concentrations of the elements were under the permissible limits as prescribed by related standards with a few exceptions. The most of heavy metal pollution index (HPI) values were lower than the critical index limit, indicating the basically clean water used as habitat for aquatic life. As was identified as the priority pollutant of non-carcinogenic and carcinogenic concerns, and the inhabitants ingesting the surface water at particular site might be subjected to the integrated health risks for exposure to the mixed trace elements. Multivariate statistical analyses confirmed that Zn, As, Cd, and Tl were derived from mining and urban activities; V, Cd, and Pb exhibited mixed origin; and Co, Ni, and Cu mainly resulted from natural processes. Three categorized risk areas corresponded to high, moderate, and low risks, respectively. As a whole, the upstream of the Ganjiang River was identified as the high-risk area relatively.
Leeth, David C.; Holloway, Owen G.
2000-01-01
In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).
Miller, Ronald L.; McPherson, Benjamin F.
2001-01-01
Trace elements and organic contaminants in bottom-sediment samples collected from 10 sites on the Barron River Canal and from one site on the Turner River in October 1998 had patterns of distribution that indicated different sources. At some sites on the Barron River Canal, lead, copper, and zinc, normalized to aluminum, exceeded limits normally considered as background and may be enriched by human activities. Polynuclear aromatic hydrocarbons and p-cresol, normalized against organic carbon, had patterns of distribution that indicated local sources of input from a road or vehicular traffic or from an old creosote wood treatment facility. Phthalate esters and the traces elements arsenic, cadmium, and zinc were more widely distributed with the highest normalized concentrations occurring at the Turner River background site, probably due to the high percentage of fine sediment (74% less than 63 micrometers) and high organic carbon concentration (42%) at that site and the binding effect of organic carbon on trace elements and trace organic compounds. Low concentrations of pesticides or pesticide degradation products were detected in bottom sediment (DDD and DDE, each less than 3.5 µg/kg) and water (9 pesticides, each less than 0.06 µ/L), primarily in the northern reach of the Barron River Canal where agriculture is a likely source. Although a few contaminants approached criteria that would indicate adverse effects on aquatic life, none exceeded the criteria, but the potential synergistic effects of mixtures of contaminants found at most sites are not included in the criteria.
Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram
NASA Astrophysics Data System (ADS)
Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu
2018-01-01
The surface-enhanced Raman scattering (SERS) activity of multi-branched gold nanostars with fractal structure has been investigated for trace detection of pesticide thiram. Raman spectrum results show that the gold nanostars substrate can produce about 102 fold stronger signal than the thiram alone with the thiram concentration increase of 103 times and 1.4 fold stronger signal than the gold nanostars without fractal feature. In the detection procedure, the most prominent SERS peak at 1376 cm- 1 has been chosen to characterize and quantify the concentration of thiram. Experimental results indicate this Raman substrate based on fractal gold nanostars exhibits excellent selective probing performance for thiram with a detection limit as low as 10- 10 M in solution and 0.24 ng/cm2 in apple peels. Interference experiment results show that the effects from the interfering pesticides could be neglected in the detection procedure. Therefore, the gold nanostars as a SERS substrate have excellent sensitivity and selectivity.
Trace elements in sera of patients with hepatitis B: Determination and analysis
NASA Astrophysics Data System (ADS)
Saod, Wahran M.; Darwish, Nadiya T.; Zaidan, Tahseen A.; Alfalujie, Abdul Wahab A.
2018-04-01
Chronic Hepatitis B (HBV) is the leading cause of morbidity and mortality worldwide with about 248 million people having HBV infection. Trace elements e.g. copper (Cu), zinc (Zn), selenium (Se) and iron (Fe) are constituent components of many metal proteins and metalloenzymes in human sera. Therefore, the ratios of these trace elements in human sera are often stated to be a good marker for diagnosing various diseases including HBV. The aims of this study are: to compare the level of trace elements in sera of patients infected with HBV and healthy participants, and to evaluate the efficiency of analytical techniques (e.g. Inductively Coupled Plasma-Mass spectrometry (ICP-MS), Atomic Absorption Spectroscopy (hydride generation) (AAS) and Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) that are currently used to detect Fe and Se elements in Patients' human sera. The findings of this study show that the concentration range of copper element between (132.80±28.64 µg/dl) to (105.66±23.20 µg/dl) was significantly higher in HBV infected patients as compared to those in healthy controls (91.27±9.20 µg/dl). Iron concentration range between (206.64±61.60 µg/l) to (170.00±36.71 µg/l) was significantly higher in HBV infected patients as compared to those in healthy controls (158.00±15.13 µg/l). However, patients with HBV had significantly lower serum concentrations of zinc with a concentration range between (111.64±20.90 µg/dl) to (99.25±24.06 µg/dl) as compared to those in healthy controls (113.44±16.38 µg/dl). While selenium concentration range between (64.39±7.39 µg/l) to (51.10±4.96 µg/l) was significantly lower in HBV infected patients as compared to those in healthy controls (67.68±7.60) (μg/l). Moreover, the results of this study suggest that (AAS) technique was the most accurate method to measure the concentration of selenium element, while (UV and ICP-MS) analytical techniques have the same efficiency in measuring the iron concentration.
Harwell, Glenn Richard; Van Metre, Peter C.; Wilson, Jennifer T.; Mahler, Barbara J.
2003-01-01
In spring 2000, the Texas Department of Health issued a fish consumption advisory for Lake Worth in Fort Worth, Texas, because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish. In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey collected 21 surficial sediment samples and three gravity core sediment samples to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of hydrophobic contaminants to Lake Worth. Compared to reference (background) concentrations in the upper lake, elevated PCB concentrations were detected in the surficial sediment samples collected in Woods Inlet, which receives surface runoff from Air Force facilities and urban areas. Gravity cores from Woods Inlet and from the main part of the lake near the dam indicate that the concentrations of PCBs were three to five times higher in the 1960s than in 2000. A regression method was used to normalize sediment concentrations of trace elements for natural variations and to distinguish natural and anthropogenic contributions to sediments. Concentrations of several trace elements—cadmium, chromium, copper, lead, and zinc—were elevated in sediments in Woods Inlet, along the shoreline of Air Force facilities, and in the main lake near the dam. Concentrations of these five trace elements have decreased since 1970. Polycyclic aromatic hydrocarbons also were elevated in the same areas of the lake. Concentrations of total polycyclic aromatic hydrocarbons, normalized with organic carbon, were mostly stable in the upper lake but steadily increased near the dam, except for small decreases since 1980. The Woods Inlet gravity core showed the largest increase of the three core sites beginning about 1940; total polycyclic aromatic hydrocarbon concentrations in post-1940 sediments from the core showed three apparent peaks about 1960, 1984, and 2000. The concentrations of organochlorine pesticides were low relative to consensus-based sediment-quality guidelines and either decreased or remained constant since 1970. The two likely sources of hydrophobic contaminants to the lake are urban areas around the lake and the drainage area of Meandering Road Creek that contributes runoff to Woods Inlet and includes Air Force facilities.
Pavlović, Pavle; Mitrović, Miroslava; Djurdjević, Lola
2004-05-01
This ecophysiological research on the ash deposits from the "Nikola Tesla-A" thermal power station in Serbia covered 10 plant species (Tamarix gallica, Populus alba, Spiraea van-hauttei, Ambrosia artemisifolia, Amorpha fruticosa, Eupatorium cannabinum, Crepis setosa, Epilobium collinum, Verbascum phlomoides, and Cirsium arvense). This paper presents the results of a water regime analysis, photosynthetic efficiency and trace elements (B, Cu, Mn, Zn, Pb, and Cd) content in vegetative plant parts. Water regime parameters indicate an overall stability in plant-water relations. During the period of summer drought, photosynthetic efficiency (Fv/Fm) was low, ranging from 0.429 to 0.620 for all the species that were analyzed. An analysis of the tissue trace elements content showed a lower trace metal concentration in the plants than in the ash, indicating that heavy metals undergo major concentration during the combustion process and some are not readily taken up by plants. The Zn and Pb concentrations in all of the examined species were normal whereas Cu and Mn concentrations were in the deficiency range. Boron concentrations in plant tissues were high, with some species even showing levels of more than 100 microg/g (Populus sp., Ambrosia sp., Amorpha sp., and Cirsium sp.). The presence of Cd was not detected. In general, it can be concluded from the results of this research that biological recultivation should take into account the existing ecological, vegetation, and floristic potential of an immediate environment that is abundant in life forms and ecological types of plant species that can overgrow the ash deposit relatively quickly. Selected species should be adapted to toxic B concentrations with moderate demands in terms of mineral elements (Cu and Mn).
Transport of trace metals in runoff from soil and pond ash feedlot surfaces
Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.
2011-01-01
The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.
NASA Technical Reports Server (NTRS)
King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.
1976-01-01
Concentrations of 60 chemical elements in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1 year period during 1971 and 1972 (45 to 50 sampling days). Analytical methods used included instrumental neutron activation, emission spectroscopy, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, the analytical methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data are discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.
Hormesis effect of trace metals on cultured normal and immortal human mammary cells.
Schmidt, Craig M; Cheng, Chun N; Marino, Angelo; Konsoula, Roula; Barile, Frank A
2004-06-01
An in vitro study was conducted to determine the effects of variable concentrations of trace metals on human cultured mammary cells. Monolayers of human mortal (MCF-12A) and immortal (MDA-MB231) mammary epithelial cells were incubated in the absence or presence of increasing concentrations of arsenic (As), mercury (Hg) and copper (Cu) for 24-h, 72-h, 4-d, and 7-d. The MTT assay was used to assess viability for all time periods and cell proliferation was monitored for 4-d and 7-d studies. Monolayers were also labeled with rhodamine-110 (R-6501), Sytox green, and Celltiter blue fluorescent dyes as indicators for intracellular esterase activity, nucleic acid staining, and cell reduction/viability, respectively. Total incubation time with chemical plus dyes was 24 h. For 24-h and 72-h studies, cells were seeded in 96-well plates, after which confluent monolayers were exposed to increasing concentrations of chemicals. For 4-d and 7-d studies, cells were seeded in 12-well plates at 1/3 confluent density (day 0) and exposed to increasing concentrations of metals on day 1. All cells were counted on days 4 and 7. In addition, test medium was removed from select groups of cultures on day 4, replaced with fresh medium in the absence of chemical (recovery studies), and assays were performed on day 7 as above. The data suggest that there is a consistent protective and/or stimulating effect of metals at the lowest concentrations in MCF-12A cells that is not observed in immortal MDA-MB231 cells. In fact, cell viability of MCF-12A cells is stimulated by otherwise equivalent inhibitory concentrations of As, Cu, and Hg on MDA-MB231 cells at 24-h. Whereas As and Hg suppress proliferation and viability in both cell lines after 4-d and 7-d of exposure, Cu enhances cell proliferation and viability of MCF-12A cells. MDA-MB231, however, recover better after 4-days of toxic insult. In addition, nutritional manipulation of media between the cell lines, or pretreatment with penicillamine, did not alter the hormesis effect displayed by MCF-12A. Growth of these cells however was not maintained in the alternative medium. The study demonstrates that a hormesis effect from trace metals is detectable in cultured mammary cells; fluorescent indicators, however, are not as sensitive as cell proliferation or MTT in recognizing the subtle responses. Also, sensitivity of mammary cells to lower concentrations of Cu, a biologically important trace metal, may play an important role in controlling cellular processes and proliferation. The ability to detect this in vitro phenomenon implies that similar processes, occurring in vivo, may be responsible for the development, induction, or enhancement of human cancers.
Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007
Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.
2011-01-01
The spatial patterns for concentrations of trace metals (aluminum, cadmium, copper, iron, manganese, and zinc) indicate an increase in dissolved concentrations of these metals near historical mining areas in the Eagle River and several tributaries near Belden. In general, concentrations decrease downstream from mining areas. Concentrations typically are near or below reporting limits in Gore Creek and other tributaries within the watershed. Concentrations for trace elements (arsenic, selenium, and uranium) in the watershed usually are below the reporting limit, and no prevailing spatial patterns were observed in the data. Step-trend analysis and temporal-trend analysis provide evidence that remediation of historical mining areas in the upper Eagle River have led to observed decreases in metals concentrations in many surface-waters. Comparison of pre- and post-remediation concentrations for many metals indicates significant decreases in metals concentrations for cadmium, manganese, and zinc at sites downstream from the Eagle Mine Superfund Site. Some sites show order of magnitude reductions in median concentrations between these two periods. Evaluation of monotonic trends for dissolved metals concentrations show downward trends at numerous sites in, and downstream from, historic mining areas. The spatial pattern of nutrients shows lower concentrations on many tributaries and on the Eagle River upstream from Red Cliff with increases in nutrients downstream of major urban areas. Seasonal variations show that for many nutrient species, concentrations tend to be lowest May-June and highest January-March. The gradual changes in concentrations between seasons may be related to dilution effects from increases and decreases in streamflow. Upward trends in nutrients between the towns of Gypsum and Avon were detected for nitrate, orthophosphate, and total phosphorus. An upward trend in nitrite was detected in Gore Creek. No trends were detected in un-ionized ammonia within the ERW. Exceedances of State water-quality standards (nitrite, nitrate, and un-ionized ammonia) and levels higher than U.S. Environmental Protection Agency recommendations (total phosphorus) occur in several areas within the ERW. The majority of the exceedances are from comparisons to the U.S. Environmental Protection Agency total phosphorus recommendations. A positive correlation was observed between suspended sediment and total phosphorus. An upward trend in total dissolved solids in Gore Creek may be the result of increases in chloride salts. Highly significant trends were detected in sodium, potassium, and chloride with a significant upward trend in magnesium and a weakly significant upward trend in calcium. A quantitative analysis of the relative abundance of calcium, magnesium, sodium, and potassium to the available anions suggests that chloride salts likely are the source for the detected upward trends because chloride is the only commonly occurring anion with a trend in Gore Greek. A potential source for the observed chloride salts may be the chemical anti-icing and deicing products used during winter road maintenance in municipal areas and on Interstate-70. A downward trend in dissolved solids in the Eagle River between Gypsum and Avon may be contributing to the detected trend on the Eagle River at Gypsum. Significant downward trends were detected in specific ions such as calcium, magnesium, sulfate, and silica. Measures of total dissolved solids as well as comparisons to specific ions show that in water-quality samples within the ERW concentrations generally are lower in the headwaters, with increases downstream from Wolcott. Differences in concentrations likely result from increased abundance of salt-bearing geologic units downstream from Avon. Few sites had measured concentrations that exceeded the State standards for chloride.
Saksono, Budi; Dewi, Beti Ernawati; Nainggolan, Leonardo; Suda, Yasuo
2015-01-01
We propose a novel method of detecting trace amounts of dengue virus (DENVs) from serum. Our method is based on the interaction between a sulfated sugar chain and a DENV surface glycoprotein. After capturing DENV with the sulfated sugar chain-immobilized gold nanoparticles (SGNPs), the resulting complex is precipitated and viral RNA content is measured using the reverse-transcription quantitative polymerase chain reaction SYBR Green I (RT-qPCR-Syb) method. Sugar chains that bind to DENVs were identified using the array-type sugar chain immobilized chip (Sugar Chip) and surface plasmon resonance (SPR) imaging. Heparin and low-molecular-weight dextran sulfate were identified as binding partners, and immobilized on gold nanoparticles to prepare 3 types of SGNPs. The capacity of these SGNPs to capture and concentrate trace amounts of DENVs was evaluated in vitro. The SGNP with greatest sensitivity was tested using clinical samples in Indonesia in 2013-2014. As a result, the novel method was able to detect low concentrations of DENVs using only 6 μL of serum, with similar sensitivity to that of a Qiagen RNA extraction kit using 140 μL of serum. In addition, this method allows for multiplex-like identification of serotypes of DENVs. This feature is important for good healthcare management of DENV infection in order to safely diagnose the dangerous, highly contagious disease quickly, with high sensitivity.
Dansby-Sparks, Royce; Chambers, James Q.; Xue, Zi-Ling
2009-01-01
An electrochemical technique has been developed for ultra trace (ngL−1) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire (MWE, 100 μm) electrodes in the presence of gallic acid (GA) and bromate ion. A potential of −0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0–1000 ngL−1 range (2 min deposition), with a detection limit of 0.88 ngL−1. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ngL−1 level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP). PMID:19446059
Goolsby, D.A.; Severson, R.C.; Wilson, S.A.; Webber, Kurt
1989-01-01
The Garrison Diversion Unit is being constructed to transfer water from the Missouri River (Lake Sakakawea) to areas in east-central and southeastern North Dakota for expanded irrigation of agricultural lands. During initial investigations of irrigation return flows in 1969-76, the potential effects of toxic elements were considered, and the U.S. Bureau of Reclamation concluded these elements would have no adverse effects on streams receiving return flows. After the development of problems associated with selenium in irrigation return flows in the western San Joaquin Valley, Calif., in 1985, the U.S. Bureau of Reclamation initiated additional studies, including an investigation conducted in cooperation with the U.S. Geological Survey, to assist in collecting and evaluating trace-element data. Also, in 1986, with the passage of the Garrison Diversion Unit Reformulation Act, Congress mandated that soil surveys be conducted to determine if there are "*** soil characteristics which might result in toxic or hazardous irrigation return flows."In order to address this issue, an investigation was conducted during 1995-87 by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation to determine the occurrence and distribution of arsenic, selenium, and other trace elements in the soils of six potential irrigation areas along the Garrison Diversion Unit route and in the James River basin. A total of 165 soil samples were collected and analyzed for total concentrations of as many as 42 elements, including arsenic and selenium. In addition, 81 of the samples were analyzed for water-extractable concentrations of 14 elements, including arsenic and selenium, to aid in determining the extent to which they might be mobilized by the irrigation water. In a detailed phase of the investigation, 376 water samples were collected in one of the six potential irrigation areas, the west Oakes irrigation area. Most of these samples were analyzed for arsenic, selenium, and as many as 28 other elements.Results of the investigation indicate that soils in the potential irrigation areas contain small concentrations of arsenic, selenium, and other trace elements. The geometric mean concentrations of total arsenic and selenium were 4.15 and 0.13 milligrams per kilogram, respectively, which are considerably smaller than those measured in the western San Joaquin Valley, Calif., and soils from other areas in the western United States. Water-extractable concentrations of arsenic and selenium, determined on 1:5 soil to water extractions, generally were less than 10 percent of the total concentrations. The geometric mean water-extractable concentrations for both elements were 0.02 milligram per kilogram or less.The median and maximum concentrations of all constituents and properties indicative of irrigation drainage were tens to hundreds of times smaller in the Oakes test area drains than in western San Joaquin Valley drains. The maximum arsenic concentration in ground-water samples was 44 micrograms per liter, and the median concentration was 4 micrograms per liter. The maximum concentration in drain samples was 11 micrograms per liter, and the median concentration was 3 micrograms per liter.Only 22 percent of the water samples collected from wells in the Oakes test area contained detectable concentrations (1 microgram per liter or more) of selenium. However, selenium was detected in 63 percent of the samples collected from sites on drains. The greater incidence of detection of selenium in the drain samples is interpreted as an effect of the more oxidizing environment of the drains, which are about 8 feet below land surface near the top of the water table. The median selenium concentration in the drain samples, however, was only 1 microgram per liter, and the maximum concentration in 63 drain samples was 4 micrograms per liter. For comparison, the median selenium concentrations reported for drains in the western San Joaquin Valley, Calif., ranged from 84 to 320 micrograms per liter. Mater from two observation wells had the largest selenium concentrations (8 and 9 micrograms per liter) measured during the investigation. These were the only two samples that exceeded any of the water-quality regulations, standards, or criteria for selenium. Mercury and boron were the only other trace elements that exceeded standards and criteria. The median concentration of mercury was less than 0.1 microgram per liter, and the maximum concentration was 0.8 microgram per liter. The chronic freshwater-aquatic-life criterion for mercury (0.012 microgram per liter) is about 10 times less than the laboratory detection limit and is derived from bioconcentration factors based on methylmercury. Two boron samples exceeded the irrigation criteria of 750 micrograms per liter. Comparisons with criteria and standards indicate that the concentrations of trace elements determined in samples from wells and drains in the Oakes test area during this investigation should not adversely affect human and aquatic life or irrigated crops. The data collected indicate that the soils and ground water in the Garrison Diversion Unit contain small concentrations of trace elements, including arsenic and selenium. Based on a detailed study of soils and ground water in the west Oakes irrigation area, however, there is no evidence that expanded irrigation will mobilize these elements in concentrations large enough to adversely affect aquatic life in the James River ecosystem, based on current regulations, standards, and criteria. Data are not currently available to make definitive statements about selenium concentrations in ground water in Garrison Diversion Unit irrigation areas other than the west Oakes Irrigation area. Data available on total and water-extractable selenium concentrations in soils t however, indicate that concentrations in ground water would be similar to those determined in the west Oakes irrigation area. Plans have been developed to sample ground water in the additional areas.
Lou, Chaoyan; Guo, Dandan; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan
2017-06-02
An online membrane-based distillation (MBD) coupled with ion chromatography (IC) method was proposed for automatic detection of trace fluoride (F - ) in serum and urine samples. The system consisted of a sample vessel, a lab-made membrane module and an ion chromatograph. Hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membrane was used in MBD which was directly performed in serum and urine samples to eliminate the matrix interferences and enrich fluoride, while enabling automation. The determination of fluoride in biological samples was carried out by IC with suppressed conductometric detection. The proposed method feasibly determined trace fluoride in serum and urine matrices with the optimized parameters, such as acid concentration, distillation temperature, and distillation time, etc. Fluoride exhibited satisfactory linearity in the range of 0.01-5.0mg/L with a correlation coefficient of 0.9992. The limit of detection (LOD, S/N=3) and limit of quantification (LOQ, S/N=10) were 0.78μg/L and 2.61μg/L, respectively. The relative standard deviations of peak area and peak height were all less than 5.15%. The developed method was validated for the determination of fluoride in serum and urine with good spiked recoveries ranging between 97.1-101.9%. This method also can be proposed as a suitable alternative for the analysis of fluoride in other complex biological samples. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drava, Giuliana, E-mail: drava@difar.unige.it; Bri
Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10–15 years with annual resolution. In the present study, the concentrations ofmore » As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the “a posteriori” reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. - Highlights: • Branch bark allows the historical reconstruction of atmospheric trace elements. • This approach is simple, reliable, widely applicable and “a posteriori”. • Downward time trends were found for Cd, Pb and Zn; upward trend for V.« less
Jehlička, Jan; Edwards, Howell G.M.; Hutchinson, Ian; Ascaso, Carmen; Wierzchos, Jacek
2012-01-01
Abstract Raman spectroscopy is being adopted as a nondestructive instrumentation for the robotic exploration of Mars to search for traces of life in the geological record. Here, miniaturized Raman spectrometers of two different types equipped with 532 and 785 nm lasers for excitation, respectively, were compared for the detection of microbial biomarkers in natural halite from the hyperarid region of the Atacama Desert. Measurements were performed directly on the rock as well as on the homogenized, powdered samples prepared from this material—the effects of this sample preparation and the excitation wavelength employed in the analysis are compared and discussed. From these results, 532 nm excitation was found to be superior for the analysis of powdered specimens due to its high sensitivity toward carotenoids and hence a higher capability for their detection at relatively low concentration in bulk powdered specimens. For the same reason, this wavelength was a better choice for the detection of carotenoids in direct measurements made on the rock samples. The 785 nm excitation wavelength, in contrast, proved to be more sensitive toward the detection of scytonemin. Key Words: Miniaturized portable Raman—Atacama—Mars—Biomarker detection. Astrobiology 12, 1095–1099. PMID:23151300
Potential for portal detection of human chemical and biological contamination
NASA Astrophysics Data System (ADS)
Settles, Gary S.; McGann, William J.
2001-08-01
The walk-through metal-detection portal is a paradigm of non-intrusive passenger screening in aviation security. Modern explosive detection portals based on this paradigm will soon appear in airports. This paper suggests that the airborne trace detection technology developed for that purpose can also be adapted to human chemical and biological contamination. The waste heat of the human body produces a rising warm-air sheath of 50-80 liters/sec known as the human thermal plume. Contained within this plume are hundreds of bioeffluents from perspiration and breath, and millions of skin flakes. Since early medicine, the airborne human scent was used in the diagnosis of disease. Recent examples also include toxicity and substance abuse, but this approach has never been quantified. The appearance of new bioeffluents or subtle changes in the steady-state may signal the onset of a chemical/biological attack. Portal sampling of the human thermal plume is suggested, followed by a pre-concentration step and the detection of the attacking agent or the early human response. The ability to detect nanogram levels of explosive trace contamination this way was already demonstrated. Key advantages of the portal approach are its rapidity and non-intrusiveness, and the advantage that it does not require the traditional bodily fluid or tissue sampling.
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-14
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.
Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen
2018-09-01
Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.
2002-01-01
Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.
Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan
2015-05-01
The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.
2017-08-01
Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.
Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.
Liu, Hongbo; Yang, Jian; Gan, Juli
2010-11-01
Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.
NASA Technical Reports Server (NTRS)
Farmer, Crofton B.; Raper, Odell F.
1987-01-01
The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.
Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A
2017-08-15
The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koester, C J; Moulik, A
This article discusses developments in environmental analytical chemistry that occurred in the years of 2003 and 2004. References were found by searching the ''Science Citation Index and Current Contents''. As in our review of two years ago (A1), techniques are highlighted that represent current trends and state-of-the-art technologies in the sampling, extraction, separation, and detection of trace concentrations, low-part-per-billion and less, of organic, inorganic, and organometallic contaminants in environmental samples. New analytes of interest are also reviewed, the detections of which are made possible by recently developed analytical instruments and methods.
Gas Chromatic Mass Spectrometer
NASA Technical Reports Server (NTRS)
Wey, Chowen
1995-01-01
Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.
Method for detecting pollutants. [through chemical reactions and heat treatment
NASA Technical Reports Server (NTRS)
Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)
1976-01-01
A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.
NASA Astrophysics Data System (ADS)
Wang, W.; Finlayson-Pitts, B. J.
2003-01-01
The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.
Li, Jingxi; Sun, Chengjun; Zheng, Li; Jiang, Fenghua; Wang, Shuai; Zhuang, Zhixia; Wang, Xiaoru
2017-09-15
Trace metal contents in 38 species of tropical marine fishes harvested from the Spratly islands of China were determined by microwave digestion and inductively coupled plasma mass spectrometry analysis. Arsenic species were determined by high-performance liquid chromatography and inductively coupled plasma mass spectrometry analysis. The average levels of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb, and U in the fish samples were 1.683, 0.350, 0.367, 2.954, 36.615, 0.087, 0.319, 1.566, 21.946, 20.845, 2.526, 3.583, 0.225, 0.140, and 0.061mg·kg -1 , respectively; Fe, Zn, and As were found at high concentrations. The trace metals exhibited significant positive correlation between each other, with r value of 0.610-0.852. Further analysis indicated that AsB (8.560-31.020mg·kg -1 ) was the dominant arsenic species in the fish samples and accounted for 31.48% to 47.24% of the total arsenic. As(III) and As(V) were detected at low concentrations, indicating minimal arsenic toxicity. Copyright © 2017. Published by Elsevier Ltd.
Trace metal release after minimally-invasive repair of pectus excavatum
Göen, Thomas; Krüger, Marcus; Ure, Benno M.; Petersen, Claus; Kübler, Joachim F.
2017-01-01
Background Several studies have shown a high incidence of metal allergy after minimally-invasive repair of pectus excavatum (MIRPE). We postulated that MIRPE is associated with a significant release of trace metal ions, possibly causing the allergic symptoms. Methods We evaluated the concentration with chromium, cobalt and nickel in blood, urine and tissue in patients prior to MIRPE and in patients who underwent an explantation of the stainless-steel bar(s) after three years. Results Our study group consisted of 20 patients (mean age 19 years) who had bar explantation and our control group included 20 patients (mean age 16 years) prior to MIRPE. At the time of bar removal we detected significantly elevated concentrations of chromium and nickel in the tissue compared to patients prior to the procedure (p<0,001). We also found a significant increase in the levels of chromium in urine and nickel in blood in patients three years post MIRPE (p<0,001). Four patients temporarily developed symptoms of metal allergy, all had elevated metal values in blood and urine at explantation. Conclusions Minimally-invasive repair of pectus excavatum can lead to a significant trace metal exposure. PMID:29023602
Sun, Mei; Wu, Qianghua
2010-04-15
A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.
Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.
Garmo, Oyvind A; Davison, William; Zhang, Hao
2008-08-01
Equilibrium partitioning of trace metals between bulk solution and hydrogels/filter was studied. Under some conditions, trace metal concentrations were higher in the hydrogels or filter membranes compared to bulk solution (enrichment). In synthetic soft water, enrichment of cationic trace metals in polyacrylamide hydrogels decreased with increasing trace metal concentration. Enrichment was little affected by Ca and Mg in the concentration range typically encountered in natural freshwaters, indicating high affinity but low capacity binding of trace metals to solid structure in polyacrylamide gels. The apparent binding strength decreased in the sequence: Cu > Pb > Ni approximately to Cd approximately to Co and a low concentration of cationic Cu eliminated enrichment of weakly binding trace metal cations. The polyacrylamide gels also had an affinity for fulvic acid and/or its trace metal complexes. Enrichment of cationic Cd in agarose gel and hydrophilic polyethersulfone filter was independent of concentration (10 nM to 5 microM) but decreased with increasing Ca/ Mg concentration and ionic strength, suggesting that it is mainly due to electrostatic interactions. However, Cu and Pb were enriched even after equilibration in seawater, indicating that these metals additionally bind to sites within the agarose gel and filter. Compared to the polyacrylamide gels, agarose gel had a lower affinity for metal-fulvic complexes. Potential biases in measurements made with the diffusive equilibration in thin-films (DET) technique, identified by this work, are discussed.
Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.
2015-09-16
Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.
Nowell, Lisa H.; Moran, Patrick W.; Gilliom, Robert J.; Calhoun, Daniel L.; Ingersoll, Christopher G.; Kemble, Nile E.; Kuivila, Kathryn; Phillips, Patrick J.
2013-01-01
Organic contaminants and trace elements were measured in bed sediments collected from streams in seven metropolitan study areas across the United States to assess concentrations in relation to urbanization. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, the pyrethroid insecticide bifenthrin, and several trace elements were significantly related to urbanization across study areas. Most contaminants (except bifenthrin, chromium, nickel) were significantly related to the total organic carbon (TOC) content of the sediments. Regression models explained 45–80 % of the variability in individual contaminant concentrations using degree of urbanization, sediment-TOC, and study-area indicator variables (which represent the combined influence of unknown factors, such as chemical use or release, that are not captured by available explanatory variables). The significance of one or more study-area indicator variables in all models indicates marked differences in contaminant levels among some study areas, even after accounting for the nationally modeled effects of urbanization and sediment-TOC. Mean probable effect concentration quotients (PECQs) were significantly related to urbanization. Trace elements were the major contributors to mean PECQs at undeveloped sites, whereas organic contaminants, especially bifenthrin, were the major contributors at highly urban sites. Pyrethroids, where detected, accounted for the largest share of the mean PECQ. Part 2 of this series (Kemble et al. 2012) evaluates sediment toxicity to amphipods and midge in relation to sediment chemistry.
Caldwell, Rodney R.; Bowers, Craig L.
2003-01-01
Although trace-element concentrations sometimes exceeded aquatic-life criteria in the water of the Spokane River and were elevated above national median values in the bed sediment, trace-element concentrations of all river and ground-water samples were at levels less than U.S. Environmental Protection Agency drinking-water standards. The Spokane River appears to be a source of cadmium, copper, zinc, and possibly lead in the near-river ground water. Dissolved cadmium, copper, and lead concentrations generally were less than 1 microgram per liter (µg/L) in the river water and ground water. During water year 2001, dissolved zinc concentrations were similar in water from near-river wells (17-71 µg/L) and the river water (22-66 µg/L), but were less than detection levels in wells farther from the river. Arsenic, found to be elevated in ground water in parts of the aquifer, does not appear to have a river source. Although the river does influence the ground-water chemistry in proximity to the river, it does not appear to adversely affect the ground-water quality to a level of human-health concern.
Wang, Yan-peng; Gong, Qi; Yu, Sheng-rong; Liu, You-yan
2012-04-01
A method for detecting trace impurities in high concentration matrix by ICP-AES based on partial least squares (PLS) was established. The research showed that PLS could effectively correct the interference caused by high level of matrix concentration error and could withstand higher concentrations of matrix than multicomponent spectral fitting (MSF). When the mass ratios of matrix to impurities were from 1 000 : 1 to 20 000 : 1, the recoveries of standard addition were between 95% and 105% by PLS. For the system in which interference effect has nonlinear correlation with the matrix concentrations, the prediction accuracy of normal PLS method was poor, but it can be improved greatly by using LIN-PPLS, which was based on matrix transformation of sample concentration. The contents of Co, Pb and Ga in stream sediment (GBW07312) were detected by MSF, PLS and LIN-PPLS respectively. The results showed that the prediction accuracy of LIN-PPLS was better than PLS, and the prediction accuracy of PLS was better than MSF.
Porter, Stephen D.; White, Kevin D.; Clark, J.R.
1995-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is designed to provide a nationally consistent description of the current status of water quality, to define water-quality trends, and to relate past and present water-quality conditions to natural features, uses of land and water, and other water-quality effects from human activities. The Kentucky River Basin is one of four NAWQA pilot projects that focused primarily on the quality of surface water. Water, sediment, and bedrock samples were collected in the Kentucky River Basin during 1987-90 for the purpose of (1) describing the spatial distribution, transport, and temporal variability of metals and other trace elements in streams of the basin; (2) estimating mean annual loads, yields, and trends of constituent concentrations and identifying potential causes (or sources) of spatial patterns; (3) providing baseline information for concentrations of metals in streambed and suspended sediments; (4) identifying stream reaches in the Kentucky River Basin with chronic water-quality problems; and (5) evaluating the merits of the NAWQA pilot study-approach for the assessment of metals and other trace elements in a river system. The spatial distribution of metals and other trace elements in streambed sediments of the Kentucky River Basin is associated with regional differences of geology, land use and cover, and the results of human activities. Median concentrations of constituents differed significantly among physiographic regions of the basin because of relations to bedrock geochemistry and land disturbance. Concentrations of potentially toxic metals were large in urban and industrial areas of the basin. Elevated concentrations of certain metals were also found in streambed sediments of the Knobs Region because of the presence of Devonian shale bedrock. Elevated concentrations of lead and zinc found in streambed sediments of the Bluegrass Region are likely associated with urban stormwater runoff, point-source discharges, and waste-management practices. Concentrations of cadmium, chromium, copper, mercury, and silver were elevated in streambed sediments downstream from wastewater-treatment plant discharges. Streambed-sediment concentrations of barium, chromium, and lithium were elevated in streams that receive brine discharges from oil production. Elevated concentrations of antimony, arsenic, molybdenum, selenium, strontium, uranium, and vanadium in streambed sediments of the Kentucky River Basin were generally associated with natural sources. Concentrations of metals and other trace elements in water samples from fixed stations (stations where water-quality samples were collected for 3.5 years) in the Kentucky River Basin were generally related to stream discharge and the concentration of suspended sediment, whereas constituent concentrations in the suspended-sediment matrix were indicative of natural and human sources. Estimated mean annual loads and yields for most metals and other trace elements were associated with the transport of suspended sediment. Land disturbance, such as surface mining and agriculture, contribute to increased transport of sediment in streams, thereby increasing concentrations of metals in water samples during periods of intense or prolonged rainfall and increased stream discharge. Concentrations of many metals and trace elements were reduced during low streamflow. Although total-recoverable and dissolved concentrations of certain metals and trace elements were large in streams affected by land disturbance, concentrations of constituents in the suspendedsediment matrix were commonly large in streams in the Knobs and Eastern Coal Field Regions (because of relations with bedrock geochemistry) and in streams that receive wastewater or oil-well-brine discharges. Concentrations and mean annual load estimates for aluminum, chromium, copper, iron, lead, manganese, and mercury were larger than those obtained from data collected by a State agency, probably because of differences in sample-collection methodology, the range of discharge associated with water-quality samples, and laboratory analytical procedures. However, concentrations, loads, and yields of arsenic, barium, and zinc were similar to those determined from the State data. Significant upward trends in the concentrations of aluminum, iron, magnesium, manganese, and zinc were indicated at one or more fixed stations in the Kentucky River Basin during the past 10 to 15 years. Upward trends for concentrations of aluminum, iron, and manganese were found at sites that receive drainage from coal mines in the upper Kentucky River Basin, whereas upward trends for zinc may be associated with urban sources. Water-quality criteria established by the U.S. Environmental Protection Agency (USEPA) or the State of Kentucky for concentrations of aluminum, beryllium, cadmium, chromium, copper, iron, manganese, nickel, silver, and zinc were exceeded at one or more fixed stations in the Kentucky River Basin. On a qualitative basis, dissolved concentrations of certain metals and trace elements were large during low streamflow at sites where (1) concentrations of these constituents in underlying streambed sediments were large, or (2) dissolvedoxygen concentrations were small. Concentrations of barium, lithium, and strontium were large during low streamflow, which indicates the influence of ground-water baseflows on the quality of surface water during low flow. The effects of point-source discharges, landfills, and other wastemanagement practices are somewhat localized in the Kentucky River Basin and are best indicated by the spatial distribution of metals and other trace elements in streambed sediments and in the suspended-sediment fraction of water samples at stream locations near the source. It was not possible to quantify the contribution of point sources to the total transport of metals and other trace elements at fixed stations because data were not available for wastewater effluents. Quantification of baseline concentrations of metals and other trace elements in streambed sediments provides a basis for the detection of water-quality changes that may result from improvements in wastewater treatment or the implementation of best-management practices for controlling contamination from nonpoint sources in the Kentucky River Basin.
Thomas, Judith C.; Moore, Jennifer L.; Schaffrath, Keelin R.; Dupree, Jean A.; Williams, Cory A.; Leib, Kenneth J.
2013-01-01
The U.S. Geological Survey, in cooperation with Federal, State, county, and industry partners, developed a Web-accessible common data repository to provide access to historical and current (as of August 2009) water-quality information (available on the Internet at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml). Surface-water-quality data from public and private sources were compiled for the period 1931 to 2009 and loaded into the common data repository for the Piceance Basin. A subset of surface-water-quality data for 1959 to 2009 from the repository were compiled, reviewed, and checked for quality assurance for this report. This report contains data summaries, comparisons to water-quality standards, trend analyses, a generalized spatial analysis, and a data-gap analysis for select water-quality properties and constituents. Summary statistics and a comparison to standards were provided for 347 sites for 33 constituents including field properties, nutrients, major ions, trace elements, suspended sediment, Escherichia coli, and BTEX (benzene, toluene, ethylbenzene, and xylene). When sufficient data were available, trends over time were analyzed and loads were calculated for those sites where there were also continuous streamflow data. The majority of sites had information on field properties. Water temperature data was available for 316 sites where data were collected between 1959 and 2009. The only trend that was detected in temperature was an upward trend at the Gunnison River near Grand Junction, Colorado. There were 326 values out of a total of 32,006 values in the study area that exceeded the aquatic-life standard for daily maximum water temperature. For the entire study area, 196 sites had dissolved-oxygen data collected between 1970 and 2009, and median dissolved-oxygen concentrations ranged from 6.8 to11.2 milligrams per liter (mg/L). There were 185 concentrations that exceeded the dissolved oxygen aquatic-life standard out of a total of 11,248 values. The pH data were available for 276 sites, and median pH values ranged from 7.5 to 9.0. There were 241 values that exceeded the high pH standard and 13 values that were less than the low pH standard of the 16,790 values in the study area. Nutrients within the study area were not well represented in each basin and were often not being sampled currently. For the entire study area, 62 sites had nitrate data collected between 1958 and 2009, and median nitrate concentrations ranged from less than detection to 3.72 mg/L as nitrogen. The maximum contaminant level for domestic water supply for nitrate is 10 mg/L and was exceeded once in 3,736 samples. Total phosphorus was collected at 113 sites between 1974 and 2009, and median total phosphorus concentrations ranged from less than detection to 5.04 mg/L. The U.S. Environmental Protection Agency recommendation for phosphorus is less than 0.1 mg/L, and 1,469 of 4,842 samples exceeded this recommended standard. An upward trend in both nitrate and total phosphorus was detected in the White River above Coal Creek near Meeker, Colo. Standards for major ions exist only for chloride and sulfate. For the entire study area, 118 sites had both chloride and sulfate concentration data collected between 1958 and 2009. Median chloride concentrations ranged from 0.085 mg/L to 280 mg/L. Median sulfate concentrations ranged from 4.57 mg/L to 15,000 mg/L. Both chloride and sulfate domestic water-supply standards are 250 mg/L. There were 120 chloride concentrations and 1,111 sulfate concentration samples that exceeded these standards. A downward trend in dissolved solids was detected at the Colorado River near the Colorado-Utah state border and could be a result of salinity control work near Grand Junction, Colo. Trace elements were relatively well represented both temporally and spatially in the study area though the number of trace element samples per site was not typically enough to compute trends or loads except for selenium. There were 127 sites that had dissolved iron concentration data collected between 1961 and 2009, and median iron concentrations ranged from less than detection to 1,100 micrograms per liter (µg/L). The 30-day drinking-water standard for iron is 300 µg/L, and 203 samples exceeded the standard. Selenium was the best represented trace element with selenium concentration data collected at 197 sites between 1973 and 2009, and median selenium concentrations range from less than detection to 181 µg/L. The chronic standard of 4.6 µg/L for selenium concentrations was exceeded in 899 samples, and the acute aquatic-life standard of 18.4 µg/ for selenium was exceeded in 629 samples. High concentrations of selenium are of concern in the Lower Gunnison River Basin because of the combination of geologic formations and land use. There were significant downward trends in selenium at both main-stem sites on the Gunnison River at Delta, Colo., and the Gunnison River near Grand Junction, Colo. High selenium concentrations correlate with high salinity concentrations; thus, when salinity control efforts are conducted in selenium-rich areas in the Lower Gunnison River Basin, both salinity and selenium have the potential to decrease. Spatial, temporal, and analytical data gaps were identified in the study area. The spatial coverage of sampling sites could be expanded in the White River Basin by adding more tributary sites. No water-quality data exist for tributary streams in the area north of Rangely, Colo., where extensive energy development has occurred in a complex geologic setting. Douglas Creek has a drainage area of 425 square miles and has limited historic water-quality and water-quantity data. Limited data were available for field properties, major ions, nutrients, and trace elements on the main stem of the Colorado River between Glenwood Springs and Cameo, Colo. Nutrient data were minimally collected upstream from Colorado River at the Colorado-Utah state border and on the Gunnison River (major tributary in the reach). Approximately 30 percent of the samples for total phosphorus in the Lower Gunnison River Basin exceeded the recommended standard, yet there were insufficient data to do trends analysis in the Lower Gunnison River Basin except at the Gunnison near Grand Junction site. There is limited trace element data except for selenium in the Lower Gunnison River Basin. Additional sampling is necessary to understand the occurrence, concentrations, and loads of these constituents.
Kara, Derya; Fisher, Andrew; Hill, Steve J
2009-06-15
A matrix separation and analyte preconcentration system using Amberlite XAD copolymer resins functionalized by Schiff base reactions coupled with atomic spectrometry has been developed. Three different functionalized Amberlite XAD resins were synthesized using 4-phenylthiosemicarbazide, 2,3-dihydroxybenzaldehyde and 2-thiophenecarboxaldehyde as reagents. These resins could be used to preconcentrate transition and other trace heavy metal analytes from nitric acid digests of soil and sediment samples. Analyte retention was shown to work well at pH 6.0. After treatment of the digests with sodium fluoride and buffering to pH 6, samples that contain extremely large concentrations of iron were analysed for trace analytes without the excess iron overloading the capacity of the resin. The analytes Cd, Co, Cu, Ni and Pb were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with 0.1M HNO(3) directly to the detection system. Flame atomic absorption spectrometry was used as a means of detection during the studies. The efficiency of the chelating resin and the accuracy of the proposed method were evaluated by the analysis of soil (SO-2) and sediment (LGC 6157 and MESS-3) certified reference materials.
Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang
2018-05-10
Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senesi, N.; Polemio, M.; Lorusso, L.
1979-01-01
Concentrations of arsenic, bismuth, lithium and selenium were determined by atomic absorption spectrophotometry in 32 samples of commercial fertilizers from various manufacturers and distributors. Arsenic and lithium were detected in all investigated samples, bismuth in 50% of samples and selenium only in two samples. Arsenic content ranged from 2 to 321 ppM; lithium varied from 5 to 0.1 ppM; bismuth was always lower than 0.5 ppM; selenium was detectable at the levels of 10 and 13 ppM. Fertilizers made from rock phosphates contained trace element amounts generally higher than those derived from rock carbonates, synthetic nitrogen fertilizers and potassium sulphate.more » Additions of trace elements from fertilizers applied at common rates to cultivated soils are tabulated and discussed on the basis of the natural soil reserves and toxicity levels for plants. Whereas applications of bismuth resulted always very low to influence the usual soil content and plant uptakes and selenium was only rarely present in fertilizers, lithium and moreover arsenic additions by fertilizers could influence the trace element status in soil, overcoming occasionally the toxicity levels for more sensitive crops.« less
Savio, Marianela; Ortiz, María S; Almeida, César A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A
2014-09-15
Trace metals have negative effects on the oxidative stability of edible oils and they are important because of possibility for oils characterisation. A single-step procedure for trace elemental analysis of edible oils is presented. To this aim, a solubilisation with tetramethylammonium hydroxide (TMAH) was assayed prior to inductively coupled plasma mass spectrometry detection. Small amounts of TMAH were used, resulting in high elemental concentrations. This method was applied to edible oils commercially available in Argentine. Elements present in small amounts (Cu, Ge, Mn, Mo, Ni, Sb, Sr, Ti, and V) were determined in olive, corn, almond and sunflower oils. The limits of detection were between 0.004 μg g(-1) for Mn and Sr, and 0.32 μg g(-1) for Sb. Principal components analysis was used to correlate the content of trace metals with the type of oils. The two first principal components retained 91.6% of the variability of the system. This is a relatively simple and safe procedure, and could be an attractive alternative for quality control, traceability and routine analysis of edible oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brabets, Timothy P.
2004-01-01
Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When normalized to 1 percent organic carbon, the concentrations of these trace elements are not expected to be toxic to aquatic life when compared to criteria established by the Canadian government and other recent research.
NASA Technical Reports Server (NTRS)
1996-01-01
GenCorp Aerojet Industrial Products, Lewis Research Center, Marshall Space Flight Center, and Case Western Reserve University developed a gas leak detection system, originally for use with the Space Shuttle propulsion system and reusable launch vehicles. The Model HG200 Automated Gas Leak Detection System has miniaturized sensors that can identify extremely low concentrations of hydrogen without requiring oxygen. A microprocessor-based hardware/software system monitors the sensors and displays the source and magnitude of hydrogen leaks in real time. The system detects trace hydrogen around pipes, connectors, flanges and pressure tanks, and has been used by Ford Motor Company in the production of a natural gas-powered car.
Wynn, C M; Palmacci, S; Kunz, R R; Aernecke, M
2011-09-12
High-sensitivity (ng/cm²) optical detection of the explosive 2,4,6-trinitrotoluene (TNT) is demonstrated using photodissociation followed by laser-induced fluorescence (PD-LIF). Detection occurs rapidly, within 6 laser pulses (~7 ns each) at a range of 15 cm. Dropcasting is used to create calibrated samples covering a wide range of TNT concentrations; and a correspondence between fractional area covered by TNT and PD-LIF signal strength is observed. Dropcast data are compared to that of an actual fingerprint. These results demonstrate that PD-LIF could be a viable means of rapidly and remotely scanning surfaces for trace explosive residues.
Toxic trace elements in maternal and cord blood and social determinants in a Bolivian mining city.
Barbieri, Flavia L; Gardon, Jacques; Ruiz-Castell, María; Paco V, Pamela; Muckelbauer, Rebecca; Casiot, Corinne; Freydier, Rémi; Duprey, Jean-Louis; Chen, Chih-Mei; Müller-Nordhorn, Jacqueline; Keil, Thomas
2016-01-01
This study assessed lead, arsenic, and antimony in maternal and cord blood, and associations between maternal concentrations and social determinants in the Bolivian mining city of Oruro using the baseline assessment of the ToxBol/Mine-Niño birth cohort. We recruited 467 pregnant women, collecting venous blood and sociodemographic information as well as placental cord blood at birth. Metallic/semimetallic trace elements were measured using inductively coupled plasma mass spectrometry. Lead medians in maternal and cord blood were significantly correlated (Spearman coefficient = 0.59; p < 0.001; 19.35 and 13.50 μg/L, respectively). Arsenic concentrations were above detection limit (3.30 μg/L) in 17.9% of maternal and 34.6% of cord blood samples. They were not associated (Fischer's p = 0.72). Antimony medians in maternal and cord blood were weakly correlated (Spearman coefficient = 0.15; p < 0.03; 9.00 and 8.62 μg/L, respectively). Higher concentrations of toxic elements in maternal blood were associated with maternal smoking, low educational level, and partner involved in mining.
Alvarez, David A.; Huckins, James N.; Petty, Jimmie D.; Jones-Lepp, Tammy L.; Stuer-Lauridsen, Frank; Getting, Dominic T.; Goddard, Jon P.; Gravell, Anthony
2007-01-01
The development of the polar organic chemical integrative sampler (POCIS) provides environmental scientists and policy makers a tool for assessing the presence and potential impacts of the hydrophilic component of these organic contaminants. The POCIS provides a means for determining the time-weighted average (TWA) concentrations of targeted chemicals that can be used in risk assessments to determine the biological impact of hydrophilic organic compounds (HpOCs) on the health of the impacted ecosystem. Field studies have shown that the POCIS has advantages over traditional sampling methods in sequestering and concentrating ultra-trace to trace levels of chemicals over time resulting in increased method sensitivity, ability to detect chemicals with a relatively short residence time or variable concentrations in the water, and simplicity in use. POCIS extracts can be tested using bioassays and can be used in organism dosing experiments for determining toxicological significance of the complex mixture of chemicals sampled. The POCIS has been successfully used worldwide under various field conditions ranging from stagnant ponds to shallow creeks to major river systems in both fresh and brackish water.
NASA Astrophysics Data System (ADS)
Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia
2017-05-01
Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.
Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula
2007-12-01
Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.
Miyake, Yuichi; Tokumura, Masahiro; Iwazaki, Yuta; Wang, Qi; Amagai, Takashi; Horii, Yuichi; Otsuka, Hideyuki; Tanikawa, Noboru; Kobayashi, Takeshi; Oguchi, Masahiro
2017-06-16
An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m 3 (assuming a sampling volume of 1m 3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m 3 . The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan. Copyright © 2017 Elsevier B.V. All rights reserved.
Identifying Criegee Intermediates As Potential Oxidants In The Troposphere
NASA Astrophysics Data System (ADS)
Novelli, A.; Hens, K.; Tatum Ernest, C.; Martinez, M.; Nölscher, A. C.; Sinha, V.; Paasonen, P.; Petäjä, T.; Sipilä, M.; Elste, T.; Plass-Duelmer, C.; Kubistin, D.; Phillips, G. J.; Williams, J.; Vereecken, L.; Lelieveld, J.; Harder, H.
2015-12-01
Criegee intermediates (CI) are formed during the ozonolysis of unsaturated compounds and have been intensively studied in the last few years due to their possible role as oxidants in the troposphere. Stabilised CI (SCI) are now known to react very rapidly, k(298 K) = 10-12 to 10-10 cm3 molecule-1 s-1, with a large number of trace gases (SO2, NO2, organic acids, water dimers). An assessment of their effective oxidative capacity remain challenging as, CI chemistry is complex, it spans a large range of rate coefficients for different SCI conformers reacting with water dimers and trace gases, and in addition, no reliable measurement technique able to detect ambient SCI concentrations is currently available. In this study, we examine the extensive dataset from the HUMPPA-COPEC 2010 and the HOPE 2012 field campaigns, aided by literature data, to estimate the abundance of SCI in the lower troposphere. The budget of SCI is analyzed using four different approaches: 1) based on an observed yet unexplained H2SO4 production; 2) from the measured concentrations of unsaturated volatile organic compounds (VOC); 3) from OH reactivity measurements; 4) from the unexplained production rate of OH. A SCI concentration range between 5 x 103 and 2 x 106 molecule cm-3 is calculated for the two environments. The weighted mean estimate of the SCI concentration over the boreal forest of ~ 5 x 104 molecules cm-3 implies a significant impact on the conversion of SO2 into H2SO4. In addition, we present measurements obtained using our inlet pre-injector laser-induced fluorescence assay by gas expansion technique (IPI-LIF-FAGE) for the above-mentioned campaigns. A recent laboratory study performed with the same instrumental setup showed that the IPI-LIF-FAGE system is sensitive to the detection of the OH formed from unimolecular decomposition of SCI. In order to investigate the applicability of the laboratory findings to the ambient data, measurement of the background OH (OHbg), the signal detected by the IPI-LIF-FAGE after the removal of ambient OH, measured during the two field campaigns are represented in comparison with many other trace gases to assess if the observations in controlled conditions are transferable to ambient conditions.
Liu, Fengjie; Wang, Wen-Xiong
2015-09-01
Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.
Kent, Robert
2015-08-31
Most constituents that were detected in groundwater samples from the trend wells were found at concentrations less than drinking-water benchmarks. Two volatile organic compounds (VOCs)—tetrachloroethene and trichloroethene—were detected in samples from one or more wells at concentrations greater than their health-based benchmarks, and three VOCs—chloroform, tetrachloroethene, and trichloroethene—were detected in at least 10 percent of the trend-well samples from the initial sampling period and the later trend sampling period. No pesticides were detected at concentrations near or greater than their health-based benchmarks. Three pesticide constituents—atrazine, deethylatrazine, and simazine—were detected in more than 10 percent of the trend-well samples in both sampling periods. Perchlorate, a constituent of special interest, was detected at a concentration greater than its health-based benchmark in samples from one trend well in the initial sampling and trend sampling periods, and in an additional trend well sample only in the trend sampling period. Most detections of nutrients, major and minor ions, and trace elements in samples from trend wells were less than health-based benchmarks in both sampling periods. Exceptions included nitrate, fluoride, arsenic, boron, molybdenum, strontium, and uranium; these were all detected at concentrations greater than their health-based benchmarks in at least one well sample in both sampling periods. Lead and vanadium were detected above their health-based benchmarks in one sample each collected in the initial sampling period only. The isotopic ratios of oxygen and hydrogen in water and the activities of tritium and carbon-14 generally changed little between sampling periods.
Zhang, Liying; Jin, Yang; Mao, Hui; Zheng, Lei; Zhao, Jiawei; Peng, Yan; Du, Shuhu; Zhang, Zhongping
2014-08-15
Trace penicilloic acid allergen frequently leads to various fatal immune responses to many patients, but it is still a challenge to directly discriminate and detect its residue in penicillin by a chemosensing way. Here, we report that silver-coated gold nanoparticles (Au@Ag NPs) exhibit a structure-selective hot-spot Raman enhancement capability for direct identification and detection of trace penicilloic acid in penicillin. It has been demonstrated that penicilloic acid can very easily link Au@Ag NPs together by its two carboxyl groups, locating itself spontaneously at the interparticle of Au@Ag NPs to form strong Raman hot-spot. At the critical concentration inducing the nanoparticle aggregation, Raman-enhanced effect of penicilloic acid is ~60,000 folds higher than that of penicillin. In particular, the selective Raman enhancement to the two carboxyl groups makes the peak of carboxyl group at C6 of penicilloic acid appear as a new Raman signal due to the opening of β-lactam ring of penicillin. The surface-enhanced Raman scattering (SERS) nanoparticle sensor reaches a sensitive limit lower than the prescribed 1.0‰ penicilloic acid residue in penicillin. The novel strategy to examine allergen is more rapid, convenient and inexpensive than the conventional separation-based assay methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Choi, Mansik; Park, Jongkyu; Cho, Dongjin; Jang, Dongjun; Kim, Miseon; Choi, Jongwoo
2015-09-15
The concentration and source of trace metals in the artificial lake An-Dong, which has widespread abandoned mines and a Zn smelter upstream of the drainage basin, were investigated. Soils (18ea), stream waters (15ea) and sediments (15ea) in the main channel and five tributaries downstream of the Zn smelter towards the lake (~ 50 km downstream) were collected. And two core sediments were also taken from the middle of the lake. All samples were analyzed for trace metals in bulk and in a 1N HCl-leached fraction. Although the soil and stream sediments consisted mostly of sand-sized grains, concentrations of metals (Cu, Zn, Cd and Pb) were very high in all samples, including soils, stream waters and sediments at sites near the Zn smelter. However the metal concentrations decreased rapidly downstream, suggesting that the area of impact of the smelter lies within 5 km. Highly enriched metal concentrations were also found in dated core sediments from the lake; while the highest concentrations of Co, Ni, As, Cu, Zn, Cd and Pb were detected in the bottom of the sediment core (dated 1980) they decreased towards 2000, and only Cu, Zn and Cd concentrations increased again in present-day samples. Since the temporal variation in metal concentrations appeared consistent with historical variation in ore mining and Zn smelter production rates, a model combining the production rates of each was developed, which estimated 3%, 12% and 7% contributions from Zn smelter compared to ore mining production rate to levels of Cu, Cd and Zn, respectively, suggesting the different pathways by different sources. In addition, analysis of Cd/Zn and Cu/Zn ratios showed that contamination from ore mining decreased from 1980 to 2000, and smelting processes were most likely responsible for metal enrichment (Cu, Cd and Zn) from 2000 to the present. Copyright © 2015 Elsevier B.V. All rights reserved.
Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech
2016-09-01
Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Shuo; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Liu, Zhuang; Yu, Hai-Rong; Zhang, Chuan; Chu, Liang-Yin
2016-02-23
Real-time online detection of trace threat analytes is critical for global sustainability, whereas the key challenge is how to efficiently convert and amplify analyte signals into simple readouts. Here we report an ultrasensitive microfluidic platform incorporated with smart microgel for real-time online detection of trace threat analytes. The microgel can swell responding to specific stimulus in flowing solution, resulting in efficient conversion of the stimulus signal into significantly amplified signal of flow-rate change; thus highly sensitive, fast, and selective detection can be achieved. We demonstrate this by incorporating ion-recognizable microgel for detecting trace Pb(2+), and connecting our platform with pipelines of tap water and wastewater for real-time online Pb(2+) detection to achieve timely pollution warning and terminating. This work provides a generalizable platform for incorporating myriad stimuli-responsive microgels to achieve ever-better performance for real-time online detection of various trace threat molecules, and may expand the scope of applications of detection techniques.
NASA Astrophysics Data System (ADS)
Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest
2016-11-01
Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.
Characterization of air contaminants formed by the interaction of lava and sea water.
Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E
1994-05-01
We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl.
Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S
2013-03-01
Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
So, Stephen; Wysocki, Gerard
2010-02-01
Faraday Rotation Spectroscopy (FRS) is a polarization based spectroscopic technique which can provide higher sensitivity concentration measurements of paramagnetic gases and free radicals than direct absorption spectroscopic techniques. We have developed sensor systems which require only 0.2W to perform TDLAS (tunable diode laser absorption spectroscopy), and can additionally be quickly duty cycled, enabling operation in wireless sensor networks of laser-based trace gas sensors We adapted our integrated TDLAS electronics to perform FRS in a compact and more sensitive system for quantification of molecular oxygen (O2) using a 762.3nm VCSEL in the A band. Using an AC magnetic field, we demonstrate detector noise dominated performance, achieving 2.1×10-6/Hz1/2 equivalent detectable fractional absorption and a minimum detection limit of 462 ppmv O2 in 1 second in a 15cm path. At longer paths and integration times, such a sensor will enable oxygen measurements at biotic respiration levels (<1ppmv) to measure CO2 - O2 exchange for mapping natural exchange of greenhouse gases. Potential improvement of detection limits by increasing various system performance parameters is described.
Method for remote detection of trace contaminants
Simonson, Robert J.; Hance, Bradley G.
2003-09-09
A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.
Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce.
Xie, Fang; Lai, WeiHua; Saini, Jasdeep; Shan, Shan; Cui, Xi; Liu, DaoFeng
2014-05-01
Soybean sauce, a traditional fermented food in China, has different levels of aflatoxin B1 pollution. Two kinds of direct and indirect immunomagnetic bead methods for the pretreatment of aflatoxin B1 were evaluated in this work. A method was established to detect aflatoxin B1 in soybean sauce using an immunomagnetic bead system for pretreatment and ELISA for quantification. The pretreatment method of immunomagnetic beads performed better compared with the conventional extraction and immunoaffinity column method. ELISA exhibited a good linear relationship at an aflatoxin B1 concentration of 0.05-0.3μg/kg (r(2)=0.9842). The average recoveries across spike levels varied from 0.5 to 7μg/kg were 83.6-104% with a relative standard deviation between 4.2% and 11.7%. With the advantages of rapid detection, easy operation, simple equipment, sensitivity, accuracy, and high recovery; this method can be well applied in the trace determination of aflatoxin B1 in soybean sauce samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Karlsson, Stefan; Sjöberg, Viktor; Ogar, Anna
2015-04-01
The use of nitrogen as plasma gas for microwave plasma atomic emission spectroscopy (MP AES) is an interesting development in analytical science since the running cost can be significantly reduced in comparison to the inductively coupled argon plasma. Here, we evaluate the performance of the Agilent 4100 MP AES instrument for the analysis of principal metals (Ca, K, Mg, and Na), lithogenic metals (Al, Fe, and Mn) and selected trace metals (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) in nitric acid plant digests. The digests were prepared by microwave-assisted dissolution of dry plant material from sunflower (Helianthus annuus) in concentrated nitric acid. Comparisons are made with analysis of the same solutions with ICP-MS (Agilent 7500cx) using the octopole reaction system (ORS) in the collision mode for As, Fe, and V. The limits of detection were usually in the low µg L(-1) range and all principal and lithogenic metals were successfully determined with the MP AES and provided almost identical results with the ICP-MS. The same applies for the selected trace metals except for As, Co and Mo where the concentrations were below the detection limit with the MP AES. For successful analysis we recommend that (i) only atom lines are used, (ii) ionization is minimized (e.g. addition of CsNO3) and (iii) the use of internal standards should be considered to resolve spectral interferences. Copyright © 2014 Elsevier B.V. All rights reserved.