Detection of Terrestrial Planets Using Transit Photometry
NASA Technical Reports Server (NTRS)
Koch, David; Witteborn, Fred; Jenkins, Jon; Dunham, Edward; Boruci, William; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Transit photometry detection of planets offers many advantages: an ability to detect terrestrial size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a differential brightness change of the periodic signature being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b. However, photometry 100 times better is required to detect terrestrial planets. We present results of laboratory measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a space based photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These 'transits' were reliably detected as part of the tests.
Transit visibility zones of the Solar system planets
NASA Astrophysics Data System (ADS)
Wells, R.; Poppenhaeger, K.; Watson, C. A.; Heller, R.
2018-01-01
The detection of thousands of extrasolar planets by the transit method naturally raises the question of whether potential extrasolar observers could detect the transits of the Solar system planets. We present a comprehensive analysis of the regions in the sky from where transit events of the Solar system planets can be detected. We specify how many different Solar system planets can be observed from any given point in the sky, and find the maximum number to be three. We report the probabilities of a randomly positioned external observer to be able to observe single and multiple Solar system planet transits; specifically, we find a probability of 2.518 per cent to be able to observe at least one transiting planet, 0.229 per cent for at least two transiting planets, and 0.027 per cent for three transiting planets. We identify 68 known exoplanets that have a favourable geometric perspective to allow transit detections in the Solar system and we show how the ongoing K2 mission will extend this list. We use occurrence rates of exoplanets to estimate that there are 3.2 ± 1.2 and 6.6^{+1.3}_{-0.8} temperate Earth-sized planets orbiting GK and M dwarf stars brighter than V = 13 and 16, respectively, that are located in the Earth's transit zone.
The Kepler Mission: A Photometric Search for Earthlike Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Borucki, William; Koch, David; Young, Richard E. (Technical Monitor)
1998-01-01
If Earth lies in or near the orbital plane of an extrasolar planet, that planet passes in front of the disk of its star once each orbit as viewed from Earth. Precise photometry can reveal such transits, which can be distinguished from rotationally-modulated starspots and intrinsic stellar variability by their periodicity, square-well shapes and relative spectral neutrality. Transit observations would provide the size and orbital period of the detected planet. Although geometrical considerations limit the fraction of planets detectable by this technique, many stars can be surveyed within the field of view of one telescope, so transit photometry is quite efficient. Scintillation in and variability of Earth's atmosphere limit photometric precision to roughly one-thousandth of a magnitude, allowing detection of transits by Jupiter-sized planets but not by Earth-sized planets from the ground. The COROT spacecraft will be able to detect Uranus-sized planets orbiting near stars. The Kepler Mission, which is being proposed to NASA's Discovery Program this year, will have a photometer with a larger aperture (1 meter) than will COROT, so it will be able to detect transits by planets as small as Earth. Moreover, the Kepler mission will examine the same star field for four years, allowing confirmation of planets with orbital periods of a year. If the Sun's planetary system is typical for single stars, Kepler should detect approximately 480 terrestrial planets. Assuming the statistics from radial velocity surveys are typical, Kepler should also detect transits of 150 inner giant planets and reflected light variations of 1400 giant planets with orbital periods of less than one week.
Development and Application of the Transit Timing Planet Detection Technique
NASA Astrophysics Data System (ADS)
Steffen, J. H.; Agol, E.
2005-12-01
We present the development and application of a new planet detection technique that uses the transit timing of a known, transiting planet. The transits of a solitary planet orbiting a star occur at equally spaced intervals in time. If a second planet is present, then dynamical interactions within the system will cause the time interval between transits to vary. These transit time variations (TTV) can be used to infer the orbital elements and mass of the unseen, perturbing planet. In some cases, particularly near mean-motion resonances, this technique could detect planets with masses less than the mass of the Earth---a capability not yet achieved by other planet detection schemes. We present an analysis of the set of transit times of the TrES-1 system given by Charbonneau et al. (2005). While no convincing evidence for a second planet in the TrES-1 system was found from that data, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within about 1% fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth--showing that this data is the first to have sensitivity to sub Earth-mass planets. We present results from our studies that use simulated data and from an ongoing analysis of the HD209458 system. These results show that TTV will be an important tool in the detection and characterization of extrasolar planetary systems.
NASA Astrophysics Data System (ADS)
Catanzarite, Joseph; Jenkins, Jon Michael; McCauliff, Sean D.; Burke, Christopher; Bryson, Steve; Batalha, Natalie; Coughlin, Jeffrey; Rowe, Jason; mullally, fergal; thompson, susan; Seader, Shawn; Twicken, Joseph; Li, Jie; morris, robert; smith, jeffrey; haas, michael; christiansen, jessie; Clarke, Bruce
2015-08-01
NASA’s Kepler Space Telescope monitored the photometric variations of over 170,000 stars, at half-hour cadence, over its four-year prime mission. The Kepler pipeline calibrates the pixels of the target apertures for each star, produces light curves with simple aperture photometry, corrects for systematic error, and detects threshold-crossing events (TCEs) that may be due to transiting planets. The pipeline estimates planet parameters for all TCEs and computes diagnostics used by the Threshold Crossing Event Review Team (TCERT) to produce a catalog of objects that are deemed either likely transiting planet candidates or false positives.We created a training set from the Q1-Q12 and Q1-Q16 TCERT catalogs and an ensemble of synthetic transiting planets that were injected at the pixel level into all 17 quarters of data, and used it to train a random forest classifier. The classifier uniformly and consistently applies diagnostics developed by the Transiting Planet Search and Data Validation pipeline components and by TCERT to produce a robust catalog of planet candidates.The characteristics of the planet candidates detected by Kepler (planet radius and period) do not reflect the intrinsic planet population. Detection efficiency is a function of SNR, so the set of detected planet candidates is incomplete. Transit detection preferentially finds close-in planets with nearly edge-on orbits and misses planets whose orbital geometry precludes transits. Reliability of the planet candidates must also be considered, as they may be false positives. Errors in detected planet radius and in assumed star properties can also bias inference of intrinsic planet population characteristics.In this work we infer the intrinsic planet population, starting with the catalog of detected planet candidates produced by our random forest classifier, and accounting for detection biases and reliabilities as well as for radius errors in the detected population.Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.
EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, K. M.; Ida, S.; Ochiai, H.
2015-05-20
We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less
Optimizing the TESS Planet Finding Pipeline
NASA Astrophysics Data System (ADS)
Chitamitara, Aerbwong; Smith, Jeffrey C.; Tenenbaum, Peter; TESS Science Processing Operations Center
2017-10-01
The Transiting Exoplanet Survey Satellite (TESS) is a new NASA planet finding all-sky survey that will observe stars within 200 light years and 10-100 times brighter than that of the highly successful Kepler mission. TESS is expected to detect ~1000 planets smaller than Neptune and dozens of Earth size planets. As in the Kepler mission, the Science Processing Operations Center (SPOC) processing pipeline at NASA Ames Research center is tasked with calibrating the raw pixel data, generating systematic error corrected light curves and then detecting and validating transit signals. The Transiting Planet Search (TPS) component of the pipeline must be modified and tuned for the new data characteristics in TESS. For example, due to each sector being viewed for as little as 28 days, the pipeline will be identifying transiting planets based on a minimum of two transit signals rather than three, as in the Kepler mission. This may result in a significantly higher false positive rate. The study presented here is to measure the detection efficiency of the TESS pipeline using simulated data. Transiting planets identified by TPS are compared to transiting planets from the simulated transit model using the measured epochs, periods, transit durations and the expected detection statistic of injected transit signals (expected MES). From the comparisons, the recovery and false positive rates of TPS is measured. Measurements of recovery in TPS are then used to adjust TPS configuration parameters to maximize the planet recovery rate and minimize false detections. The improvements in recovery rate between initial TPS conditions and after various adjustments will be presented and discussed.
Detection of Terrestrial Planets Using Transit Photometry
NASA Astrophysics Data System (ADS)
Koch, D.; Witteborn, F.; Jenkins, J.; Dunham, E.; Borucki, W.
2000-12-01
Transit photometry detection of planets offers many advantages: an ability to detect terrestrial-size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a periodic signature (differential brightness change) being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b (Charbonneau, et al. 2000, Castellano et al. 2000 and references therein). However, photometry 100 times better is required to detect terrestrial planets. We present results of measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a spacebased photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm per transit (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These "transits" were reliably detected as part of the tests. Funding for this work was provided by NASA's Discovery and Origins programs and by NASA Ames. Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M., ApJ, 529, L45, 2000. Castellano, T., Jenkins, J., Trilling, D. E., Doyle, L., and Koch, D., ApJ Let. 532, L51-L53 (2000)
The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets
NASA Astrophysics Data System (ADS)
Gillon, M.; Demory, B.-O.; Lovis, C.; Deming, D.; Ehrenreich, D.; Lo Curto, G.; Mayor, M.; Pepe, F.; Queloz, D.; Seager, S.; Ségransan, D.; Udry, S.
2017-05-01
Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117
Characterization and Validation of Transiting Planets in the TESS SPOC Pipeline
NASA Astrophysics Data System (ADS)
Twicken, Joseph D.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Wohler, Bill
2018-06-01
Light curves for Transiting Exoplanet Survey Satellite (TESS) target stars will be extracted and searched for transiting planet signatures in the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. Targets for which the transiting planet detection threshold is exceeded will be processed in the Data Validation (DV) component of the Pipeline. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV data products include extensive reports by target, one-page summaries by planet candidate, and tabulated transit model fit and diagnostic test results. DV products may be employed by humans and automated systems to vet planet candidates identified in the Pipeline. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. We describe the Data Validation component of the SPOC Pipeline. The diagnostic tests exploit the flux (i.e., light curve) and pixel time series associated with each target to support the determination of the origin of each purported transiting planet signature. We also highlight the differences between the DV components for Kepler and TESS. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.
Detecting transit signatures of exoplanetary rings using SOAP3.0
NASA Astrophysics Data System (ADS)
Akinsanmi, B.; Oshagh, M.; Santos, N. C.; Barros, S. C. C.
2018-01-01
Context. It is theoretically possible for rings to have formed around extrasolar planets in a similar way to that in which they formed around the giant planets in our solar system. However, no such rings have been detected to date. Aims: We aim to test the possibility of detecting rings around exoplanets by investigating the photometric and spectroscopic ring signatures in high-precision transit signals. Methods: The photometric and spectroscopic transit signals of a ringed planet is expected to show deviations from that of a spherical planet. We used these deviations to quantify the detectability of rings. We present SOAP3.0 which is a numerical tool to simulate ringed planet transits and measure ring detectability based on amplitudes of the residuals between the ringed planet signal and best fit ringless model. Results: We find that it is possible to detect the photometric and spectroscopic signature of near edge-on rings especially around planets with high impact parameter. Time resolution ≤7 min is required for the photometric detection, while 15 min is sufficient for the spectroscopic detection. We also show that future instruments like CHEOPS and ESPRESSO, with precisions that allow ring signatures to be well above their noise-level, present good prospects for detecting rings.
A Spitzer search for transits of radial velocity detected super-Earths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammer, J. A.; Knutson, H. A.; Desert, J.-M.
2014-02-01
Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable massmore » estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.« less
A photometric search for transiting planets
NASA Astrophysics Data System (ADS)
Baliber, Nairn Reese
In the decade since the discovery of the first planet orbiting a main-sequence star other than the Sun, more than 160 planets have been detected in orbit around other stars, most of them discovered by measuring the velocity of the reflexive motion of their parent stars caused by the gravitational pull of the planets. These discoveries produced a population of planets much different to the ones in our Solar System and created interest in other methods to detect these planets. One such method is searching for transits, the slight photometric dimming of stars caused by a close-orbiting, Jupiter-sized planet passing between a star and our line of sight once per orbit. We report results from TeMPEST, the Texas, McDonald Photometric Extrasolar Search for Transits, a transit survey conducted with the McDonald Observatory 0.76 m Prime Focus Corrector (PFC). We monitored five fields of stars in the plane of the Milky Way over the course of two and a half years. We created a photometry pipeline to perform high-precision differential photometry on all of the images, and used a software detection algorithm to detect transit signals in the light curves. Although no transits were found, we calculated our detection probability by determining the fraction of the stars monitored by TeMPEST which were suitable to show transits, measuring the probability of detecting transit signals based on the temporal coverage of our fields, and measuring our detection efficiency by inserting false transits into TeMPEST data to see what fraction could be recovered by our automatic detection software. We conclude that in our entire data set, we generated an effective sample of 2660 stars, a sample in which if any star is showing a transit, it would have been detected. We found no convincing transits in our data, but current statistics from radial velocity surveys indicate that only one in about 1300 of these stars should be showing transits. These numbers are consistent with the lack of transits produced by TeMPEST and the small number of transits generated by other surveys. We therefore discuss methods by which a transit survey's effective sample may be increased to make such surveys productive in a reasonable amount of time.
On the Detection of Non-transiting Hot Jupiters in Multiple-planet Systems
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Wang, Songhu; Laughlin, Gregory
2016-05-01
We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer-period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line of sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting hot Jupiter in the KOI-1822 system. Candidate non-transiting hot Jupiters can be readily confirmed with a small number of Doppler velocity observations, even for stars with V ≳ 14.
Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters
NASA Technical Reports Server (NTRS)
Debes, John H.; Jackson, Brian
2010-01-01
The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.
Characterization and Validation of Transiting Planets in the Kepler and TESS Pipelines
NASA Astrophysics Data System (ADS)
Twicken, Joseph; Brownston, Lee; Catanzarite, Joseph; Clarke, Bruce; Cote, Miles; Girouard, Forrest; Li, Jie; McCauliff, Sean; Seader, Shawn; Tenenbaum, Peter; Wohler, Bill; Jenkins, Jon Michael; Batalha, Natalie; Bryson, Steve; Burke, Christopher; Caldwell, Douglas
2015-08-01
Light curves for Kepler targets are searched for transiting planet signatures in the Transiting Planet Search (TPS) component of the Science Operations Center (SOC) Processing Pipeline. Targets for which the detection threshold is exceeded are subsequently processed in the Data Validation (DV) Pipeline component. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV output products include extensive reports by target, one-page report summaries by planet candidate, and tabulated planet model fit and diagnostic test results. The DV products are employed by humans and automated systems to vet planet candidates identified in the pipeline. The final revision of the Kepler SOC codebase (9.3) was released in March 2015. It will be utilized to reprocess the complete Q1-Q17 data set later this year. At the same time, the SOC Pipeline codebase is being ported to support the Transiting Exoplanet Survey Satellite (TESS) Mission. TESS is expected to launch in 2017 and survey the entire sky for transiting exoplanets over a period of two years. We describe the final revision of the Kepler Data Validation component with emphasis on the diagnostic tests and reports. This revision also serves as the DV baseline for TESS. The diagnostic tests exploit the flux (i.e., light curve), centroid and pixel time series associated with each target to facilitate the determination of the true origin of each purported transiting planet signature. Candidate planet detections and DV products for Kepler are delivered to the Exoplanet Archive at the NASA Exoplanet Science Institute (NExScI). The Exoplanet Archive is located at exoplanetarchive.ipac.caltech.edu. Funding for the Kepler and TESS Missions has been provided by the NASA Science Mission Directorate.
NASA Astrophysics Data System (ADS)
Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury
2018-05-01
There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.
One Hundred Thousand Eyes: Analysis of Kepler Archival Data
NASA Astrophysics Data System (ADS)
Fischer, Debra
We are using a powerful resource, more than 100,000 eyes of users on the successful Planet Hunters Web project, who will identify the best follow-up science targets for this ADAP proposal among the Kepler public archive light curves. Planet Hunters is a Citizen Science program with a user base of more than 50,000 individuals who have already contributed the 24/7 cumulative equivalent of 200 human years assessing Kepler data. They independently identified most of the Kepler candidates with radii greater than 3-4 REARTH and they detected ten transiting planet candidates that were missed by the Kepler pipeline algorithms, including two circumbinary transiting planet candidates. These detections have provided important feedback for the Kepler algorithms about possible leaks where candidates might be lost. Our scientific follow up program will use Planet Hunter classifications of archival data from the Kepler Mission to: "Detect and model new transiting planets: for radii greater than 3 4 REARTH and orbital periods longer than one year, the Planet Hunters should be quite competitive with automated pipelines that require at least 3 transits for a detection and fill in the parameter space for Neptune-size planets over a wide range of orbital periods. For stars where a single transit can be modeled as a long period planet, we will establish a watch list for future transits. We will carry out checks for false positives (pixel centroiding analysis, AO observations, Doppler measurements where appropriate). "Analyze the completeness statistics for Kepler transits and independently determine a corrected planet occurrence rate as a function of planet radius and orbital period. This will be done by injecting synthetic transits into real Kepler light curves and calculating the efficiency with which the transits are detected by Planet Hunters. "Model the full spectroscopic and photometric orbital solutions for a set of ~60 detached eclipsing binary systems with low mass K and M dwarf components- quadrupling the number of fully characterized eclipsing systems with low-mass stars. We will revise the spectral synthesis modeling code, SME, to handle double line spectroscopic binaries (including velocity offets and relative intensity as free parameters). Our data, coupled with the sparse data currently available on late-type stellar radii, will allow us to explore the long-standing discrepancy between theory and observation in the sense that directly determined radii exceed theory predictions by ~10%. As such, host star radii are often the limiting factor in extracting the planetary radii from Kepler transiting systems since model approaches appear currently flawed. Thus, an empirical calibration to radius relationships for low-mass stars will be fundamentally enabling for the Kepler mission. "Carry out a search for transiting circumbinary planets; Planet Hunters has already detected two of four known eclipsing binary systems with transiting planets. "Develop a guest scientist program so that the larger community can tap into Planet Hunters with special programs. "Further develop our in-house software analysis tools for modeling light curves, analyzing pixel centroid offsets and measuring Doppler shifts in eclipsing binaries; we will make these programs available in the public domain (Astrophysics Source Code Library).
Long-Period Exoplanets from Photometric Transit Surveys
NASA Astrophysics Data System (ADS)
Osborn, Hugh
2017-10-01
Photometric transit surveys on the ground & in space have detected thousands of transiting exoplanets, typically by analytically combining the signals from multiple transits. This technique of exoplanet detection was exploited in K2 to detect nearly 200 candidate planets, and extensive follow-up was able to confirm the planet K2-110b as a 2.6±0.1R⊕, 16.7±3.2M⊙ planet on a 14d orbit around a K-dwarf. The ability to push beyond the time limit set by transit surveys to detect long-period transiting objects from a single eclipse was also studied. This was performed by developing a search technique to search for planets around bright stars in WASP and NGTS photometry, finding NGTS to be marginally better than WASP at detecting such planets with 4.14±0.16 per year compared to 1.43±0.15, and detecting many planet candidates for which follow-up is on-going. This search was then adapted to search for deep, long-duration eclipses in all WASP targets. The results of this survey are described in this thesis, as well as detailed results for the candidate PDS-110, a young T-Tauri star which exhibited ∼20d-long, 30%-deep eclipses in 2008 and 2011. Space-based photometers such as Kepler have the precision to identify small exoplanets and eclipsing binary candidates from only a single eclipse. K2, with its 75d campaign duration and high-precision photometry, is not only ideally suited to detect significant numbers of single-eclipsing objects, but also to characterise them from a single event. The Bayesian transit-fitting tool ("Namaste: An MCMC Analysis of Single Transit Exoplanets") was developed to extract planetary and orbital information from single transits, and was applied to 71 candidate events detected in K2 photometry. The techniques developed in this thesis are highly applicable to future transit surveys such as TESS & PLATO, which will be able to discover & characterise large numbers of long period planets in this way
Searching for transiting circumbinary planets in CoRoT and ground-based data using CB-BLS
NASA Astrophysics Data System (ADS)
Ofir, A.; Deeg, H. J.; Lacy, C. H. S.
2009-10-01
Aims: Already from the initial discoveries of extrasolar planets it was apparent that their population and environments are far more diverse than initially postulated. Discovering circumbinary (CB) planets will have many implications, and in this context it will again substantially diversify the environments that produce and sustain planets. We search for transiting CB planets around eclipsing binaries (EBs). Methods: CB-BLS is a recently-introduced algorithm for the detection of transiting CB planets around EBs. We describe progress in search sensitivity, generality and capability of CB-BLS, and detection tests of CB-BLS on simulated data. We also describe an analytical approach for the determination of CB-BLS detection limits, and a method for the correct detrending of intrinsically-variable stars. Results: We present some blind-tests with simulated planets injected to real CoRoT data. The presented upgrades to CB-BLS allowed it to detect all the blind tests successfully, and these detections were in line with the detection limits analysis. We also correctly detrend bright eclipsing binaries from observations by the TrES planet search, and present some of the first results of applying CB-BLS to multiple real light curves from a wide-field survey. Conclusions: CB-BLS is now mature enough for its application to real data, and the presented processing scheme will serve as the template for our future applications of CB-BLS to data from wide-field surveys such as CoRoT. Being able to put constraints even on non-detection will help to determine the correct frequency of CB planets, contributing to the understanding of planet formation in general. Still, searching for transiting CB planets is still a learning experience, similarly to the state of transiting planets around single stars only a few years ago. The recent rapid progress in this front, coupled with the exquisite quality of space-based photometry, allows to realistically expect that if transiting CB planets exist - then they will soon be found. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.
2017-12-01
Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}< 2 days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.
Kepler-47: A Three-Planet Circumbinary System
NASA Astrophysics Data System (ADS)
Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader
2015-12-01
Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin
The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in themore » atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates.« less
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.
1997-01-01
The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)
1997-01-01
The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.
Kepler Mission: A Search for Terrestrial Planets
NASA Technical Reports Server (NTRS)
Koch, D.; Borucki, W.; Jenkens, J.; Dunham, E.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
The Kepler Mission is a search for terrestrial planets by monitoring a large ensemble of stars for the periodic transits of planets. The mission consists of a 95-cm aperture photometer with 105 square deg field of view that monitors 100,000 dwarf stars for four years. The mission is unique in its ability to detect Earth-size planets in the habitable zone of other stars in the extended solar neighborhood. An Earth-size transit of a solar-like star causes a change in brightness of about 100 ppm. Laboratory testing has demonstrated that a total system noise level of 20 ppm is readily achievable on the timescale of transits. Earth-like transits have been created and reliably measured in an end-to-end system test that has all known sources of noise including, spacecraft jitter. To detect Earth-size planets, the photometer must be spaceborne; this also eliminates the day-night and seasonal cycle interruptions of ground-based observing. The photometer will stare at a single field of stars for four years, with an option to continue for two more years. This allows for detection of four transits of planets in Mars-like orbits and detection of planets even smaller than Earth especially for short period orbits, since the signal to noise improves as the square root of the number of transits observed. In addition to detection of planets, Kepler data are also useful for understanding the activity cycles and rotation rates of the stars observed. For the 3,000 stars brighter than mv= 11.4 p-mode oscillations are measured. The mission has been selected as one of three candidates for NASA's next Discovery mission.
NASA Technical Reports Server (NTRS)
Doyle, Laurance R.
1998-01-01
During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.
Extrasolar Planets in the Classroom
ERIC Educational Resources Information Center
George, Samuel J.
2011-01-01
The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…
The detection and characterization of a nontransiting planet by transit timing variations.
Nesvorný, David; Kipping, David M; Buchhave, Lars A; Bakos, Gáspár Á; Hartman, Joel; Schmitt, Allan R
2012-06-01
The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.
HIDING IN THE SHADOWS: SEARCHING FOR PLANETS IN PRE-TRANSITIONAL AND TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobinson, Jack; Leinhardt, Zoë M.; Dodson-Robinson, Sarah E.
Transitional and pre-transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous works. Dynamical influences from a planet on a circular orbit aremore » shown to enhance dust production in the disk interior and exterior to the planet orbit, while removing planetesimals from the orbit itself, creating a clearly defined gap. In the case of an eccentric planet, the gap opened by the planet is not as clear as the circular case, but there is a detectable asymmetry in the dust disk.« less
TeMPEST: the Texas, McDonald Photometric Extrasolar Search for Transits
NASA Astrophysics Data System (ADS)
Baliber, N. R.; Cochran, W. D.
2001-11-01
The TeMPEST project is a photometric search for transits of extrasolar giant planets orbiting at distances < ~ 0.1 AU to their parent stars. As is the case with HD 209458, the only known transiting system, measurements of the photometric dimming of stars with transiting planets, along with radial velocity (RV) data, will provide information on physical characteristics (mass, radius, and mean density) of these planets. Further study of HD 209458 b and planets like it might reveal their reflectivity, putting further constraints on their surface temperatures, as well as allow measurement of the composition of their outer atmospheres. To detect these types of systems, we use the McDonald Observatory 0.76m Prime Focus Camera (PFC), which provides a 46.2 arcmin square field. We are currently obtaining our first full season of data, and by early 2002 will have sufficient data to follow approximately 5,000 stars with the precision necessary to detect transits of close-orbiting Jovian planets. We also present data of the detection of the transit of the planet orbiting HD 209458 using the 0.76m PFC. These data are consistent with the partial occultation of the light from the star caused by the transit of an opaque disc of radius 1.4 R Jup. The TeMPEST project is funded by the NASA Origins program.
DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shporer, Avi; Jenkins, Jon M.; Seader, Shawn E.
2011-12-15
We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm, aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms: the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude tomore » estimate the planet's minimum mass, which results in M{sub p} sin i = 9.2 {+-} 1.1 M{sub J} (assuming the host star parameters derived by Szabo et al.). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission of 3.5 years will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.« less
The Atmospheres of Extrasolar Planets
NASA Technical Reports Server (NTRS)
Richardson, L. J.; Seager, S.
2007-01-01
In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.
We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20more » are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.« less
NASA Astrophysics Data System (ADS)
Brakensiek, Joshua; Ragozzine, D.
2012-10-01
The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.
Advances in the Kepler Transit Search Engine
NASA Astrophysics Data System (ADS)
Jenkins, Jon M.
2016-10-01
Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth's closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program's Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA's PLATO mission scheduled for launch in 2024. These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures. Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. Over 18,000 transit-like signatures can be identified for a search across 4 years of data. Most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months' effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical to the success of future missions such as TESS and PLATO.
NASA Astrophysics Data System (ADS)
Imara, Nia; Di Stefano, Rosanne
2018-05-01
We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.
NASA Astrophysics Data System (ADS)
Jenkins, Jon Michael
2015-08-01
Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth’s closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program’s Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA’s PLATO mission scheduled for launch in 2024.These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures.Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. While over 18,000 transit-like signatures can be identified for a search across 4 years of data, most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months’ effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical to the success of future missions such as TESS and PLATO.
Jenkins, J M; Doyle, L R; Cullers, D K
1996-02-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.
1996-01-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
KOI-2700b—A Planet Candidate with Dusty Effluents on a 22 hr Orbit
NASA Astrophysics Data System (ADS)
Rappaport, Saul; Barclay, Thomas; DeVore, John; Rowe, Jason; Sanchis-Ojeda, Roberto; Still, Martin
2014-03-01
Kepler planet candidate KOI-2700b (KIC 8639908b), with an orbital period of 21.84 hr, exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents, and reminiscent of KIC 1255b. The host star has T eff = 4435 K, M ~= 0.63 M ⊙, and R ~= 0.57 R ⊙, comparable to the parameters ascribed to KIC 12557548. The transit egress can be followed for ~25% of the orbital period and, if interpreted as extinction from a dusty comet-like tail, indicates a long lifetime for the dust grains of more than a day. We present a semiphysical model for the dust tail attenuation and fit for the physical parameters contained in that expression. The transit is not sufficiently deep to allow for a study of the transit-to-transit variations, as is the case for KIC 1255b however, it is clear that the transit depth is slowly monotonically decreasing by a factor of ~2 over the duration of the Kepler mission. We infer a mass-loss rate in dust from the planet of ~2 lunar masses per Gyr. The existence of a second star hosting a planet with a dusty comet-like tail would help to show that such objects may be more common and less exotic than originally thought. According to current models, only quite small planets with Mp <~ 0.03 M ⊕ are likely to release a detectable quantity of dust. Thus, any "normal-looking" transit that is inferred to arise from a rocky planet of radius greater than ~1/2 R ⊕ should not exhibit any hint of a dusty tail. Conversely, if one detects an asymmetric transit due to a dusty tail, then it will be very difficult to detect the hard body of the planet within the transit because, by necessity, the planet must be quite small (i.e., <~ 0.3 R ⊕).
Polarimetry of hot-Jupiter systems and radiative transfer models of planetary atmospheres
NASA Astrophysics Data System (ADS)
Bott, Kimberly; Bailey, Jeremy; Kedziora-Chudczer, Lucyna; Cotton, Daniel; Marshall, Jonathan
2016-01-01
Thousands of exoplanets and planet candidates have been detected. The next important step in the contexts of astrobiology, planetary classification and planet formation is to characterise them. My dissertation aims to provide further characterisation to four hot Jupiter exoplanets: the relatively well-characterised HD 189733b, WASP-18b which is nearly large enough to be a brown dwarf, and two minimally characterised non-transiting hot Jupiters: HD 179949b and tau Bootis b.For the transiting planets, this is done through two means. First, published data from previous observations of the secondary eclipse (and transit for HD 189733b) are compared to models created with the Versatile Software for the Transfer of Atmospheric Radiation (VSTAR). Second, new polarimetric observations from the HIgh Precision Polarimetric Instrument are compared to Lambert-Rayleigh polarised light phase curves. For the non-transiting planets, only the polarimetric measurements are compared to models, but toy radiative transfer models are produced for concept. As an introduction to radiative transfer models, VSTAR is applied to the planet Uranus to measure its D/H isotope ratio. A preliminary value is derived for D/H in one part of the atmosphere.Fitting a single atmospheric model to the transmitted, reflected, and emitted light, I confirm the presence of water on HD 189733b, and present a new temperature profile and cloud profile for the planet. For WASP-18b, I confirm the general shape of the temperature profile. No conclusions can be drawn from the polarimetric measurements for the non-transiting planets. I detect a possible variation with phase for transiting planet WASP-18b but cannot confirm it at this time. Alternative sources to the planet are discussed. For HD 189733b, I detect possible variability in the polarised light at the scale expected for the planet. However, the data are also statistically consistent with no variability and are not matched to the phase of the planet.
Transit detection of a `starshade' at the inner lagrange point of an exoplanet
NASA Astrophysics Data System (ADS)
Gaidos, E.
2017-08-01
All water-covered rocky planets in the inner habitable zones of solar-type stars will inevitably experience a catastrophic runaway climate due to increasing stellar luminosity and limits to outgoing infrared radiation from wet greenhouse atmospheres. Reflectors or scatterers placed near Earth's inner Lagrange point (L_1) have been proposed as a "geoengineering' solution to anthropogenic climate change and an advanced version of this could modulate incident irradiation over many Gyr or `rescue' a planet from the interior of the habitable zone. The distance of the starshade from the planet that minimizes its mass is 1.6 times the Earth-L_1 distance. Such a starshade would have to be similar in size to the planet and the mutual occultations during planetary transits could produce a characteristic maximum at mid-transit in the light curve. Because of a fortuitous ratio of densities, Earth-size planets around G dwarf stars present the best opportunity to detect such an artefact. The signal would be persistent and is potentially detectable by a future space photometry mission to characterize transiting planets. The signal could be distinguished from natural phenomenon, I.e. starspots or cometary dust clouds, by its shape, persistence and transmission spectrum.
Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets
NASA Astrophysics Data System (ADS)
Varakian, Matthew; Deming, Drake
2018-01-01
The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.
Early 2017 observations of TRAPPIST-1 with Spitzer
NASA Astrophysics Data System (ADS)
Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.
2018-04-01
The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.
HST Confirmation and Characterization of a Potentially Habitable World
NASA Astrophysics Data System (ADS)
Ehrenreich, David
2015-10-01
Atmospheric characterization of exoplanets in habitable zones is one of the greatest challenge of astrophysics. In fact, all known potential targets either do not transit, or they transit stars too faint or distant, making them impossible to probe with transit spectroscopy. A recently announced K2 planet candidate found in the habitable zone of a nearby M dwarf, could be a game changer as the first habitable-zone super-Earth (2.2 R_Earth) amenable to characterization. We propose to use HST to (1) validate the planet candidate by observing a high-precision near-infrared transit with WFC3 and (2) characterize its atmosphere by detecting an extended hydrogen exosphere in the far ultraviolet with STIS. Hydrogen escape is indeed a telltale sign of terrestrial planets enduring a runaway greenhouse effect. Further considerations on the habitable potential of the planet thus need to be vet against a detection of hydrogen escape. Our recent STIS Lyman-alpha observations of a moderately irradiated neptune show that extended upper atmospheres can reach much larger sizes around such planets than around very hot exoplanets. We could thus obtain a significant detection with a modest amount of HST orbits. In parallel, we started a ground-based campaign to constrain the yet unknown mass of this planet with Doppler measurements. Combining the Lyman-alpha transit depth with the measurement of the planet bulk density (from the accurate near-infrared transit and the Doppler mass), will reveal for the first time whether an exoplanet can be telluric and actually habitable, or if it is losing its water because of a runaway greenhouse effect.
Validating the Presence of a Moon Orbiting Kepler-1625b
NASA Astrophysics Data System (ADS)
Teachey, Alex
2017-08-01
The Hunt for Exomoons with Kepler (HEK) project has been engaged in the search for exomoons for the past several years, but so far no reliable exomoon detection can be found in the literature. After our largest survey to date, we have recently detected a strong candidate moon signal in the light curve of Kepler-1625b. The planet exhibits three transits in the Kepler data (P 287 days), in which we detect out-of-transit flux dips consistent with the presence of a large moon to greater than 4 sigma confidence. We propose to observe the next transit of the planet, which will occur October 29th, 2017 (Cycle-25), in the near-infrared using the Wide Field Camera 3 instrument on HST. We request 26 orbits of the telescope, which will allow us to capture the full planet-moon transit event and provide an opportunity to measure the transmission spectra of both the planet and the moon. We anticipate that the proposed measurements would be sufficient to confirm the first unambiguous detection of a moon beyond our Solar System.
NASA Astrophysics Data System (ADS)
Mullally, S. E.
2017-12-01
The Kepler mission was designed to detect transiting exoplanets and has succeeded in finding over 4000 candidates. These candidates include approximately 50 terrestrial-sized worlds near to the habitable zone of their GKM dwarf stars (shown in figure against the stellar temperature). However not all transit detections are created equal. False positives, such as background eclipsing binaries, can mimic the signal of a transiting planet. Additionally, at Kepler's detection limit noise, either from the star or from the detector, can create signals that also mimic a transiting planet. For the data release 25 Kepler catalog we simulated these false alarms and determined how often known false alarms are called candidates. When this reliability information is combined with our studies of catalog completeness, this catalog can be used to understand the occurrence rate of exoplanets, even for the small, temperate planet candidates found by Kepler. I will discuss the automated methods we used to create and characterize this latest catalog, highlighting how we balanced the completeness and reliability of the long period candidates. While Kepler has been very successful at detecting transiting terrestrial-sized exoplanets, many of these detections are around stars that are too dim for successful follow-up work. Future missions will pick up where Kepler left off and find small planets around some of the brightest and smallest stars.
Characterizing extrasolar planets
NASA Astrophysics Data System (ADS)
Brown, Timothy M.
Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.
Transiting Exoplanet Observations at Grinnell College
NASA Astrophysics Data System (ADS)
Sauerhaft, Julia; Slough, P.; Cale, B.; Kempton, E.
2014-01-01
Grinnell College, a small liberal arts college in Grinnell, Iowa with 1600 undergraduate students, is home to the Grant O. Gale Observatory. Over the past year, we have successfully detected extrasolar planets using the transit method with our 24-inch Cassegrain reflecting telescope equipped with a CCD camera. With little light pollution and an easily accessible observatory, Grinnell College is an optimal location for transiting exoplanet observations. With the current telescope set-up and CCD camera, we have taken time series data and created image calibration and post-processing programs that detect exoplanet transits at high photometric precision. In the future, we will continue to use these observation and data reduction procedures to conduct transiting exoplanet research. Goals for our research program include performing follow-up observations of transiting exoplanet candidates to confirm their planetary nature, searching for additional exoplanets in known planetary systems using the transit timing detection method, tracking long period transiting planets, and refining properties of exoplanets and their host stars. Ground-based transiting planet science is especially important in the post-Kepler era, and our dedicated mid-sized telescope with plenty of access to dark clear nights provides an ideal resource for a variety of follow up and exoplanet detection efforts.
Transits of extrasolar moons around luminous giant planets
NASA Astrophysics Data System (ADS)
Heller, R.
2016-04-01
Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.
The Kepler Mission: A Search for Terrestrial Planets - Development Status
NASA Technical Reports Server (NTRS)
Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.
2003-01-01
We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard
2011-01-10
We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M{sub P} sin i = 4.15 M{sub +}. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s{sup -1}, is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P {approx} 2.3more » years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of {approx}3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.« less
Prevalence and Properties of Planets from Kepler and K2
NASA Astrophysics Data System (ADS)
Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew; Crossfield, Ian; Beichman, Charles; Sinukoff, Evan
2015-12-01
Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation around G, K, and M stars. While Kepler detected many such planets, all but a handful orbit faint, distant stars, which are not amenable to precise follow up measurements. NASA's K2 mission has the potential to increase the number of known small, transiting planets around bright stars by an order of magnitude. I will present the latest results from my team's efforts to detect, confirm, and characterize planets using the K2 mission. I will highlight some of the progress and remaining challenges involved with generating denoised K2 photometry and with detecting planets in the presence of severe instrument systematics. Among our recent discoveries are the K2-3 and K2-21 planetary systems: M dwarfs hosting multiple transiting Earth-size planets with low equilibrium temperatures. These systems offer a convenient laboratory for studying the bulk composition and atmospheric properties of small planets receiving low levels of stellar irradiation, where processes such as mass loss by photo-evaporation could play a weaker role.
Kepler Reliability and Occurrence Rates
NASA Astrophysics Data System (ADS)
Bryson, Steve
2016-10-01
The Kepler mission has produced tables of exoplanet candidates (``KOI table''), as well as tables of transit detections (``TCE table''), hosted at the Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu). Transit detections in the TCE table that are plausibly due to a transiting object are selected for inclusion in the KOI table. KOI table entries that have not been identified as false positives (FPs) or false alarms (FAs) are classified as planet candidates (PCs, Mullally et al. 2015). A subset of PCs have been confirmed as planetary transits with greater than 99% probability, but most PCs have <99% probability of being true planets. The fraction of PCs that are true transiting planets is the PC reliability rate. The overall PC population is believed to have a reliability rate >90% (Morton & Johnson 2011).
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-08-01
Whats the latest from the Kepler K2 mission? K2 has found its first planetary system containing more than three planets an exciting five-planet system located ~380 light-years from Earth!Opportunities From K2Raw K2 light curve (blue, top) and systematic corrected light curve (orange, bottom) for HIP 41378. The three deepest transits are single transits from the three outermost planet candidates. [Vanderburg et al. 2016]The original Kepler mission was enormously successful, discovering thousands of planet candidates. But one side effect of Keplers original observing technique, in which it studied the same field for four years, is that it was very good at detecting extremely faint systems systems that were often too faint to be followed up with other techniques.After Keplers mechanical failure in 2013, the K2 mission was launched, in which the spacecraft uses solar pressure to stabilize it long enough to perform an 80-day searches of each region it examines. Over the course of the K2 mission, Kepler could potentially survey up to 20 times the sky area of the original mission, providing ample opportunity to find planetary systems around bright stars. These stars may be bright enough to be followed up with other techniques.Multi-Planet SystemsTheres a catch to the 80-day observing program: the K2 mission is less likely to detect multiple planets orbiting the same star, due to the short time spent observing the system. While the original Kepler mission detected systems with up to seven planets, K2 had yet to detect systems with more than three candidates until now.Led by Andrew Vanderburg (NSF Graduate Research Fellow at the Harvard-Smithsonian Center for Astrophysics), a team of scientists recentlyanalyzed K2 observations ofthe bright star HIP 41378. Theteamfound that this F-type star hosts five potential planetary candidates!Phase-folded light curve for each of the five transiting planets in the HIP 41378 system. The outermost planet (bottom panel) may provide an excellent target for transmission spectroscopy, to examine its atmosphere. [Vanderburg et al. 2016]Newly Discovered CandidatesThe systems candidates include two sub-Neptune-sized planets, which were both observed over multiple transits. They orbit in what is nearly a 2:1 resonance, with periods of 31.7 and 15.6 days. Based on modeling of their transits, Vanderburg and collaborators estimate that they have radii of 2.6 and 2.9 Earth radii.The system also contains three larger outer-planet candidates: one Neptune-sized (~4 Earth radii), one sub-Saturn-sized (~5 Earth radii), and one Jupiter-sized (~10 Earth radii). These planets were detected with only a single transit each, so their properties are harder to determine with certainty. The authors models, however, suggest that their periods are ~160 days, ~130 days, and ~1 year.This systems brightness, the accessible size of its planets, and its rich architecture make it an excellent target for follow-up observations. In particular, the brightness of the host star and the transit depth of the outermost planet, HIP 41378 f, make this candidate an ideal target for future transit transmission spectroscopy measurements.Since past observations of exoplanet atmospheres have been primarily of short-period, highly irradiated planets, being able to examine the atmosphere of such a long-period gas giant could open up a new regime of exoplanet atmospheric studies.CitationAndrew Vanderburg et al 2016 ApJ 827 L10. doi:10.3847/2041-8205/827/1/L10
Simulating the Exoplanet Yield from the Transiting Exoplanet Survey Satellite
NASA Astrophysics Data System (ADS)
Barclay, Thomas; Pepper, Joshua; Schlieder, Joshua; Quintana, Elisa
2018-01-01
In 2018 NASA will launch the MIT-led Transiting Exoplanet Survey Satellite (TESS) which has a goal of detecting terrestrial-mass planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. We inferred how many exoplanets the TESS mission will detect, the physical properties of these detected planets, and the properties of the stars that those planets orbit, subject to certain assumptions about the mission performance. To make these predictions we use samples of stars that are drawn from the TESS Input Catalog Candidate Target List. We place zero or more planets in orbit around these stars with physical properties following known exoplanet occurrence rates, and use the TESS noise model to predict the derived properties of the detected exoplanets. We find that it is feasible to detect around 1000 exoplanets, including 250 smaller than 2 earth-radii using the TESS 2-min cadence data. We examined alternative noise models and detection models and find in our pessimistic model that TESS will detect just 500 exoplanets. When potential detections in the full-frame image data are included, the number of detected planets could increase by a factor of 4. Perhaps most excitingly, TESS will find over 2 dozen planets orbiting in the habitable zone of bright, nearby cool stars. These planets will make ideal candidates for atmospheric characerization by JWST.
Giant Transiting Planets Observations - GITPO
NASA Astrophysics Data System (ADS)
Afonso, C.
2006-08-01
The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits (< 0.05 AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telecope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.
Giant Transiting Planets Observations GITPO
NASA Astrophysics Data System (ADS)
Afonso, C.; Henning, Th.; Weldrake, D.; Mazeh, T.; Dreizler, S.
The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last recent years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits ({ AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telescope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.
Data Validation in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.;
2010-01-01
We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets
A Planet Hunters Search of the Kepler TCE Inventory
NASA Astrophysics Data System (ADS)
Schwamb, Meg; Lintott, Chris; Fischer, Debra; Smith, Arfon; Boyajian, Tabetha; Brewer, John; Giguere, Matt; Lynn, Stuart; Schawinski, Kevin; Simpson, Rob; Wang, Ji
2013-07-01
NASA's Kepler spacecraft has spent the past 4 years monitoring ~160,000 stars for the signatures of transiting exoplanets. Planet Hunters (http://www.planethunters.org), part of the Zooniverse (http://www.zooniverse.org) collection of citizen science projects, uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. We have demonstrated the success of a citizen science approach with the project's discoveries including PH1 b, a transiting circumbinary planet in a four star system., and over 20 previously unknown planet candidates. The Kepler team has released the list of 18,406 potential transit signals or threshold-crossing events (TCEs) identified in Quarters 1-12 (~1000 days) by their automated Transit Planet Search (TPS) algorithm. The majority of these detections found by TPS are triggered by transient events and are not valid planet candidates. To identify planetary candidates from the detected TCEs, a human review of the validation reports, generated by the Kepler pipeline for each TCE, is performed by several Kepler team members. We have undertaken an independent crowd-sourced effort to perform a systematic search of the Kepler Q1-12 TCE list. With the Internet we can obtain multiple assessments of each TCE's data validation report. Planet Hunters volunteers evaluate whether a transit is visible in the Kepler light curve folded on the expected period identified by TPS. We present the first results of this analysis.
Forecasting the detectability of known radial velocity planets with the upcoming CHEOPS mission
NASA Astrophysics Data System (ADS)
Yi, Joo Sung; Chen, Jingjing; Kipping, David
2018-04-01
The CHaracterizing ExOPlanets Satellite (CHEOPS) mission is planned for launch next year with a major objective being to search for transits of known radial velocity (RV) planets, particularly those orbiting bright stars. Since the RV method is only sensitive to planetary mass, the radii, transit depths and transit signal-to-noise values of each RV planet are, a priori, unknown. Using an empirically calibrated probabilistic mass-radius relation, forecaster, we address this by predicting a catalogue of homogeneous credible intervals for these three keys terms for 468 planets discovered via RVs. Of these, we find that the vast majority should be detectable with CHEOPS, including terrestrial bodies, if they have the correct geometric alignment. In particular, we predict that 22 mini-Neptunes and 82 Neptune-sized planets would be suitable for detection and that more than 80 per cent of these will have apparent magnitude of V < 10, making them highly suitable for follow-up characterization work. Our work aims to assist the CHEOPS team in scheduling efforts and highlights the great value of quantifiable, statistically robust estimates for upcoming exoplanetary missions.
NASA Astrophysics Data System (ADS)
Seagroves, Scott; Harker, Justin; Laughlin, Gregory; Lacy, Justin; Castellano, Tim
2003-12-01
We describe a project (transitsearch.org) currently attempting to discover transiting intermediate-period planets orbiting bright parent stars, and we simulate that project's performance. The discovery of such a transit would be an important astronomical advance, bridging the critical gap in understanding between HD 209458b and Jupiter. However, the task is made difficult by intrinsically low transit probabilities and small transit duty cycles. This project's efficient and economical strategy is to photometrically monitor stars that are known (from radial velocity surveys) to bear planets, using a network of widely spaced observers with small telescopes. These observers, each individually capable of precision (1%) differential photometry, monitor candidates during the time windows in which the radial velocity solution predicts a transit if the orbital inclination is close to 90°. We use Monte Carlo techniques to simulate the performance of this network, performing simulations with different configurations of observers in order to optimize coordination of an actual campaign. Our results indicate that transitsearch.org can reliably rule out or detect planetary transits within the current catalog of known planet-bearing stars. A distributed network of skilled amateur astronomers and small college observatories is a cost-effective method for discovering the small number of transiting planets with periods in the range 10 days
Transiting Planet Search in the Kepler Pipeline
NASA Technical Reports Server (NTRS)
Jenkins, Jon M.; Chandrasekaran, Hema; McCauliff, Sean D.; Caldwell, Douglas A.; Tenebaum, Peter; Li, Jie; Klaus, Todd C.; Cote, Mile T.; Middour, Christopher
2010-01-01
The Kepler Mission simultaneously measures the brightness of more than 160,000 stars every 29.4 minutes over a 3.5-year mission to search for transiting planets. Detecting transits is a signal-detection problem where the signal of interest is a periodic pulse train and the predominant noise source is non-white, non-stationary (1/f) type process of stellar variability. Many stars also exhibit coherent or quasi-coherent oscillations. The detection algorithm first identifies and removes strong oscillations followed by an adaptive, wavelet-based matched filter. We discuss how we obtain super-resolution detection statistics and the effectiveness of the algorithm for Kepler flight data.
KOI-676: An active star with two transiting planets and a third possible candidate detected with TTV
NASA Astrophysics Data System (ADS)
Ioannidis, P.; Schmitt, J.; Avdellidou, C.; von Essen, C.; Eric, A.
2013-09-01
We report the detection and characterization of two short period, Neptune sized planets, around the active star KOI-676. The orbital elements of both planets are not the expected ones, as they lead to miscalculation of the stellar parameters. We discuss various scenarios which could cause that discrepancy and we suggest that the reason is most probably the high eccentricities of the orbits. We use the Transit Timing Variations, detected in both planets' O-C diagrams to support our theory, while due to the lack of autocorrelation in their pattern we suggest the existence of a third, more massive, mutual inclined, outer perturber. To clarify our suggestions we use n-body simulations to model the TTVs and check the stability of the system.
Kepler-447b: a hot-Jupiter with an extremely grazing transit
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Barrado, D.; Santos, N. C.; Mancini, L.; Figueira, P.; Ciceri, S.; Henning, Th.
2015-05-01
We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyzeits transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet (Mp = 1.37+0.48-0.46 MJup), with an estimated radius of Rp = 1.65+0.59-0.56 RJup (uncertainties provided in this work are 3σ unless specified). This translates into a sub-Jupiter density. The planet revolves every ~7.8 days in a slightly eccentric orbit (e = 0.123+0.037-0.036) around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter (b = 1.076+0.112-0.086), which is one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of the projected planet disk occults the stellar disk. The relatively large uncertainties in the planet radius are due to the large impact parameter and short duration of the transit. Planetary transits with large impact parameters (and in particular grazing transits) can be used to detect and analyze interesting configurations, such as additional perturbing bodies, stellar pulsations, rotation of a non-spherical planet, or polar spot-crossing events. All these scenarios will periodically modify the transit properties (depth, duration, and time of mid-transit), which could be detectable with sufficiently accurate photometry. Short-cadence photometric data (at the 1-min level) would help in the search for these exotic configurations in grazing planetary transits like that of Kepler-447b. This system could then be an excellent target for the forthcoming missions TESS and CHEOPS, which will provide the required photometric precision and cadence to study this type of transit. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max- Planck-Institut für Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).
Three small transiting planets around the M-dwarf host star LP 358-499
NASA Astrophysics Data System (ADS)
Wells, R.; Poppenhaeger, K.; Watson, C. A.
2018-01-01
We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a gigayear. The three detected planets K2-133 b, c and d have orbital periods of ca. 3, 4.9 and 11 d and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate EPIC 247887989.01 with a period of 26.6 d and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.
Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M
1996-06-25
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
NASA Technical Reports Server (NTRS)
Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.
1996-01-01
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
Searching for transits in the WTS with the difference imaging light curves
NASA Astrophysics Data System (ADS)
Zendejas Dominguez, Jesus
2013-12-01
The search for exo-planets is currently one of the most exiting and active topics in astronomy. Small and rocky planets are particularly the subject of intense research, since if they are suitably located from their host star, they may be warm and potentially habitable worlds. On the other hand, the discovery of giant planets in short-period orbits provides important constraints on models that describe planet formation and orbital migration theories. Several projects are dedicated to discover and characterize planets outside of our solar system. Among them, the Wide-Field Camera Transit Survey (WTS) is a pioneer program aimed to search for extra-solar planets, that stands out for its particular aims and methodology. The WTS has been in operation since August 2007 with observations from the United Kingdom Infrared Telescope, and represents the first survey that searches for transiting planets in the near-infrared wavelengths; hence the WTS is designed to discover planets around M-dwarfs. The survey was originally assigned about 200 nights, observing four fields that were selected seasonally (RA = 03, 07, 17 and 19h) during a year. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. For the most complete field (19h-1145 epochs) in the survey, we produce an alternative set of light curves by using the method of difference imaging, which is a photometric technique that has shown important advantages when used in crowded fields. A quantitative comparison between the photometric precision achieved with both methods is carried out in this work. We remove systematic effects using the sysrem algorithm, scale the error bars on the light curves, and perform a comparison of the corrected light curves. The results show that the aperture photometry light curves provide slightly better precision for objects with J < 16. However, difference photometry light curves present a significant improvement for fainter stars. In order to detect transits in the WTS light curves, we use a modified version of the box-fitting algorithm. The implementation on the detection algorithm performs a trapezoid-fit to the folded light curve. We show that the new fit is able to produce more accurate results than the box-fit model. We describe a set of selection criteria to search for transit candidates that include a parameter calculated by our detection algorithm: the V-shape parameter, which has proven to be useful to automatically identify and remove eclipsing binaries from the survey. The criteria are optimized using Monte-Carlo simulations of artificial transit signals that are injected into the real WTS light curves and subsequently analyzed by our detection algorithm. We separately optimize the selection criteria for two different sets of light curves, one for F-G-K stars, and another for M-dwarfs. In order to search for transiting planet candidates, the optimized selection criteria are applied to the aperture photometry and difference imaging light curves. In this way, the best 200 transit candidates from a sample of ~ 475 000 sources are automatically selected. A visual inspection of the folded light curves of these detections is carried out to eliminate clear false-positives or false-detections. Subsequently, several analysis steps are performed on the 18 best detections, which allow us to classify these objects as transiting planet and eclipsing binary candidates. We report one planet candidate orbiting a late G-type star, which is proposed for photometric follow-up. The independent analysis on the M-dwarf sample provides no planet candidates around these stars. Therefore, the null detection hypothesis and upper limits on the occurrence rate of giant planets around M-dwarfs with J < 17 mag presented in a prior study are confirmed. In this work, we extended the search for transiting planets to stars with J < 18 mag, which enables us to impose a more strict upper limit of 1.1 % on the occurrence rate of short-period giant planets around M-dwarfs, which is significantly lower than other limit published so far. The lack of Hot Jupiters around M-dwarfs play an important role in the existing theories of planet formation and orbital migration of exo-planets around low-mass stars. The dearth of gas-giant planets in short-period orbit detections around M stars indicates that it is not necessary to invoke the disk instability formation mechanism, coupled with an orbital migration process to explain the presence of such planets around low-mass stars. The much reduced efficiency of the core-accretion model to form Jupiters around cool stars seems to be in agreement with the current null result. However, our upper limit value, the lowest reported sofar, is still higher than the detection rates of short-period gas-giant planets around hotter stars. Therefore, we cannot yet reach any firm conclusion about Jovian planet formation models around low-mass and cool main-sequence stars, since there are currently not sufficient observational evidences to support the argument that Hot Jupiters are less common around M-dwarfs than around Sun-like stars. The way to improve this situation is to monitor larger samples of M-stars. For example, an extended analysis of the remaining three WTS fields and currently running M-dwarf transit surveys (like Pan-Planets and PTF/M-dwarfs projects, which are monitoring up to 100 000 objects) may reduce this upper limit. Current and future space missions like Kepler and GAIA could also help to either set stricter upper limits or finally detect Hot Jupiters around low-mass stars. In the last part of this thesis, we present other applications of the difference imaging light curves. We report the detection of five faint extremely-short-period eclipsing binary systems with periods shorter than 0.23 d, as well as two candidates and one confirmed M-dwarf/M-dwarf eclipsing binaries. The etections and results presented in this work demonstrate the benefits of using the difference imaging light curves, especially when going to fainter magnitudes.
QATS: Quasiperiodic Automated Transit Search
NASA Astrophysics Data System (ADS)
Carter, Joshua A.; Agol, Eric
2017-12-01
QATS detects transiting extrasolar planets in time-series photometry. It relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits.
The formation of co-orbital planets and their resulting transit signatures
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula; Boley, Aaron
2018-04-01
Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.
NASA Astrophysics Data System (ADS)
Matt, Kyle; Stephens, Denise C.; Gaillard, Clement; KELT-North
2016-01-01
We use a 16" telescope on the Brigham Young University (BYU) campus to follow-up on the Kilodegree Extremely Little Telescope (KELT) survey to identify possible transiting planets. KELT is an all sky survey that monitors the same areas of the sky throughout the year to identify stars that exhibit a change in brightness. Objects found to exhibit a variation in brightness similar to predicted models of transiting planets are sent to the ground-based follow-up team where we get high precision differential photometry to determine whether or not a transit is occurring and if the transiting object is a planet or companion star. If a planetary transit is found, the object is forwarded for radial velocity follow-up and could eventually be published as a KELT planet. In this poster we present light curves from possible planets we have identified as well as eclipsing binary systems and non-detections. We will highlight features of our telescope and camera and the basic steps for data reduction and analysis.
KELT-17b: A Hot-Jupiter Transiting an A-star in a Misaligned Orbit Detected with Doppler Tomography
NASA Astrophysics Data System (ADS)
Zhou, George; Rodriguez, Joseph E.; Collins, Karen A.; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M.; Stassun, Keivan G.; Latham, David W.; Kuhn, Rudolf B.; Bieryla, Allyson; Lund, Michael B.; Labadie-Bartz, Jonathan; Siverd, Robert J.; Stevens, Daniel J.; Gaudi, B. Scott; Pepper, Joshua; Buchhave, Lars A.; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A.; Jensen, Eric L. N.; Cohen, David H.; McLeod, Kim K.; Tan, T. G.; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J.; DePoy, D. L.; Marshall, Jennifer L.; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat
2016-11-01
We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a {1.31}-0.29+0.28 {M}{{J}}, {1.525}-0.060+0.065 {R}{{J}} hot-Jupiter in a 3.08-day period orbit misaligned at -115.°9 ± 4.°1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α \\lt 0.30 at 2σ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of {1.635}-0.061+0.066 {M}⊙ , an effective temperature of 7454 ± 49 K, and a projected rotational velocity of v\\sin {I}* ={44.2}-1.3+1.5 {km} {{{s}}}-1; it is among the most massive, hottest, and most rapidly rotating of known planet hosts.
Measuring stellar granulation during planet transits
NASA Astrophysics Data System (ADS)
Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.
2017-01-01
Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the planet radius (up to 0.90% and 0.47% for terrestrial and gaseous planets, respectively). We also showed that larger (or smaller) orbital inclination angles with respect to values corresponding to transit at the stellar center display a shallower transit depth and longer ingress and egress times, but also granulation fluctuations that are correlated to the center-to-limb variation: they increase (or decrease) the value of the inclination, which amplifies the fluctuations. The granulation noise appears to be correlated among the different wavelength ranges either in the visible or in the infrared regions. Conclusions: The prospects for planet detection and characterization with transiting methods are excellent with access to large amounts of data for stars. The granulation has to be considered as an intrinsic uncertainty (as a result of stellar variability) on the precise measurements of exoplanet transits of planets. The full characterization of the granulation is essential for determining the degree of uncertainty on the planet parameters. In this context, the use of 3D RHD simulations is important to measure the convection-related fluctuations. This can be achieved by performing precise and continuous observations of stellar photometry and radial velocity, as we explained with RHD simulations, before, after, and during the transit periods.
Models of very-low-mass stars, brown dwarfs and exoplanets.
Allard, F; Homeier, D; Freytag, B
2012-06-13
Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.
NASA Astrophysics Data System (ADS)
Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Girouard, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tenenbaum, Peter; Wohler, Bill; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Haas, Michael R.; Henze, Christopher E.; Sanderfer, Dwight T.
2018-06-01
The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for ∼200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.
NASA Technical Reports Server (NTRS)
Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Giroud, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tennenbaum, Peter;
2018-01-01
The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.
Transit spectroscopy of the extrasolar planet HD 209458B: The search for water
NASA Astrophysics Data System (ADS)
Rojo, Patricio Michel
This dissertation describes an attempt to detect water in the atmosphere of the extrasolar planet HD 209458b using transit spectroscopy. It first discusses the importance of water detection and reviews the state of knowledge about extrasolar planets. This review discusses the main statistical trends and describes the detection methods employed to this date. The importance of the transiting planets and the many measurements of the known ones are also discussed. A radiative transfer model designed and built specifically for this project predicts, given a planetary temperature/pressure/composition profile, the dependence in wavelength of the stellar spectrum modulation due to a transiting planet. A total of 352 spectra around 1.8 [mu]m were obtained on four nights (three in transit) of observations on August 3--4, September 26, and October 3 of 2002 using ISAAC at the Very Large Telescope. Correlating the modeled modulation with the infrared spectra yields a nondetection of water in the atmosphere of HD 209458b. It is found that the nondetection is due to an unfortunate choice of observing parameters and conditions that made it impossible to reach the required sensitivity. Nonetheless, the results are scaled with synthetic spectra to place strong limits on the planetary system configurations for which the observing parameters and telluric conditions would have yielded a successful detection. None of the 10 other known transiting planets would be detectable with the choice of parameters and conditions for this observation. A quantitative model of an improved observing strategy for future observations of this kind is developed. The improvements include: airmass and timing constraints, the simultaneous observation of a calibrator star, and a new method to find the optimal wavelength range. The data-reduction process includes several original techniques that were developed during this work, such as a method to remove fringes from flat fields and several methods to correct for telluric absorption, among others. Some of the code developed for this project is available under the GNU General Public License at the DSpace Internet archive from Cornell University.
Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b
NASA Astrophysics Data System (ADS)
Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon
2017-01-01
Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.
Indirect and Direct Signatures of Young Planets in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Zhu, Zhaohuan; Stone, James M.; Dong, Ruobing; Rafikov, Roman; Bai, Xue-Ning
2015-12-01
Directly finding young planets around protostars is challenging since protostars are highly variable and obscured by dust. However, young planets will interact with protoplanetary disks, inducing disk features such as gaps, spiral arms, and asymmetric features, which are much easier to be detected. Transitional disks, which are protoplanetary disks with gaps and holes, are excellent candidates for finding young planets. Although these disks have been studied extensively in observations (e.g. using Subaru, VLT, ALMA, EVLA), theoretical models still need to be developed to explain observations. We have constructed numerical simulations, including dust particle dynamics and MHD effects, to study planet-disk interaction, with an emphasis on explaining observations. Our simulations have successfully reproduced spiral arms, gaps and asymmetric features observed in transitional disks. Furthermore, by comparing with observations, we have constrained protoplanetary disk properties and pinpoint potential planets in these disks. We will present progress in constructing global simulations to study transitional disks, including using our recently developed Athena++ code with static-mesh-refinement for MHD. Finally we suggest that accreting circumplanetary disks can release an observable amount of energy and could be the key to detect young planets directly. We will discuss how JWST and next generation telescopes can help to find these young planets with circumplanetary disks.
Kepler Planet Detection Metrics: Per-Target Detection Contours for Data Release 25
NASA Technical Reports Server (NTRS)
Burke, Christopher J.; Catanzarite, Joseph
2017-01-01
A necessary input to planet occurrence calculations is an accurate model for the pipeline completeness (Burke et al., 2015). This document describes the use of the Kepler planet occurrence rate products in order to calculate a per-target detection contour for the measured Data Release 25 (DR25) pipeline performance. A per-target detection contour measures for a given combination of orbital period, Porb, and planet radius, Rp, what fraction of transit signals are recoverable by the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017). The steps for calculating a detection contour follow the procedure outlined in Burke et al. (2015), but have been updated to provide improved accuracy enabled by the substantially larger database of transit injection and recovery tests that were performed on the final version (i.e., SOC 9.3) of the Kepler pipeline (Christiansen, 2017; Burke Catanzarite, 2017a). In the following sections, we describe the main inputs to the per-target detection contour and provide a worked example of the python software released with this document (Kepler Planet Occurrence Rate Tools KeplerPORTs)1 that illustrates the generation of a detection contour in practice. As background material for this document and its nomenclature, we recommend the reader be familiar with the previous method of calculating a detection contour (Section 2 of Burke et al.,2015), input parameters relevant for describing the data quantity and quality of Kepler targets (Burke Catanzarite, 2017b), and the extensive new transit injection and recovery tests of the Kepler pipeline (Christiansen et al., 2016; Burke Catanzarite, 2017a; Christiansen, 2017).
NASA Technical Reports Server (NTRS)
Christiansen, Jessie L.
2017-01-01
This document describes the results of the fourth pixel-level transit injection experiment, which was designed to measure the detection efficiency of both the Kepler pipeline (Jenkins 2002, 2010; Jenkins et al. 2017) and the Robovetter (Coughlin 2017). Previous transit injection experiments are described in Christiansen et al. (2013, 2015a,b, 2016).In order to calculate planet occurrence rates using a given Kepler planet catalogue, produced with a given version of the Kepler pipeline, we need to know the detection efficiency of that pipeline. This can be empirically determined by injecting a suite of simulated transit signals into the Kepler data, processing the data through the pipeline, and examining the distribution of successfully recovered transits. This document describes the results for the pixel-level transit injection experiment performed to accompany the final Q1-Q17 Data Release 25 (DR25) catalogue (Thompson et al. 2017)of the Kepler Objects of Interest. The catalogue was generated using the SOC pipeline version 9.3 and the DR25 Robovetter acting on the uniformly processed Q1-Q17 DR25 light curves (Thompson et al. 2016a) and assuming the Q1-Q17 DR25 Kepler stellar properties (Mathur et al. 2017).
Three Super-Earths Orbiting HD 7924
NASA Astrophysics Data System (ADS)
Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan; Isaacson, Howard; Howard, Andrew W.; Marcy, Geoffrey W.; Henry, Gregory W.; Holden, Bradford P.; Kibrick, Robert I.
2015-06-01
We report the discovery of two super-Earth-mass planets orbiting the nearby K0.5 dwarf HD 7924, which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 {{M}\\oplus }, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using 5 yr of new Keck data and high-cadence observations over the last 1.3 yr with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca ii H and K activity index. We also detect two additional short-period signals that we attribute to rotationally modulated starspots and a one-month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.
Characterizing the Habitable Zone Planets of Kepler Stars
NASA Astrophysics Data System (ADS)
Fischer, Debra
Planet Hunters (PH) is a well-established and successful web interface that allows citizen scientists to search for transiting planets in the NASA Kepler public archive data. Over the past 3 years, our users have made more than 20 million light curve classifications. We now have more than 300,000 users around the world. However, more than half of the Kepler data has not yet been displayed to our volunteers. In June 2014 we are launching Planet Hunters v2.0. The backend of the site has been completely redesigned. The new website is more intuitive and faster; we have improved the real-time weighting algorithm that assigns transit scores for faster and more accurate extraction of the transit events from the database. With Planet Hunters v2.0, we expect that assessments will be ten times faster, so that we have the opportunity to complete the classifications for the backlog of Kepler light curve in the next three years. There are three goals for this project. First, we will data-mine the PH classifications to search for long period planets with fewer than 5 transit events. We have demonstrated that our volunteers are efficient at detecting planets with long periods and radii greater than a few REARTH. This region of parameter space is optimal for characterizing larger planets orbiting close to the habitable zone. To build upon the citizen science efforts, we will model the light curves, search for evidence of false positives, and contribute observations of stellar spectra to refine both the stellar and orbital parameters. Second, we will carry out a careful analysis of the fraction of transits that are missed (a function of planet radius and orbital period) to derive observational incompleteness factors. The incompleteness factors will be combined with geometrical detection factors to assess the planet occurrence rate for wide separations. This is a unique scientific contribution current studies of planet occurrence rate are either restricted to orbital periods shorter than 100 days or they use extrapolation to estimate planet occurrence rates beyond 100 days. The new detections of transit candidates at wider separations and the incompleteness analysis will be used to carry out an analysis of the architecture of exoplanetary systems from 1 5 AU. We are synthesizing a statistical description with information from short-period Kepler transits, the longer period Kepler transit candidates from this proposal, a completeness analysis of radial velocity data, and statistical information from microlensing. While our architecture analysis will only sketch out the bare bones of planetary systems (massive or large planets), this is still a novel analysis that may point to the location of rocky planets if packed planetary systems prevail. Finally, we will expand our guest scientist program for serendipitous discoveries. We have already partnered with scientists who are searching for cataclysmic variables, heartbeat stars, and exomoons. Our undergrad students have already carried out summer research as guest scientists to characterize inflated jupiters, search for Trojan planets, and to search for microlensing events.
Exploring the Effects of Stellar Multiplicity on Exoplanet Occurrence Rates
NASA Astrophysics Data System (ADS)
Barclay, Thomas; Shabram, Megan
2017-06-01
Determining the frequency of habitable worlds is a key goal of the Kepler mission. During Kepler's four year investigation it detected thousands of transiting exoplanets with sizes varying from smaller than Mercury to larger than Jupiter. Finding planets was just the first step to determining frequency, and for the past few years the mission team has been modeling the reliability and completeness of the Kepler planet sample. One effect that has not typically been built into occurrence rate statistics is that of stellar multiplicity. If a planet orbits the primary star in a binary or triple star system then the transit depth will be somewhat diluted resulting in a modest underestimation in the planet size. However, if a detected planet orbits a fainter star then the error in measured planet radius can be very significant. We have taken a hypothetical star and planet population and passed that through a Kepler detection model. From this we have derived completeness corrections for a realistic case of a Universe with binary stars and compared that with a model Universe where all stars are single. We report on the impact that binaries have on exoplanet population statistics.
A study of the shortest-period planets found with Kepler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchis-Ojeda, Roberto; Rappaport, Saul; Winn, Joshua N.
2014-05-20
We present the results of a survey aimed at discovering and studying transiting planets with orbital periods shorter than one day (ultra-short-period, or USP, planets), using data from the Kepler spacecraft. We computed Fourier transforms of the photometric time series for all 200,000 target stars, and detected transit signals based on the presence of regularly spaced sharp peaks in the Fourier spectrum. We present a list of 106 USP candidates, of which 18 have not previously been described in the literature. This list of candidates increases the number of planet candidates with orbital periods shorter than about six hours frommore » two to seven. In addition, among the objects we studied, there are 26 USP candidates that had been previously reported in the literature which do not pass our various tests. All 106 of our candidates have passed several standard tests to rule out false positives due to eclipsing stellar systems. A low false positive rate is also implied by the relatively high fraction of candidates for which more than one transiting planet signal was detected. By assuming these multi-transit candidates represent coplanar multi-planet systems, we are able to infer that the USP planets are typically accompanied by other planets with periods in the range 1-50 days, in contrast with hot Jupiters which very rarely have companions in that same period range. Another clear pattern is that almost all USP planets are smaller than 2 R {sub ⊕}, possibly because gas giants in very tight orbits would lose their atmospheres by photoevaporation when subject to extremely strong stellar irradiation. Based on our survey statistics, USP planets exist around approximately (0.51 ± 0.07)% of G-dwarf stars, and (0.83 ± 0.18)% of K-dwarf stars.« less
First Light from Extrasolar Planets and Implications for Astrobiology
NASA Technical Reports Server (NTRS)
Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake
2005-01-01
The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.
Characterizing the UV environment of GJ1214b
NASA Astrophysics Data System (ADS)
Desert, Jean-Michel
2010-09-01
The recent detection of a super-Earth transiting a nearby low-mass star GJ1214 {Charbonneau et al., 2009} has opened the door to testing the predictions of low mass planet atmosphere theories. Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Some super-Earths may be able to retain massive hydrogen-rich atmospheres. Others might never accumulate hydrogen or experience significant escape of lightweight elements, resulting in atmospheres more like those of the terrestrial planets in our Solar System. Planets which orbit close to their parent stars, such as close-in hot-Jupiters and super-Earths, are exposed to strong XEUV flux that influence their atmospheres and may trigger atmospheric escape processes. This phenomenon, which shapes planetary atmospheres, determines the evolution of the planet. This can also dramatically enhance the detectability of a heavily irradiated hydrogen atmosphere when the planet transits in front of its parent star. We propose to use HST/STIS/G140M to determine the intensity and variability of the Lyman-alpha chromospheric emission line and provide observational constraints to super-Earth atmospheric models. We propose to coordinate this measurement with a planetary transit in order to detect large upper atmospheric signatures if present. This short measurement also enables us to determine whether a larger program dedicated to upper atmospheric study is feasible for a following cycle.
Extended transiting discs and rings around planets and brown dwarfs: theoretical constraints
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2017-02-01
Newly formed planets (or brown dwarfs) may possess discs or rings which occupy an appreciable fraction of the planet's Hill sphere and extend beyond the Laplace radius, where the tidal torque from the host star dominates over the torque from the oblate planet. Such a disc/ring can exhibit unique, detectable transit signatures, provided that the disc/ring is significantly misaligned with the orbital plane of the planet. There exists tentative evidence for an extended ring system around the young K5 star 1 SWASP J140747-354542. We present a general theoretical study of the inclination (warp) profile of circumplanetary discs under the combined influences of the tidal torque from the central star, the torque from the oblate planet, and the self-gravity of the disc. We calculate the equilibrium warp profile (`generalized Laplace surface') and investigate the condition for coherent precession of the disc. We find that to maintain a non-negligible misalignment between the extended outer disc and the planet's orbital plane, and to ensure coherent disc precession, the disc surface density must be sufficiently large so that the self-gravity torque overcomes the tidal torque from the central star. Our analysis and quantitative results can be used to constrain the parameters of transiting circumplanetary discs which may be detected in the future.
Toward the 4-Micron Infrared Spectrum of the Transiting Extrasolar Planet HD 209458 b
NASA Astrophysics Data System (ADS)
Richardson, L. J.; Deming, D.
2003-12-01
We have continued our analysis of infrared spectra of the "transiting planet" system, HD 209458, recorded at the NASA IRTF in September 2001. The spectra cover two predicted secondary eclipse events, wherein the planet passed behind the star and re-emerged. We are attempting to detect the planet's infrared continuum peaks, by exploiting the spectral modulation which accompanies the secondary eclipse. Our initial analysis placed the strongest limits to date on the spectrum of the planet near 2.2 microns (Richardson, Deming & Seager 2003, recently appeared in ApJ). Further analysis of our long wavelength data (3.0--4.2 microns) decorrelates and removes most of the systematic errors due to seeing and guiding fluctuations. This decorrelation has improved the precision of our analysis to the level where a predicted 4-micron planetary flux peak may now be detectable.
NASA Astrophysics Data System (ADS)
Zucker, Shay; Giryes, Raja
2018-04-01
Transits of habitable planets around solar-like stars are expected to be shallow, and to have long periods, which means low information content. The current bottleneck in the detection of such transits is caused in large part by the presence of red (correlated) noise in the light curves obtained from the dedicated space telescopes. Based on the groundbreaking results deep learning achieves in many signal and image processing applications, we propose to use deep neural networks to solve this problem. We present a feasibility study, in which we applied a convolutional neural network on a simulated training set. The training set comprised light curves received from a hypothetical high-cadence space-based telescope. We simulated the red noise by using Gaussian Processes with a wide variety of hyper-parameters. We then tested the network on a completely different test set simulated in the same way. Our study proves that very difficult cases can indeed be detected. Furthermore, we show how detection trends can be studied and detection biases quantified. We have also checked the robustness of the neural-network performance against practical artifacts such as outliers and discontinuities, which are known to affect space-based high-cadence light curves. Future work will allow us to use the neural networks to characterize the transit model and identify individual transits. This new approach will certainly be an indispensable tool for the detection of habitable planets in the future planet-detection space missions such as PLATO.
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas;
2002-01-01
The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.
Peculiar architectures for the WASP-53 and WASP-81 planet-hosting systems★
NASA Astrophysics Data System (ADS)
Triaud, Amaury H. M. J.; Neveu-VanMalle, Marion; Lendl, Monika; Anderson, David R.; Collier Cameron, Andrew; Delrez, Laetitia; Doyle, Amanda; Gillon, Michaël; Hellier, Coel; Jehin, Emmanuël; Maxted, Pierre F. L.; Ségransan, Damien; Smalley, Barry; Queloz, Didier; Pollacco, Don; Southworth, John; Tregloan-Reed, Jeremy; Udry, Stéphane; West, Richard
2017-05-01
We report the detection of two new systems containing transiting planets. Both were identified by WASP as worthy transiting planet candidates. Radial velocity observations quickly verified that the photometric signals were indeed produced by two transiting hot Jupiters. Our observations also show the presence of additional Doppler signals. In addition to short-period hot Jupiters, we find that the WASP-53 and WASP-81 systems also host brown dwarfs, on fairly eccentric orbits with semimajor axes of a few astronomical units. WASP-53c is over 16 MJupsin Ic and WASP-81c is 57 MJupsin Ic. The presence of these tight, massive companions restricts theories of how the inner planets were assembled. We propose two alternative interpretations: the formation of the hot Jupiters within the snow line or the late dynamical arrival of the brown dwarfs after disc dispersal. We also attempted to measure the Rossiter-McLaughlin effect for both hot Jupiters. In the case of WASP-81b, we fail to detect a signal. For WASP-53b, we find that the planet is aligned with respect to the stellar spin axis. In addition we explore the prospect of transit-timing variations, and of using Gaia's astrometry to measure the true masses of both brown dwarfs and also their relative inclination with respect to the inner transiting hot Jupiters.
The NGCSU Extrasolar Planet Transit Project
NASA Astrophysics Data System (ADS)
Jones, J. H.
2000-12-01
Since the first published reports of the detection of the extra-solar planet transit of HD 209458 (Henry, et al. 2000, ApJ, 529, L41; Charbonneau, et al. 2000, ApJ, 529, L45), we have been attempting to detect and measure the transits with high enough accuracy for useful data analysis of the light curves. Our goal is to improve our observational and data analysis techniques, and hopefully upgrade our equipment, until we are able to reliably acquire milli-magnitude multiband photometry of HD 209458 both on and off transit. We believe our observatory can fill a useful niche in the long term monitoring of HD 209458 and other such planet-transit stars that will surely be discovered in the future. There is also an important astronomy education component to our project as well. The chance for our undergraduate Physics majors to participate in important publishable research can be a great motivating factor for them to continue their academic careers into graduate school. Furthermore, the fact that they have participated in such a project makes our graduates more "marketable" to the graduate schools. We also have a high school teacher and student currently participating in our project. This shows the project is useful in providing astronomy outreach beyond our local institution. We report here on our first detection of the planet-transit during the night of August 15-16, 2000 and also present our data from a series of transits during the month of October, 2000. Finally, we will present the project's current status at the time of the meeting.
NASA Technical Reports Server (NTRS)
Heller, Rene; Hippke, Michael; Placek, Ben; Angerhausen, Daniel; Agol, Eric
2016-01-01
We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto undescribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet's orbit around the planet-moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multiple moons in orbital mean motion resonance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. Exomoons in MMR can also form closed, predictable TTV-TDV figures, as long as the drift of the moons' pericenters is suciently slow.We find that MMR exomoons produce loops in the TTV-TDV diagram and that the number of these loops is equal to the order of the MMR, or the largest integer in the MMR ratio.We use a Bayesian model and Monte Carlo simulations to test the discoverability of exomoons using TTV-TDV diagrams with current and near-future technology. In a blind test, two of us (BP, DA) successfully retrieved a large moon from simulated TTV-TDV by co-authors MH and RH, which resembled data from a known Kepler planet candidate. Single exomoons with a 10 percent moon-to-planet mass ratio, like to Pluto-Charon binary, can be detectable in the archival data of the Kepler primary mission. Multi-exomoon systems, however, require either larger telescopes or brighter target stars. Complementary detection methods invoking a moon's own photometric transit or its orbital sampling effect can be used for validation or falsification. A combination of TESS, CHEOPS, and PLATO data would offer a compelling opportunity for an exomoon discovery around a bright star.
PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinse, Tobias C.; Haghighipour, Nader; Kostov, Veselin B.
2015-01-20
We have studied the possibility that a third circumbinary planet in the Kepler-47 planetary system is the source of the single unexplained transiting event reported during the discovery of these planets. We applied the MEGNO technique to identify regions in the phase space where a third planet can maintain quasi-periodic orbits, and assessed the long-term stability of the three-planet system by integrating the entire five bodies (binary + planets) for 10 Myr. We identified several stable regions between the two known planets as well as a region beyond the orbit of Kepler-47c where the orbit of the third planet could bemore » stable. To constrain the orbit of this planet, we used the measured duration of the unexplained transit event (∼4.15 hr) and compared that with the transit duration of the third planet in an ensemble of stable orbits. To remove the degeneracy among the orbits with similar transit durations, we considered the planet to be in a circular orbit and calculated its period analytically. The latter places an upper limit of 424 days on the orbital period of the third planet. Our analysis suggests that if the unexplained transit event detected during the discovery of the Kepler-47 circumbinary system is due to a planetary object, this planet will be in a low eccentricity orbit with a semi-major axis smaller than 1.24 AU. Further constraining of the mass and orbital elements of this planet requires a re-analysis of the entire currently available data, including those obtained post-announcement of the discovery of this system. We present details of our methodology and discuss the implication of the results.« less
KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvorný, David; Terrell, Dirk; Kipping, David
2013-11-01
The transit timing variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Many Kepler Objects of Interest (KOIs) exhibit significant TTVs, but KOI-142.01 stands out among them with an unrivaled ≅12 hr TTV amplitude. Here we report a thorough analysis of KOI-142.01's transits. We discover periodic transit duration variations (TDVs) of KOI-142.01 that are nearly in phase with the observed TTVs. We show that KOI-142.01's TTVs and TDVs uniquely detect a non-transiting companion with a mass ≅0.63 that of Jupiter (KOI-142c). KOI-142.01's mass inferred from the transit variations is consistent with themore » measured transit depth, suggesting a Neptune-class planet (KOI-142b). The orbital period ratio P{sub c} /P{sub b} = 2.03 indicates that the two planets are just wide of the 2:1 resonance. The present dynamics of this system, characterized here in detail, can be used to test various formation theories that have been proposed to explain the near-resonant pairs of exoplanets.« less
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji;
2002-01-01
The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, Sarah; Charbonneau, David; Holman, Matthew J.
We present time series photometry and constraints on additional planets in five of the exoplanetary systems studied by the EPOCh (Extrasolar Planet Observation and Characterization) component of the NASA EPOXI mission: HAT-P-4, TrES-3, TrES-2, WASP-3, and HAT-P-7. We conduct a search of the high-precision time series for photometric transits of additional planets. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series using putative periods from 0.5 days to 7 days, we demonstrate the sensitivity to detect Neptune-sized companions around TrES-2, sub-Saturn-sized companions in the HAT-P-4, TrES-3, and WASP-3 systems,more » and Saturn-sized companions around HAT-P-7. We investigate in particular our sensitivity to additional transits in the dynamically favorable 3:2 and 2:1 exterior resonances with the known exoplanets: if we assume coplanar orbits with the known planets, then companions in these resonances with HAT-P-4b, WASP-3b, and HAT-P-7b would be expected to transit, and we can set lower limits on the radii of companions in these systems. In the nearly grazing exoplanetary systems TrES-3 and TrES-2, additional coplanar planets in these resonances are not expected to transit. However, we place lower limits on the radii of companions that would transit if the orbits were misaligned by 2.{sup 0}0 and 1.{sup 0}4 for TrES-3 and TrES-2, respectively.« less
Discovery and Characterization of Small Planets from the K2 Mission
NASA Astrophysics Data System (ADS)
Howard, Andrew
The K2 mission offers a unique opportunity to find substantial numbers of new transiting planets with host stars much brighter than those found by Kepler -- ideal targets for measurements of planetary atmospheres (with HST and JWST) and planetary masses and densities (with Doppler spectroscopy). The K2 data present unique challenges compared to the Kepler mission. We propose to build on our team's demonstrated successes with the Kepler photometry and in finding exciting new planetary systems in K2 data. We will search for transiting planets in photometry of all stellar K2 targets in each of the first three K2 Campaigns (Fields C0, C1, and C2). We will adapt and enhance our TERRA transit search tool to detect transits in the K2 photometry, and we will assess candidate transiting planets with a suite of K2-specific vetting tools including pixel-level inspection for transit localization, centroid motion tests, and secondary eclipse searches. We will publicly release TERRA and our pixel-level diagnostics for use by other teams in future analyses of K2 and TESS photometry. We will also develop FreeBLEND, a free and open source tool to robustly quantify the probability of false positive detections for individual planet candidates given reduced photometry, constraints from the K2 pixel-level data, adaptive optics imaging, high-resolution stellar spectroscopy, and radial velocity measurements. This tool will be similar to BLENDER for Kepler, but (a) more computationally efficient and useable on the wide range of galactic latitudes that K2 samples and (b) available for use by the entire community. With these tools we will publicly release high-quality (low-noise) reduced photometry of the K2 target stars as well as catalogs of the transiting planets. Host stars in our planet catalogs will be characterized by medium and high-resolution spectroscopy (as appropriate) to yield accurate planet parameters. For a handful of planets in the sample, we will measure masses using Keck-HIRES to constrain the planets' bulk densities and compositions. This project is relevant to the ADA Program as it focuses on archived K2 mission data. It supports NASA's strategic goals to characterize the diverse population of small exoplanets, identified targets to maximize JWST's exoplanet science yield, and develops community tools for use with K2, TESS, and other future missions.
Searching for co-orbital planets by combining transit and radial-velocity measurements
NASA Astrophysics Data System (ADS)
Robutel, p.; Leleu, A.; Correia, A.; Lillo-Box, J.
2017-09-01
Co-orbital planetary systems consist of two planets orbiting with the same period a central star. If co-orbital bodies are common in the solar system and are also a natural output of planetary formation models, so far none have been found in extrasolar systems. This lack may be due to observational biases, since the main detection methods are unable to spot co-orbital companions when they are small or near the Lagrangian equilibrium points. We propose a simple method, based on an idea from Ford & Gaudi (2006), that allows the detection of co-orbital companions, and relies on a single parameter proportional to the mass ratio of the two planets. This method is applied to archival radial velocity data of 46 close-in transiting planets among which a few are strong candidates to harbor a co-orbital companion.
ARTIST'S CONCEPT -- 'HOT JUPITER' AROUND THE STAR HD 209458
NASA Technical Reports Server (NTRS)
2002-01-01
This is an artist's impression of the gas-giant planet orbiting the yellow, Sun-like star HD 209458, 150 light-years from Earth. Astronomers used NASA's Hubble Space Telescope to look at this world and make the first direct detection of an atmosphere around an extrasolar planet. The planet was not directly seen by Hubble. Instead, the presence of sodium was detected in light filtered through the planet's atmosphere when it passed in front of its star as seen from Earth (an event called a transit). The planet was discovered in 1999 by its subtle gravitational pull on the star. The planet is 70 percent the mass of Jupiter, the largest planet in our solar system. Its orbit is tilted nearly edge-on to Earth, which allows repeated transit observations. The planet is merely 4 million miles from the star. The distance between the pair is so close that the yellow star looms in the sky, with an angular diameter 23 times larger than the full Moon's diameter as seen from Earth, and glows 500 times brighter than our Sun. At this precarious distance the planet's atmosphere is heated to 2000 degrees Fahrenheit (1100 degrees Celsius). But the planet is big enough to hold onto its seething atmosphere. Illustration Credit: NASA and Greg Bacon (STScI/AVL)
Kepler-16: a transiting circumbinary planet.
Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra
2011-09-16
We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.
Transit Spectroscopy of Extrasolar Planet HD209458b: The Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Rojo, P.; Harrington, J.; Dermody, J.; Zeehandelaar, D.; Deming, D.; Wiedemann, G.; Seager, S.; Iro, N.; Fortney, J. J.; Burrows, A.
2004-11-01
We have developed a new code that calculates the modulation of a star's spectrum as a planet transits. We are applying this model to data from the VLT, Palomar, Keck, and IRTF to search for water on HD209458b, the transiting planet with the brightest primary. Observations of HD209458b's stellar spectrum modulation have yielded the first detections of exoplanetary sodium (Charbonneau et al. 2001), hydrogen, oxygen and carbon (Vidal-Madjar et al. 2003, 2004). Molecules, however, have still avoided detection. Water is predicted to be abundant at all plausible temperatures, but the modulation for most of the observable features is <0.04%. By simultaneously fitting for many excited water features while avoiding telluric water lines, we can significantly increase our signal. Our model predicts the modulation given line data, system geometry, and thermal and abundance profiles for any transiting planet. We will use this code to compare the observed modulation for HD209458b with that predicted by different planetary theories, do calculations for specific instruments with different resolutions and wavelength ranges, and constrain the abundances of detected species. We find that integrating the extinction over altitude produces significantly better results than assuming that the planet is an opaque disk whose radius is the altitude of optical depth unity. The latter is a widely used simplification. Our work will allow us to establish or place strong limits on the water abundance in HD209458b's atmosphere. Even a non-detection will be important, as it will require significant modifications to existing theory and/or will justify the need for better space-based instruments. This work was supported by NASA grant NAG5-13154.
Searching for Exoplanets using Artificial Intelligence
NASA Astrophysics Data System (ADS)
Pearson, Kyle Alexander; Palafox, Leon; Griffith, Caitlin Ann
2017-10-01
In the last decade, over a million stars were monitored to detect transiting planets. The large volume of data obtained from current and future missions (e.g. Kepler, K2, TESS and LSST) requires automated methods to detect the signature of a planet. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called ``deep learning'' or ``deep nets'', are a state of the art machine learning technique designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, the deep net learns to characterize the data instead of relying on hand-coded metrics that humans perceive as the most representative. Exoplanet transits have different shapes, as a result of, e.g. the planet's and stellar atmosphere and transit geometry. Thus, a simple template does not suffice to capture the subtle details, especially if the signal is below the noise or strong systematics are present. Current false-positive rates from the Kepler data are estimated around 12.3% for Earth-like planets and there has been no study of the false negative rates. It is therefore important to ask how the properties of current algorithms exactly affect the results of the Kepler mission and, future missions such as TESS, which flies next year. These uncertainties affect the fundamental research derived from missions, such as the discovery of habitable planets, estimates of their occurrence rates and our understanding about the nature and evolution of planetary systems.
Kepler Planet Detection Metrics: Window and One-Sigma Depth Functions for Data Release 25
NASA Technical Reports Server (NTRS)
Burke, Christopher J.; Catanzarite, Joseph
2017-01-01
This document describes the window and one-sigma depth functions relevant to the Transiting Planet Search (TPS) algorithm in the Kepler pipeline (Jenkins 2002; Jenkins et al. 2017). The window function specifies the fraction of unique orbital ephemeris epochs over which three transits are observable as a function of orbital period. In this context, the epoch and orbital period, together, comprise the ephemeris of an orbiting companion, and ephemerides with the same period are considered equivalent if their epochs differ by an integer multiple of the period. The one-sigma depth function specifies the depth of a signal (in ppm) for a given light curve that results in a one-sigma detection of a transit signature as a function of orbital period when averaged over all unique orbital ephemerides. These planet detection metrics quantify the ability of TPS to detect a transiting planet signature on a star-by-star basis. They are uniquely applicable to a specific Kepler data release, since they are dependent on the details of the light curves searched and the functionality of the TPS algorithm used to perform the search. This document describes the window and one-sigma depth functions relevant to Kepler Data Release 25 (DR25), where the data were processed (Thompson et al. 2016) and searched (Twicken et al. 2016) with the SOC 9.3 pipeline. In Section 4, we describe significant differences from those reported in Kepler Data Release 24 (Burke Seader 2016) and document our verification method.
NASA Technical Reports Server (NTRS)
Henry, Stephen M.; Gillman, Amelie r.; Henry, Gregory W.
2005-01-01
Tennessee State University operates several automatic photometric telescopes (APTs) at Fairborn Observatory in southern Arizona. Four 0.8 m APTs have been dedicated to measuring subtle luminosity variations that accompany magnetic cycles in solar-type stars. Over 1000 program and comparison stars have been observed every clear night in this program for up to 12 years with a precision of approximately 0.0015 mag for a single observation. We have developed a transit-search algorithm, based on fitting a computed transit template for each trial period, and have used it to search our photometric database for transits of unknown companions. Extensive simulations with the APT data have shown that we can reliably recover transits with periods under 10 days as long as the transits have a depth of at least 0.0024 mag, or about 1.6 times the scatter in the photometric observations. Thus, due to our high photometric precision, we are sensitive to transits of possible short-period Neptune-mass planets that likely would have escaped detection by current radial velocity techniques. Our search of the APT data sets for 1087 program and comparison stars revealed no new transiting planets. However, the detection of several unknown grazing eclipsing binaries from among our comparison stars, with eclipse depths of only a few millimags, illustrates the success of our technique. We have used this negative result to place limits on the frequency of Neptune-mass planets in close orbits around solar-type stars in the Sun's vicinity.
Spacing of Kepler Planets: Sculpting by Dynamical Instability
NASA Astrophysics Data System (ADS)
Pu, Bonan; Wu, Yanqin
2015-07-01
We study the orbital architecture of multi-planet systems detected by the Kepler transit mission using N-body simulations, focusing on the orbital spacing between adjacent planets in systems showing four or more transiting planets. We find that the observed spacings are tightly clustered around 12 mutual Hill radii, when transit geometry and sensitivity limits are accounted for. In comparison, dynamical integrations reveal that the minimum spacing required for systems of similar masses to survive dynamical instability for as long as 1 billion yr is ∼10 if all orbits are circular and coplanar and ∼12 if planetary orbits have eccentricities of ∼0.02 (a value suggested by studies of planet transit-time variations). This apparent coincidence, between the observed spacing and the theoretical stability threshold, leads us to propose that typical planetary systems were formed with even tighter spacing, but most, except for the widest ones, have undergone dynamical instability, and are pared down to a more anemic version of their former selves, with fewer planets and larger spacings. So while the high-multiple systems (five or more transiting planets) are primordial systems that remain stable, the single or double planetary systems, abundantly discovered by the Kepler mission, may be the descendants of more closely packed high-multiple systems. If this hypothesis is correct, we infer that the formation environment of Kepler systems should be more dissipative than that of the terrestrial planets.
NASA Astrophysics Data System (ADS)
Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki
2016-10-01
Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidals still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis. We have worked on a search for transiting giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler has detected a certain fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important since the comparison between the occurrence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evolved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed two giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.
TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacklin, Savannah; Lund, Michael B.; Stassun, Keivan G.
2015-07-15
The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5more » to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.« less
NASA Astrophysics Data System (ADS)
Ballard, Sarah Ashley
2012-01-01
This thesis presents studies of transiting exoplanets using observations gathered in large part from space, with the NASA EPOXI Mission, the Spitzer Space Telescope, and the Kepler Mission. The first part of this thesis describes searches for additional transiting planets in known exoplanet systems, using time series photometry gathered as part of the NASA EPOXI Mission. Using the EPOXI light curves spanning weeks for each star, we searched six exoplanetary systems for signatures of additional transiting planets. These six systems include five hosts to hot Jupiters: HAT-P-4, TrES-3, TrES-2, WASP-3, and HAT-P-7, and one host to a hot Neptune: GJ 436. We place upper limits on the presence of additional transiting planets in the super-Earth radius range for GJ 436 in Chapter 2, and in the Neptune-to-Saturn radius range for the other five systems in Chapter 4. Chapter 3 details a search for additional transits of a hypothesized planet smaller than the Earth, whose presence was suggested by the EPOXI observations of GJ 436. In that study, we demonstrate the sensitivity of Warm Spitzer observations to transits of a sub-Earth-sized planet. The fifth chapter details the characterization and validation of the Kepler-19 system, which hosts a transiting 2.2 R⊕ planet, Kepler-19b. We demonstrate the planetary nature of the transit signal with an analysis that combines information from high-resolution spectroscopy, the shape of the transit light curve, adaptive optics imaging, and near-infrared transits of the planet. The sinusoidal variation in the transit times of Kepler-19b indicates the presence of an additional perturbing body, and comprises the first definitive detection of a planet using the transit timing variation method. While we cannot uniquely determine the mass and orbital period of Kepler-19c, we establish that its mass must be less than 6 times the mass of Jupiter. The sixth chapter presents evidence for the validation of a 2.0 R ⊕ planet residing in the habitable zone of a low-mass star, Kepler Object of Interest 1361.01. We discuss the theoretical composition of the planet, and address issues specific to habitability of planets orbiting M dwarfs.
NASA Astrophysics Data System (ADS)
Louie, Dana; Albert, Loic; Deming, Drake
2017-01-01
The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.
A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Events
NASA Astrophysics Data System (ADS)
Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John
2015-08-01
Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, we present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows us to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration.
Characterizing Cool Giant Planets in Reflected Light
NASA Technical Reports Server (NTRS)
Marley, Mark
2016-01-01
While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.
NASA Astrophysics Data System (ADS)
Lendl, Monika; Gillon, Michael; Queloz, Didier
2013-04-01
Transiting planets have opened up a window to the detailed study of extrasolar planets as their orbital orientation allows the measurement of the planet/star radius and flux ratios. From the observation of planetary transits and occultations at different wavelengths we can gain insights into the planets temperature, atmospheric composition, energy redistribution and albedo. In order to contribute to the characterization of planetary atmospheres, it is necessary to obtain high precision measurements of planetary transits and occultations as the signals of interest have amplitudes of typically 100 ppm. We use two dedicated instruments, EulerCam at the 1.2m Euler-Swiss telescope and the 0.6m TRAPPIST telescope for the in-depth study of transiting planets through time resolution photometry. While single lightcurves from 1m class telescopes typically reach photometric precisions of around 1mmag, we obtain very high accuracy on the transit and occultation shape by not relying on single observations but collecting larger samples of lightcurves. In this framework, we have performed an extensive observing campaign on the Hot Jupiter WASP-19b collecting over 60 hours of observations with EulerCam and TRAPPIST. The data cover 14 transits and 10 occultations of WASP-19b. We demonstrate how the attainable photometric precision and accuracy of the derived parameters can be greatly improved by combining an increasing number of lightcurves as instrumental and stellar effects can be identified and accounted for. We report the detection of the occultation of WASP-19b in the z'-band. This measurement is one of only a handful of exoplanet occultations detected from the ground at wavelengths shorter than 1μm , and so far the only one obtained from the ground using 1m class telescopes. Our value adds to an ensemble of occultation measurements for this planet, and is indicative of an Oxygen-dominated chemistry. From our sample of transits, we measure the transit depth to a precision of better than 1% in the r', I+z' and z' bands.
A pilot investigation to constrain the presence of ring systems around transiting exoplanets
NASA Astrophysics Data System (ADS)
Hatchett, W. Timothy; Barnes, Jason W.; Ahlers, John P.; MacKenzie, Shannon M.; Hedman, Matthew M.
2018-04-01
We demonstrate a process by which to evaluate the presence of large, Saturn-like ring systems around transiting extrasolar giant planets. We use extrasolar planet candidate KOI-422.01 as an example around which to establish limits on the presence of ring systems. We find that the spherical-planet (no-rings) fit matches the lightcurve of KOI-422.01 better than a lightcurve with a planet having obliquity angles 90°, 60°, 45°, or 20°. Hence we find no evidence for rings around KOI-422.01, but the methods that we have developed can be used for more comprehensive ring searches in the future. If the Hedman (2015) low-temperature rings hypothesis is correct, then the first positive detection of exorings might require transits of very long period ( ≳ 10 yr) giant planets outside their stars' ice lines.
DETECTING EXOMOONS AROUND SELF-LUMINOUS GIANT EXOPLANETS THROUGH POLARIZATION.
Sengupta, Sujan; Marley, Mark S
2016-01-01
Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity which are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1 and 0.3 % in the infrared.
DETECTING EXOMOONS AROUND SELF-LUMINOUS GIANT EXOPLANETS THROUGH POLARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Sujan; Marley, Mark S., E-mail: sujan@iiap.res.in, E-mail: Mark.S.Marley@NASA.gov
Many of the directly imaged self-luminous gas-giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk-averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk-averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with a cloudy atmosphere along the line of sight, the asymmetrymore » induced during the transit should give rise to a net non-zero, time-resolved linear polarization signal. The peak amplitude of such time-dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time-resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity that are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1% and 0.3% in the infrared.« less
Detecting Exomoons Around Self-Luminous Giant Exoplanets Through Polarization
NASA Technical Reports Server (NTRS)
Sengupta, Sujan; Marley, Mark Scott
2016-01-01
Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmo- spheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity which are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during transit phase and estimate the peak amplitude of polarization that occurs during the the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1 and 0.3 % in the infrared.
DETECTING EXOMOONS AROUND SELF-LUMINOUS GIANT EXOPLANETS THROUGH POLARIZATION
Sengupta, Sujan; Marley, Mark S.
2017-01-01
Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity which are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1 and 0.3 % in the infrared. PMID:29430024
VizieR Online Data Catalog: KOI-1257 photometric and velocimetric data (Santerne+, 2014)
NASA Astrophysics Data System (ADS)
Santerne, A.; Hebrard, G.; Deleuil, M.; Havel, M.; Correia, A. C. M.; Almenara, J.-M.; Alonso, R.; Arnold, L.; Barros, S. C. C.; Behrend, R.; Bernasconi, L.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Bruno, G.; Damiani, C.; Diaz, R. F.; Gravallon, D.; Guillot, T.; Labrevoir, O.; Montagnier, G.; Moutou, C.; Rinner, C.; Santos, N. C.; Abe, L.; Audejean, M.; Bendjoya, P.; Gillier, C.; Gregorio, J.; Martinez, P.; Michelet, J.; Montaigut, R.; Poncy, R.; Rivet, J.-P.; Rousseau, G.; Roy, R.; Suarez, O.; Vanhuysse, M.; Verilhac, D.
2014-11-01
In this paper we report a new transiting warm giant planet: KOI-1257b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661d+/-3s and a high eccentricity of 0.772+/-0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99+/-0.05M⊙ and 0.70+/-0.07M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45+/-0.35Mjup, and a radius of 0.94+/-0.12Rjup, and thus a bulk density of 2.1+/-1.2g/cm3. The planet has an equilibrium temperature of 511+/-50K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. (3 data files).
Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Brown, David J. A.; Mustill, Alexander J.; Pollacco, Don
2015-10-01
The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal-mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.
Prospects for detecting decreasing exoplanet frequency with main-sequence age using PLATO
NASA Astrophysics Data System (ADS)
Veras, D.; Brown, D. J. A.; Mustill, A. J.; Pollacco, D.
2017-09-01
The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability time-scale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal- mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.
The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone.
Heller, René; Pudritz, Ralph E
2016-04-01
Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 10(5) K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 10(4)) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.
The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone
NASA Astrophysics Data System (ADS)
Heller, René; Pudritz, Ralph E.
2016-04-01
Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 105 K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 104) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.
A SEARCH FOR Hα ABSORPTION AROUND KELT-3 b AND GJ 436 b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G., E-mail: pcauley@wesleyan.edu
2017-02-01
Observations of extended atmospheres around hot planets have generated exciting results concerning the dynamics of escaping planetary material. The configuration of the escaping planetary gas can result in asymmetric transit features, producing both pre- and post-transit absorption in specific atomic transitions. Measuring the velocity and strength of the absorption can provide constraints on the mass loss mechanism, and potentially clues to the interactions between the planet and the host star. Here we present a search for H α absorption in the circumplanetary environments of the hot planets KELT-3 b and GJ 436 b. We find no evidence for absorption aroundmore » either planet at any point during the two separate transit epochs for which each system was observed. We provide upper limits on the radial extent and density of the excited hydrogen atmospheres around both planets. The null detection for GJ 436 b contrasts with the strong Ly α absorption measured for the same system, suggesting that the large cloud of neutral hydrogen is almost entirely in the ground state. The only confirmed exoplanetary H α absorption to date has been made around the active star HD 189733 b. KELT-3 and GJ 436 are less active than HD 189733, hinting that exoplanet atmospheres exposed to EUV photons from active stars are better suited for detection of H α absorption.« less
NASA Astrophysics Data System (ADS)
Fauchez, Thomas; Turbet, Martin; Mandell, Avi; Kopparapu, Ravi Kumar; Arney, Giada; Domagal-Goldman, Shawn
2018-06-01
M-dwarfs are the most common type of stars in our galaxy. Ultra-cool dwarfs (T < 2700 K) are a sub-stellar class of late M-dwarfs and represent nearly ~ 15% of astronomical objects in the stellar neighborhood of the Sun. Their smaller size than regular M-dwarfs allows easier detection of rocky exoplanets in close orbits, and this potential was recently realized by the discovery of the TRAPPIST-1 system. Located about 12 pc away, TRAPPIST-1 has seven known planets, and it is one of the most promising rocky-planet systems for follow-up observations due to the depths of the transit signals. Transit-timing variation (TTVs) measurements of the TRAPPIST-1 planets suggest terrestrial or volatile-rich composition. Also, it has been found that three planets (TRAPPIST-1 e, f and g) are in the Habitable Zone (HZ) where surface temperatures would allow surface water to exist. These planets will be prime targets for atmospheric characterization with JWST owing to their relative proximity to Earth and frequent planetary transits.Atmospheric properties are major components of planet habitability. However, the detectability of gaseous features on rocky planets in the HZ may be severely impacted by the presence of clouds and/or hazes in their atmosphere. We have already seen this phenomenon in the “flat” transit transmission spectra of larger exoplanets such as GJ 1214b, WASP-31b, WASP-12b and HATP-12b.In this work, we use the LMDG global climate model to simulate several possibilities of atmospheres for TRAPPIST-1 e, f and 1g: 1) Archean Earth, 2) modern Earth and 3) CO2-dominated atmospheres. We also calculate synthetic transit spectra using the GSFC Planetary Spectrum Generator (PSG), and determine the number of transits needed to observe key spectral features for both JWST and future telescopes (ARIEL, LUVOIR, HabEx). We will identify differences in the spectra of cloudy vs non-cloudy, and determine how much information on spatial variability in atmosphere characteristics can be extracted from time-resolved transit and eclipse mapping. A particular attention will be given to the impact of the atmospheric variability when adding transit spectra, and how this may affect atmospheric parameter retrievals.
NASA Astrophysics Data System (ADS)
Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.
2010-01-01
We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.
M2K Planet Search: Spectroscopic Screening and Transit Photometry
NASA Astrophysics Data System (ADS)
Mann, Andrew; Gaidos, E.; Fischer, D.; Lepine, S.
2010-10-01
The M2K project is a search for planets orbiting nearby early M and late K dwarf drawn from the SUPERBLINK catalog. M and K dwarfs are highly attractive targets for finding low-mass and habitable planets because (1) close-in planets are more likely to orbit within their habitable zone, (2) planets orbiting them induce a larger Doppler signal and have deeper transits than similar planets around F, G, and early K type stars, (3) planet formation models predict they hold an abundance of super-Earth sized planets, and (4) they represent the vast majority of the stars close enough for direct imaging techniques. In spite of this, only 10% of late K and early M dwarfs are being monitored by current Doppler surveys. As part of the M2K project we have obtained low-resolution spectra for more than 2000 of our sample of 10,000 M and K dwarfs. We vet our sample by screening these stars for high metallicity and low chromospheric activity. We search for transits on targets showing high RMS Doppler signal and photometry candidates provided by SuperWASP project. By using "snapshot” photometry have been able to achieve sub-millimag photometry on numerous transit targets in the same night. With further follow-up observations we will be able to detect planets smaller than 10 Earth masses.
K2-140b - an eccentric 6.57 d transiting hot Jupiter in Virgo
NASA Astrophysics Data System (ADS)
Giles, H. A. C.; Bayliss, D.; Espinoza, N.; Brahm, R.; Blanco-Cuaresma, S.; Shporer, A.; Armstrong, D.; Lovis, C.; Udry, S.; Bouchy, F.; Marmier, M.; Jordán, A.; Bento, J.; Cameron, A. Collier; Sefako, R.; Cochran, W. D.; Rojas, F.; Rabus, M.; Jenkins, J. S.; Jones, M.; Pantoja, B.; Soto, M.; Jensen-Clem, R.; Duev, D. A.; Salama, M.; Riddle, R.; Baranec, C.; Law, N. M.
2018-04-01
We present the discovery of K2-140b, a P = 6.57 d Jupiter-mass (MP = 1.019 ± 0.070MJup) planet transiting a V = 12.5 (G5-spectral type) star in an eccentric orbit (e = 0.120^{+0.056}_{-0.046}) detected using a combination of K2 photometry and ground-based observations. With a radius of 1.095 ± 0.018 RJup, the planet has a bulk density of 0.726 ± 0.062 ρJup. The host star has a [Fe/H] of 0.12 ± 0.045, and from the K2 light curve, we find a rotation period for the star of 16.3 ± 0.1 d. This discovery is the 9th hot Jupiter from K2 and highlights K2's ability to detect transiting giant planets at periods slightly longer than traditional, ground-based surveys. This planet is slightly inflated, but much less than others with similar incident fluxes. These are of interest for investigating the inflation mechanism of hot Jupiters.
Kepler AutoRegressive Planet Search (KARPS)
NASA Astrophysics Data System (ADS)
Caceres, Gabriel
2018-01-01
One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.
Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST
NASA Astrophysics Data System (ADS)
Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.
2017-12-01
Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Nicholas M.; Kraus, Adam L.; Street, Rachel
2012-10-01
We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.« less
Transit light curves with finite integration time: Fisher information analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Ellen M.; Rogers, Leslie A.
2014-10-10
Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal to noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curvemore » photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal to noise (constant total integration time in the absence of read noise). Uncertainties on the transit ingress/egress time increase by a factor of 34 for Earth-size planets and 3.4 for Jupiter-size planets around Sun-like stars for integration times of 30 minutes compared to instantaneously sampled light curves. Similarly, uncertainties on the mid-transit time for Earth and Jupiter-size planets increase by factors of 3.9 and 1.4. Uncertainties on the transit depth are largely unaffected by finite integration times. While correlations among the transit depth, ingress duration, and transit duration all increase in magnitude with longer integration times, the mid-transit time remains uncorrelated with the other parameters. We provide code in Python and Mathematica for predicting the variances and covariances at www.its.caltech.edu/∼eprice.« less
An Improved Transit Measurement for a 2.4 R ⊕ Planet Orbiting A Bright Mid-M Dwarf K2–28
NASA Astrophysics Data System (ADS)
Chen, Ge; Knutson, Heather A.; Dressing, Courtney D.; Morley, Caroline V.; Werner, Michael; Gorjian, Varoujan; Beichman, Charles; Benneke, Björn; Christiansen, Jessie L.; Ciardi, David; Crossfield, Ian; Howell, Steve B.; Krick, Jessica E.; Livingston, John; Morales, Farisa Y.; Schlieder, Joshua E.
2018-05-01
We present a new Spitzer transit observation of K2–28b, a sub-Neptune (R p = 2.45 ± 0.28 R ⊕) orbiting a relatively bright (V mag = 16.06, K mag = 10.75) metal-rich M4 dwarf (EPIC 206318379). This star is one of only seven with masses less than 0.2 {M}ȯ known to host transiting planets, and the planet appears to be a slightly smaller analogue of GJ 1214b (2.85+/- 0.20 {R}\\oplus ). Our new Spitzer observations were taken two years after the original K2 discovery data and have a significantly higher cadence, allowing us to derive improved estimates for this planet’s radius, semimajor axis, and orbital period, which greatly reduce the uncertainty in the prediction of near future transit times for the James Webb Space Telescope (JWST) observations. We also evaluate the system’s suitability for atmospheric characterization with JWST and find that it is currently the only small (< 3 {R}\\oplus ) and cool (<600 K) planet aside from GJ 1214b with a potentially detectable secondary eclipse. We also note that this system is a favorable target for near-infrared radial velocity instruments on larger telescopes (e.g., the Habitable Planet Finder on the Hobby–Eberly Telescope), making it one of only a handful of small, cool planets accessible with this technique. Finally, we compare our results with the simulated catalog of the Transiting Exoplanet Survey Satellite (TESS) and find K2–28b to be representative of the kind of mid-M systems that should be detectable in the TESS sample.
Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1
Gillon, Michaël; Triaud, Amaury H. M. J.; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M.; Lederer, Susan M.; de Wit, Julien; Burdanov, Artem; Ingalls, James G.; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N.; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R.; Carey, Sean J.; Chaushev, Aleksander; Copperwheat, Chris M.; Delrez, Laetitia; Fernandes, Catarina S.; Holdsworth, Daniel L.; Kotze, Enrico J.; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier
2017-01-01
One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star just 8% the mass of the Sun 12 parsecs away1. Indeed, the transiting configuration of these planets combined with the Jupiter-like size of their host star - named TRAPPIST-1 - makes possible in-depth studies of their atmospheric properties with current and future astronomical facilities1,2,3. Here we report the results of an intensive photometric monitoring campaign of that star from the ground and with the Spitzer Space Telescope. Our observations reveal that at least seven planets with sizes and masses similar to the Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.21, 12.35 days) are near ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inward4,5. The seven planets have equilibrium temperatures low enough to make possible liquid water on their surfaces6,7,8. PMID:28230125
Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1.
Gillon, Michaël; Triaud, Amaury H M J; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M; Lederer, Susan M; de Wit, Julien; Burdanov, Artem; Ingalls, James G; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R; Carey, Sean J; Chaushev, Aleksander; Copperwheat, Chris M; Delrez, Laetitia; Fernandes, Catarina S; Holdsworth, Daniel L; Kotze, Enrico J; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier
2017-02-22
One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.
Infrared spectroscopy of the transiting extrasolar planet HD 209458 b during secondary eclipse
NASA Astrophysics Data System (ADS)
Richardson, Lee Jeremy
2003-10-01
We present spectroscopic observations that place strong limits on the atmospheric structure of the transiting extrasolar planet HD 209458 b. The discovery of the transit has led to several new observations that have provided the most de tailed information on the physical properties of a planet outside the solar system. These observations have concentrated on the primary eclipse, the time at which the planet crosses in front of the star as seen from Earth. The measurements have determined the basic physical characteristics of the planet, including radius, mass, average density, and orbital inclination, and have even refined values of the stellar mass and radius. Transmission spectroscopy of the system during primary eclipse resulted in the first detection of the atmosphere of an extrasolar planet, with the measurement of the sodium doublet. The present work discusses the first reported attempts to detect the secondary eclipse, or the disappearance of the planet behind the star, in the infrared. We devise the method of ‘occultation spectroscopy’ to detect the planetary spectrum, by searching in combined light for subtle changes in the shape of the spectrum as the planet passes behind the star. Predicted secondary eclipse events were observed from the Very Large Telescope (VLT) on UT 8 and 15 July 2001 using the Infrared Spectrometer and Array Camera (3.5 3.7 μm). Further observations from the NASA Infrared Telescope Facility (IRTF) using the SpeX instrument (1.9 4.2 μm) included two predicted secondary eclipse events on UT 20 and 27 September 2001. Analysis of these data reveal a statistically significant non- detection of the planetary spectrum. The results place strong limits on the structure of the planetary atmosphere and reject widely-accepted models for the planet that assume the incident stellar radiation is completely absorbed and re-emitted in the substellar hemisphere. Situations that remain consistent with our data include an isothermal atmosphere or the presence of a high absorptive or reflective cloud. The latter case is also consistent with the observed low sodium abundance from transmission spectroscopy. These results represent the strongest limits to date on the temperature structure of the planetary atmosphere.
MEASURING TRANSIT SIGNAL RECOVERY IN THE KEPLER PIPELINE. I. INDIVIDUAL EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, Jessie L.; Clarke, Bruce D.; Burke, Christopher J.
The Kepler mission was designed to measure the frequency of Earth-size planets in the habitable zone of Sun-like stars. A crucial component for recovering the underlying planet population from a sample of detected planets is understanding the completeness of that sample-the fraction of the planets that could have been discovered in a given data set that actually were detected. Here, we outline the information required to determine the sample completeness, and describe an experiment to address a specific aspect of that question, i.e., the issue of transit signal recovery. We investigate the extent to which the Kepler pipeline preserves individualmore » transit signals by injecting simulated transits into the pixel-level data, processing the modified pixels through the pipeline, and comparing the measured transit signal-to-noise ratio (S/N) to that expected without perturbation by the pipeline. We inject simulated transit signals across the full focal plane for a set of observations for a duration of 89 days. On average, we find that the S/N of the injected signal is recovered at MS = 0.9973({+-} 0.0012) Multiplication-Sign BS - 0.0151({+-} 0.0049), where MS is the measured S/N and BS is the baseline, or expected, S/N. The 1{sigma} width of the distribution around this correlation is {+-}2.64%. This indicates an extremely high fidelity in reproducing the expected detection statistics for single transit events, and provides teams performing their own periodic transit searches the confidence that there is no systematic reduction in transit signal strength introduced by the pipeline. We discuss the pipeline processes that cause the measured S/N to deviate significantly from the baseline S/N for a small fraction of targets; these are primarily the handling of data adjacent to spacecraft re-pointings and the removal of harmonics prior to the measurement of the S/N. Finally, we outline the further work required to characterize the completeness of the Kepler pipeline.« less
NASA Astrophysics Data System (ADS)
Waalkes, William; Berta-Thompson, Zachory; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth; Dittmann, Jason; Bourrier, Vincent; Ehrenreich, David; Kempton, Eliza
2018-01-01
GJ1132b is one of the few known Earth-sized planets, and at 12 pc away it is also one of the closest known transiting planets. With an equilibrium temperature of 500 K, this planet is too hot to be habitable but we can use it to learn about the presence and volatile content of rocky planet atmospheres around M dwarf stars. Using Hubble STIS spectra during primary transit, we explore the potential for UV transit detections of GJ1132b. If we were to observe a deep Lyman-α transit, that would indicate the presence of a neutral hydrogen envelope flowing from GJ1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet has either retained its volatiles or lost them very early in the star’s life. We carry out this analysis by extracting 1D spectra from the STIS pipeline, splitting the time-tagged spectra into higher resolution samples, and producing light curves of the red and blue wings of the Lyman-α line. We fit for the baseline stellar flux and transit depths in order to constrain the characteristics of the cloud of neutral hydrogen gas that may surround the planet. Our work extends beyond the transit study into an analysis of the stellar variability and Lyman-α spectrum of GJ1132, a slowly-rotating 0.18 MSun M dwarf with previously uncharacterized UV activity. Understanding the role that UV variability plays in planetary atmospheres and volatile retention is crucial to assess atmospheric evolution and the habitability of cooler rocky planets.
THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dressing, Courtney D.; Charbonneau, David, E-mail: cdressing@cfa.harvard.edu
We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000 K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to themore » number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 R{sub Circled-Plus} planets with orbital periods shorter than 50 days is 0.90{sup +0.04}{sub -0.03} planets per star. The occurrence rate of Earth-size (0.5-1.4 R{sub Circled-Plus }) planets is constant across the temperature range of our sample at 0.51{sub -0.05}{sup +0.06} Earth-size planets per star, but the occurrence of 1.4-4 R{sub Circled-Plus} planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15{sup +0.13}{sub -0.06} planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.« less
The Kepler Mission: Search for Habitable Planets
NASA Technical Reports Server (NTRS)
Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)
1998-01-01
Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.
Refining Parameters of the XO-5 Planetary System with High-Precision Transit Photometry
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Seeliger, M.; Adam, Ch.; Raetz, St.; Neuhäuser, R.
2011-03-01
Studies of transiting extrasolar planets provide unique opportunity to get to know the internal structure of those worlds. The transiting exoplanet XO-5 b was found to have an anomalously high Safronov number and surface gravity. Our aim was to refine parameters of this intriguing system and search for signs of transit timing variations. We gathered high-precision light curves for two transits of XO-5 b. Assuming three different limb darkening laws, we found the best-fitting model and redetermined parameters of the system, including planet-to-star radius ratio, impact parameter and central time of transits. Error estimates were derived by the prayer bead method and Monte Carlo simulations. Although system's parameters obtained by us were found to agree with previous studies within one sigma, the planet was found to be notable smaller with the radius of 1.03+0.06-0.05 Jupiter radii. Our results confirm the high Safronov number and surface gravity of the planet. With two new mid-transit times, the ephemeris was refined to BJDTDB=(2454485.66842±0.00028)+(4.1877537±0.000017)E. No significant transit timing variation was detected.
The TESS Transiting Planet Search Predicted Recovery and Reliability Rates
NASA Astrophysics Data System (ADS)
Smith, Jeffrey C.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Tenenbaum, Peter; Ting, Eric; Twicken, Joseph D.; Wohler, Bill
2018-06-01
The Transiting Exoplanet Survey Satellite (TESS) will search for transiting planet signatures via the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. We report on predicted transit recovery and reliability rates for planetary signatures. These estimates are based on simulated runs of the pipeline using realistic stellar models and transiting planet populations along with best estimates for instrumental noise, thermal induced focus changes, instrumental drift and stochastic artifacts in the light curve data. Key sources of false positives are identified and summarized. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.
Probing the atmosphere of the coolest super-Earth
NASA Astrophysics Data System (ADS)
Desert, Jean-Michel; Charbonneau, David; Berta, Zachory; Burke, Christopher; Irwin, Jonathan; Nutzman, Philip; Miller-Ricci, Eliza
2010-02-01
Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Our team recently detected a super-Earth transiting the nearby low-mass star GJ1214 (Charbonneau et al., 2009). This detection has opened the door to testing predictions of low mass planet atmosphere theories. We propose to use the Spitzer space telescope to detect the atmosphere and infer the molecular composition of GJ1214b. The mid-infrared (MIR) is particularly well suited to observe numerous molecular signatures such as water vapor. We plan to observe the primary eclipse of the planet (when the planet passes in front of the parent star) with the IRAC instrument in the two available channels at 3.6 and 4.5 microns. Comparing the radius measurements obtained in the two band-passes will allow us to detect the atmosphere of this object and to place constraints on its molecular composition. This study is possible because of the small size of the host star GJ1214. Consequently, the expected atmospheric signatures observed in transmission (0.1%) can be detected with the same level of confidence as has successfully been accomplished with much larger planets (hot-Jupiters). Moreover, the high photometric precision, continuous coverage and no limb-darkening of these light curves will improve the planetary parameters, and allow to search for transiting moons.
Imaging Planet Formation Inside the Diffraction Limit
NASA Astrophysics Data System (ADS)
Sallum, Stephanie Elise
For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques. In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.
A Census of Habitable Planets around Nearby stars?
NASA Astrophysics Data System (ADS)
Leger, Alain M.
2015-12-01
One day or another, a spectroscopic mission will be launched searching for biosignatures in the atmospheres of Earth-like planets, i.e. planets located in the Habitable Zone (HZ) of their stars and hopefully rocky. This could be done blindly, the expensive spectroscopic mission searching for the candidates before performing their spectroscopy. According to a clear tendency in the Kepler data, the mean number of Earth-like planets, ηEarth, around the Kepler stars is rather low (10% - 20%). It makes this approach pretty inefficient, most of the stars studied (90% - 80%) having no such planets, and the corresponding mission time being essentially lost. This is more severe when the random position of planets on their orbits is taken into account. An exhaustive census of these planets around the nearby stars, the only ones accessible to the mission, appears desirable priorly to its launch.Up to now, the detection of low mas planets in the HZ of their stars by the Radial Velocity technique is limited to stars with very low activity (~ 2% of F,G,K stars). The detection by transits is limited by the low probability the randomly oriented orbits, few of them leading to a transit (0.5% for solar-type stars). On the other hand, ultra accurate astrometry is less sensitive to stellar activity and could detect Earth-like planets around most of the nearby solar-type stars.We present the project of a space mission, Theia+, that could do the job and measure the masses and orbits of these planets, a key piece of information to derive a possible statement about the likelihood of the actual presence of life on a planet. Other capabilities of the mission regarding Dark Matter, Very Compact Object, Cosmology, and Stellar Formation is also rapidly mentioned.
Kepler-444 Planetary System Artist Concept
2015-01-28
The tightly packed system, named Kepler-444, is home to five small planets in very compact orbits. The planets were detected from the dimming that occurs when they transit the disk of their parent star, as shown in this artist conception.
Characterising Hot-Jupiters' atmospheres with observations and modelling
NASA Astrophysics Data System (ADS)
Tinetti, G.
2007-08-01
Exoplanet transit photometry and spectroscopy are currently the best techniques to probe the atmospheres of extrasolar worlds. The best targets to be observed with these methods, are the planets that orbit very close to their parent star, both because their probability to transit grows and their atmospheres are warmer and more expanded, hence easier to probe. These characteristics are met by the so called Hot-Jupiters, massive low-density gaseous planets orbiting very close-in. Phase-curves allow to observe the change in brightness in the combined light of the planet-star system, also for non-transiting exoplanets. We review here the most crucial observations performed with the Hubble and Spitzer Space Telescopes at multiple wavelenghts, and the most successful models proposed in the literature to plan and interpret those observations. In particular we will focus on most recent observations and modelling claiming the detection of water vapour in the atmospheres of these planets. Further into the future, the JamesWebb Space Telescope will allow to probe the atmospheres of smaller size-planets with the same techniques. We briefly report here the results expected for hot and warm Neptunes, or transiting terrestrial planets.
NASA Astrophysics Data System (ADS)
Furlan, E.; Ciardi, D. R.; Everett, M. E.; Saylors, M.; Teske, J. K.; Horch, E. P.; Howell, S. B.; van Belle, G. T.; Hirsch, L. A.; Gautier, T. N., III; Adams, E. R.; Barrado, D.; Cartier, K. M. S.; Dressing, C. D.; Dupree, A. K.; Gilliland, R. L.; Lillo-Box, J.; Lucas, P. W.; Wang, J.
2017-02-01
We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over six years (2009-2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ˜10% (˜30%) of the observed stars have at least one companion detected within 1″ (4″). The true fraction of systems with close (≲4″) companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2 {R}\\oplus by ˜2%-23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.
Kepler Mission to Detect Earth-like Planets
NASA Technical Reports Server (NTRS)
Kondo, Yoji
2003-01-01
Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.
Kepler Mission to Detect Earth-like Planets
NASA Technical Reports Server (NTRS)
Kondo, Yoji
2002-01-01
Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.
Lyman-alpha transit observations of the warm rocky exoplanet GJ1132b
NASA Astrophysics Data System (ADS)
Waalkes, William; Berta-Thompson, Zachory K.; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth; Dittmann, Jason; Bourrier, Vincent; Ehrenreich, David; Kempton, Eliza; Will
2018-06-01
GJ1132b is one of the few known Earth-sized planets, and at 12pc away it is also one of the closest known transiting planets. With an equilibrium temperature of 500 K, this planet is too hot to be habitable but we can use it to learn about the presence and volatile content of rocky planet atmospheres around M dwarf stars. Using Hubble STIS spectra obtained during primary transit, we search for a Lyman-α transit. If we were to observe a deep Lyman-α transit, that would indicate the presence of a neutral hydrogen envelope flowing from GJ1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet has either retained its volatiles or lost them very early in the star’s life. We carry out this analysis by extracting 1D spectra from the STIS pipeline, splitting the time-tagged spectra into higher resolution samples, and producing light curves of the red and blue wings of the Lyman-α line. We fit for the baseline stellar flux and transit depths in order to constrain the characteristics of the cloud of neutral hydrogen gas that may surround the planet. We do not conclusively detect a transit but the results provide an upper limit for the transit depth. We also analyze the stellar variability and Lyman-α spectrum of GJ1132, a slowly-rotating 0.18 solar mass M dwarf with previously uncharacterized UV activity. Understanding the role that UV variability plays in planetary atmospheres and volatile retention is crucial to assess atmospheric evolution and the habitability of cooler rocky planets.
The Hydrogen Content of a Rocky Earth-Size Exoplanet
NASA Astrophysics Data System (ADS)
Berta-Thompson, Zach
2016-10-01
The composition of a terrestrial planet's atmosphere results from a complex interplay of accretion, escape, and outgassing. We have little data on how such processes proceed for planets around stars other than our Sun. The warm, Earth-size planet GJ1132b transits a late M dwarf and offers a unique opportunity for studying the atmospheric composition of a rocky exoplanet. Thanks to this transiting planet's proximity (12pc) and large transit depth (0.3%), possible scenarios for GJ1132b's atmospheric transmission spectrum can be observed with the Hubble Space Telescope. Here, we propose to use WFC3/IR to observe five transits of GJ1132b, to search for absorption features from a cloud-free, hydrogen-rich atmosphere. Such an atmosphere could potentially arise from late outgassing of volatiles from the planetary interior. The detection of molecular absorption in GJ1132b's atmosphere is an important step toward the long-term goal of characterizing the atmospheres of cooler habitable planets, and GJ1132b is a favorable target for JWST observations. The results of this Hubble/WFC3 investigation would inform the optimal strategy to observe GJ1132b with JWST. If we detect deep absorption features with WFC3, JWST should observe GJ1132b across its entire wavelength range. If we do not, JWST may first need to focus more intensely on smaller individual wavelength windows. This planet provides the first chance for WFC3 to study the atmosphere of an exoplanet that almost resembles terrestrial worlds in our own Solar System.
TRANSIT OF EXOMOON PLASMA TORI: NEW DIAGNOSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Jaffel, Lotfi; Ballester, Gilda E., E-mail: bjaffel@iap.fr, E-mail: gilda@pirl.lpl.arizona.edu
2014-04-20
In the solar system, moons largely exceed planets in number. The Kepler database has been shown to be sensitive to exomoon detection down to the mass of Mars, but the first search has been unsuccessful. Here, we use a particles-in-cell code to predict the transit of the plasma torus produced by a satellite. Despite the small size of a moon, the spatial extent of its plasma torus can be large enough to produce substantial transit absorptions. The model is used for the interpretation of Hubble Space Telescope early ingress absorptions apparently observed during the WASP-12 b and HD 189733 bmore » UV transits for which no consistent explanation exists. For HD 189733 b an exomoon transiting ∼16 R{sub p} ahead of the planet and loading ∼10{sup 29} C II ions s{sup –1} into space is required to explain the tentative early ingress absorption observed for C II. For WASP-12b, a moon transiting ∼6 R{sub p} ahead from the planet and ejecting ∼10{sup 28} Mg II ions per second is required to explain the NUV early ingress absorption feature. Interestingly, both HD 189733 b and WASP-12b predicted satellites are outside the Hill sphere of their planets, an indication that the moons, if present, were not formed in situ but probably captured later. Finally, our simulations show a strong electromagnetic coupling between the polar regions of planets and the orbital position of the moons, an expected outcome of the unipolar induction DC circuit model. Future observations should test our predictions with a potential opportunity to unambiguously detect the first exomoon plasma torus.« less
HABITABLE PLANETS ECLIPSING BROWN DWARFS: STRATEGIES FOR DETECTION AND CHARACTERIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belu, Adrian R.; Selsis, Franck; Raymond, Sean N.
2013-05-10
Given the very close proximity of their habitable zones, brown dwarfs (BDs) represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper, we develop search strategies to find habitable planets transiting BDs depending on their maximum habitable orbital period (P{sub HZ{sub out}}). Habitable planets with P{sub HZ{sub out}} shorter than the useful duration of a night (e.g., 8-10 hr) can be screened with 100% completeness from a single location and in a single night (near-IR). More luminous BDs require continuous monitoring for longer duration, e.g., from space ormore » from a longitude-distributed network (one test scheduling achieved three telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known BDs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5{sup +5.6}{sub -1.4}% and 56{sup +31}{sub -13}%, depending on our assumptions. We calculate that BDs within 5-10 pc are characterizable for potential biosignatures with a 6.5 m space telescope using {approx}1% of a five-year mission's lifetime spread over a contiguous segment only one-fifth to one-tenth of this duration.« less
Lifting Transit Signals from the Kepler Noise Floor. I. Discovery of a Warm Neptune
NASA Astrophysics Data System (ADS)
Kunimoto, Michelle; Matthews, Jaymie M.; Rowe, Jason F.; Hoffman, Kelsey
2018-01-01
Light curves from the 4-year Kepler exoplanet hunting mission have been searched for transits by NASA’s Kepler team and others, but there are still important discoveries to be made. We have searched the light curves of 400 Kepler Objects of Interest (KOIs) to find transit signals down to signal-to-noise ratio (S/N) ∼ 6, which is under the limit of S/N ∼ 7.1 that has been commonly adopted as a strict threshold to distinguish between a transit candidate and false alarm. We detect four new and convincing planet candidates ranging in radius from near-Mercury-size to slightly larger than Neptune. We highlight the discovery of KOI-408.05 (period = 637 days; radius = 4.9 R ⊕ incident flux = 0.6 S ⊕), a planet candidate within its host star’s Habitable Zone. We dub this planet a “warm Neptune,” a likely volatile-rich world that deserves closer inspection. KOI-408.05 joins 21 other confirmed and candidate planets in the current Kepler sample with semimajor axes a > 1.4 au. These discoveries are significant as a demonstration that the S/N threshold for detection used by the Kepler project is open to debate.
The Exoplanet Migration Timescale from K2 Young Clusters
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron
A significant fraction of exoplanets orbit within 0.1 AU of their host star, with periods of <20 days. The discovery of these close-in planets has defied conventional models of planet formation and evolution based on our own solar system. It is widely accepted that these close-in planets did not form in such close proximity to their host stars (both rocky planets and hot Jupiters), but rather that dynamical or interactive processes caused them to migrate inwards from larger orbital semimajor axes and periods. There are multiple planet migration scenarios proposed in the literature, though it is unclear how much of the known planet population is attributable to each mechanism. Planetary migration models can be loosely divided into two categories: disk-driven migration and dynamical migration. Disk migration occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operates on timescales of 100 Myr to 1Gyr, a lengthier process than disk migration. The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key ages. Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the <120 Myr Pleiades cluster, to the ,600-800 Myr Hyades and Praesepe clusters. Upcoming data from more recent campaigns include the 2Myr Taurus region and significantly more Upper Scorpius members in C13 and 15. The frequency, orbital properties, and compositions of the exoplanet population in these samples of different age, with careful treatment of detection completeness, distinguish these scenarios of exoplanet migration as their host stars are settling onto the main sequence. We have pioneered efforts to identify transiting exoplanets in the K2 data for young clusters and moving groups, and have developed a new, highly complete, detrending algorithm for rotational induced variability that is commonly seen in the light curves of young, active stars (Rizzuto et al. in prep). We have identified 11 candidate planets in Praesepe, Hyades, Upper Sco, and the Pleiades using these methods, the first of which has now been published with follow-up (Mann et al. 2016abc; Gaidos et al. 2016). This sample of detected planet candidates gives a promising first indication of the timescale over which planet migration occurs, favoring dynamical multi-body processes. However, because rotational activity in young stars makes detection of exoplanet transits more difficult for the younger clusters (e.g, Upper Sco, Pleiades), to robustly prove that these frequencies are true representations of the short-period planet occurrence rate at different PMS ages will require robust determination of detection limits in these highly variable young-star lightcurves. We propose to address the question of planet migration with a uniform injection-recovery test of young cluster members, to robustly measure the detectability of planets of differing size and orbit. This will involve detrending the light curve data of instrumental and rotational systematics, injecting a synthetic transit signature from a grid of planetary and orbital parameters, reversing the detrending, and then executing our transit search pipeline (which is tuned for highly active young stars) and mapping the recovery rate as a function of planet parameters for every individual light curve. With this map of detectability as a function of planet properties for each light curve and a full program of detected exoplanet follow-up, we can then directly confirm any change in the occurrence rates of close-in (P<20 day) planets with cluster age and identify the most significant migration mechanism.
Search for spectroscopical signatures of transiting HD 209458b's exosphere
NASA Astrophysics Data System (ADS)
Moutou, C.; Coustenis, A.; Schneider, J.; St Gilles, R.; Mayor, M.; Queloz, D.; Kaufer, A.
2001-05-01
Following recent attempts to detect the exosphere of the extra-solar planet 51 Pegb in the infrared (Coustenis et al. \\cite{cou97}, \\cite{cou98}; Rauer et al. \\cite{rau00a}), we discuss here a search for optical spectroscopic signatures from a gaseous extended envelope (called exosphere) surrounding the planet HD 209458b. This planet has a demonstrated photometric transit (Charbonneau et al. \\cite{cha00a}; Henry et al. \\cite{hen00}), thus offering an increased probability for the spectroscopic detection of such an envelope. Therefore it is the best known candidate for probing the exospheric composition of a giant planet, orbiting a Sun-like star at a short distance. The observations were performed with UVES at the VLT and cover most of the 328-669 nm range. We did not detect HD 209458b's exosphere at a level of 1%, a value close to the predictions. We discuss here the first results obtained and their limitations, as well as future prospective. Based on public data from the UVES Commissioning at the ESO 8.2~m Kueyen telescope operated on Paranal Observatory, Chile.
A Population of planetary systems characterized by short-period, Earth-sized planets.
Steffen, Jason H; Coughlin, Jeffrey L
2016-10-25
We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.
A Population of planetary systems characterized by short-period, Earth-sized planets
Steffen, Jason H.; Coughlin, Jeffrey L.
2016-01-01
We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984
Modeling Indications of Technology in Planetary Transit Light Curves-Dark-side Illumination
NASA Astrophysics Data System (ADS)
Korpela, Eric J.; Sallmen, Shauna M.; Leystra Greene, Diana
2015-08-01
We analyze potential effects of an extraterrestrial civilization’s use of orbiting mirrors to illuminate the dark side of a synchronously rotating planet on planetary transit light curves. Previous efforts to detect civilizations based on side effects of planetary-scale engineering have focused on structures affecting the host star output (e.g., Dyson spheres). However, younger civilizations are likely to be less advanced in their engineering efforts, yet still capable of sending small spacecraft into orbit. Since M dwarfs are the most common type of star in the solar neighborhood, it seems plausible that many of the nearest habitable planets orbit dim, low-mass M stars, and will be in synchronous rotation. Logically, a civilization evolving on such a planet may be inspired to illuminate their planet’s dark side by placing a single large mirror at the L2 Lagrangian point, or launching a fleet of small thin mirrors into planetary orbit. We briefly examine the requirements and engineering challenges of such a collection of orbiting mirrors, then explore their impact on transit light curves. We incorporate stellar limb darkening and model a simplistic mirror fleet’s effects for transits of Earth-like (R = 0.5 to 2 {R}{Earth}) planets which would be synchronously rotating for orbits within the habitable zone of their host star. Although such an installation is undetectable in Kepler data, the James Webb Space Telescope will provide the sensitivity necessary to detect a fleet of mirrors orbiting Earth-like habitable planets around nearby stars.
Photometric Exoplanet Characterization and Multimedia Astronomy Communication
NASA Astrophysics Data System (ADS)
Cartier, Kimberly M. S.
The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for transiting planets presented in this work quantifies the information contained in a sequence of transit depths using a normalized information content metric. The normalized information content metric can distinguish between naturally occurring, regular transits of real exoplanets detected via Kepler (low information content) and simulated artificial beacons whose depth and timing vary in a prime number sequence (high information content). Highly variable transit sequences with natural explanations--as seen with KIC 12557548, for example--can only be distinguished from artificial beacons when observed at a high signal-to-noise ratio (moderate information content) and may otherwise be confused with a more information-rich sequence. This dissertation also presents a review of effective methods for communicating science to various audiences, with specific applications to astronomy. That chapter highlights the necessity of integrating formal communications training into the early stages of a career in astronomy, explains why and how to apply story telling techniques to astronomy communication, and details specific strategies to apply when using common communication media. Examples are given for effectively communicating astronomy through academic research papers, slides for an oral presentation, and academic research posters, as well as examples of popular science blogs, feature articles, and news stories.
A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths
NASA Technical Reports Server (NTRS)
Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)
1998-01-01
The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.
NASA Astrophysics Data System (ADS)
Petigura, Erik; Marcy, G.
2012-05-01
With its unprecedented photometric precision and duty cycle, the Kepler mission offers the first opportunity to detect Earth analog planets. Detecting transits with depths of 0.01%, periods of 1 year, and durations of 10 hours pose a novel challenge, prompting an optimization of both the detrending of the photometry and of the transit search algorithm. We present TERRA, the Transiting Exoearth Robust Reduction Algorithm, designed specifically to find earth analogs. TERRA carefully treats systematic effects with timescales comparable to an exoearth transit and removes features that are not important from the perspective of transit detection. We demonstrate TERRA's detection power through an extensive transit injection and recovery experiment.
A Demonstration Setup to Simulate Detection of Planets outside the Solar System
ERIC Educational Resources Information Center
Choopan, W.; Ketpichainarong, W.; Laosinchai, P.; Panijpan, B.
2011-01-01
We constructed a simple demonstration setup to simulate an extrasolar planet and its star revolving around the system's centre of mass. Periodic dimming of light from the star by the transiting planet and the star's orbital revolution simulate the two major ways of deducing the presence of an exoplanet near a distant star. Apart from being a…
Ground-based K-band detection of thermal emission from the exoplanet TrES-3b
NASA Astrophysics Data System (ADS)
de Mooij, E. J. W.; Snellen, I. A. G.
2009-01-01
Context: Secondary eclipse measurements of transiting extrasolar planets with the Spitzer Space Telescope have yielded several direct detections of thermal exoplanet light. Since Spitzer operates at wavelengths longward of 3.6 μm, arguably one of the most interesting parts of the planet spectrum (from 1 to 3 μm) is inaccessible with this satellite. This region is at the peak of the planet's spectral energy distribution and is also the regime where molecular absorption bands can significantly influence the measured emission. Aims: So far, 2.2 μm K-band secondary eclipse measurements, which are possible from the ground, have not yet lead to secure detections. The aim of this paper is to measure the secondary eclipse of the very hot Jupiter TrES-3b in K-band, and in addition to observe its transit, to obtain an accurate planet radius in the near infrared. Methods: We have used the william herschell telescope (WHT) to observe the secondary eclipse, and the united kingdom infrared telescope (UKIRT) to observe the transit of TrES-3b. Both observations involved significant defocusing of the telescope, aimed to produce high-cadence time series of several thousand frames at high efficiency, with the starlight spread out over many pixels. Results: We detect the secondary eclipse of TrES-3b with a depth of -0.241 ± 0.043% (~6σ). This corresponds to a day-side brightness temperature of TB(2.2 μm) = 2040 ± 185 K, which is consistent with current models of the physical properties of this planet's upper atmosphere. The centre of the eclipse seems slightly offset from phase φ=0.5 by Δφ = -0.0042 ± 0.0027, which could indicate that the orbit of TrES-3b is non-circular. Analysis of the transit data shows that TrES-3b has a near-infrared radius of 1.338 ± 0.016 R_Jup, showing no significant deviation from optical measurements.
HAT-P-17b,c: A TRANSITING, ECCENTRIC, HOT SATURN AND A LONG-PERIOD, COLD JUPITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, A. W.; Marcy, G. W.; Bakos, G. A.
2012-04-20
We report the discovery of HAT-P-17b,c, a multi-planet system with an inner transiting planet in a short-period, eccentric orbit and an outer planet in a 4.4 yr, nearly circular orbit. The inner planet, HAT-P-17b, transits the bright V = 10.54 early K dwarf star GSC 2717-00417, with an orbital period P = 10.338523 {+-} 0.000009 days, orbital eccentricity e = 0.342 {+-} 0.006, transit epoch T{sub c} = 2454801.16943 {+-} 0.00020 (BJD: barycentric Julian dates throughout the paper are calculated from Coordinated Universal Time (UTC)), and transit duration 0.1690 {+-} 0.0009 days. HAT-P-17b has a mass of 0.534 {+-} 0.018more » M{sub J} and radius of 1.010 {+-} 0.029 R{sub J} yielding a mean density of 0.64 {+-} 0.05 g cm{sup -3}. This planet has a relatively low equilibrium temperature in the range 780-927 K, making it an attractive target for follow-up spectroscopic studies. The outer planet, HAT-P-17c, has a significantly longer orbital period P{sub 2} = 1610 {+-} 20 days and a minimum mass m{sub 2}sin i{sub 2} = 1.31{sup +0.18}{sub -0.15} M{sub J}. The orbital inclination of HAT-P-17c is unknown as transits have not been observed and may not be present. The host star has a mass of 0.86 {+-} 0.04 M{sub Sun }, radius of 0.84 {+-} 0.02 R{sub Sun }, effective temperature 5246 {+-} 80 K, and metallicity [Fe/H] = 0.00 {+-} 0.08. HAT-P-17 is the second multi-planet system detected from ground-based transit surveys.« less
An Earth-sized planet in the habitable zone of a cool star.
Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck
2014-04-18
The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.
NASA Technical Reports Server (NTRS)
Mullally, Fergal
2017-01-01
We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.
NASA Astrophysics Data System (ADS)
Crossfield, Ian
2014-07-01
TMT will have unparalleled capabilities for characterizing the composition of extrasolar planets and their atmospheres, and for probing the complex interplay between planet formation, evolution, and migration. In this plenary talk I will summarize these science cases and discuss their synergy with other observing facilities. High-resolution imaging with IRIS and PFI/SEIT will study young, hot planets in nearby star-forming regions, complementing JWST and WFIRST/AFTA coronagraphic efforts at larger semimajor axes. The same instruments will flesh out planets detected by radial velocity (RV) by measuring the albedos and bolometric radii of old, cold Jovian planets and a few ~300 K super-Earths. Complementing JWST and HST studies of short-period transiting planets, NIRES and IRMS spectroscopy will reveal atmospheric composition, dynamics, and thermal structure for dozens of hot Jupiters and Neptunes; NIRES will also produce 2D global maps and movies of a few exoplanets and dozens of brown dwarfs. HROS high-dispersion spectroscopy will precisely measure the composition of extrasolar planetesimals in polluted white dwarfs, and RV followup will continue to exploit the legacies of Kepler, K2, TESS, and PLATO to measure the masses, orbits, and bulk compositions of Earth analogues. Most exciting of all, TMT may facilitate the next major step in the study of exobiology by allowing the detection of biosignature gases around the closest habitable transiting planets.
HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan
Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragmentsmore » are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.« less
A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Transit Events
NASA Astrophysics Data System (ADS)
Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John Asher
2015-12-01
Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, I present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows one to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration. I will also present our open-source N-body photodynamical modeling code, which integrates planetary and stellar orbits accounting for the effects of GR, tidal effects, and Doppler beaming.
First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi
NASA Astrophysics Data System (ADS)
Langlois, M.; Pohl, A.; Lagrange, A.-M.; Maire, A.-L.; Mesa, D.; Boccaletti, A.; Gratton, R.; Denneulin, L.; Klahr, H.; Vigan, A.; Benisty, M.; Dominik, C.; Bonnefoy, M.; Menard, F.; Avenhaus, H.; Cheetham, A.; Van Boekel, R.; de Boer, J.; Chauvin, G.; Desidera, S.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J. H.; Henning, T.; Janson, M.; Kopytova, T.; Kral, Q.; Ligi, R.; Messina, S.; Peretti, S.; Pinte, C.; Sissa, E.; Stolker, T.; Zurlo, A.; Magnard, Y.; Blanchard, P.; Buey, T.; Suarez, M.; Cascone, E.; Moller-Nilsson, O.; Weber, L.; Petit, C.; Pragt, J.
2018-06-01
Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims: Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods: We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 μm), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 μm). Results: We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 μm. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.
Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance
2010-02-01
The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.
Kepler AutoRegressive Planet Search: Motivation & Methodology
NASA Astrophysics Data System (ADS)
Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian
2015-08-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.
NASA Astrophysics Data System (ADS)
Teske, Johanna K.; Wang, Sharon; Wolfgang, Angie; Dai, Fei; Shectman, Stephen A.; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.
2018-04-01
The Kepler mission showed us that planets with sizes between that of Earth and Neptune appear to be the most common type in our Galaxy. These “super-Earths” continue to be of great interest for exoplanet formation, evolution, and composition studies. However, the number of super-Earths with well-constrained mass and radius measurements remains small (40 planets with σ mass < 25%), due in part to the faintness of their host stars causing ground-based mass measurements to be challenging. Recently, three transiting super-Earth planets were detected by the K2 mission around the nearby star GJ 9827/HIP 115752, at only 30 pc away. The radii of the planets span the “radius gap” detected by Fulton et al. (2017), and all orbit within ∼6.5 days, easing follow-up observations. Here, we report radial velocity (RV) observations of GJ 9827, taken between 2010 and 2016 with the Planet Finder Spectrograph on the Magellan II Telescope. We employ two different RV analysis packages, SYSTEMIC and RADVEL, to derive masses and thus densities of the GJ 9827 planets. We also test a Gaussian Process regression analysis but find the correlated stellar noise is not well constrained by the PFS data and that the GP tends to over-fit the RV semi-amplitudes resulting in a lower K value. Our RV observations are not able to place strong mass constraints on the two outer planets (c and d) but do indicate that planet b, at 1.64 R ⊕ and ∼8 M ⊕, is one of the most massive (and dense) super-Earth planets detected to date.
Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging
NASA Astrophysics Data System (ADS)
Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.
2017-05-01
Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298 and 090.C-0443.
Finding mountains with molehills: the detectability of exotopography
NASA Astrophysics Data System (ADS)
McTier, Moiya A. S.; Kipping, David M.
2018-04-01
Mountain ranges, volcanoes, trenches, and craters are common on rocky bodies throughout the Solar system, and we might expect the same for rocky exoplanets. With ever larger telescopes under design and a growing need to not just detect planets but also to characterize them, it is timely to consider whether there is any prospect of remotely detecting exoplanet topography in the coming decades. To test this, we devised a novel yet simple approach to detect and quantify topographical features on the surfaces of exoplanets using transit light curves. If a planet rotates as it transits its parent star, its changing silhouette yields a time-varying transit depth, which can be observed as an apparent and anomalous increase in the photometric scatter. Using elevation data for several rocky bodies in our Solar system, we quantify each world's surface integrated relief with a `bumpiness' factor, and calculate the corresponding photometric scatter expected during a transit. Here, we describe the kinds of observations that would be necessary to detect topography in the ideal case of Mars transiting a nearby white dwarf star. If such systems have a conservative occurrence rate of 10 per cent, we estimate that the upcoming Colossus or Overwhelmingly Large telescopes would be able to detect topography with <20 h of observing time, which corresponds to ˜400 transits with a duration of 2 min and orbital period of ˜10 h.
NASA Astrophysics Data System (ADS)
Motalebi, F.; Udry, S.; Gillon, M.; Lovis, C.; Ségransan, D.; Buchhave, L. A.; Demory, B. O.; Malavolta, L.; Dressing, C. D.; Sasselov, D.; Rice, K.; Charbonneau, D.; Collier Cameron, A.; Latham, D.; Molinari, E.; Pepe, F.; Affer, L.; Bonomo, A. S.; Cosentino, R.; Dumusque, X.; Figueira, P.; Fiorenzano, A. F. M.; Gettel, S.; Harutyunyan, A.; Haywood, R. D.; Johnson, J.; Lopez, E.; Lopez-Morales, M.; Mayor, M.; Micela, G.; Mortier, A.; Nascimbeni, V.; Philips, D.; Piotto, G.; Pollacco, D.; Queloz, D.; Sozzetti, A.; Vanderburg, A.; Watson, C. A.
2015-12-01
We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms-1) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M⊕ and 1.606 ± 0.086 R⊕, leading to a mean density of 5.76 ± 1.09 g cm-3, suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M⊕ moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M⊕, at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, thepreferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M⊕ orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU. The photometric time series and radial velocities used in this work are available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72
A SUPER-EARTH TRANSITING A NAKED-EYE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winn, Joshua N.; Matthews, Jaymie M.; Kallinger, Thomas
We have detected transits of the innermost planet 'e' orbiting 55 Cnc (V = 6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 days) and phase that had been predicted by Dawson and Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the star's mass and radius to be 0.963{sup +0.051}{sub -0.029} M{sub sun} and 0.943 {+-} 0.010 R{sub sun}, the planet's mass, radius, and mean density are 8.63 {+-} 0.35 M{sub +}, 2.00 {+-} 0.14more » R{sub +}, and 5.9{sup +1.5}{sub -1.1} g cm{sup -3}, respectively. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 {+-} 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations.« less
The First Thousand Exoplanets: Twenty Years of Excitement and Discovery
NASA Astrophysics Data System (ADS)
Impey, Chris
The recent "explosion" in the number of extrasolar planets, or exoplanets, is perhaps the most exciting phenomenon in all of science. Two decades ago, no planets were known beyond the Solar System, and now there are more than 770 confirmed exoplanets and several thousand more candidates, while the mass detection limit has marched steadily downwards from Jupiter mass in 1995 to Neptune mass in the early 2000s to Earth mass now. The vast majority of these exoplanets are detected indirectly, by their gravitational influence on the parent star or the partial eclipse they cause when they periodically pass in front of it. Doppler detection of the planet's reflex motion yields a period and an estimate of the mass, while transits or eclipses yield the size. Exoplanet detection taxes the best observatories in space, yet useful contributions can be made by amateur astronomers armed with 6-inch telescopes. The early discoveries were surprising; no one predicted "hot Jupiters" or the wild diversity of exoplanet properties that has been seen. It is still unclear if the Solar System is "typical" or not, but at current detection limits at least 10 % of Sun-like stars harbor planets and architectures similar to the Solar System are now being found. Over a hundred multiple planet systems are known and the data are consistent with every star in the Milky Way having at least one planet, with an implication of millions of habitable, Earth-like planets, and of which could harbor life. Doppler and transit data can be combined to give average density, and additional methods are beginning to give diagnostics of atmospheric composition. When this work can be extended to rocky and low mass exoplanets, and the imprint of biology on a global atmosphere can be measured, this might be the way that life beyond Earth is finally detected for the first time.
Transit Precovery: Determining Ephemerides for Long-Period TESS Detections with KELT Photometry
NASA Astrophysics Data System (ADS)
Yao, Xinyu; Pepper, Joshua; KELT Collaboration
2018-01-01
The majority of the known exoplanets were discovered by using the transit method such as with Kepler and the upcoming TESS mission. Unlike the Kepler mission which observed stars for several years, 74% of the area to be observed by TESS will only have an observational baseline of 27 days. For those planets with periods longer than 13 days, TESS can only capture one or two transits which means the true ephemerides are difficult to determine. Since the ground based all sky survey project KELT has much longer observation baseline (up to ten years) and monitors fields that overlap with TESS fields, by using KELT photometric data the ephemerides of the single and double-transit events that will be detected by TESS can be determined precisely. By conducting a simulation process to insert transits into KELT light curves and recover periods, we find that KELT photometry can be used to confirm ephemerides with high accuracy for planets of Neptune size or larger with orbital periods as long as a year, and therefore across a wide range of planet equilibrium temperatures. The resulting periods of the signals can then be used by follow-up teams, whether part of the TESS mission or the community-organized TFOP project, to plan and coordinate follow-up observations to confirm these cases as planets, eclipsing binaries, or other false positives, as well as conduct detailed transit observations with facilities like JWST or HST.This project makes use of data from the KELT survey, including support from The Ohio State University, Vanderbilt University, and Lehigh University.
Transiting exoplanet candidates from K2 Campaigns 5 and 6
NASA Astrophysics Data System (ADS)
Pope, Benjamin J. S.; Parviainen, Hannu; Aigrain, Suzanne
2016-10-01
We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the box-least-squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically generated transit fits and assorted diagnostic tests to inform the vetting. We detect 145 single-planet system candidates and 5 multi-planet systems, independently recovering the previously published hot Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spectroscopy carried out for all candidates with Kepler magnitude Kp ≤ 13, identifying 12 targets as likely false positives. We compare our results to those of other K2 transit search pipelines, noting that ours performs particularly well for variable and/or active stars, but that the results are very similar overall. All the light curves and code used in the transit search and vetting process are publicly available, as are the follow-up spectra.
NASA Astrophysics Data System (ADS)
Mayor, M.; Lovis, C.; Pepe, F.; Ségransan, D.; Udry, S.
2011-06-01
A rich population of low-mass planets orbiting solar-type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super-Earths and Neptune-type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low-mass planets have been detected by the HARPS spectrograph around 30% of solar-type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M⊕. Karl Schwarzschild Award Lecture 2010
The KELT-North Transit Survey's First Planetary Detections
NASA Astrophysics Data System (ADS)
Beatty, Thomas G.; Bieryla, A.; Cohen, D.; Collins, K.; Eastman, J.; Fulton, B. J.; Gary, B.; Gaudi, B. S.; Hebb, L.; Jensen, E. L. N.; Latham, D. W.; Manner, M.; Pepper, J.; Siverd, R.; Stassun, K.; Street, R. A.
2012-05-01
I will present the first planetary detections from the KELT-North transit survey. KELT-North is a 42mm robotic camera system at Winer Observatory in Arizona, and survey operations are based out of the Ohio State and Vanderbilt Universities. The KELT-North survey fields are 26 by 26 degrees, and are arranged in a contiguous strip around the sky centered at a declination of +30 degrees. The small aperture and wide field of view of the telescope enables KELT-North to effectively survey some of the brightest stars in the Northern sky for transiting planets. Our focus is on planet candidates around stars between 8 < V < 10. These bright systems are of prime scientific interest, since they provide the best follow-up opportunities from the ground and space. We have been collecting science data since 2006, and actively vetting planet candidates since the spring of 2011. Over the past winter we recorded our first detections of sub-stellar companions. I will briefly discuss KELT-North survey operations before describing the results from our observations of these intriguing systems. We are grateful to the observers and the support staff at the FLWO 60- and 48-inch telescopes. This work was supported by NSF CAREER grant AST-1056524.
Near-infrared Characterization of the Atmospheres of Alien Worlds
NASA Astrophysics Data System (ADS)
Croll, Bryce
In this thesis I present near-infrared detections of the thermal emission of a number of hot Jupiters and likely transit depth differences from different wavelength observations of a super-Earth. I have pioneered "Staring Mode" using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope to achieve the most accurate photometry to-date in the near- infrared from the ground. I also discuss avenues that should allow one to achieve even more accurate photometry in the future. Using WIRCam on CFHT my collaborators and I have detected the thermal emission of the following hot Jupiters: TrES-2b and TrES-3b in Ks-band, WASP-12b in the J, H & Ks-bands, and WASP-3b in the Ks-band on two occasions. Near- infrared detections of the thermal emission of hot Jupiters are important, because the majority of these planets' blackbodies peak in this wavelength range; near-infrared detections allow us to obtain the most model-independent constraints on these planets' atmospheric characteristics, their temperature-pressure profiles with depth and an estimate of their bolometric luminosities. With these detections we are able to answer such questions as: how efficiently these planets redistribute heat to their nightsides, if they're being inflated by tidal heating, whether there's any evidence that one of these planets is precessing, and whether another experiences extreme weather and violent storms? My collaborators and I have also observed several transits of the super-Earth GJ 1214b. We find a deeper transit depth in one of our near-infrared bands than the other. This is likely indicative of a spectral absorption feature. For the differences in the transit depth to be as large as we observed, the atmosphere of GJ 1214b must have a large scale height, low mean molecular weight and thus have a hydrogen/helium dominated atmosphere. Given that other researchers have not found similar transit depth differences, we also discuss the most likely atmospheric makeup for this planet that results from a combination of all the observations to date. Lastly, by searching for long-term linear trends in radial velocity data, I constrain the theory that most hot Jupiters migrated to their present positions via the Kozai mechanism with tidal heating.
Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks
NASA Astrophysics Data System (ADS)
Ardila, David R.; Merin, Bruno; Ribas, Alvaro; Bouy, Herve; Bryden, Geoffrey; Stapelfeldt, Karl R.; Padgett, Deborah
2015-01-01
Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.
Detection of Extrasolar Planets by Transit Photometry
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the technology exists to find such small planets, our group has conducted an end-to-end system test. The results of the laboratory tests are presented and show that we are ready to start the search for Earth-size planets.
NASA Astrophysics Data System (ADS)
Deming, Drake; Benneke, Bjoern; Fraine, Jonathan; Kataria, Tiffany; Knutson, Heather; Lewis, Nikole; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter; Sheppard, Kyle; Sing, David; Stevenson, Kevin; Todorov, Kamen; Wakeford, Hannah; Wilkins, Ashlee; Burrows, Adam
2016-08-01
We propose a program of Spitzer transit and secondary eclipse observations for 23 of the 'best of the best' hot giant planets (R > 0.8 Jupiters). We focus on planets that are already observed by HST, proposed to be observed by HST, or candiates for JWST Early Release Science observations. Our eclipse observations will measure day side temperatures that are needed for HST spectroscopy, and temperatures of the hottest and most favorable planets for JWST spectroscopy and possible phase curve observations. Several of our planets are extremely inflated, with atmospheric scale heights exceeding a thousand kilometers, yielding large atmospheric signatures during transit. Our transit photometry has the potential to detect molecular absorption by comparing transit radii and eclipse depths in the two Spitzer bands. Moreover, our precise transit depths will help to evaluate the magnitude of continuous opacity in the exoplanetary atmospheres, breaking the degeneracy between composition and cloud opacity, as recently demonstrated by Sing et al. We will thereby find the hottest and clearest giant exoplanetary atmospheres, with the largest molecular signatures, for HST and JWST spectroscopy. This will complete the Spitzer hot Jupiter legacy by providing a uniform set of transit and eclipse observations for the most favorable members of the intriguing population of close-in highly-irradiated giant planets. This unique Spitzer data set will guide efforts toward detailed atmospheric characterization of individual hot Jupiters for years to come.
Infrared radiation from an extrasolar planet.
Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph
2005-04-07
A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.
A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets
NASA Astrophysics Data System (ADS)
MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi; Rogers, Leslie; Rowe, Jason F.; Steffen, Jason H.; Torres, Guillermo
2016-10-01
Kepler has discovered hundreds of systems with multiple transiting exoplanets which hold tremendous potential both individually and collectively for understanding the formation and evolution of planetary systems. Many of these systems consist of multiple small planets with periods less than ∼50 days known as Systems with Tightly spaced Inner Planets, or STIPs. One especially intriguing STIP, Kepler-80 (KOI-500), contains five transiting planets: f, d, e, b, and c with periods of 1.0, 3.1, 4.6, 7.1, and 9.5 days, respectively. We provide measurements of transit times and a transit timing variation (TTV) dynamical analysis. We find that TTVs cannot reliably detect eccentricities for this system, though mass estimates are not affected. Restricting the eccentricity to a reasonable range, we infer masses for the outer four planets (d, e, b, and c) to be {6.75}-0.51+0.69, {4.13}-0.95+0.81, {6.93}-0.70+1.05, and {6.74}-0.86+1.23 Earth masses, respectively. The similar masses but different radii are consistent with terrestrial compositions for d and e and ∼2% H/He envelopes for b and c. We confirm that the outer four planets are in a rare dynamical configuration with four interconnected three-body resonances that are librating with few degree amplitudes. We present a formation model that can reproduce the observed configuration by starting with a multi-resonant chain and introducing dissipation. Overall, the information-rich Kepler-80 planets provide an important perspective into exoplanetary systems.
NASA Astrophysics Data System (ADS)
Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey L.; Burke, Christopher J.; Rowe, Jason F.
2018-05-01
We show that the claimed confirmed planet Kepler-452b (a.k.a., K07016.01, KIC 8311864) cannot be confirmed using a purely statistical validation approach. Kepler detects many more periodic signals from instrumental effects than it does from transits, and it is likely impossible to confidently distinguish the two types of events at low signal-to-noise. As a result, the scenario that the observed signal is due to an instrumental artifact cannot be ruled out with 99% confidence, and the system must still be considered a candidate planet. We discuss the implications for other confirmed planets in or near the habitable zone.
NASA Astrophysics Data System (ADS)
McTier, Moiya; Kipping, David
2018-01-01
Mountain ranges, volcanoes, trenches, and craters are common on rocky bodies throughout the Solar System, and we might we expect the same for rocky exoplanets. With ever larger telescopes under design and a growing need to not just detect planets but also to characterize them, it is timely to consider whether there is any prospect of remotely detecting exoplanet topography in the coming decades. To test this, we devised a novel yet simple approach to detect and quantify topographical features on the surfaces of exoplanets using transit light curves. If a planet rotates as it transits its parent star, its changing silhouette yields a time-varying transit depth, which can be observed as an apparent and anomalous increase in the photometric scatter. Using elevation data for several rocky bodies in our solar system, we quantify each world's surface integrated relief with a "bumpiness'' factor, and calculate the corresponding photometric scatter expected during a transit. Here we consider the ideal case of Mars transiting a nearby white dwarf star. If such systems have a pessimistic occurrence rate of 10%, we estimate that the upcoming Colossus or OWL telescopes would be able to detect topography with fewer than 20 hours of observing time, which corresponds to several years of wall time given the very short (but frequent) transits expected.
Imaging Protoplanets: Observing Transition Disks with Non-Redundant Masking
NASA Astrophysics Data System (ADS)
Sallum, Stephanie
2017-01-01
Transition disks - protoplanetary disks with inner, solar system sized clearings - may be shaped by young planets. Directly imaging protoplanets in these objects requires high contrast and resolution, making them promising targets for future extremely large telescopes. The interferometric technique of non-redundant masking (NRM) is well suited for these observations, enabling companion detection for contrasts of 1:100 - 1:1000 at or within the diffraction limit. My dissertation focuses on searching for and characterizing companions in transition disk clearings using NRM. I will briefly describe the technique and present spatially resolved observations of the T Cha and LkCa 15 transition disks. Both of these objects hosted posited substellar companions. However multi-epoch T Cha datasets cannot be explained by planets orbiting in the disk plane. Conversely, LkCa 15 data taken with the Large Binocular Telescope (LBT) in single-aperture mode reveal the presence of multiple forming planets. The dual aperture LBT will provide triple the angular resolution of these observations, dramatically increasing the phase space for exoplanet detection. I will also present new results from the dual-aperture LBT, with similar resolution to that expected for next generation facilities like GMT.
Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Nicholas M.; Ziegler, Carl; Morton, Tim
2014-08-10
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designedmore » for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.« less
CONSTRAINTS ON PLANET OCCURRENCE AROUND NEARBY MID-TO-LATE M DWARFS FROM THE MEARTH PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berta, Zachory K.; Irwin, Jonathan; Charbonneau, David, E-mail: zberta@cfa.harvard.edu
The MEarth Project is a ground-based photometric survey intended to find planets transiting the closest and smallest main-sequence stars. In its first four years, MEarth discovered one transiting exoplanet, the 2.7 R{sub ⊕} planet GJ1214b. Here, we answer an outstanding question: in light of the bounty of small planets transiting small stars uncovered by the Kepler mission, should MEarth have found more than just one planet so far? We estimate MEarth's ensemble sensitivity to exoplanets by performing end-to-end simulations of 1.25 × 10{sup 6} observations of 988 nearby mid-to-late M dwarfs, gathered by MEarth between 2008 October and 2012 June.more » For 2-4 R{sub ⊕} planets, we compare this sensitivity to results from Kepler and find that MEarth should have found planets at a rate of 0.05-0.36 planets yr{sup –1} in its first four years. As part of this analysis, we provide new analytic fits to the Kepler early M dwarf planet occurrence distribution. When extrapolating between Kepler's early M dwarfs and MEarth's mid-to-late M dwarfs, we find that assuming the planet occurrence distribution stays fixed with respect to planetary equilibrium temperature provides a good match to our detection of a planet with GJ1214b's observed properties. For larger planets, we find that the warm (600-700 K), Neptune-sized (4 R{sub ⊕}) exoplanets that transit early M dwarfs like Gl436 and GJ3470 occur at a rate of <0.15 star{sup –1} (at 95% confidence) around MEarth's later M dwarf targets. We describe a strategy with which MEarth can increase its expected planet yield by 2.5 × without new telescopes by shifting its sensitivity toward the smaller and cooler exoplanets that Kepler has demonstrated to be abundant.« less
Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST
NASA Astrophysics Data System (ADS)
Kreidberg, Laura
2018-01-01
A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.
Two Earth-sized planets orbiting Kepler-20.
Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal
2011-12-20
Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.
Stability Limits of Circumbinary Planets: Is There a Pile-up in the Kepler CBPs?
NASA Astrophysics Data System (ADS)
Quarles, B.; Satyal, S.; Kostov, V.; Kaib, N.; Haghighipour, N.
2018-04-01
The stability limit for circumbinary planets (CBPs) is not well defined and can depend on initial parameters defining either the planetary orbit and/or the inner binary orbit. We expand on the work of Holman & Wiegert (1999) to develop numerical tools for quick, easy, and accurate determination of the stability limit. The results of our simulations, as well as our numerical tools, are available to the community through Zenodo and GitHub, respectively. We employ a grid interpolation method based on ∼150 million full N-body simulations of initially circular, coplanar systems and compare to the nine known Kepler CBP systems. Using a formalism from planet packing studies, we find that 55% of the Kepler CBP systems allow for an additional equal-mass planet to potentially exist on an interior orbit relative to the observed planet. Therefore, we do not find strong evidence for a pile-up in the Kepler CBP systems and more detections are needed to adequately characterize the formation mechanisms for the CBP population. Observations from the Transiting Exoplanet Survey Satellite are expected to substantially increase the number of detections using the unique geometry of CBP systems, where multiple transits can occur during a single conjunction.
Toward Detection of Exoplanetary Rings via Transit Photometry: Methodology and a Possible Candidate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aizawa, Masataka; Masuda, Kento; Suto, Yasushi
The detection of a planetary ring of exoplanets remains one of the most attractive, but challenging, goals in the field of exoplanetary science. We present a methodology that implements a systematic search for exoplanetary rings via transit photometry of long-period planets. This methodology relies on a precise integration scheme that we develop to compute a transit light curve of a ringed planet. We apply the methodology to 89 long-period planet candidates from the Kepler data so as to estimate, and/or set upper limits on, the parameters of possible rings. While the majority of our samples do not have sufficient signal-to-noise ratios (S/Ns) to place meaningfulmore » constraints on ring parameters, we find that six systems with higher S/Ns are inconsistent with the presence of a ring larger than 1.5 times the planetary radius, assuming a grazing orbit and a tilted ring. Furthermore, we identify five preliminary candidate systems whose light curves exhibit ring-like features. After removing four false positives due to the contamination from nearby stars, we identify KIC 10403228 as a reasonable candidate for a ringed planet. A systematic parameter fit of its light curve with a ringed planet model indicates two possible solutions corresponding to a Saturn-like planet with a tilted ring. There also remain two other possible scenarios accounting for the data; a circumstellar disk and a hierarchical triple. Due to large uncertain factors, we cannot choose one specific model among the three.« less
Hubble Case Studies of Transiting Giant Exoplanets
NASA Astrophysics Data System (ADS)
Wilkins, Ashlee N.; Deming, Drake; Barker, Adrian; Benneke, Björn; Delrez, Laetitia; Gillon, Michaël; Hamilton, Douglas P.; Jehin, Emmanuel; Knutson, Heather; Lewis, Nikole K.; Madhusudhan, Nikku; Mandell, Avi; McCullough, Peter R.; Wakeford, Hannah R.
2017-01-01
The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond mere detection, which only yields bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, which allow us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, habitability and presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. This dissertation talk will focus on transiting exoplanet case studies with the Hubble Space Telescope’ Wide-Field Camera-3 (WFC-3) as a tool of exoplanet characterization in a near-infrared band dominated by strong water features. I will first present a characterization the WFC-3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals, and then a study of four transiting giant planets (HATS-7b, HAT-p-3b, HD 149026b, and WASP-18b) in transmission, and two (WASP-18b and CoRoT-2b) in eclipse. Finally, I will discuss the role of transit timing monitoring of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, massive planet. The five planets range from Neptune-class to Super-Jupiter-class in size/mass. Though these planets may be relatively rare, their observability represents a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. These observations also yield insights into aerosols (i.e. clouds/hazes) in the atmosphere; clouds and/or hazes should significantly impact atmospheric chemistry and observational signatures, and we as a community must get a better handle on the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST. Further, as part of a large Hubble program, we are working to advance the state of exoplanet atmosphere observations from single, planet-by-planet, case studies, to an understanding of the large, hot, gaseous planets as a population.
Photometric Observations of 6000 Stars in the Cygnus Field
NASA Technical Reports Server (NTRS)
Borucki, W.; Caldwell, D.; Koch, D.; Jenkins, J.; Ninkov, Z.
1999-01-01
A small photometer to detect transits by extrasolar planets has been assembled and is being tested at Lick Observatory on Mt. Hamilton, California. The Vulcan photometer is constructed from a 30 cm focal length, F/2.5 AeroEktar reconnaissance lens and Photometrics PXL16800 CCD camera. A spectral filter is used to confine the pass band from 480 to 763 mn. It simultaneously monitors 6000 stars brighter than 12th magnitude within a single star field in the galactic plane. When the data are folded and phased to discover low amplitude transits, the relative precision of one-hour samples is about 1 part per thousand (10 x l0(exp -3)) for many of the brighter stars. This precision is sufficient to find jovian-size planets orbiting solar-like stars, which have signal amplitudes from 5 to 30 x l0(exp -3) depending on the inflation of the planet and the size of the star. Based on the frequency of giant inner-planets discovered by Doppler-velocity method, one or two planets should be detectable in a rich star field. The goal of the observations is to obtain the sizes of giant extrasolar planets in short-period orbits and to combine these with masses determined from Doppler velocity measurements to determine the densities of these planets. A further goal is to compare the measured planetary diameters with those predicted from theoretical models. From August 10 through September 30 of 1998, a forty nine square degree field in the Cygnus constellation centered at RA and DEC of 19 hr 47 min, +36 deg 55 min was observed. Useful data were obtained on twenty-nine nights. Nearly fifty stars showed some evidence of transits with periods between 0.3 and 8 days. Most had amplitudes too large to be associated with planetary transits. However, several stars showed low amplitude transits. The data for several transits of each of these two stars have been folded and been folded into 30 minute periods. Only Cygl433 shows any evidence of a flattened bottom that is expected when a small object transits a much larger primary. However when high-resolution spectra were obtained for both stars, the stars were found to be double-lined binaries so similar in size as to have indistinguishable transit depths. The low amplitude of the transits is explained if the stellar orbital planes are tipped approximately 5 degrees from the line of sight causing both binaries to show grazing transits. The two absorption lines, due to the H(sub beta) feature in each star, are apparent and indicate the presence of a binary system with similar components.
Stellar variability and its implications for photometric planet detection with Kepler
NASA Astrophysics Data System (ADS)
Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.
2002-01-01
Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.
Young Star and Its Infant Planet (Artist animation)
2016-06-20
When a planet such as K2-33b passes in front of its host star, it blocks some of the star's light. Observing this periodic dimming, called a transit, from continual monitoring of a star's brightness, allows astronomers to detect planets outside our solar system with a high degree of certainty. This Neptune-sized planet orbits a star that is between 5 and 10 million years old. In addition to the planet, the star hosts a disk of planetary debris, seen as a bright ring encircling the star. An animation is available at: http://photojournal.jpl.nasa.gov/catalog/PIA20692
NASA Astrophysics Data System (ADS)
Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.
2014-01-01
Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.
PHYSICAL PROPERTIES OF THE 0.94-DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, John; Anderson, D. R.; Maxted, P. F. L.
2009-12-10
We present high-precision photometry of five consecutive transits of WASP-18, an extrasolar planetary system with one of the shortest orbital periods known. Through the use of telescope defocusing we achieve a photometric precision of 0.47-0.83 mmag per observation over complete transit events. The data are analyzed using the JKTEBOP code and three different sets of stellar evolutionary models. We find the mass and radius of the planet to be M {sub b} = 10.43 +- 0.30 +- 0.24 M {sub Jup} and R {sub b} = 1.165 +- 0.055 +- 0.014 R {sub Jup} (statistical and systematic errors), respectively. Themore » systematic errors in the orbital separation and the stellar and planetary masses, arising from the use of theoretical predictions, are of a similar size to the statistical errors and set a limit on our understanding of the WASP-18 system. We point out that seven of the nine known massive transiting planets (M {sub b} > 3 M {sub Jup}) have eccentric orbits, whereas significant orbital eccentricity has been detected for only four of the 46 less-massive planets. This may indicate that there are two different populations of transiting planets, but could also be explained by observational biases. Further radial velocity observations of low-mass planets will make it possible to choose between these two scenarios.« less
The Discovery of HD 37605c and a Dispositive Null Detection of Transits of HD 37605b
NASA Astrophysics Data System (ADS)
Wang, Xuesong, Sharon; Wright, Jason T.; Cochran, William; Kane, Stephen R.; Henry, Gregory W.; Payne, Matthew J.; Endl, Michael; MacQueen, Phillip J.; Valenti, Jeff A.; Antoci, Victoria; Dragomir, Diana; Matthews, Jaymie M.; Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Ford, Eric B.; Mahadevan, Suvrath; von Braun, Kaspar
2012-12-01
We report the radial velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P ~ 55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of ~7.5 years with a low eccentricity and an Msin i of ~3.4 M Jup. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost 8 years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8 m Automatic Photoelectric Telescope (APT) and the MOST satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at the Gt10σ level, and exclude any transit with an impact parameter b > 0.951 at greater than 5σ. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We made a comparison and found consistency between our orbital fit parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and observations obtained at the Keck Observatory, which is operated by the University of California. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Detectability of the Reflection Signal from Inner Planets
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Jenkins, J. M.; Scargle, J.; Koch, D.; Doyle, L. R.; Cuzzi, Jeffrey (Technical Monitor)
1996-01-01
Mayor and Queloz (1996) and Marcy and Butler (1996) have found massive planets with orbital periods Tp=approx.4 days around two solar-like stars (51 Pegasi and v Andromeda). These planets are most likely similar in size and composition to the gas giants in our solar system (Burrows et al 1996). Based on this expectation and assuming the same albedo as Jupiter, we examined the feasibility of searching for similar planets with a dedicated space-based 1-m telescope. The Kepler mission will survey approximately 70,000 main-sequence dwarf stars from 9 to 14 mag continuously for four years to detect transiting Earthlike planets. Based on the detection statistics of Marcy and Butler, we expect to detect 1400 inner-orbit giant planets. Such planets in a much wider range of orbital inclinations (i) will produce nearly sinusoidal modulations of the star light flux due to the varying planetary phases. The relative signal amplitudes are of order 2x10(exp -5) and decrease as Tp(exp 4/3) for i >> 0deg. We estimated the expected signal to noise ratio (SNR) using the solar irradiance measurements from the ACRIM 1 experiment along with expected shot and detector noises. The figure shows SNR as a function of Tp for a 12 mag star, and indicates the planet radius required for detection. The survey will be sensitive to planets with periods from 12 hr to approx.8 days at the 6 sigma level.
NASA Technical Reports Server (NTRS)
Burke, Christopher J.; Catanzarite, Joseph
2017-01-01
Quantifying the ability of a transiting planet survey to recover transit signals has commonly been accomplished through Monte-Carlo injection of transit signals into the observed data and subsequent running of the signal search algorithm (Gilliland et al., 2000; Weldrake et al., 2005; Burke et al., 2006). In order to characterize the performance of the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017) on a sample of over 200,000 stars, two complementary injection and recovery tests are utilized:1. Injection of a single transit signal per target into the image or pixel-level data, hereafter referred to as pixel-level transit injection (PLTI), with subsequent processing through the Photometric Analysis (PA), Presearch Data Conditioning (PDC), Transiting Planet Search (TPS), and Data Validation (DV) modules of the Kepler pipeline. The PLTI quantification of the Kepler pipeline's completeness has been described previously by Christiansen et al. (2015, 2016); the completeness of the final SOC 9.3 Kepler pipeline acting on the Data Release 25 (DR25) light curves is described by Christiansen (2017).2. Injection of multiple transit signals per target into the normalized flux time series data with a subsequent transit search using a stream-lined version of the Transiting Planet Search (TPS) module. This test, hereafter referred to as flux-level transit injection (FLTI), is the subject of this document. By running a heavily modified version of TPS, FLTI is able to perform many injections on selected targets and determine in some detail which injected signals are recoverable. Significant numerical efficiency gains are enabled by precomputing the data conditioning steps at the onset of TPS and limiting the search parameter space (i.e., orbital period, transit duration, and ephemeris zero-point) to a small region around each injected transit signal.The PLTI test has the advantage that it follows transit signals through all processing steps of the Kepler pipeline, and the recovered signals can be further classified as planet candidates or false positives in the exact same manner as detections from the nominal (i.e., observed) pipeline run (Twicken et al., 2016, Thompson et al., in preparation). To date, the PLTI test has been the standard means of measuring pipeline completeness averaged over large samples of targets (Christiansen et al., 2015, 2016; Christiansen, 2017). However, since the PLTI test uses only one injection per target, it does not elucidate individual-target variations in pipeline completeness due to differences in stellar properties or astrophysical variability. Thus, we developed the FLTI test to provide a numerically efficient way to fully map individual targets and explore the performance of the pipeline in greater detail. The FLTI tests thereby allow a thorough validation of the pipeline completeness models (such as window function (Burke and Catanzarite, 2017a), detection efficiency (Burke Catanzarite, 2017b), etc.) across the spectrum of Kepler targets (i.e., various astrophysical phenomena and differences in instrumental noise). Tests during development of the FLTI capability revealed that there are significant target-to-target variations in the detection efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at
2013-02-20
Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less
ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissauer, Jack J.; Jenkins, Jon M.; Borucki, William J.
About one-third of the {approx}1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems. There are 115 target stars with two candidate transiting planets, 45 with three, 8 with four, and 1 each with five and six. We characterize the dynamical properties of these candidate multi-planet systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean-motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to bemore » in resonance, particularly near the 2:1 resonance. We find that virtually all candidate systems are stable, as tested by numerical integrations that assume a nominal mass-radius relationship. Several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Using the observed multiplicity frequencies, we find that a single population of planetary systems that matches the higher multiplicities underpredicts the number of singly transiting systems. We provide constraints on the true multiplicity and mutual inclination distribution of the multi-candidate systems, revealing a population of systems with multiple super-Earth-size and Neptune-size planets with low to moderate mutual inclinations.« less
EXTRACTING PERIODIC TRANSIT SIGNALS FROM NOISY LIGHT CURVES USING FOURIER SERIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsing, Johan
We present a simple and powerful method for extracting transit signals associated with a known transiting planet from noisy light curves. Assuming the orbital period of the planet is known and the signal is periodic, we illustrate that systematic noise can be removed in Fourier space at all frequencies by only using data within a fixed time frame with a width equal to an integer number of orbital periods. This results in a reconstruction of the full transit signal, which on average is unbiased despite no prior knowledge of either the noise or the transit signal itself being used inmore » the analysis. The method therefore has clear advantages over standard phase folding, which normally requires external input such as nearby stars or noise models for removing systematic components. In addition, we can extract the full orbital transit signal (360°) simultaneously, and Kepler-like data can be analyzed in just a few seconds. We illustrate the performance of our method by applying it to a dataset composed of light curves from Kepler with a fake injected signal emulating a planet with rings. For extracting periodic transit signals, our presented method is in general the optimal and least biased estimator and could therefore lead the way toward the first detections of, e.g., planet rings and exo-trojan asteroids.« less
Selections from 2017: Atmosphere Around an Earth-Like Planet
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes acrosswavelength bands.CitationJohn Southworth et al 2017 AJ 153 191. doi:10.3847/1538-3881/aa6477
TRANSIT TIMING OBSERVATIONS FROM KEPLER. I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Eric B.; Rowe, Jason F.; Caldwell, Douglas A.
The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASA's Kepler mission has identified 1235 transiting planet candidates. The method of transit timing variations (TTVs) has already confirmed seven planets in two planetary systems. We perform a transit timing analysis of the Kepler planet candidates. We find that at least {approx}11% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least {approx}65 TTV candidates. In all cases, the time span of observations must increase for TTVs to providemore » strong constraints on planet masses and/or orbits, as expected based on N-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least {approx}12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least seven years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.« less
NASA Astrophysics Data System (ADS)
Malavolta, Luca; Mayo, Andrew W.; Louden, Tom; Rajpaul, Vinesh M.; Bonomo, Aldo S.; Buchhave, Lars A.; Kreidberg, Laura; Kristiansen, Martti H.; Lopez-Morales, Mercedes; Mortier, Annelies; Vanderburg, Andrew; Coffinet, Adrien; Ehrenreich, David; Lovis, Christophe; Bouchy, Francois; Charbonneau, David; Ciardi, David R.; Collier Cameron, Andrew; Cosentino, Rosario; Crossfield, Ian J. M.; Damasso, Mario; Dressing, Courtney D.; Dumusque, Xavier; Everett, Mark E.; Figueira, Pedro; Fiorenzano, Aldo F. M.; Gonzales, Erica J.; Haywood, Raphaëlle D.; Harutyunyan, Avet; Hirsch, Lea; Howell, Steve B.; Johnson, John Asher; Latham, David W.; Lopez, Eric; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Nascimbeni, Valerio; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris
2018-03-01
Ultra-short period (USP) planets are a class of low-mass planets with periods shorter than one day. Their origin is still unknown, with photo-evaporation of mini-Neptunes and in situ formation being the most credited hypotheses. Formation scenarios differ radically in the predicted composition of USP planets, and it is therefore extremely important to increase the still limited sample of USP planets with precise and accurate mass and density measurements. We report here the characterization of a USP planet with a period of 0.28 days around K2-141 (EPIC 246393474), and the validation of an outer planet with a period of 7.7 days in a grazing transit configuration. We derived the radii of the planets from the K2 light curve and used high-precision radial velocities gathered with the HARPS-N spectrograph for mass measurements. For K2-141b, we thus inferred a radius of 1.51 ± 0.05 R {}\\oplus and a mass of 5.08 ± 0.41 M {}\\oplus , consistent with a rocky composition and lack of a thick atmosphere. K2-141c is likely a Neptune-like planet, although due to the grazing transits and the non-detection in the RV data set, we were not able to put a strong constraint on its density. We also report the detection of secondary eclipses and phase curve variations for K2-141b. The phase variation can be modeled either by a planet with a geometric albedo of 0.30 ± 0.06 in the Kepler bandpass, or by thermal emission from the surface of the planet at ∼3000 K. Only follow-up observations at longer wavelengths will allow us to distinguish between these two scenarios.
The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b
NASA Technical Reports Server (NTRS)
Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa;
2009-01-01
We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.
K2-111 b - a short period super-Earth transiting a metal poor, evolved old star
NASA Astrophysics Data System (ADS)
Fridlund, Malcolm; Gaidos, Eric; Barragán, Oscar; Persson, Carina M.; Gandolfi, Davide; Cabrera, Juan; Hirano, Teruyuki; Kuzuhara, Masayuki; Csizmadia, Sz.; Nowak, Grzegorz; Endl, Michael; Grziwa, Sascha; Korth, Judith; Pfaff, Jeremias; Bitsch, Bertram; Johansen, Anders; Mustill, Alexander J.; Davies, Melvyn B.; Deeg, Hans J.; Palle, Enric; Cochran, William D.; Eigmüller, Philipp; Erikson, Anders; Guenther, Eike; Hatzes, Artie P.; Kiilerich, Amanda; Kudo, Tomoyuki; MacQueen, Phillip; Narita, Norio; Nespral, David; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike; Van Eylen, Vincent
2017-07-01
Context. From a light curve acquired through the K2 space mission, the star K2-111(EPIC 210894022) has been identified as possibly orbited by a transiting planet. Aims: Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. Methods: We analyse the light curve variations during the planetary transit using packages developed specifically for exoplanetary transits. Reconnaissance spectroscopy and radial velocity observations have been obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. Results: The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of K2-111 strongly suggest it to be a member of the thick disk population. The co-added high-resolution spectra show that that it is a metal poor ([Fe/H] = - 0.53 ± 0.05 dex) and α-rich somewhat evolved solar-like star of spectral type G3. We find Teff = 5730 ± 50 K, log g⋆ = 4.15 ± 0.1 cgs, and derive a radius of R⋆ = 1.3 ± 0.1 R⊙ and a mass of M⋆ = 0.88 ± 0.02 M⊙. The currently available radial velocity data confirms a super-Earth class planet with a mass of 8.6 ± 3.9 M⊕ and a radius of 1.9 ± 0.2 R⊕. A second more massive object with a period longer than about 120 days is indicated by a long-term radial velocity drift. Conclusions: The radial velocity detection together with the imaging confirms with a high level of significance that the transit signature is caused by a planet orbiting the star K2-111. This planet is also confirmed in the radial velocity data. A second more massive object (planet, brown dwarf, or star) has been detected in the radial velocity signature. With an age of ≳10 Gyr this system is one of the oldest where planets are hitherto detected. Further studies of this planetary system are important since it contains information about the planetary formation process during a very early epoch of the history of our Galaxy.
NASA Astrophysics Data System (ADS)
Redfield, Seth; Niraula, Prajwal; Hedges, Christina; Crossfield, Ian; Kreidberg, Laura; Greene, Tom; Rodriguez, Joey; Vanderburg, Andrew; Laughlin, Gregory; Millholland, Sarah; Wang, Songhu; Cochran, William; Livingston, John; Gandolfi, Davide; Guenther, Eike; Fridlund, Malcolm; Korth, Judith
2018-05-01
We propose primary transit observations of three Super-Earth planets in the newly discovered planetary system around a bright, nearby star, GJ 9827. We recently announced the detection of three super-Earth planets in 1:3:5 commensurability, the inner planet, GJ 9827 b having a period of 1.2 days. This is the nearest planetary system that Kepler or K2 has found, at 30 pc, and given its brightness is one of the top systems for follow-up characterization. This system presents a unique opportunity to acquire three planetary transits for the price of one. There are several opportunities in the Spitzer visibility windows to obtain all three transits in a short period of time. We propose 3.6 micron observations of all three Super-Earth transits in a single 18-hour observation window. The proximity to a 1:3:5 resonance is intriguing from a dynamical standpoint as well. Indeed, anomalous transit timing offsets have been measured for planet d in Hubble observations that suffer from partial phase coverage. The short cadence and extended coverage of Spitzer is essential to provide a firm determination of the ephemerides and characterize any transit timing variations. Constraining these orbital parameters is critical for follow-up observations from space and ground-based telescopes. Due to the brightness of the host star, this planetary system is likely to be extensively observed in the years to come. Indeed, our team has acquired observations of the planets orbiting GJ9827 with Hubble in the ultraviolet and infrared. The proposed observations will provide infrared atmospheric measurements and firm orbital characterization which is critical for planning and designing future observations, in particular atmospheric characterization with JWST.
NASA Astrophysics Data System (ADS)
Tingley, B.; Parviainen, H.; Gandolfi, D.; Deeg, H. J.; Palle, E.; Montañés Rodriguez, P.; Murgas, F.; Alonso, R.; Bruntt, H.; Fridlund, M.
2014-07-01
Aims: We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. Methods: We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. Results: We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 MJup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~30% to the target star, which would not have been detected without multicolor photometric analysis. The resulting planet-star radius ratio is 0.110 ± 0.0025, more than 25% more than the 0.087 measured by Kepler leading to a radius of 1.20 ± 0.16 RJup instead of the 0.94 RJup measured by the Kepler team. Conclusions: This is the first confirmation of an exoplanet candidate based primarily on the transit color signature, demonstrating that this technique is viable from ground for giant planets. It is particularly useful for planets with long periods such as Kepler-418b, which tend to have long transit durations. While this technique is limited to candidates with deep transits from the ground, it may be possible to confirm earth-like exoplanet candidates with a few hours of observing time with an instrument like the James Webb Space Telescope. Additionally, multicolor photometric analysis of transits can reveal unknown stellar neighbors and binary companions that do not affect the classification of the transiting object but can have a very significant effect on the perceived planetary radius. GTC g' and z' photometry and NOT-FIES spectroscopy are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A14
The Discovery of Extrasolar Planets via Transits
NASA Astrophysics Data System (ADS)
Dunham, Edward W.; Borucki, W. J.; Jenkins, J. M.; Batalha, N. M.; Caldwell, D. A.; Mandushev, G.
2014-01-01
The goal of detecting extrasolar planets has been part of human thought for many centuries and several plausible approaches for detecting them have been discussed for many decades. At this point in history the two most successful approaches have been the reflex radial velocity and transit approaches. These each have the additional merit of corroborating a discovery by the other approach, at least in some cases, thereby producing very convincing detections of objects that can't be seen. In the transit detection realm the key enabling technical factors were development of: - high quality large area electronic detectors - practical fast optics with wide fields of view - automated telescope systems - analysis algorithms to correct for inadequacies in the instrumentation - computing capability sufficient to cope with all of this This part of the equation is relatively straightforward. The more important part is subliminal, namely what went on in the minds of the proponents and detractors of the transit approach as events unfolded. Three major paradigm shifts had to happen. First, we had to come to understand that not all solar systems look like ours. The motivating effect of the hot Jupiter class of planet was profound. Second, the fact that CCD detectors can be much more stable than anybody imagined had to be understood. Finally, the ability of analysis methods to correct the data sufficiently well for the differential photometry task at hand had to be understood by proponents and detractors alike. The problem of capturing this changing mind-set in a collection of artifacts is a difficult one but is essential for a proper presentation of this bit of history.
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Barrado, D.; Figueira, P.; Leleu, A.; Santos, N. C.; Correia, A. C. M.; Robutel, P.; Faria, J. P.
2018-01-01
Context. The detection of Earth-like planets, exocomets or Kuiper belts show that the different components found in the solar system should also be present in other planetary systems. Trojans are one of these components and can be considered fossils of the first stages in the life of planetary systems. Their detection in extrasolar systems would open a new scientific window to investigate formation and migration processes. Aims: In this context, the main goal of the TROY project is to detect exotrojans for the first time and to measure their occurrence rate (η-Trojan). In this first paper, we describe the goals and methodology of the project. Additionally, we used archival radial velocity data of 46 planetary systems to place upper limits on the mass of possible trojans and investigate the presence of co-orbital planets down to several tens of Earth masses. Methods: We used archival radial velocity data of 46 close-in (P < 5 days) transiting planets (without detected companions) with information from high-precision radial velocity instruments. We took advantage of the time of mid-transit and secondary eclipses (when available) to constrain the possible presence of additional objects co-orbiting the star along with the planet. This, together with a good phase coverage, breaks the degeneracy between a trojan planet signature and signals coming from additional planets or underestimated eccentricity. Results: We identify nine systems for which the archival data provide >1σ evidence for a mass imbalance between L4 and L5. Two of these systems provide >2σ detection, but no significant detection is found among our sample. We also report upper limits to the masses at L4/L5 in all studied systems and discuss the results in the context of previous findings. Radial velocity data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A96
Runaway greenhouse effect on exomoons due to irradiation from hot, young giant planets
NASA Astrophysics Data System (ADS)
Heller, R.; Barnes, R.
2015-04-01
The Kepler space telescope has proven capable of detecting transits of objects almost as small as the Earth's Moon. Some studies suggest that moons as small as 0.2 Earth masses can be detected in the Kepler data by transit timing variations and transit duration variations of their host planets. If such massive moons exist around giant planets in the stellar habitable zone (HZ), then they could serve as habitats for extraterrestrial life. While earlier studies on exomoon habitability assumed the host planet to be in thermal equilibrium with the absorbed stellar flux, we here extend this concept by including the planetary luminosity from evolutionary shrinking. Our aim is to assess the danger of exomoons to be in a runaway greenhouse state due to extensive heating from the planet. We apply pre-computed evolution tracks for giant planets to calculate the incident planetary radiation on the moon as a function of time. Added to the stellar flux, the total illumination yields constraints on a moon's habitability. Ultimately, we include tidal heating to evaluate a moon's energy budget. We use a semi-analytical formula to parameterize the critical flux for the moon to experience a runaway greenhouse effect. Planetary illumination from a 13-Jupiter-mass planet onto an Earth-sized moon at a distance of ten Jupiter radii can drive a runaway greenhouse state on the moon for about 200 million years (Myr). When stellar illumination equivalent to that received by Earth from the Sun is added, then the runaway greenhouse holds for about 500 Myr. After 1000 Myr, the planet's habitable edge has moved inward to about six Jupiter radii. Exomoons in orbits with eccentricities of 0.1 experience strong tidal heating; they must orbit a 13-Jupiter-mass host beyond 29 or 18 Jupiter radii after 100 Myr (at the inner and outer boundaries of the stellar HZ, respectively), and beyond 13 Jupiter radii (in both cases) after 1000 Myr to be habitable. If a roughly Earth-sized, Earth-mass moon would be detected in orbit around a giant planet, and if the planet-moon duet would orbit in the stellar HZ, then it will be crucial to recover the orbital history of the moon. If, for example, such a moon around a 13-Jupiter-mass planet has been closer than 20 Jupiter radii to its host during the first few hundred million years at least, then it might have lost substantial amounts of its initial water reservoir and be uninhabitable today.
Absorption spectroscopy at the limb of small transiting exoplanets
NASA Astrophysics Data System (ADS)
Ehrenreich, D.; Lecavelier Des Etangs, A.
2005-12-01
Planetary transits are a tremendous tool to probe into exoplanet atmospheres using the light from their parent stars (from 0.2 μm to ˜1 μm). The detection of atmospheric components in an extra-solar giant planet was performed using the Hubble Space Telescope (HST) with a sensitivity reaching ˜10-4 in relative absorption depth over ˜1 Å-wide features (Charbonneau et al., 2002). The next step is the detection and the characterization of smaller, possibly Earth-like worlds, which will require a sensitivity of ˜10-6. Fortunately, ˜0.1 μm-wide absorption bands of particular interest for small exoplanets do exist in this spectral domain. We developed a model to quantify the detectability of a variety of Earth-size planets harboring different kind of atmospheres. Key parameters are the density of the planet and the thickness of the atmosphere. We also evaluate in consequence the number of potential targets for a future space mission, and also find that K stars are best candidates. See Ehrenreich et al. (2005) for a complete description.
Probing the young circumplanetary environment of Beta Pic b during transit egress
NASA Astrophysics Data System (ADS)
Wang, Jason
2017-08-01
Among the thousands of known exoplanets, Beta Pic b is the only directly imaged exoplanet with a nearly edge-on orbit. We show that the latest astrometric measurements rule out a transit by the planet at 10-sigma significance, but we are certain that the Hill sphere of the planet will transit. With a period of 22 years and no other system like it, this Hill sphere transit provides a rare opportunity to study the evolving circumplanetary environment of a young and well-characterized exoplanet. To compliment GO-14621, our Cycle 25 proposal to monitor the ingress of the Hill sphere, we propose a modest HST program to photometrically search for signatures of the planet's large scale circumplanetary material during the egress of the Hill sphere transit. The existence of such material is plausible given that Beta Pic's young age is similar to that of the ring-bearing J1407b system. Combined with GO-14621 and less-precise but dedicated ground-based monitoring, these observations will give us a comprehensive set of observations about this young circumplanetary environment. Given the sparse observational data of circumplanetary environments, non-detections will also be valuable for constraining the timescales relevant to circumplanetary material and moon formation. If photometric variations are detected with HST, these results would yield empirical information concerning the dynamics of the system and the evolution of planetary systems as a whole.
Architectures of Kepler Planet Systems with Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Morehead, Robert C.; Ford, Eric B.
2015-12-01
The distribution of period normalized transit duration ratios among Kepler’s multiple transiting planet systems constrains the distributions of mutual orbital inclinations and orbital eccentricities. However, degeneracies in these parameters tied to the underlying number of planets in these systems complicate their interpretation. To untangle the true architecture of planet systems, the mutual inclination, eccentricity, and underlying planet number distributions must be considered simultaneously. The complexities of target selection, transit probability, detection biases, vetting, and follow-up observations make it impractical to write an explicit likelihood function. Approximate Bayesian computation (ABC) offers an intriguing path forward. In its simplest form, ABC generates a sample of trial population parameters from a prior distribution to produce synthetic datasets via a physically-motivated forward model. Samples are then accepted or rejected based on how close they come to reproducing the actual observed dataset to some tolerance. The accepted samples form a robust and useful approximation of the true posterior distribution of the underlying population parameters. We build on the considerable progress from the field of statistics to develop sequential algorithms for performing ABC in an efficient and flexible manner. We demonstrate the utility of ABC in exoplanet populations and present new constraints on the distributions of mutual orbital inclinations, eccentricities, and the relative number of short-period planets per star. We conclude with a discussion of the implications for other planet occurrence rate calculations, such as eta-Earth.
Automatic Telescope Search for Extrasolar Planets
NASA Technical Reports Server (NTRS)
Henry, Gregory W.
1998-01-01
We are using automatic photoelectric telescopes at the Tennessee State University Center for Automated Space Science to search for planets around nearby stars in our galaxy. Over the past several years, wc have developed the capability to make extremely precise measurements of brightness changes in Sun-like stars with automatic telescopes. Extensive quality control and calibration measurements result in a precision of 0.l% for a single nightly observation and 0.0270 for yearly means, far better than previously thought possible with ground-based observations. We are able, for the first time, to trace brightness changes in Sun-like stars that are of similar amplitude to brightness changes in the Sun, whose changes can be observed only with space-based radiometers. Recently exciting discoveries of the first extrasolar planets have been announced, based on the detection of very small radial-velocity variations that imply the existence of planets in orbit around several Sun-like stars. Our precise brightness measurements have been crucial for the confirmation of these discoveries by helping to eliminate alternative explanations for the radial-velocity variations. With our automatic telescopes, we are also searching for transits of these planets across the disks of their stars in order to conclusively verify their existence. The detection of transits would provide the first direct measurements of the sizes, masses, and densities of these planets and, hence, information on their compositions and origins.
NASA Astrophysics Data System (ADS)
Wyttenbach, A.; Lovis, C.; Ehrenreich, D.; Bourrier, V.; Pino, L.; Allart, R.; Astudillo-Defru, N.; Cegla, H. M.; Heng, K.; Lavie, B.; Melo, C.; Murgas, F.; Santerne, A.; Ségransan, D.; Udry, S.; Pepe, F.
2017-06-01
High-resolution optical spectroscopy during the transit of HD 189733b, a prototypical hot Jupiter, allowed the resolution of the Na I D sodium lines in the planet, giving access to the extreme conditions of the planet upper atmosphere. We have undertaken HEARTS, a spectroscopic survey of exoplanet upper atmospheres, to perform a comparative study of hot gas giants and determine how stellar irradiation affect them. Here, we report on the first HEARTS observations of the hot Saturn-mass planet WASP-49b. We observed the planet with the HARPS high-resolution spectrograph at ESO 3.6 m telescope. We collected 126 spectra of WASP-49, covering three transits of WASP-49b. We analyzed and modeled the planet transit spectrum, while paying particular attention to the treatment of potentially spurious signals of stellar origin. We spectrally resolve the Na I D lines in the planet atmosphere and show that these signatures are unlikely to arise from stellar contamination. The large contrasts of 2.0 ± 0.5% (D2) and 1.8 ± 0.7% (D1) require the presence of hot neutral sodium ( K) at high altitudes ( 1.5 planet radius or 45 000 km). From estimating the cloudiness index of WASP-49b, we determine its atmosphere to be cloud free at the altitudes probed by the sodium lines. WASP-49b is close to the border of the evaporation desert and exhibits an enhanced thermospheric signature with respect to a farther-away planet such as HD 189733b. Based on observations made at ESO 3.6 m telescope at the La Silla Observatory under ESO program 096.C-0331.
Finding Mars-Sized Planets in Inner Orbits of Other Stars by Photometry
NASA Technical Reports Server (NTRS)
Borucki, W.; Cullers, K.; Dunham, E.; Koch, D.; Mena-Werth, J.; Cuzzi, Jeffrey N. (Technical Monitor)
1995-01-01
High precision photometry from a spaceborne telescope has the potential of discovering sub-earth sized inner planets. Model calculations by Wetherill indicate that Mars-sized planets can be expected to form throughout the range of orbits from that of Mercury to Mars. While a transit of an Earth-sized planet causes a 0.084% decrease in brightness from a solar-like star, a transit of a planet as small as Mars causes a flux decrease of only 0.023%. Stellar variability will be the limiting factor for transit measurements. Recent analysis of solar variability from the SOLSTICE experiment shows that much of the variability is in the UV at <400 nm. Combining this result with the total flux variability measured by the ACRIM-1 photometer implies that the Sun has relative amplitude variations of about 0.0007% in the 17-69 pHz bandpass and is presumably typical for solar-like stars. Tests were conducted at Lick Observatory to determine the photometric precision of CCD detectors in the 17-69 pHz bandpass. With frame-by-frame corrections of the image centroids it was found that a precision of 0.001% could be readily achieved, corresponding to a signal to noise ratio of 1.4, provided the telescope aperture was sufficient to keep the statistical noise below 0.0006%. With 24 transits a planet as small as Mars should be reliably detectable. If Wetherill's models are correct in postulating that Mars-like planets are present in Mercury-like orbits, then a six year search should be able to find them.
Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e
NASA Astrophysics Data System (ADS)
Ridden-Harper, A. R.; Snellen, I. A. G.; Keller, C. U.; de Kok, R. J.; Di Gloria, E.; Hoeijmakers, H. J.; Brogi, M.; Fridlund, M.; Vermeersen, B. L. A.; van Westrenen, W.
2016-10-01
Context. The atmospheric and surface characterization of rocky planets is a key goal of exoplanet science. Unfortunately, the measurements required for this are generally out of reach of present-day instrumentation. However, the planet Mercury in our own solar system exhibits a large exosphere composed of atomic species that have been ejected from the planetary surface by the process of sputtering. Since the hottest rocky exoplanets known so far are more than an order of magnitude closer to their parent star than Mercury is to the Sun, the sputtering process and the resulting exospheres could be orders of magnitude larger and potentially detectable using transmission spectroscopy, indirectly probing their surface compositions. Aims: The aim of this work is to search for an absorption signal from exospheric sodium (Na) and singly ionized calcium (Ca+) in the optical transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the current best-fitting models to the planet mass and radius require a possible atmospheric component, uncertainties in the radius exist, making it possible that 55 Cancri e could be a hot rocky planet without an atmosphere. Methods: High resolution (R ~ 110 000) time-series spectra of five transits of 55 Cancri e, obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6 m and HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and K lines, the potential planet exospheric signal was filtered out from the much stronger stellar and telluric signals, making use of the change of the radial component of the orbital velocity of the planet over the transit from -57 to +57 km s-1. Results: Combining all five transit data sets, we detect a signal potentially associated with sodium in the planet exosphere at a statistical significance level of 3σ. Combining the four HARPS transits that cover the calcium H and K lines, we also find a potential signal from ionized calcium (4.1σ). Interestingly, this latter signal originates from just one of the transit measurements - with a 4.9σ detection at this epoch. Unfortunately, due to the low significance of the measured sodium signal and the potentially variable Ca+ signal, we estimate the p-values of these signals to be too high (corresponding to <4σ) to claim unambiguous exospheric detections. By comparing the observed signals with artificial signals injected early in the analysis, the absorption by Na and Ca+ are estimated to be at a level of ~2.3 × 10-3 and ~7.0 × 10-2 respectively, relative to the stellar spectrum. Conclusions: If confirmed, the 3σ signal would correspond to an optically thick sodium exosphere with a radius of 5 R⊕, which is comparable to the Roche lobe radius of the planet. The 4.9σ detection of Ca+ in a single HARPS data set would correspond to an optically thick Ca+ exosphere approximately five times larger than the Roche lobe radius. If this were a real detection, it would imply that the exosphere exhibits extreme variability. Although no formal detection has been made, we advocate that probing the exospheres of hot super-Earths in this way has great potential, also knowing that Mercury's exosphere varies significantly over time. It may be a fast route towards the first characterization of the surface properties of this enigmatic class of planets. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 092.C-0178 and 288.C-5010 and the Telescopio Nazionale Galileo under programme CAT13B_33.
Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks
NASA Astrophysics Data System (ADS)
Merín, Bruno; Ardila, David R.; Ribas, Álvaro; Bouy, Hervé; Bryden, Geoffrey; Stapelfeldt, Karl; Padgett, Deborah
2014-09-01
Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in β Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around η Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
A super-Earth transiting a nearby low-mass star.
Charbonneau, David; Berta, Zachory K; Irwin, Jonathan; Burke, Christopher J; Nutzman, Philip; Buchhave, Lars A; Lovis, Christophe; Bonfils, Xavier; Latham, David W; Udry, Stéphane; Murray-Clay, Ruth A; Holman, Matthew J; Falco, Emilio E; Winn, Joshua N; Queloz, Didier; Pepe, Francesco; Mayor, Michel; Delfosse, Xavier; Forveille, Thierry
2009-12-17
A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M[symbol:see text]), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M[symbol:see text]), and a radius 2.68 times Earth's radius (R[symbol:see text]), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen-helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Karen M.; Fujii, Yuka
2014-08-20
We survey the methods proposed in the literature for detecting moons of extrasolar planets in terms of their ability to distinguish between prograde and retrograde moon orbits, an important tracer of the moon formation channel. We find that most moon detection methods, in particular, sensitive methods for detecting moons of transiting planets, cannot observationally distinguishing prograde and retrograde moon orbits. The prograde and retrograde cases can only be distinguished where the dynamical evolution of the orbit due to, e.g., three body effects is detectable, where one of the two cases is dynamically unstable, or where new observational facilities, which canmore » implement a technique capable of differentiating the two cases, come online. In particular, directly imaged planets are promising targets because repeated spectral and photometric measurements, which are required to determine moon orbit direction, could also be conducted with the primary interest of characterizing the planet itself.« less
A rigorous comparison of different planet detection algorithms
NASA Astrophysics Data System (ADS)
Tingley, B.
2003-05-01
The idea of finding extrasolar planets (ESPs) through observations of drops in stellar brightness due to transiting objects has been around for decades. It has only been in the last ten years, however, that any serious attempts to find ESPs became practical. The discovery of a transiting planet around the star HD 209458 (Charbonneau et al. \\cite{charbonneau}) has led to a veritable explosion of research, because the photometric method is the only way to search a large number of stars for ESPs simultaneously with current technology. To this point, however, there has been limited research into the various techniques used to extract the subtle transit signals from noise, mainly brief summaries in various papers focused on publishing transit-like signatures in observations. The scheduled launches over the next few years of satellites whose primary or secondary science missions will be ESP discovery motivates a review and a comparative study of the various algorithms used to perform the transit identification, to determine rigorously and fairly which one is the most sensitive under which circumstances, to maximize the results of past, current, and future observational campaigns.
Methodology for the AutoRegressive Planet Search (ARPS) Project
NASA Astrophysics Data System (ADS)
Feigelson, Eric; Caceres, Gabriel; ARPS Collaboration
2018-01-01
The detection of periodic signals of transiting exoplanets is often impeded by the presence of aperiodic photometric variations. This variability is intrinsic to the host star in space-based observations (typically arising from magnetic activity) and from observational conditions in ground-based observations. The most common statistical procedures to remove stellar variations are nonparametric, such as wavelet decomposition or Gaussian Processes regression. However, many stars display variability with autoregressive properties, wherein later flux values are correlated with previous ones. Providing the time series is evenly spaced, parametric autoregressive models can prove very effective. Here we present the methodology of the Autoregessive Planet Search (ARPS) project which uses Autoregressive Integrated Moving Average (ARIMA) models to treat a wide variety of stochastic short-memory processes, as well as nonstationarity. Additionally, we introduce a planet-search algorithm to detect periodic transits in the time-series residuals after application of ARIMA models. Our matched-filter algorithm, the Transit Comb Filter (TCF), replaces the traditional box-fitting step. We construct a periodogram based on the TCF to concentrate the signal of these periodic spikes. Various features of the original light curves, the ARIMA fits, the TCF periodograms, and folded light curves at peaks of the TCF periodogram can then be collected to provide constraints for planet detection. These features provide input into a multivariate classifier when a training set is available. The ARPS procedure has been applied NASA's Kepler mission observations of ~200,000 stars (Caceres, Dissertation Talk, this meeting) and will be applied in the future to other datasets.
LGS-AO Imaging of Every Kepler Planet Candidate: the Robo-AO KOI Survey
NASA Astrophysics Data System (ADS)
Baranec, Christoph; Law, Nicholas; Morton, Timothy; Ziegler, Carl; Nofi, Larissa; Atkinson, Dani; Riddle, Reed
2015-12-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging, to search for blended nearby stars which may be physically associated companions and/or responsible for transit false positives. We will present the results from searching for companions around over 3,000 Kepler planet hosts in 2012-2015. We will describe our first data release covering 715 planet candidate hosts, and give a preview of ongoing results including improved statistics on the likelihood of false positive planet detections in the Kepler dataset, many new planets in multiple star systems, and new exotic multiple star systems containing Kepler planets. We will also describe the automated Robo-AO survey data reduction methods, including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for extremely large adaptive optics surveys. Our first data release covered 715 objects, searching for companions from 0.15” to 2.5” separation with contrast up to 6 magnitudes. We measured the overall nearby-star-probability for Kepler planet candidates to be 7.4+/-1.0%, and we will detail the variations in this number with stellar host parameters. We will also discuss plans to extend the survey to other transiting planet missions such as K2 and TESS as Robo-AO is in the process of being re-deployed to the 2.1-m telescope at Kitt Peak for 3 years and a higher-contrast Robo-AO system is being developed for the 2.2-m UH telescope on Maunakea.
Thermal escape from extrasolar giant planets
Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.
2014-01-01
The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923
Thermal escape from extrasolar giant planets.
Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V
2014-04-28
The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.
Three Small Planets Transiting the Bright Young Field Star K2-233
NASA Astrophysics Data System (ADS)
David, Trevor J.; Crossfield, Ian J. M.; Benneke, Björn; Petigura, Erik A.; Gonzales, Erica J.; Schlieder, Joshua E.; Yu, Liang; Isaacson, Howard T.; Howard, Andrew W.; Ciardi, David R.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Cody, Ann Marie; Riedel, Adric; Schwengeler, Hans Martin; Tanner, Christopher; Ende, Martin
2018-05-01
We report the detection of three small transiting planets around the young K3 dwarf K2-233 (2MASS J15215519‑2013539) from observations during Campaign 15 of the K2 mission. The star is relatively nearby (d = 69 pc) and bright (V = 10.7 mag, K s = 8.4 mag), making the planetary system an attractive target for radial velocity follow-up and atmospheric characterization with the James Webb Space Telescope. The inner two planets are hot super-Earths (R b = 1.40 ± 0.06 {R}\\oplus , R c = 1.34 ± 0.08 {R}\\oplus ), while the outer planet is a warm sub-Neptune (R d = 2.6 ± 0.1 {R}\\oplus ). We estimate the stellar age to be {360}-140+490 Myr based on rotation, activity, and kinematic indicators. The K2-233 system is particularly interesting given recent evidence for inflated radii in planets around similarly aged stars, a trend potentially related to photo-evaporation, core cooling, or both mechanisms.
Low-Mass Stars and Their Companions
NASA Astrophysics Data System (ADS)
Montet, Benjamin Tyler
In this thesis, I present seven studies aimed towards better understanding the demographics and physical properties of M dwarfs and their companions. These studies focus in turn on planetary, brown dwarf, and stellar companions to M dwarfs. I begin with an analysis of radial velocity and transit timing analyses of multi-transiting planetary systems, finding that if both signals are measured to sufficiently high precision the stellar and planetary masses can be measured to a high precision, eliminating a need for stellar models which may have systematic errors. I then combine long-term radial velocity monitoring and a direct imaging campaign to measure the occurrence rate of giant planets around M dwarfs. I find that 6.5 +/- 3.0% of M dwarfs host a Jupiter mass or larger planet within 20 AU, with a strong dependence on stellar metallicity. I then present two papers analyzing the LHS 6343 system, which contains a widely separated M dwarf binary (AB). Star A hosts a transiting brown dwarf (LHS 6343 C) with a 12.7 day period. By combining radial velocity data with transit photometry, I am able to measure the mass and radius of the brown dwarf to 2% precision, the most precise measurement of a brown dwarf to date. I then analyze four secondary eclipses of the LHS 6343 AC system as observed by Spitzer in order to measure the luminosity of the brown dwarf in both Spitzer bandpasses. I find the brown dwarf is consistent with theoretical models of an 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 +/- 130 K. This is the first non-inflated brown dwarf with a measured mass, radius, and multi-band photometry, making it an ideal test of evolutionary models of field brown dwarfs. Next, I present the results of an astrometric and radial velocity campaign to measure the orbit and masses of both stars in the GJ 3305 AB system, an M+M binary comoving with 51 Eridani, a more massive star with a directly imaged planetary companion. I compare the masses of both stars to largely untested theoretical models of young M dwarfs, finding that the models are consistent with the measured mass of star A but slightly overpredict the luminosity of star B. In the final two science chapters I focus on space-based transit surveys, present and future. First, I present the first catalog of statistically validated planets from the K2 mission, as well as updated stellar and planetary parameters for all systems with candidate planets in the first K2 field. The catalog includes K2-18b, a ``mini-Neptune'' planet that receives a stellar insolation consistent with the level that the Earth receives from the Sun, making it a useful comparison against planets of a similar size that are highly irradiated, such as GJ 1214 b. Finally, I present predictions for the WFIRST mission. While designed largely as a microlensing mission, I find it will be able to detect as many as 30,000 transiting planets towards the galactic bulge, providing information about how planet occurrence changes across the galaxy. These planets will be able to be confirmed largely through direct detection of their secondary eclipses. Moreover, I find that more than 50% of the planets it detects smaller than Neptune will be found around M dwarf hosts.
NASA Astrophysics Data System (ADS)
Catanzarite, Joseph; Jenkins, Jon Michael; Burke, Christopher J.; McCauliff, Sean D.; Kepler Science Operations Center
2015-01-01
NASA's Kepler Space Telescope monitored the photometric variations of over 170,000 stars within a ~100 square degree field in the constellation Cygnus, at half-hour cadence, over its four year prime mission. The Kepler SOC (Science Operations Center) pipeline calibrates the pixels of the target apertures for each star, corrects light curves for systematic error, and detects TCEs (threshold-crossing events) that may be due to transiting planets. Finally the pipeline estimates planet parameters for all TCEs and computes quantitative diagnostics that are used by the TCERT (Threshold Crossing Event Review Team) to produce a catalog containing KOIs (Kepler Objects of Interest). KOIs are TCEs that are determined to be either likely transiting planets or astrophysical false positives such as background eclipsing binary stars. Using examples from the Q1-Q16 TCERT KOI catalog as a training set, we created a machine-learning classifier that dispositions the TCEs into categories of PC (planet candidate), AFP (astrophysical false positive) and NTP (non-transiting phenomenon). The classifier uniformly and consistently applies heuristics developed by TCERT as well as other diagnostics to the Q1-Q16 TCEs to produce a more robust and reliable catalog of planet candidates than is possible with only human classification. In this work, we estimate planet occurrence rates, based on the machine-learning-produced catalog of Kepler planet candidates. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.
Detecting Atmospheric Biosignatures of Transiting Exoplanets in the Mid-IR
NASA Astrophysics Data System (ADS)
Stevenson, Kevin
2018-01-01
For the first time in human history, our generation will have the technology needed to answer one of the longest-standing questions: "Are we alone?'' Only recently have planet-hunting programs (such as TRAPPIST, MEarth, and Kepler) confirmed the first Earth analogues orbiting M dwarfs. However, it is unknown whether planets orbiting the most ubiquitous stars in our galaxy can support life. I will discuss the challenges and opportunities of looking for biosignatures in transiting exoplanet atmospheres at mid-infrared wavelengths and argue that the only way to ascertain the truth is to make a measurement. I will also present how a survey of nearby mid-to-late M dwarfs could empirically determine the fraction of habitable-zone planets that develop life.
A search for extra-solar planetary transits in the field of open cluster NGC 6819
NASA Astrophysics Data System (ADS)
Street, Rachel Amanda
The technique of searching for extra-solar planetary transits is investigated. This technique, which relies on detecting the brief, shallow eclipses caused by planets passing across the line of sight to the primary star, requires high-precision time-series photometry of large numbers of stars in order to detect these statistically rare events. Observations of 18000 stars in the field including the intermediate-age open cluster NGC 6819 are presented. This target field constrasts with the stellar environment surveyed by the radial velocity technique, which concentrates on the Solar neighbourhood. I present the data-reduction techniques used to obtain high-precision photometry in a semi-automated fashion for tens of thousands of stars at a time, together with an algorithm designed to search the resulting lightcurves for the transit signatures of hot Jupiter type planets. I describe simulations designed to test the detection efficiency of this algorithm and, for comparison, predict the number of transits expected from this data, assuming that hot Jupiter planets similar to HD 209458 are as common in the field of NGC 6819 as they are in the Solar neighbourhood. While no planetary transits have yet been identified, the detection of several very low amplitude eclipses by stellar companions demonstrates the effectiveness of the method. This study also indicates that stellar activity and particularly blending are significant causes of false detections. A useful additional consequence of studying this time-series photometry is the census it provides of some of the variable stars in the field. I report on the discovery of a variety of newly-discovered variables, including Algol-type detached eclipsing binaries which are likely to consist of M-dwarf stars. Further study of these stars is strongly recommended in order to help constrain models of stellar structure at the very low mass end. I conclude with a summary of this work in the context of other efforts being made in this field and recommend promising avenues of further study.
NASA Astrophysics Data System (ADS)
Aigrain, S.; Collier Cameron, A.; Ollivier, M.; Pont, F.; Jorda, L.; Almenara, J. M.; Alonso, R.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Gillon, M.; Guillot, T.; Hatzes, A.; Lammer, H.; Lanza, A. F.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Paetzold, M.; Pinte, C.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.
2008-09-01
CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085+0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/Rs = 17.36-0.25+0.05, and the planet-to-star radius ratio R_p/R_s=0.1047-0.0022+0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org
Molecular Detectability in Exoplanetary Emission Spectra
NASA Astrophysics Data System (ADS)
Tessenyi, M.; Tinetti, G.; Savini, G.; Pascale, E.
2013-09-01
Of the many recently discovered worlds orbiting distant stars, very little is yet known of their chemical composition. With the arrival of new transit spectroscopy and direct imaging facilities, the question of molecular detectability as a function of signal-to-noise (SNR), spectral resolving power and type of planets has become critical. We study the detectability of key molecules in the atmospheres of a range of planet types, and report on the minimum detectable abundances at fixed spectral resolving power and SNR. The planet types considered — hot Jupiters, hot super-Earths, warm Neptunes, temperate Jupiters and temperate super-Earths — cover most of the exoplanets characterisable today or in the near future. We focus on key atmospheric molecules, such as CH4, CO, CO2, NH3, H2O, C2H2, C2H6, HCN, H2S and PH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Jason W., E-mail: jwbarnes@uidaho.ed
Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbitmore » alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.« less
The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael M.; Kane, Stephen R.
2017-12-01
The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1's planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the star’s activity and its effect on the planets. We analyze previously published space- and ground-based light curves and show the photometrically determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the “cosmic shoreline” to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.
Gifts from Exoplanetary Transits
NASA Astrophysics Data System (ADS)
Narita, Norio
2009-08-01
The discovery of transiting extrasolar planets has enabled us to do a number of interesting studies. Transit photometry reveals the radius and the orbital inclination of transiting planets, which allows us to learn the true mass and density of the respective planets by the combined information from radial velocity (RV) measurements. In addition, follow-up observations of transiting planets, looking at such things as secondary eclipses, transit timing variations, transmission spectroscopy, and the Rossiter-McLaughlin effect, provide us information about their dayside temperatures, unseen bodies in systems, planetary atmospheres, and the obliquity of planetary orbits. Such observational information, which will provide us a greater understanding of extrasolar planets, is available only for transiting planets. Here, I briefly summarize what we can learn from transiting planets and introduce previous studies.
Searching for exoplanets using artificial intelligence
NASA Astrophysics Data System (ADS)
Pearson, Kyle A.; Palafox, Leon; Griffith, Caitlin A.
2018-02-01
In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called "deep learning" or "deep nets" are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time-series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.
NASA Astrophysics Data System (ADS)
Piskorz, Danielle; Benneke, Björn; Crockett, Nathan R.; Lockwood, Alexandra C.; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Carr, John S.; Johnson, John A.
2017-08-01
The Upsilon Andromedae system was the first multi-planet system discovered orbiting a main-sequence star. We describe the detection of water vapor in the atmosphere of the innermost non-transiting gas giant ups And b by treating the star-planet system as a spectroscopic binary with high-resolution, ground-based spectroscopy. We resolve the signal of the planet’s motion and break the mass-inclination degeneracy for this non-transiting planet via deep combined flux observations of the star and the planet. In total, seven epochs of Keck NIRSPEC L band observations, three epochs of Keck NIRSPEC short-wavelength K band observations, and three epochs of Keck NIRSPEC long wavelength K band observations of the ups And system were obtained. We perform a multi-epoch cross-correlation of the full data set with an atmospheric model. We measure the radial projection of the Keplerian velocity (K P = 55 ± 9 km s-1), true mass ({M}{{b}}={1.7}-0.24+0.33 M J), and orbital inclination (I b 24° ± 4°), and determine that the planet’s opacity structure is dominated by water vapor at the probed wavelengths. Dynamical simulations of the planets in the ups And system with these orbital elements for ups And b show that stable, long-term (100 Myr) orbital configurations exist. These measurements will inform future studies of the stability and evolution of the ups And system, as well as the atmospheric structure and composition of the hot Jupiter.
Kepler AutoRegressive Planet Search
NASA Astrophysics Data System (ADS)
Caceres, Gabriel Antonio; Feigelson, Eric
2016-01-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real-data tests of the KARPS methodology will be discussed including confirmation of some Kepler Team `candidate' planets. We also present cases of new possible planetary signals.
TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tusnski, Luis Ricardo M.; Valio, Adriana, E-mail: lrtusnski@das.inpe.br, E-mail: avalio@craam.mackenzie.br
2011-12-10
Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit.more » The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R{sub Circled-Plus} with CoRoT and 0.3 R{sub Circled-Plus} with Kepler.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ji; Fischer, Debra A.; Picard, Alyssa
2015-12-20
The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observationsmore » to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.« less
NASA Astrophysics Data System (ADS)
Dressing, Courtney D.; Vanderburg, Andrew; Schlieder, Joshua E.; Crossfield, Ian J. M.; Knutson, Heather A.; Newton, Elisabeth R.; Ciardi, David R.; Fulton, Benjamin J.; Gonzales, Erica J.; Howard, Andrew W.; Isaacson, Howard; Livingston, John; Petigura, Erik A.; Sinukoff, Evan; Everett, Mark; Horch, Elliott; Howell, Steve B.
2017-11-01
We recently used near-infrared spectroscopy to improve the characterization of 76 low-mass stars around which K2 had detected 79 candidate transiting planets. 29 of these worlds were new discoveries that had not previously been published. We calculate the false positive probabilities that the transit-like signals are actually caused by non-planetary astrophysical phenomena and reject five new transit-like events and three previously reported events as false positives. We also statistically validate 17 planets (7 of which were previously unpublished), confirm the earlier validation of 22 planets, and announce 17 newly discovered planet candidates. Revising the properties of the associated planet candidates based on the updated host star characteristics and refitting the transit photometry, we find that our sample contains 21 planets or planet candidates with radii smaller than 1.25 R ⊕, 18 super-Earths (1.25–2 R ⊕), 21 small Neptunes (2–4 R ⊕), three large Neptunes (4–6 R ⊕), and eight giant planets (>6 R ⊕). Most of these planets are highly irradiated, but EPIC 206209135.04 (K2-72e, {1.29}-0.13+0.14 {R}\\oplus ), EPIC 211988320.01 ({R}p={2.86}-0.15+0.16 {R}\\oplus ), and EPIC 212690867.01 ({2.20}-0.18+0.19 {R}\\oplus ) orbit within optimistic habitable zone boundaries set by the “recent Venus” inner limit and the “early Mars” outer limit. In total, our planet sample includes eight moderately irradiated 1.5–3 R ⊕ planet candidates (F p ≲ 20 F ⊕) orbiting brighter stars (Ks < 11) that are well-suited for atmospheric investigations with the Hubble, Spitzer, and/or James Webb Space Telescopes. Five validated planets orbit relatively bright stars (Kp < 12.5) and are expected to yield radial velocity semi-amplitudes of at least 2 m s‑1. Accordingly, they are possible targets for radial velocity mass measurement with current facilities or the upcoming generation of red optical and near-infrared high-precision RV spectrographs.
Direct imaging search for the "missing link" in giant planet formation
NASA Astrophysics Data System (ADS)
Ngo, Henry; Mawet, Dimitri; Ruane, Garreth; Xuan, Wenhao; Bowler, Brendan; Cook, Therese; Zawol, Zoe
2018-01-01
While transit and radial velocity detection techniques have probed giant planet populations at close separations (within a few au), current direct imaging surveys are finding giant planets at separations of 10s-100s au. Furthermore, these directly imaged planets are very massive, including some with masses above the deuterium burning limit. It is not certain whether these objects represent the high mass end of planet formation scenarios or the low mass end of star formation. We present a direct imaging survey to search for the "missing link" population between the close-in RV and transiting giant planets and the extremely distant directly imaged giant planets (i.e. giant planets between 5-10 au). Finding and characterizing this population allows for comparisons with the formation models of closer-in planets and connects directly imaged planets with closer-in planets in semi-major axis phase space. In addition, microlensing surveys have suggested a large reservoir of giant planets exist in this region. To find these "missing link" giant planets, our survey searches for giant planets around M-stars. The ubiquity of M-stars provide a large number of nearby targets and their L-band contrast with planets allow for sensitivities to smaller planet masses than surveys conducted at shorter wavelengths. Along with careful target selection, we use Keck's L-band vector vortex coronagraph to enable sensitivities of a few Jupiter masses as close as 4 au to their host stars. We present our completed 2-year survey targeting 200 young (10-150 Myr), nearby M-stars and our ongoing work to follow-up over 40 candidate objects.
Super-Earth and Sub-Neptune Exoplanets: a First Look from the MEarth Project
NASA Astrophysics Data System (ADS)
Berta, Zachory K.
Exoplanets that transit nearby M dwarfs allow us to measure the sizes, masses, and atmospheric properties of distant worlds. Between 2008 and 2013, we searched for such planets with the MEarth Project, a photometric survey of the closest and smallest main-sequence stars. This thesis uses the first planet discovered with MEarth, the warm 2.7 Earth radius exoplanet GJ1214b, to explore the possibilities that planets transiting M dwarfs provide. First, we perform a broad reconnaissance of the GJ1214b planetary system to refine the system's physical properties. We fit many transits to improve the planetary parameters, use starspots to measure GJ1214's rotation period (>50 days), and search for additional transiting planets, placing strong limits on habitable-zone Neptune-sized exoplanets in the system. We present Hubble Space Telescope observations of GJ1214b's atmosphere. We find the transmission spectrum to be flat between 1.1 and 1.7 microns, ruling out at 8 sigma the presence of a clear hydrogen-rich envelope that had been proposed to explain GJ1214b's large radius. Additional observations will determine whether the absence of deep absorption features in GJ1214b's transmission spectrum is due to the masking influence of high altitude clouds or to the presence of a compact, hydrogen-poor atmosphere. We describe a new algorithm to find transiting planets in light curves plagued by stellar variability and systematic noise sources. This Method to Include Starspots and Systematics in the Marginalized Probability of a Lone Eclipse (MISS MarPLE) reliably assesses the significance of individual transit events, a necessary requirement for detecting habitable zone planets from the ground with MEarth. We compare MEarth's achieved sensitivity to planet occurrence statistics from the NASA Kepler Mission, and find that MEarth's single discovery of GJ1214b is consistent with expectations. We find that warm Neptunes are rare around mid-to-late M dwarfs (<0.15 planets/star). Capitalizing on knowledge from Kepler, we propose a new strategy to boost MEarth's sensitivity to smaller and cooler exoplanets, and increase the expected yield of the survey by 2.5x.
Kepler Mission Website: Portal to the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.
2008-05-01
The 400th anniversary of Galileo's telescope is an opportunity to turn the public's eyes skyward and to the universe beyond the solar system. The Kepler Mission, launching in 2009, the International Year of Astronomy (IYA) will is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone, using the transit method of detection. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Kepler Mission is a NASA Discovery Program Mission. The Kepler Mission website http://www.kepler.arc.nasa.gov/ offers classroom activity lesson plans Detecting Planet Transits, The Human Orrery, and Morning Star and Evening Star. The activities are suitable for the informal science education realm. The spacecraft paper model and LEGO model orrerey can be used in the classroom by teachers or at home by families. The mission simulation and animation, as well as lessons and models highlight the science concepts critical to employing the transit method of detection, Kepler's Laws. The Send Your Name to Space on Kepler Spacecraft provides a certificate of participation for all individuals that submit there name to be listed on a DVD placed on the spacecraft. This poster will provide details on each of the items described.
Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light
NASA Astrophysics Data System (ADS)
Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team
2003-05-01
NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.
Prospects for the Detection of Earths Orbiting Other Stars
NASA Technical Reports Server (NTRS)
Bourcki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth's atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.
Prospects for the Detection of Earths Orbiting Other Stars
NASA Technical Reports Server (NTRS)
Borucki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.
2001-01-01
Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth#s atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.
Kepler Mission: End-to-End System Demonstration
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, D.; Dunham, E.; Jenkins, J.; Witteborn, F.; Updike, T.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
A test facility has been constructed to demonstrate the capability of differential ensemble photometry to detect transits of Earth-size planets orbiting solar-like stars. The main objective is to determine the effects of various noise sources on the capability of a CCD photometer to maintain a system relative precision of 1 x $10^(-5)$ for mv = 12 stars in the presence of system-induced noise sources. The facility includes a simulated star field, fast optics to simulate the telescope, a thinned back-illuminated CCD similar to those to be used on the spacecraft and computers to perform the onboard control, data processing and extraction. The test structure is thermally and mechanically isolated so that each source of noise can be introduced in a controlled fashion and evaluated for its contribution to the total noise budget. The effects of pointing errors or a changing thermal environment are imposed by piezo-electric devices. Transits are injected by heating small wires crossing apertures in the star plate. Signals as small as those from terrestrial-size transits of solar-like stars are introduced to demonstrate that such planets can be detected under realistic noise conditions. Examples of imposing several noise sources and the resulting detectabilities are presented. These show that a differential ensemble photometric approach CCD photometer can readily detect signals associated with Earth-size transits.
Exploring a Nearby Habitable World...Orbiting an M-Dwarf Star
NASA Technical Reports Server (NTRS)
Deming, Drake
2010-01-01
Topics include: the landscape of extrasolar planets and detection techniques, direct and indirect detection methods, summary of the known exoplanets, exploiting transits to characterize super earth atmospheres, how to characterize exoplanet atmospheres, and emitted or reflected spectra of hot Jupiters.
Performance of Transit Model Fitting in Processing Four Years of Kepler Science Data
NASA Astrophysics Data System (ADS)
Li, Jie; Burke, Christopher J.; Jenkins, Jon Michael; Quintana, Elisa V.; Rowe, Jason; Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph D.
2014-06-01
We present transit model fitting performance of the Kepler Science Operations Center (SOC) Pipeline in processing four years of science data, which were collected by the Kepler spacecraft from May 13, 2009 to May 12, 2013. Threshold Crossing Events (TCEs), which represent transiting planet detections, are generated by the Transiting Planet Search (TPS) component of the pipeline and subsequently processed in the Data Validation (DV) component. The transit model is used in DV to fit TCEs and derive parameters that are used in various diagnostic tests to validate planetary candidates. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. In the latest Kepler SOC pipeline codebase, the light curve of the target for which a TCE is generated is initially fitted by a trapezoidal model with four parameters: transit epoch time, depth, duration and ingress time. The trapezoidal model fit, implemented with repeated Levenberg-Marquardt minimization, provides a quick and high fidelity assessment of the transit signal. The fit parameters of the trapezoidal model with the minimum chi-square metric are converted to set initial values of the fit parameters of the standard transit model. Additional parameters, such as the equilibrium temperature and effective stellar flux of the planet candidate, are derived from the fit parameters of the standard transit model to characterize pipeline candidates for the search of Earth-size planets in the Habitable Zone. The uncertainties of all derived parameters are updated in the latest codebase to take into account for the propagated errors of the fit parameters as well as the uncertainties in stellar parameters. The results of the transit model fitting of the TCEs identified by the Kepler SOC Pipeline, including fitted and derived parameters, fit goodness metrics and diagnostic figures, are included in the DV report and one-page report summary, which are accessible by the science community at NASA Exoplanet Archive. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
WFIRST: Searching for Microlens Planets in Very Wide Orbits and the MOA Microlensing Data Release
NASA Astrophysics Data System (ADS)
Hirao, Yuki; Bennett, David; Sumi, Takahiro; MOA Collaboration
2018-01-01
Gravitational microlensing is an unique technique to detect exoplanets down to low mass planets beyond the snow line because it is sensitive to planets orbiting near the Einstein ring radius of a few AU away from its host star, which is complementary to the other methods. Detecting such planets are important for understanding the formation of our solar system because gas giants and ice giants planets are believed to be formed beyond the snow line, where the protoplanetary disk is cold enough for ice to condense, in the core accretion theory. Microlensing Observations in Astrophysics (MOA) group has conducted high cadence survey observations towards the Galactic bulge to detect exoplanets since 2006 at Mt.John University Observatory in NZ using MOA-II 1.8 meter telescope equipped with a very wide field-of-view MOA-cam3 CCD camera. MOA has alerted about 600 microlensing events every year and detected dozens of exoplanets in wide orbits. Future space telescope, WFIRST will conduct survey observations towards the Galactic bulge and is expected to detect thousands of planets in wide orbit via microlensing to complete the census of exoplanets begun by Kepler Space telescope which found planets in close orbits via transit method. To contribute to the WFIRST and make the microlensing community larger, MOA will open its data from 2006 to 2014 to the public. Through the off-line analysis, we have found some short binary events which were not detected in the real time analysis. Short-timescale microlensing events are important because they are candidates of free-floating or wide-separation planets. The poster will present the data release and some results of the analysis of short-timescale binary events.
Stellar Companions of Exoplanet Host Stars in K2
NASA Astrophysics Data System (ADS)
Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark
2018-01-01
Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.
A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry
NASA Astrophysics Data System (ADS)
Pilyavsky, Genady; Mahadevan, Suvrath; Kane, Stephen R.; Howard, Andrew W.; Ciardi, David R.; de Pree, Chris; Dragomir, Diana; Fischer, Debra; Henry, Gregory W.; Jensen, Eric L. N.; Laughlin, Gregory; Marlowe, Hannah; Rabus, Markus; von Braun, Kaspar; Wright, Jason T.; Wang, Xuesong X.
2011-12-01
The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work we present the search for transits of HD 168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a priori transit probability beyond that expected for a circular orbit, making HD 168443 a candidate for our ongoing Transit Ephemeris Refinement and Monitoring Survey. Using additional radial velocities from Keck High Resolution Echelle Spectrometer, we refined the orbital parameters of this multi-planet system and derived a new transit ephemeris for HD 168443b. The reduced uncertainties in the transit window make a photometric transit search practicable. Photometric observations acquired during predicted transit windows were obtained on three nights. Cerro Tololo Inter-American Observatory 1.0 m photometry acquired on 2010 September 7 had the required precision to detect a transit but fell just outside of our final transit window. Nightly photometry from the T8 0.8 m automated photometric telescope at Fairborn Observatory, acquired over a span of 109 nights, demonstrates that HD 168443 is constant on a timescale of weeks. Higher-cadence photometry on 2011 April 28 and June 25 shows no evidence of a transit. We are able to rule out a non-grazing transit of HD 168443b.
NASA Astrophysics Data System (ADS)
Ofir, Aviv; Dreizler, Stefan; Zechmeister, Mathias; Husser, Tim-Oliver
2014-01-01
Context. The primary goal of the Kepler mission is the measurement of the frequency of Earth-like planets around Sun-like stars. However, the confirmation of the smallest of Kepler's candidates in long periods around FGK dwarfs is extremely difficult or even beyond the limit of current radial velocity technology. Transit timing variations (TTVs) may offer the possibility for these confirmations of near-resonant multiple systems by the mutual gravitational interaction of the planets. Aims: We previously detected the second planet candidate in the KOI 1574 system. The two candidates have relatively long periods (about 114 d and 191 d) and are in 5:3 resonance. We therefore searched for TTVs in this particularly promising system. Methods: The full Kepler data was detrended with the proven SARS pipeline. The entire data allowed one to search for TTVs of the above signals, and to search for additional transit-like signals. Results: We detected strong anti-correlated TTVs of the 114 d and 191 d signals, dynamically confirming them as members of the same system. Dynamical simulations reproducing the observed TTVs allowed us to also determine the masses of the planets. We found KOI 1574.01 (hereafter Kepler-87 b) to have a radius of 13.49 ± 0.55 R⊕ and a mass of 324.2 ± 8.8 M⊕, and KOI 1574.02 (Kepler-87 c) to have a radius of 6.14 ± 0.29 R⊕ and a mass of 6.4 ± 0.8 M⊕. Both planets have low densities of 0.729 and 0.152 g cm-3, respectively, which is non-trivial for such cold and old (7-8 Gyr) planets. Specifically, Kepler-87 c is the lowest-density planet in the super-Earth mass range. Both planets are thus particularly amenable to modeling and planetary structure studies, and also present an interesting case where ground-based photometric follow-up of Kepler planets is very desirable. Finally, we also detected two more short-period super-Earth sized (<2 R⊕) planetary candidates in the system, making the relatively high multiplicity of this system notable against the general paucity of multiple systems in the presence of giant planets like Kepler-87 b.
NASA Astrophysics Data System (ADS)
Lineweaver, Charles H.
2015-08-01
The Titius-Bode (TB) relation’s successful prediction of the period of Uranus was the main motivation that led to the search for another planet between Mars and Jupiter. This search led to the discovery of the asteroid Ceres and the rest of the asteroid belt. The TB relation can also provide useful hints about the periods of as-yet-undetected planets around other stars. In Bovaird & Lineweaver (2013) [1], we used a generalized TB relation to analyze 68 multi-planet systems with four or more detected exoplanets. We found that the majority of exoplanet systems in our sample adhered to the TB relation to a greater extent than the Solar System does. Thus, the TB relation can make useful predictions about the existence of as-yet-undetected planets in Kepler multi-planet systems. These predictions are one way to correct for the main obstacle preventing us from estimating the number of Earth-like planets in the universe. That obstacle is the incomplete sampling of planets of Earth-mass and smaller [2-5]. In [6], we use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, 2±1 planets in the habitable zone of each star. We also estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius-Bode-based predictions.References: [1] Bovaird, T. & Lineweaver, C.H (2013) MNRAS, 435, 1126-1138. [2] Dong S. & Zhu Z. (2013) ApJ, 778, 53 [3] Fressin F. et al. (2013) ApJ, 766, 81 [4] Petigura E. A. et al. (2013) PNAS, 110, 19273 [5] Silburt A. et al. (2014), ApJ (arXiv:1406.6048v2) [6] Bovaird, T., Lineweaver, C.H. & Jacobsen, S.K. (2015, in press) MNRAS, arXiv:14126230v3.
Orbital alignment and star-spot properties in the WASP-52 planetary system
NASA Astrophysics Data System (ADS)
Mancini, L.; Southworth, J.; Raia, G.; Tregloan-Reed, J.; Mollière, P.; Bozza, V.; Bretton, M.; Bruni, I.; Ciceri, S.; D'Ago, G.; Dominik, M.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Korhonen, H.; Rabus, M.; Rahvar, S.; Starkey, D.; Calchi Novati, S.; Figuera Jaimes, R.; Henning, Th.; Juncher, D.; Haugbølle, T.; Kains, N.; Popovas, A.; Schmidt, R. W.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Wertz, O.
2017-02-01
We report 13 high-precision light curves of eight transits of the exoplanet WASP-52 b, obtained by using four medium-class telescopes, through different filters, and adopting the defocussing technique. One transit was recorded simultaneously from two different observatories and another one from the same site but with two different instruments, including a multiband camera. Anomalies were clearly detected in five light curves and modelled as star-spots occulted by the planet during the transit events. We fitted the clean light curves with the JKTEBOP code, and those with the anomalies with the PRISM+GEMC codes in order to simultaneously model the photometric parameters of the transits and the position, size and contrast of each star-spot. We used these new light curves and some from the literature to revise the physical properties of the WASP-52 system. Star-spots with similar characteristics were detected in four transits over a period of 43 d. In the hypothesis that we are dealing with the same star-spot, periodically occulted by the transiting planet, we estimated the projected orbital obliquity of WASP-52 b to be λ = 3.8° ± 8.4°. We also determined the true orbital obliquity, ψ = 20° ± 50°, which is, although very uncertain, the first measurement of ψ purely from star-spot crossings. We finally assembled an optical transmission spectrum of the planet and searched for variations of its radius as a function of wavelength. Our analysis suggests a flat transmission spectrum within the experimental uncertainties.
Fast cadence planet-searches with the all-sky, gigapixel-scale Evryscope
NASA Astrophysics Data System (ADS)
Ratzloff, Jeff; Law, Nicholas
2018-01-01
The Evryscope is a 24-camera robotic telescope that continuously images 8,000 square degrees in 2-minute exposures, that has been collecting data continuously since deployment to CTIO in mid-2015. The telescope provides the fast cadence observations necessary for detecting minute to tens-of-minute time-scale exoplanet transits, which would occur around small, compact host stars including White Dwarfs and Hot Subdwarfs. We are conducting target surveys for each of these types of stars searching for potential planet transit signals. Our surveys will be the largest performed to date with several thousand targets in each group and years of observations, and the only surveys with minute-scale cadence. We present the status of the surveys, our estimated detection ability, interesting candidates, and preliminary results.
Emulating JWST/NIRCam Exoplanet Transit Observations in a Testbed laboratory experiment
NASA Astrophysics Data System (ADS)
Touli-Lebreton, D.; Vasisht, G.; Smith, R.; Krist, J.; Beichman, C.
2014-03-01
The transit technique is used for the detection and characterization of exoplanets. The combination of a transit measurement with a radial velocity measurement gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density and therefore to its composition and evolutionary history. Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al 2013. These transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). In our controlled laboratory experiment, we use a H2RG detector, two lamps of variable intensity, along with spectral line and photometric simulation masks to emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Two masks have been used to simulate spectra in monochromatic light. The masks are 1040 pixels in length with one mask having a 2-pixel width and the other a 10-pixel width. From many-hour long observing sequences we obtain time series photometry with deliberate offsets introduced to test sensitivity to pointing jitter and other effects. We can modify the star- planet brightness contrast by factors up to 104:1. With cross correlation techniques we calculate positional shifts which are then used to decorrelate the effects of vertical and lateral offsets due to turbulence and instrumental vibrations on the photometry. Using Principal Component Analysis (PCA), we reject correlated temporal noise to achieve a precision lower than 50 ppm (Clanton et al 2012). Testbed experiments are ongoing to provide quantitative information on the achievable spectroscopic precision using realistic exoplanet spectra with the goal to define optimized data acquisition sequences for use, for example, with the James Webb Space Telescope.
NASA Astrophysics Data System (ADS)
Santerne, A.; Hébrard, G.; Deleuil, M.; Havel, M.; Correia, A. C. M.; Almenara, J.-M.; Alonso, R.; Arnold, L.; Barros, S. C. C.; Behrend, R.; Bernasconi, L.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Bruno, G.; Damiani, C.; Díaz, R. F.; Gravallon, D.; Guillot, T.; Labrevoir, O.; Montagnier, G.; Moutou, C.; Rinner, C.; Santos, N. C.; Abe, L.; Audejean, M.; Bendjoya, P.; Gillier, C.; Gregorio, J.; Martinez, P.; Michelet, J.; Montaigut, R.; Poncy, R.; Rivet, J.-P.; Rousseau, G.; Roy, R.; Suarez, O.; Vanhuysse, M.; Verilhac, D.
2014-11-01
In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d ± 3 s and a high eccentricity of 0.772 ± 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 ± 0.05 M⊙ and 0.70 ± 0.07 M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 ± 0.35 M⊙ , and a radius of 0.94 ± 0.12 R⊙ , and thus a bulk density of 2.1 ± 1.2 g cm-3. The planet has an equilibrium temperature of 511 ± 50 K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. Based on observations made with SOPHIE on the 1.93 m telescope at Observatoire de Haute-Provence (CNRS), France, and with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Part of the observations were made with the IAC80 operated on the Spanish Observatorio del Teide of the Instituto de Astrofísica de Canarias.Appendices are available in electronic form at http://www.aanda.orgFull Tables C.5-C.7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/571/A37
NASA Astrophysics Data System (ADS)
Giacobbe, P.; Damasso, M.; Sozzetti, A.; Toso, G.; Perdoncin, M.; Calcidese, P.; Bernagozzi, A.; Bertolini, E.; Lattanzi, M. G.; Smart, R. L.
2012-08-01
We present the results of a year-long photometric monitoring campaign of a sample of 23 nearby (d < 60 pc), bright (J < 12) dM stars carried out at the Astronomical Observatory of the Autonomous Region of the Aosta Valley, in the western Italian Alps. This programme represents a 'pilot study' for a long-term photometric transit search for planets around a large sample of nearby M dwarfs, due to start with an array of identical 40-cm class telescopes by the Spring of 2012. In this study, we set out to (i) demonstrate the sensitivity to <4 R⊕ transiting planets with periods of a few days around our programme stars, through a two-fold approach that combines a characterization of the statistical noise properties of our photometry with the determination of transit detection probabilities via simulations; and (ii) where possible, improve our knowledge of some astrophysical properties (e.g. activity, rotation) of our targets by combining spectroscopic information and our differential photometric measurements. We achieve a typical nightly root mean square (RMS) photometric precision of ˜5 mmag, with little or no dependence on the instrumentation used or on the details of the adopted methods for differential photometry. The presence of correlated (red) noise in our data degrades the precision by a factor of ˜1.3 with respect to a pure white noise regime. Based on a detailed stellar variability analysis (i) we detected no transit-like events (an expected result, given the sample size); (ii) we determined photometric rotation periods of ˜0.47 and ˜0.22 d for LHS 3445 and GJ 1167A, respectively; (iii) these values agree with the large projected rotational velocities (˜25 and ˜33 km s-1, respectively) inferred for both stars based on the analysis of archival spectra; (iv) the estimated inclinations of the stellar rotation axes for LHS 3445 and GJ 1167A are consistent with those derived using a simple spot model; and (v) short-term, low-amplitude flaring events were recorded for LHS 3445 and LHS 2686. Finally, based on simulations of transit signals of given period and amplitude injected in the actual (nightly reduced) photometric data for our sample, we derive a relationship between transit detection probability and phase coverage. We find that, using the Box-fitting Least Squares search algorithm, even when the phase coverage approaches 100 per cent, there is a limit to the detection probability of ≈90 per cent. Around programme stars with phase coverage > 50 per cent, we would have had >80 per cent chances of detecting planets with P < 1 d inducing fractional transit depths > 0.5 per cent, corresponding to minimum detectable radii in the range ˜1.0-2.2 R⊕. These findings are illustrative of our high readiness level ahead of the main survey start.
NASA Astrophysics Data System (ADS)
Shallue, Christopher J.; Vanderburg, Andrew
2018-02-01
NASA’s Kepler Space Telescope was designed to determine the frequency of Earth-sized planets orbiting Sun-like stars, but these planets are on the very edge of the mission’s detection sensitivity. Accurately determining the occurrence rate of these planets will require automatically and accurately assessing the likelihood that individual candidates are indeed planets, even at low signal-to-noise ratios. We present a method for classifying potential planet signals using deep learning, a class of machine learning algorithms that have recently become state-of-the-art in a wide variety of tasks. We train a deep convolutional neural network to predict whether a given signal is a transiting exoplanet or a false positive caused by astrophysical or instrumental phenomena. Our model is highly effective at ranking individual candidates by the likelihood that they are indeed planets: 98.8% of the time it ranks plausible planet signals higher than false-positive signals in our test set. We apply our model to a new set of candidate signals that we identified in a search of known Kepler multi-planet systems. We statistically validate two new planets that are identified with high confidence by our model. One of these planets is part of a five-planet resonant chain around Kepler-80, with an orbital period closely matching the prediction by three-body Laplace relations. The other planet orbits Kepler-90, a star that was previously known to host seven transiting planets. Our discovery of an eighth planet brings Kepler-90 into a tie with our Sun as the star known to host the most planets.
High resolution Florida IR silicon immersion grating spectrometer and an M dwarf planet survey
NASA Astrophysics Data System (ADS)
Ge, Jian; Powell, Scott; Zhao, Bo; Wang, Ji; Fletcher, Adam; Schofield, Sidney; Liu, Jian; Muterspaugh, Matthew; Blake, Cullen; Barnes, Rory
2012-09-01
We report the system design and predicted performance of the Florida IR Silicon immersion grating spectromeTer (FIRST). This new generation cryogenic IR spectrograph offers broad-band high resolution IR spectroscopy with R=72,000 at 1.4-1.8 μm and R=60,000 at 0.8-1.35 μm in a single exposure with a 2kx2k H2RG IR array. It is enabled by a compact design using an extremely high dispersion silicon immersion grating (SIG) and an R4 echelle with a 50 mm diameter pupil in combination with an Image Slicer. This instrument is operated in vacuum with temperature precisely controlled to reach long term stability for high precision radial velocity (RV) measurements of nearby stars, especially M dwarfs and young stars. The primary technical goal is to reach better than 4 m/s long term RV precision with J<9 M dwarfs within 30 min exposures. This instrument is scheduled to be commissioned at the Tennessee State University (TSU) 2-m Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in spring 2013. FIRST can also be used for observing transiting planets, young stellar objects (YSOs), magnetic fields, binaries, brown dwarfs (BDs), ISM and stars. We plan to launch the FIRST NIR M dwarf planet survey in 2014 after FIRST is commissioned at the AST. This NIR M dwarf survey is the first large-scale NIR high precision Doppler survey dedicated to detecting and characterizing planets around 215 nearby M dwarfs with J< 10. Our primary science goal is to look for habitable Super-Earths around the late M dwarfs and also to identify transiting systems for follow-up observations with JWST to measure the planetary atmospheric compositions and study their habitability. Our secondary science goal is to detect and characterize a large number of planets around M dwarfs to understand the statistics of planet populations around these low mass stars and constrain planet formation and evolution models. Our survey baseline is expected to detect ~30 exoplanets, including 10 Super Earths, within 100 day periods. About half of the Super-Earths are in their habitable zones and one of them may be a transiting planet. The AST, with its robotic control and ease of switching between instruments (in seconds), enables great flexibility and efficiency, and enables an optimal strategy, in terms of schedule and cadence, for this NIR M dwarf planet survey.
NASA Astrophysics Data System (ADS)
Alp, D.; Demory, B.-O.
2018-01-01
Context. Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. Aims: The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. Methods: We use the model of Hui & Seager (2002, ApJ, 572, 540) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. Results: We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of 10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. In-transit, ingress, and egress refraction features are challenging to detect because of the short timescales and degeneracies with other transit model parameters. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs and ultra-cool stars. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.
DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Amit K.; Meadows, Victoria S.
2014-11-01
We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for thesemore » telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.« less
PROBING TRAPPIST-1-LIKE SYSTEMS WITH K2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demory, Brice-Olivier; Queloz, Didier; Gillen, Ed
2016-07-10
The search for small planets orbiting late M dwarfs holds the promise of detecting Earth-size planets for which their atmospheres could be characterized within the next decade. The recent discovery of TRAPPIST-1 entertains hope that these systems are common around hosts located at the bottom of the main sequence. In this Letter, we investigate the ability of the repurposed Kepler mission ( K2 ) to probe planetary systems similar to TRAPPIST-1. We perform a consistent data analysis of 189 spectroscopically confirmed M5.5 to M9 late M dwarfs from Campaigns 1–6 to search for planet candidates and inject transit signals withmore » properties matching TRAPPIST-1b and c. We find no transiting planet candidates across our K2 sample. Our injection tests show that K2 is able to recover both TRAPPIST-1 planets for 10% of the sample only, mainly because of the inefficient throughput at red wavelengths resulting in Poisson-limited performance for these targets. Increasing injected planetary radii to match GJ 1214b’s size yields a recovery rate of 70%. The strength of K2 is its ability to probe a large number of cool hosts across the different campaigns, out of which the recovery rate of 10% may turn into bona fide detections of TRAPPIST-1-like systems within the next two years.« less
Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star
NASA Astrophysics Data System (ADS)
Gandolfi, D.; Parviainen, H.; Fridlund, M.; Hatzes, A. P.; Deeg, H. J.; Frasca, A.; Lanza, A. F.; Prada Moroni, P. G.; Tognelli, E.; McQuillan, A.; Aigrain, S.; Alonso, R.; Antoci, V.; Cabrera, J.; Carone, L.; Csizmadia, Sz.; Djupvik, A. A.; Guenther, E. W.; Jessen-Hansen, J.; Ofir, A.; Telting, J.
2013-09-01
We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy from the Sandiford at McDonald and FIES at NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp = 0.430 ± 0.032 MJup, a radius of Rp = 0.960 ± 0.016 RJup, and a bulk density of ρp = 0.603 ± 0.055 g cm-3. It orbits a slowly rotating (Prot = 36 ± 6 days) G5 V star with M⋆ = 0.95 ± 0.04 M⊙, R⋆ = 0.99 ± 0.02 R⊙, Teff = 5520 ± 60 K, [M/H] = 0.20 ± 0.05 dex, that has an age of 7.5 ± 2.0 Gyr. The lack of detectable planetary occultation with a depth higher than ~10 ppm implies a planet geometric and Bond albedo of Ag ≤ 0.087 ± 0.008 and AB ≤ 0.058 ± 0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of ~0.5 min, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transitsobserved in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planet's passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions. Based on observations obtained with the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA.Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by OPTICON and the Spanish Time Allocation Committee (CAT).The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON).Appendix A is available in electronic form at http://www.aanda.org
Transit timing variations for planets co-orbiting in the horseshoe regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vokrouhlický, David; Nesvorný, David, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu
2014-08-10
Although not yet detected, pairs of exoplanets in 1:1 mean motion resonance probably exist. Low eccentricity, near-planar orbits, which in the comoving frame follow horseshoe trajectories, are one of the possible stable configurations. Here we study transit timing variations (TTVs) produced by mutual gravitational interaction of planets in this orbital architecture, with the goal to develop methods that can be used to recognize this case in observational data. In particular, we use a semi-analytic model to derive parametric constraints that should facilitate data analysis. We show that characteristic traits of the TTVs can directly constrain the (1) ratio of planetarymore » masses and (2) their total mass (divided by that of the central star) as a function of the minimum angular separation as seen from the star. In an ideal case, when transits of both planets are observed and well characterized, the minimum angular separation can also be inferred from the data. As a result, parameters derived from the observed transit timing series alone can directly provide both planetary masses scaled to the central star mass.« less
A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.
David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A
2016-06-30
Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.
THE LUPUS TRANSIT SURVEY FOR HOT JUPITERS: RESULTS AND LESSONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Daniel D. R.; Sackett, Penny D.; Weldrake, David T. F.
2009-05-15
We present the results of a deep, wide-field transit survey targeting 'Hot Jupiter' planets in the Lupus region of the Galactic plane conducted over 53 nights concentrated in two epochs separated by a year. Using the Australian National University 40-inch telescope at Siding Spring Observatory (SSO), the survey covered a 0.66 deg{sup 2} region close to the Galactic plane (b = 11{sup 0}) and monitored a total of 110,372 stars (15.0 {<=} V {<=} 22.0). Using difference imaging photometry, 16,134 light curves with a photometric precision of {sigma} < 0.025 mag were obtained. These light curves were searched for transits,more » and four candidates were detected that displayed low-amplitude variability consistent with a transiting giant planet. Further investigations, including spectral typing and radial velocity measurements for some candidates, revealed that of the four, one is a true planetary companion (Lupus-TR-3), two are blended systems (Lupus-TR-1 and 4), and one is a binary (Lupus-TR-2). The results of this successful survey are instructive for optimizing the observational strategy and follow-up procedure for deep searches for transiting planets, including an upcoming survey using the SkyMapper telescope at SSO.« less
The SEEDS of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks
NASA Technical Reports Server (NTRS)
Grady, Carol
2012-01-01
Circumstellar disks associated with PMS stars are the site where planetesimals form and grow, and ultimately where planets are produced. A key phase in the evolution of such disks is the phase where clearing of the disk has begun, potentially enabling direct detection of giant planets, but the disk retains sufficient material that indirect signatures that these are young planetary systems are also present. After reviewing what has been learned from studies of the IR spectral energy distribution and (sub )mm-interferometry, I will discuss recent results obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS).
NASA Astrophysics Data System (ADS)
Pinilla, P.; Klarmann, L.; Birnstiel, T.; Benisty, M.; Dominik, C.; Dullemond, C. P.
2016-01-01
Context. Transition disks are circumstellar disks that show evidence of a dust cavity, which may be related to dynamical clearing by embedded planet(s). Most of these objects show signs of significant accretion, indicating that the inner disks are not truly empty, but that gas is still streaming through to the star. A subset of transition disks, sometimes called pre-transition disks, also shows a strong near-infrared excess, interpreted as an optically thick dusty belt located close to the dust sublimation radius within the first astronomical unit. Aims: We study the conditions for the survival and maintenance of such an inner disk in the case where a massive planet opens a gap in the disk. In this scenario, the planet filters out large dust grains that are trapped at the outer edge of the gap, while the inner regions of the disk may or may not be replenished with small grains. Methods: We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Results: Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myr within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1 MJup), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. Conclusions: The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.
A Direct Path to Finding Earth-Like Planets
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Linder, Don J.
2009-01-01
As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.
The occurrence of Jovian planets and the habitability of planetary systems
Lunine, Jonathan I.
2001-01-01
Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets. PMID:11158551
The occurrence of Jovian planets and the habitability of planetary systems.
Lunine, J
2001-01-30
Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets.
Follow-Up Photometry of Kelt Transiting Planet Candidates
NASA Astrophysics Data System (ADS)
Stephens, Denise C.; Joner, Michael D.; Hintz, Eric G.; Martin, Trevor; Spencer, Alex; Kelt Follow-Up Network (FUN) Team
2017-10-01
We have three telescopes at BYU that we use to follow-up possible transiting planet canidates for the KELT team. These telescopes were used to collect data on Kelt-16b and Kelt-9b, which is the hottest known exoplanet. More recently we used the newest of these telescopes, a robotic 8-inch telescope on the roof of our building, to confirm the most recent Kelt planet that will be published soon. This research has been ideal for the teaching and training of undergraduate students in the art of photometric observing and data reduction. In this presentation I will highlight how we are using our membership in the Kelt team to further the educational objective of our undergraduate astronomy program, while contributing meaningful science to the ever growing field of exoplanet discovery. I will also highlight a few of the more interesting Kelt planets and the minimum telescope requirements for detecting these planets. I will then discuss the sensitivities required to follow-up future TESS candidates, which may be of interest to others interested in joining the TESS follow-up teams.
The XUV environments of exoplanets from Jupiter-size to super-Earth
NASA Astrophysics Data System (ADS)
King, George W.; Wheatley, Peter J.; Salz, Michael; Bourrier, Vincent; Czesla, Stefan; Ehrenreich, David; Kirk, James; Lecavelier des Etangs, Alain; Louden, Tom; Schmitt, Jürgen; Schneider, P. Christian
2018-07-01
Planets that reside close-in to their host star are subject to intense high-energy irradiation. Extreme-ultraviolet (EUV) and X-ray radiation (together, XUV) is thought to drive mass-loss from planets with volatile envelopes. We present XMM-Newton observations of six nearby stars hosting transiting planets in tight orbits (with orbital period, Porb < 10 d), wherein we characterize the XUV emission from the stars and subsequent irradiation levels at the planets. In order to reconstruct the unobservable EUV emission, we derive a new set of relations from Solar TIMED/SEE data that are applicable to the standard bands of the current generation of X-ray instruments. From our sample, WASP-80b and HD 149026b experience the highest irradiation level, but HAT-P-11b is probably the best candidate for Ly α evaporation investigations because of the system's proximity to the Solar system. The four smallest planets have likely lost a greater percentage of their mass over their lives than their larger counterparts. We also detect the transit of WASP-80b in the near-ultraviolet with the optical monitor on XMM-Newton.
The XUV environments of exoplanets from Jupiter-size to super-Earth
NASA Astrophysics Data System (ADS)
King, George W.; Wheatley, Peter J.; Salz, Michael; Bourrier, Vincent; Czesla, Stefan; Ehrenreich, David; Kirk, James; Lecavelier des Etangs, Alain; Louden, Tom; Schmitt, Jürgen; Schneider, P. Christian
2018-05-01
Planets that reside close-in to their host star are subject to intense high-energy irradiation. Extreme-ultraviolet (EUV) and X-ray radiation (together, XUV) is thought to drive mass loss from planets with volatile envelopes. We present XMM-Newton observations of six nearby stars hosting transiting planets in tight orbits (with orbital period, Porb < 10 d), wherein we characterise the XUV emission from the stars and subsequent irradiation levels at the planets. In order to reconstruct the unobservable EUV emission, we derive a new set of relations from Solar TIMED/SEE data that are applicable to the standard bands of the current generation of X-ray instruments. From our sample, WASP-80b and HD 149026b experience the highest irradiation level, but HAT-P-11b is probably the best candidate for Ly α evaporation investigations because of the system's proximity to the Solar System. The four smallest planets have likely lost a greater percentage of their mass over their lives than their larger counterparts. We also detect the transit of WASP-80b in the near ultraviolet with the Optical Monitor on XMM-Newton
The Visibility of Earth Transits
NASA Technical Reports Server (NTRS)
Castellano, Tim; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The recent detection of planetary transits of the solar-like star HD 209458 at a distance of 47 parsecs suggest that transits can reveal the presence of Jupiter-size planetary companions in the solar neighborhood. Recent space-based transit searches have achieved photometric precision within an order of magnitude of that required to detect the much smaller transit signal of an earth-size planet around a solar-size star. Laboratory experiments in the presence of realistic noise sources have shown that CCDs can achieve photometric precision adequate to detect the 9.6 E-5 dimming, of the Sun due to a transit of the Earth. Space-based solar irradiance monitoring has shown that the intrinsic variability of the Sun would not preclude such a detection. Transits of the Sun by the Earth would be detectable by observers that reside within a narrow band of sky positions near the ecliptic plane, if the observers possess current Earth epoch levels of technology and astronomical expertise. A catalog of candidate target stars, their properties, and simulations of the photometric Earth transit signal detectability at each target is presented.
New Constraints on the False Positive Rate for Short-Period Kepler Planet Candidates
NASA Astrophysics Data System (ADS)
Colón, Knicole D.; Morehead, Robert C.; Ford, Eric B.
2015-01-01
The Kepler space mission has discovered thousands of potential planets orbiting other stars, thereby setting the stage for in-depth studies of different populations of planets. We present new multi-wavelength transit photometry of small (Rp < 6 Earth radii), short-period (P < 6 days) Kepler planet candidates acquired with the Gran Telescopio Canarias. Multi-wavelength transit photometry allows us to search for wavelength-dependent transit depths and subsequently identify eclipsing binary false positives (which are especially prevalent at the shortest orbital periods). We combine these new observations of three candidates with previous results for five other candidates (Colón & Ford 2011 and Colón, Ford, & Morehead 2012) to provide new constraints on the false positive rate for small, close-in candidates. In our full sample, we identify four candidates as viable planets and four as eclipsing binary false positives. We therefore find a higher false positive rate for small, close-in candidates compared to the lower false positive rate of ~10% determined by other studies for the full sample of Kepler planet candidates (e.g. Fressin et al. 2013). We also discuss the dearth of known planets with periods less than ~2.5 days and radii between ~3 and 11 Earth radii (the so-called 'sub-Jovian desert'), since the majority of the candidates in our study are located in or around this 'desert.' The lack of planets with these orbital and physical properties is not expected to be due to observational bias, as short-period planets are generally easier to detect (especially if they are larger or more massive than Earth). We consider the implications of our results for the other ~20 Kepler planet candidates located in this desert. Characterizing these candidates will allow us to better understand the formation processes of this apparently rare class of planets.
ECHO - the Exoplanet Characterisation Observatory
NASA Astrophysics Data System (ADS)
Tessenyi, Marcell
2010-10-01
A famous example of Super Earth is GJ 1214b, found by Charbonneau et al. in 2009 as part of the Mearth project: it is believed to be a small (2 Earth masses) ice world. But most of the currently known Exoplanets are of the Hot Jupiter type, large gas giants orbiting bright stars. Attention is now turning to these Super Earths, orbiting low mass late-type stars - many yet to be detected - as they offer the opportunity of obtaining spectral signatures from their atmospheres when found in a transiting or even non-transiting scenarios, via data obtained by ground based and space observatories, compared to simulated climate scenarios. As more of these planets await detection, we estimate from microlensing and radial velocity surveys - which report that Super Earths form 24 to 100% of planets at orbits between 1 and 5 A.U. of their parent stars - and catalogs of stars (RECONS, PMSU, 2MASS), that within 30pc from our sun, over 50 Super Earths transit, orbiting within the Habitable Zone of their host star.
THE HUNT FOR EXOMOONS WITH KEPLER (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipping, D. M.; Bakos, G. A.; Buchhave, L.
2012-05-10
Two decades ago, empirical evidence concerning the existence and frequency of planets around stars, other than our own, was absent. Since that time, the detection of extrasolar planets from Jupiter-sized to, most recently, Earth-sized worlds has blossomed and we are finally able to shed light on the plurality of Earth-like, habitable planets in the cosmos. Extrasolar moons may also be frequently habitable worlds, but their detection or even systematic pursuit remains lacking in the current literature. Here, we present a description of the first systematic search for extrasolar moons as part of a new observational project called 'The Hunt formore » Exomoons with Kepler' (HEK). The HEK project distills the entire list of known transiting planet candidates found by Kepler (2326 at the time of writing) down to the most promising candidates for hosting a moon. Selected targets are fitted using a multimodal nested sampling algorithm coupled with a planet-with-moon light curve modeling routine. By comparing the Bayesian evidence of a planet-only model to that of a planet-with-moon, the detection process is handled in a Bayesian framework. In the case of null detections, upper limits derived from posteriors marginalized over the entire prior volume will be provided to inform the frequency of large moons around viable planetary hosts, {eta} leftmoon. After discussing our methodologies for target selection, modeling, fitting, and vetting, we provide two example analyses.« less
NASA Technical Reports Server (NTRS)
Takahashi, Yasuhiro; Narita, Norio; Hirano, Teruyuki; Kuzuhara, Masayuki; Tamura, Motohide; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Sato, Bun'ei; Abe, Lyu;
2013-01-01
We report a discovery of a companion candidate around one of Kepler Objects of Interest (KOIs), KOI-94, and results of our quantitative investigation of the possibility that planetary candidates around KOI-94 are false positives. KOI-94 has a planetary system in which four planetary detections have been reported by Kepler, suggesting that this system is intriguing to study the dynamical evolutions of planets. However, while two of those detections (KOI-94.01 and 03) have been made robust by previous observations, the others (KOI-94.02 and 04) are marginal detections, for which future confirmations with various techniques are required. We have conducted high-contrast direct imaging observations with Subaru/HiCIAO in H band and detected a faint object located at a separation of approximately 0.6 sec from KOI-94. The object has a contrast of approximately 1 × 10(exp -3) in H band, and corresponds to an M type star on the assumption that the object is at the same distance of KOI-94. Based on our analysis, KOI-94.02 is likely to be a real planet because of its transit depth, while KOI-94.04 can be a false positive due to the companion candidate. The success in detecting the companion candidate suggests that high-contrast direct imaging observations are important keys to examine false positives of KOIs. On the other hand, our transit light curve reanalyses lead to a better period estimate of KOI-94.04 than that on the KOI catalogue and show that the planetary candidate has the same limb darkening parameter value as the other planetary candidates in the KOI-94 system, suggesting that KOI-94.04 is also a real planet in the system.
A resonant chain of four transiting, sub-Neptune planets.
Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard
2016-05-26
Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.
First Atmosphere Characterization of the Benchmark Exo-Neptune WASP-107b
NASA Astrophysics Data System (ADS)
Kreidberg, Laura
2016-10-01
WASP-107b is a newly announced transiting planet that is the highest signal-to-noise target for transmission spectroscopy discovered in the last decade, thanks to its low surface gravity and small, bright host star. The planet is in the intriguing transition region between ice and gas giants, with a mass comparable to Neptune and a radius similar to Jupiter. Relative to other benchmark systems, WASP-107b has a cool equilibrium temperature (780 K), where methane and water are both expected to be abundant. The planet therefore provides a unique opportunity for spectroscopic characterization of carbon and oxygen chemistry. With its large expected signal, WASP-107b also provides an excellent laboratory to study aerosol formation. The features are so large that even if thick clouds/haze are present at very high altitudes (0.1 mbar), it will still be possible to detect absorption features peeking out above them. Here we propose a reconnaissance observation of a single transit of WASP-107b. This measurement will vet the planet's atmosphere composition and test for the presence of aerosols so that the community can decide on the best follow-up strategy for this exciting system.
Detectability of molecular signatures in the atmospheres of Giant and Terrestrial Exoplanets
NASA Astrophysics Data System (ADS)
Tinetti, G. T.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Ehrenreich, D.; Liang, M. C.; Yung, Y.
In the past decade over 160 planets orbiting other stars extrasolar planets were discovered using indirect detection techniques The known sample is constrained by the currently achievable detection techniques which are more sensitive to larger worlds To extend the detection ability down to Earth-sized planets both the European Space Agency ESA and National Aeronautics and Space Administration NASA are developing large and technologically challenging space-borne observatories The first of these missions is due for launch as early as 2015 and will provide our first opportunity to spectroscopically study the global characteristics of Earth-like planets beyond our solar system to search for signs of habitability and life Almost a decade in advance to the launch of ESA-Darwin or NASA-Terrestrial Planet Finders most recent observations of primary and secondary eclipses with Hubble Space Telescope and Spitzer of transiting extrasolar giant planets EGPs Charbonneau et al 2002 2005 Vidal-Madjar et al 2003 2004 Deming et al 2005 suggest that emitted and transmission spectra of EGPs can be used to infer many properties of their atmospheres and internal structure including chemical element abundances hydrodynamic escape cloud heights temperature-pressure profiles density composition and evolution The next generation of space telescopes James Webb Space Telescope JWST will have the capability of acquiring more precise spectra in the visible and infrared of these extrasolar worlds The ultimate extension of such searches will be to
NASA Technical Reports Server (NTRS)
Mena-Werth, Jose
1998-01-01
The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.
The dynamical evolution of transiting planetary systems including a realistic collision prescription
NASA Astrophysics Data System (ADS)
Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders
2018-05-01
Planet-planet collisions are a common outcome of instability in systems of transiting planets close to the star, as well as occurring during in-situ formation of such planets from embryos. Previous N-body studies of instability amongst transiting planets have assumed that collisions result in perfect merging. Here, we explore the effects of implementing a more realistic collision prescription on the outcomes of instability and in-situ formation at orbital radii of a few tenths of an au. There is a strong effect on the outcome of the growth of planetary embryos, so long as the debris thrown off in collisions is rapidly removed from the system (which happens by collisional processing to dust, and then removal by radiation forces) and embryos are small (<0.1 M⊕). If this is the case, then systems form fewer detectable (≥1 M⊕) planets than systems evolved under the assumption of perfect merging in collisions. This provides some contribution to the "Kepler Dichotomy": the observed over-abundance of single-planet systems. The effects of changing the collision prescription on unstable mature systems of super-Earths are less pronounced. Perfect mergers only account for a minority of collision outcomes in such systems, but most collisions resulting in mass loss are grazing impacts in which only a few per cent. of mass is lost. As a result, there is little impact on the final masses and multiplicities of the systems after instability when compared to systems evolved under the assumption that collisions always result in perfect merging.
The δ Scuti pulsations of β Pictoris as observed by ASTEP from Antarctica
NASA Astrophysics Data System (ADS)
Mékarnia, D.; Chapellier, E.; Guillot, T.; Abe, L.; Agabi, A.; De Pra, Y.; Schmider, F.-X.; Zwintz, K.; Stevenson, K. B.; Wang, J. J.; Lagrange, A.-M.; Bigot, L.; Crouzet, N.; Fanteï-Caujolle, Y.; Christille, J.-M.; Kalas, P.
2017-12-01
Aims: The Antarctica Search for Transiting Extrasolar Planets (ASTEP), an automatized 400 mm telescope located at Concordia station in Antarctica, monitored β Pictoris continuously to detect any variability linked to the transit of the Hill sphere of its planet β Pictoris b. The long observation sequence, from March to September 2017, combined with the quality and high level duty cycle of our data, enables us to detect and analyse the δ Scuti pulsations of the star. Methods: Time series photometric data were obtained using aperture photometry by telescope defocussing. The 66 418 data points were analysed using the software package Period04. We only selected frequencies with amplitudes that exceed four times the local noise level in the amplitude spectrum. Results: We detect 31 δ Scuti pulsation frequencies, 28 of which are new detections. All the frequencies detected are in the interval 34.76-75.68 d-1. We also find that β Pictoris exhibits at least one pulsation mode that varies in amplitude over our monitoring duration of seven months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji
2014-11-10
We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraintsmore » on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.« less
An Ultraviolet Investigation of Activity on Exoplanet Host Stars
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2013-03-01
Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, Mp , or Mp /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8σ) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3σ when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result. Based on observations made with the NASA Galaxy Evolution Explorer. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.
Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1
NASA Astrophysics Data System (ADS)
de Wit, Julien; Wakeford, Hannah R.; Lewis, Nikole K.; Delrez, Laetitia; Gillon, Michaël; Selsis, Frank; Leconte, Jérémy; Demory, Brice-Olivier; Bolmont, Emeline; Bourrier, Vincent; Burgasser, Adam J.; Grimm, Simon; Jehin, Emmanuël; Lederer, Susan M.; Owen, James E.; Stamenković, Vlada; Triaud, Amaury H. M. J.
2018-03-01
Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres3-6. Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones6-8. An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures9. However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere10, 11. Here, we report observations for the four planets within or near the system's habitable zone, the circumstellar region where liquid water could exist on a planetary surface12-14. These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation15, 16, these observations further support their terrestrial and potentially habitable nature.
NASA Astrophysics Data System (ADS)
Schneider, G.; Pasachoff, J. M.; Willson, Richard C.
2006-04-01
We have used the 2004 June 8 transit of Venus (ToV) as a surrogate to test observing methods, strategies, and techniques that are being contemplated for future space missions to detect and characterize extrasolar terrestrial planets (ETPs) as they transit their host stars, notably NASA's Kepler mission, planned for 2008. As an analog to ``Kepler-like'' photometric transit observations, we obtained (spatially unresolved) radiometric observations with the ACRIM 3 instrument on ACRIMSAT at a sampling cadence of 131 s to follow the effect of the ToV on the total solar irradiance (TSI). Contemporaneous high-resolution broadband imagery with NASA's TRACE spacecraft provided, directly, measures of the stellar (solar) astrophysical noise that can intrinsically limit such transit observations. During the Venus transit, which lasted ~5.5 hr, the planet's angular diameter was approximately 1/32 the solar diameter, thus covering ~0.1% of the stellar surface. With our ACRIM 3 data, we measure temporal changes in TSI with a 1 σ per sample (unbinned) uncertainty of approximately 100 mW m-2 (0.007%). A diminution in TSI of ~1.4 W m-2 (~0.1%, closely corresponding to the geometrically occulted area of the photosphere) was measured at mid-transit compared with a mean pre-/post-transit TSI of ~1365.9 W m-2. The radiometric light curve is complex because of the parallactic motion of Venus induced by ACRIMSAT's near-polar orbit, but exhibits the characteristic signature of photospheric limb darkening. These observations serve as a surrogate for future photometric observations of ETPs, such as Kepler will deliver. Detailed analysis of the ToV, a rare event within our own solar system, with time-resolved radiometry augmented with high-resolution imagery, provides a useful analog for investigating the detectability and characterization of ETPs from observations that are anticipated in the near future.
Pan-Planets: Searching for hot Jupiters around cool dwarfs
NASA Astrophysics Data System (ADS)
Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.
2016-03-01
The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower occurrence rate for cool stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
Planetary transit candidates in Corot-IRa01 field
NASA Astrophysics Data System (ADS)
Carpano, S.; Cabrera, J.; Alonso, R.; Barge, P.; Aigrain, S.; Almenara, J.-M.; Bordé, P.; Bouchy, F.; Carone, L.; Deeg, H. J.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fressin, F.; Fridlund, M.; Gondoin, P.; Guillot, T.; Hatzes, A.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Moutou, C.; Ofir, A.; Ollivier, M.; Janot-Pacheco, E.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Régulo, C.; Renner, S.; Rouan, D.; Samuel, B.; Schneider, J.; Wuchterl, G.
2009-10-01
Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr.
Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters
NASA Astrophysics Data System (ADS)
Collier Cameron, Andrew; Jardine, Moira
2018-05-01
Transiting hot Jupiters occupy a wedge-shaped region in the mass ratio-orbital separation diagram. Its upper boundary is eroded by tidal spiral-in of massive, close-in planets and is sensitive to the stellar tidal dissipation parameter Q_s^'. We develop a simple generative model of the orbital separation distribution of the known population of transiting hot Jupiters, subject to tidal orbital decay, XUV-driven evaporation and observational selection bias. From the joint likelihood of the observed orbital separations of hot Jupiters discovered in ground-based wide-field transit surveys, measured with respect to the hyperparameters of the underlying population model, we recover narrow posterior probability distributions for Q_s^' in two different tidal forcing frequency regimes. We validate the method using mock samples of transiting planets with known tidal parameters. We find that Q_s^' and its temperature dependence are retrieved reliably over five orders of magnitude in Q_s^'. A large sample of hot Jupiters from small-aperture ground-based surveys yields log _{10} Q_s^' }=(8.26± 0.14) for 223 systems in the equilibrium-tide regime. We detect no significant dependence of Q_s^' on stellar effective temperature. A further 19 systems in the dynamical-tide regime yield log _{10} Q_s^' }=7.3± 0.4, indicating stronger coupling. Detection probabilities for transiting planets at a given orbital separation scale inversely with the increase in their tidal migration rates since birth. The resulting bias towards younger systems explains why the surface gravities of hot Jupiters correlate with their host stars' chromospheric emission fluxes. We predict departures from a linear transit-timing ephemeris of less than 4 s for WASP-18 over a 20-yr baseline.
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Van Laerhoven, Christa; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi
2016-03-01
We infer dynamical masses in eight multiplanet systems using transit times measured from Kepler's complete data set, including short-cadence data where available. Of the 18 dynamical masses that we infer, 10 pass multiple tests for robustness. These are in systems Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a radius of 1.3 R⊕ and a density consistent with an Earth-like composition. Strong transit timing variation (TTV) signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently measured transit times, including planets orbiting Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115), and Kepler-177 (KOI-523). Nonetheless, strong upper limits on the mass of Kepler-177 c imply an extremely low density of ˜0.1 g cm-3. In most cases, individual orbital eccentricities were poorly constrained owing to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate to high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, nonlibrating solutions also match the transit timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have secure mass measurements. Placing these exoplanets on the mass-radius diagram, we find that a wide range of densities is observed among sub-Neptune-mass planets and that the range in observed densities is anticorrelated with incident flux.
The Visibility of Earth Transits
NASA Technical Reports Server (NTRS)
Castellano, Timothy P.; Doyle, Laurance; McIntosh, Dawn; DeVincenzi, Donald (Technical Monitor)
2000-01-01
The recent photometric detection of planetary transits of the solar-like star HD 209458 at a distance of 47 parsecs suggest that transits can reveal the presence of Jupiter-size planetary companions in the solar neighborhood. Recent space-based transit searches have achieved photometric precision within an order of magnitude of that required to detect the much smaller transit signal of an earth-size planet across a solar-size star. Laboratory experiments in the presence of realistic noise sources have shown that CCDs can achieve photometric precision adequate to detect the 9.6 E-5 dimming of the Sun due to a transit of the Earth. Space-based solar irradiance monitoring has shown that the intrinsic variability of the Sun would not preclude such a detection. Transits of the Sun by the Earth would be detectable by observers that reside within a narrow band of sky positions near the ecliptic plane, if the observers possess current Earth epoch levels of technology and astronomical expertise. A catalog of solar-like stars that satisfy the geometric condition for Earth transit visibility are presented.
Measuring the Infrared Spectrum of the Transiting Extrasolar Planet HD 209458b
NASA Astrophysics Data System (ADS)
Richardson, L. Jeremy; Cho, James; Deming, Drake; Hansen, Brad; Harrington, Joseph; Menou, Kristen; Seager, Sara
2005-06-01
Researchers from two independent groups recently detected the first infrared signal from an extrasolar planet. Deming et. al. (2005a) detected the 24-micron flux density of HD 209458b using MIPS at secondary eclipse, and Charbonneau et. al. (2005) detected the infrared signal of TrES-1 using IRAC at 4.5 and 8 microns. These results have dramatically demonstrated the ability of Spitzer to characterize extrasolar planets. We propose to build on these observations with IRS spectroscopy of HD 209458b from 7.4 to 14.5 microns. By observing the system both during and outside of secondary eclipse, we will derive the planetary spectrum from the change in the shape of the continuum spectrum in combined light. These observations will lead directly to a measurement of the temperature gradient in the planetary atmosphere and the column density of water above the clouds, and we will search for variability due to atmospheric dynamics.
Gemini Planet Imager: Preliminary Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B
2007-05-10
For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetarymore » atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is completely limited by quasi-static wave front errors, so that contrast does not improve with integration times longer than about 1 minute. Using the rotation of the Earth to distinguish companions from artifacts or multiwavelength imaging improves this somewhat, but GPI will still need to surpass the performance of existing systems by one to two orders of magnitude--an improvement comparable to the transition from photographic plates to CCDs. This may sound daunting, but other areas of optical science have achieved similar breakthroughs, for example, the transition to nanometer-quality optics for extreme ultraviolet lithography, the development of MEMS wave front control devices, and the ultra-high contrast demonstrated by JPL's High Contrast Imaging Test-bed. In astronomy, the Sloan Digital Sky Survey, long baseline radio interferometry, and multi-object spectrographs have led to improvements of similar or greater order of magnitude. GPI will be the first project to apply these revolutionary techniques to ground-based astronomy, with a systems engineering approach that studies the impact of every design decision on the key metric--final detectable planet contrast.« less
NASA Astrophysics Data System (ADS)
Colon, Knicole; Ford, E. B.
2012-01-01
With over 180 confirmed transiting exoplanets and NASA's Kepler mission's recent discovery of over 1200 transiting exoplanet candidates, we can conduct detailed investigations into the (i) properties of exoplanet atmospheres and (ii) false positive rates for planet search surveys. To aid these investigations, we developed a novel technique of using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) installed on the 10.4-meter Gran Telescopio Canarias (GTC) to acquire near-simultaneous multi-color photometry of (i) HD 80606b in bandpasses around the potassium (K I) absorption feature, (ii) GJ 1214b in bandpasses around a possible methane absorption feature and (iii) several Kepler planet candidates. For HD 80606b, we measure a significant color change during transit between wavelengths that probe the K I line core and the K I wing, equivalent to a 4.2% change in the apparent planetary radius. We hypothesize that the excess absorption may be due to K I in a high-speed wind being driven from the exoplanet's exosphere. This is one of the first detections of K I in an exoplanet atmosphere. For GJ 1214b, we compare the transit depths measured "on” and "off” a possible methane absorption feature and use our results to help resolve conflicting results from other studies regarding the composition of this super-Earth-size planet's atmosphere. For Kepler candidates, we use the color change during transit to reject candidates that are false positives (e.g., a blend with an eclipsing binary either in the background/foreground or bound to the target star). We target small planets (<6 Earth radii) with short orbital periods (<6 days), since eclipsing binaries can mimic planets in this regime. Our results include identification of two false positives and test recent predictions of the false positive rates for the Kepler sample. This research demonstrates the value of the GTC for exoplanet follow-up.
Know the Planet, Know the Star: Precise Stellar Parameters with Kepler
NASA Astrophysics Data System (ADS)
Sandford, Emily; Kipping, David M.
2017-01-01
The Kepler space telescope has revolutionized exoplanetary science with unprecedentedly precise photometric measurements of the light curves of transiting planets. In addition to information about the planet and its orbit, encoded in each Kepler transiting planet light curve are certain properties of the host star, including the stellar density and the limb darkening profile. For planets with strong prior constraints on orbital eccentricity (planets to which we refer as “stellar anchors”), we may measure these stellar properties directly from the light curve. This method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA TESS mission and any long-period, singly-transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb darkening law, to a large sample of transiting planet hosts to measure their stellar properties. We present the results of our analysis, including posterior stellar density distributions for each stellar host, and show how the method yields superior precision to literature stellar properties in the majority of cases studied.
The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Amit; Meadows, Victoria; Crisp, Dave, E-mail: amit0@astro.washington.edu
2014-09-01
We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each givenmore » planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.« less
Characterizing K2 Planetary Systems Orbiting Cool Dwarfs
NASA Astrophysics Data System (ADS)
Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua; Vanderburg, Andrew; Charbonneau, David; Knutson, Heather; K2C2
2017-01-01
The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. K2 observes 10,000 - 30,000 stars in each field for roughly 80 days, which is too short to observe multiple transits of planets in the habitable zones of Sun-like stars, but long enough to detect potentially habitable planets orbiting low-mass dwarfs. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 cool dwarfs are not well-characterized. We are refining the properties of K2 planetary systems orbiting cool dwarfs by acquiring medium-resolution NIR spectra with SpeX on the IRTF and TripleSpec on the Palomar 200". In our initial sample of 144 potential cool dwarfs hosting candidate planetary systems detected by K2, we noted a high contamination rate from giants (16%) and reddened hotter dwarfs (31%). After employing empirically-based relations to determine the temperatures, radii, masses, luminosities, and metallicities of K2 planet candidate host stars, we found that our new cool dwarf radius estimates were 10-40% larger than the initial values, indicating that the radii of the associated planet candidates were also underestimated. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of system properties and highlight the most attractive K2 planets for radial velocity mass measurement and atmospheric characterization with Spitzer, HST, JWST, and the next generation of extremely large ground- and space-based telescopes. We gratefully acknowledge funding from the NASA Sagan Fellowship Program, the NASA K2 Guest Observer Program, the NASA XRP Program, the John Templeton Foundation, the National Science Foundation Astronomy & Astrophysics Postdoctoral Program, and the National Science Foundation Graduate Research Fellowship Program.
Detecting Water on Super-Earths Using JAVST
NASA Technical Reports Server (NTRS)
Deming, D.
2010-01-01
Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.
Kepler Planet Detection Metrics: Robovetter Completeness and Effectiveness for Data Release 25
NASA Technical Reports Server (NTRS)
Coughlin, Jeffrey L.
2017-01-01
In general, the Kepler pipeline identifies a list of Threshold Crossing Events (TCEs), which are periodic flux decrements meeting certain criteria (Jenkins, 2017). These TCEs are reviewed and those that appear consistent with astrophysically transiting or eclipsing systems are classified as Kepler Objects of Interest (KOIs). Further review is given to KOIs, which are then dispositioned as Planet Candidates (PCs) or False Positive (FPs). FPs are further denoted by four major flags that indicate if the signal is Not Transit-Like (NTL), due to a Stellar Eclipse (SS; previously referred to as Significant Secondary), and/or due to contamination from a source other than the target as evidenced by a Centroid Offset (CO) oran Ephemeris Match (EM) with another object. This entire TCE review process is known as dispositioning or vetting.In the first five Kepler mission planet candidate catalogs (Borucki et al., 2011a,b; Batalha et al., 2013; Burke et al., 2014; Rowe et al., 2015), TCEs were manually examined on an individual basis and dispositioned using various plots and quantitative diagnostic tests (see e.g., Coughlin, 2017). In the sixth catalog, Mullally et al. (2015a) employed partial automation via simple parameter cuts to automatically disposition a large fraction of TCEs as not transit-like. Mullally et al. (2015a) also used an automated technique known as the centroid Robovetter (Mullally, 2017) to automatically identify some FP KOIs due to centroid offsets - a telltale signature of light contamination from another target. The remaining targets were manually dispositioned. In the seventh catalog, Coughlin et al. (2016) automated theentire dispositioning process using what is collectively known simply as the Robovetter.In the eighth and final mission catalog, Thompson et al. (2017) use a revised Robovetter to automate the dispositioning of all TCEs with an emphasis on creating a catalog suitable for accurately determining planet occurrence rates. In order to calculate accurate occurrence rates, the completeness and effectiveness of the Robovetter must be characterized. We define these terms as applied to the Robovetter, following Thompson et al. (2017), as:1. Completeness: The fraction of transiting planets detected by the pipeline that are classified as planet candidates by the Robovetter.2. Effectiveness: The fraction of false positives detected by the pipeline that are classified as false positives by the Robovetter.The remainder of this document describes products that can be used to quantitatively assess Robovetter completeness and effectiveness for an arbitrary set of Kepler stars.
The GTC exoplanet transit spectroscopy survey . VII. An optical transmission spectrum of WASP-48b
NASA Astrophysics Data System (ADS)
Murgas, F.; Pallé, E.; Parviainen, H.; Chen, G.; Nortmann, L.; Nowak, G.; Cabrera-Lavers, A.; Iro, N.
2017-09-01
Context. Transiting planets offer an excellent opportunity for characterizing the atmospheres of extrasolar planets under very different conditions from those found in our solar system. Aims: We are currently carrying out a ground-based survey to obtain the transmission spectra of several extrasolar planets using the 10 m Gran Telescopio Canarias. In this paper we investigate the extrasolar planet WASP-48b, a hot Jupiter orbiting around an F-type star with a period of 2.14 days. Methods: We obtained long-slit optical spectroscopy of one transit of WASP-48b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) spectrograph. We integrated the spectrum of WASP-48 and one reference star in several channels with different wavelength ranges, creating numerous color light curves of the transit. We fit analytic transit curves to the data taking into account the systematic effects present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp/Rs) across wavelength. The change in transit depth can be compared with atmosphere models to infer the presence of particular atomic or molecular compounds in the atmosphere of WASP-48b. Results: After removing the transit model and systematic trends to the curves we reached precisions between 261 ppm and 455-755 ppm for the white and spectroscopic light curves, respectively. We obtained Rp/Rs uncertainty values between 0.8 × 10-3 and 1.5 × 10-3 for all the curves analyzed in this work. The measured transit depth for the curves made by integrating the wavelength range between 530 nm and 905 nm is in agreement with previous studies. We report a relatively flat transmission spectrum for WASP-48b with no statistical significant detection of atmospheric species, although the theoretical models that fit the data more closely include TiO and VO. The transit light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A114
Exploring JWST's Capability to Constrain Habitability on Simulated Terrestrial TESS Planets
NASA Astrophysics Data System (ADS)
Tremblay, Luke; Britt, Amber; Batalha, Natasha; Schwieterman, Edward; Arney, Giada; Domagal-Goldman, Shawn; Mandell, Avi; Planetary Systems Laboratory; Virtual Planetary Laboratory
2017-01-01
In the following, we have worked to develop a flexible "observability" scale of biologically relevant molecules in the atmospheres of newly discovered exoplanets for the instruments aboard NASA's next flagship mission, the James Webb Space Telescope (JWST). We sought to create such a scale in order to provide the community with a tool with which to optimize target selection for JWST observations based on detections of the upcoming Transiting Exoplanet Satellite Survey (TESS). Current literature has laid the groundwork for defining both biologically relevant molecules as well as what characteristics would make a new world "habitable", but it has so far lacked a cohesive analysis of JWST's capabilities to observe these molecules in exoplanet atmospheres and thereby constrain habitability. In developing our Observability Scale, we utilized a range of hypothetical planets (over planetary radii and stellar insolation) and generated three self-consistent atmospheric models (of dierent molecular compositions) for each of our simulated planets. With these planets and their corresponding atmospheres, we utilized the most accurate JWST instrument simulator, created specically to process transiting exoplanet spectra. Through careful analysis of these simulated outputs, we were able to determine the relevant parameters that effected JWST's ability to constrain each individual molecular bands with statistical accuracy and therefore generate a scale based on those key parameters. As a preliminary test of our Observability Scale, we have also applied it to the list of TESS candidate stars in order to determine JWST's observational capabilities for any soon-to-be-detected planet in those solar systems.
NASA Astrophysics Data System (ADS)
Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.
2017-04-01
The vast majority of the 4700 confirmed planets (CPs) and planet candidates discovered by the Kepler mission were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a “Swiss cheese”-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or “lost”). We examine a sample of 114 stars with 3+ CPs to evaluate the effect of this “Swiss cheesing.” A simulation determines that the probability that a transiting planet is lost due to the transit masking is low, but non-negligible, reaching a plateau at ˜3.3% lost in the period range of P = 400-500 days. We then model all planet transits and subtract out the transit signals for each star, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (I.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline’s choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet (Kepler-150 f) and a potential single transit of a likely false positive (FP) (Kepler-208). Kepler-150 f (P = 637.2 days, {R}{{P}}={3.64}-0.39+0.52 R⊕) is confirmed with >99.998% confidence using a combination of the planet multiplicity argument, an FP probability analysis, and a transit duration analysis.
The TeMPEST Transit Search: Preliminary Results
NASA Astrophysics Data System (ADS)
Baliber, N. R.; Cochran, W. D.
The Texas, McDonald Photometric Extrasolar Search for Transits, TeMPEST, is a photometric search for transits of extrasolar giant planets orbiting at distances less than approximately 0.1 AU to their parent stars. This survey is being conducted with the McDonald Observatory 0.76 meter Prime Focus Camera (PFC), which provides a 46.2 x 46.2 arcsec field of view. From August through December, 2001, we obtained our first full season of data on two fields in the Galactic plane, one in the constellation Cassiopeia and the other in Camelopardus. In these two fields, V-band time-series photometry with a cadence of about 9 minutes has been performed on over 5000 stars with sufficient precision, better than 0.01 mag, to detect transits of close-orbiting Jovian planets. We present representative light curves from variable stars and an eclipsing system from our 2001 data. The TeMPEST project is funded by the NASA Origins program.
NASA Technical Reports Server (NTRS)
Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.
2017-01-01
The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a Swiss cheese-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or lost). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this Swiss cheesing may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at approximately 3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipelines choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R earth) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.
Schmitt, Joseph R; Jenkins, Jon M; Fischer, Debra A
2017-04-01
The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a "Swiss cheese"-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or "lost"). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this "Swiss cheesing" may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline's choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f ( P = 637.2 days, R P = 3.86 R ⊕ ) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.
Schmitt, Joseph R.; Jenkins, Jon M.; Fischer, Debra A.
2018-01-01
The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a “Swiss cheese”-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or “lost”). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this “Swiss cheesing” may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 – 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline’s choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f (P = 637.2 days, RP = 3.86 R⊕) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument. PMID:29375142
Photometric Detection of Extra-Solar Planets
NASA Technical Reports Server (NTRS)
Hatzes, Artie P.; Cochran, William D.
2004-01-01
This NASA Origins Program grant supported the TEMPEST Texas McDonald Photometric Extrasolar Search for Transits) program at McDonald Observatory, which searches for transits of extrasolar planets across the disks of their parent stars. The basic approach is to use a wide-field ground-based telescope (in our case the McDonald Observatory 0.76m telescope and it s Prime Focus Corrector) to search for transits of short period (1-15 day orbits) of close-in hot-Jupiter planets in orbit around a large sample of field stars. The next task is to search these data streams for possible transit events. We collected our first set of test data for this program using the 0.76 m PFC in the summer of 1998. From those data, we developed the optimal observing procedures, including tailoring the stellar density, exposure times, and filters to best-suit the instrument and project. In the summer of 1999, we obtained the first partial season of data on a dedicated field in the constellation Cygnus. These data were used to develop and refine the reduction and analysis procedures to produce high-precision photometry and search for transits in the resulting light curves. The TeMPEST project subsequently obtained three full seasons of data on six different fields using the McDonald Observatory 0.76m PFC.
Super-Earths, Warm Neptunes, and Hot Jupiters: Transmission Spectroscopy for Comparative Planetology
NASA Astrophysics Data System (ADS)
Fraine, Jonathan D.; Deming, Drake; Jordan, Andres; Knutson, Heather
2015-01-01
The detections and non-detections of molecular species in transiting planets-- such as water, methane, and carbon monoxide-- lead to greater understanding of planet formation and evolution. Recent significant advances in both theoretical and observational discoveries from planets like HD189733b, HD209458b, GJ436b, as well as our own work with HAT-P-11b and GJ1214b, have shown that the range of measurable atmospheric properties spans from clear, molecular absorption dominated worlds to opaque worlds, with cloudy, hazy, or high mean molecular weight atmospheres. Characterization of significant non-detections allowed us to infer the existence of opaque cloud layers at very high altitudes or mean molecular weights upwards of ~1000x solar. The prevalence of these atmospheres was unexpected from extrapolations of solar system analogs. I will present our published results from GJ1214b and HAT-P-11b, as well as our recent work using both Spitzer and Magellan. Our results, combined with transmission spectra obtained for other similar planets, connect to develop a better understanding about the nature of these distant and alien worlds
Detectable close-in planets around white dwarfs through late unpacking
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Gänsicke, Boris T.
2015-02-01
Although 25-50 per cent of white dwarfs (WDs) display evidence for remnant planetary systems, their orbital architectures and overall sizes remain unknown. Vibrant close-in (≃1 R⊙) circumstellar activity is detected at WDs spanning many Gyr in age, suggestive of planets further away. Here we demonstrate how systems with 4 and 10 closely packed planets that remain stable and ordered on the main sequence can become unpacked when the star evolves into a WD and experience pervasive inward planetary incursions throughout WD cooling. Our full-lifetime simulations run for the age of the Universe and adopt main-sequence stellar masses of 1.5, 2.0 and 2.5 M⊙, which correspond to the mass range occupied by the progenitors of typical present-day WDs. These results provide (i) a natural way to generate an ever-changing dynamical architecture in post-main-sequence planetary systems, (ii) an avenue for planets to achieve temporary close-in orbits that are potentially detectable by transit photometry and (iii) a dynamical explanation for how residual asteroids might pollute particularly old WDs.
NASA Astrophysics Data System (ADS)
Collins, Karen; Quinn, Samuel N.; Latham, David W.; Christiansen, Jessie; Ciardi, David; Dragomir, Diana; Crossfield, Ian; Seager, Sara
2018-01-01
The Transiting Exoplanet Survey Satellite (TESS) will observe most of the sky over a period of two years. Observations will be conducted in 26 sectors of sky coverage and each sector will be observed for ~27 days. Data from each sector is expected to produce hundreds of transiting planet candidates (PCs) per month and thousands over the two year nominal mission. The TFOP Working Group (WG) is a mission-led effort organized to efficiently provide follow-up observations to confirm candidates as planets or reject them as false positives. The primary goal of the TFOP WG is to facilitate achievement of the Level One Science Requirement to measure masses for 50 transiting planets smaller than 4 Earth radii. Secondary goals are to serve any science coming out of TESS and to foster communication and coordination both within the TESS Science Team and with the community at large. The TFOP WG is organized as five Sub Groups (SGs). SG1 will provide seeing-limited imaging to measure blending within a candidate's aperture and time-series photometry to identify false positives and in some cases to improve ephemerides, light curves, and/or transit time variation (TTV) measurements. SG2 will provide reconnaissance spectroscopy to identify astrophysical false positives and to contribute to improved host star parameters. SG3 will provide high-resolution imaging with adaptive optics, speckle imaging, and lucky imaging to detect nearby objects. SG4 will provide precise radial velocities to derive orbits of planet(s) and measure their mass(es) relative to the host star. SG5 will provide space-based photometry to confirm and/or improve the TESS photometric ephemerides, and will also provide improved light curves for transit events or TTV measurements. We describe the TFOP WG observing and planet confirmation process, the five SGs that comprise the TFOP WG, ExoFOP-TESS and other web-based tools being developed to support TFOP WG observers, other advantages of joining the TFOP WG, the TFOP WG charter and publication policy, preferred capabilities of SG team members, and the TFOP WG application process.
275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10
NASA Astrophysics Data System (ADS)
Mayo, Andrew W.; Vanderburg, Andrew; Latham, David W.; Bieryla, Allyson; Morton, Timothy D.; Buchhave, Lars A.; Dressing, Courtney D.; Beichman, Charles; Berlind, Perry; Calkins, Michael L.; Ciardi, David R.; Crossfield, Ian J. M.; Esquerdo, Gilbert A.; Everett, Mark E.; Gonzales, Erica J.; Hirsch, Lea A.; Horch, Elliott P.; Howard, Andrew W.; Howell, Steve B.; Livingston, John; Patel, Rahul; Petigura, Erik A.; Schlieder, Joshua E.; Scott, Nicholas J.; Schumer, Clea F.; Sinukoff, Evan; Teske, Johanna; Winters, Jennifer G.
2018-03-01
Since 2014, NASA’s K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here 275 planet candidates observed during Campaigns 0–10 of the K2 mission that are orbiting stars brighter than 13 mag (in Kepler band) and for which we have obtained high-resolution spectra (R = 44,000). These candidates are analyzed using the vespa package in order to calculate their false-positive probabilities (FPP). We find that 149 candidates are validated with an FPP lower than 0.1%, 39 of which were previously only candidates and 56 of which were previously undetected. The processes of data reduction, candidate identification, and statistical validation are described, and the demographics of the candidates and newly validated planets are explored. We show tentative evidence of a gap in the planet radius distribution of our candidate sample. Comparing our sample to the Kepler candidate sample investigated by Fulton et al., we conclude that more planets are required to quantitatively confirm the gap with K2 candidates or validated planets. This work, in addition to increasing the population of validated K2 planets by nearly 50% and providing new targets for follow-up observations, will also serve as a framework for validating candidates from upcoming K2 campaigns and the Transiting Exoplanet Survey Satellite, expected to launch in 2018.
NASA Astrophysics Data System (ADS)
Meynet, Georges; Eggenberger, Patrick; Privitera, Giovanni; Georgy, Cyril; Ekström, Sylvia; Alibert, Yann; Lovis, Christophe
2017-06-01
The surface rotations of some red giants are so fast that they must have been spun up by tidal interaction with a close companion, either another star, a brown dwarf, or a planet. We focus here on the case of red giants that are spun up by tidal interaction with a planet. When the distance between the planet and the star decreases, the spin period of the star decreases, the orbital period of the planet decreases, and the reflex motion of the star increases. We study the change rate of these three quantities when the circular orbit of a planet of 15 MJ that initially orbits a 2 M⊙ star at 1 au shrinks under the action of tidal forces during the red giant phase. We use stellar evolution models coupled with computations of the orbital evolution of the planet, which allows us to follow the exchanges of angular momentum between the star and the orbit in a consistent way. We obtain that the reflex motion of the red giant star increases by more than 1 m s-1 per year in the last 40 yr before the planet engulfment. During this phase, the reflex motion of the star is between 660 and 710 m s-1. The spin period of the star increases by more than about 10 min per year in the last 3000 yr before engulfment. During this period, the spin period of the star is shorter than 0.7 yr. During this same period, the variation in orbital period, which is shorter than 0.18 yr, is on the same order of magnitude. Changes in reflex-motion and spin velocities are very small and thus most likely out of reach of being observed. The most promising way of detecting this effect is through observations of transiting planets, that is, through changes of the beginning or end of the transit. For the relatively long orbital periods expected around red giants, long observing runs of typically a few years are needed. Interesting star-planet systems that currently are in this stage of orbit-shrinking would be red giants with fast rotation (above typically 4-5 km s-1), a low surface gravity (log g lower than 2), and having a planet at a distance typically smaller than about 0.4-1 au, depending on log g. A space mission like PLATO might be of great interest for detecting planets that are on the verge of being engulfed by red giants. The discovery of a few systems, even only one, would provide very interesting clues about the physics of tidal interaction between a red giant and a planet.
NASA Astrophysics Data System (ADS)
Irwin, Jonathan M.; Berta-Thompson, Zachory K.; Charbonneau, David; Dittmann, Jason; Falco, Emilio E.; Newton, Elisabeth R.; Nutzman, Philip
2015-01-01
Detection and characterization of potentially habitable Earth-size extrasolar planets is one of the major goals of contemporary astronomy. By applying the transit method to very low-mass M-dwarfs , it is possible to find these planets from the ground with present-day instrumentation and observational techniques. The MEarth project is one such survey with stations in both hemispheres: MEarth-North at the Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, and MEarth-South at Cerro Tololo Inter-American Observatory, Chile. We present an update on recent results of this survey, for planet occurrence rates, and interesting stellar astrophysics, for which our sample of 3000 nearby mid-to-late M-dwarfs has been very fruitful. All light curves gathered during the survey are made publicly available after one year, and we describe how to access and use these data.
Unbiased Inference of the Masses of Transiting Planets from Radial Velocity Follow-up
NASA Astrophysics Data System (ADS)
Montet, Benjamin T.
2018-05-01
Data from the TESS mission will be used to discover hundreds of small planets amenable to radial velocity (RV) followup. Often, RV observations are obtained until a particular fractional precision on the inferred mass is achieved. I show that when the decision to stop collecting RV observations depends on the mass inferred from already-collected data, this will bias mass measurements upward, particularly when the fixed length of RV observing campaigns is considered. I suggest that observing teams should determine their observing strategy for each star before any data are collected, and all stopping criteria should not directly depend on the inferred mass. Observing teams should explicitly publish both their criteria for observing targets and deciding to end their observations, as well as their mass non-detections to avoid introducing biases into the masses---and thus inferences on the densities, compositions, and atmospheres---of transiting planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Jeffrey L.; Thompson, Susan E.; Burke, Christopher J.
The Kepler mission has to date found almost 6000 planetary transit-like signals, utilizing three years of data for over 170,000 stars at extremely high photometric precision. Due to its design, contamination from eclipsing binaries, variable stars, and other transiting planets results in a significant number of these signals being false positives (FPs). This directly affects the determination of the occurrence rate of Earth-like planets in our Galaxy, as well as other planet population statistics. In order to detect as many of these FPs as possible, we perform ephemeris matching among all transiting planet, eclipsing binary, and variable star sources. Wemore » find that 685 Kepler Objects of Interest (KOIs)—12% of all those analyzed—are FPs as a result of contamination, due to 409 unique parent sources. Of these, 118 have not previously been identified by other methods. We estimate that ∼35% of KOIs are FPs due to contamination, when performing a first-order correction for observational bias. Comparing single-planet candidate KOIs to multi-planet candidate KOIs, we find an observed FP fraction due to contamination of 16% and 2.4% respectively, bolstering the existing evidence that multi-planet KOIs are significantly less likely to be FPs. We also analyze the parameter distributions of the ephemeris matches and derive a simple model for the most common type of contamination in the Kepler field. We find that the ephemeris matching technique is able to identify low signal-to-noise FPs that are difficult to identify with other vetting techniques. We expect FP KOIs to become more frequent when analyzing more quarters of Kepler data, and note that many of them will not be able to be identified based on Kepler data alone.« less
Spitzer Transits of New TESS Planets
NASA Astrophysics Data System (ADS)
Crossfield, Ian; Werner, Michael; Dragomir, Diana; Kreidberg, Laura; Benneke, Bjoern; Deming, Drake; Gorjian, Varoujan; Guo, Xueying; Dressing, Courtney; Yu, Liang; Kane, Stephen; Christiansen, Jessie; Berardo, David; Morales, Farisa
2018-05-01
TESS will soon begin searching the sky for new transiting planets around the nearest, brightest stars, and JWST will become the world-leading facility in exoplanet atmospheric characterization. A key TESS goal is to provide the best atmospheric targets to JWST. However, many new TESS planets will exhibit just a few transits each, so their transit ephemerides will be only weakly constrained; without additional constraints on the planet orbit, the transits will be quickly "lost" long before JWST transit spectroscopy can commence. Some TESS planets will also be good targets for JWST secondary eclipses observations, but these eclipses will be even harder to pin down from TESS data alone. Spitzer's IR sensitivity and photometric stability can identify the transits and eclipses of the most favorable TESS planets and set the stage for JWST atmospheric characterization on a large scale. We request 550 hr to use Spitzer to measure precise transits and eclipses of new planets from the first year of TESS, refining their properties and ensuring their transits and eclipses can be recovered for many years to come. We will focus on the smaller planets for which ground-based observations are impractical and for which JWST spectroscopy will have a high impact. The time baseline provided by Spitzer will pin down the ephemerides far into the future. Thus our proposed program will secure these planets for future JWST spectroscopy to reveal their atmospheric makeup, chemistry, cloud properties, and formation history in unprecedented detail.
The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes
NASA Astrophysics Data System (ADS)
Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.
2018-02-01
Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.
Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone
NASA Technical Reports Server (NTRS)
Borucki, W. J.
2003-01-01
The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.
On the classification of exoplanets according to Safronov number
NASA Astrophysics Data System (ADS)
Öztürk, O.; Erdem, A.
2018-02-01
We reexamine the classification of transiting exoplanets proposed by Hansen & Barman (2007) based on equilibrium temperatures and Safronov numbers. We used more sensitive data, namely, photometric and spectroscopic orbital solutions, of 263 well-known planets given in The Exoplanet Data Explorer, while Hansen & Barman (2007) used data on 18 transiting planets. Diagrams of the planet gravity vs. orbital period, planet gravity vs. equilibrium temperature, and Safronov number vs. equilibrium temperature of the 263 transiting planets show that the division of planets into two classes is indistinct.
NASA Astrophysics Data System (ADS)
Close, Laird
TECHNICAL BACKGROUND: An advanced adaptive secondary mirror (ASM) with 585 actuators was commissioned at the 6.5-m Magellan Telescope at one of the world’s best sites (Las Campanas Observatory; LCO) in Chile. By the end of the commissioning run (April 2013) the MagAO system was regularly producing the highest spatial resolution deep images to date (0.023” deep images at Halpha (0.656 microns); Close et al. 2013). This is due to its 378 corrective modes at 1kHz on a 6.5-m telescope. Strehl ratis>20% at Halpha were obtained in 75% of the seeing statistics at the site. We propose here to utilize MagAO’s absolutely unique ability to take Halpha, continuum (0.643 microns), and L’ (3.8 microns) thermal images (all simultaneously) to carry out a novel survey to: Discover a population of the lowest mass young accreting extrasolar planets imaged to date. to characterize the spatial distribution, and estimate accretion rates, of young extrasolar planets >5AU, to understand the influence of planets on transitional disk gaps. THEORY BACKGROUND: Extrasolar planets are very difficult to image directly since planets become very faint below ~8 Mjup (Jupiter masses) for ages >1 Myr and such massive planets are rare. There is a class of young stars that are still accreting yet have SED (and often imaging) evidence of a lack of dust and gas inside a r=5-140 AU “gap”. These “transitional disks” are believed to be transitioning into “disk free” stars. These gaps are believed to be maintained by planets that continuously clear (though scattering or accretion) the optically thin gaps. Indeed large >10 AU gaps (>few Hill spheres) must be maintained by multiple ~1 Mjup planets (Dodson-Robinson & Salyk 2011). Since gas must pass through each of these gaps to continuously supply the accreting star, simulations suggest that these “gap planets” are also crossing points for these gas streamers on their way to the star. These streamers “force-feed” these planets a steady diet of hydrogen gas. Such planets should then be quite bright in Halpha accretion emission. The key point is that: instead of a steep drop off in the luminosity of the planet’s atmosphere, the accretion luminosity of these planets will just linearly decrease with decreasing mass. At an accretion rate=6e-10 Msun/yr we find low mass (~1 Mjup) accreting gap planets are much (50-1000x) brighter (for 0-3.4 mag of Halpha extinction) in Halpha than at H band. PROOF-OF_CONCEPT: A 3 hour MagAO observation at Halpha of a transitional disk in April 2013 was made. The resulting deep diffraction-limited images discovered (at 10.5 sigma) an Halpha source that was 295% above the continuum just 0.083” from the star (edge of the inner 10 AU disk gap). We also detected (at 5 sigma) an excellent (though much fainter) ~1 Mjup mass Halpha planet candidate located auspiciously at the outer edge (145 AU) of the gap. If confirmed by our “second epoch” follow-up as common proper motion then this would be the lowest mass (~1 Mjup) planet ever imaged. SURVEY: Scaling off of this exciting success we propose to deeply image (120 min) all 14 nearby (D<250pc), bright (R<11 mag) , not edge-on (i<80 deg) , young (~5 Myr) transitional disks with MagAO simultaneously at Halpha and L’. In addition, we will use BrGamma instead of Halpha for 8 additional fainter (11
GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Mooij, E. J. W.; López-Morales, M.; Karjalainen, R.
2014-12-20
We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in themore » data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.« less
Assessing the Effect of Stellar Companions to Kepler Objects of Interest
NASA Astrophysics Data System (ADS)
Hirsch, Lea; Ciardi, David R.; Howard, Andrew
2017-01-01
Unknown stellar companions to Kepler planet host stars dilute the transit signal, causing the planetary radii to be underestimated. We report on the analysis of 165 stellar companions detected with high-resolution imaging to be within 2" of 159 KOI host stars. The majority of the planets and planet candidates in these systems have nominal radii smaller than 6 REarth. Using multi-filter photometry on each companion, we assess the likelihood that the companion is bound and estimate its stellar properties, including stellar radius and flux. We then recalculate the planet radii in these systems, determining how much each planet's size is underestimated if it is assumed to 1) orbit the primary star, 2) orbit the companion star, or 3) be equally likely to orbit either star in the system. We demonstrate the overall effect of unknown stellar companions on our understanding of Kepler planet sizes.
NASA Astrophysics Data System (ADS)
Mancini, L.; Ciceri, S.; Chen, G.; Tregloan-Reed, J.; Fortney, J. J.; Southworth, J.; Tan, T. G.; Burgdorf, M.; Calchi Novati, S.; Dominik, M.; Fang, X.-S.; Finet, F.; Gerner, T.; Hardis, S.; Hinse, T. C.; Jørgensen, U. G.; Liebig, C.; Nikolov, N.; Ricci, D.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Wertz, O.; Alsubai, K. A.; Bozza, V.; Browne, P.; Dodds, P.; Gu, S.-H.; Harpsøe, K.; Henning, Th.; Hundertmark, M.; Jessen-Hansen, J.; Kains, N.; Kerins, E.; Kjeldsen, H.; Lund, M. N.; Lundkvist, M.; Madhusudhan, N.; Mathiasen, M.; Penny, M. T.; Prof, S.; Rahvar, S.; Sahu, K.; Scarpetta, G.; Snodgrass, C.; Surdej, J.
2013-11-01
We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements are based on observations of eight transits and four occultations through a Gunn i filter using the 1.54-m Danish Telescope, 14 transits through an Rc filter at the Perth Exoplanet Survey Telescope (PEST) observatory and one transit observed simultaneously through four optical (Sloan g', r', i', z') and three near-infrared (J, H, K) filters, using the Gamma Ray Burst Optical and Near-Infrared Detector (GROND) instrument on the MPG/ESO 2.2-m telescope. The GROND optical light curves have a point-to-point scatter around the best-fitting model between 0.52 and 0.65 mmag rms. We use these new data to measure refined physical parameters for the system. We find the planet to be more bloated (Rb = 1.410 ± 0.017RJup; Mb = 1.139 ± 0.030MJup) and the system to be twice as old as initially thought. We also used published and archived data sets to study the transit timings, which do not depart from a linear ephemeris. We detected an anomaly in the GROND transit light curve which is compatible with a spot on the photosphere of the parent star. The starspot position, size, spot contrast and temperature were established. Using our new and published measurements, we assembled the planet's transmission spectrum over the 370-2350 nm wavelength range and its emission spectrum over the 750-8000 nm range. By comparing these data to theoretical models we investigated the theoretically predicted variation of the apparent radius of WASP-19b as a function of wavelength and studied the composition and thermal structure of its atmosphere. We conclude that: (i) there is no evidence for strong optical absorbers at low pressure, supporting the common idea that the planet's atmosphere lacks a dayside inversion; (ii) the temperature of the planet is not homogenized, because the high warming of its dayside causes the planet to be more efficient in re-radiating than redistributing energy to the night side; (iii) the planet seems to be outside of any current classification scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, Gy. M.; Szabo, R.; Benko, J. M.
KOI-13.01, a planet-sized companion in an optical double star, was announced as one of the 1235 Kepler planet candidates in 2011 February. The transit curves show significant distortion that was stable over the {approx}130 days time span of the data. Here we investigate the phenomenon via detailed analyses of the two components of the double star and a re-reduction of the Kepler data with pixel-level photometry. Our results indicate that KOI-13 is a common proper motion binary, with two rapidly rotating components (vsin i {approx} 65-70 km s{sup -1}). We identify the host star of KOI-13.01 and conclude that themore » transit curve asymmetry is consistent with a companion orbiting a rapidly rotating, possibly elongated star on an oblique orbit. The radius of the transiter is 2.2 R{sub J} , implying an irradiated late-type dwarf, probably a hot brown dwarf rather than a planet. KOI-13 is the first example for detecting orbital obliquity for a substellar companion without measuring the Rossiter-McLaughlin effect with spectroscopy.« less
Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.
Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave
2014-02-01
We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.
NASA Astrophysics Data System (ADS)
Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders
2017-07-01
We study how close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet-planet scattering and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in ˜20-25 per cent of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, ≈18 per cent of close-in systems could be destabilized by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple; however, it only contributes at most 25 per cent of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two significantly non-coplanar planets in a binary). We also identify three pathways to the formation of eccentric warm Jupiters resulting from the interaction between outer and inner systems: direct inelastic collision between an eccentric outer and an inner planet; secular eccentricity oscillations that may 'freeze out' when scattering resolves in the outer system; and scattering in the inner system followed by 'uplift', where inner planets are removed by interaction with the outer planets. In these scenarios, the formation of eccentric warm Jupiters is a signature of a past history of violent dynamics among massive planets beyond ˜1 au.
High-precision photometry of WASP-12 b transits
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Errmann, R.; Raetz, St.; Seeliger, M.; Spaleniak, I.; Neuhäuser, R.
2011-04-01
Aims: The transiting extrasolar planet WASP-12 b was found to be one of the most intensely irradiated exoplanets. It is unexpectedly bloated and is losing mass that may accrete into the host star. Our aim was to refine the parameters of this intriguing system and search for signs of transit timing variations. Methods: We gathered high-precision light curves for two transits of WASP-12 b. Assuming various limb-darkening laws, we generated best-fitting models and redetermined the parameters of the system. Error estimates were derived by the prayer-bead method and Monte Carlo simulations. Results: System parameters obtained by us are found to agree with previous studies within one sigma. Use of the non-linear limb-darkening laws results in the best-fitting models. With two new mid-transit times, the ephemeris was refined to BJDTDB = (2 454 508.97682 ± 0.00020) + (1.09142245 ± 0.00000033)E. Interestingly, indications of transit timing variation are detected at the level of 3.4 sigma. This signal can be induced by an additional planet in the system. Simplified numerical simulations show that a perturber could be a terrestrial-type planet if both planets are in a low-order orbital resonance. However, we emphasise that further observations are needed to confirm variation and to constrain properties of the perturber. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofisica de Andalucia (CSIC).Photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A65
A Low-mass Exoplanet Candidate Detected by K2 Transiting the Praesepe M Dwarf JS 183
NASA Astrophysics Data System (ADS)
Pepper, Joshua; Gillen, Ed; Parviainen, Hannu; Hillenbrand, Lynne A.; Cody, Ann Marie; Aigrain, Suzanne; Stauffer, John; Vrba, Frederick J.; David, Trevor; Lillo-Box, Jorge; Stassun, Keivan G.; Conroy, Kyle E.; Pope, Benjamin J. S.; Barrado, David
2017-04-01
We report the discovery of a repeating photometric signal from a low-mass member of the Praesepe open cluster that we interpret as a Neptune-sized transiting planet. The star is JS 183 (HSHJ 163, EPIC 211916756), with T eff = 3325 ± 100 K, M * = 0.44 ± 0.04 M ⊙, R * = 0.44 ± 0.03 R ⊙, and {log}{g}* = 4.82+/- 0.06. The planet has an orbital period of 10.134588 days and a radius of R P = 0.32 ± 0.02 R J. Since the star is faint at V = 16.5 and J = 13.3, we are unable to obtain a measured radial velocity orbit, but we can constrain the companion mass to below about 1.7 M J, and thus well below the planetary boundary. JS 183b (since designated as K2-95b) is the second transiting planet found with K2 that resides in a several-hundred-megayear open cluster; both planets orbit mid-M dwarf stars and are approximately Neptune sized. With a well-determined stellar density from the planetary transit, and with an independently known metallicity from its cluster membership, JS 183 provides a particularly valuable test of stellar models at the fully convective boundary. We find that JS 183 is the lowest-density transit host known at the fully convective boundary, and that its very low density is consistent with current models of stars just above the fully convective boundary but in tension with the models just below the fully convective boundary.
FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snellen, I. A. G.; Le Poole, R.; Brogi, M.
2013-02-20
Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential ofmore » high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter {tau} Booetis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.« less
Photometric Analysis and Transit Times of TRAPPIST-1 B and C
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Agol, Eric; Hawley, Suzanne L.
2018-01-01
TRAPPIST-1 hosts seven Earth-sized planets transiting an M8 star. We observed mid-transit times of each of the inner two planets with the Astrophysical Research Consortium (ARC) 3.5 m Telescope at Apache Point Observatory (APO) to help constrain the planet masses with transit timing variations, and we outline a procedure for analyzing transit observations of late-M stars with APO. The transit times of TRAPPIST-1 b and c are $\\mathrm{BJD}_{\\mathrm{TDB}} = 2457580.87634^{+0.00034}_{-0.00034}$ and $2457558.89477^{+0.00080}_{-0.00085}$, respectively, which will help constrain the planet masses.
Characterizing K2 Planet Discoveries
NASA Astrophysics Data System (ADS)
Vanderburg, Andrew; Montet, Benjamin; Johnson, John; Buchhave, Lars A.; Zeng, Li; Bieryla, Allyson; Latham, David W.; Charbonneau, David; Harps-N Collaboration, The Robo-Ao Team
2015-01-01
We present an effort to confirm the first planet discovered by the two-wheeled Kepler mission. We analyzed K2 photometry, correcting for nonuniform detector response as a function of the spacecraft's pointing, and detected a transiting planet candidate. We describe our multi-telescope followup observing campaign, consisting of photometric, spectroscopic, and high resolution imaging observations, including over 40 HARPS-N radial velocity measurements. The new planet is a super-Earth orbiting a bright star amenable to followup observations. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.
2014-02-01
Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from the stellar atmosphere at the pericentre. We also detected three small dims in the phase-folded light curve. The combination of two of them agrees with the theoretical characteristics expected for secondary eclipse. Conclusions: Kepler-91b could be the previous stage of the planet engulfment, which has recently been detected for BD+48 740. Our estimations show that Kepler-91b will be swallowed by its host star in less than 55 Myr. Among the confirmed planets around giant stars, this is the closest to its host star. At pericentre, the star subtends an angle of 48°, covering around 10% of the sky as seen from the planet. The planetary atmosphere seems to be inflated probably due to the high stellar irradiation. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut fur Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Carpano, Stefania; Wilms, Jörn; Rau, Arne
2016-07-01
One of the science goal of the Athena mission is to detect and characterise, in the X-ray domain, transits of hot Jupiter-like planets orbiting their parent stars. To date, the only candidate for this kind of studies is HD 189733b, a Jupiter-size planet in a 2d orbit, for which a transit depth of 6-8% has been observed accumulating several Chandra and XMM-Newton observations. We simulate in this work realistic light curves of exoplanet transits using the Athena end-to-end simulator, SIXTE, and derive the expected signal-to-noise ratios (SNR) for different instrument configurations and planetary system parameters. We first produce at light curves for the currently existing WFI instrument designs and for different source fluxes to extract the expected (white noise) standard deviation. Next, moderate levels of correlated noise and transits of different depths are added to the light curves. As expected, for pure white noise the SNR is proportional to the square root of the flux, to the light curve bin size and to the number of co-added transits, and by definition proportional to the transit depth. When correlated noise starts to be significant, rebinning the data will only slightly increase the SNR, depending on the noise characteristics. Considering only white noise, a transit observed in a source like HD 189733, that has a flux around 5x10-13 erg s-1 cm-2 and a transit depth of about 5% can be detected with a SNR>3 in a unique transit. With correlated noise, several transits might be necessary. We also simulate trapezoidal shaped transits and try to recover the ingress/egress times after addition of noise. The relative error on the fitted ingress times is below 10% for most of the light curves with SNR>1.
Multiwavelength Observations of the Candidate Disintegrating Sub-Mercury KIC 12557548b
NASA Astrophysics Data System (ADS)
Croll, Bryce; Rappaport, Saul; DeVore, John; Gilliland, Ronald L.; Crepp, Justin R.; Howard, Andrew W.; Star, Kimberly M.; Chiang, Eugene; Levine, Alan M.; Jenkins, Jon M.; Albert, Loic; Bonomo, Aldo S.; Fortney, Jonathan J.; Isaacson, Howard
2014-05-01
We present multiwavelength photometry, high angular resolution imaging, and radial velocities of the unique and confounding disintegrating low-mass planet candidate KIC 12557548b. Our high angular resolution imaging, which includes space-based Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) observations in the optical (~0.53 μm and ~0.77 μm), and ground-based Keck/NIRC2 observations in K' band (~2.12 μm), allow us to rule out background and foreground candidates at angular separations greater than 0.''2 that are bright enough to be responsible for the transits we associate with KIC 12557548. Our radial velocity limit from Keck/HIRES allows us to rule out bound, low-mass stellar companions (~0.2 M ⊙) to KIC 12557548 on orbits less than 10 yr, as well as placing an upper limit on the mass of the candidate planet of 1.2 Jupiter masses; therefore, the combination of our radial velocities, high angular resolution imaging, and photometry are able to rule out most false positive interpretations of the transits. Our precise multiwavelength photometry includes two simultaneous detections of the transit of KIC 12557548b using Canada-France-Hawaii Telescope/Wide-field InfraRed Camera (CFHT/WIRCam) at 2.15 μm and the Kepler space telescope at 0.6 μm, as well as simultaneous null-detections of the transit by Kepler and HST/WFC3 at 1.4 μm. Our simultaneous HST/WFC3 and Kepler null-detections provide no evidence for radically different transit depths at these wavelengths. Our simultaneous CFHT/WIRCam detections in the near-infrared and with Kepler in the optical reveal very similar transit depths (the average ratio of the transit depths at ~2.15 μm compared with ~0.6 μm is: 1.02 ± 0.20). This suggests that if the transits we observe are due to scattering from single-size particles streaming from the planet in a comet-like tail, then the particles must be ~0.5 μm in radius or larger, which would favor that KIC 12557548b is a sub-Mercury rather than super-Mercury mass planet. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, and France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Surveying Nearby M dwarfs with Gaia: A Treasure Trove for Exoplanet Astrophysics
NASA Astrophysics Data System (ADS)
Sozzetti, A.; Tinetti, G.; Lattanzi, M. G.; Micela, G.; Morbidelli, R.; Giacobbe, P.
2011-10-01
Cool, nearby M dwarfs within a few tens of parsecs from the Sun are today becoming the focus of dedicated experiments in the realm of exoplanets astrophysics. This is due to the shift in theoretical paradigms in light of new observations, and thanks to the improved understanding of the observational opportunities for planet detection and characterization provided by this sample. Gaia, in its all-sky survey, will deliver precision astrometry for a magnitude-limited (V=20) sample of M dwarfs in the vicinity of the Sun, providing an inventory of cool nearby stars with a much higher degree of completeness (particularly for late sub-types) with respect to currently available catalogs. We gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of actual M stars within 30 pc from the Sun. The stellar reservoir is carefully selected based on cross-correlation among catalogs in the literature (e.g., Lepine, PMSU).We express Gaia sensitivity thresholds as a function of system parameters and in view of the latest mission profile, including the most up-to-date astrometric error model. The simulations also provide insight on the capability of high-precision astrometry to reconstruct the underlying orbital elements and mass distributions of the generated companions. We investigate the synergy between the Gaia data on nearby M dwarfs and other ground-based and spaceborne programs for planet detection and characterization, with a particular focus on: a) the improvements in the determination of transiting planet parameters thanks to the exquisitely precise stellar distances determined by Gaia; b) the betterment in orbit modeling when Gaia astrometry and precision radial-velocities are available for the same targets; and c) the ability of Gaia to carefully predict the ephemerides of detected (transiting and non-transiting) planets aroundM stars, for the purpose of spectroscopic characterization of their atmospheres with dedicated observatories in space, such as EChO.
HAT-P-68b: A Transiting Hot Jupiter Around a K5 Dwarf Star
NASA Astrophysics Data System (ADS)
Lindor, Bethlee; Hartman, Joel D.
2018-01-01
One of the main goals of the astrophysical society has been to detect sources of life outside of Earth. To aid this search, astronomers have spent the last 2 decades focused on the discovery and characterization of exoplanets. The most effective method for doing so has been transit photometry, wherein we measure the brightness of stars over periods of time. These measurements, or light curves, are later analyzed for dips in brightness caused by objects passing in front of the star. However, variations in these time series can also occur due to non-planetary systems and a meticulous process is needed to distinguish the planets from the various false positives that are detected. HATNet is one of many surveys involved in this endeavor, and in this work I analyze HAT-P-68. First, I model the system as a single star with a transiting planet and derive estimates of the stellar and planetary physical parameters. I also model HAT-P-68 as a number of a false positives such as a pair of stars in an eclipsing binary blended with a background star, and a planet-sized star orbiting a Sun-like star. In order to rule out the possibility that HAT-P-68 is a blend, I carried out a statistical blend analysis of the photometric data and find that all blend models tested can be ruled out. Thus, I conclude that HAT-P-68 is a system with a transiting hot jupiter and consider what future observations would be most promising to further characterize the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadian, Sedighe; Hundertmark, Markus, E-mail: s.sajadian@cc.iut.ac.ir
A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When themore » lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.« less
Polarimetry Microlensing of Close-in Planetary Systems
NASA Astrophysics Data System (ADS)
Sajadian, Sedighe; Hundertmark, Markus
2017-04-01
A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.
The Gaia Astrometric Survey of Nearby M Dwarfs: A Treasure Trove for Exoplanet Astrophysics
NASA Astrophysics Data System (ADS)
Sozzetti, Alessandro; Giacobbe, P.; Lattanzi, M. G.; Micela, G.; Tinetti, G.
2011-09-01
Cool, nearby M dwarfs within a few tens of parsecs from the Sun are becoming the focus of dedicated experiments in the realm of exoplanets astrophysics. This is due to the shift in theoretical paradigms in light of new observations, and to the improved understanding of the observational opportunities for planet detection and characterization provided by this sample. Gaia, in its all-sky survey, will deliver precision astrometry for a magnitude-limited (V=20) sample of M dwarfs, providing an inventory of cool nearby stars with a much higher degree of completeness (particularly for late sub-types) with respect to currently available catalogs. We gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of already known dM stars within 30 pc from the Sun, carefully selected based on cross-correlation among catalogs in the literature (e.g., Lepine, PMSU). We express Gaia sensitivity thresholds as a function of system parameters and in view of the latest mission profile, including the most up-to-date astrometric error model. The simulations also provide insight on the capability of high-precision astrometry to reconstruct the underlying orbital elements and mass distributions of the generated companions. These results will help in evaluating the complete expected Gaia planet population around late-type stars. We investigate the synergy between the Gaia data on nearby M dwarfs and other ground-based and space-borne programs for planet detection and characterization, with a particular focus on: a) the improvements in the determination of transiting planet parameters thanks to the exquisitely precise stellar distances determined by Gaia; b) the betterment in orbit modeling when Gaia astrometry and precision radial-velocities are available for the same targets; and c) the ability of Gaia to carefully predict the ephemerides of (transiting and non-transiting) planets around M stars, for spectroscopic characterization of their atmospheres with dedicated observatories in space, such as EChO.
NASA Astrophysics Data System (ADS)
Gaidos, E.; Mann, A. W.; Rizzuto, A.; Nofi, L.; Mace, G.; Vanderburg, A.; Feiden, G.; Narita, N.; Takeda, Y.; Esposito, T. M.; De Rosa, R. J.; Ansdell, M.; Hirano, T.; Graham, J. R.; Kraus, A.; Jaffe, D.
2017-01-01
We describe a `super-Earth'-size (2.30 ± 0.16 R⊕) planet transiting an early K-type dwarf star in the Campaign 4 field observed by the K2 mission. The host star, EPIC 210363145, was identified as a candidate member of the approximately 120 Myr-old Pleiades cluster based on its kinematics and photometric distance. It is rotationally variable and exhibits near-ultraviolet emission consistent with a Pleiades age, but its rotational period is ≈20 d and its spectrum contains no Hα emission nor the Li I absorption expected of Pleiades K dwarfs. Instead, the star is probably an interloper that is unaffiliated with the cluster, but younger (≲1.3 Gyr) than the typical field dwarf. We ruled out a false positive transit signal produced by confusion with a background eclipsing binary by adaptive optics imaging and a statistical calculation. Doppler radial velocity measurements limit the companion mass to <2 times that of Jupiter. Screening of the light curves of 1014 potential Pleiades candidate stars uncovered no additional planets. An injection-and-recovery experiment using the K2 Pleiades light curves with simulated planets, assuming a planet population like that in the Kepler prime field, predicts only 0.8-1.8 detections (versus ˜20 in an equivalent Kepler sample). The absence of Pleiades planet detections can be attributed to the much shorter monitoring time of K2 (80 d versus 4 yr), increased measurement noise due to spacecraft motion, and the intrinsic noisiness of the stars.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
Many of the exoplanets that weve discovered lie in compact systems with orbits very close to their host star. These systems are especially interesting in the case of cool stars where planets lie in the stars habitable zone as is the case, for instance, for the headline-making TRAPPIST-1 system.But other factors go into determining potential habitability of a planet beyond the rough location where water can remain liquid. One possible consideration: whether the planets have moons.Supporting HabitabilityLocations of equality between the Hill and Roche radius for five different potential moon densities. The phase space allows for planets of different semi-major axes and stellar host masses. Two example systems are shown, Kepler-80 and TRAPPIST-1, with dots representing the planets within them. [Kane 2017]Earths Moon is thought to have been a critical contributor to our planets habitability. The presence of a moon stabilizes its planets axial tilt, preventing wild swings in climate as the stars radiation shifts between the planets poles and equator. But what determines if a planet can have a moon?A planet can retain a moon in a stable orbit anywhere between an outer boundary of the Hill radius (beyond which the planets gravity is too weak to retain the moon) and an inner boundary of the Roche radius (inside which the moon would be torn apart by tidal forces). The locations of these boundaries depend on both the planets and moons properties, and they can be modified by additional perturbative forces from the host star and other planets in the system.In a new study, San Francisco State University scientist Stephen R. Kane modeled these boundaries for planets specifically in compact systems, to determine whether such planets can host moons to boost their likelihood of habitability.Allowed moon density as a function of semimajor axis for the TRAPPIST-1 system, for two different scenarios with different levels of perturbations. The vertical dotted lines show the locations of the six innermost TRAPPIST-1 planets. [Kane 2017]Challenge of Moons in Compact SystemsKane found that compact systems have a harder time supporting stable moons; the range of radii at which their moons can orbit is greatly reduced relative to spread-out systems like our own. As an example, Kane calculates that if the Earth were in a compact planetary system with a semimajor axis of 0.05 AU, its Hill radius would shrink from being 78.5 times to just 4.5 times its Roche radius greatly narrowing the region in which our Moon would be able to reside.Kane applied his models to the TRAPPIST-1 system as an example, demonstrating that its very unlikely that many if any of the systems seven planets would be able to retain a stable moon unless that moon were unreasonably dense.Is TRAPPIST-1 Really Moonless?Image of the Moon as it transits across the face of the Sun, as viewed from the Stereo-B spacecraft (which is in an Earth-trailing orbit). [NASA]How do these results fit with other observations of TRAPPIST-1? Kane uses our Moon as an example again: if we were watching a transit of the Earth and Moon in front of the Sun from a distance, the Moons transit depth would be 7.4% as deep as Earths. A transit of this depth in the TRAPPIST-1 system would have been detectable in Spitzer photometry of the system so the fact that we didnt see anything like this supports the idea that the TRAPPIST-1 planets dont have large moons.On the other hand, smaller moons (perhaps no more than 200300 km in radius) would have escaped detection. Future long-term monitoring of TRAPPIST-1 with observatories like the James Webb Space Telescope or 30-meter-class ground-based telescopes will help constrain this possibility, however.CitationStephen R. Kane 2017 ApJL 839 L19. doi:10.3847/2041-8213/aa6bf2
Pathways Towards Habitable Planets: Capabilities of the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Clampin, Mark
2009-01-01
The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging and address its role in the search for habitable planets.
Types of Information Expected from a Photometric Search for Extra-Solar Planets
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)
1994-01-01
The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new information about the stability of planetary orbits in binary star systems.
Simultaneous multicolour optical and near-IR transit photometry of GJ 1214b with SOFIA
NASA Astrophysics Data System (ADS)
Angerhausen, D.; Dreyer, C.; Placek, B.; Csizmadia, Sz.; Eigmüller, Ph.; Godolt, M.; Kitzmann, D.; Mallonn, M.; Becklin, E. E.; Collins, P.; Dunham, E. W.; Grenfell, J. L.; Hamilton, R. T.; Kabath, P.; Logsdon, S. E.; Mandell, A.; Mandushev, G.; McElwain, M.; McLean, I. S.; Pfueller, E.; Rauer, H.; Savage, M.; Shenoy, S.; Vacca, W. D.; Van Cleve, J. E.; Wiedemann, M.; Wolf, J.
2017-12-01
Context. The benchmark exoplanet GJ 1214b is one of the best studied transiting planets in the transition zone between rocky Earth-sized planets and gas or ice giants. This class of super-Earth or mini-Neptune planets is unknown in our solar system, yet is one of the most frequently detected classes of exoplanets. Understanding the transition from rocky to gaseous planets is a crucial step in the exploration of extrasolar planetary systems, in particular with regard to the potential habitability of this class of planets. Aims: GJ 1214b has already been studied in detail from various platforms at many different wavelengths. Our airborne observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA) add information in the Paschen-α cont. 1.9 μm infrared wavelength band, which is not accessible by any other current ground- or space-based instrument due to telluric absorption or limited spectral coverage. Methods: We used FLIPO, the combination of the High-speed Imaging Photometer for Occultations (HIPO) and the First Light Infrared TEst CAMera (FLITECAM) and the Focal Plane Imager (FPI+) on SOFIA to comprehensively analyse the transmission signal of the possible water-world GJ 1214b through photometric observations during transit in three optical and one infrared channels. Results: We present four simultaneous light curves and corresponding transit depths in three optical and one infrared channel, which we compare to previous observations and current synthetic atmospheric models of GJ 1214b. The final precision in transit depth is between 1.5 and 2.5 times the theoretical photon noise limit, not sensitive enough to constrain the theoretical models any better than previous observations. This is the first exoplanet observation with SOFIA that uses its full set of instruments available to exoplanet spectrophotometry. Therefore we use these results to evaluate SOFIA's potential in this field and suggest future improvements. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A120
Dynamical Constraints on Nontransiting Planets Orbiting TRAPPIST-1
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Truong, Vinh H.; Ford, Eric B.; Robertson, Paul; Terrien, Ryan C.
2018-06-01
We derive lower bounds on the orbital distance and inclination of a putative planet beyond the transiting seven planets of TRAPPIST-1, for a range of masses ranging from 0.08 M Jup to 3.5 M Jup. While the outer architecture of this system will ultimately be constrained by radial velocity measurements over time, we present dynamical constraints from the remarkably coplanar configuration of the seven transiting planets, which is sensitive to modestly inclined perturbers. We find that the observed configuration is unlikely if a Jovian-mass planet inclined by ≥3° to the transiting planet exists within 0.53 au, exceeding any constraints from transit timing variations (TTV) induced in the known planets from an undetected perturber. Our results will inform RV programs targeting TRAPPIST-1, and for near coplanar outer planets, tighter constraints are anticipated for radial velocity (RV) precisions of ≲140 m s‑1. At higher inclinations, putative planets are ruled out to greater orbital distances with orbital periods up to a few years.
A Bewildering and Dynamic Picture of Exoplanetary Systems Identified by the Kepler Mission (Invited)
NASA Astrophysics Data System (ADS)
Jenkins, J. M.
2013-12-01
Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since, a flood of photometric data of unprecedented precision and continuity on more than 190,000 stars has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many comparable to or smaller than Earth), and a revolution in asteroseismology and astrophysics. Recent discoveries include Kepler-62 with 5 planets total, of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. Approximately 500 of the stars in the Kepler survey with planets host multiple transiting planets: 43% of planet candidates have transiting siblings. Many of these multiple transiting planet systems are dynamically packed and are unlikely, therefore, to have formed in situ. These systems experienced strong migration and evolution to arrive at the configurations we observe today, with important implications for the time-variable habitability of these planets over their histories. The half dozen circumbinary transiting planet systems discovered by Kepler to date highlight the dynamic nature of the habitable zone in systems with multiple host stars where the habitable zone may change significantly on timescales commensurate with the orbital period of the binary. While the catalog of circumbinary planets is small at this point, it already possesses at least one example of an exoplanet in the habitable zone. This implies that the majority of habitable zone planets may be circumbinary planets given the high frequency of multiple star systems and the early detection of Kepler-47b. KIC-12557548 is most likely a disintegrating sub-Mercury-sized planet. While it was probably never habitable, it represents a unique example of the dynamic nature of planetary systems. These amazing discoveries challenge our conventional notion of the habitable zone for single stars and static planetary system configurations. This talk will provide an overview of the science results from the Kepler Mission and the work ahead to derive the frequency of Earth-size planets in the habitable zone of solar-like stars from the treasure trove of Kepler data. NASA's quest for exoplanets continues with the Transiting Exoplanet Survey Satellite (TESS) mission, slated for launch in May 2017 by NASA's Explorer Program. TESS will conduct an all- sky transit survey to identify the 1000 best small exoplanets in the solar neighborhood for follow up observations and characterization. TESS's targets will include all F, G, K dwarfs from +4 to +12 magnitude and all M dwarfs known within ~200 light-years. 500,000 target stars will be observed over two years with ~500 square degrees observed continuously for a year in each hemisphere in the James Webb Space Telescopes continuously viewable zones. Since the typical TESS target star is 5 magnitudes brighter than that of Kepler and 10 times closer, TESS discoveries will afford significant opportunities to measure the masses of the exoplanets and to characterize their atmospheres with JWST, ELTs and other exoplanet explorers. TESS' discoveries will raise new questions regarding habitability that will be open to investigation through active efforts to characterize their atmospheres and search for biomarkers. Funding for this mission is provided by NASA's Science Mission Directorate.
The SEEDs of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks
NASA Technical Reports Server (NTRS)
Grady, Carol; Currie, T.
2012-01-01
We live in a planetary system with 2 gas giant planets, and as a resu lt of RV, transit, microlensing, and transit timing studies have ide ntified hundreds of giant planet candidates in the past 15 years. Su ch studies have preferentially concentrated on older, low activity So lar analogs, and thus tell us little about .when, where, and how gian t planets form in their disks, or how frequently they form in disks associated with intermediate-mass stars.
NASA Astrophysics Data System (ADS)
Tinetti, Giovanna; Cho, James Y.-K.; Griffith, Caitlin A.; Grasset, Olivier; Grenfell, Lee; Guillot, Tristan; Koskinen, Tommi T.; Moses, Julianne I.; Pinfield, David; Tennyson, Jonathan; Tessenyi, Marcell; Wordsworth, Robin; Aylward, Alan; van Boekel, Roy; Coradini, Angioletta; Encrenaz, Therese; Snellen, Ignas; Zapatero-Osorio, Maria R.; Bouwman, Jeroen; Coudé du Foresto, Vincent; Lopez-Morales, Mercedes; Mueller-Wodarg, Ingo; Pallé, Enric; Selsis, Franck; Sozzetti, Alessandro; Beaulieu, Jean-Philippe; Henning, Thomas; Meyer, Michael; Micela, Giuseppina; Ribas, Ignasi; Stam, Daphne; Swain, Mark; Krause, Oliver; Ollivier, Marc; Pace, Emanuele; Swinyard, Bruce; Ade, Peter A. R.; Achilleos, Nick; Adriani, Alberto; Agnor, Craig B.; Afonso, Cristina; Allende Prieto, Carlos; Bakos, Gaspar; Barber, Robert J.; Barlow, Michael; Bernath, Peter; Bézard, Bruno; Bordé, Pascal; Brown, Linda R.; Cassan, Arnaud; Cavarroc, Céline; Ciaravella, Angela; Cockell, Charles; Coustenis, Athéna; Danielski, Camilla; Decin, Leen; De Kok, Remco; Demangeon, Olivier; Deroo, Pieter; Doel, Peter; Drossart, Pierre; Fletcher, Leigh N.; Focardi, Matteo; Forget, Francois; Fossey, Steve; Fouqué, Pascal; Frith, James; Galand, Marina; Gaulme, Patrick; González Hernández, Jonay I.; Grassi, Davide; Griffin, Matt J.; Grözinger, Ulrich; Guedel, Manuel; Guio, Pactrick; Hainaut, Olivier; Hargreaves, Robert; Hauschildt, Peter H.; Heng, Kevin; Heyrovsky, David; Hueso, Ricardo; Irwin, Pat; Kaltenegger, Lisa; Kervella, Patrick; Kipping, David; Kovacs, Geza; La Barbera, Antonino; Lammer, Helmut; Lellouch, Emmanuel; Leto, Giuseppe; Lopez Morales, Mercedes; Valverde, Lopez Miguel A.; Lopez-Puertas, Manuel; Lovi, Christophe; Maggio, Antonio; Maillard, Jean-Pierre; Prado, Jesus Maldonado; Marquette, Jean-Baptiste; Martin-Torres, Francisco J.; Maxted, Pierre; Miller, Steve; Molinari, Sergio; Montes, David; Moro-Martin, Amaya; Mousis, Olivier; Tuong, Napoléon Nguyen; Nelson, Richard; Orton, Glenn S.; Pantin, Eric; Pascale, Enzo; Pezzuto, Stefano; Poretti, Ennio; Prinja, Raman; Prisinzano, Loredana; Réess, Jean-Michel; Reiners, Ansgar; Samuel, Benjamin; Sanz Forcada, Jorge; Sasselov, Dimitar; Savini, Giorgio; Sicardy, Bruno; Smith, Alan; Stixrude, Lars; Strazzulla, Giovanni; Vasisht, Gautam; Vinatier, Sandrine; Viti, Serena; Waldmann, Ingo; White, Glenn J.; Widemann, Thomas; Yelle, Roger; Yung, Yuk; Yurchenko, Sergey
2011-11-01
The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are? In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates.
Six High-precision Transits of OGLE-TR-113b
NASA Astrophysics Data System (ADS)
Adams, E. R.; López-Morales, M.; Elliot, J. L.; Seager, S.; Osip, D. J.
2010-10-01
We present six new transits of the hot Jupiter OGLE-TR-113b observed with MagIC on the Magellan Telescopes between 2007 January and 2009 May. We update the system parameters and revise the planetary radius to Rp = 1.084 ± 0.029RJ , where the error is dominated by stellar radius uncertainties. The new transit midtimes reveal no transit timing variations from a constant ephemeris of greater than 13 ± 28 s over two years, placing an upper limit of 1-2 M ⊕ on the mass of any perturber in a 1:2 or 2:1 mean-motion resonance with OGLE-TR-113b. Combining the new transit epochs with five epochs published between 2002 and 2006, we find hints that the orbital period of the planet may not be constant, with the best fit indicating a decrease of \\dot{P}=-60± 15 ms yr-1. If real, this change in period could result from either a long-period (more than eight years) timing variation due to a massive external perturber or more intriguingly from the orbital decay of the planet. The detection of a changing period is still tentative and requires additional observations, but if confirmed it would enable direct tests of tidal stability and dynamical models of close-in planets. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
An analysis of the transit times of TrES-1b
NASA Astrophysics Data System (ADS)
Steffen, Jason H.; Agol, Eric
2005-11-01
The presence of a second planet in a known, transiting-planet system will cause the time between transits to vary. These variations can be used to constrain the orbital elements and mass of the perturbing planet. We analyse the set of transit times of the TrES-1 system given in Charbonneau et al. We find no convincing evidence for a second planet in the TrES-1 system from those data. By further analysis, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within ~1 per cent fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth - showing that these data are the first to have sensitivity to sub-Earth-mass planets. We compare the sensitivity of this technique to the mass of the perturbing planet with future, high-precision radial velocity measurements.
No Metallicity Correlation Associated with the Kepler Dichotomy
NASA Astrophysics Data System (ADS)
Munoz Romero, Carlos Eduardo; Kempton, Eliza
2018-01-01
NASA’s Kepler mission has discovered thousands of planetary systems, ∼ 20% of which are found to host multiple transiting planets. This relative paucity (compared to the high fraction of single transiting systems) is postulated to result from a distinction in the architecture between multi-transiting systems and those hosting a single transiting planet: a phenomenon usually referred to as the Kepler dichotomy. We investigate the hypothesis that external giant planets are the main cause behind the over-abundance of single- relative to multi-transiting systems, which would be signaled by higher metallicities in the former sample. To this end, we perform a statistical analysis on the stellar metallicity distribution with respect to planet multiplicity in the Kepler data. We perform our analysis on a variety of samples taken from a population of 1062 Kepler main sequence planetary hosts, using precisely determined metallicities from the California-Kepler survey. Contrary to some predictions, we do not find a significant difference between the stellar metallicities of the single- and multiple-transiting planet systems. However, we do find a 43% upper bound for systems with a single non-giant planet that could also host a hidden giant planet, based on metallicity considerations. While the presence of external giant planets might be one factor behind the Kepler dichotomy, our results also favor alternative explanations. We suggest that additional radial velocity and direct imaging measurements are necessary to constrain the presence of gas giants in systems with a single transiting planet.
A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.
We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radiusmore » of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.« less
Leveraging Ensemble Dynamical Properties to Prioritize Exoplanet Follow-Up Observations
NASA Astrophysics Data System (ADS)
Ballard, Sarah
2017-01-01
The number of transiting exoplanets now exceeds several thousand, enabling ensemble studies of the dynamical properties of exoplanetary systems. We require a mixture model of dynamical conditions (whether frozen in from formation or sculpted by planet-planet interactions) to recover Kepler's yield of transiting planets. Around M dwarfs, which will be predominate sites of exoplanet follow-up atmospheric study in the next decade, even a modest orbital eccentricity can sterilize a planet. I will describe efforts to link cheap observables, such as number of transiting planets and presence of transit timing variations, to eccentricity and mutual inclination in exoplanet systems. The addition of a second transiting planet, for example, halves the expected orbital eccentricity. For the vast majority of TESS targets, the light curve alone will furnish the sum total of data about the exoplanet. Extracting information about orbital properties from these light curves will help prioritize precious follow-up resources.
The Kepler Project: Mission Update
NASA Technical Reports Server (NTRS)
Borucki, William J.; Koch, David G.
2009-01-01
Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.
The Kepler-454 System: A Small, Not-rocky Inner Planet, a Jovian World, and a Distant Companion
NASA Astrophysics Data System (ADS)
Gettel, Sara; Charbonneau, David; Dressing, Courtney D.; Buchhave, Lars A.; Dumusque, Xavier; Vanderburg, Andrew; Bonomo, Aldo S.; Malavolta, Luca; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Udry, Stéphane; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Davies, Guy R.; Silva Aguirre, Victor; Kjeldsen, Hans; Bedding, Timothy R.; Lopez, Eric; Affer, Laura; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Phillips, David F.; Piotto, Giampaolo; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Watson, Chris; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Kawaler, Steven D.; Metcalfe, Travis S.; Handberg, Rasmus; Lund, Mikkel N.; Lundkvist, Mia S.; Huber, Daniel; Chaplin, William J.
2016-01-01
Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin I < 2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be {1.028}-0.03+0.04{M}⊙ , the radius to be 1.066 ± 0.012 R⊙, and the age to be {5.25}-1.39+1.41 Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R⊕. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M⊕. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii <2.7 R⊕ and precise mass measurements appear to fall into two populations, with those <1.6 R⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.
VizieR Online Data Catalog: Four new transiting planets (Hebrard+, 2014)
NASA Astrophysics Data System (ADS)
Hebrard, G.; Santerne, A.; Montagnier, G.; Bruno, G.; Deleuil, M.; Havel, M.; Almenara, J.-M.; Damiani, C.; Barros, S. C. C.; Bonomo, A. S.; Bouchy, F.; Diaz, R. F.; Moutou, C.
2014-10-01
The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2-days, and masses of 0.25 and 0.34MJup, respectively. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29MJup) but a longer orbital period of 10.3 days. This places it in a domain where only few planets are known. KOI-830b, finally, with a mass of 1.27MJup and a period of 3.5-days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08RJup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the whole datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is a false positive. (2 data files).
Spectroscopic Characterization of a Newborn Neptune-Sized Planet
NASA Astrophysics Data System (ADS)
Benneke, Bjoern
2016-10-01
The study of planet formation as it occurs has remained an elusive frontier, until now. Our team recently identified a newly-born planet orbiting a young, 5-10 Myr old, pre-main-sequence M star in the Upper Scorpius star-forming region. In its early stage, the close-in planet is about 50% larger than Neptune. Models predict that it will contract over the coming 100-1000 Myr to become a member of the intriguingly abundant class of close-in sub-Neptunes. Spectroscopic observations of this newborn planet will give us the unprecedented opportunity to probe the formation and evolution of low-mass, close-in planets at this early stage. Here, we propose to a reconnaissance study to probe the adolescent state of the gravitationally-bound atmosphere using near-infrared transit spectroscopy and the planet's hydrogen loss rate using far-UV transit spectroscopy. Together, our observations will give us unparalleled insights into the initial state of a young close-in planet as well as into the competing timescales of Kelvin-Helmholtz contraction and envelope mass-loss involved in the early evolution of close-in sub-Neptunes and Neptunes. If the proposed reconnaissance observations detect that molecular absorption in the atmosphere of USco 1610-1919b, then USco 1610-1919b will be one of the prime targets for the 200-hour JWST/NIRISS GTO program to probe the formation and evolution of exoplanets. Mid-cycle observations are required because the final target list for JWST/GTO programs must be locked in by June 2017 before the beginning of HST Cycle 25.
Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.
Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A
2014-09-02
Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.
Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars
Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.
2014-01-01
Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169
Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b
NASA Astrophysics Data System (ADS)
Bourrier, V.; Lecavelier des Etangs, A.; Wheatley, P. J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Sing, D. K.
2012-12-01
Transit observations of the hydrogen Lyman-α line allowed the detection of atmospheric escape from the exoplanet HD209458b (Vidal-Madjar et al. 2003). Using spectrally resolved Lyman-α transit observations of the exoplanet HD 189733b at two different epochs, Lecavelier des Etangs et al. (2012) detected for the first time temporal variations in the physical conditions of an evaporating planetary atmosphere. Here we summarized the results obtained with the HST/STIS observations as presented in June 2012 at the SF2A 2012 meeting. While atmospheric hydrogen cannot be detected in the STIS observations of April 2010, it is clearly detected in the September 2011 observations. The atomic hydrogen cloud surrounding the transiting planet produces a transit absorption depth of 14.4±3.6% between velocities of -230 to -140 km s^{-1}. These high velocities cannot arise from radiation pressure alone and, contrary to HD 209458b, this requires an additional acceleration mechanism, such as interactions with stellar wind protons. The spectral and temporal signature of the absorption is fitted by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g s^{-1}, a stellar wind with a velocity of 190 km s^{-1} and a temperature of ˜10^5 K. We also illustrate the power of multi-wavelengths approach with simultaneous observations in the X-rays obtained with Swift/XRT. We detected an X-ray flare about 8 hours before the transit of September 2011. This suggests that the observed changes within the upper part of the escaping atmosphere can be caused by variations in the stellar wind properties, or/and by variations in the stellar energy input to the planet's escaping gas. This multi-wavelengths approach allowed the simultaneous detection of temporal variations both in the stellar X-ray and in the planetary upper atmosphere, providing first observational constraints on the interaction between the exoplanet's atmosphere and the star.
Bow Shock Leads the Way for a Speeding Hot Jupiter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-09-01
As hot Jupiters whip around their host stars, their speeds can exceed the speed of sound in the surrounding material, theoretically causing a shock to form ahead of them. Now, a study has reported the detection of such a shock ahead of transiting exoplanet HD 189733b, providing a potential indicator of the remarkably strong magnetic field of the planet.Rushing PlanetsDue to their proximity to their hosts, hot Jupiters move very quickly through the stellar wind and corona surrounding the star. When this motion is supersonic, the material ahead of the planet can be compressed by a bow shock and for a transiting hot Jupiter, this shock will cross the face of the host star in advance of the planets transit.In a recent study, a team of researchers by Wilson Cauley of Wesleyan University report evidence of just such a pre-transit. The teams target is exoplanet HD 189733b, one of the closest hot Jupiters to our solar system. When the authors examined high-resolution transmission spectra of this system, they found that prior to the optical transit of the planet, there was a large dip in the transmission of the first three hydrogen Balmer lines. This could well be the absorption of an optically-thick bow shock as it moves past the face of the star.Tremendous MagnetismOperating under this assumption, the authors create a model of the absorption expected from a hot Jupiter transiting with a bow shock ahead of it. Using this model, they show that a shock leading the planet at a distance of 12.75 times the planets radius reproduces the key features of the transmission spectrum.This stand-off distance is surprisingly large. Assuming that the location of the bow shock is set by the point where the planets magnetospheric pressure balances the pressure of the stellar wind or corona that it passes through, the planetary magnetic field would have to be at least 28 Gauss. This is seven times the strength of Jupiters magnetic field!Understanding the magnetic fields of exoplanets is important for modeling their interiors, their mass loss rates, and their interactions with their host stars. Current models of exoplanets often assume low-value fields similar to those of planets within our solar system. But if the field strength estimated for HD 189733bs field is common for hot Jupiters, it may be time to update our models!BonusCheck out this video from Cauleys website, which provides an action view of the transit data for HD 189733b and the possible bow shock leading it. The upper panel shows the transit as viewed from the side, the right panel shows a top-down view of the orbit, and the plot shows the transmission data (points) and model (solid lines) for the three hydrogen lines monitored. All sizes and distances are to scale.http://aasnova.org/wp-content/uploads/2015/09/tran_movie_final.m4vCitationP. Wilson Cauley et al 2015 ApJ 810 13. doi:10.1088/0004-637X/810/1/13
Plans for Follow-Up Observations of Kepler Planet Candidates
NASA Astrophysics Data System (ADS)
Gautier, Thomas N., III
2009-05-01
Ground based follow-up observations of transiting planet candidates identified by Kepler are pursued to identify false positives and to search for non-transiting planets in the systems of true transiting planets. I will describe the observational protocols developed by the Kepler team and the web based infrastructure we are using to support the observations. The current state of the Kepler follow-up observations will be reported.
Constraining the volatile fraction of planets from transit observations
NASA Astrophysics Data System (ADS)
Alibert, Y.
2016-06-01
Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of gas, the measured mass and radius imply at least 20% of volatiles in the interior. For planets at larger distances, we show that the observation of transiting planets at different evolutionary ages can be used to set statistical constraints on the volatile content of planets. Conclusions: These results can be used in the context of future missions like PLATO to better understand the internal composition of planets, and based on this, their formation process and potential habitability.
Characterizing Pale Blue Dots Around FGKM Stars
NASA Astrophysics Data System (ADS)
Rugheimer, S.; Kaltenegger, L.; Sasselov, D. D.; Segura, A.
2015-12-01
Exoplanet characterization of small rocky worlds will be a main focus in the coming decades. For future telescopes like JWST and UVOIR/HDST, an exoplanet's host star will influence our ability to detect and interpret spectral features, including biosignatures. We present a complete suit of stellar models and a grid of model atmospheres for Earth-like planets at equivalent stages of geological evolution in their HZ for stellar effective temperature from Teff = 2300K to 7000K, sampling the entire FGKM stellar type range. Since M dwarfs are simultaneously the most numerous in the universe, the most active, and the most likely stars to host terrestrial exoplanets, we focus in particular on the range of UV emission possible in each sub M spectral class. The UV emission from a planet's host star dominates the photochemistry and thus the resultant observable spectral features of the planet. Using the latest UV spectra obtained by HST and IUE we model the effect of stellar activity on Earth-like planets. We also model the amount of UV flux reaching the surface for Earth-like planets at various geological epochs ranging from a pre-biotic world through the rise of oxygen and for Earth-like planets orbiting FGKM stars at equivalent stages of evolution. When modeling the remotely detectable spectra of these planets we focus on the primary detectable atmospheric features that indicate habitability on Earth, namely: H2O, CO2, O3, CH4, N2O and CH3Cl. We model the emergent as well as transit spectra of Earth-like planets orbiting our grid of FGKM stars in the VIS/NIR (0.4 - 4 μm) and the IR (5 - 20 μm) range as input for future missions like JWST and concepts like UVOIR/HDST.
NASA Astrophysics Data System (ADS)
Muirhead, Philip S.; Johnson, John Asher; Apps, Kevin; Carter, Joshua A.; Morton, Timothy D.; Fabrycky, Daniel C.; Pineda, John Sebastian; Bottom, Michael; Rojas-Ayala, Bárbara; Schlawin, Everett; Hamren, Katherine; Covey, Kevin R.; Crepp, Justin R.; Stassun, Keivan G.; Pepper, Joshua; Hebb, Leslie; Kirby, Evan N.; Howard, Andrew W.; Isaacson, Howard T.; Marcy, Geoffrey W.; Levitan, David; Diaz-Santos, Tanio; Armus, Lee; Lloyd, James P.
2012-03-01
We characterize the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets discovered by the Kepler mission. We proceed by comparing KOI 961 to Barnard's Star, a nearby, well-characterized mid-M dwarf. We compare colors, optical and near-infrared spectra, and find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion, and no quiescent Hα emission—all of which are consistent with being old M dwarfs. We combine empirical measurements of Barnard's Star and expectations from evolutionary isochrones to estimate KOI 961's mass (0.13 ± 0.05 M ⊙), radius (0.17 ± 0.04 R ⊙), and luminosity (2.40 × 10-3.0 ± 0.3 L ⊙). We calculate KOI 961's distance (38.7 ± 6.3 pc) and space motions, which, like Barnard's Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 R ⊕, with KOI 961.03 being Mars-sized (RP = 0.57 ± 0.18 R ⊕), and they represent some of the smallest exoplanets detected to date.
Optical Hydrogen Absorption Consistent with a Thin Bow Shock Leading the Hot Jupiter HD 189733b
NASA Astrophysics Data System (ADS)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.
2015-09-01
Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 Rp. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of Beq = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.
Syntax diagrams for body wave nomenclature, with generalizations for terrestrial planets
NASA Astrophysics Data System (ADS)
Knapmeyer, M.
2003-04-01
The Apollo network on the Moon constitutes the beginning of planetary seismology. In the next few decades, we may see seismometers deployed on the Moon again, on Mars, and perhaps on other terrestrial planets or satellites. Any seismological software for computation of body wave travel times on other planets should be highly versatile and be prepared for a huge variety of velocity distributions and internal structures. A suite of trial models for a planet might, for example, contain models with and without solid inner cores. It would then be useful if the software could detect physically meaningless phase names automatically without actually carrying out any computation. It would also be useful if the program were prepared to deal with features like fully solid cores, internal oceans, and varying depths of mineralogical phase changes like the olivine-spinel transition. Syntax diagrams are a standard method to describe the syntax of programming languages. They represent a graphical way to define which letter or phrase is allowed to follow a given sequence of letters. Syntax diagrams may be stored in data structures that allow automatic evaluation of a given letter sequence. Such diagrams are presented here for a generalized body wave nomenclature. Generalizations are made to overcome earth-specific notations which incorporate discontinuity depths into phase names or to distinguish olivine transitions from ice-ice transitions (as expected on the Galilean Satellites).
Know the Planet, Know the Star: Precise Stellar Densities from Kepler Transit Light Curves
NASA Astrophysics Data System (ADS)
Sandford, Emily; Kipping, David
2017-12-01
The properties of a transiting planet’s host star are written in its transit light curve. The light curve can reveal the stellar density ({ρ }* ) and the limb-darkening profile in addition to the characteristics of the planet and its orbit. For planets with strong prior constraints on orbital eccentricity, we may measure these stellar properties directly from the light curve; this method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA Transiting Exoplanet Survey Satellite mission and any long-period, singly transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb-darkening law, to 66 Kepler transiting planet hosts to measure their stellar properties. We present posterior distributions of ρ *, limb-darkening coefficients, and other system parameters for these stars. We measure densities to within 5% for the majority of our target stars, with the dominant precision-limiting factor being the signal-to-noise ratio of the transits. Of our measured stellar densities, 95% are in 3σ or better agreement with previously published literature values. We make posterior distributions for all of our target Kepler objects of interest available online at 10.5281/zenodo.1028515.
NASA Astrophysics Data System (ADS)
Blank, David L.; Feliz, Dax; Collins, Karen A.; White, Graeme L.; Stassun, Keivan G.; Curtis, Ivan A.; Hart, Rhodes; Kielkopf, John F.; Nelson, Peter; Relles, Howard; Stockdale, Christopher; Jayawardene, Bandupriya; Pennypacker, Carlton R.; Shankland, Paul; Reichart, Daniel E.; Haislip, Joshua B.; Kouprianov, Vladimir V.
2018-06-01
Proxima Centauri has become the subject of intense study since the radial-velocity (RV) discovery by Anglada-Escudé et al. of a planet orbiting this nearby M dwarf every ∼11.2 days. If Proxima Centauri b transits its host star, independent confirmation of its existence is possible, and its mass and radius can be measured in units of the stellar host mass and radius. To date, there have been three independent claims of possible transit-like event detections in light curve observations obtained by the MOST satellite (in 2014–15), the Bright Star Survey Telescope telescope in Antarctica (in 2016), and the Las Campanas Observatory (in 2016). The claimed possible detections are tentative, due in part to the variability intrinsic to the host star, and in the case of the ground-based observations, also due to the limited duration of the light curve observations. Here, we present preliminary results from an extensive photometric monitoring campaign of Proxima Centauri, using telescopes around the globe and spanning from 2006 to 2017, comprising a total of 329 observations. Considering our data that coincide directly and/or phased with the previously published tentative transit detections, we are unable to independently verify those claims. We do, however, verify the previously reported ubiquitous and complex variability of the host star. We discuss possible interpretations of the data in light of the previous claims, and we discuss future analyses of these data that could more definitively verify or refute the presence of transits associated with the RV-discovered planet.
DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier
We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 {+-} 0.030 R{sub J} is among the handful of planets with super-inflated radii above 1.65 R{sub J}. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 {+-} 0.041 M{sub J} planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 {+-} 0.010 g cm{sup -3}. We detect the occultation of the planet at a significance of 3.7{sigma} in the Kepler bandpass. This yields amore » geometric albedo of 0.14 {+-} 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7{sigma} and 4{sigma} in the 3.6 and 4.5 {mu}m bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1{sigma}) and e < 0.09 (3{sigma}). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.« less
Constraints on planetary formation from the discovery & study of transiting Extrasolar Planets
NASA Astrophysics Data System (ADS)
Triaud, A. H. M. J.
2011-08-01
After centuries of wondering about the presence of other worlds outside our Solar System, the first extrasolar planets were discovered about fifteen years ago. Since the quest continued. The greatest discovery of our new line of research, exoplanetology, has probably been the large diversity that those new worlds have brought forward; a diversity in mass, in size, in orbital periods, as well as in the architecture of the systems we discover. Planets very different from those composing our system have been detected. As such, we found hot Jupiters, gas giants which orbital period is only of a few days, mini-Neptunes, bodies five to ten time the mass of the Earth but covered by a thick gas layer, super-Earths of similar masses but rocky, lava worlds, and more recently, maybe the first ocean planet. Many more surprises probably await us. This thesis has for subject this very particular planet class: the hot Jupiters. Those astonishing worlds are still badly understood. Yet, thanks to the evolution of observational techniques and of the treatment of their signals, we probably have gathered as much knowledge from these worlds, than what was known of our own gas giants prior to their visit by probes. They are laboratories for a series of intense physical phenomena caused by their proximity to their star. Notably, these planets are found in average much larger than expected. In addition to these curiosities, their presence so close to their star is abnormal, the necessary conditions for the formation of such massive bodies, this close, not being plausible. Thus it is more reasonable to explain their current orbits by a formation far from their star, followed by an orbital migration. It is on this last subject that this thesis is on: the origin of hot Jupiters. The laws of physics are universal. Therefore, using the same physical phenomena, we need to explain the existence of hot Jupiters, while explaining why the Jupiter within our Solar System is found five times the Earth-Sun distance. In Astronomy, we cannot do experiments; we are a part of it. Instead, we search and characterise several similar objects in order to extract information out of them statistically. To answer our question, we needed to find several objects and detect the clues from their past history bringing us back to the processes that led to their formation. There are several manners with which one can find planets. For this thesis, the so-called transit method was used. It consists in detecting a periodic loss of light from a star in front of which a planet passes: a transit. This method is particularly sensitive to the presence of hot Jupiters. During this thesis, about fifty planets of such type have been discovered, about a third of the known hot Jupiters. Those planets are confirmed thanks to radial velocity measurements, the same technique that led to the discovery of the first extrasolar planet, around the star 51 Pegasi. The analysis of the stellar light affected by the presence of a planet around it, notably the light received during transit, allows us to know about the mass, the size of the planet, its orbital period, the shape of its orbit, its temperature, even the chemical composition of its atmosphere. Furthermore, these observations give us the occasion to study the star around which is found the planet, such as its mass, its size, its rotation speed, as well as give estimates on its age. One type of observations was employed in particular: the Rossiter-McLaughlin effect. During transit, this effect creates an anomaly compared to the expected radial velocities. Through a modelisation of this anomaly, it is possible to measure the projection of the angle between the orbital plane of the planet and the equatorial plane of the star, on the sky. In our System, all planets are located more or less in a same plane : the ecliptic. The equatorial plane of the Sun is also almost aligned with the ecliptic. This observation led Kant and Laplace to postulate on the formation of planets from matter spread in the form of a primordial disc around the Sun; such discs are nowadays observed around young stars. This angle was measured for the newly discovered planets, and, surprisingly, instead of observing planets in orbit above the equator of their star, a wide variety was found. Some planets are even in orbit in the direction counter to that which was expected. Those observations, combined with others of similar type, as well as with those already known parameters from that astonishing planet population, allow us to explore the phenomena that occurred probably soon after their formation. Those hot Jupiters have had an eventful history. When the disc in which they formed dissipated, gravitational interactions with other planets in the same system, or caused by the presence of another star in the system, have led those gas giants on inclined, some retrograde, and very elliptic orbits. During their regular passage at the closest point with their star, the dissipation of tidal forces within the planet and the star induced a circularisation and a reduction of their orbital periods, on which we observe them nowadays.
The upper atmospheres of extrasolar planets
NASA Astrophysics Data System (ADS)
Lellouch, E.
2003-04-01
Over 100 extrasolar planets have been already detected, the vast majority of which by radial velocity measurements. While numerous models have been developed to describe their thermal structure, composition, spectrum, dynamics and evolution, the physical characterization of these objects remains remarkably poor, since in most cases only an estimate of the object's mass is available. Most observational efforts have so far been focused on close, short-period exoplanets ("hot Jupiters"), in particular on HD 209458B which appears to transit across its parent star and was confirmed to be as a genuine hydrogen-rich exoplanet . A highlight of these observations was the detection of sodium in its atmosphere (Charbonneau et al. 2002). Observational results and prospects will be briefly reviewed.
Kepler’s DR25 Most Earth-like Planet Candidates: What To Know Before You Go
NASA Astrophysics Data System (ADS)
Thompson, Susan E.; Kepler Team
2018-01-01
The Kepler mission’s latest catalog of planet candidates (data release 25 KOI catalog at the NASA exoplanet archive) was released in June of 2017. The catalog contains 4034 candidates including a significant population of terrestrial-size planets in the habitable zone of FGK dwarf stars. I will highlight what we know about these planet candidates in the DR25 catalog and discuss some of the caveats when working with these detections. Specifically, I will discuss how the noise in the Kepler light curves (from both the instrument and the stars) is known to occasionally produce weak, transit-like signals. We use simulations of this noise to measure how often these signals sneak into the catalog. I will also demonstrate ways to select a high-reliability sample using information available in the catalog. Such considerations may prove useful for anyone planning to use these planet candidates for occurrence rate calculations, choosing targets for follow-up, or deciding which planet to visit on his/her next holiday.
A Secular Resonant Origin for the Loneliness of Hot Jupiters
NASA Astrophysics Data System (ADS)
Spalding, Christopher; Batygin, Konstantin
2017-09-01
Despite decades of inquiry, the origin of giant planets residing within a few tenths of an astronomical unit from their host stars remains unclear. Traditionally, these objects are thought to have formed further out before subsequently migrating inwards. However, the necessity of migration has been recently called into question with the emergence of in situ formation models of close-in giant planets. Observational characterization of the transiting subsample of close-in giants has revealed that “warm” Jupiters, possessing orbital periods longer than roughly 10 days more often possess close-in, co-transiting planetary companions than shorter period “hot” Jupiters, that are usually lonely. This finding has previously been interpreted as evidence that smooth, early migration or in situ formation gave rise to warm Jupiter-hosting systems, whereas more violent, post-disk migration pathways sculpted hot Jupiter-hosting systems. In this work, we demonstrate that both classes of planet may arise via early migration or in situ conglomeration, but that the enhanced loneliness of hot Jupiters arises due to a secular resonant interaction with the stellar quadrupole moment. Such an interaction tilts the orbits of exterior, lower-mass planets, removing them from transit surveys where the hot Jupiter is detected. Warm Jupiter-hosting systems, in contrast, retain their coplanarity due to the weaker influence of the host star’s quadrupolar potential relative to planet-disk interactions. In this way, hot Jupiters and warm Jupiters are placed within a unified theoretical framework that may be readily validated or falsified using data from upcoming missions, such as TESS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Jon M.; Caldwell, Douglas A.; Borucki, William J.
We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R{sub P} = 1.419 R{sub J} and a mass M{sub P} = 0.60 M{sub J}, yielding a density of 0.26 g cm{sup -3}, one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483{sup +0.0006}{sub -0.0012} AU. The star has a large rotationalmore » vsin i of 10.5 {+-} 0.7 km s{sup -1} and is relatively faint (V {approx} 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s{sup -1}, but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of {lambda} = -26.{sup 0}4 {+-} 10.{sup 0}1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot Jupiters around F and early G stars.« less
VizieR Online Data Catalog: Detection of Kepler multiple M-star systems (Rappaport+, 2014)
NASA Astrophysics Data System (ADS)
Rappaport, S.; Swift, J.; Levine, A.; Joss, M.; Sanchis-Ojeda, R.; Barclay, T.; Still, M.; Handler, G.; Olah, K.; Muirhead, P. S.; Huber, D.; Vida, K.
2017-07-01
In all, we find 297 of the 3897 targets exhibit the requisite significant Fourier transform (FT) signal comprising a base frequency plus its harmonic, with the base frequency exceeding 0.5 cycles/day (i.e., Prot<2 days). We believe that the majority of these periodicities are likely to be due to stellar rotation manifested via starspots, but a significant number may be due to planet transits and binary eclipses. The individual FTs for these systems were further examined to eliminate those which were clearly not due to rotating starspots. In all cases we folded the data modulo the detected fundamental period, and were readily able to rule out cases due to transiting planets since their well-known sharp, relatively rectangular dipping profiles are characteristic. Of course, we also checked the KOI list for matches. Any of the objects that appear in the Kepler eclipsing binary ("EB") star catalog (e.g., Matijevic et al. 2012AJ....143..123M) were likewise eliminated. (2 data files).
pyLIMA : The first open source microlensing modeling software
NASA Astrophysics Data System (ADS)
Bachelet, Etienne; Street, Rachel; Bozza, Valerio
2018-01-01
Microlensing is highly sensitive to planets beyond the snowline and distributed along the line of sight towards the Galactic Bulge. The WFIRST-AFTA mission should detect about 3000 of these planets and significantly improves our knowledge of planet formation and statistics, complementing results found by transit and radial velocity methods. However, the modeling of microlensing event is challenging on different aspects leading to a highly time consuming analysis. After a quick summarize of these different challenges, I will present pyLIMA, the first open source microlensing modeling software. The aimed goal of this software are to be flexible, powerful and user friendly. This presentation will focus on various case and early results.
The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.
Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B
2015-06-18
Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.
On the Nature of Small Planets around the Coolest Kepler Stars
NASA Astrophysics Data System (ADS)
Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Lépine, Sébastien
2012-02-01
We constrain the densities of Earth- to Neptune-size planets around very cool (Te = 3660-4660 K) Kepler stars by comparing 1202 Keck/HIRES radial velocity measurements of 150 nearby stars to a model based on Kepler candidate planet radii and a power-law mass-radius relation. Our analysis is based on the presumption that the planet populations around the two sets of stars are the same. The model can reproduce the observed distribution of radial velocity variation over a range of parameter values, but, for the expected level of Doppler systematic error, the highest Kolmogorov-Smirnov probabilities occur for a power-law index α ≈ 4, indicating that rocky-metal planets dominate the planet population in this size range. A single population of gas-rich, low-density planets with α = 2 is ruled out unless our Doppler errors are >=5 m s-1, i.e., much larger than expected based on observations and stellar chromospheric emission. If small planets are a mix of γ rocky planets (α = 3.85) and 1 - γ gas-rich planets (α = 2), then γ > 0.5 unless Doppler errors are >=4 m s-1. Our comparison also suggests that Kepler's detection efficiency relative to ideal calculations is less than unity. One possible source of incompleteness is target stars that are misclassified subgiants or giants, for which the transits of small planets would be impossible to detect. Our results are robust to systematic effects, and plausible errors in the estimated radii of Kepler stars have only moderate impact. Some data were obtained at the W. M. Keck Observatory, which is operated by the California Institute of Technology, the University of California, and NASA, and made possible by the financial support of the W. M. Keck Foundation.
More Planets in the Hyades Cluster
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
A few weeks ago, Astrobites reported on a Neptune-sized planet discovered orbiting a star in the Hyades cluster. A separate study submitted at the same time, however, reveals that there may be even more planets lurking in this system.Thanks, KeplerArtists impression of the Kepler spacecraft and the mapping of the fields of the current K2 mission. [NASA]As we learn about the formation and evolution of planets outside of our own solar system, its important that we search for planets throughout different types of star clusters; observing both old and young clusters, for instance, can tell us about planets in different stages of their evolutionary histories. Luckily for us, we have a tool that has been doing exactly this: the Kepler mission.In true holiday spirit, Kepler is the gift that just keeps on giving. Though two of its reaction wheels have failed, Kepler now as its reincarnation, K2 just keeps detecting more planet transits. Whats more, detailed analysis of past Kepler/K2 data with ever more powerful techniques as well as the addition of high-precision parallaxes for stars from Gaia in the near future ensures that the Kepler data set will continue to reveal new exoplanet transits for many years to come.Image of the Hyades cluster, a star cluster that is only 800 million years old. [NASA/ESA/STScI]Hunting in the Young HyadesTwo studies using K2 data were recently submitted on exoplanet discoveries around EPIC 247589423 in the Hyades cluster, a nearby star cluster that is only 800 million years old. Astrobites reported on the first study in October and discussed details about the newly discovered mini-Neptune presented in that study.The second study, led by Andrew Mann (University of Texas at Austin and NASA Hubble Fellow at Columbia University), was published this week. This study presented a slightly different outcome: the authors detect the presence of not just the one, but three exoplanets orbiting EPIC 247589423.New DiscoveriesMann and collaborators searched through the K2 light curves of young stars as part of the ZEIT (Zodiacal Exoplanets in Time) Survey. Using these data, they identified the presence of three planets in the EPIC 247589423 system:a roughly Earth-sized planet ( 1.0 Earth radii) with a period of 8.0 days,the mini-Neptune identified in the other study, with a size of 2.9 Earth radii and period of 17 days, anda super-Earth, with a size of 1.5 Earth radii and period of 26 days.Light curve of EPIC 247589423 from K2, with the lower panels showing the transits of the three discovered planets. [Mann et al. 2018]The smallest planet is among the youngest Earth-sized planets ever discovered, allowing us a rare glimpse into the history and evolution of planets similar to our own.But these planetary discoveries are additionally exciting because theyre orbiting a bright star thats relatively quiet for its age making the system an excellent target for dedicated radial-velocity observations to determine the planet masses.Since most young star clusters are much further away, they lie out of range of radial-velocity follow-up, rendering EPIC 247589423 a unique opportunity to explore the properties of young planets in detail. With more discoveries like these from Keplers data, we can hope to soon learn more about planets in all their stages of evolution.CitationAndrew W. Mann et al 2018 AJ 155 4. doi:10.3847/1538-3881/aa9791
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Baranec, Christoph; Riddle, Reed; Atkinson, Dani; Baker, Anna; Roberts, Sarah; Ciardi, David R.
2017-02-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results of our search for stars nearby 1629 Kepler planet candidate hosts. With survey sensitivity to objects as close as ˜0.″15, and magnitude differences Δm ≤slant 6, we find 223 stars in the vicinity of 206 target KOIs; 209 of these nearby stars have not been previously imaged in high resolution. We measure an overall nearby-star probability for Kepler planet candidates of 12.6 % +/- 0.9 % at separations between 0.″15 and 4.″0. Particularly interesting KOI systems are discussed, including 26 stars with detected companions that host rocky, habitable zone candidates and five new candidate planet-hosting quadruple star systems. We explore the broad correlations between planetary systems and stellar binarity, using the combined data set of Baranec et al. and this paper. Our previous 2σ result of a low detected nearby star fraction of KOIs hosting close-in giant planets is less apparent in this larger data set. We also find a significant correlation between detected nearby star fraction and KOI number, suggesting possible variation between early and late Kepler data releases.
Dysonian SETI as a "Shortcut" to Detecting Habitable Planets
NASA Astrophysics Data System (ADS)
Wright, J. T.
2016-12-01
The search for habitable planets is ultimately motivated by the search for inhabited planets. On Earth, the most telling signature of life is that of humanity's technology. The Search for Extraterrestrial Intelligence (SETI) is thus the "ultimate" search for habitable planets.In 1960 two seminal papers in SETI were published, providing two visions for SETI. Giuseppe Cocconi and Philip Morrison's proposed detecting deliberate radio signals ("communication SETI"), while Freeman Dyson ("artifact SETI"), proposed detecting the inevitable effects of massive energy supplies and artifacts on their surroundings. While communication SETI has now had many career-long practitioners and major efforts, artifact SETI has, until recently, not been a vibrant field of study. The launch of the Kepler and WISE satellites have greatly renewed interest in the field, however, and the recent Breakthrough Listen Initiative has provided new motivation for finding good targets for communication SETI. I will discuss the progress of the Ĝ Search for Extraterrestrial Civilizations with Large Energy Supplies, including its justification and motivation, waste heat search strategy and first results, and the framework for a search for megastructures via transit light curves. The last of these led to the identification of KIC 8462852 (a.k.a. "Tabby's Star") as a candidate ETI host. This star, discovered by Boyajian and the Zooniverse Planet Hunters, exhibits several apparently unique and so-far unexplained photometric properties, and continues to confound natural explanation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipping, D. M.; Forgan, D.; Hartman, J.
Kepler-22b is the first transiting planet to have been detected in the habitable zone of its host star. At 2.4 R{sub ⊕}, Kepler-22b is too large to be considered an Earth analog, but should the planet host a moon large enough to maintain an atmosphere, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity bymore » the 'Hunt for Exomoons with Kepler' (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities, and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches. We find no evidence for an exomoon around the planet and exclude moons of mass M{sub S} > 0.5 M{sub ⊕} to 95% confidence. By signal injection and blind retrieval, we demonstrate that an Earth-like moon is easily detected for this planet even when the time-correlated noise of the data set is taken into account. We provide updated parameters for the planet Kepler-22b, including a revised mass of M{sub P} < 53 M{sub ⊕} to 95% confidence and an eccentricity of 0.13{sub -0.13}{sup +0.36} by exploiting Single-body Asterodensity Profiling. Finally, we show that Kepler-22b has a >95% probability of being within the empirical habitable zone but a <5% probability of being within the conservative habitable zone.« less
An Exoplanet Spinning Up Its Star
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
We know that the large masses of stars govern the orbits of the planets that circle them but a large, close-in planet can also influence the rotation of its host star. A recently discovered, unusual hot Jupiter may be causing its star to spin faster than it should.Exotic PlanetsHot Jupiters are gas giants of roughly Jupiters size that orbit close in to their host stars. Though these planets are easy to detect their large sizes and frequent transits mean surveys have a good chance of catching them we havent found many of them, suggesting that planetary systems containing hot Jupiters are fairly unusual.The period-folded light curve of HATS-18, revealing the transit of the hot Jupiter HATS-18b. The period is P=0.8378 days. [Penev et al. 2016]Studying this exotic population of planets, however, can help us to better understand how gas giants form and evolve in planetary systems. New observations of hot Jupiters may also reveal how stars and close-in planets interact through radiation, gravity, and magnetic fields.The recent discovery of a transiting hot Jupiter a little over 2000 light-years away therefore presents an exciting opportunity!A Speeding GiantThe discovery of HATS-18b, a planet of roughly 2 times Jupiters mass and 1.3 times its radius, was announced in a study led by Kaloyan Penev (Princeton University). The planet was discovered using the HATSouth transit survey network, which includes instruments in Chile, Namibia, and Australia, and follow-up photometry and spectroscopy was conducted at a variety of ground-based observatories.HATS-18bs properties are particularly unusual: this hot Jupiter is zipping around its host star which is very similar to the Sun at the incredible pace of one orbit every 0.84 days. HATS-18bs orbit is more than 20 times closer to its host star than Mercurys is to the Sun, bringing it so close it nearly grazes the stars surface!Size of the planetary orbit relative to the stellar radius as a function of the stellar rotation period, for transiting planets with orbital periods shorter than 2 days and masses greater than 0.1 Jupiter masses. HATS-18b is denoted by the red star. [Penev et al. 2016]Tidal InteractionsWhat happens when a massive planet orbits this close to its star? Tidal interactions between the star and the planet cause tidal dissipation in the star, resulting in decay of the planets orbit. But there may be an additional effect of this interaction in the case of HATS-18b, the authors claim: the planet may be transferring some of its angular momentum to the star.As stars age, they should gradually spin slower as they lose angular momentum viastellar winds. But Penev and collaborators note that this exoplanets host star, HATS-18, spins roughly three times as fast asits inferred age suggests it should. The authors conclude that the angular momentum lost by the planet as its orbit shrinks is deposited in the star, causing the star to spin up.HATS-18 is an excellent laboratory for studying how very short-period planets interact with their stars in fact, Penev and collaborators have already used their observations of the system to constrain models of tidal dissipation from Sun-like stars. Additional observations of HATS-18 and other short-period systems should allow us to further test models of how planetary systems form and evolve.CitationK. Penev et al 2016 AJ 152 127. doi:10.3847/0004-6256/152/5/127
NGTS-1b: a hot Jupiter transiting an M-dwarf
NASA Astrophysics Data System (ADS)
Bayliss, Daniel; Gillen, Edward; Eigmüller, Philipp; McCormac, James; Alexander, Richard D.; Armstrong, David J.; Booth, Rachel S.; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chazelas, Bruno; Csizmadia, Szilard; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jenkins, James S.; Lambert, Gregory; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raddi, Roberto; Rauer, Heike; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Thompson, Andrew P. G.; Titz-Weider, Ruth; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.
2018-04-01
We present the discovery of NGTS-1b, a hot Jupiter transiting an early M-dwarf host (Teff,* = 3916 ^{+71}_{-63} K) in a P = 2.647 d orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of 0.812 ^{+0.066}_{-0.075} MJ, making it the most massive planet ever discovered transiting an M-dwarf. The radius of the planet is 1.33 ^{+0.61}_{-0.33} RJ. Since the transit is grazing, we determine this radius by modelling the data and placing a prior on the density from the population of known gas giant planets. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar-type stars. The host star shows no signs of activity, and the kinematics hint at the star being from the thick disc population. With a deep (2.5 per cent) transit around a K = 11.9 host, NGTS-1b will be a strong candidate to probe giant planet composition around M-dwarfs via James Webb Space Telescope transmission spectroscopy.
NASA Astrophysics Data System (ADS)
Ikeda, Masayuki; Tada, Ryuji
2013-04-01
Astronomical theory predicts that ~2 Myr eccentricity cycle have changed its periodicity and amplitude through time because of the chaotic behavior of solar planets, especially Earth-Mars secular resonance. Although the ~2 Myr eccentricity cycle has been occasionally recognized in geological records, their frequency transitions have never been reported. To explore the frequency evolution of ~2 Myr eccentricity cycle, we used the bedded chert sequence in Inuyama, Japan, of which rhythms were proven to be of astronomical origin, covering the ~30 Myr long spanning from the Triassic to Jurassic. The frequency modulation of ~2 Myr cycle between ~1.6 and ~1.8 Myr periodicity detected from wavelet analysis of chert bed thickness variation are the first geologic record of chaotic transition of Earth-Mars secular resonance. The frequency modulation of ~2 Myr cycle will provide new constraints for the orbital models. Additionally, ~8 Myr cycle detected as chert bed thickness variation and its amplitude modulation of ~2 Myr cycle may be related to the amplitude modulation of ~2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change.
Observability of planet-disc interactions in CO kinematics
NASA Astrophysics Data System (ADS)
Pérez, Sebastián; Casassus, S.; Benítez-Llambay, P.
2018-06-01
Empirical evidence of planets in gas-rich circumstellar discs is required to constrain giant planet formation theories. Here we study the kinematic patterns which arise from planet-disc interactions and their observability in CO rotational emission lines. We perform three-dimensional hydrodynamical simulations of single giant planets, and predict the emergent intensity field with radiative transfer. Pressure gradients at planet-carved gaps, spiral wakes and vortices bear strong kinematic counterparts. The iso-velocity contours in the CO(2-1) line centroids vo reveal large-scale perturbations, corresponding to abrupt transitions from below sub-Keplerian to super-Keplerian rotation along with radial and vertical flows. The increase in line optical depth at the edge of the gap also modulates vo, but this is a mild effect compared to the dynamical imprint of the planet-disc interaction. The large-scale deviations from the Keplerian rotation thus allow the planets to be indirectly detected via the first moment maps of molecular gas tracers, at ALMA angular resolutions. The strength of these deviations depends on the mass of the perturber. This initial study paves the way to eventually determine the mass of the planet by comparison with more detailed models.
A septet of Earth-sized planets
NASA Astrophysics Data System (ADS)
Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team
2017-10-01
Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.
K2-30 b and K2-34 b: Two inflated hot Jupiters around solar-type stars
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Demangeon, O.; Santerne, A.; Barros, S. C. C.; Barrado, D.; Hébrard, G.; Osborn, H. P.; Armstrong, D. J.; Almenara, J.-M.; Boisse, I.; Bouchy, F.; Brown, D. J. A.; Courcol, B.; Deleuil, M.; Delgado Mena, E.; Díaz, R. F.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Pollacco, D.; Rajpurohit, A.; Rey, J.; Santos, N. C.; Sousa, S. G.; Tsantaki, M.; Wilson, P. A.
2016-10-01
We report the discovery of the two hot Jupiters K2-30 b and K2-34 b. The two planets were detected during campaigns 4 and 5 of the extension of the Kepler mission, K2; they transit their main-sequence stars with periods of ~4.099 and ~2.996 days. Subsequent ground-based radial velocity follow-up with SOPHIE, HARPS-N, and CAFE established the planetary nature of the transiting objects. We analyzed the transit signal, radial velocity, and spectral energy distributions of the two systems to characterize their properties. Both planets (K2-30 b and K2-34 b) are bloated hot Jupiters (1.20 RJup and 1.22 RJup) around relatively bright (V = 13.5 and V = 11.5) slow rotating main-sequence (G8 and F9) stars. Thus, these systems are good candidates for detecting the Rossiter-MacLaughlin effect in order to measure their obliquity and for atmospheric studies. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A50
Starspots on WASP-107 and pulsations of WASP-118
NASA Astrophysics Data System (ADS)
Močnik, T.; Hellier, C.; Anderson, D. R.; Clark, B. J. M.; Southworth, J.
2017-08-01
By analysing the K2 short-cadence photometry, we detect starspot occultation events in the light curve of WASP-107, the host star of a warm-Saturn exoplanet. WASP-107 also shows a rotational modulation with a period of 17.5 ± 1.4 d. Given that the rotational period is nearly three times the planet's orbital period, one would expect in an aligned system to see starspot occultation events to recur every three transits. The absence of such occultation recurrences suggests a misaligned orbit unless the starspots' lifetimes are shorter than the star's rotational period. We also find stellar variability resembling γ Doradus pulsations in the light curve of WASP-118, which hosts an inflated hot Jupiter. The variability is multiperiodic with a variable semi-amplitude of ˜200 ppm. In addition to these findings, we use the K2 data to refine the parameters of both systems and report non-detections of transit-timing variations, secondary eclipses and any additional transiting planets. We used the upper limits on the secondary-eclipse depths to estimate upper limits on the planetary geometric albedos of 0.7 for WASP-107b and 0.2 for WASP-118b.
The Monitor project: searching for occultations in young open clusters
NASA Astrophysics Data System (ADS)
Aigrain, S.; Hodgkin, S.; Irwin, J.; Hebb, L.; Irwin, M.; Favata, F.; Moraux, E.; Pont, F.
2007-02-01
The Monitor project is a photometric monitoring survey of nine young (1-200Myr) clusters in the solar neighbourhood to search for eclipses by very low mass stars and brown dwarfs and for planetary transits in the light curves of cluster members. It began in the autumn of 2004 and uses several 2- to 4-m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (<~10Myr) would also provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main-sequence stars. The present paper details the motivation, science goals and observing strategy of the survey. We present a method to estimate the sensitivity and number of detections expected in each cluster, using a simple semi-analytic approach which takes into account the characteristics of the cluster and photometric observations, using (tunable) best-guess assumptions for the incidence and parameter distribution of putative companions, and we incorporate the limits imposed by radial velocity follow-up from medium and large telescopes. We use these calculations to show that the survey as a whole can be expected to detect over 100 young low and very low mass eclipsing binaries, and ~3 transiting planets with radial velocity signatures detectable with currently available facilities.
NASA Astrophysics Data System (ADS)
Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2004-12-01
We present results of two observing campaigns conducted by the OGLE-III survey in the 2003 observing season aiming at the detection of new objects with planetary transiting companions. Six fields of 35'x35' each located in the Galactic disk were monitored with high frequency for several weeks in February-July 2003. Additional observations of three of these fields were also collected in the 2004 season. Altogether about 800 and 1500 epochs were collected for the fields of both campaigns, respectively. The search for low depth transits was conducted on about 230 000 stars with photometry better than 15 mmag. It was focused on detection of planetary companions, thus clear non-planetary cases were not included in the final list of selected objects. Altogether we discovered 40 stars with shallow (<=0.05 mag) flat-bottomed transits. In each case several individual transits were observed allowing determination of photometric elements. Additionally, the lower limits on radii of the primary and companion were calculated. From the photometric point of view the new OGLE sample contains many very good candidates for extrasolar transiting planets. However, only the future spectroscopic follow-up observations of the OGLE sample - determination of the amplitude of radial velocity and exclusion of blending possibilities - may allow to confirm their planetary status. In general, the transiting objects may be extrasolar planets, brown dwarfs, M-type dwarfs or fake transits caused by blending. All photometric data of objects with transiting companions discovered during the 2003 campaigns are available to the astronomical community from the OGLE Internet archive.
Model Atmospheres and Transit Spectra for Hot Rocky Planets
NASA Astrophysics Data System (ADS)
Lupu, Roxana
We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing hot Jupiters in similar transit configurations. For example, Na has been the first species to be detected in an exoplanet atmosphere, by observing the evaporating hotJupiter HD209458b. Understanding the interplay between the magma outgassing and volatile loss will be an important part of this project. Our team has the expertise in the chemistry, radiative transfer, and atmospheric escape modeling at these exotic temperatures. Our recent work has analyzed the emerging atmospheres of terrestrial planets after giant impacts, using a well-established radiativeconvective atmospheric structure code, with an extensive opacity database for all relevant molecules, and the chemistry self-consistently calculated for continental crust and bulk silicate earth compositions. We will expand on this work by considering a wider range of chemical compositions, assessing the importance of clouds and generating cloudy models, and developing dis-equilibrium models by taking into account vertical mixing and photochemistry. Photo-evaporation will be considered in the energy balance between heating, cooling and mass loss. We also have in-house codes to generate high-resolution eclipse spectra and predict transit depths and observable signatures. The development of the atmospheric code, the molecular opacity updates, the atmospheric structure calculations and the high resolution eclipse spectra will be performed by R. Lupu, M. Marley, and R. Freedman at NASA Ames. The atmospheric chemistry grids will be provided by B. Fegley and K. Lodders at Washington University. The transit spectra and observational features will be computed by J. Fortney at UCSC, and the atmospheric escape calculations will be performed by K. Zahnle at NASA Ames. This proposal addresses the following goals of the Exoplanet Research program: explain observations of exoplanetary systems, and understand the chemical and physical processes of exoplanets. Our results will also inform future JWST observations.
Planet–Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems
NASA Astrophysics Data System (ADS)
Luger, Rodrigo; Lustig-Yaeger, Jacob; Agol, Eric
2017-12-01
We explore the occurrence and detectability of planet–planet occultations (PPOs) in exoplanet systems. These are events during which a planet occults the disk of another planet in the same system, imparting a small photometric signal as its thermal or reflected light is blocked. We focus on the planets in TRAPPIST-1, whose orbital planes we show are aligned to < 0\\buildrel{\\circ}\\over{.} 3 at 90% confidence. We present a photodynamical model for predicting and computing PPOs in TRAPPIST-1 and other systems for various assumptions of the planets’ atmospheric states. When marginalizing over the uncertainties on all orbital parameters, we find that the rate of PPOs in TRAPPIST-1 is about 1.4 per day. We investigate the prospects for detection of these events with the James Webb Space Telescope, finding that ∼10–20 occultations per year of b and c should be above the noise level at 12–15 μm. Joint modeling of several of these PPOs could lead to a robust detection. Alternatively, observations with the proposed Origins Space Telescope should be able to detect individual PPOs at high signal-to-noise ratios. We show how PPOs can be used to break transit timing variation degeneracies, imposing strong constraints on the eccentricities and masses of the planets, as well as to constrain the longitudes of nodes and thus the complete three-dimensional structure of the system. We further show how modeling of these events can be used to reveal a planet’s day/night temperature contrast and construct crude surface maps. We make our photodynamical code available on github (https://github.com/rodluger/planetplanet).
NASA Astrophysics Data System (ADS)
Knutson, Heather
2009-05-01
The Spitzer Space Telescope has been a remarkably successful platform for studies of exoplanet atmospheres, with notable results including the first detection of the light emitted by an extrasolar planet (Deming et al. 2005, Charbonneau et al. 2005), the first spectrum of an extrasolar planet (Richardson et al. 2007, Grillmair et al. 2007), and the first map of the flux distribution across the surface of an extrasolar planet (Knutson et al. 2007). These observations have allowed us to characterize the pressure-temperature profiles, chemistry, clouds, and circulation patterns of a select subset of the massive, close-in planets known as hot Jupiters, along with the hot Saturn HD 149026b and the cooler Neptune-mass planet GJ 436b. In my talk I will review the current status of Spitzer observations of transiting planets at the end of the cryogenic mission and look ahead to the observations planned for the two-year warm mission, which will begin this summer after the last of Spitzer's cryogen is exhausted.
Which Type of Planets do We Expect to Observe in the Habitable Zone?
Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C
2016-11-01
We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.
Update on the KELT Transit Survey: Hot Planets around Hot Stars
NASA Astrophysics Data System (ADS)
Gaudi, B. Scott; Stassun, Keivan G.; Pepper, Joshua; KELT Collaboration
2018-01-01
The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescopes located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 70% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. I will provide an update on the planets discovered by KELT, focusing in detail on our recent discoveries of very hot planets transiting several bright A and early F stars.
Using Dimers to Measure Biosignatures and Atmospheric Pressure for Terrestrial Exoplanets
Meadows, Victoria; Claire, Mark; Crisp, Dave
2014-01-01
Abstract We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging–reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required. Key Words: Remote sensing—Extrasolar terrestrial planets—Habitability—Radiative transfer—Biosignatures. Astrobiology 14, 67–86. PMID:24432758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorhead, Althea V.; Ford, Eric B.; Morehead, Robert C.
Doppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration formore » a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T{sub eff} > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T{sub eff} {<=} 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.« less
AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campante, T. L.; Davies, G. R.; Chaplin, W. J.
The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planetmore » system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.« less
A Search for Planetary Transits of the Star HD 187123 by Spot Filter CCD Differential Photometry
NASA Technical Reports Server (NTRS)
Castellano, T.; DeVincenzi, D. (Technical Monitor)
2000-01-01
A novel method for performing high precision, time series CCD differential photometry of bright stars using a spot filter, is demonstrated. Results for several nights of observing of the 51 Pegasi b-type planet bearing star HD 187123 are presented. Photometric precision of 0.0015 - 0.0023 magnitudes is achieved. No transits are observed at the epochs predicted from the radial velocity observation. If the planet orbiting HD 187123 at 0.0415 AU is an inflated Jupiter similar in radius to HD 209458b it would have been detected at the greater than 6(sigma), level if the orbital inclination is near 90 degrees and at the greater than 3(sigma), level if the orbital inclination is as small as 82.7 degrees.
Sequential planet formation in transition disks: The case of HD 100546
NASA Astrophysics Data System (ADS)
Pinilla, Paola; Birnsitel, Til; Walsh, Catherine; van Dishoeck, Ewine
2015-08-01
Transition disks are circumstellar disks with dust inner cavities and may reveal an intermediate step of the ongoing disk dispersal process, where planet formation might happen. The recent gas and dust observations of transition disks have given major support to the presence of massive planets in transition disks. The analysis of such observations help to constrain the properties of the potential unseen planets. An excellent candidate to analyse the dust evolution when planets are embedded in disks is the transition disk around the Herbig Ae star HD 100546. Near-infrared observations of HD 100546 suggested the presence on an inner planet at 10 AU distance from the star (e.g. Mulders et al. 2013), while an outer planet has been directly imaged at 70 AU distance, which may be in the act of formation (Quant et al. 2013, 2015; Currie et al. 2014). The two embedded planets can lead to remarkable dust structures due to the particle trapping at the edges of the gaps caved by such planets (e.g. Pinilla et al. 2012, 2015). Recent ALMA Cycle 0 observations of this disk reveal a two-ring like structure consistent with particle trapping induced by the two companions (Walsh et al. 2014). The comparison of these observations with dust evolution models, that include the coagulation and fragmentation of dust grains, suggest that the outer companion must be at least two million of years younger than the inner companion, revealing sequential planet formation in this disk (Pinilla et al. 2015, under revision).
Could Flaring Stars Change Our Views of Their Planets?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
As the exoplanet count continues to increase, we are making progressively more measurements of exoplanets outer atmospheres through spectroscopy. A new study, however, reveals that these measurements may be influenced by the planets hosts.Spectra From TransitsExoplanet spectra taken as they transit their hosts can tell us about the chemical compositions of their atmospheres. Detailed spectroscopic measurements of planet atmospheres should become even more common with the next generation of missions, such as the James Webb Space Telescope (JWST), or Planetary Transits and Oscillations of Stars (PLATO).But is the spectrum that we measure in the brief moment of a planets transit necessarily representative of its spectrum all of the time? A team of scientists led by Olivia Venot (University of Leuven in Belgium) argue that it might not be, due to the influence of the planets stellar host.Atmospheric composition of a planet before flare impacts (dotted lines), during the steady state reached after a flare impact (dashed lines), and during the steady state reached after a second flare impact (solid lines). [Venot et al. 2016]The team suggests that when a hosts flares impact upon a planets atmosphere (especially likely in the case of active M-dwarfs that commonly harbor planetary systems), this activity may modify the chemical composition of the planets atmosphere. This would in turn alter the spectrum that we measure from the exoplanet.Modeling AtmospheresVenot and collaborators set out to test the effect of stellar flares on exoplanet atmospheres by modeling the atmospheres of two hypothetical planets orbiting the star AD Leo an active and flaring M dwarf located roughly 16 light-years away at two different distances. The team then examined what happened to the atmospheres, and to the resulting spectra that we would observe, when they were hit with a stellar flare typical of AD Leo.The difference in relative absorption between the initial steady-state and the instantaneous transmission spectra, obtained during the different phases of the flare. The left plot examines the impulsive and gradual phases, when the flare first impacts and then starts to pass. The peak photon flux occurs at 912 seconds. The right plot examines the return to a steady state over 1012 seconds, or roughly 30,000 years. [Adapted from Venot et al. 2016]The authors found that the planets atmospheric compositions were significantly affected by the incoming stellar flare. The sudden increase in incoming photon flux changed the chemical abundances of several important molecular species, like hydrogen and ammonia which resulted in changes to the spectrum that would be observed during the planets transit.Permanent ImpactIn addition to demonstrating that a planets atmospheric composition changes during and immediately after a flare impact, Venot and collaborators show that the chemical alteration isnt temporary: the planets atmosphere doesnt fully return to its original state after the flare passes. Instead, the authors find that it settles to a new steady-state composition that can be significantly different from the pre-flare composition.For a planet that is repeatedly hit by stellar flares, therefore, its atmospheric composition never actually settles to a steady state. Instead it is continually and permanently modified by its hosts activity.Venot and collaborators demonstrate that the variations of planetary spectra due to stellar flares should be easily detectable by future missions like JWST. We must therefore be careful about the conclusions we draw about planetary atmospheres from measurements of their spectra.CitationOlivia Venot et al 2016 ApJ 830 77. doi:10.3847/0004-637X/830/2/77
Dynamical Constraints on Non-Transiting Planets at Trappist-1
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Truong, Vinh; Ford, Eric; Robertson, Paul; Terrien, Ryan
2018-04-01
The outermost of the seven known planets of Trappist-1 orbits six times closer to its host star than Mercury orbits the sun. The architecture of this system beyond 0.07 AU remains unknown. While the presence of additional planets will ultimately be determined by observations, in the meantime, some constraints can be derived from dynamical models.We will firstly look at the expected signature of additional planets at Trappist-1 on the transit times of the known planets to determine at what distances putatuve planets can be ruled out.Secondly, the remarkably compact configuration of Trappist-1 ensures that the known planets are secularly coupled, keeping their mutual inclinations very small and making their cotransiting geometry likely if Trappist-1h transits. We determine the range of masses and orbital inclinations of a putatuve outer planet that would make the observed configuration unlikely, and compare these to these constraints to those expected from radial velocity observations.
TrES-5: A MASSIVE JUPITER-SIZED PLANET TRANSITING A COOL G DWARF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandushev, Georgi; Dunham, Edward W.; Quinn, Samuel N.
2011-11-10
We report the discovery of TrES-5, a massive hot Jupiter that transits the star GSC 03949-00967 every 1.48 days. From spectroscopy of the star we estimate a stellar effective temperature of T{sub eff} = 5171 {+-} 36 K, and from high-precision B, R, and I photometry of the transit we constrain the ratio of the semimajor axis a and the stellar radius R{sub *} to be a/R{sub *} = 6.07 {+-} 0.14. We compare these values to model stellar isochrones to obtain a stellar mass of M{sub *} = 0.893 {+-} 0.024 M{sub Sun }. Based on this estimate andmore » the photometric time series, we constrain the stellar radius to be R{sub *} = 0.866 {+-} 0.013 R{sub Sun} and the planet radius to be R{sub p} = 1.209 {+-} 0.021 R{sub J}. We model our radial-velocity data assuming a circular orbit and find a planetary mass of 1.778 {+-} 0.063 M{sub J}. Our radial-velocity observations rule out line-bisector variations that would indicate a specious detection resulting from a blend of an eclipsing binary system. TrES-5 orbits one of the faintest stars with transiting planets found to date from the ground and demonstrates that precise photometry and followup spectroscopy are possible, albeit challenging, even for such faint stars.« less
Constraints on a Second Planet in the WASP-3 System
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Niedzielski, A.; Wolszczan, A.; Nowak, G.; Neuhäuser, R.; Winn, J. N.; Deka, B.; Adamów, M.; Górecka, M.; Fernández, M.; Aceituno, F. J.; Ohlert, J.; Errmann, R.; Seeliger, M.; Dimitrov, D.; Latham, D. W.; Esquerdo, G. A.; McKnight, L.; Holman, M. J.; Jensen, E. L. N.; Kramm, U.; Pribulla, T.; Raetz, St.; Schmidt, T. O. B.; Ginski, Ch.; Mottola, S.; Hellmich, S.; Adam, Ch.; Gilbert, H.; Mugrauer, M.; Saral, G.; Popov, V.; Raetz, M.
2013-12-01
There have been previous hints that the transiting planet WASP-3b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity (RV) measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The RV data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period. Partly based on (1) observations made at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), (2) data collected with telescopes at the Rozhen National Astronomical Observatory, and (3) observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
Emulating JWST Exoplanet Transit Observations in a Testbed laboratory experiment
NASA Astrophysics Data System (ADS)
Touli, D.; Beichman, C. A.; Vasisht, G.; Smith, R.; Krist, J. E.
2014-12-01
The transit technique is used for the detection and characterization of exoplanets. The combination of transit and radial velocity (RV) measurements gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density (Borucki et al. 2011) and therefore to its composition and evolutionary history. Transit spectroscopy can provide information on atmospheric composition and structure (Fortney et al. 2013). Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al. (2013). The transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). Spectroscopic measurements require still greater precision <30ppm. The Precision Projector Laboratory (PPL) is a collaboration between the Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) to characterize and validate detectors through emulation of science images. At PPL we have developed a testbed to project simulated spectra and other images onto a HgCdTe array in order to assess precision photometry for transits, weak lensing etc. for Explorer concepts like JWST, WFIRST, EUCLID. In our controlled laboratory experiment, the goal is to demonstrate ability to extract weak transit spectra as expected for NIRCam, NIRIS and NIRSpec. Two lamps of variable intensity, along with spectral line and photometric simulation masks emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Three masks have been used to simulate spectra in monochromatic light. These masks, which are fabricated at JPL, have a length of 1000 pixels and widths of 2 pixels, 10 pixels and 1 pixel to correspond respectively to the noted above JWST instruments. From many-hour long observing sequences, we obtain time series photometry with deliberate offsets introduced to test sensitivity to pointing jitter and other effects. We can modify the star-planet brightness contrast by factors up to 10^4:1. With cross correlation techniques we calculate positional shifts which are then used to decorrelate the effects of vertical and lateral offsets due to turbulence and instrumental vibrations on the photometry. Using Principal Component Analysis (PCA), we reject correlated temporal noise to achieve a precision lower than 50 ppm (Clanton et al. 2012). In our current work, after decorrelation of vertical and lateral offsets along with PCA, we achieve a precision of sim20 ppm. To assess the photometric precision we use the Allan variance (Allan 1987). This statistical method is used to characterize noise and stability as it indicates shot noise limited performance. Testbed experiments are ongoing to provide quantitative information on the achievable spectroscopic precision using realistic exoplanet spectra with the goal to define optimized data acquisition sequences for use, for example, with the James Webb Space Telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua
2014-06-10
Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Jayawardhana, Ray; Albert, Loic
We use the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope to observe four transits of the super-Earth planet GJ 1214b in the near-infrared. For each transit, we observe GJ 1214 in two bands nearly simultaneously by rapidly switching the WIRCam filter wheel back and forth for the duration of the observations. By combining all our J-band ({approx}1.25 {mu}m) observations we find a transit depth, analogous to the planet-to-star radius ratio squared, in this band of (R{sub PJ} /R{sub *}){sup 2} = (1.338 {+-} 0.013)%-a value consistent with the optical transit depth reported by Charbonneau and collaborators. However, our best-fitmore » combined K{sub s}-band ({approx}2.15 {mu}m) transit depth is deeper: (R{sub PKs} /R{sub *}){sup 2} = (1.438 {+-} 0.019)%. Formally, our K{sub s}-band transits are deeper than the J-band transits observed simultaneously by a factor of (R{sub PKs} /R{sub PJ}){sup 2} = 1.072 {+-} 0.018-a 4{sigma} discrepancy. The most straightforward explanation for our deeper K{sub s}-band transit depth is a spectral absorption feature from the limb of the atmosphere of the planet; for the spectral absorption feature to be this prominent, the atmosphere of GJ 1214b must have a large-scale height and a low mean molecular weight. That is, its atmosphere would have to be hydrogen/helium dominated and this planet would be better described as a mini-Neptune. However, recently published observations from 0.78 to 1.0 {mu}m, by Bean and collaborators, show a lack of spectral features and transit depths consistent with those obtained by Charbonneau and collaborators. The most likely atmospheric composition for GJ 1214b that arises from combining all these observations is less clear; if the atmosphere of GJ 1214b is hydrogen/helium dominated, then it must have either a haze layer that is obscuring transit-depth differences at shorter wavelengths or significantly different spectral features from what current models predict. Our observations disfavor a water-world composition, but such a composition will remain a possibility for GJ 1214b until observations reconfirm our deeper K{sub s}-band transit depth or detect features at other wavelengths.« less
OPTICAL HYDROGEN ABSORPTION CONSISTENT WITH A THIN BOW SHOCK LEADING THE HOT JUPITER HD 189733B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.
Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on themore » morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 R{sub p}. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of B{sub eq} = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.« less
The Gemini Planet-finding Campaign: The Frequency Of Giant Planets around Debris Disk Stars
NASA Astrophysics Data System (ADS)
Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Males, Jared R.; Skemer, Andrew; Ftaclas, Christ; Chun, Mark; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; de Gouveia Dal Pino, Elisabete M.; Alencar, Silvia H. P.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; Toomey, Douglas W.
2013-08-01
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >=5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a >=3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < -0.8 and/or α > 1.7. Likewise, we find that β < -0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a >=3 M Jup planet beyond 10 AU, and β < -0.8 and/or α < -1.5. Likewise, β < -0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation >40 AU and planet masses >3 M Jup do not carve the central holes in these disks. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Huigen; Zhang Hui; Zhou Jilin, E-mail: huigen@nju.edu.cn
Six P-type planets have been found thus far around five binary systems, i.e., Kepler-16b, 34b, 35b, 38b, and 47b and c, which are all Neptune- or Jupiter-like planets. The stability of planets and the habitable zones are influenced by the gravitational and radiative perturbations of binary companions. In this Letter, we check the stability of an additional habitable Earth-mass planet in each system. Based on our simulations in 10 Myr, a habitable ''Earth'' is hardly stable in Kepler-16, while a stable ''Earth'' in Kepler-47 close to the boundaries of the habitable zone is possible. In contrast, Kepler-34, 35, and 38more » seem to have high probabilities of being able to tolerante a stable ''Earth'' in their habitable zones. The affects of transit time variations are quite small due to the small mass of an undetected ''Earth,'' except that of Kepler-16b. With a time precision of 10{sup -3} day ({approx}88 s), an ''Earth'' in the corotational resonance with Kepler-16b can be detected in three years, while habitable ''Earths'' in the Kepler-34 and 38 systems can be detected in 10 yr. Habitable ''Earths'' in Kepler-35 and 47 are not likely to be detected in 10 yr under this precision.« less
Detection of titanium oxide in the atmosphere of a hot Jupiter.
Sedaghati, Elyar; Boffin, Henri M J; MacDonald, Ryan J; Gandhi, Siddharth; Madhusudhan, Nikku; Gibson, Neale P; Oshagh, Mahmoudreza; Claret, Antonio; Rauer, Heike
2017-09-13
As an exoplanet transits its host star, some of the light from the star is absorbed by the atoms and molecules in the planet's atmosphere, causing the planet to seem bigger; plotting the planet's observed size as a function of the wavelength of the light produces a transmission spectrum. Measuring the tiny variations in the transmission spectrum, together with atmospheric modelling, then gives clues to the properties of the exoplanet's atmosphere. Chemical species composed of light elements-such as hydrogen, oxygen, carbon, sodium and potassium-have in this way been detected in the atmospheres of several hot giant exoplanets, but molecules composed of heavier elements have thus far proved elusive. Nonetheless, it has been predicted that metal oxides such as titanium oxide (TiO) and vanadium oxide occur in the observable regions of the very hottest exoplanetary atmospheres, causing thermal inversions on the dayside. Here we report the detection of TiO in the atmosphere of the hot-Jupiter planet WASP-19b. Our combined spectrum, with its wide spectral coverage, reveals the presence of TiO (to a confidence level of 7.7σ), a strongly scattering haze (7.4σ) and sodium (3.4σ), and confirms the presence of water (7.9σ) in the atmosphere.
Kepler-432: A Red Giant Interacting with One of its Two Long-period Giant Planets
NASA Astrophysics Data System (ADS)
Quinn, Samuel N.; White, Timothy. R.; Latham, David W.; Chaplin, William J.; Handberg, Rasmus; Huber, Daniel; Kipping, David M.; Payne, Matthew J.; Jiang, Chen; Silva Aguirre, Victor; Stello, Dennis; Sliski, David H.; Ciardi, David R.; Buchhave, Lars A.; Bedding, Timothy R.; Davies, Guy R.; Hekker, Saskia; Kjeldsen, Hans; Kuszlewicz, James S.; Everett, Mark E.; Howell, Steve B.; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P.; Karoff, Christoffer; Kawaler, Steven D.; Lund, Mikkel N.; Lundkvist, Mia; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry
2015-04-01
We report the discovery of Kepler-432b, a giant planet ({{M}b}=5.41-0.18+0.32 {{M}Jup}, {{R}b}=1.145-0.039+0.036 {{R}Jup}) transiting an evolved star ({{M}\\star }=1.32-0.07+0.10 {{M}⊙ },{{R}\\star }=4.06-0.08+0.12 {{R}⊙ }) with an orbital period of {{P}b}=52.501129-0.000053+0.000067 days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.5134-0.0089+0.0098, which we also measure independently with asterodensity profiling (AP; e=0.507-0.114+0.039), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; {{M}c}sin {{i}c}=2.43-0.24+0.22 {{M}Jup}, {{P}c}=406.2-2.5+3.9 days), and adaptive optics imaging revealed a nearby (0\\buildrel{\\prime\\prime}\\over{.} 87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.
Alpha Elements' Effects on Planet Formation and the Hunt for Extragalactic Planets
NASA Astrophysics Data System (ADS)
Penny, Matthew; Rodriguez, Joseph E.; Beatty, Thomas; Zhou, George
2018-01-01
A star's likelihood of hosting a giant planet is well known to be strongly dependent on metallicity. However, little is known about what elements cause this correlation (e.g. bulk metals, iron, or alpha elements such as silicon and oxygen). This is likely because most planet searches target stars in the Galactic disk, and due to Galactic chemical evolution, alpha element abundances are themselves correlated with metallicity within a population. We investigate the feasibility of simultaneous transiting planet search towards the alpha-poor Sagittarius dwarf galaxy and alpha-rich Galactic bulge in a single field of view of DECam, that would enable a comparative study of planet frequency over an [alpha/Fe] baseline of ~0.4 dex. We show that a modestly sized survey could detect planet candidates in both populations, but that false positive rejection in Sgr Dwarf may be prohibitively expensive. Conversely, two-filter survey observations alone would be sufficient to rule out a large fraction of bulge false positives, enabling statistical validation of candidates with a modest follow-up investment. Although over a shorter [alpha/Fe] baseline, this survey would provide a test of whether it is alpha or iron that causes the planet metallicity correlation.
TRAPPIST-1 System - Artist Concept
2017-08-11
This illustration shows what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial, according to research published in 2017 in the journal Nature. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it. They are likely all tidally locked, meaning the same face of the planet is always pointed at the star, as the same side of our moon is always pointed at Earth. This creates a perpetual night side and perpetual day side on each planet. TRAPPIST-1b and c receive the most light from the star and would be the warmest. TRAPPIST-1e, f and g all orbit in the habitable zone, the area where liquid water is most likely to be detected. But any of the planets could potentially harbor liquid water, depending on their compositions. https://photojournal.jpl.nasa.gov/catalog/PIA21751
Harrington, Joseph; Luszcz, Statia; Seager, Sara; Deming, Drake; Richardson, L Jeremy
2007-06-07
Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties. Previous reports of planetary thermal emission give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets' received radiation, assuming a Bond albedo of approximately 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 +/- 200 K at 8 microm. The planet's predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 microm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.
Finding False Positives Planet Candidates Due To Background Eclipsing Binaries in K2
NASA Astrophysics Data System (ADS)
Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey; DAVE Team
2016-06-01
We adapt the difference image centroid approach, used for finding background eclipsing binaries, to vet K2 planet candidates. Difference image centroids were used with great success to vet planet candidates in the original Kepler mission, where the source of a transit could be identified by subtracting images of out-of-transit cadences from in-transit cadences. To account for K2's roll pattern, we reconstruct out-of-transit images from cadences that are nearby in both time and spacecraft roll angle. We describe the method and discuss some K2 planet candidates which this method suggests are false positives.
NASA Astrophysics Data System (ADS)
Schmidt, T. O. B.; Neuhäuser, R.; Briceño, C.; Vogt, N.; Raetz, St.; Seifahrt, A.; Ginski, C.; Mugrauer, M.; Buder, S.; Adam, C.; Hauschildt, P.; Witte, S.; Helling, Ch.; Schmitt, J. H. M. M.
2016-09-01
Context. Direct imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can be both followed astrometrically on their orbits and observed spectroscopically and thus provide an essential tool for our understanding of the early solar system. Aims: We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting planet candidate. Methods: We report on photometric and spectroscopic high-contrast observations with the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory. They reveal a directly imaged planet candidate close to the young M3 star CVSO 30. Results: The JHK-band photometry of the newly identified candidate is at better than 1σ consistent with late-type giants, early-T and early-M dwarfs, and free-floating planets. Other hypotheses such as galaxies can be excluded at more than 3.5σ. A lucky imaging z' photometric detection limit z' = 20.5 mag excludes early-M dwarfs and results in less than 10 MJup for CVSO 30 c if bound. We present spectroscopic observations of the wide companion that imply that the only remaining explanation for the object is that it is the first very young (<10 Myr) L - T-type planet bound to a star, meaning that it appears bluer than expected as a result of a decreasing cloud opacity at low effective temperatures. Only a planetary spectral model is consistent with the spectroscopy, and we deduce a best-fit mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses). Conclusions: This means that CVSO 30 is the first system in which both a close-in and a wide planet candidate are found to have a common host star. The orbits of the two possible planets could not be more different: they have orbital periods of 10.76 h and about 27 000 yr. The two orbits may have formed during a mutual catastrophic event of planet-planet scattering. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 090.C-0448(A), 290.C-5018(B), 092.C-0488(A) and at the Centro Astronómico Hispano-Alemán in programme H15-2.2-002.
The Gemini Planet Imager Exoplanet Survey
NASA Astrophysics Data System (ADS)
Macintosh, Bruce
The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (<100 Myr, <75 pc) and adolescent (<300 Myr, <35 pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle artifacts and provides accurate and calibrated recovery of exoplanet spectra. We will produce a complete archive of all reduced GPI data products (supplementing the existing Gemini archive of raw data) for use by our collaboration, and release that archive to the public on an 18-month cycle. Most importantly, we will execute the GPI observations, initially through classical telescope visits, transitioning to remote and queue modes as our techniques are refined. As the first direct-imaging planet search with statistical depth comparable to Doppler planet detection and the first to probe into the snow line, the GPI Exoplanet Survey will provide strong constraints on paradigms for planet formation, completing the picture of the giant planet distribution throughout other solar systems, and also illuminating its evolution with stellar age and mass. We will deliver a catalog of detected exoplanets— the principal legacy of this campaign—released for follow-up by the astronomical community within 18 months of observation, as well as searchable archive of fully reduced images and detection limits for all stars surveyed. For each detected planet, we will produce estimated effective temperatures, luminosities, and semi-major axes: for a subset, high-SNR fiducial spectra, orbital eccentricities, and dynamical characterization through polarimetric imaging of attendant debris disks. GPI will complete final acceptance testing this month (May 2013) and is now ready to ship to Chile for first light in September 2013. The GPI survey will provide the best-yet view of the nature of wide-orbit planetary companions, informing our knowledge of solar system formation to guide future NASA planet hunting missions, while simultaneously offering a real- world program using the techniques - from integral field spectroscopy to advanced coronagraphy - that will someday be used to directly image Earthlike planets from space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Marshall, Jonathan P., E-mail: rob@phys.unsw.edu.au
2015-02-01
Solid material in protoplanetary disks will suffer one of two fates after the epoch of planet formation; either being bound up into planetary bodies, or remaining in smaller planetesimals to be ground into dust. These end states are identified through detection of sub-stellar companions by periodic radial velocity (or transit) variations of the star, and excess emission at mid- and far-infrared wavelengths, respectively. Since the material that goes into producing the observable outcomes of planet formation is the same, we might expect these components to be related both to each other and their host star. Heretofore, our knowledge of planetarymore » systems around other stars has been strongly limited by instrumental sensitivity. In this work, we combine observations at far-infrared wavelengths by IRAS, Spitzer, and Herschel with limits on planetary companions derived from non-detections in the 16 year Anglo-Australian Planet Search to clarify the architectures of these (potential) planetary systems and search for evidence of correlations between their constituent parts. We find no convincing evidence of such correlations, possibly owing to the dynamical history of the disk systems, or the greater distance of the planet-search targets. Our results place robust limits on the presence of Jupiter analogs which, in concert with the debris disk observations, provides insights on the small-body dynamics of these nearby systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipping, D. M.; Hartman, J.; Bakos, G. A.
2013-06-20
From the list of 2321 transiting planet candidates announced by the Kepler Mission, we select seven targets with favorable properties for the capacity to dynamically maintain an exomoon and present a detectable signal. These seven candidates were identified through our automatic target selection (TSA) algorithm and target selection prioritization (TSP) filtering, whereby we excluded systems exhibiting significant time-correlated noise and focused on those with a single transiting planet candidate of radius less than 6 R{sub Circled-Plus }. We find no compelling evidence for an exomoon around any of the seven Kepler Objects of Interest (KOIs) but constrain the satellite-to-planet massmore » ratios for each. For four of the seven KOIs, we estimate a 95% upper quantile of M{sub S} /M{sub P} < 0.04, which given the radii of the candidates, likely probes down to sub-Earth masses. We also derive precise transit times and durations for each candidate and find no evidence for dynamical variations in any of the KOIs. With just a few systems analyzed thus far in the ongoing ''Hunt for Exomoons with Kepler'' (HEK) project, projections on eta-moon would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would be premature, but a high frequency of large moons around Super-Earths/Mini-Neptunes would appear to be incommensurable with our results so far.« less
NASA Astrophysics Data System (ADS)
Mann, Andrew W.; Vanderburg, Andrew; Rizzuto, Aaron C.; Kraus, Adam L.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Esquerdo, Gilbert A.; Latham, David W.; Mace, Gregory N.; Morris, Nathan R.; Quinn, Samuel N.; Sokal, Kimberly R.; Stefanik, Robert P.
2018-01-01
Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth ({0.99}-0.04+0.06{R}\\oplus ), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of {2.91}-0.10+0.11{R}\\oplus and {1.45}-0.08+0.11{R}\\oplus , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts.
PASTIS: Bayesian extrasolar planet validation - I. General framework, models, and performance
NASA Astrophysics Data System (ADS)
Díaz, R. F.; Almenara, J. M.; Santerne, A.; Moutou, C.; Lethuillier, A.; Deleuil, M.
2014-06-01
A large fraction of the smallest transiting planet candidates discovered by the Kepler and CoRoT space missions cannot be confirmed by a dynamical measurement of the mass using currently available observing facilities. To establish their planetary nature, the concept of planet validation has been advanced. This technique compares the probability of the planetary hypothesis against that of all reasonably conceivable alternative false positive (FP) hypotheses. The candidate is considered as validated if the posterior probability of the planetary hypothesis is sufficiently larger than the sum of the probabilities of all FP scenarios. In this paper, we present PASTIS, the Planet Analysis and Small Transit Investigation Software, a tool designed to perform a rigorous model comparison of the hypotheses involved in the problem of planet validation, and to fully exploit the information available in the candidate light curves. PASTIS self-consistently models the transit light curves and follow-up observations. Its object-oriented structure offers a large flexibility for defining the scenarios to be compared. The performance is explored using artificial transit light curves of planets and FPs with a realistic error distribution obtained from a Kepler light curve. We find that data support the correct hypothesis strongly only when the signal is high enough (transit signal-to-noise ratio above 50 for the planet case) and remain inconclusive otherwise. PLAnetary Transits and Oscillations of stars (PLATO) shall provide transits with high enough signal-to-noise ratio, but to establish the true nature of the vast majority of Kepler and CoRoT transit candidates additional data or strong reliance on hypotheses priors is needed.
RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragomir, Diana; Benneke, Björn; Pearson, Kyle A.
2015-12-01
GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloanmore » i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes.« less
Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp
2014-08-01
We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less
WASP-42 b and WASP-49 b: two new transiting sub-Jupiters
NASA Astrophysics Data System (ADS)
Lendl, M.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Gillon, M.; Hellier, C.; Jehin, E.; Lister, T. A.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B.; Ségransan, D.; Smith, A. M. S.; Triaud, A. H. M. J.; Udry, S.; West, R. G.; Wheatley, P. J.
2012-08-01
We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500 ± 0.035 MJ planet orbiting a K1 star at a separation of 0.0548 ± 0.0017 AU with a period of 4.9816872 ± 7.3 × 10-6 days. The radius of WASP-42 b is 1.080 ± 0.057 RJ while its equilibrium temperature is Teq = 995 ± 34 K. We detect some evidence for a small but non-zero eccentricity of e = 0.060 ± 0.013. WASP-49 b is a 0.378 ± 0.027 MJ planet around an old G6 star. It has a period of 2.7817387 ± 5.6 × 10-6 days and a separation of 0.0379 ± 0.0011 AU. This planet is slightly bloated, having a radius of 1.115 ± 0.047 RJ and an equilibrium temperature of Teq = 1369 ± 39 K. Both planets have been followed up photometrically, and in total we have obtained 5 full and one partial transit light curves of WASP-42 and 4 full and one partial light curves of WASP-49 using the Euler-Swiss, TRAPPIST and Faulkes South telescopes. Based on photometric observations made with WASP-South, EulerCam on the Euler-Swiss telescope, the Belgian TRAPPIST telescope, the Faulkes South Telescope and spectroscopic observations obtained with CORALIE on the Euler-Swiss telescope and HARPS on the ESO 3.6 m telescope (Prog. ID: 087.C-0649).The photometric time series and radial velocity data in this work are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A72
Are we alone? Stories from the frontline of Kepler's search for Earth's twin (Presentation Video)
NASA Astrophysics Data System (ADS)
Jenkins, Jon
2013-10-01
Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on the planetary surface and support alien biology. Never before has there been a photometer capable of reaching a precision near 20 ppm in 6.5 hours while conducting nearly continuous and uninterrupted observations for several years. The flood of exquisite photometric data over the last 4 years on 190,000+ stars has provoked a watershed of results. Over 2,700+ candidate planets have been identified of which an astounding 1171 orbit 467 stars. Over 120+ planets have confirmed or validated and the data have also led to a resounding revolution in asteroseismology. Recent discoveries include Kepler-62 with 5 planets total of which 2 are in the habitable zone, and are 1.4 and 1.7 times the radius of the Earth. Designing and building the Kepler photometer and the software systems that process and analyze the resulting data presented a daunting set of challenges, including how to manage the large data volume, how to detect miniscule transit signatures against stellar variability and instrumental effects, and how to review hundreds of diagnostics produced for each of ~20,000 candidate transit signatures. The challenges continue into flight operations, as the photometer and spacecraft have experienced aging and changes in hardware performance over the course of time. The success of Kepler sets the stage for TESS, NASA's next mission to detect Earth's closest cousins.
Hints of Period Change for OGLE-TR-113b
NASA Astrophysics Data System (ADS)
Adams, Elisabeth R.; Lopez-Morales, M.; Elliot, J. L.; Seager, S.; Osip, D. J.
2010-10-01
We present six new transits of the hot Jupiter OGLE-TR-113b observed with MagIC on the Magellan Telescopes between January 2007 and May 2009. We update the system parameters and revise the planetary radius, where the error is dominated by stellar radius uncertainties. The new transit midtimes reveal no transit timing variations from a constant ephemeris over two years, which places an upper limit of 1-2 Earth masses on any perturber in a 1:2 or 2:1 mean-motion resonance with OGLE-TR-113b. Combining the new transit epochs with five epochs published between 2002 and 2006, we find hints that the orbital period of the planet may not be constant, with the best fit indicating the period is decreasing by 60±15 milliseconds per year. If real, this change in period could result from either a long-period (more than 8 years) timing variation due to an external perturber, or more intriguingly from the orbital decay of the planet. The detection of a changing period is still tentative and must be checked with additional observations. If a period decay is confirmed, OGLE-TR-113b will be the first planet observed to be falling onto its star. This would enable direct tests of tidal stability and dynamical models of close-in planets and place observational constraints on the value of stellar tidal energy dissipation factors. This work was supported in part by NASA Origins grant NNX07AN63G and Hubble Fellowship grant HF-01210.01-A/HF-51233.01 awarded by the STScI, which is operated by the AURA, Inc. for NASA, under contract NAS5-26555.
Investigating dust trapping in transition disks with millimeter-wave polarization
NASA Astrophysics Data System (ADS)
Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.
2016-08-01
Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For intermediate inclined transition disks, the polarization degree is as high as ~2% at λ = 3.1 mm (band 3), which is well above the detection limit of future ALMA observations.
Differential rotation of stars with multiple transiting planets
NASA Astrophysics Data System (ADS)
Netto, Yuri; Valio, Adriana
2017-10-01
If a star hosts a planet in an orbit such that it eclipses the star periodically, can be estimated the rotation profile of this star. If planets in multiplanetary system occult different stellar areas, spots in more than one latitude of the stellar disc can be detected. The monitored study of theses starspots in different latitudes allow us to infer the rotation profile of the star. We use the model described in Silva (2003) to characterize the starspots of Kepler-210, an active star with two planets. Kepler-210 is a late K star with an estimated age of 350 +/- 50 Myrs, average rotation period of 12.33 days, mass of 0.63 M⊙ and radius of 0.69 R⊙. The planets that eclipses this star have radii of 0.0498 R s and 0.0635 R s with orbital periods of 2.4532 +/- 0.0007 days and 7.9725 +/- 0.0014 days, respectively, where R s is the star radius.
Extending and Characterizing an Exoplanet System in a Pristine Chain of Resonances
NASA Astrophysics Data System (ADS)
Christiansen, Jessie; Gorjian, Varoujan; Hardegree-Ullman, Kevin; Livingston, John; Dressing, Courtney; Barclay, Thomas; Lintott, Chris; Ciardi, David; Barentson, Geert; Kristiansen, Martti; Crossfield, Ian; Benneke, Bjorn; Howard, Andrew
2018-01-01
The K2-138 (EPIC 245950175; 2MASS J23154776-1050590) exoplanet system was recently identified in the K2 mission campaign 12 data (Christiansen et al. 2018). The moderately bright (K=10.3) K1V star hosts at least five sub-Neptune planets (1.6-3.3 Re) in a compact configuration, all with periods shorter than 13 days. The five confirmed planets in the system form an unbroken chain of near first-order mean motion resonances, with each successive pair of planets having close to a 3:2 commensurability; this is the longest such chain as yet discovered. The K2 data contain two additional transits which, if confirmed as due to a sixth planet, could extend the chain even further. Due to the proximity of the K2-138 planets to mean motion resonances, it is an ideal target to search for transit timing variations (TTVs). In order to further both of these time-critical and important science cases, we propose for DDT time to capture a third transit of the candidate sixth planet, and also observe a chance nearby cluster of three transits of planets b, c, and d. (12hr for the 6th planet was approved.)
The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362
NASA Astrophysics Data System (ADS)
Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.
2009-06-01
Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks may be actively leaving the primordial disk phase. Thus, gas giant planet formation may also occur by ~5 Myr around solar/subsolar-mass stars as well.
NASA Technical Reports Server (NTRS)
Borucki, William J. (Editor); Lasher, Lawrence E. (Editor)
2001-01-01
The discoveries of extrasolar planets by Wolszczan, Mayor and Queloz, Butler et al., and others have stimulated a widespread effort to obtain a body of data sufficient to understand their occurrence and characteristics. Doppler velocity techniques have found dozens of extrasolar planets with masses similar to that of Jupiter. Approximately ten percent of the stars that show planets with orbital periods of a few days to a week are expected to show transits. With the mass obtained from Doppler velocity measurements and the size from transit photometry, the densities of the planets can be determined. Theoretical models of the structure of "hot Jupiters" (i.e., those planets within a tenth of an astronomical unit (AU) of the parent star) indicate that these planets should be substantially larger in size and lower in density than Jupiter. Thus the combination of transit and Doppler velocity measurements provide a critical test of the theories of planetary structure. Furthermore, because photometry can be done with small-aperture telescopes rather than requiring the use of much larger telescopes, transit photometry should also reduce the cost of discovering extrasolar planets.
TWO SMALL PLANETS TRANSITING HD 3167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderburg, Andrew; Bieryla, Allyson; Latham, David W.
2016-09-20
We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R {sub ⊕} and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R {sub ⊕} and orbits its host star every 29.85 days. At a distance of just 45.8 ± 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167more » b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets’ masses. The outer planet is large enough that it likely has a thick gaseous envelope that could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope .« less
NASA Astrophysics Data System (ADS)
Kipping, D. M.; Torres, G.; Henze, C.; Teachey, A.; Isaacson, H.; Petigura, E.; Marcy, G. W.; Buchhave, L. A.; Chen, J.; Bryson, S. T.; Sandford, E.
2016-04-01
Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91+/- 0.02) {R}{{J}}, a low orbital eccentricity ({0.06}-0.04+0.10), and an equilibrium temperature of (131+/- 3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323 ± 0.0006d), paving the way for follow-up of this K = 11.8 mag target.
Milli-magnitude IR Transit Detection: OGLE-TR-113
NASA Astrophysics Data System (ADS)
Ramírez-Alegría, S.; Minniti, D.; Fernández, J. M.; Ruiz, M. T.; Gieren, W.; Pietrzynski, G.; Zoccali, M.; Ivanov, V.
2006-06-01
OGLE-TR-113-b is a giant exoplanet that was discovered independently by Bouchy et al. (2004, A&A, 421, L13), and by Konacki et al. (2004, ApJ, 609, L37). We present high quality near-IR and optical data during the transit of this planet in front of the star OGLE-TR-113 (V=14.42, α =10:52:24.4 and δ =-61:26:48.5). The K-band observations were obtained in May 2005 with SOFI+NTT, located at ESO La Silla (Chile), and the V-band observations were obtained in April 2005 with VIMOS+VLT, located at ESO Paranal (Chile). After the data reduction process and difference image photometry, it was possible to achieve millimagnitude precision for the transit light curves in both bands. The planetary transit is clearly seen for the first time in the K-band, with similar amplitudes A = 0.03 mag in both V, I, and K, confirming the planetary size of the OGLE-TR-113 companion. Our monitoring program for this and other OGLE transit candidates using accurate optical and near-IR photometry allows us to discard false positives (binaries, blends, giants, etc), and to refine the star/planet parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrycky, Daniel C.; Lissauer, Jack J.; Rowe, Jason F.
We report on the orbital architectures of Kepler systems having multiple-planet candidates identified in the analysis of data from the first six quarters of Kepler data and reported by Batalha et al. (2013). These data show 899 transiting planet candidates in 365 multiple-planet systems and provide a powerful means to study the statistical properties of planetary systems. Using a generic mass-radius relationship, we find that only two pairs of planets in these candidate systems (out of 761 pairs total) appear to be on Hill-unstable orbits, indicating ∼96% of the candidate planetary systems are correctly interpreted as true systems. We findmore » that planet pairs show little statistical preference to be near mean-motion resonances. We identify an asymmetry in the distribution of period ratios near first-order resonances (e.g., 2:1, 3:2), with an excess of planet pairs lying wide of resonance and relatively few lying narrow of resonance. Finally, based upon the transit duration ratios of adjacent planets in each system, we find that the interior planet tends to have a smaller transit impact parameter than the exterior planet does. This finding suggests that the mode of the mutual inclinations of planetary orbital planes is in the range 1.°0-2.°2, for the packed systems of small planets probed by these observations.« less
NASA Astrophysics Data System (ADS)
Maciejewski, G.; Dimitrov, D.; Seeliger, M.; Raetz, St.; Bukowiecki, Ł.; Kitze, M.; Errmann, R.; Nowak, G.; Niedzielski, A.; Popov, V.; Marka, C.; Goździewski, K.; Neuhäuser, R.; Ohlert, J.; Hinse, T. C.; Lee, J. W.; Lee, C.-U.; Yoon, J.-N.; Berndt, A.; Gilbert, H.; Ginski, Ch.; Hohle, M. M.; Mugrauer, M.; Röll, T.; Schmidt, T. O. B.; Tetzlaff, N.; Mancini, L.; Southworth, J.; Dall'Ora, M.; Ciceri, S.; Zambelli, R.; Corfini, G.; Takahashi, H.; Tachihara, K.; Benkő, J. M.; Sárneczky, K.; Szabo, Gy. M.; Varga, T. N.; Vaňko, M.; Joshi, Y. C.; Chen, W. P.
2013-03-01
Aims: The transiting planet WASP-12 b was identified as a potential target for transit-timing studies because a departure from a linear ephemeris has been reported in the literature. Such deviations could be caused by an additional planet in the system. We attempt to confirm the claimed variations in transit timing and interpret their origin. Methods: We organised a multi-site campaign to observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre telescopes. Results: We obtained 61 transit light curves, many of them with sub-millimagnitude precision. The simultaneous analysis of the best-quality datasets allowed us to obtain refined system parameters, which agree with values reported in previous studies. The residuals versus a linear ephemeris reveal a possible periodic signal that may be approximated by a sinusoid with an amplitude of 0.00068 ± 0.00013 d and period of 500 ± 20 orbital periods of WASP-12 b. The joint analysis of timing data and published radial velocity measurements results in a two-planet model that explains observations better than do single-planet scenarios. We hypothesise that WASP-12 b might not be the only planet in the system, and there might be the additional 0.1 MJup body on a 3.6-d eccentric orbit. A dynamical analysis indicates that the proposed two-planet system is stable on long timescales. Partly based on (1) data collected with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, (2) observations made at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), (3) data collected with telescopes at the Rozhen National Astronomical Observatory, and (4) observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.Tables 2 and 3 are available in electronic form at http://www.aanda.orgLight curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A108
Spectroscopic Characterization of Key Aromatic Molecules: A Route toward The Origin of Life.
Puzzarini, Cristina; Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo; Murphy, Thomas E; Drew, Dennis; Ali, Ashraf
2017-08-04
To gain information on the abiotic synthesis of the building blocks of life from simple molecules, and their subsequent chemical evolution to biological systems, the starting point is the identification of target species in Titan-like planets, i.e., planets that resemble the primitive Earth, as well as in Earth-like planets in the habitable zone of their star, namely planets where life can be already originated. In this scenario, molecular spectroscopy plays a crucial role because spectroscopic signatures are at the basis of an unequivocal proof for the presence of these target molecules. Thanks to the advances in many different techniques and to the NASA successful Kepler exoplanet transit mission, thousands of diverse planets outside of our solar system have been discovered. The James Webb Space Telescope (JWST), scheduled to be launched in 2018, will be very helpful in the identification of biosignature gases in Earth-like planets' atmospheres and of prebiotic molecule signatures in Titan-like atmospheres by observing their absorption during transits. While the search for key-target molecules in exoplanet atmospheres can be carried out by the JWST Transit Spectroscopy in the infrared (IR) region (0.6 - 29 µm wavelength range), opportunities for their detection in protostellar cores, protoplanetary disks and on Titan are also offered by the interferometric high spectral and spatial resolution observations using the Atacama Large Millimeter/submillimeter Array (ALMA). In the present work, target molecules have been selected and their spectroscopic characterization presented in view of supporting their infrared and complementary millimeter/submillimeter-wave spectral observations. In detail, the selected target molecules include: (1) the three-membered oxygen-containing heterocycles: oxirane and protonated oxirane, (2) the cyclopropenyl cation and its methyl derivative, (3) two examples of ortho- and peri-fused tri-cyclic aromatic rings, i.e., the phenalenyl cation (C 13 H 9 + ) and anion (C 13 H 9 -), and (4) uracil, a specific RNA base.
Search for an evaporating ocean on the super-Earth HIP 116454b
NASA Astrophysics Data System (ADS)
Bourrier, Vincent
2017-08-01
The super-Earth HIP116454b was the first exoplanet detected by the K2 mission, in transit across a bright and nearby K1 dwarf (V=10.2, d=55 pc). The low density of the planet suggests it must have at least 30% water or a 0.5% H-He envelope. Given the strong XUV irradiation from the young (2 Gyr) host star, this H-He envelope should have been lost through evaporation in a few hundred millions year, suggesting that HIP 116454b likely contains a large mass fraction of water. The shallow transit depth makes difficult the search for water vapor in the lower atmosphere with HST/WFC3. The moderate orbital distance of this warm ( 700 K) planet favors the formation of a super-critical steam envelope, which should be promptly dissociated at high altitude by the XUV irradiation and become observable as hydrogen flowing within and beyond the Roche lobe. The host star is similar to HD 189733, host to an evaporating hot Jupiter, and numerical simulations of HIP116454b show that the hydrogen exosphere resulting from the dissociation of water is observable with HST/STIS at Ly-alpha. The detection of this exosphere would be the first signature of an evolved evaporating ocean on an extrasolar planet, as well as the first validation of internal structure models of exoplanets in this mass regime. It would also determine how to best search for water in the lower atmosphere of HIP116454b with the JWST. A non-detection of escaping hydrogen, as with 55 Cnc e and HD 97658b, would bring useful constraints on the nature of the planetary atmosphere, the evolutionary path of close-in super-Earths, and the progenitors of the rocky evaporation remnants detected by Kepler.
NASA Astrophysics Data System (ADS)
Castro, Ana I. Gómez de; Beitia-Antero, Leire; Ustamujic, Sabina
2018-04-01
Observations of the Earth's exosphere have unveiled an extended envelope of hydrogen reaching further than 10 Earth radii composed of atoms orbiting around the Earth. This large envelope increases significantly the opacity of the Earth to Lyman α (Ly α) photons coming from the Sun, to the point of making feasible the detection of the Earth's transit signature from 1.35 pc if pointing with an 8 meter primary mirror space telescope through a clean line of sight ( N H < 1017 cm- 2), as we show. In this work, we evaluate the potential detectability of Earth analogs orbiting around nearby M-type stars by monitoring the variability of the Ly α flux variability. We show that, in spite of the interstellar, heliospheric and astrospheric absorption, the transit signature in M5 V type stars would be detectable with a dedicated Ly α flux monitor implemented in a 4-8 m class space telescope. Such monitoring programs would enable measuring the robustness of planetary atmospheres under heavy space weather conditions like those produced by M-type stars. A 2-m class telescope, such as the World Space Observatory, would suffice to detect an Earth-like planet orbiting around Proxima Centauri, if there was such a planet or nearby M5 type stars.
A system of three transiting super-Earths in a cool dwarf star
NASA Astrophysics Data System (ADS)
Díez Alonso, E.; Suárez& Gómez, S. L.; González Hernández, J. I.; Suárez Mascareño, A.; González Gutiérrez, C.; Velasco, S.; Toledo-Padrón, B.; de Cos Juez, F. J.; Rebolo, R.
2018-05-01
We present the detection of three super-Earths transiting the cool star LP415-17, monitored by K2 mission in its 13th campaign. High-resolution spectra obtained with High Accuracy Radial velocity Planet Searcher-North/Telescopio Nazionale Galileo (HARPS-N/TNG) showed that the star is a mid-late K dwarf. Using spectral synthesis models, we infer its effective temperature, surface gravity, and metallicity, and subsequently determined from evolutionary models a stellar radius of 0.58 R⊙. The planets have radii of 1.8, 2.6, and 1.9 R⊕ and orbital periods of 6.34, 13.85, and 40.72 d. High-resolution images discard any significant contamination by an intervening star in the line of sight. The orbit of the furthest planet has radius of 0.18 au, close to the inner edge of the habitable zone. The system is suitable to improve our understanding of formation and dynamical evolution of super-Earth systems in the rocky-gaseous threshold, their atmospheres, internal structure, composition, and interactions with host stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, F.; Zhao, G.; Fosbury, R. A. E.
Due to stellar rotation, the observed radial velocity of a star varies during the transit of a planet across its surface, a phenomenon known as the Rossiter–McLaughlin (RM) effect. The amplitude of the RM effect is related to the radius of the planet which, because of differential absorption in the planetary atmosphere, depends on wavelength. Therefore, the wavelength-dependent RM effect can be used to probe the planetary atmosphere. We measure for the first time the RM effect of the Earth transiting the Sun using a lunar eclipse observed with the ESO High Accuracy Radial velocity Planet Searcher spectrograph. We analyzemore » the observed RM effect at different wavelengths to obtain the transmission spectrum of the Earth’s atmosphere after the correction of the solar limb-darkening and the convective blueshift. The ozone Chappuis band absorption as well as the Rayleigh scattering features are clearly detectable with this technique. Our observation demonstrates that the RM effect can be an effective technique for exoplanet atmosphere characterization. Its particular asset is that photometric reference stars are not required, circumventing the principal challenge for transmission spectroscopy studies of exoplanet atmospheres using large ground-based telescopes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray, E-mail: esteves@astro.utoronto.ca, E-mail: demooij@astro.utoronto.ca, E-mail: rayjay@yorku.ca
We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. Our analysis found fourteen systems with significant detections in each of the phase curve components: planet’s phase function, secondary eclipse, Doppler boosting, and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. Most planets manifest low optical geometric albedos (< 0.25), with the exception of Kepler-10b, Kepler-91b, and KOI-13b. We find that KOI-13b, with a small eccentricity of 0.0006 ± 0.0001,more » is the only planet for which an eccentric orbit is favored. We detect a third harmonic for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al.: both could be due to their spin–orbit misalignments. For six planets, we report a planetary brightness peak offset from the substellar point: of those, the hottest two (Kepler-76b and HAT-P-7b) exhibit pre-eclipse shifts or on the evening-side, while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) peak post-eclipse or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet’s temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted toward the evening-side, as theoretically predicted, while reflected light dominates cooler planets with clouds on the planet’s morning-side.« less
Multi-band transit observations of the TrES-2b exoplanet
NASA Astrophysics Data System (ADS)
Mislis, D.; Schröter, S.; Schmitt, J. H. M. M.; Cordes, O.; Reif, K.
2010-02-01
We present a new data set of transit observations of the TrES-2b exoplanet taken in spring 2009, using the 1.2 m Oskar-Lühning telescope (OLT) of Hamburg Observatory and the 2.2 m telescope at Calar Alto Observatory using BUSCA (Bonn University Simultaneous CAmera). Both the new OLT data, taken with the same instrumental setup as our data taken in 2008, as well as the simultaneously recorded multicolor BUSCA data confirm the low inclination values reported previously, and in fact suggest that the TrES-2b exoplanet has already passed the first inclination threshold (imin,1 = 83.417°) and is not eclipsing the full stellar surface any longer. Using the multi-band BUSCA data we demonstrate that the multicolor light curves can be consistently fitted with a given set of limb darkening coefficients without the need to adjust these coefficients, and further, we can demonstrate that wavelength dependent stellar radius changes must be small as expected from theory. Our new observations provide further evidence for a change of the orbit inclination of the transiting extrasolar planet TrES-2b reported previously. We examine in detail possible causes for this inclination change and argue that the observed change should be interpreted as nodal regression. While the assumption of an oblate host star requires an unreasonably large second harmonic coefficient, the existence of a third body in the form of an additional planet would provide a very natural explanation for the observed secular orbit change. Given the lack of clearly observed short-term variations of transit timing and our observed secular nodal regression rate, we predict a period between approximately 50 and 100 days for a putative perturbing planet of Jovian mass. Such an object should be detectable with present-day radial velocity (RV) techniques, but would escape detection through transit timing variations. Photometric transit data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Teruyuki; Masuda, Kento; Suto, Yasushi
We report a joint analysis of the Rossiter-McLaughlin (RM) effect with Subaru and the Kepler photometry for the Kepler Object of Interest (KOI) 94 system. The system is comprised of four transiting planet candidates with orbital periods of 22.3 (KOI-94.01), 10.4 (KOI-94.02), 54.3 (KOI-94.03), and 3.7 (KOI-94.04) days from the Kepler photometry. We performed the radial velocity (RV) measurement of the system with the Subaru 8.2 m telescope on UT 2012 August 10, covering a complete transit of KOI-94.01 for {approx}6.7 hr. The resulting RV variation due to the RM effect spectroscopically confirms that KOI-94.01 is indeed the transiting planetmore » and implies that its orbital axis is well aligned with the stellar spin axis; the projected spin-orbit angle {lambda} is estimated as -6{sup +13}{sub -11} deg. This is the first measurement of the RM effect for a multiple transiting system. Remarkably, the archived Kepler light curve around BJD = 2455211.5 (date in UT 2010 January 14/15) indicates a 'double-transit' event of KOI-94.01 and KOI-94.03, in which the two planets transit the stellar disk simultaneously. Moreover, the two planets partially overlap with each other, and exhibit a 'planet-planet eclipse' around the transit center. This provides a rare opportunity to put tight constraints on the configuration of the two transiting planets by joint analysis with our Subaru RM measurement. Indeed, we find that the projected mutual inclination of KOI-94.01 and KOI-94.03 is estimated to be {delta} = -1.{sup 0}15 {+-} 0.{sup 0}55. Implications for the migration model of multiple planet systems are also discussed.« less
WASP-92b, WASP-93b and WASP-118b: three new transiting close-in giant planets
NASA Astrophysics Data System (ADS)
Hay, K. L.; Collier-Cameron, A.; Doyle, A. P.; Hébrard, G.; Skillen, I.; Anderson, D. R.; Barros, S. C. C.; Brown, D. J. A.; Bouchy, F.; Busuttil, R.; Delorme, P.; Delrez, L.; Demangeon, O.; Díaz, R. F.; Gillon, M.; Gómez Maqueo Chew, Y.; Gonzàlez, E.; Hellier, C.; Holmes, S.; Jarvis, J. F.; Jehin, E.; Joshi, Y. C.; Kolb, U.; Lendl, M.; Maxted, P. F. L.; McCormac, J.; Miller, G. R. M.; Mortier, A.; Pallé, E.; Pollacco, D.; Prieto-Arranz, J.; Queloz, D.; Ségransan, D.; Simpson, E. K.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; Vanhuysse, M.; West, R. G.; Wilson, P. A.
2016-12-01
We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric light curves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 d, which has Rp = 1.461 ± 0.077RJ and Mp = 0.805 ± 0.068MJ. WASP-93b orbits its F4 host star every 2.73 d and has Rp = 1.597 ± 0.077RJ and Mp = 1.47 ± 0.029MJ. WASP-118b also has a hot host star (F6) and is moderately inflated, where Rp = 1.440 ± 0.036RJ and Mp = 0.514 ± 0.020MJ and the planet has an orbital period of 4.05 d. They are bright targets (V = 13.18, 10.97 and 11.07, respectively) ideal for further characterization work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. The WASP-93 system has sufficient angular momentum to be tidally migrating outwards if the system is near spin-orbit alignment, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered.
Three Temperate Neptunes Orbiting Nearby Stars
NASA Astrophysics Data System (ADS)
Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.
2016-10-01
We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.
Simulating the escaping atmospheres of hot gas planets in the solar neighborhood
NASA Astrophysics Data System (ADS)
Salz, M.; Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M.
2016-02-01
Absorption of high-energy radiation in planetary thermospheres is generally believed to lead to the formation of planetary winds. The resulting mass-loss rates can affect the evolution, particularly of small gas planets. We present 1D, spherically symmetric hydrodynamic simulations of the escaping atmospheres of 18 hot gas planets in the solar neighborhood. Our sample only includes strongly irradiated planets, whose expanded atmospheres may be detectable via transit spectroscopy using current instrumentation. The simulations were performed with the PLUTO-CLOUDY interface, which couples a detailed photoionization and plasma simulation code with a general MHD code. We study the thermospheric escape and derive improved estimates for the planetary mass-loss rates. Our simulations reproduce the temperature-pressure profile measured via sodium D absorption in HD 189733 b, but show still unexplained differences in the case of HD 209458 b. In contrast to general assumptions, we find that the gravitationally more tightly bound thermospheres of massive and compact planets, such as HAT-P-2 b are hydrodynamically stable. Compact planets dispose of the radiative energy input through hydrogen Lyα and free-free emission. Radiative cooling is also important in HD 189733 b, but it decreases toward smaller planets like GJ 436 b. Computing the planetary Lyα absorption and emission signals from the simulations, we find that the strong and cool winds of smaller planets mainly cause strong Lyα absorption but little emission. Compact and massive planets with hot, stable thermospheres cause small absorption signals but are strong Lyα emitters, possibly detectable with the current instrumentation. The absorption and emission signals provide a possible distinction between these two classes of thermospheres in hot gas planets. According to our results, WASP-80 and GJ 3470 are currently the most promising targets for observational follow-up aimed at detecting atmospheric Lyα absorption signals. Simulated atmospheres are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A75
Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunine, J; Fischer, D; Hammel, H
2008-06-02
This report is a comprehensive study of the search for and study of planets around other stars (exoplanets). The young but maturing field of exoplanets is perhaps one of the most compelling fields of study in science today--both because of the discoveries made to date on giant planets around other stars, and because the detection of planets just like our Earth ('Earth analogs') is at last within reach technologically. In the Report we outline the need for a vigorous research program in exoplanets to understand our place in the cosmos: whether planets like our home Earth are a common ormore » rare outcome of cosmic evolution. The strategy we developed is intended to address the following fundamental questions, in priority order, within three distinct 5-yr long phases, over a 15 year period: (1) What are the physical characteristics of planets in the habitable zones around bright, nearby stars? (2) What is the architecture of planetary systems? (3) When, how and in what environments are planets formed? The Report recommends a two-pronged strategy for the detection and characterization of planets the size of the Earth. For stars much less massive and cooler than our Sun (M-dwarfs), existing ground-based techniques including radial velocity and transit searches, and space-based facilities both existing and under development such as Spitzer and JWST, are adequate for finding and studying planets close to the mass and size of the Earth. Conducted in parallel with the M-dwarf strategy is one for the more challenging observations of the hotter and brighter F, G, and K stars, some of which are very close in properties to our Sun, in which the frequency of Earth-sized planets is assessed with Corot and Kepler, but new space missions are required for detection and study of specific Earth-mass and Earth-sized objects. Our Task Force concludes that the development of a space-based astrometric mission, narrowly-focused to identify specific nearby stars with Earth-mass planets, followed by direct detection and study via a spaceborne coronagraph/occulter or interferometric mission, is the most robust approach to pursue. Ground and space-based microlensing programs pursued in parallel would provide complementary information on planetary system architectures on galactic scales. The program for F, G, and K stars must be preceded, at the beginning of the strategy, by broad yet detailed technical assessments to determine whether the astrometric and direct detection technologies will be ready in the time frames envisioned (the second and third 5-yr periods, respectively). Also measurement of dust around nearby candidate stars must be undertaken early to determine whether typical systems are clean enough to make direct detection feasible. Alternative strategies are discussed should problems arise in any of these areas. Finally, the Task Force lays out recommended programs in ground-based observations of larger planets, of planet-forming disks, and theoretical and laboratory studies crucial to interpreting and understanding the outcome of the planet search and characterization observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D. R.; Hellier, C.; Smalley, B.
We report the discovery of the transiting giant planet WASP-17b, the least-dense planet currently known. It is 1.6 Saturn masses, but 1.5-2 Jupiter radii, giving a density of 6%-14% that of Jupiter. WASP-17b is in a 3.7 day orbit around a sub-solar metallicity, V = 11.6, F6 star. Preliminary detection of the Rossiter-McLaughlin effect suggests that WASP-17b is in a retrograde orbit (lambda approx -150{sup 0}), indicative of a violent history involving planet-planet or star-planet scattering. WASP-17b's bloated radius could be due to tidal heating resulting from recent or ongoing tidal circularization of an eccentric orbit, such as the highlymore » eccentric orbits that typically result from scattering interactions. It will thus be important to determine more precisely the current orbital eccentricity by further high-precision radial velocity measurements or by timing the secondary eclipse, both to reduce the uncertainty on the planet's radius and to test tidal-heating models. Owing to its low surface gravity, WASP-17b's atmosphere has the largest scale height of any known planet, making it a good target for transmission spectroscopy.« less
On the Radii of Close-in Giant Planets.
Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky
2000-05-01
The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.
Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST
NASA Astrophysics Data System (ADS)
Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael R.; Valenti, Jeff; Stevenson, Kevin
2018-04-01
The Transiting Exoplanet Survey Satellite (TESS) is expected to discover dozens of temperate terrestrial planets orbiting M-dwarfs with atmospheres that could be followed up with the James Webb Space Telescope (JWST). Currently, the TRAPPIST-1 system serves as a benchmark for determining the feasibility and resources required to yield atmospheric constraints. We assess these questions and leverage an information content analysis to determine observing strategies for yielding high-precision spectroscopy in transmission and emission. Our goal is to guide observing strategies of temperate terrestrial planets in preparation for the early JWST cycles. First, we explore JWST’s current capabilities and expected spectral precision for targets near the saturation limits of specific modes. In doing so, we highlight the enhanced capabilities of high-efficiency readout patterns that are being considered for implementation in Cycle 2. We propose a partial saturation strategy to increase the achievable precision of JWST's NIRSpec Prism. We show that JWST has the potential to detect the dominant absorbing gas in the atmospheres of temperate terrestrial planets by the 10th transit using transmission spectroscopy techniques in the near-infrared (NIR). We also show that stacking ⪆10 transmission spectroscopy observations is unlikely to yield significant improvements in determining atmospheric composition. For emission spectroscopy, we show that the MIRI Low Resolution Spectroscopy (LRS) is unlikely to provide robust constraints on the atmospheric composition of temperate terrestrial planets. Higher-precision emission spectroscopy at wavelengths longward of those accessible to MIRI LRS, as proposed in the Origins Space Telescope concept, could help improve the constraints on molecular abundances of temperate terrestrial planets orbiting M-dwarfs.
Kepler-424 b: A 'lonely' hot Jupiter that found A companion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas
Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). Inmore » stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.« less
FRESIP: A Discovery Mission Concept To Find Earth-Sized Planets Around Solar Like Stars
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, D.; Dunham, E.; Cullers, D.; Webster, L.; Granados, A.; Ford, C.; Reitsema, H.; Cochran, W.; Bell, J.;
1994-01-01
The current nebular theory postulates that planets are. a consequence of the formation of stars from viscous accretion disks. Condensation from the accretion disk favors the formation of small rocky planets in the hot inner region, and the formation of gas giants in the cool outer region. Consequently, terrestrial-type planet in inner orbits should be commonplace. From geometrical considerations , Borucki and Summers have shown that 1% of planetary systems resembling our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large detector array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To differentiate regularly recurring transits from statistical fluctuations of the stellar flux, one must observe over several orbital periods so that the false positive rate can be reduced to one event or less. A one-meter aperture telescope placed in a halo orbit about either the L1 or L2 Lagrange points and viewing perpendicular to both the orbital and ecliptic planes can view continuously for the required period because neither the Sun, Earth, or Moon would enter the field of view. Model calculations show that the observations should provide statistically significant estimates of the distributions of planetary size, orbital radius, coplanarity, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbiting either one or both of the stars can also be determined.
Eclipsing Binaries from the Kepler Mission
NASA Technical Reports Server (NTRS)
Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick
2005-01-01
The Kepler Mission is a photometric space mission that will continuously observe a single 100 sq deg field of view (FOV) of greater than 100,000 stars in the Cygnus-Lyra region for 4 or more years with a precision of 14 ppm (R=12). The primary goal of the mission is to detect Earth-size planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected. Prior to launch, the stellar characteristics will have been detennined for all the stars in the FOV with R<16. As part of the verification process, stars with transits <5% will need to have follow-up radial velocity observations performed to determine the component masses and thereby separate transits caused by stellar companions from those caused by planets. The result will be a rich database on EBs. The community will have access to the archive for uses such as for EB modeling of the high-precision light curves. A guest observer program is also planned for objects not already on the target list.
Finding A Planet Through the Dust
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-05-01
Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral fellow at the Jet Propulsion Laboratory (JPL), a team of scientists now presents preliminary results from a near-infrared microlensing survey conducted with the United Kingdom Infrared Telescope (UKIRT) in Hawaii. Though the full study has not yet been published, the team reports on their first outcome: the detection of a giant planet in the galactic bulge.Giant Planet FoundThe light curve of UKIRT-2017-BLG-001. The inset shows a close-up of the anomaly in the curve, produced by the presence of the planet. [Shvartzvald et al. 2018]UKIRT-2017-BLG-001 is a giant planet detected at an angle of just 0.35 from the dusty, crowded Galactic center. It suffers from a high degree of extinction, implying that this planet could only have been detected via a near-infrared survey. The mass ratio of UKIRT-2017-BLG-001 to its host star is about 1.5 times that of Jupiter to the Sun, and its host star appears to be about 80% the mass of the Sun.The starplanet pair is roughly 20,500 light-years from us, which likely places it in the galactic bulge. Intriguingly, evidence suggests that the source star the star that the foreground starplanet lensed lies in the far galactic disk. If this is true, this would be the first source star of a microlensing event to be identified as belonging to the far disk.Artists impression of the WFIRST mission. [NASA]Looking AheadWhats next for microlensing exoplanet studies? The goal of the UKIRT near-infrared microlensing survey isnt just to discover planets its to characterize the exoplanet occurrence rates in different parts of the galaxy to inform future surveys.In particular, the UKIRT survey explored potential fields for the upcoming Wide Field Infrared Survey Telescope (WFIRST) mission, slated to launch in the mid-2020s. This powerful space telescope stands to vastly expand the reach of infrared microlensing detection, broadly surveying our galaxy for planets hiding in the dust.CitationY. Shvartzvald et al 2018 ApJL 857 L8. doi:10.3847/2041-8213/aab71b
Transiting circumbinary planets Kepler-34 b and Kepler-35 b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.
Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called 'binary stars'. While long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses ('transits') of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parentmore » stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.« less
DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Gregory, E-mail: kbatygin@gps.caltech.ed
Tidal dissipation within a short-period transiting extrasolar planet perturbed by a companion object can drive orbital evolution of the system to a so-called tidal fixed point, in which the apses of the transiting planet and its perturber are aligned, and variations in orbital eccentricities vanish. Significant contribution to the apsidal precession rate is made by gravitational quadrupole fields, created by the transiting planets tidal and rotational distortions. The fixed-point orbital eccentricity of the inner planet is therefore a strong function of its interior structure. We illustrate these ideas in the specific context of the recently discovered HAT-P-13 exoplanetary system, andmore » show that one can already glean important insights into the physical properties of the inner transiting planet. We present structural models of the planet, which indicate that its observed radius can be maintained for a one-parameter sequence of models that properly vary core mass and tidal energy dissipation in the interior. We use an octupole-order secular theory of the orbital dynamics to derive the dependence of the inner planet's eccentricity, e{sub b} , on its tidal Love number, k {sub 2b}. We find that the currently measured eccentricity, e{sub b} = 0.021 +- 0.009, implies 0.116 < k {sub 2b} < 0.425, 0 M {sub +} < M {sub core} < 120 M {sub +}, and 10, 000 < Q{sub b} < 300, 000. Improved measurement of the eccentricity will soon allow for far tighter limits to be placed on all of these quantities, and will provide an unprecedented probe into the interior structure of an extrasolar planet.« less
Differential NICMOS Spectrophotometry at High S/N
NASA Technical Reports Server (NTRS)
Gilliland, Ronald L.
2006-01-01
Transiting extrasolar planets present an opportunity for probing atmospheric conditions and constituents by taking advantage of different apparent radii, hence transit depth as a function of wavelength. Strong near-IR bands should support detection of water vapor via G141 spectroscopy of the bright star HD 209458 (H=6.13) by comparing in- and out-of-transit ratios of in- and out-of-band spectral intensity ratios. The reduction and analysis of science observations in which the goal is to support 1 part in 10,000, or better, development of spectral diagnostics using NICMOS grism-based spectroscopy is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eigmüller, Philipp; Csizmadia, Szilard; Smith, Alexis M. S.
We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES@NOT and HARPS-N@TNG spectroscopic observations. K2-60b has a radius of 0.683 ± 0.037 R {sub Jup} and a mass of 0.426 ± 0.037 M {sub Jup} and orbits a G4 V star with an orbital period of 3.00267 ± 0.00006 days. K2-107b has a radius of 1.44 ± 0.15 R {sub Jup} and a mass of 0.84 ± 0.08 M {sub Jup} andmore » orbits an F9 IV star every 3.31392 ± 0.00002 days. K2-60b is among the few planets at the edge of the so-called “desert” of short-period sub-Jovian planets. K2-107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence.« less
k2photometry: Read, reduce and detrend K2 photometry
NASA Astrophysics Data System (ADS)
Van Eylen, Vincent; Nowak, Grzegorz; Albrecht, Simon; Palle, Enric; Ribas, Ignasi; Bruntt, Hans; Perger, Manuel; Gandolfi, Davide; Hirano, Teriyuki; Sanchis-Ojeda, Roberto; Kiilerich, Amanda; Arranz, Jorge P.; Badenas, Mariona; Dai, Fei; Deeg, Hans J.; Guenther, Eike W.; Montanes-Rodriguez, Pilar; Narita, Norio; Rogers, Leslie A.; Bejar, Victor J. S.; Shrotriya, Tushar S.; Winn, Joshua N.; Sebastian, Daniel
2016-02-01
k2photometry reads, reduces and detrends K2 photometry and searches for transiting planets. MAST database pixel files are used as input; the output includes raw lightcurves, detrended lightcurves and a transit search can be performed as well. Stellar variability is not typically well-preserved but parameters can be tweaked to change that. The BLS algorithm used to detect periodic events is a Python implementation by Ruth Angus and Dan Foreman-Mackey (https://github.com/dfm/python-bls).
PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Andrew W.; Marcy, Geoffrey W.; Bryson, Stephen T.
We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally 'planet candidates') from the Kepler mission that include a nearly complete set of detected planets as small as 2 R{sub Circled-Plus }. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R{sub p}, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for themore » geometric probability of transit, R{sub *}/a. We consider first Kepler target stars within the 'solar subset' having T{sub eff} = 4100-6100 K, log g 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R{sub Circled-Plus }. We count planets in small domains of R{sub p} and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R{sub Circled-Plus }) and out to the longest orbital period (50 days, {approx}0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = k{sub R}R{sup {alpha}} with k{sub R} = 2.9{sup +0.5}{sub -0.4}, {alpha} = -1.92 {+-} 0.11, and R {identical_to} R{sub p}/R{sub Circled-Plus }. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R{sub p} > 2 R{sub Circled-Plus} we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 {+-} 0.008, 0.023 {+-} 0.003, and 0.013 {+-} 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R{sub Circled-Plus }, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P{sub 0}. For smaller planets, P{sub 0} has larger values, suggesting that the 'parking distance' for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T{sub eff} range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R{sub Circled-Plus} planets in the Kepler field increases with decreasing T{sub eff}, with these small planets being seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Salyk, Colette, E-mail: sdr@astro.as.utexas.edu
Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiplemore » planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.« less
Thermal Phase Variations of WASP-12b: Defying Predictions
NASA Technical Reports Server (NTRS)
Cowan, Nicolas B.; Machalek, Pavel; Croll, Bryce; Shekhtman, Louis M.; Burrows, Adam; Deming, Drake; Greene, Tom; Hora, Joseph L.
2012-01-01
We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 micrometers. This extremely inflated hot Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined with the planet's previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared-(R(sub p)/R(sub *))(sup 2) = 0.0123(3) and 0.0111(3) at 3.6 and 4.5 micrometers, respectively-indicate that the atmospheric opacity is greater at 3.6 than at 4.5 micrometers, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies: F(sub day)/F(sub *) = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 micrometers, respectively. We do not detect ellipsoidal variations at 3.6 micrometers, but our parameter uncertainties-estimated via prayer-bead Monte Carlo-keep this non-detection consistent with model predictions. At 4.5 micrometers, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3:2 ratio for the planet's longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 micrometer ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best-fit 4.5 micrometer transit depth becomes commensurate with the 3.6 micrometer depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 micrometer eclipse depth, consistent with a solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios.
Thermal Phase Variations of WASP-12b: Defying Predictions
NASA Astrophysics Data System (ADS)
Cowan, Nicolas B.; Machalek, Pavel; Croll, Bryce; Shekhtman, Louis M.; Burrows, Adam; Deming, Drake; Greene, Tom; Hora, Joseph L.
2012-03-01
We report Warm Spitzer full-orbit phase observations of WASP-12b at 3.6 and 4.5 μm. This extremely inflated hot Jupiter is thought to be overflowing its Roche lobe, undergoing mass loss and accretion onto its host star, and has been claimed to have a C/O ratio in excess of unity. We are able to measure the transit depths, eclipse depths, thermal and ellipsoidal phase variations at both wavelengths. The large-amplitude phase variations, combined with the planet's previously measured dayside spectral energy distribution, are indicative of non-zero Bond albedo and very poor day-night heat redistribution. The transit depths in the mid-infrared—(Rp /R *)2 = 0.0123(3) and 0.0111(3) at 3.6 and 4.5 μm, respectively—indicate that the atmospheric opacity is greater at 3.6 than at 4.5 μm, in disagreement with model predictions, irrespective of C/O ratio. The secondary eclipse depths are consistent with previous studies: F day/F * = 0.0038(4) and 0.0039(3) at 3.6 and 4.5 μm, respectively. We do not detect ellipsoidal variations at 3.6 μm, but our parameter uncertainties—estimated via prayer-bead Monte Carlo—keep this non-detection consistent with model predictions. At 4.5 μm, on the other hand, we detect ellipsoidal variations that are much stronger than predicted. If interpreted as a geometric effect due to the planet's elongated shape, these variations imply a 3:2 ratio for the planet's longest:shortest axes and a relatively bright day-night terminator. If we instead presume that the 4.5 μm ellipsoidal variations are due to uncorrected systematic noise and we fix the amplitude of the variations to zero, the best-fit 4.5 μm transit depth becomes commensurate with the 3.6 μm depth, within the uncertainties. The relative transit depths are then consistent with a solar composition and short scale height at the terminator. Assuming zero ellipsoidal variations also yields a much deeper 4.5 μm eclipse depth, consistent with a solar composition and modest temperature inversion. We suggest future observations that could distinguish between these two scenarios.
Noise Sources in Photometry and Radial Velocities
NASA Astrophysics Data System (ADS)
Oshagh, Mahmoudreza
The quest for Earth-like, extrasolar planets (exoplanets), especially those located inside the habitable zone of their host stars, requires techniques sensitive enough to detect the faint signals produced by those planets. The radial velocity (RV) and photometric transit methods are the most widely used and also the most efficient methods for detecting and characterizing exoplanets. However, presence of astrophysical "noise" makes it difficult to detect and accurately characterize exoplanets. It is important to note that the amplitude of such astrophysical noise is larger than both the signal of Earth-like exoplanets and state-of-the-art instrumentation limit precision, making this a pressing topic that needs to be addressed. In this chapter, I present a general review of the main sources of noise in photometric and RV observations, namely, stellar oscillations, granulation, and magnetic activity. Moreover, for each noise source I discuss the techniques and observational strategies which allow us to mitigate their impact.
Astronomers Find World with Thick, Inhospitable Atmosphere and an Icy Heart
NASA Astrophysics Data System (ADS)
2009-12-01
Astronomers have discovered the second super-Earth exoplanet [1] for which they have determined the mass and radius, giving vital clues about its structure. It is also the first super-Earth where an atmosphere has been found. The exoplanet, orbiting a small star only 40 light-years away from us, opens up dramatic new perspectives in the quest for habitable worlds. The planet, GJ1214b, has a mass about six times that of Earth and its interior is likely to be mostly made of water ice. Its surface appears to be fairly hot and the planet is surrounded by a thick atmosphere, which makes it inhospitable for life as we know it on Earth. In this week's issue of Nature, astronomers announce the discovery of a planet around the nearby, low-mass star GJ1214 [2]. It is the second time a transiting super-Earth has been detected, after the recent discovery of the planet Corot-7b [3]. A transit occurs when the planet's orbit is aligned so that we see it crossing the face of its parent star. The newly discovered planet has a mass about six times that of our terrestrial home and 2.7 times its radius, falling in size between the Earth and the ice giants of the Solar System, Uranus and Neptune. Although the mass of GJ1214b is similar to that of Corot-7b, its radius is much larger, suggesting that the composition of the two planets must be quite different. While Corot-7b probably has a rocky core and may be covered with lava, astronomers believe that three quarters of GJ1214b is composed of water ice, the rest being made of silicon and iron. GJ1214b orbits its star once every 38 hours at a distance of only two million kilometres - 70 times closer to its star than the Earth is to the Sun. "Being so close to its host star, the planet must have a surface temperature of about 200 degrees Celsius, too hot for water to be liquid," says David Charbonneau, lead author of the paper reporting the discovery. When the astronomers compared the measured radius of GJ1214b with theoretical models of planets, they found that the observed radius exceeds the models' predictions: there is something more than the planet's solid surface blocking the star's light - a surrounding atmosphere, 200 km thick. "This atmosphere is much thicker than that of the Earth, so the high pressure and absence of light would rule out life as we know it," says Charbonneau, "but these conditions are still very interesting, as they could allow for some complex chemistry to take place." "Because the planet is too hot to have kept an atmosphere for long, GJ1214b represents the first opportunity to study a newly formed atmosphere enshrouding a world orbiting another star," adds team member Xavier Bonfils. "Because the planet is so close to us, it will be possible to study its atmosphere even with current facilities." The planet was first discovered as a transiting object within the MEarth project, which follows about 2000 low-mass stars to look for transits by exoplanets [4]. To confirm the planetary nature of GJ1214b and to obtain its mass (using the so-called Doppler method), the astronomers needed the full precision of the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla. An instrument with unrivalled stability and great precision, HARPS is the world's most successful hunter for small exoplanets. "This is the second super-Earth exoplanet for which the mass and radius could be obtained, allowing us to determine the density and to infer the inner structure," adds co-author Stephane Udry. "In both cases, data from HARPS was essential to characterise the planet." "The differences in composition between these two planets are relevant to the quest for habitable worlds," concludes Charbonneau. If super-Earth planets in general are surrounded by an atmosphere similar to that of GJ1214b, they may well be inhospitable to the development of life as we know it on our own planet. Notes [1] A super-Earth is defined as a planet between one and ten times the mass of the Earth. An exoplanet is a planet orbiting a star other than the Sun. [2] The star GJ1214 is five times smaller than our Sun and intrinsically three hundred times less bright. [3] Corot-7b is the smallest and fastest-orbiting exoplanet known and has a density quite similar to the Earth's, suggesting a solid, rocky world. Discovered by the CoRoT satellite as a transiting object, its true nature was revealed by HARPS (eso0933). [4] The MEarth project uses an armada of eight small telescopes each with a diameter of 40 cm, located on top of Mount Hopkins, Arizona, USA. MEarth looks for stars that change brightness. The goal is to find a planet that crosses in front of, or transits, its star. During such a mini-eclipse, the planet blocks a small portion of the star's light, making it dimmer. NASA's Kepler mission also uses transits to look for Earth-sized planets orbiting Sun-like stars. However, such systems dim by only one part in ten thousand. The higher precision required to detect the drop means that such worlds can only be found from space. In contrast, a super-Earth transiting a small, red dwarf star yields a greater proportional decrease in brightness and a stronger signal that is detectable from the ground. More information This research was presented in a paper appearing this week in Nature ("A Super-Earth Transiting a Nearby Low-Mass Star", by David Charbonneau et al.). The team is composed of David Charbonneau, Zachory K. Berta, Jonathan Irwin, Christopher J. Burke, Philip Nutzman, Lars Buchhave, David W. Latham, Ruth A. Murray-Clay, Matthew J. Holman, and Emilio E. Falco (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), Christophe Lovis, Stephane Udry, Didier Queloz, Francesco Pepe, and Michel Mayor (Observatoire de l'Université de Genève, Switzerland), Xavier Bonfils, Xavier Delfosse, and Thierry Forveille (University Joseph Fourier - Grenoble 1/CNRS, LOAG, Grenoble, France), and Joshua N. Winn (Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, USA). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Planet formation in transition disks: Modeling, spectroscopy, and theory
NASA Astrophysics Data System (ADS)
Liskowsky, Joseph Paul
An important field of modern astronomy is the study of planets. Literally for millennia, careful observers of the night sky have tracked these 'wanderers', with their peculiar motions initiating avenues of inquiry not able to elucidated by a study of the stars alone: we have discovered that the planets (as well as Earth) orbit the sun and that the stars are so far away, even their relative positions do not seem to shift perceptibly when Earth's position moves hundreds of millions of miles. With the advent of the telescope, and subsequent improvements upon it over the course of centuries, accelerating to the dramatically immense telescopes available today and those on the horizon, we have been able to continuously probe farther and in more detail than the previous generation of scientists and telescopes allowed. Now, we are just entering the time when detection of planets outside of our own solar system has become possible, and we have found that planets are extraordinarily common in the galaxy (and by extrapolation, the universe). At the time of this document's composition, there are several thousand such examples of planets around other stars (being dubbed 'exoplanets'). We have discovered that planets are plentiful, but multiple open questions remain which are relevant to this work: How do planets form and, when a planet does form from its circumstellar envelope, what are the important processes that influence its formation? This work adds to the understanding of circumstellar disks, the intermediate stage between a cold collapsing cloud (of gas and dust) and a mature planetary system. Specifically, we study circumstellar disks in an evolved state termed 'transition disks'. This state corresponds to a time period where the dust in the disk has either undergone grain growth—where the microscopic grains have clumped together to form far fewer dust particles of much higher mass, or the inner portion (or an inner annulus) of the disk has lost a large amount of gas due to either a massive planet accreting the material onto it or via a photoevaporation process whereby the central star's radiation field ejects material from the inner disk out of the bound system in the the interstellar medium. It is presumed that this phase is the last gasp of the planetary disk's evolution before the debris disk stage and before a fully formed solar system evolves. Our work specifically focuses on one object of this transition disk class: HD100546. We add to the understanding of transition disks by showing that a model where ro-vibrational OH emission in the NIR is preferentially emitted along the 'wall' of the disk is consistent with observations, and furthermore that adding an eccentricity to this `wall' component is required to generate the necessary observed line shape. In conjunction with this observation we present supporting material which motivates the usage of such an eccentric wall component in light of predictions of the influence of giant planet formation occurring within the disk.
NASA Astrophysics Data System (ADS)
Galicher, R.; Rameau, J.; Bonnefoy, M.; Baudino, J.-L.; Currie, T.; Boccaletti, A.; Chauvin, G.; Lagrange, A.-M.; Marois, C.
2014-05-01
HD 95086 is an intermediate-mass debris-disk-bearing star. VLT/NaCo 3.8 μm observations revealed it hosts a 5 ± 2 MJup companion (HD 95086 b) at ≃56 AU. Follow-up observations at 1.66 and 2.18 μm yielded a null detection, suggesting extremely red colors for the planet and the need for deeper direct-imaging data. In this Letter, we report H-(1.7 μm) and K1-(2.05 μm) band detections of HD 95086 b from Gemini Planet Imager (GPI) commissioning observations taken by the GPI team. The planet position in both spectral channels is consistent with the NaCo measurements and we confirm it to be comoving. Our photometry yields colors of H - L' = 3.6 ± 1.0 mag and K1 - L' = 2.4 ± 0.7 mag, consistent with previously reported 5-σ upper limits in H and Ks. The photometry of HD 95086 b best matches that of 2M 1207 b and HR 8799 cde. Comparing its spectral energy distribution with the BT-SETTL and LESIA planet atmospheric models yields Teff ~ 600-1500 K and log g ~ 2.1-4.5. Hot-start evolutionary models yield M = 5 ± 2 MJup. Warm-start models reproduce the combined absolute fluxes of the object for M = 4-14 MJup for a wide range of plausible initial conditions (Sinit = 8-13 kB/baryon). The color-magnitude diagram location of HD 95086 b and its estimated Teff and log g suggest that the planet is a peculiar L - T transition object with an enhanced amount of photospheric dust. Based on public data taken at the GPI commissioning.
Precise Masses in the WASP-47 System
NASA Astrophysics Data System (ADS)
Vanderburg, Andrew; Becker, Juliette C.; Buchhave, Lars A.; Mortier, Annelies; Lopez, Eric; Malavolta, Luca; Haywood, Raphaëlle D.; Latham, David W.; Charbonneau, David; López-Morales, Mercedes; Adams, Fred C.; Bonomo, Aldo Stefano; Bouchy, François; Collier Cameron, Andrew; Cosentino, Rosario; Di Fabrizio, Luca; Dumusque, Xavier; Fiorenzano, Aldo; Harutyunyan, Avet; Johnson, John Asher; Lorenzi, Vania; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Pedani, Marco; Pepe, Francesco; Piotto, Giampaolo; Phillips, David; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris
2017-12-01
We present precise radial velocity observations of WASP-47, a star known to host a hot Jupiter, a distant Jovian companion, and, uniquely, two additional transiting planets in short-period orbits: a super-Earth in a ≈19 hr orbit, and a Neptune in a ≈9 day orbit. We analyze our observations from the HARPS-N spectrograph along with previously published data to measure the most precise planet masses yet for this system. When combined with new stellar parameters and reanalyzed transit photometry, our mass measurements place strong constraints on the compositions of the two small planets. We find that, unlike most other ultra-short-period planets, the inner planet, WASP-47 e, has a mass (6.83 ± 0.66 {M}\\oplus ) and a radius (1.810 ± 0.027 {R}\\oplus ) that are inconsistent with an Earth-like composition. Instead, WASP-47 e likely has a volatile-rich envelope surrounding an Earth-like core and mantle. We also perform a dynamical analysis to constrain the orbital inclination of WASP-47 c, the outer Jovian planet. This planet likely orbits close to the plane of the inner three planets, suggesting a quiet dynamical history for the system. Our dynamical constraints also imply that WASP-47 c is much more likely to transit than a geometric calculation would suggest. We calculate a transit probability for WASP-47 c of about 10%, more than an order of magnitude larger than the geometric transit probability of 0.6%.
Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis.
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-10-11
The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text
NASA Astrophysics Data System (ADS)
Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Deming, Drake; Robinson, Tyler D.; Tovar, Guadalupe; Wolf, Eric; Schwieterman, Edward
2016-10-01
Hazes are common in planetary atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze. The formation of organic hazes is initiated by methane photochemistry sensitive to the host star UV spectrum. Because methane can be produced by a variety of biological and geological processes, organic-rich terrestrial planets with hazes may be common in the galaxy. We use a 1D photochemical-climate model to examine the production of fractal organic haze on Archean Earthlike planets orbiting several different stars: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), a modeled quiescent M dwarf (M3.5V), ɛ Eridani (K2V), and σ Boötis (F2V). For the planetary atmospheric compositions used, planets orbiting stars with the highest or lowest UV fluxes do not form haze. Low UV-stars are unable to drive the photochemistry needed for haze formation. High UV stars generate photochemical oxygen radicals that halt haze production. Organic hazes can impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized for hazy M dwarf planets whose incident stellar radiation arrives at wavelengths where organic hazes are largely transparent. We generate synthetic planetary spectra to test the detectability of haze. For 10 transits of an Archean-analog planet orbiting GJ 876 observed by the James Webb Space Telescope, gaseous absorption features at wavelengths < 2.5μm are 2-10σ shallower in the presence of a haze compared to a clear-sky planet, and methane and carbon dioxide are detectable at >5σ assuming photon-limited noise levels. An absorption feature from the haze can be detected at the 5σ level near 6.3μm, but higher signal-to-noise would be needed to uniquely distinguish haze from other absorbers in this spectral region. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at >12σ in 200 hours. Although haze is often considered a feature that conceals planetary features, organic haze can indicate a geologically active planet - and therefore a potentially habitable one - and possibly even reveal the presence of life.
Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity
NASA Astrophysics Data System (ADS)
Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie
2018-06-01
One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.
Little Stars Don't Like Big Planets: An Astrometric Search for Super-Jupiters Around Red Dwarfs
NASA Astrophysics Data System (ADS)
Lurie, John C.; Henry, T. J.; Jao, W.; Koerner, D. W.; Riedel, A. R.; Subasavage, J.; RECONS
2013-01-01
The astrometric detection and characterization of extrasolar planets presents considerable technical challenges, but also promises to greatly enhance our understanding of these systems. Nearly all currently confirmed exoplanets have been discovered using transit or radial velocity techniques. The former is geometrically biased towards planets with small orbits, while the latter is biased towards massive planets with short periods that exert large gravitational accelerations on their host stars. Astrometric techniques are limited by the minimum detectable perturbation of a star's position due to a planet, but allow for the determination of orbit inclination and an accurate planetary mass. Here we present astrometric solutions for five nearby stars with known planets: four M dwarfs (GJ 317, GJ 581, GJ 849, and GJ 1214) and one K dwarf (BD -10 3166). Observations have baselines of three to thirteen years, and were made using the 0.9 m telescope at CTIO as part of the RECONS long-term astrometry program. We provide improved parallaxes for the stars and find that there are no planets of several Jupiter masses or brown dwarfs orbiting these stars with periods up to twice the length of the astrometric coverage. In the broader context, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the roughly 200 red dwarfs searched in our astrometric program. This effort has been supported by the National Science Foundation via grant AST 09-08402 and the long-term cooperative efforts of the National Optical Astronomy Observatories and the members of the SMARTS Consortium.
Discovering the nature of the star-planet interaction at WASP-12b
NASA Astrophysics Data System (ADS)
Nichols, Jonathan
2013-10-01
In 2010, COS produced a tantalising hint of a significant discovery: the magnetic field of an exoplanet. The ingress of the transiting 'hot-Jupiter' exoplanet WASP-12b apparently occurred earlier in the NUV than in the optical, and two hypotheses have been put forward as explanations. One is that this manifests dense shocked material in a magnetosheath formed in the supersonic stellar wind upstream of the planet's thus-revealed magnetic field, while the other is that this is caused in the absence of a planetary magnetic field by material overflowing the planet's Roche lobe at the L1 point. However, the previous observation, which was not designed to observe this phenomenon, is beset by scattered, sparse data and we do not yet understand the nature of the star-planet interaction. It is thus crucial that we now observe WASP-12b in a program specifically designed to unambiguously detect the early ingress, significantly improve the NUV lightcurve, and answer the question:* What is the nature of the star-planet interaction at WASP-12?No other observatory is capable of making these observations, and this proposal is highly accordant with the purpose of the Cycle 21 UV initiative. Execution in Cycle 21 is also highly desirable since the results will provide input to the LOFAR exoplanet program, which will focus on planets thought to exhibit star-planet interactions. By following a fortuitously obtained pointer, this proposal presents low risk-high impact observations, since the characterisation of star-exoplanet interactions and possibly the first detection of an exoplanetary magnetic field would be of huge scientific significance.
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.
2016-07-01
Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, I.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.
First light of the Gemini Planet Imager
Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B. R.; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Sloane; Wolff, Schuyler
2014-01-01
The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. PMID:24821792
First light of the Gemini Planet imager.
Macintosh, Bruce; Graham, James R; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B R; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane; Wolff, Schuyler
2014-09-02
The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.