Sample records for detection demonstration project

  1. Projective techniques and the detection of child sexual abuse.

    PubMed

    Garb, H N; Wood, J M; Nezworski, M T

    2000-05-01

    Projective techniques (e.g., the Rorschach, Human Figure Drawings) are sometimes used to detect child sexual abuse. West recently conducted a meta-analysis on this topic, but she systematically excluded nonsignificant results. In this article, a reanalysis of her data is presented. The authors conclude that projective techniques should not be used to detect child sexual abuse. Many of the studies purportedly demonstrating validity are flawed, and none of the projective test scores have been well replicated.

  2. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  3. Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  4. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Astrophysics Data System (ADS)

    Glass, B. J.

    1992-10-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  5. [Cost-effectiveness of the HIV screening program carried out in Guangxi Zhuang Autonomous Region infectious disease special demonstration project areas].

    PubMed

    Lu, Huaxiang; Luo, Liuhong; Chen, Li; Zhang, Shizhen; Liang, Yingfang; Li, Li; Chen, Zhenqiang; Huo, Xiaoxing; Wu, Xinghua

    2015-06-01

    To analyze the cost effectiveness of HIV screening project in three Guangxi infectious disease special demonstration project countries in 2013. To calculate the funds used for the HIV screening project and to study the data on HIV/AIDS and HAART. A five-tree markov model was used to evaluate the quality adjusted life year (QALY) of this HIV screening project and to analyze the related cost effectiveness of the project. The cost of HIV screening in Guangxi infectious disease special demonstration project areas was 19.205 million Yuan and having identified 1 218 HIV/AIDS patients. The average costs for HIV/AIDS positive detection in three project countries were 14.562, 18.424 and 14.042 thousand Yuan per case. The QALYs gained from finding a HIV/AIDS case were 12.736, 8.523 and 8.321 on average, with the total number of QALYs gained from the project as 5 973.184, 3 613.752 and 2 704.325. The overall cost effectiveness ratio of the project was 1.562 thousand Yuan per QALY, and 1.143, 2.162 and 1.688 thousand Yuan per QALY in these three project countries. Project country "A" showed better cost effectiveness index than country B and C. The HIV screening project in Guangxi seemed relatively cost-effective but the average cost of HIV/AIDS positive detection was expensive. To strengthen HAART work for HIV/AIDS could improve the cost-effective of the project.

  6. Identification of Balanced Chromosomal Rearrangements Previously Unknown Among Participants in the 1000 Genomes Project: Implications for Interpretation of Structural Variation in Genomes and the Future of Clinical Cytogenetics

    PubMed Central

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huangming; Leung, Tak Yeung; Morton, Cynthia C.; Cheung, Sau Wai; Choy, Kwong Wai

    2017-01-01

    Purpose Recent studies demonstrate that whole-genome sequencing (WGS) enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in The 1000 Genomes Project without knowing affected bands. Methods The 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparently BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold). Results Our approach detected four reciprocal balanced translocations and four inversions ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and PCR studies. One of DNAs has a subtle translocation that is not readily identified by chromosome analysis due to similar banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene. Conclusions Our study demonstrates the extension of utilizing low-coverage WGS for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project. PMID:29095815

  7. Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project

    NASA Astrophysics Data System (ADS)

    Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.

    2018-07-01

    The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.

  8. Final Technical Report: PV Fault Detection Tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Bruce Hardison; Jones, Christian Birk

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  9. Detecting special nuclear material using a neutron time projection chamber

    NASA Astrophysics Data System (ADS)

    Carosi, G.; Bernstein, A.; Bowden, N.; Burke, J.; Carter, D.; Foxe, M.; Heffner, M.; Jovanovic, I.; Mintz, J.; O'Malley, P.

    2010-02-01

    Time projection chambers are 3-dimensional charged particle cameras based on drifting ionization tracks at a known velocity onto an electronic readout plane. These instruments are capable of detecting fast neutrons which are unique signatures of special nuclear material with low natural background rates. Here we describe a neutron Time Projection Chamber (nTPC) developed at Lawrence Livermore National Laboratory (LLNL) which has demonstrated directional sensitivity to fission neutrons along with high rejection of background gamma-ray and electron events. Using a combination hydrogen/methane drift gas at several atmospheres we've demonstrated the ability to point to a Cf-252 source simulating 6kg of weapons grade plutonium at 10's of meters with one hour integration time. Plans for future field deployable devices will also be outlined. )

  10. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  11. Connected Vehicle Wrong-Way Driving Detection and Mitigation Demonstration-Phase II : Project Summary

    DOT National Transportation Integrated Search

    2018-01-01

    Connected vehicles (CVs) and their integration with transportation infrastructure provide new approaches to wrong-way driving (WWD) detection, warning, verification, and intervention that will help practitioners further reduce the occurrence and seve...

  12. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  13. PVT-NG sensor final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean James; Brusseau, Charles A.

    2012-01-01

    This document is a final report for the polyvinyl toluene (PVT) neutron-gamma (PVT-NG) project, which was sponsored by the Domestic Nuclear Detection Office (DNDO). The PVT-NG sensor uses PVT detectors for both gamma and neutron detection. The sensor exhibits excellent spectral resolution and gain stabilization, which are features that are beneficial for detection of both gamma-ray and neutron sources. In fact, the ability to perform isotope identification based on spectra that were measured by the PVT-NG sensor was demonstrated. As described in a previous report, the neutron sensitivity of the first version of the prototype was about 25% less thanmore » the DNDO requirement of 2.5 cps/ng for bare Cf-252. This document describes design modifications that were expected to improve the neutron sensitivity by about 50% relative to the PVT-NG prototype. However, the project was terminated before execution of the design modifications after portal vendors demonstrated other technologies that enable neutron detection without the use of He-3. Nevertheless, the PVT-NG sensor development demonstrated several performance goals that may be useful in future portal designs.« less

  14. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    PubMed

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  15. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    NASA Astrophysics Data System (ADS)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR field trials, most recently at Exercise Empire Challenge in China Lake CA, and at Trial Quest in Norway. Those exercises provided further opportunities to investigate operator interactions. The paper concludes with recommendations for future work in operator interface design.

  16. Sequential projection pursuit for optimised vibration-based damage detection in an experimental wind turbine blade

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2018-02-01

    To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.

  17. Rubbertown NGEM Demonstration Project Planning meetings, April 18-19, 2017

    EPA Science Inventory

    From the shared perspective of industrial facilities, workers, regulators, and communities, cost-effective detection and assessment of significant onset fugitive leaks or process issues, is a mutually beneficial concept. If emissions that require mitigation can be detected and f...

  18. Use of lidar for the evaluation of traffic-related urban pollution

    NASA Astrophysics Data System (ADS)

    Eichinger, William E.; Cooper, D. I.; Buttler, William T.; Cottingame, William; Tellier, Larry

    1994-03-01

    Lidar (Light Detection and Ranging) is demonstrated as a tool for the detection and tracking of sources of aerosol pollution. Existing elastic lidars have been used to demonstrate the potential of the application of this technology in urban areas. Data from several experiments is shown along with analysis methods used for interpretation of the data. The goal of the project is to develop a light-weight, low-cost, lidar system and data analysis methods which can be used by urban planners and local air quality managers. The ability to determine the sources, i.e., causes, of non-attainment may lead to more effective use of tax dollars. Future directions for the project are also discussed.

  19. Utilization of Light Detection and Ranging for Quality Control and Quality Assurance of Pavement Grades

    DOT National Transportation Integrated Search

    2018-02-01

    Light Detection and Ranging (Lidar) technology is a useful tool that can assist transportation agencies during the design, construction, and maintenance phases of transportation projects. To demonstrate the utility of Lidar, this report discusses how...

  20. Resumes of the Bird mission

    NASA Astrophysics Data System (ADS)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  1. Environmental applications activity at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Paludan, C. T. N.

    1972-01-01

    MSFC environmental applications demonstration projects have emphasized application of aerospace technology to community needs of southeastern U.S. Some of the typical projects underway are: hydrological parameter determination; land use surveys; agricultural stress detection; new community site surveys; pollution monitoring; urban transportation studies; and urban environmental quality.

  2. Raman Life Detection Instrument Development for Icy Worlds

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.

    2017-01-01

    The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.

  3. MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y; Sharp, G; Winey, B

    Purpose: An unpredictable movement of a patient can occur during SBRT even when immobilization devices are applied. In the SBRT treatments using a conventional linear accelerator detection of such movements relies heavily on human interaction and monitoring. This study aims to detect such positional abnormalities in real-time by assessing intra-fractional gantry mounted kV projection images of a patient’s spine. Methods: We propose a self-CBCT image based spine tracking method consisting of the following steps: (1)Acquire a pre-treatment CBCT image; (2)Transform the CBCT volume according to the couch correction; (3)Acquire kV projections during treatment beam delivery; (4)Simultaneously with each acquisition generatemore » a DRR from the CBCT volume based-on the current projection geometry; (5)Perform an intensity gradient-based 2D registration between spine ROI images of the projection and the DRR images; (6)Report an alarm if the detected 2D displacement is beyond a threshold value. To demonstrate the feasibility, retrospective simulations were performed on 1,896 projections from nine CBCT sessions of three patients who received lung SBRT. The unpredictable movements were simulated by applying random rotations and translations to the reference CBCT prior to each DRR generation. As the ground truth, the 3D translations and/or rotations causing >3 mm displacement of the midpoint of the thoracic spine were regarded as abnormal. In the measurements, different threshold values of 2D displacement were tested to investigate sensitivity and specificity of the proposed method. Results: A linear relationship between the ground truth 3D displacement and the detected 2D displacement was observed (R{sup 2} = 0.44). When the 2D displacement threshold was set to 3.6 mm the overall sensitivity and specificity were 77.7±5.7% and 77.9±3.5% respectively. Conclusion: In this simulation study, it was demonstrated that intrafractional kV projections from an on-board CBCT system have a potential to detect unpredictable patient movement during SBRT. This research is funded by Interfractional Imaging Research Grant from Elekta.« less

  4. Automated Flow-Injection Instrument for Chemiluminescence Detection Using a Low-Cost Photodiode Detector

    ERIC Educational Resources Information Center

    Economou, A.; Papargyris, D.; Stratis, J.

    2004-01-01

    The development of an FI analyzer for chemiluminescence detection using a low-cost photoiodide is presented. The experiment clearly demonstrates in a single interdisciplinary project the way in which different aspects in chemical instrumentation fit together to produce a working analytical system.

  5. Rubbertown NGEM Demonstration Project Planning meetings ...

    EPA Pesticide Factsheets

    From the shared perspective of industrial facilities, workers, regulators, and communities, cost-effective detection and assessment of significant onset fugitive leaks or process issues, is a mutually beneficial concept. If emissions that require mitigation can be detected and fixed quickly, benefits such as safer working environments, cost saving through reduced product loss, lower air shed pollutant impacts, and improved transparency and community relations can be realized. Under its next generation emission measurement program (NGEM), EPA’s Office of Research and Development (ORD), National Risk Management Research Laboratory (NRMRL) is working collaboratively with industry, instrument /information companies, state and local agencies, communities, and academic groups to explore new technical approaches for non-point source detection and migration. Techniques such as mobile and fixed point sensors and passive samplers employed on various spatial scales are being explored. With collaboration of the project team including EPA R4, the Louisville Metro Air Pollution Control District (LMAPCD), industrial facilities, and contractors to the EPA, a select subset of these NGEM approaches will be demonstrated in this project as per the quality assurance project plan. From April 17-20, 2017, E. Thoma will travel to Louisville KY to work with the Louisville Metro Air Pollution Control District (LMAPCD) and other parties for planning activities related to the

  6. SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review, CdMnTe (CMT) Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov,A.

    2009-06-02

    The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials,more » TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.« less

  7. The evolution of lung cancer screening.

    PubMed

    Wilkinson, Neal W; Loewen, Gregory M; Klippenstein, Donald L; Litwin, Alan M; Anderson, Timothy M

    2003-12-01

    In the 1970s, four trials failed to demonstrate any mortality reduction using a combination of chest X-ray (CXR) and/or sputum cytology. The recent early lung cancer action project (ELCAP) demonstrated that modern screening is capable of detecting Stage I lung cancers. Bronchial epithelial changes leading up to cancers are now being understood to include histologic changes and genetic alterations. Emerging molecular markers detected in sputum and serum show promise in the future of lung cancer screening.

  8. Autonomous software: Myth or magic?

    NASA Astrophysics Data System (ADS)

    Allan, A.; Naylor, T.; Saunders, E. S.

    2008-03-01

    We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.

  9. Resource Development Opportunities for the Association of Leadership Educators: Phase One

    ERIC Educational Resources Information Center

    Noble, Donnette J.; Matesi, Lyna; Breen, Jennifer Moss; Horstmeier, Robin Peiter; Anderson, Dennis M.; Allen, Stuart; Pedigo, Leslie

    2016-01-01

    This application brief shares Phase One of an action research project for the Association of Leadership Educators. This project demonstrates how a member-based association can successfully engage its members in terms of identifying needs, defining strategic priorities, and detecting resource development opportunities. This body of work has various…

  10. Real-time, in-situ detection of volatile profiles for the prevention of aflatoxin fungal contamination in pistachios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Tiziana C.; Chang, Allan; Zhou, Jenny

    The objective in this project is to provide a proof of concept will demonstrate the feasibility of a Raman, in-situ warning system for detecting and removing developing fungal hot spots from pistachio stockpiles and transit containers, thus decreasing human health risks and product loss as a result of contamination. The proposed project has the following goals: to calibrate the Raman fingerprinting of biomarkers, standalone and in premixed samples, to build a database with the vibrational profiles distinctive to the signatures of the bouquet emitted by the contaminated pistachios; to test the improvement in the detection of the detectable markers withmore » enhanced Raman on a small probe.« less

  11. New/Future Approaches to Explosive/Chemicals Detection

    NASA Astrophysics Data System (ADS)

    Valkovic, Vlado

    2009-03-01

    Although there has been some reported progress in many systems used for threat material detection and identification a promising one seems to be the use of tagged fast neutrons generated in d+t→α+n nuclear reaction. Among others, EU-FP6 project EURITRACK has been a successful demonstration of the use of tagged neutrons for ship container inspections. It has been shown that the deployment of the same technology under-water is a feasibility to be realized in the near future (i.e. EU-FP7 project UNCOSS).

  12. Towards an operational use of space imagery for oil pollution monitoring in the Mediterranean basin: a demonstration in the Adriatic Sea.

    PubMed

    Ferraro, Guido; Bernardini, Annalia; David, Matej; Meyer-Roux, Serge; Muellenhoff, Oliver; Perkovic, Marko; Tarchi, Dario; Topouzelis, Kostas

    2007-04-01

    Studies of operational pollution carried out by European commission - Joint Research Centre in the Mediterranean Sea for the years 1999-2004 are briefly introduced. The specific analysis of the Adriatic Sea for the same period demonstrates that this area has been characterized by a relevant number of illegal discharges from ships. After setting the historical background of the project AESOP (aerial and satellite surveillance of operational pollution in the Adriatic Sea), the content, partners and aim of the project are presented. Finally, the results of the first phase of the AESOP project are presented. The results seem very encouraging. For the first time in the Adriatic, real time detection of oil spills in satellite images and an immediate verification by the Coast Guard has been undertaken. An exploratory activity has also been carried out in collaboration with the University of Ljubljana to use automatic information system (AIS) to identify the ships detected in the satellite images.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpenko, V.; Salmon, J.

    The goal of this project was to work together through the project phases to conceive, demonstrate, and produce concepts for detecting, locating, tracking, imaging, and assessing emissions passively or actively. The initial Sensor Concept Exploration Phase was postulated and assessed concepts at a first-order level to ascertain whether the parties’ concepts (either separately developed or jointly developed) had merit for missile defense and homeland security applications

  14. An electromagnetic induction method for underground target detection and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, L.C.; Cress, D.H.

    1997-01-01

    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect amore » drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.« less

  15. Lock-in detection for pulsed electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoehne, Felix; Dreher, Lukas; Behrends, Jan; Fehr, Matthias; Huebl, Hans; Lips, Klaus; Schnegg, Alexander; Suckert, Max; Stutzmann, Martin; Brandt, Martin S.

    2012-04-01

    We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the readout of the spin state.

  16. Strengthening global health security capacity--Vietnam demonstration project, 2013.

    PubMed

    Tran, Phu Dac; Vu, Long Ngoc; Nguyen, Hien Tran; Phan, Lan Trong; Lowe, Wayne; McConnell, Michelle S; Iademarco, Michael F; Partridge, Jeffrey M; Kile, James C; Do, Trang; Nadol, Patrick J; Bui, Hien; Vu, Diep; Bond, Kyle; Nelson, David B; Anderson, Lauren; Hunt, Kenneth V; Smith, Nicole; Giannone, Paul; Klena, John; Beauvais, Denise; Becknell, Kristi; Tappero, Jordan W; Dowell, Scott F; Rzeszotarski, Peter; Chu, May; Kinkade, Carl

    2014-01-31

    Over the past decade, Vietnam has successfully responded to global health security (GHS) challenges, including domestic elimination of severe acute respiratory syndrome (SARS) and rapid public health responses to human infections with influenza A(H5N1) virus. However, new threats such as Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A(H7N9) present continued challenges, reinforcing the need to improve the global capacity to prevent, detect, and respond to public health threats. In June 2012, Vietnam, along with many other nations, obtained a 2-year extension for meeting core surveillance and response requirements of the 2005 International Health Regulations (IHR). During March-September 2013, CDC and the Vietnamese Ministry of Health (MoH) collaborated on a GHS demonstration project to improve public health emergency detection and response capacity. The project aimed to demonstrate, in a short period, that enhancements to Vietnam's health system in surveillance and early detection of and response to diseases and outbreaks could contribute to meeting the IHR core capacities, consistent with the Asia Pacific Strategy for Emerging Diseases. Work focused on enhancements to three interrelated priority areas and included achievements in 1) establishing an emergency operations center (EOC) at the General Department of Preventive Medicine with training of personnel for public health emergency management; 2) improving the nationwide laboratory system, including enhanced testing capability for several priority pathogens (i.e., those in Vietnam most likely to contribute to public health emergencies of international concern); and 3) creating an emergency response information systems platform, including a demonstration of real-time reporting capability. Lessons learned included awareness that integrated functions within the health system for GHS require careful planning, stakeholder buy-in, and intradepartmental and interdepartmental coordination and communication.

  17. Innovative Methods for Estimating Densities and Detection Probabilities of Secretive Reptiles Including Invasive Constrictors and Rare Upland Snakes

    DTIC Science & Technology

    2018-01-30

    1  Department of Defense Legacy Resource Management Program Agreement # W9132T-14-2-0010 ( Project # 14-754) Innovative Methods for Estimating...Upland Snakes NA 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S) 5d. PROJECT NUMBER John D. Willson, Ph.D. 14-754 Shannon Pittman, Ph.D. 5e. TASK NUMBER...STATEMENT Publically available 13. SUPPLEMENTARY NOTES NA 14. ABSTRACT This project demonstrates the broad applicability of a novel simulation

  18. Slippery road detection and evaluation.

    DOT National Transportation Integrated Search

    2012-05-31

    The key project objectives were: 1) the demonstration and evaluation of a low cost data acquisition system that would provide a rich data set accumulated from multiple vehicles, and 2) establish how this data, coupled with situational data from other...

  19. Polarization-analyzing circuit on InP for integrated Stokes vector receiver.

    PubMed

    Ghosh, Samir; Kawabata, Yuto; Tanemura, Takuo; Nakano, Yoshiaki

    2017-05-29

    Stokes vector modulation and direct detection (SVM/DD) has immense potentiality to reduce the cost burden for the next-generation short-reach optical communication networks. In this paper, we propose and demonstrate an InGaAsP/InP waveguide-based polarization-analyzing circuit for an integrated Stokes vector (SV) receiver. By transforming the input state-of-polarization (SOP) and projecting its SV onto three different vectors on the Poincare sphere, we show that the actual SOP can be retrieved by simple calculation. We also reveal that this projection matrix has a flexibility and its deviation due to device imperfectness can be calibrated to a certain degree, so that the proposed device would be fundamentally robust against fabrication errors. A proof-of-concept photonic integrated circuit (PIC) is fabricated on InP by using half-ridge waveguides to successfully demonstrate detection of different SOPs scattered on the Poincare sphere.

  20. High spatial resolution detection of low-energy electrons using an event-counting method, application to point projection microscopy

    NASA Astrophysics Data System (ADS)

    Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger

    2018-04-01

    An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.

  1. Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegele, W.; Loeschel, R.; Dobler, B.

    2011-02-15

    Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other uncertainties associated with patient setup. Methods: The target position is assumed to be defined by and is stochastically determined from positions of various features such as anatomical landmarks or markers in CB projections, i.e., radiographs acquired with a CB-CT system. The patient positioning problem of finding the target location from CB projections is posed as an inverse problem withmore » prior knowledge and is solved using a Bayesian maximum a posteriori (MAP) approach. The prior knowledge is three-fold and includes the accuracy of an initial patient setup (such as in-room laser and skin marks), the plasticity of the body (relative shifts between target and features), and the feature detection error in CB projections (which may vary depending on specific detection algorithm and feature type). For this purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined. Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowledge (initial setup accuracy, plasticity of the body, and number of features) and the parameters of CB data acquisition (number of projections and accuracy of feature detection) to the expected estimation accuracy. Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to experimentally demonstrate its applicability and to perform the validation of the algorithm, a water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were utilized. These features were detected in the cone beam projections (XVI, Elekta Synergy) by a local threshold method for demonstration purposes only. The accuracy of estimation (strongly varying for different plasticity parameters of the body) agreed with the rule of thumb formula. Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection errors with standard deviation of 0.5 cm and spatial displacements of the features with standard deviation of 0.5 cm. Conclusions: The authors have introduced a general MAP-based patient setup algorithm accounting for different sources of uncertainties, which are utilized as the prior knowledge in a transparent way. This new framework can be further utilized for different clinical sites, as well as theoretical developments in the field of patient positioning for radiotherapy.« less

  2. Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.

    2015-01-01

    Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.

  3. HELICoiD project: a new use of hyperspectral imaging for brain cancer detection in real-time during neurosurgical operations

    NASA Astrophysics Data System (ADS)

    Fabelo, Himar; Ortega, Samuel; Kabwama, Silvester; Callico, Gustavo M.; Bulters, Diederik; Szolna, Adam; Pineiro, Juan F.; Sarmiento, Roberto

    2016-05-01

    Hyperspectral images allow obtaining large amounts of information about the surface of the scene that is captured by the sensor. Using this information and a set of complex classification algorithms is possible to determine which material or substance is located in each pixel. The HELICoiD (HypErspectraL Imaging Cancer Detection) project is a European FET project that has the goal to develop a demonstrator capable to discriminate, with high precision, between normal and tumour tissues, operating in real-time, during neurosurgical operations. This demonstrator could help the neurosurgeons in the process of brain tumour resection, avoiding the excessive extraction of normal tissue and unintentionally leaving small remnants of tumour. Such precise delimitation of the tumour boundaries will improve the results of the surgery. The HELICoiD demonstrator is composed of two hyperspectral cameras obtained from Headwall. The first one in the spectral range from 400 to 1000 nm (visible and near infrared) and the second one in the spectral range from 900 to 1700 nm (near infrared). The demonstrator also includes an illumination system that covers the spectral range from 400 nm to 2200 nm. A data processing unit is in charge of managing all the parts of the demonstrator, and a high performance platform aims to accelerate the hyperspectral image classification process. Each one of these elements is installed in a customized structure specially designed for surgical environments. Preliminary results of the classification algorithms offer high accuracy (over 95%) in the discrimination between normal and tumour tissues.

  4. Overview of Louisville Trials

    EPA Science Inventory

    This slide presentation provides an overview of field demonstrations of condition assessment and leak detection technologies for water mains that are being conducted in Louisville, KY in cooperation with the Louisville Water Company. The project is part of the EPA Office of Rese...

  5. Airborne remote sensors applied to engineering geology and civil works design investigations

    NASA Technical Reports Server (NTRS)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  6. Welding studs detection based on line structured light

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Wang, Jia; Wang, Wen; Xiao, Zhitao

    2018-01-01

    The quality of welding studs is significant for installation and localization of components of car in the process of automobile general assembly. A welding stud detection method based on line structured light is proposed. Firstly, the adaptive threshold is designed to calculate the binary images. Then, the light stripes of the image are extracted after skeleton line extraction and morphological filtering. The direction vector of the main light stripe is calculated using the length of the light stripe. Finally, the gray projections along the orientation of the main light stripe and the vertical orientation of the main light stripe are computed to obtain curves of gray projection, which are used to detect the studs. Experimental results demonstrate that the error rate of proposed method is lower than 0.1%, which is applied for automobile manufacturing.

  7. Design and Development of Smart Medicine Box

    NASA Astrophysics Data System (ADS)

    Rosli, Ekbal; Husaini, Yusnira

    2018-03-01

    The Smart Medicine Box is successfully designed in helping the introvert patients taking their medicine without help of others. This project is to develop a robotic device that can assist patient to take medicine alone by implementing an IOT apps system for controlling the Smart Medicine Box where it will overcome an emotional disturbance experience by the introvert patients. There are four sensors such as PIR, IR, temperature and ultrasonic sensors use for the project. The purpose of PIR sensor is to detect hand movement near the device, while IR sensor is to detect the line follower on the floor. The LM 35 acts as the detection of the temperature inside the box and the ultrasonic acts as the detection of the obstacle in front of the device. The MIT Apps Invention 2 is used to develop an apps and collect the data from sensors through Arduino microcontroller. A proof of concept design has implemented and demonstrated successfully.

  8. Final Report: Fire Prevention, Detection, and Suppression Project, Exploration Technology Development Program

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2011-01-01

    The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.

  9. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  10. An advanced SEU tolerant latch based on error detection

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhu, Jianwei; Lu, Xiaoping; Li, Jingzhao

    2018-05-01

    This paper proposes a latch that can mitigate SEUs via an error detection circuit. The error detection circuit is hardened by a C-element and a stacked PMOS. In the hold state, a particle strikes the latch or the error detection circuit may cause a fault logic state of the circuit. The error detection circuit can detect the upset node in the latch and the fault output will be corrected. The upset node in the error detection circuit can be corrected by the C-element. The power dissipation and propagation delay of the proposed latch are analyzed by HSPICE simulations. The proposed latch consumes about 77.5% less energy and 33.1% less propagation delay than the triple modular redundancy (TMR) latch. Simulation results demonstrate that the proposed latch can mitigate SEU effectively. Project supported by the National Natural Science Foundation of China (Nos. 61404001, 61306046), the Anhui Province University Natural Science Research Major Project (No. KJ2014ZD12), the Huainan Science and Technology Program (No. 2013A4011), and the National Natural Science Foundation of China (No. 61371025).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jesus

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less

  12. The Sweet-Home project: audio processing and decision making in smart home to improve well-being and reliance.

    PubMed

    Vacher, Michel; Chahuara, Pedro; Lecouteux, Benjamin; Istrate, Dan; Portet, Francois; Joubert, Thierry; Sehili, Mohamed; Meillon, Brigitte; Bonnefond, Nicolas; Fabre, Sébastien; Roux, Camille; Caffiau, Sybille

    2013-01-01

    The Sweet-Home project aims at providing audio-based interaction technology that lets the user have full control over their home environment, at detecting distress situations and at easing the social inclusion of the elderly and frail population. This paper presents an overview of the project focusing on the implemented techniques for speech and sound recognition as context-aware decision making with uncertainty. A user experiment in a smart home demonstrates the interest of this audio-based technology.

  13. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Astrophysics Data System (ADS)

    Romano, C.; Graff, P. V.; Runco, S.

    2017-12-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.

  14. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Technical Reports Server (NTRS)

    Romano, Cia; Graff, Paige V.; Runco, Susan

    2017-01-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.

  15. Experimental Investigation of Acousto-Optic Communications

    DTIC Science & Technology

    2003-09-01

    acousto - optic sensor shows promise as a means for detecting acoustic data projected towards the water surface from a submerged platform. The laser...simulation studies were conducted to demonstrate acousto - optic sensor feasibility for obtaining robust recordings of acoustic communication signals across

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The overall objective of the proposed Phase II project is to demonstrate the feasibility of a commercially practicable method of detecting the identified molecules with sufficient sensitivity and specificity so as to provide economic improvements in storage health management practices that exceed the cost of implementing the method.

  17. Demonstrations of Extraterrestrial Life Detection Techniques in the High School Biology Laboratory

    ERIC Educational Resources Information Center

    Saltinski, Ronald

    1969-01-01

    Discusses the experimental procedures and equipment for exobiology projects at the high school level. An interdisciplinary approach involving electronic equipment and micro-biological laboratory techniques is used. Photographs and diagrams of equipment are included. Bibliography. (LC)

  18. A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Krauthammer, Prof. Michael

    2010-01-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manuallymore » labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso Valdes

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together withmore » third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.« less

  20. Improving Access to Eye Care among Persons at High-Risk of Glaucoma in Philadelphia — Design and Methodology: The Philadelphia Glaucoma Detection and Treatment Project

    PubMed Central

    Myers, Jonathan S.; Henderer, Jeffrey; Crews, John E.; Saaddine, Jinan B.; Molineaux, Jeanne; Johnson, Deiana; Sembhi, Harjeet; Stratford, Shayla; Suleiman, Ayman; Pizzi, Laura; Spaeth, George L.; Katz, L. Jay

    2016-01-01

    Purpose The Wills Eye Glaucoma Research Center initiated a 2-year demonstration project to develop and implement a community-based intervention to improve detection and management of glaucoma in Philadelphia. Methods The glaucoma detection examination consisted of: ocular, medical, and family history; visual acuity testing; corneal pachymetry; biomicroscopy of the anterior segment; intraocular pressure (IOP) measurement; gonioscopy; funduscopy; automated visual field testing; and fundus-color photography. Treatment included laser surgery and/or IOP-lowering medication. A cost analysis was conducted to understand resource requirements. Outcome measures included; prevalence of glaucoma-related pathology and other eye diseases among high-risk populations; the impact of educational workshops on level of knowledge about glaucoma (assessed by pre- and post-test evaluation); and patient satisfaction of the glaucoma detection examinations in the community (assessed by satisfaction survey). Treatment outcome measures were change in IOP at 4–6 weeks and 4–6 months following selective laser trabeculoplasty treatment, deepening of the anterior chamber angle following laser-peripheral iridotomy treatment, and rate of adherence to recommended follow-up examinations. Cost outcomes included total program costs, cost per case of glaucoma detected, and cost per case of ocular disease detected. Results This project enrolled 1649 participants (African Americans aged 50+ years, adults 60+ years and individuals with a family history of glaucoma). A total of 1074 individuals attended a glaucoma educational workshop and 1508 scheduled glaucoma detection examination appointments in the community setting. Conclusions The Philadelphia Glaucoma Detection and Treatment Project aimed to improve access and use of eye care and to provide a model for a targeted community-based glaucoma program. PMID:26950056

  1. Improving Access to Eye Care among Persons at High-Risk of Glaucoma in Philadelphia--Design and Methodology: The Philadelphia Glaucoma Detection and Treatment Project.

    PubMed

    Hark, Lisa; Waisbourd, Michael; Myers, Jonathan S; Henderer, Jeffrey; Crews, John E; Saaddine, Jinan B; Molineaux, Jeanne; Johnson, Deiana; Sembhi, Harjeet; Stratford, Shayla; Suleiman, Ayman; Pizzi, Laura; Spaeth, George L; Katz, L Jay

    2016-01-01

    The Wills Eye Glaucoma Research Center initiated a 2-year demonstration project to develop and implement a community-based intervention to improve detection and management of glaucoma in Philadelphia. The glaucoma detection examination consisted of: ocular, medical, and family history; visual acuity testing; corneal pachymetry; biomicroscopy of the anterior segment; intraocular pressure (IOP) measurement; gonioscopy; funduscopy; automated visual field testing; and fundus-color photography. Treatment included laser surgery and/or IOP-lowering medication. A cost analysis was conducted to understand resource requirements. Outcome measures included; prevalence of glaucoma-related pathology and other eye diseases among high-risk populations; the impact of educational workshops on level of knowledge about glaucoma (assessed by pre- and post-test evaluation); and patient satisfaction of the glaucoma detection examinations in the community (assessed by satisfaction survey). Treatment outcome measures were change in IOP at 4-6 weeks and 4-6 months following selective laser trabeculoplasty treatment, deepening of the anterior chamber angle following laser-peripheral iridotomy treatment, and rate of adherence to recommended follow-up examinations. Cost outcomes included total program costs, cost per case of glaucoma detected, and cost per case of ocular disease detected. This project enrolled 1649 participants (African Americans aged 50+ years, adults 60+ years and individuals with a family history of glaucoma). A total of 1074 individuals attended a glaucoma educational workshop and 1508 scheduled glaucoma detection examination appointments in the community setting. The Philadelphia Glaucoma Detection and Treatment Project aimed to improve access and use of eye care and to provide a model for a targeted community-based glaucoma program.

  2. Coherent Lidar Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong

    2007-01-01

    NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.

  3. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less

  4. Non-Invasive Pneumothorax Detector Final Report CRADA No. TC02110.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J. T.; Purcell, R.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ElectroSonics Medical Inc. (formerly known as BIOMEC, Inc.), to develop a non-invasive pneumothorax detector based upon the micropower impulse radar technology invented at LLNL. Under a Work for Others Subcontract (L-9248), LLNL and ElectroSonics successfully demonstrated the feasibility of a novel device for non-invasive detection of pneumothorax for emergency and long-term monitoring. The device is based on Micropower Impulse Radar (MIR) Ultra Wideband (UWB) technology. Phase I experimental results were promising, showing that a pneumothorax volume even asmore » small as 30 ml was clearly detectable from the MIR signals. Phase I results contributed to the award of a National Institute of Health (NIH) SBIR Phase II grant to support further research and development. The Phase II award led to the establishment of a LLNL/ElectroSonics CRADA related to Case No. TC02045.0. Under the subsequent CRADA, LLNL and ElectroSonics successfully demonstrated the feasibility of the pneumothorax detection in human subject research trials. Under this current CRADA TC02110.0, also referred to as Phase II Type II, the project scope consisted of seven tasks in Project Year 1; five tasks in Project Year 2; and four tasks in Project Year 3. Year 1 tasks were aimed toward the delivery of the pneumothorax detector design package for the pre-production of the miniaturized CompactFlash dockable version of the system. The tasks in Project Years 2 and 3 critically depended upon the accomplishments of Task 1. Since LLNL’s task was to provide subject matter expertise and performance verification, much of the timeline of engagement by the LLNL staff depended upon the overall project milestones as determined by the lead organization ElectroSonics. The scope of efforts were subsequently adjusted accordingly to commensurate with funding availability.« less

  5. Clinical identification of compensatory structures on projective tests: a self psychological approach.

    PubMed

    Silverstein, M L

    2001-06-01

    In this article I discuss compensatory structure, a concept from Kohut's (1971, 1977) psychology of the self that is not as familiar as Kohut's other views about the self. Compensatory structures are attempts to repair selfobject failure, usually by strengthening idealization or twinship in the face of mirroring deficits. Compensatory structures, particularly their early indications, can be detected on projective tests for identifying adaptive resources and treatment potential. The clinical identification of compensatory structures on test findings is described using Rorschach and Thematic Apperception Test (Murray, 1943) content. Particular attention is devoted to the 2-part process of demonstrating first, an injury to the self, and second, how attempts to recover from such injuries can be detected on projective tests. Clinical examples are provided, and the differentiation between compensatory structures and defenses and sublimation is discussed.

  6. Face Recognition and Event Detection in Video: An Overview of PROVE-IT Projects

    DTIC Science & Technology

    2014-07-01

    with Public Safety Canada. Led by Canada Border Services Agency partners included : Royal Canadian Mounted Police, Defence Research Development Canada...represented by the Minister of National Defence, 2014 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense...each of these settings. As secondary outputs, the projects produced technology demonstrations, refereed publications , and an alternative assessment

  7. Applying a 2D based CAD scheme for detecting micro-calcification clusters using digital breast tomosynthesis images: an assessment

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Zheng, Bin; Wang, Xiao-Hui; Gur, David

    2008-03-01

    Digital breast tomosynthesis (DBT) has emerged as a promising imaging modality for screening mammography. However, visually detecting micro-calcification clusters depicted on DBT images is a difficult task. Computer-aided detection (CAD) schemes for detecting micro-calcification clusters depicted on mammograms can achieve high performance and the use of CAD results can assist radiologists in detecting subtle micro-calcification clusters. In this study, we compared the performance of an available 2D based CAD scheme with one that includes a new grouping and scoring method when applied to both projection and reconstructed DBT images. We selected a dataset involving 96 DBT examinations acquired on 45 women. Each DBT image set included 11 low dose projection images and a varying number of reconstructed image slices ranging from 18 to 87. In this dataset 20 true-positive micro-calcification clusters were visually detected on the projection images and 40 were visually detected on the reconstructed images, respectively. We first applied the CAD scheme that was previously developed in our laboratory to the DBT dataset. We then tested a new grouping method that defines an independent cluster by grouping the same cluster detected on different projection or reconstructed images. We then compared four scoring methods to assess the CAD performance. The maximum sensitivity level observed for the different grouping and scoring methods were 70% and 88% for the projection and reconstructed images with a maximum false-positive rate of 4.0 and 15.9 per examination, respectively. This preliminary study demonstrates that (1) among the maximum, the minimum or the average CAD generated scores, using the maximum score of the grouped cluster regions achieved the highest performance level, (2) the histogram based scoring method is reasonably effective in reducing false-positive detections on the projection images but the overall CAD sensitivity is lower due to lower signal-to-noise ratio, and (3) CAD achieved higher sensitivity and higher false-positive rate (per examination) on the reconstructed images. We concluded that without changing the detection threshold or performing pre-filtering to possibly increase detection sensitivity, current CAD schemes developed and optimized for 2D mammograms perform relatively poorly and need to be re-optimized using DBT datasets and new grouping and scoring methods need to be incorporated into the schemes if these are to be used on the DBT examinations.

  8. Collection and analysis of high-resolution elevation data for the Lincoln Lidar Project, Lincoln, Nebraska, 2004

    USGS Publications Warehouse

    Meyer, P.D.; Greenlee, Susan K.; Gesch, Dean B.; Hubl, Erik J.; Axmann, Ryan N.

    2005-01-01

    The Lincoln Lidar Project was a partnership developed between the U.S. Geological Survey National Center for Earth Resources Observations and Science (EROS), Lancaster County and the city of Lincoln, Nebraska. This project demonstrated a successful planning, collection, analysis and integration of high-resolution elevation information using Light Detection and Ranging, (Lidar) data. This report describes the partnership developed to collect local Lidar data and transform the data into information useable at local to national levels. This report specifically describes project planning, quality assurance, processing, transforming raw Lidar points to useable data layers, and visualizing and disseminating the raw and final products.

  9. Demonstration of Spacecraft Fire Safety Technology

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2012-01-01

    During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.

  10. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-03-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  11. Laser diode arrays for naval reconnaissance

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Crosby, Frank J.; Petee, Danny A.; Suiter, Harold R.; Witherspoon, Ned H.

    2003-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) Project has demonstrated a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). Historically, optical aerial detection of minefields has primarily been limited to daytime operations but LDAs promise compact and efficient lighting to allow for enhanced reconnaissance operations for future mine detection systems. When combined with high-resolution intensified imaging systems, LDAs can illuminate otherwise unseen areas. Future wavelength options will open the way for active multispectral imaging with LDAs. The Coastal Systems Station working for the Office of Naval Research on the ALRT project has designed, developed, integrated, and tested both prototype and commercial arrays from a Cessna airborne platform. Detailed test results show the ability to detect several targets of interest in a variety of background conditions. Initial testing of the prototype arrays, reported on last year, was completed and further investigations of the commercial versions were performed. Polarization-state detection studies were performed, and advantageous properties of the source-target-sensor geometry noted. Current project plans are to expand the field-of-view coverage for Naval exercises in the summer of 2003. This paper describes the test collection, data library products, array information, on-going test analysis results, and future planned testing of the LDAs.

  12. UXO Detection and Characterization in the Marine Environment

    DTIC Science & Technology

    2009-12-01

    10 Figure 8. A part of Ostrich Bay adjacent to the Naval Ammunition Depot Puget Sound during the period of its...large-scale demonstration focus on a marine geophysical magnetometry survey of Ostrich Bay adjacent to the Former Naval Ammunition Depot – Puget Sound ...The Puget Sound Demonstration was also supported by NAVFAC Northwest, the current manager of the site. The Navy Project Manager is Mr. Mark Murphy

  13. Real-time optically sectioned wide-field microscopy employing structured light illumination and a CMOS detector

    NASA Astrophysics Data System (ADS)

    Mitic, Jelena; Anhut, Tiemo; Serov, Alexandre; Lasser, Theo; Bourquin, Stephane

    2003-07-01

    Real-time optically sectioned microscopy is demonstrated using an AC-sensitive detection concept realized with smart CMOS image sensor and structured light illumination by a continuously moving periodic pattern. We describe two different detection systems based on CMOS image sensors for the detection and on-chip processing of the sectioned images in real time. A region-of-interest is sampled at high frame rate. The demodulated signal delivered by the detector corresponds to the depth discriminated image of the sample. The measured FWHM of the axial response depends on the spatial frequency of the projected grid illumination and is in the μm-range. The effect of using broadband incoherent illumination is discussed. The performance of these systems is demonstrated by imaging technical as well as biological samples.

  14. Could home sexually transmitted infection specimen collection with e-prescription be a cost-effective strategy for clinical trials and clinical care?

    PubMed

    Blake, Diane R; Spielberg, Freya; Levy, Vivian; Lensing, Shelly; Wolff, Peter A; Venkatasubramanian, Lalitha; Acevedo, Nincoshka; Padian, Nancy; Chattopadhyay, Ishita; Gaydos, Charlotte A

    2015-01-01

    Results of a recent demonstration project evaluating feasibility, acceptability, and cost of a Web-based sexually transmitted infection (STI) testing and e-prescription treatment program (eSTI) suggest that this approach could be a feasible alternative to clinic-based testing and treatment, but the results need to be confirmed by a randomized comparative effectiveness trial. We modeled a decision tree comparing (1) cost of eSTI screening using a home collection kit and an e-prescription for uncomplicated treatment versus (2) hypothetical costs derived from the literature for referral to standard clinic-based STI screening and treatment. Primary outcome was number of STIs detected. Analyses were conducted from the clinical trial perspective and the health care system perspective. The eSTI strategy detected 75 infections, and the clinic referral strategy detected 45 infections. Total cost of eSTI was $94,938 ($1266/STI detected) from the clinical trial perspective and $96,088 ($1281/STI detected) from the health care system perspective. Total cost of clinic referral was $87,367 ($1941/STI detected) from the clinical trial perspective and $71,668 ($1593/STI detected) from the health care system perspective. Results indicate that eSTI will likely be more cost-effective (lower cost/STI detected) than clinic-based STI screening, both in the context of clinical trials and in routine clinical care. Although our results are promising, they are based on a demonstration project and estimates from other small studies. A comparative effectiveness research trial is needed to determine actual cost and impact of the eSTI system on identification and treatment of new infections and prevention of their sequelae.

  15. A demonstration device for cosmic rays telescopes

    NASA Astrophysics Data System (ADS)

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon telescope, while the other one shows the key avalanche process of electronic ionization that effectively allows muon detection through a photomultiplier. Incoming cosmic rays are visualized in terms of laser beams, whose 3D trajectory is highlighted by turning on LEDs on two orthogonal matrices. Instead the avalanche ionization process is demonstrated through the avalanche falling off glass marbles on an inclined plane, finally turning on a LED. A pictured poster accompanying the demonstrator is as effective in assisting cosmic ray demonstration and its detection. The success of the demonstrator has been fully proven by the general public during a science festival, in which the corresponding project won the Honorable Mention in a dedicated competition.

  16. A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images

    PubMed Central

    Xu, Songhua; Krauthammer, Michael

    2010-01-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper’s key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. In this paper, we demonstrate that a projection histogram-based text detection approach is well suited for text detection in biomedical images, with a performance of F score of .60. The approach performs better than comparable approaches for text detection. Further, we show that the iterative application of the algorithm is boosting overall detection performance. A C++ implementation of our algorithm is freely available through email request for academic use. PMID:20887803

  17. Final technical report for ITS for voluntary emission reduction : an ITS operational test using real-time vehicle emissions detection

    DOT National Transportation Integrated Search

    1998-05-01

    The Smart Sign project has successfully demonstrated the merging of two separate technological disciplines of highway messaging and on-road vehicle emissions sensing into an advanced ITS public information system. This operational test has demonstrat...

  18. Detection of incipient defects in cables by partial discharge signal analysis

    NASA Astrophysics Data System (ADS)

    Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.

    1992-07-01

    As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.

  19. Non-local opto-electrical spin injection and detection in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Rortais, Fabien; Zucchetti, Carlo; Ghirardini, Lavinia; Ferrari, Alberto; Vergnaud, Celine; Widiez, Julie; Marty, Alain; Attane, Jean-Philippe; Jaffres, Henri; George, Jean-Marie; Celebrano, Michele; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco; Bottegoni, Federico

    Non-local charge carriers injection/detection schemes lie at the foundation of information manipulation in integrated systems. The next generation electronics may operate on the spin instead of the charge and germanium appears as the best hosting material to develop such spintronics for its compatibility with mainstream silicon technology and long spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin orientation. In this presentation, we demonstrate injection of pure spin currents in Ge, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, by using lithographed nanostructures to diffuse the light and create an in-plane polarized electron spin population. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect across a Pt stripe. Supported by the ANR project SiGeSPIN #ANR-13-BS10-0002 and the CARIPLO project SEARCH-IV (Grant 2013-0623).

  20. Implementation of projective measurements with linear optics and continuous photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Sasaki, Masahide; Loock, Peter van

    2005-02-01

    We investigate the possibility of implementing a given projection measurement using linear optics and arbitrarily fast feedforward based on the continuous detection of photons. In particular, we systematically derive the so-called Dolinar scheme that achieves the minimum-error discrimination of binary coherent states. Moreover, we show that the Dolinar-type approach can also be applied to projection measurements in the regime of photonic-qubit signals. Our results demonstrate that for implementing a projection measurement with linear optics, in principle, unit success probability may be approached even without the use of expensive entangled auxiliary states, as they are needed in all known (near-)deterministic linear-opticsmore » proposals.« less

  1. Development of a neural network for early detection of renal osteodystrophy

    NASA Astrophysics Data System (ADS)

    Cheng, Shirley N.; Chan, Heang-Ping; Adler, Ronald; Niklason, Loren T.; Chang, Chair-Li

    1991-07-01

    Bone erosion presenting as subperiosteal resorption on the phalanges of the hand is an early manifestation of hyperparathyroidism associated with chronic renal failure. At present, the diagnosis is made by trained radiologists through visual inspection of hand radiographs. In this study, a neural network is being developed to assess the feasibility of computer-aided detection of these changes. A two-pass approach is adopted. The digitized image is first compressed by a Laplacian pyramid compact code. The first neural network locates the region of interest using vertical projections along the phalanges and then the horizontal projections across the phalanges. A second neural network is used to classify texture variations of trabecular patterns in the region using a concurrence matrix as the input to a two-dimensional sensor layer to detect the degree of associated osteopenia. Preliminary results demonstrate the feasibility of this approach.

  2. The Scientific Status of Projective Techniques.

    PubMed

    Lilienfeld, S O; Wood, J M; Garb, H N

    2000-11-01

    Although projective techniques continue to be widely used in clinical and forensic settings, their scientific status remains highly controversial. In this monograph, we review the current state of the literature concerning the psychometric properties (norms, reliability, validity, incremental validity, treatment utility) of three major projective instruments: Rorschach Inkblot Test, Thematic Apperception Test (TAT), and human figure drawings. We conclude that there is empirical support for the validity of a small number of indexes derived from the Rorschach and TAT. However, the substantial majority of Rorschach and TAT indexes are not empirically supported. The validity evidence for human figure drawings is even more limited. With a few exceptions, projective indexes have not consistently demonstrated incremental validity above and beyond other psychometric data. In addition, we summarize the results of a new meta-analysis intended to examine the capacity of these three instruments to detect child sexual abuse. Although some projective instruments were better than chance at detecting child sexual abuse, there were virtually no replicated findings across independent investigative teams. This meta-analysis also provides the first clear evidence of substantial file drawer effects in the projectives literature, as the effect sizes from published studies markedly exceeded those from unpublished studies. We conclude with recommendations regarding the (a) construction of projective techniques with adequate validity, (b) forensic and clinical use of projective techniques, and (c) education and training of future psychologists regarding projective techniques. © 2000 Association for Psychological Science.

  3. A new pivoting and iterative text detection algorithm for biomedical images.

    PubMed

    Xu, Songhua; Krauthammer, Michael

    2010-12-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-03-14

    Here, we present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Lastly, we also address technical issues that arise when applying this technique to data from a large LArTPCmore » at or near ground level.« less

  5. LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY LIBRARY AND STRATEGY FOR IDENTIFYING HARMFUL ORGANICS IN DRINKING WATER

    EPA Science Inventory

    This project will demonstrate ways to detect contaminants by LC/MS technologies in order to protect water systems and environments. Contaminants can affect drinking water usage and limit acceptable sources of ground and reservoir supplies. The analytical method to enhance the s...

  6. Radionuclide demonstration of urinary extravasation with ureteral obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, V.A.; Chiang, L.C.; Meade, R.C.

    Two cases of urinary extravasation with ureteral obstruction demonstrated by the radionuclide studies are reported. The value of radionuclide studies in patients with renal transplantation has been reported previously, but studies in patients without transplantation have rarely been described in the literature. Ureteral obstruction may cause urinary extravasation, which may be demonstrated by radionuclide studies even when radiologic studies are inconclusive. In one case, urinary extravasation was detected in the sitting position but not in the supine position. Renal imaging should probably be performed not only with multiple projections but also in different positions.

  7. Intelligent Unmanned Monitoring of Remediated Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emile Fiesler, Ph.D.

    During this Phase I project, IOS demonstrated the feasibility of combining digital signal processing and neural network analysis to analyze spectral signals from pure samples of several typical contaminants. We fabricated and tested a prototype system by automatically analyzing Raman spectral data taken in the Vadose zone at the 321 M site in the M area of DOE's Savannah River Site in South Carolina. This test demonstration proved the ability of IOS's technology to detect the target contaminants, tetrachloroethylene (PCE) and trichloroethylene (TCE), in isolation, and to detect the spectra of these contaminants in real-world noisy samples taken from amore » mixture of materials obtained from this typical remediation target site.« less

  8. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  9. Real Time Intelligent Target Detection and Analysis with Machine Vision

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Padgett, Curtis; Brown, Kenneth

    2000-01-01

    We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.

  10. Text extraction method for historical Tibetan document images based on block projections

    NASA Astrophysics Data System (ADS)

    Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian

    2017-11-01

    Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.

  11. Developing tools for the safety specification in risk management plans: lessons learned from a pilot project.

    PubMed

    Cooper, Andrew J P; Lettis, Sally; Chapman, Charlotte L; Evans, Stephen J W; Waller, Patrick C; Shakir, Saad; Payvandi, Nassrin; Murray, Alison B

    2008-05-01

    Following the adoption of the ICH E2E guideline, risk management plans (RMP) defining the cumulative safety experience and identifying limitations in safety information are now required for marketing authorisation applications (MAA). A collaborative research project was conducted to gain experience with tools for presenting and evaluating data in the safety specification. This paper presents those tools found to be useful and the lessons learned from their use. Archive data from a successful MAA were utilised. Methods were assessed for demonstrating the extent of clinical safety experience, evaluating the sensitivity of the clinical trial data to detect treatment differences and identifying safety signals from adverse event and laboratory data to define the extent of safety knowledge with the drug. The extent of clinical safety experience was demonstrated by plots of patient exposure over time. Adverse event data were presented using dot plots, which display the percentages of patients with the events of interest, the odds ratio, and 95% confidence interval. Power and confidence interval plots were utilised for evaluating the sensitivity of the clinical database to detect treatment differences. Box and whisker plots were used to display laboratory data. This project enabled us to identify new evidence-based methods for presenting and evaluating clinical safety data. These methods represent an advance in the way safety data from clinical trials can be analysed and presented. This project emphasises the importance of early and comprehensive planning of the safety package, including evaluation of the use of epidemiology data.

  12. THE MILKY WAY PROJECT: LEVERAGING CITIZEN SCIENCE AND MACHINE LEARNING TO DETECT INTERSTELLAR BUBBLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, Christopher N.; Williams, Jonathan P.; Goodman, Alyssa A.

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to themore » mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.« less

  13. The Majorana Project

    ScienceCinema

    Orrell, John; Hoppe, Eric

    2018-01-26

    Working as part of a collaborative team, PNNL is bringing its signature capability in ultra-low-level detection to help search for a rare form of radioactive decay-never before detected-called "neutrinoless double beta decay" in germanium. If observed, it would demonstrate neutrinos are Majorana-type particles. This discovery would show neutrinos are unique among fundamental particles, having a property whereby the matter and anti-matter version of this particle are indistinguishable. Physicist John L. Orrell explains how they rely on the Shallow Underground Laboratory to conduct the research.

  14. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  15. Filtrates and Residues: Optical Projection Experiments to Demonstrate New Curricula Contents.

    ERIC Educational Resources Information Center

    Perina, Ivo

    1986-01-01

    Presents background information and procedures for 12 experiments dealing with such areas as: reactivity of a homologous series of saturated monovalent alcohols; enzymatic degradation of hydrogen peroxide by catalase; effect of an activator and inhibitor on amylase activity; proving the existence of phenol in waste water; detecting common air…

  16. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first six months of the project, the design for a laboratory version of the multispectral scanner was completed. The optical, mechanical, and electronic design for the scanner was completed. The optical design was analyzed using Zeemax Optical Design software and found to provide sufficiently resolved performance for the scanner. The electronic design was evaluated using a bread board and very high signal to noise ratios were obtained. Fabrication of a laboratorymore » version of the multi-spectral scanner is currently in progress. A technology status report and a research management plan was also completed during the same period.« less

  17. Program Correctness, Verification and Testing for Exascale (Corvette)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Koushik; Iancu, Costin; Demmel, James W

    The goal of this project is to provide tools to assess the correctness of parallel programs written using hybrid parallelism. There is a dire lack of both theoretical and engineering know-how in the area of finding bugs in hybrid or large scale parallel programs, which our research aims to change. In the project we have demonstrated novel approaches in several areas: 1. Low overhead automated and precise detection of concurrency bugs at scale. 2. Using low overhead bug detection tools to guide speculative program transformations for performance. 3. Techniques to reduce the concurrency required to reproduce a bug using partialmore » program restart/replay. 4. Techniques to provide reproducible execution of floating point programs. 5. Techniques for tuning the floating point precision used in codes.« less

  18. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  19. Final Technical Report. Project Boeing SGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas E.

    Boeing and its partner, PJM Interconnection, teamed to bring advanced “defense-grade” technologies for cyber security to the US regional power grid through demonstration in PJM’s energy management environment. Under this cooperative project with the Department of Energy, Boeing and PJM have developed and demonstrated a host of technologies specifically tailored to the needs of PJM and the electric sector as a whole. The team has demonstrated to the energy industry a combination of processes, techniques and technologies that have been successfully implemented in the commercial, defense, and intelligence communities to identify, mitigate and continuously monitor the cyber security of criticalmore » systems. Guided by the results of a Cyber Security Risk-Based Assessment completed in Phase I, the Boeing-PJM team has completed multiple iterations through the Phase II Development and Phase III Deployment phases. Multiple cyber security solutions have been completed across a variety of controls including: Application Security, Enhanced Malware Detection, Security Incident and Event Management (SIEM) Optimization, Continuous Vulnerability Monitoring, SCADA Monitoring/Intrusion Detection, Operational Resiliency, Cyber Range simulations and hands on cyber security personnel training. All of the developed and demonstrated solutions are suitable for replication across the electric sector and/or the energy sector as a whole. Benefits identified include; Improved malware and intrusion detection capability on critical SCADA networks including behavioral-based alerts resulting in improved zero-day threat protection; Improved Security Incident and Event Management system resulting in better threat visibility, thus increasing the likelihood of detecting a serious event; Improved malware detection and zero-day threat response capability; Improved ability to systematically evaluate and secure in house and vendor sourced software applications; Improved ability to continuously monitor and maintain secure configuration of network devices resulting in reduced vulnerabilities for potential exploitation; Improved overall cyber security situational awareness through the integration of multiple discrete security technologies into a single cyber security reporting console; Improved ability to maintain the resiliency of critical systems in the face of a targeted cyber attack of other significant event; Improved ability to model complex networks for penetration testing and advanced training of cyber security personnel« less

  20. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  1. The whispering gallery mode biosensor: label-free detection from virus to single protein

    NASA Astrophysics Data System (ADS)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  2. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    NASA Astrophysics Data System (ADS)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  3. Three-Dimensional Rotational Angiography of the Inferior Vena Cava as an Adjunct to Inferior Vena Cava Filter Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozlar, Ugur; Edmunds, J. Stewart; Turba, Ulku C.

    The objective of this study was to explore the role of three-dimensional (3-D) rotational angiography (RA) of the inferior vena cava (IVC; 3-D CV) before filter retrieval and its impact on treatment planning compared with standard anteroposterior cavography (sCV). Thirty patients underwent sCV and 3-D CV before IVC filter retrieval. Parameters assessed were: projection of filter arms or legs beyond the caval lumen, thrombus burden within the filter and IVC, and orientation of the filter within IVC. Skin and effective radiation doses were calculated. Statistical analysis was performed using paired Student t test and nonparametric McNemar's test. Standard anteroposterior cavographymore » detected 49 filter arms or legs projecting beyond the caval lumen in 25 patients. Three-dimensional CV demonstrated 89 filter arms or legs projecting beyond the caval lumen in 28 patients. Twenty-two patients had additional filter arms or legs projecting beyond the caval lumen detected on 3-D CV that were not detected on sCV (p < 0.001). Filter apex tilt detection differed significantly (p < 0.001) between sCV and 3-D CV, with 3-D CV being more accurate. The filter apex abutted the IVC wall in 10 patients (33%) on 3-D CV, but this was diagnosed in only 3 patients (10%) with sCV. Thrombus was detected in 8 patients (27%), 1 thrombus of which was seen only on 3-D CV, and treatment was changed in this patient because of thrombus size. Mean effective radiation doses for 3-D CV were approximately two times higher than for sCV (1.68 vs. 0.86 mSv), whereas skin doses were three times lower (12.87 vs. 35.86 mGy). Compared with sCV, performing 3-D CV before optional IVC filter retrieval has the potential to improve assessment of filter arms or legs projecting beyond the caval lumen, filter orientation, and thrombus burden.« less

  4. Thioaptamer Diagnostic System (TDS)

    NASA Technical Reports Server (NTRS)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  5. Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array.

    PubMed

    Yang, Diwu; Zeng, Lvming; Pan, Changning; Zhao, Xuehui; Ji, Xuanrong

    2013-01-14

    We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.

  6. Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Velten, Andreas

    2014-11-01

    We discuss new approaches to analyze laser-gated viewing data for nonline-of-sight vision with a frame-to-frame back-projection as well as feature selection algorithms. Although first back-projection approaches use time transients for each pixel, our method has the ability to calculate the projection of imaging data on the voxel space for each frame. Further, different data analysis algorithms and their sequential application were studied with the aim of identifying and selecting signals from different target positions. A slight modification of commonly used filters leads to a powerful selection of local maximum values. It is demonstrated that the choice of the filter has an impact on the selectivity i.e., multiple target detection as well as on the localization precision.

  7. Design of an automated cart and mount for a hyperspectral imaging system to be used in produce fields

    USDA-ARS?s Scientific Manuscript database

    The goal of this project was to construct a cart and a mounting system that would allow a hyperspectral laser-induced fluorescence imaging system (HLIFIS) to be used to detect fecal material in produce fields. Fecal contaminated produce is a recognized food safety risk. Previous research demonstrate...

  8. MEMS scanner mirror based system for retina scanning and in eye projection

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Dallmann, Hans-Georg; Schelinski, Uwe; Grüger, Heinrich

    2015-02-01

    Many applications could benefit from miniaturized systems to scan blood vessels behind the retina in the human eye, so called "retina scanning". This reaches from access control to sophisticated security applications and medical devices. High volume systems for consumer applications require low cost and a user friendly operation. For example this includes no need for removal of glasses and self-adjustment, in turn guidance of focus and point of attraction by simultaneous projection for the user. A new system has been designed based on the well-known resonantly driven 2-d scanner mirror of Fraunhofer IPMS. A combined NIR and VIS laser system illuminates the eye through an eye piece designed for an operating distance allowing the use of glasses and granting sufficient field of view. This usability feature was considered to be more important than highest miniaturization. The modulated VIS laser facilitates the projection of an image directly onto the retina. The backscattered light from the continuous NIR laser contains the information of the blood vessels and is detected by a highly sensitive photo diode. A demonstrational setup has been realized including readout and driving electronics. The laser power was adjusted to an eye-secure level. Additional security features were integrated. Test measurements revealed promising results. In a first demonstration application the detection of biometric pattern of the blood vessels was evaluated for issues authentication in.

  9. Millimeter-wave data acquisition for terrain mapping, obstacle detection, and dust penetrating capability testing

    NASA Astrophysics Data System (ADS)

    Schmerwitz, S.; Doehler, H.-U.; Ellis, K.; Jennings, S.

    2011-06-01

    The DLR project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites) is devoted to demonstrating and evaluating the characteristics of sensors for helicopter operations in degraded visual environments. Millimeter wave radar is one of the many sensors considered for use in brown-out. It delivers a lower angular resolution compared to other sensors, however it may provide the best dust penetration capabilities. In cooperation with the NRC, flight tests on a Bell 205 were conducted to gather sensor data from a 35 GHz pencil beam radar for terrain mapping, obstacle detection and dust penetration. In this paper preliminary results from the flight trials at NRC are presented and a description of the radars general capability is shown. Furthermore, insight is provided into the concept of multi-sensor fusion as attempted in the ALLFlight project.

  10. Regional fringe analysis for improving depth measurement in phase-shifting fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Chien, Kuang-Che Chang; Tu, Han-Yen; Hsieh, Ching-Huang; Cheng, Chau-Jern; Chang, Chun-Yen

    2018-01-01

    This study proposes a regional fringe analysis (RFA) method to detect the regions of a target object in captured shifted images to improve depth measurement in phase-shifting fringe projection profilometry (PS-FPP). In the RFA method, region-based segmentation is exploited to segment the de-fringed image of a target object, and a multi-level fuzzy-based classification with five presented features is used to analyze and discriminate the regions of an object from the segmented regions, which were associated with explicit fringe information. Then, in the experiment, the performance of the proposed method is tested and evaluated on 26 test cases made of five types of materials. The qualitative and quantitative results demonstrate that the proposed RFA method can effectively detect the desired regions of an object to improve depth measurement in the PS-FPP system.

  11. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  12. Scaling the PuNDIT project for wide area deployments

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Batista, Jorge; Carcassi, Gabriele; Dovrolis, Constantine; Lee, Danny

    2017-10-01

    In today’s world of distributed scientific collaborations, there are many challenges to providing reliable inter-domain network infrastructure. Network operators use a combination of active monitoring and trouble tickets to detect problems, but these are often ineffective at identifying issues that impact wide-area network users. Additionally, these approaches do not scale to wide area inter-domain networks due to unavailability of data from all the domains along typical network paths. The Pythia Network Diagnostic InfrasTructure (PuNDIT) project aims to create a scalable infrastructure for automating the detection and localization of problems across these networks. The project goal is to gather and analyze metrics from existing perfSONAR monitoring infrastructures to identify the signatures of possible problems, locate affected network links, and report them to the user in an intuitive fashion. Simply put, PuNDIT seeks to convert complex network metrics into easily understood diagnoses in an automated manner. We present our progress in creating the PuNDIT system and our status in developing, testing and deploying PuNDIT. We report on the project progress to-date, describe the current implementation architecture and demonstrate some of the various user interfaces it will support. We close by discussing the remaining challenges and next steps and where we see the project going in the future.

  13. SPECT reconstruction with nonuniform attenuation from highly under-sampled projection data

    NASA Astrophysics Data System (ADS)

    Li, Cuifen; Wen, Junhai; Zhang, Kangping; Shi, Donghao; Dong, Haixiang; Li, Wenxiao; Liang, Zhengrong

    2012-03-01

    Single photon emission computed tomography (SPECT) is an important nuclear medicine imaging technique and has been using in clinical diagnoses. The SPECT image can reflect not only organizational structure but also functional activities of human body, therefore diseases can be found much earlier. In SPECT, the reconstruction is based on the measurement of gamma photons emitted by the radiotracer. The number of gamma photons detected is proportional to the dose of radiopharmaceutical, but the dose is limited because of patient safety. There is an upper limit in the number of gamma photons that can be detected per unit time, so it takes a long time to acquire SPECT projection data. Sometimes we just can obtain highly under-sampled projection data because of the limit of the scanning time or imaging hardware. How to reconstruct an image using highly under-sampled projection data is an interesting problem. One method is to minimize the total variation (TV) of the reconstructed image during the iterative reconstruction. In this work, we developed an OSEM-TV SPECT reconstruction algorithm, which could reconstruct the image from highly under-sampled projection data with non-uniform attenuation. Simulation results demonstrate that the OSEM-TV algorithm performs well in SPECT reconstruction with non-uniform attenuation.

  14. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods.

    PubMed

    Kalvoy, Havard; Tronstad, Christian; Ullensvang, Kyrre; Steinfeldt, Thorsten; Sauter, Axel R

    2017-07-01

    In an ongoing project for electrical impedance-based needle guidance we have previously showed in an animal model that intraneural needle positions can be detected with bioimpedance measurement. To enhance the power of this method we in this study have investigated whether an early detection of the needle only touching the nerve also is feasible. Measurement of complex impedance during needle to nerve contact was compared with needle positions in surrounding tissues in a volunteer study on 32 subjects. Classification analysis using Support-Vector Machines demonstrated that discrimination is possible, but that the sensitivity and specificity for the nerve touch algorithm not is at the same level of performance as for intra-neuralintraneural detection.

  15. Development of Oil Spill Monitoring System for the Black Sea, Caspian Sea and the Barents/Kara Seas (DEMOSS)

    NASA Astrophysics Data System (ADS)

    Sandven, Stein; Kudriavtsev, Vladimir; Malinovsky, Vladimir; Stanovoy, Vladimir

    2008-01-01

    DEMOSS will develop and demonstrate elements of a marine oil spill detection and prediction system based on satellite Synthetic Aperture Radar (SAR) and other space data. In addition, models for prediction of sea surface pollution drift will be developed and tested. The project implements field experiments to study the effect of artificial crude oil and oil derivatives films on short wind waves and multi-frequency (Ka-, Ku-, X-, and C-band) dual polarization radar backscatter power and Doppler shift at different wind and wave conditions. On the basis of these and other available experimental data, the present model of short wind waves and radar scattering will be improved and tested.A new approach for detection and quantification of the oil slicks/spills in satellite SAR images is developed that can discriminate human oil spills from biogenic slicks and look-alikes in the SAR images. New SAR images are obtained in coordination with the field experiments to test the detection algorithm. Satellite SAR images from archives as well as from new acquisitions will be analyzed for the Black/Caspian/Kara/Barents seas to investigate oil slicks/spills occurrence statistics.A model for oil spills/slicks transport and evolution is developed and tested in ice-infested arctic seas, including the Caspian Sea. Case studies using the model will be conducted to simulate drift and evolution of oil spill events observed in SAR images. The results of the project will be disseminated via scientific publications and by demonstration to users and agencies working with marine monitoring. The project lasts for two years (2007 - 2009) and is funded under INTAS Thematic Call with ESA 2006.

  16. 3D silicon breast surface mapping via structured light profilometry

    NASA Astrophysics Data System (ADS)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  17. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements.

    PubMed

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K; Cai, Chang; Nagarajan, Srikantan S

    2018-06-01

    Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  18. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements

    NASA Astrophysics Data System (ADS)

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.

    2018-06-01

    Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  19. The space optical clocks project

    NASA Astrophysics Data System (ADS)

    Schiller, S.; Tino, G. M.; Lemonde, P.; Sterr, U.; Lisdat, Ch.; Görlitz, A.; Poli, N.; Nevsky, A.; Salomon, C.

    2017-11-01

    The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of fundamental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007- 10), funded partially by ESA and DLR, included the implementation of several optical lattice clock systems using Strontium and Ytterbium as atomic species and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and have been validated. This included demonstration of laser-cooling and magneto-optical trapping of Sr atoms in a compact breadboard apparatus and demonstration of a transportable clock laser with 1 Hz linewidth. With two laboratory Sr lattice clock systems a number of fundamental results were obtained, such as observing atomic resonances with linewidths as low as 3 Hz, non-destructive detection of atom excitation, determination of decoherence effects and reaching a frequency instability of 1×10-16.

  20. The systems approach to airport security: The FAA (Federal Aviation Administration)/BWI (Baltimore-Washington International) Airport demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caskey, D.L.; Olascoaga, M.T.

    1990-01-01

    Sandia National Laboratories has been involved in designing, installing and evaluating security systems for various applications during the past 15 years. A systems approach to security that evolved from this experience was applied to aviation security for the Federal Aviation Administration. A general systems study of aviation security in the United States was concluded in 1987. One result of the study was a recommendation that an enhanced security system concept designed to meet specified objectives be demonstrated at an operational airport. Baltimore-Washington International Airport was selected as the site for the demonstration project which began in 1988 and will bemore » completed in 1992. This article introduced the systems approach to airport security and discussed its application at Baltimore-Washington International Airport. Examples of design features that could be included in an enhanced security concept also were presented, including details of the proposed Ramps Area Intrusion Detection System (RAIDS).« less

  1. Investigation of frame-to-frame back projection and feature selection algorithms for non-line-of-sight laser gated viewing

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Velten, Andreas

    2014-10-01

    In the present paper, we discuss new approaches to analyze laser gated viewing data for non-line-of-sight vision with a novel frame-to-frame back projection as well as feature selection algorithms. While first back projection approaches use time transients for each pixel, our new method has the ability to calculate the projection of imaging data on the obscured voxel space for each frame. Further, four different data analysis algorithms were studied with the aim to identify and select signals from different target positions. A slight modification of commonly used filters leads to powerful selection of local maximum values. It is demonstrated that the choice of the filter has impact on the selectivity i.e. multiple target detection as well as on the localization precision.

  2. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  3. OGLE-2016-BLG-1469L: Microlensing Binary Composed of Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Han, C.; Udalski, A.; Sumi, T.; Gould, A.; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Kim, D.-J.; Lee, C.-U.; Lee, Y.; Park, B.-G.; KMTNet Collaboration; Soszyński, I.; Mróz, P.; Pietrukowicz, P.; Szymański, M. K.; Skowron, J.; Poleski, R.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Asakura, Y.; Bennett, D. P.; Bond, I. A.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; Barry, R.; MOA Collaboration

    2017-07-01

    We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to the detection of both finite-source and microlens-parallax effects, we are able to measure both the masses {M}1˜ 0.05 {M}⊙ and {M}2˜ 0.01 {M}⊙ , and the distance {D}{{L}}˜ 4.5 {kpc}, as well as the projected separation {a}\\perp ˜ 0.33 au. This is the third brown-dwarf binary detected using the microlensing method, demonstrating the usefulness of microlensing in detecting field brown-dwarf binaries with separations of less than 1 au.

  4. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development ofmore » room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.« less

  5. Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis

    NASA Astrophysics Data System (ADS)

    Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad

    2017-11-01

    Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.

  6. Optical detection of metastatic cancer cells using a scanned laser pico-projection system

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Ling; Chiu, Wen-Tai; Lo, Yu-Lung; Chuang, Chin-Ho; Chen, Yu-Bin; Chang, Shu-Jing; Ke, Tung-Ting; Cheng, Hung-Chi; Wu, Hua-Lin

    2015-03-01

    Metastasis is responsible for 90% of all cancer-related deaths in humans. As a result, reliable techniques for detecting metastatic cells are urgently required. Although various techniques have been proposed for metastasis detection, they are generally capable of detecting metastatic cells only once migration has already occurred. Accordingly, the present study proposes an optical method for physical characterization of metastatic cancer cells using a scanned laser pico-projection system (SLPP). The validity of the proposed method is demonstrated using five pairs of cancer cell lines and two pairs of non-cancer cell lines treated by IPTG induction in order to mimic normal cells with an overexpression of oncogene. The results show that for all of the considered cell lines, the SLPP speckle contrast of the high-metastatic cells is significantly higher than that of the low-metastatic cells. As a result, the speckle contrast measurement provides a reliable means of distinguishing quantitatively between low- and high-metastatic cells of the same origin. Compared to existing metastasis detection methods, the proposed SLPP approach has many advantages, including a higher throughput, a lower cost, a larger sample size and a more reliable diagnostic performance. As a result, it provides a highly promising solution for physical characterization of metastatic cancer cells in vitro.

  7. Full-field swept-source optical coherence tomography with phase-shifting techniques for skin cancer detection

    NASA Astrophysics Data System (ADS)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-05-01

    The EU-funded project VIAMOS1 proposes an optical coherence tomography system (OCT) for skin cancer detection, which combines full-field and full-range swept-source OCT in a multi-channel sensor for parallel detection. One of the project objectives is the development of new fabrication technologies for micro-optics, which makes it compatible to Micro-Opto-Electromechanical System technology (MOEMS). The basic system concept is a wafer-based Mirau interferometer array with an actuated reference mirror, which enables phase shifted interferogram detection and therefore reconstruction of the complex phase information, resulting in a higher measurement range with reduced image artifacts. This paper presents an experimental one-channel on-bench OCT system with bulk optics, which serves as a proof-of-concept setup for the final VIAMOS micro-system. It is based on a Linnik interferometer with a wavelength tuning light source and a camera for parallel A-Scan detection. Phase shifting interferometry techniques (PSI) are used for the suppression of the complex conjugate artifact, whose suppression reaches 36 dB. The sensitivity of the system is constant over the full-field with a mean value of 97 dB. OCT images are presented of a thin membrane microlens and a biological tissue (onion) as a preliminary demonstration.

  8. Superconducting magnetic sensors for mine detection and classification

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.; Koch, Roger H.; Keefe, George A.

    1995-06-01

    Sensors incorporating Superconducting Quantum Interference Devices (SQUIDs) provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980's, the Naval Surface Warfare Center Coastal Systems Station (CSS) developed a superconducting magnetic sensor capable of operation outside of the laboratory environment. This sensor demonstrated rugged, reliable performance even onboard undersea towed platforms. With this sensor, the CSS was able to demonstrate buried mine detection for the US Navy. Subsequently the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines (MADOM) project. This sensor technology utilized niobium superconducting componentry cooled by liquid helium to temperatures on the order of 4 degrees Kelvin (K). In the late 1980's a new class of superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen (77K). This advance has opened up new opportunities, especially for mine reconnaissance and hunting from small unmanned underwater vehicles (UUVs). This paper describes the magnetic sensor detection and classification concept developed for MADOM. In addition, opportunities for UUV operations made possible with high Tc technology and the Navy's current efforts in this area will be addressed.

  9. Recording and accounting for stakeholder involvement in systematic reviews.

    PubMed

    Saan, Marieke C; Boeije, Hennie R; Sattoe, Jane N T; Bal, Marjolijn I; Missler, Marjolein; van Wesel, Floryt

    2015-06-01

    The use of stakeholders in systematic reviews is increasingly valued, but their influence on the systematicity of the review is often unclear. The aim of this study was to describe some of the processes of involvement of stakeholders and to demonstrate a Tool for Recording and Accounting for Stakeholder Involvement (TRASI). We demonstrate the TRASI in two worked examples. In one project, the reviewers collaborated with the end-user and an expert during the literature search. In the other project, experts were consulted to generate keywords before searching the literature. In the first project, disagreements about keywords to identify studies for the research topic were solved by informal discussion. In the second project, difficulties arose in reaching agreement between experts and reviewers about the core construct and the meaningful keywords associated with it. The TRASI aids researchers to systematically and transparently account for the decisions taken. The TRASI supports information specialists and librarians to shape the search strategy to match the objectives of the review. We propose the TRASI as a first step in resolving the challenges of detecting and reconstructing stakeholder influences. Potential new applications of the TRASI are discussed. © 2015 Health Libraries Group.

  10. Adaptive x-ray threat detection using sequential hypotheses testing with fan-beam experimental data (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thamvichai, Ratchaneekorn; Huang, Liang-Chih; Ashok, Amit; Gong, Qian; Coccarelli, David; Greenberg, Joel A.; Gehm, Michael E.; Neifeld, Mark A.

    2017-05-01

    We employ an adaptive measurement system, based on sequential hypotheses testing (SHT) framework, for detecting material-based threats using experimental data acquired on an X-ray experimental testbed system. This testbed employs 45-degree fan-beam geometry and 15 views over a 180-degree span to generate energy sensitive X-ray projection data. Using this testbed system, we acquire multiple view projection data for 200 bags. We consider an adaptive measurement design where the X-ray projection measurements are acquired in a sequential manner and the adaptation occurs through the choice of the optimal "next" source/view system parameter. Our analysis of such an adaptive measurement design using the experimental data demonstrates a 3x-7x reduction in the probability of error relative to a static measurement design. Here the static measurement design refers to the operational system baseline that corresponds to a sequential measurement using all the available sources/views. We also show that by using adaptive measurements it is possible to reduce the number of sources/views by nearly 50% compared a system that relies on static measurements.

  11. Real-Time Hazard Detection and Avoidance Demonstration for a Planetary Lander

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Robertson, Edward A.; Carson, John M., III

    2014-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. In addition to precision landing close to a pre-mission defined landing location, the ALHAT System must be capable of autonomously identifying and avoiding surface hazards in real-time to enable a safe landing under any lighting conditions. This paper provides an overview of the recent results of the ALHAT closed loop hazard detection and avoidance flight demonstrations on the Morpheus Vertical Testbed (VTB) at the Kennedy Space Center, including results and lessons learned. This effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  12. Delivering colonoscopy screening for low-income populations in Suffolk County: strategies, outcomes, and benchmarks.

    PubMed

    Lane, Dorothy S; Messina, Catherine R; Cavanagh, Mary F; Anderson, Joseph C

    2013-08-01

    Current and pending legislation provides colorectal cancer screening reimbursement for previously uninsured populations. Colonoscopy is currently the screening method most frequently recommended by physicians for insured patients. The experience of the SCOPE (Suffolk County Preventive Endoscopy) demonstration project (Project SCOPE) at Stony Brook University Medical Center provides a model for delivering colonoscopy screening to low-income populations to meet anticipated increasing demands. Project SCOPE, based in the Department of Preventive Medicine, featured internal collaboration with the academic medical center's large gastroenterology practice and external collaboration with the Suffolk County Department of Health Services' network of community health centers. Colonoscopies were performed by faculty gastroenterologists or supervised fellows. Measures of colonoscopy performance were compared with quality indicators and differences between faculty and supervised fellows were identified. During a 40-month screening period, 800 initial colonoscopies were performed. Approximately 21% of women screened were found to have adenomatous polyps compared with 36% of men. Five cancers were detected. The majority of the population screened (70%) were members of minority populations. African American individuals had a higher percentage of proximally located adenomas (78%) compared with white individuals (65%) and Hispanics (49%), based on the location of the most advanced lesion. Hispanic individuals had a 36% lower risk of adenomas compared with white individuals. Performance measures including the percentage of procedures with adequate bowel preparation, cecum reached, scope withdrawal time, and adenoma detection rate met quality benchmarks when performed by either faculty or supervised fellows. Project SCOPE's operational strategies demonstrated a feasible method for an academic medical center to provide high-quality screening colonoscopy for low-income populations. © 2013 American Cancer Society.

  13. Evaluation of a radiation survey training video developed from a real-time video radiation detection system.

    PubMed

    Wang, Wei-Hsung; McGlothlin, James D; Smith, Deborah J; Matthews, Kenneth L

    2006-02-01

    This project incorporates radiation survey training into a real-time video radiation detection system, thus providing a practical perspective for the radiation worker on efficient performance of radiation surveys. Regular surveys to evaluate radiation levels are necessary not only to recognize potential radiological hazards but also to keep the radiation exposure as low as reasonably achievable. By developing and implementing an instructional learning system using a real-time radiation survey training video showing specific categorization of work elements, radiation workers trained with this system demonstrated better radiation survey practice.

  14. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  15. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  16. Monitoring Conformance and Containment for Geological Carbon Storage: Can Technology Meet Policy and Public Requirements?

    NASA Astrophysics Data System (ADS)

    Lawton, D. C.; Osadetz, K.

    2014-12-01

    The Province of Alberta, Canada identified carbon capture and storage (CCS) as a key element of its 2008 Climate Change strategy. The target is a reduction in CO2 emissions of 139 Mt/year by 2050. To encourage uptake of CCS by industry, the province has provided partial funding to two demonstration scale projects, namely the Quest Project by Shell and partners (CCS), and the Alberta Carbon Trunk Line Project (pipeline and CO2-EOR). Important to commercial scale implementation of CCS will be the requirement to prove conformance and containment of the CO2 plume injected during the lifetime of the CCS project. This will be a challenge for monitoring programs. The Containment and Monitoring Institute (CaMI) is developing a Field Research Station (FRS) to calibrate various monitoring technologies for CO2 detection thresholds at relatively shallow depths. The objective being assessed with the FRS is sensitivity for early detection of loss of containment from a deeper CO2 storage project. In this project, two injection wells will be drilled to sandstone reservoir targets at depths of 300 m and 700 m. Up to four observation wells will be drilled with monitoring instruments installed. Time-lapse surface and borehole monitoring surveys will be undertaken to evaluate the movement and fate of the CO2 plume. These will include seismic, microseismic, cross well, electrical resistivity, electromagnetic, gravity, geodetic and geomechanical surveys. Initial baseline seismic data from the FRS will presented.

  17. Initial Results: An Ultra-Low-Background Germanium Crystal Array

    DTIC Science & Technology

    2010-09-01

    data (focused on γ -γ coincidence signatures) (Smith et al., 2004) and the Multi- Isotope Coincidence Analysis code (MICA) (Warren et al., 2006). The...The follow-on “CASCADES” project aims to develop a multicoincidence data- analysis package and make robust fission-product demonstration measurements...sensitivity. This effort is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications, e.g., nuclear treaty

  18. Embracing Statistical Challenges in the Information Technology Age

    DTIC Science & Technology

    2006-01-01

    computation and feature selection. Moreover, two research projects on network tomography and arctic cloud detection are used throughout the paper to bring...prominent Network Tomography problem, origin- destination (OD) traffic estimation. It demonstrates well how the two modes of data collection interact...software debugging (Biblit et al, 2005 [2]), and network tomography for computer network management. Computer sys- tem problems exist long before the IT

  19. Local Area Defense (LAD) Demonstration

    DTIC Science & Technology

    2004-09-01

    Prozac ? Fentanyl? Institution, incident command, community drills - use of internet - digital photos of all victims to follow them through the system...and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leave...detection and rapid response system for local area defense using the University of Maryland Baltimore (UMB) Campus as a testbed. Additional goals includes

  20. Design and characterization of a dead-time regime enhanced early photon projection imaging system

    NASA Astrophysics Data System (ADS)

    Sinha, L.; Fogarty, M.; Zhou, W.; Giudice, A.; Brankov, J. G.; Tichauer, K. M.

    2018-04-01

    Scattering of visible and near-infrared light in biological tissue reduces spatial resolution for imaging of tissues thicker than 100 μm. In this study, an optical projection imaging system is presented and characterized that exploits the dead-time characteristics typical of photon counting modules based on single photon avalanche diodes (SPADs). With this system, it is possible to attenuate the detection of more scattered late-arriving photons, such that detection of less scattered early-arriving photons can be enhanced with increased light intensity, without being impeded by the maximum count rate of the SPADs. The system has the potential to provide transmittance-based anatomical information or fluorescence-based functional information (with slight modification in the instrumentation) of biological samples with improved resolution in the mesoscopic domain (0.1-2 cm). The system design, calibration, stability, and performance were evaluated using simulation and experimental phantom studies. The proposed system allows for the detection of very-rare early-photons at a higher frequency and with a better signal-to-noise ratio. The experimental results demonstrated over a 3.4-fold improvement in the spatial resolution using early photon detection vs. conventional detection, and a 1000-fold improvement in imaging time using enhanced early detection vs. conventional early photon detection in a 4-mm thick phantom with a tissue-equivalent absorption coefficient of μa = 0.05 mm-1 and a reduced scattering coefficient of μs' = 5 mm-1.

  1. SMART-1, Platform Design and Project Status

    NASA Astrophysics Data System (ADS)

    Sjoberg, F.

    SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.

  2. Formation Algorithms and Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward

    2004-01-01

    Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.

  3. Artemisinin resistance containment project in Thailand. (I): Implementation of electronic-based malaria information system for early case detection and individual case management in provinces along the Thai-Cambodian border.

    PubMed

    Khamsiriwatchara, Amnat; Sudathip, Prayuth; Sawang, Surasak; Vijakadge, Saowanit; Potithavoranan, Thanapon; Sangvichean, Aumnuyphan; Satimai, Wichai; Delacollette, Charles; Singhasivanon, Pratap; Lawpoolsri, Saranath; Kaewkungwal, Jaranit

    2012-07-29

    The Bureau of Vector-borne Diseases, Ministry of Public Health, Thailand, has implemented an electronic Malaria Information System (eMIS) as part of a strategy to contain artemisinin resistance. The attempt corresponds to the WHO initiative, funded by the Bill & Melinda Gates Foundation, to contain anti-malarial drug resistance in Southeast Asia. The main objective of this study was to demonstrate the eMIS' functionality and outputs after implementation for use in the Thailand artemisinin-resistance containment project. The eMIS had been functioning since 2009 in seven Thai-Cambodian border provinces. The eMIS has covered 61 malaria posts/clinics, 27 Vector-borne Disease Units covering 12,508 hamlets at risk of malaria infections. The eMIS was designed as an evidence-based and near real-time system to capture data for early case detection, intensive case investigation, monitoring drug compliance and on/off-site tracking of malarial patients, as well as collecting data indicating potential drug resistance among patients. Data captured by the eMIS in 2008-2011 were extracted and presented. The core functionalities of the eMIS have been utilized by malaria staff at all levels, from local operational units to ministerial management. The eMIS case detection module suggested decreasing trends during 2009-2011; the number of malaria cases detected in the project areas over the years studied were 3818, 2695, and 2566, with sero-positive rates of 1.24, 0.98, and 1.16%, respectively. The eMIS case investigation module revealed different trends in weekly Plasmodium falciparum case numbers, when classified by responsible operational unit, local and migrant status, and case-detection type. It was shown that most Thai patients were infected within their own residential district, while migrants were infected either at their working village or from across the border. The data mapped in the system suggested that P. falciparum-infected cases and potential drug-resistant cases were scattered mostly along the border villages. The mobile technology application has detected different follow-up rates, with particularly low rates among seasonal and cross-border migrants. The eMIS demonstrated that it could capture essential data from individual malaria cases at local operational units, while effectively being used for situation and trend analysis at upper-management levels. The system provides evidence-based information that could contribute to the control and containment of resistant parasites. Currently, the eMIS is expanding beyond the Thai-Cambodian project areas to the provinces that lie along the Thai-Myanmar border.

  4. A two-level structure for advanced space power system automation

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.; Chankong, Vira

    1990-01-01

    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.

  5. High sensitive reflection type long period fiber grating biosensor for real time detection of thyroglobulin, a differentiated thyroid cancer biomarker: the Smart Health project

    NASA Astrophysics Data System (ADS)

    Quero, G.; Severino, R.; Vaiano, P.; Consales, M.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Zuppolini, S.; Diodato, L.; Cutolo, A.; Cusano, A.

    2015-09-01

    We report the development of a reflection-type long period fiber grating (LPG) biosensor able to perform the real time detection of thyroid cancer markers in the needle washout of fine-needle aspiration biopsy. A standard LPG is first transformed in a practical probe working in reflection mode, then it is coated by an atactic-polystyrene overlay in order to increase its surrounding refractive index sensitivity and to provide, at the same time, the desired interfacial properties for a stable bioreceptor immobilization. The results provide a clear demonstration of the effectiveness and sensitivity of the developed biosensing platform, allowing the in vitro detection of human Thyroglobulin at sub-nanomolar concentrations.

  6. GEO-6 project for Galileo data scientific utilization

    NASA Astrophysics Data System (ADS)

    Buresova, Dalia; Lastovicka, Jan; Boska, Josef; Sauli, Petra; Kouba, Daniel; Mosna, Zbysek

    The future GNSS Galileo system offer a number of benefits (e.g. availability of better accuracy positioning, new frequencies bands allowing the implementation of specific techniques, provable time-stamp and location data using SIS authorisation, integrity, better support ad-hoc algorithms for data analysis and other service guarantee for liability and regulated applications) are widely spread among different disciplines. Also applications which are less interesting from the commercial and market point of view could successfully contribute to the numerous social benefits and support the innovation in the international research. The aim of the GEO-6 project "Scientific research Using GNSS" is to propose and broaden scientific utilization of future GNSS Galileo system data in research. It is a joint project of seven institutions from six countries led by the Atos Origin Company from Spain. The core of the project consists from six projects in five priority areas: PA-1 Remote sensing of the ocean using GNSS reflections, PA-2a Investigating GNSS ionospheric data assimilation, PA-2b 3-D gravity wave detection and determination (both PA-2a and PA-2b are ionospheric topics), PA-3 Demonstration of capability for operational forecasting of atmospheric delays, PA-4 GNSS seismometer, PA-5 Spacecraft formation flying using global navigation satellite systems. Institute of Atmospheric Physics, Prague, Czech Republic is responsible for the project PA-2b, where we developed and tested (to the extent allowed by available data) an algorithm and computer code for the 3-D detection of gravity waves and determination of their characteristics. The main drivers of the GEO-6 project are: high levels of accuracy even with the support of local elements, sharing of solutions and results for the worldwide scientific community. The paper will present basic description of the project with more details concerning Czech participation in it.

  7. Nonlinear gamma correction via normed bicoherence minimization in optical fringe projection metrology

    NASA Astrophysics Data System (ADS)

    Kamagara, Abel; Wang, Xiangzhao; Li, Sikun

    2018-03-01

    We propose a method to compensate for the projector intensity nonlinearity induced by gamma effect in three-dimensional (3-D) fringe projection metrology by extending high-order spectra analysis and bispectral norm minimization to digital sinusoidal fringe pattern analysis. The bispectrum estimate allows extraction of vital signal information features such as spectral component correlation relationships in fringe pattern images. Our approach exploits the fact that gamma introduces high-order harmonic correlations in the affected fringe pattern image. Estimation and compensation of projector nonlinearity is realized by detecting and minimizing the normed bispectral coherence of these correlations. The proposed technique does not require calibration information and technical knowledge or specification of fringe projection unit. This is promising for developing a modular and calibration-invariant model for intensity nonlinear gamma compensation in digital fringe pattern projection profilometry. Experimental and numerical simulation results demonstrate this method to be efficient and effective in improving the phase measuring accuracies with phase-shifting fringe pattern projection profilometry.

  8. AsteroidZoo: A New Zooniverse project to detect asteroids and improve asteroid detection algorithms

    NASA Astrophysics Data System (ADS)

    Beasley, M.; Lewicki, C. A.; Smith, A.; Lintott, C.; Christensen, E.

    2013-12-01

    We present a new citizen science project: AsteroidZoo. A collaboration between Planetary Resources, Inc., the Zooniverse Team, and the Catalina Sky Survey, we will bring the science of asteroid identification to the citizen scientist. Volunteer astronomers have proved to be a critical asset in identification and characterization of asteroids, especially potentially hazardous objects. These contributions, to date, have required that the volunteer possess a moderate telescope and the ability and willingness to be responsive to observing requests. Our new project will use data collected by the Catalina Sky Survey (CSS), currently the most productive asteroid survey, to be used by anyone with sufficient interest and an internet connection. As previous work by the Zooniverse has demonstrated, the capability of the citizen scientist is superb at classification of objects. Even the best automated searches require human intervention to identify new objects. These searches are optimized to reduce false positive rates and to prevent a single operator from being overloaded with requests. With access to the large number of people in Zooniverse, we will be able to avoid that problem and instead work to produce a complete detection list. Each frame from CSS will be searched in detail, generating a large number of new detections. We will be able to evaluate the completeness of the CSS data set and potentially provide improvements to the automated pipeline. The data corpus produced by AsteroidZoo will be used as a training environment for machine learning challenges in the future. Our goals include a more complete asteroid detection algorithm and a minimum computation program that skims the cream of the data suitable for implemention on small spacecraft. Our goal is to have the site become live in the Fall 2013.

  9. [Regional cerebral blood flow measured by three-dimensional stereotactic surface projections (3D-SSP) of 123I-IMP SPECT in Parkinson disease patients with cognitive impairment].

    PubMed

    Sakai, Toshiyuki; Kuzuhara, Shigeki

    2003-04-01

    We investigated the regional cerebral blood flow (rCBF) in 8 patients with Parkinson disease (PD) with cognitive impairment (age; 64-82 years, Mini-Mental State Examination score = MMSE score; 22-6 points, Yahr stage; III-V), with the standard transaxial images and the Z-score images using the three-dimensional stereotactic surface projections (3D-SSP) of 123I-IMP SPECT. A contrast database was created by averaging extracted database sets of the contrast group (numbers; 14 cases, age; 64-82 years, MMSE score; > or = 29 points). The regions of the perfusion reduction shown on the standard transaxial images were similarly demonstrated on the Z-score images in 6 of the 8 patients, and only the Z-score images demonstrated definite regions of perfusion reduction in remaining 2 patients. Both the standard transaxial and Z-score images demonstrated the perfusion reduction in the temporo-parietal regions in all of the patients, and the Z-score images but not the standard transaxial ones detected the reduction in the posterior cingulate gyrus and precuneus in 3 patients. 3D-SSP images of 123I-IMP SPECT are thus more sensitive in detecting rCBF of the medial aspect of the parietal cortex than the standard transaxial images, and can be used as a diagnostic tool to objectively evaluate the cognitive function of PD patients.

  10. Gaseous time projection chambers for rare event detection: results from the T-REX project. I. Double beta decay

    NASA Astrophysics Data System (ADS)

    Irastorza, I. G.; Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; Galán, J.; Garcia, J. A.; Garza, J. G.; Gómez, H.; Herrera, D. C.; Iguaz, F. J.; Luzon, G.; Mirallas, H.; Ruiz, E.; Seguí, L.; Tomás, A.

    2016-01-01

    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the double beta decay (DBD) of 136Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ~ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM @ Qββ. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ~ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two blobs) show promising background discrimination capabilities out of reach of other experimental implementations. Moreover, microbulk Micromegas have very low levels of intrinsic radioactivity, and offer cost-effective scaling-up options. All these results demonstrate that Micromegas-read HPXe TPC remains a very competitive technique for the next generation DBD experiments.

  11. Implementation of HPV-testing for cervical cancer screening in programmatic contexts: The Jujuy demonstration project in Argentina.

    PubMed

    Arrossi, Silvina; Thouyaret, Laura; Laudi, Rosa; Marín, Oscar; Ramírez, Josefina; Paolino, Melisa; Herrero, Rolando; Campanera, Alicia

    2015-10-01

    The aim of this article is to present results of programmatic introduction of HPV testing with cytologic triage among women 30 years and older in the province of Jujuy, Argentina, including description of the planning phase and results of program performance during the first year. We describe the project implementation process, and calculate key performance indicators using SITAM, the national screening information system. We also compare disease detection rates of HPV testing in 2012 with cytology as performed during the previous year. HPV testing with cytology triage was introduced through a consensus-building process. Key activities included establishment of algorithms and guidelines, creating the HPV laboratory, training of health professionals, information campaigns for women and designing the referral network. By the end of 2012, 100% (n = 270) of public health care centers were offering HPV testing and 22,834 women had been HPV tested, 98.5% (n = 22,515) were 30+. HPV positivity among women over 30 was 12.7%, 807 women were HPV+ and had abnormal cytology, and 281 CIN2+ were identified. CIN2+ detection rates was 1.25 in 2012 and 0.62 in 2011 when the program was cytology based (p = 0.0002). This project showed that effective introduction of HPV testing in programmatic contexts of low-middle income settings is feasible and detects more disease than cytology. © 2015 UICC.

  12. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    NASA Astrophysics Data System (ADS)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  13. Improving Visual Survey Capabilities for Marine Mammal Studies

    DTIC Science & Technology

    2015-09-30

    pedastals, and wooden disks were shipped to Mount Desert Rock Island off the Maine coast for installation on the upper floor of the lighthouse there...ESTCP) and Navy Living Marine Resources (LMR) Program. This project will demonstrate and evaluate real-time passive acoustic detection...Four custom wooden disks were fabricated by the WHOI carpenter shop to provide a shelf for observers to rest their arms. Two sets of binoculars

  14. Comparison of computed radiography and conventional radiography in detection of small volume pneumoperitoneum.

    PubMed

    Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret

    2008-01-01

    The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.

  15. 76 FR 12081 - Notice of Two-Year Continuation of Disease Management Demonstration Project for TRICARE Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Management Demonstration Project for TRICARE Standard Beneficiaries AGENCY: Department of Defense. ACTION: Notice of Two-Year Continuation of Disease Management Demonstration Project for TRICARE Standard... System (MHS) demonstration project entitled ``Disease Management Demonstration Project for TRICARE...

  16. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    PubMed Central

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-01-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761

  17. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  18. Task-based optimization of image reconstruction in breast CT

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  19. Design of an automated cart and mount for a hyperspectral imaging system to be used in produce fields

    NASA Astrophysics Data System (ADS)

    Lefcourt, Alan M.; Kistler, Ross; Gadsden, S. Andrew

    2016-05-01

    The goal of this project was to construct a cart and a mounting system that would allow a hyperspectral laser-induced fluorescence imaging system (HLIFIS) to be used to detect fecal material in produce fields. Fecal contaminated produce is a recognized food safety risk. Previous research demonstrated the HLIFIS could detect fecal contamination in a laboratory setting. A cart was designed and built, and then tested to demonstrate that the cart was capable of moving at constant speeds or at precise intervals. A mounting system was designed and built to facilitate the critical alignment of the camera's imaging and the laser's illumination fields, and to allow the HLIFIS to be used in both field and laboratory settings without changing alignments. A hardened mount for the Powell lens that is used to produce the appropriate illumination profile was also designed, built, and tested.

  20. An Advanced Approach to Simultaneous Monitoring of Multiple Bacteria in Space

    NASA Technical Reports Server (NTRS)

    Eggers, M.

    1998-01-01

    The utility of a novel microarray-based microbial analyzer was demonstrated by the rapid detection, imaging, and identification of a mixture of microorganisms found in a waste water sample from the Lunar-Mars Life Support Test Project through the synergistic combination of: (1) judicious RNA probe selection via algorithms developed by University of Houston scientists; (2) tuned surface chemistries developed by Baylor College of Medicine scientists to facilitate hybridization of rRNA targets to DNA probes under very low salt conditions, thereby minimizing secondary structure; and (3) integration of the microarray printing and detection/imaging instrumentation by Genometrix to complete the quantitative analysis of microorganism mixtures.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    Here, we present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Lastly, we also address technical issues that arise when applying this technique to data from a large LArTPCmore » at or near ground level.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at ormore » near ground level.« less

  3. Visual detection of driving while intoxicated. Project interim report : identification of visual cues and development of detection methods

    DOT National Transportation Integrated Search

    1979-01-01

    The report describes the initial phase of a two-phase project on the visual, on-the-road detection of driving while intoxicated (DWI). The purpose of the overall project is to develop and test procedures for enhancing on-the-road detection of DWI. Th...

  4. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology

    PubMed Central

    Gardner, Eugene J.; Lam, Vincent K.; Harris, Daniel N.; Chuang, Nelson T.; Scott, Emma C.; Pittard, W. Stephen; Mills, Ryan E.; Devine, Scott E.

    2017-01-01

    Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings. PMID:28855259

  5. Magnetic resonance imaging is more sensitive than radiographs in detecting change in size of erosions in rheumatoid arthritis.

    PubMed

    Chen, Timothy S; Crues, John V; Ali, Muhammad; Troum, Orrin M

    2006-10-01

    To evaluate the technological performance of magnetic resonance imaging (MRI) with respect to projection radiography by determining the incidence of changes in the size of individual bone lesions in inflammatory arthritis, using serial high-resolution in-office MRI over short time intervals (8 months average followup), and by comparing the sensitivity of 3-view projection radiography with in-office MRI for detecting changes in size and number of individual erosions. MR examinations of the wrists and second and third metacarpophalangeal joints were performed using a portable in-office MR system in a total of 405 patients with inflammatory arthritis, from one rheumatologist's practice, who were undergoing aggressive disease modifying antirheumatic drug therapy. Of the patients, 156 were imaged at least twice, allowing evaluation of 246 followup examinations (mean followup interval of 8 months over a 2-year period). Baseline and followup plain radiographs were obtained in 165 patient intervals. Patients refused radiographic examination on 81 followup visits. MRI demonstrated no detectable changes in 124 of the 246 (50%) followup MRI examinations. An increase in the size or number of erosions was demonstrated in 74 (30%) examinations, a decrease in the size or number of erosions in 36 (15%), and both increases and decreases in erosions were seen in 11 (4%). In the 165 studies with followup radiographic comparisons, only one examination (0.8%) showed an erosion not seen on the prior examination and one (0.8%) showed an increase in a previously noted erosion. We showed that high-resolution in-office MRI with an average followup of 8 months detects changes in bony disease in 50% of compliant patients during aggressive treatment for inflammatory arthritis in a single rheumatologist's office practice. Plain radiography is insensitive for detecting changes in bone erosions for this patient population in this time frame.

  6. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  7. Conventional and phase contrast x-ray imaging techniques and ultrasound imaging method in breast tumor detection: initial comparison studies using phantom

    NASA Astrophysics Data System (ADS)

    Guo, Yuran; Wu, Di; Omoumi, Farid H.; Li, Yuhua; Wong, Molly Donovan; Ghani, Muhammad U.; Zheng, Bin; Liu, Hong

    2018-02-01

    The objective of this study was to demonstrate the capability of the high-energy in-line phase contrast imaging in detecting the breast tumors which are undetectable by conventional x-ray imaging but detectable by ultrasound. Experimentally, a CIRS multipurpose breast phantom with heterogeneous 50% glandular and 50% adipose breast tissue was imaged by high-energy in-line phase contrast system, conventional x-ray system and ultrasonography machine. The high-energy in-line phase contrast projection was acquired at 120 kVp, 0.3 mAs with the focal spot size of 18.3 μm. The conventional x-ray projection was acquired at 40 kVp, 3.3 mAs with the focal spot size of 22.26 μm. Both of the x-ray imaging acquisitions were conducted with a unique mean glandular dose of 0.08 mGy. As the result, the high-energy in-line phase contrast system was able to detect one lesion-like object which was also detected by the ultrasonography. This object was spherical shape with the length of about 12.28 mm. Also, the conventional x-ray system was not able to detect any objects. This result indicated the advantages provided by high-energy in-line phase contrast over conventional x-ray system in detecting lesion-like object under the same radiation dose. To meet the needs of current clinical strategies for high-density breasts screening, breast phantoms with higher glandular densities will be employed in future studies.

  8. 5 CFR 470.305 - Submission of proposals for demonstration projects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... projects. 470.305 Section 470.305 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.305 Submission of proposals for demonstration projects. (a) OPM...

  9. Analysis of speckle patterns in phase-contrast images of lung tissue

    NASA Astrophysics Data System (ADS)

    Kitchen, M. J.; Paganin, D.; Lewis, R. A.; Yagi, N.; Uesugi, K.

    2005-08-01

    Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.

  10. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    NASA Astrophysics Data System (ADS)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  11. 76 FR 80907 - TRICARE Prime Urgent Care Demonstration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary TRICARE Prime Urgent Care Demonstration Project....S. Code, section 1092, entitled Department Of Defense TRICARE Prime Urgent Care Demonstration Project. The demonstration project is intended to test whether allowing four visits to an urgent care...

  12. Secure Communication via Key Generation with Quantum Measurement Advantage in the Telecom Band

    DTIC Science & Technology

    2013-10-30

    II: Summary of Project In this basic research program we proposed to investigate the use of keyed communication in quantum noise as a key generation...implement quantum limited detection in our running-code OCDMA experiment to demonstrate (a) quantum measurement advantage creation between two users, (b...neither is adequate against known-plaintext attacks. This is a serious security problem facing the whole field of quantum cryptography in regard to both

  13. Inflight and Preflight Detection of Pitot Tube Anomalies

    NASA Technical Reports Server (NTRS)

    Mitchell, Darrell W.

    2014-01-01

    The health and integrity of aircraft sensors play a critical role in aviation safety. Inaccurate or false readings from these sensors can lead to improper decision making, resulting in serious and sometimes fatal consequences. This project demonstrated the feasibility of using advanced data analysis techniques to identify anomalies in Pitot tubes resulting from blockage such as icing, moisture, or foreign objects. The core technology used in this project is referred to as noise analysis because it relates sensors' response time to the dynamic component (noise) found in the signal of these same sensors. This analysis technique has used existing electrical signals of Pitot tube sensors that result from measured processes during inflight conditions and/or induced signals in preflight conditions to detect anomalies in the sensor readings. Analysis and Measurement Services Corporation (AMS Corp.) has routinely used this technology to determine the health of pressure transmitters in nuclear power plants. The application of this technology for the detection of aircraft anomalies is innovative. Instead of determining the health of process monitoring at a steady-state condition, this technology will be used to quickly inform the pilot when an air-speed indication becomes faulty under any flight condition as well as during preflight preparation.

  14. A new technique for detecting colored macro plastic debris on beaches using webcam images and CIELUV.

    PubMed

    Kataoka, Tomoya; Hinata, Hirofumi; Kako, Shin'ichiro

    2012-09-01

    We have developed a technique for detecting the pixels of colored macro plastic debris (plastic pixels) using photographs taken by a webcam installed on Sodenohama beach, Tobishima Island, Japan. The technique involves generating color references using a uniform color space (CIELUV) to detect plastic pixels and removing misdetected pixels by applying a composite image method. This technique demonstrated superior performance in terms of detecting plastic pixels of various colors compared to the previous method which used the lightness values in the CIELUV color space. We also obtained a 10-month time series of the quantity of plastic debris by combining a projective transformation with this technique. By sequential monitoring of plastic debris quantity using webcams, it is possible to clean up beaches systematically, to clarify the transportation processes of plastic debris in oceans and coastal seas and to estimate accumulation rates on beaches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. SWAN - Detection of explosives by means of fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  16. Computer-assisted image processing to detect spores from the fungus Pandora neoaphidis.

    PubMed

    Korsnes, Reinert; Westrum, Karin; Fløistad, Erling; Klingen, Ingeborg

    2016-01-01

    This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared on microscope slides derived from trapping. The application is to monitor aerial spore counts of the entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids. Automatic detection of such spores can therefore play a role in plant protection. The present approach for such detection is a modification of traditional manual microscopy of prepared slides, where autonomous image recording precedes computerised image analysis. The purpose of the present image analysis is to support human visual inspection of imagery data - not to replace it. The workflow has three components:•Preparation of slides for microscopy.•Image recording.•Computerised image processing where the initial part is, as usual, segmentation depending on the actual data product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and projection on a three parameter egg shape space.

  17. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less

  18. Results from early programmatic implementation of Xpert MTB/RIF testing in nine countries.

    PubMed

    Creswell, Jacob; Codlin, Andrew J; Andre, Emmanuel; Micek, Mark A; Bedru, Ahmed; Carter, E Jane; Yadav, Rajendra-Prasad; Mosneaga, Andrei; Rai, Bishwa; Banu, Sayera; Brouwer, Miranda; Blok, Lucie; Sahu, Suvanand; Ditiu, Lucica

    2014-01-02

    The Xpert MTB/RIF assay has garnered significant interest as a sensitive and rapid diagnostic tool to improve detection of sensitive and drug resistant tuberculosis. However, most existing literature has described the performance of MTB/RIF testing only in study conditions; little information is available on its use in routine case finding. TB REACH is a multi-country initiative focusing on innovative ways to improve case notification. We selected a convenience sample of nine TB REACH projects for inclusion to cover a range of implementers, regions and approaches. Standard quarterly reports and machine data from the first 12 months of MTB/RIF implementation in each project were utilized to analyze patient yields, rifampicin resistance, and failed tests. Data was collected from September 2011 to March 2013. A questionnaire was implemented and semi-structured interviews with project staff were conducted to gather information on user experiences and challenges. All projects used MTB/RIF testing for people with suspected TB, as opposed to testing for drug resistance among already diagnosed patients. The projects placed 65 machines (196 modules) in a variety of facilities and employed numerous case-finding strategies and testing algorithms. The projects consumed 47,973 MTB/RIF tests. Of valid tests, 7,195 (16.8%) were positive for MTB. A total of 982 rifampicin resistant results were found (13.6% of positive tests). Of all tests conducted, 10.6% failed. The need for continuous power supply was noted by all projects and most used locally procured solutions. There was considerable heterogeneity in how results were reported and recorded, reflecting the lack of standardized guidance in some countries. The findings of this study begin to fill the gaps among guidelines, research findings, and real-world implementation of MTB/RIF testing. Testing with Xpert MTB/RIF detected a large number of people with TB that routine services failed to detect. The study demonstrates the versatility and impact of the technology, but also outlines various surmountable barriers to implementation. The study is not representative of all early implementer experiences with MTB/RIF testing but rather provides an overview of the shared issues as well as the many different approaches to programmatic MTB/RIF implementation.

  19. Robust Surface Reconstruction via Laplace-Beltrami Eigen-Projection and Boundary Deformation

    PubMed Central

    Shi, Yonggang; Lai, Rongjie; Morra, Jonathan H.; Dinov, Ivo; Thompson, Paul M.; Toga, Arthur W.

    2010-01-01

    In medical shape analysis, a critical problem is reconstructing a smooth surface of correct topology from a binary mask that typically has spurious features due to segmentation artifacts. The challenge is the robust removal of these outliers without affecting the accuracy of other parts of the boundary. In this paper, we propose a novel approach for this problem based on the Laplace-Beltrami (LB) eigen-projection and properly designed boundary deformations. Using the metric distortion during the LB eigen-projection, our method automatically detects the location of outliers and feeds this information to a well-composed and topology-preserving deformation. By iterating between these two steps of outlier detection and boundary deformation, we can robustly filter out the outliers without moving the smooth part of the boundary. The final surface is the eigen-projection of the filtered mask boundary that has the correct topology, desired accuracy and smoothness. In our experiments, we illustrate the robustness of our method on different input masks of the same structure, and compare with the popular SPHARM tool and the topology preserving level set method to show that our method can reconstruct accurate surface representations without introducing artificial oscillations. We also successfully validate our method on a large data set of more than 900 hippocampal masks and demonstrate that the reconstructed surfaces retain volume information accurately. PMID:20624704

  20. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging.

    PubMed

    McDonald, A D; Jones, B J P; Nygren, D R; Adams, C; Álvarez, V; Azevedo, C D R; Benlloch-Rodríguez, J M; Borges, F I G M; Botas, A; Cárcel, S; Carrión, J V; Cebrián, S; Conde, C A N; Díaz, J; Diesburg, M; Escada, J; Esteve, R; Felkai, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Guenette, R; Hafidi, K; Hauptman, J; Henriques, C A O; Hernandez, A I; Hernando Morata, J A; Herrero, V; Johnston, S; Labarga, L; Laing, A; Lebrun, P; Liubarsky, I; López-March, N; Losada, M; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Musti, M; Nebot-Guinot, M; Novella, P; Palmeiro, B; Para, A; Pérez, J; Querol, M; Repond, J; Renner, J; Riordan, S; Ripoll, L; Rodríguez, J; Rogers, L; Santos, F P; Dos Santos, J M F; Simón, A; Sofka, C; Sorel, M; Stiegler, T; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2018-03-30

    A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2  nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  1. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  2. The Mammographic Head Demonstrator Developed in the Framework of the “IMI” Project:. First Imaging Tests Results

    NASA Astrophysics Data System (ADS)

    Bisogni, Maria Giuseppina

    2006-04-01

    In this paper we report on the performances and the first imaging test results of a digital mammographic demonstrator based on GaAs pixel detectors. The heart of this prototype is the X-ray detection unit, which is a GaAs pixel sensor read-out by the PCC/MEDIPIXI circuit. Since the active area of the sensor is 1 cm2, 18 detectors have been organized in two staggered rows of nine chips each. To cover the typical mammographic format (18 × 24 cm2) a linear scanning is performed by means of a stepper motor. The system is integrated in mammographic equipment comprehending the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies in collaboration with the universities of Ferrara, Roma “La Sapienza”, Pisa and the INFN.

  3. The advanced linked extended reconnaissance and targeting technology demonstration project

    NASA Astrophysics Data System (ADS)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  4. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    PubMed

    Yang, Ching-Ching

    2016-01-01

    Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  5. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their evolving needs and budget constraints. On 24th September 2013, REWARD project received a prize as the best Innovative project related to the Not Conventional Threat (NCT) Chemical Biological Radiological Nuclear explosives (CBRNe) products. A highly distinguished jury stated that "the developed detection and surveillance system offers a perfect solution for end-users to enhance crucial capabilities in RN analysis, risk communication and surveillance in case of a radiation incident". A demonstration of the REWARD system is planned in Naples on September 2014. More information about the REWARD project can be found at www.reward-project.eu.

  6. Neuraminidase as an enzymatic marker for detecting airborne Influenza virus and other viruses.

    PubMed

    Turgeon, Nathalie; Toulouse, Marie-Josée; Ho, Jim; Li, Dongqing; Duchaine, Caroline

    2017-02-01

    Little information is available regarding the effectiveness of air samplers to collect viruses and regarding the effects of sampling processes on viral integrity. The neuraminidase enzyme is present on the surface of viruses that are of agricultural and medical importance. It has been demonstrated that viruses carrying this enzyme can be detected using commercial substrates without having to process the sample by methods such as RNA extraction. This project aims at evaluating the effects of 3 aerosol-sampling devices on the neuraminidase enzyme activity of airborne viruses. The purified neuraminidase enzymes from Clostridium perfringens, a strain of Influenza A (H1N1) virus, the FluMist influenza vaccine, and the Newcastle disease virus were used as models. The neuraminidase models were aerosolized in aerosol chambers and sampled with 3 different air samplers (SKC BioSampler, 3-piece cassettes with polycarbonate filters, and Coriolis μ) to assess the effect on neuraminidase enzyme activity. Our results demonstrated that Influenza virus and Newcastle disease virus neuraminidase enzymes are resistant to aerosolization and sampling with all air samplers tested. Moreover, we demonstrated that the enzymatic neuraminidase assay is as sensitive as RT-qPCR for detecting low concentrations of Influenza virus and Newcastle disease virus. Therefore, given the sensitivity of the assay and its compatibility with air sampling methods, viruses carrying the neuraminidase enzyme can be rapidly detected from air samples using neuraminidase activity assay without having to preprocess the samples.

  7. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2017-08-01

    Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.

  8. An FP7 "Space" project: Aphorism "Advanced PRocedures for volcanic and Seismic Monitoring"

    NASA Astrophysics Data System (ADS)

    Di Iorio, A., Sr.; Stramondo, S.; Bignami, C.; Corradini, S.; Merucci, L.

    2014-12-01

    APHORISM project proposes the development and testing of two new methods to combine Earth Observation satellite data from different sensors, and ground data. The aim is to demonstrate that this two types of data, appropriately managed and integrated, can provide new improved GMES products useful for seismic and volcanic crisis management. The first method, APE - A Priori information for Earthquake damage mapping, concerns the generation of maps to address the detection and estimate of damage caused by a seism. The use of satellite data to investigate earthquake damages is not an innovative issue. We can find a wide literature and projects concerning such issue, but usually the approach is only based on change detection techniques and classifications algorithms. The novelty of APE relies on the exploitation of a priori information derived by InSAR time series to measure surface movements, shake maps obtained from seismological data, and vulnerability information. This a priori information is then integrated with change detection map to improve accuracy and to limit false alarms. The second method deals with volcanic crisis management. The method, MACE - Multi-platform volcanic Ash Cloud Estimation, concerns the exploitation of GEO (Geosynchronous Earth Orbit) sensor platform, LEO (Low Earth Orbit) satellite sensors and ground measures to improve the ash detection and retrieval and to characterize the volcanic ash clouds. The basic idea of MACE consists of an improvement of volcanic ash retrievals at the space-time scale by using both the LEO and GEO estimations and in-situ data. Indeed the standard ash thermal infrared retrieval is integrated with data coming from a wider spectral range from visible to microwave. The ash detection is also extended in case of cloudy atmosphere or steam plumes. APE and MACE methods have been defined in order to provide products oriented toward the next ESA Sentinels satellite missions.The project is funded under the European Union FP7 program and the Kick-Off meeting has been held at INGV premises in Rome on 18th December 2013.

  9. Detecting submerged bodies: controlled research using side-scan sonar to detect submerged proxy cadavers.

    PubMed

    Healy, Carrie A; Schultz, John J; Parker, Kenneth; Lowers, Bim

    2015-05-01

    Forensic investigators routinely deploy side-scan sonar for submerged body searches. This study adds to the limited body of literature by undertaking a controlled project to understand how variables affect detection of submerged bodies using side-scan sonar. Research consisted of two phases using small and medium-sized pig (Sus scrofa) carcasses as proxies for human bodies to investigate the effects of terrain, body size, frequency, swath width, and state of decomposition. Results demonstrated that a clear, flat, sandy pond floor terrain was optimal for detection of the target as irregular terrain and/or vegetation are major limitations that can obscure the target. A higher frequency towfish was preferred for small bodies, and a 20 m swath width allowed greater visibility and easier maneuverability of the boat in this environment. Also, the medium-sized carcasses were discernable throughout the 81-day study period, indicating that it is possible to detect bodies undergoing decomposition with side-scan sonar. © 2015 American Academy of Forensic Sciences.

  10. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludvigson, Laura D.

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease preventionmore » and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.« less

  11. 34 CFR 377.1 - What is the Demonstration Projects to Increase Client Choice Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What is the Demonstration Projects to Increase Client... PROJECTS TO INCREASE CLIENT CHOICE PROGRAM General § 377.1 What is the Demonstration Projects to Increase Client Choice Program? The Demonstration Projects to Increase Client Choice Program is designed to...

  12. A Collaborative Web-Based Approach to Planning Research, Integration, and Testing Using a Wiki

    NASA Technical Reports Server (NTRS)

    Delaney, Michael M.; Koshimoto, Edwin T.; Noble, Deleena; Duggan, Christopher

    2010-01-01

    The National Aeronautics and Space Administration Integrated Vehicle Health Management program touches on many different research areas while striving to enable the automated detection, diagnosis, prognosis, and mitigation of adverse events at the aircraft and system level. At the system level, the research focus is on the evaluation of multidisciplinary integrated methods, tools, and technologies for achieving the program goal. The participating program members form a diverse group of government, industry, and academic researchers. The program team developed the Research and Test Integration Plan in order to track significant test and evaluation activities, which are important for understanding, demonstrating, and communicating the overall project state and project direction. The Plan is a living document, which allows the project team the flexibility to construct conceptual test scenarios and to track project resources. The Plan also incorporates several desirable feature requirements for Plan users and maintainers. A wiki has proven to be the most efficient and effective means of implementing the feature requirements for the Plan. The wiki has proven very valuable as a research project management tool, and there are plans to expand its scope.

  13. INSPIRE Project (IoNospheric Sounding for Pre-seismic anomalies Identification REsearch): Main Results and Future Prospects

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Andrzej, K.; Hernandez-Pajares, M.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Davidenko, D.

    2017-12-01

    The INSPIRE project is dedicated to the study of physical processes and their effects in ionosphere which could be determined as earthquake precursors together with detailed description of the methodology of ionospheric pre-seismic anomalies definition. It was initiated by ESA and carried out by international consortium. The physical mechanisms of the ionospheric pre-seismic anomalies generation from ground to the ionosphere altitudes were formulated within framework of the Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling (LAIMC) model (Pulinets et al., 2015). The general algorithm for the identification of the ionospheric precursors was formalized which also takes into account the external Space Weather factors able to generate the false alarms. Importance of the special stable pattern called the "precursor mask" was highlighted which is based on self-similarity of pre-seismic ionospheric variations. The role of expert decision in pre-seismic anomalies interpretation for generation of seismic warning is important as well. The algorithm performance of the LAIMC seismo-ionospheric effect detection module has been demonstrated using the L'Aquila 2009 earthquake as a case study. The results of INSPIRE project have demonstrated that the ionospheric anomalies registered before the strong earthquakes could be used as reliable precursors. The detailed classification of the pre-seismic anomalies was presented in different regions of the ionosphere and signatures of the pre-seismic anomalies as detected by ground and satellite based instruments were described what clarified methodology of the precursor's identification from ionospheric multi-instrumental measurements. Configuration for the dedicated multi-observation experiment and satellite payload was proposed for the future implementation of the INSPIRE project results. In this regard the multi-instrument set can be divided by two groups: space equipment and ground-based support, which could be used for real-time monitoring. Together with scientific and technical tasks the set of political, logistic and administrative problems (including certification of approaches by seismological community, juridical procedures by the governmental authorities) should be resolved for the real earthquake forecast effectuation.

  14. A Project to Map and Monitor Baldcypress Forests in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Sader, Steven; Smoot, James

    2012-01-01

    Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.

    The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less

  16. Controlled research utilizing a basic all-metal detector in the search for buried firearms and miscellaneous weapons.

    PubMed

    Rezos, Mary M; Schultz, John J; Murdock, Ronald A; Smith, Stephen A

    2010-02-25

    Incorporating geophysical technologies into forensic investigations has become a growing practice. Oftentimes, forensic professionals rely on basic metal detectors to assist their efforts during metallic weapons searches. This has created a need for controlled research in the area of weapons searches, specifically to formulate guidelines for geophysical methods that may be appropriate for locating weapons that have been discarded or buried by criminals attempting to conceal their involvement in a crime. Controlled research allows not only for testing of geophysical equipment, but also for updating search methodologies. This research project was designed to demonstrate the utility of an all-metal detector for locating a buried metallic weapon through detecting and identifying specific types of buried metal targets. Controlled testing of 32 buried targets which represented a variety of sizes and metallic compositions included 16 decommissioned street-level firearms, 6 pieces of assorted scrap metals, and 10 blunt or bladed weapons. While all forensic targets included in the project were detected with the basic all-metal detector, the size of the weapon and surface area were the two variables that affected maximum depth of detection, particularly with the firearm sample. For example, when using a High setting the largest firearms were detected at a maximum depth of 55 cm, but the majority of the remaining targets were only detected at a maximum depth of 40 cm or less. Overall, the all-metal detector proved to be a very good general purpose metal detector best suited for detecting metallic items at shallow depths. 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Innovation Technologies and Applications for Coastal Archaeological sites

    NASA Astrophysics Data System (ADS)

    Di Iorio, A.; Biliouris, D.; Guzinski, R.; Hansen, L. B.; Bagni, M.

    2015-04-01

    Innovation Technologies and Applications for Coastal Archaeological sites project (ITACA) aims to develop and test a management system for underwater archaeological sites in coastal regions. The discovering and monitoring service will use innovative satellite remote sensing techniques combined with image processing algorithms. The project will develop a set of applications integrated in a system pursuing the following objectives: - Search and location of ancient ship wrecks; - Monitoring of ship wrecks, ruins and historical artefacts that are now submerged; - Integration of resulting search and monitoring data with on-site data into a management tool for underwater sites; - Demonstration of the system's suitability for a service. High resolution synthetic aperture radar (TerraSAR-X, Cosmo-SkyMed) and multispectral satellite data (WorldView) will be combined to derive the relative bathymetry of the bottom of the sea up to the depth of 50 meters. The resulting data fusion will be processed using shape detection algorithms specific for archaeological items. The new algorithms, the physical modelling and the computational capabilities will be integrated into the Web-GIS, together with data recorded from surface (2D and 3D modelling) and from underwater surveys. Additional specific archaeological layers will be included into the WebGIS to facilitate the object identification through shape detection techniques and mapping. The system will be verified and validated through an extensive onground (sea) campaign carried out with both cutting edge technologies (side-scan sonar, multi beam echo sounder) and traditional means (professional scuba divers) in two test sites in Italy and Greece. The project is leaded by Planetek Hellas E.P.E. and include ALMA Sistemi sas for the "shape detection" and dissemination tasks, DHI-GRAS and Kell Srl for multispectral and SAR bathymetry. The complete consortium is composed by eleven partners and the project Kick-Off has been held in January 2014. The present contribution aims to present the project research achievements and finding at the mid-term review.

  18. On the evaluation of silicon photomultipliers for use as photosensors in liquid xenon detectors

    DOE PAGES

    Godfrey, B.; Anderson, T.; Breedon, E.; ...

    2018-03-26

    Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT alternatives. The devices were successfully operated in a liquid-xenon detector, which demonstrates that SiPMs can be used in noble element time projection chambers as photosensors. The devices were also cooled down to 170 K to observe dark count dependence on temperature. No dependencies on the direction of an applied 3.2 kV/cm electric field were observed with respect to dark-count rate, gain, or photon detection efficiency.

  19. On the evaluation of silicon photomultipliers for use as photosensors in liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, B.; Anderson, T.; Breedon, E.

    Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT alternatives. The devices were successfully operated in a liquid-xenon detector, which demonstrates that SiPMs can be used in noble element time projection chambers as photosensors. The devices were also cooled down to 170 K to observe dark count dependence on temperature. No dependencies on the direction of an applied 3.2 kV/cm electric field were observed with respect to dark-count rate, gain, or photon detection efficiency.

  20. Roadside Tracker Portal-less Portal Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Klaus-Peter; Cheriyadat, Anil M.; Bradley, Eric Craig

    2013-07-01

    This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.

  1. Scanning Cargo Containers with Tagged Neutrons

    NASA Astrophysics Data System (ADS)

    Viesti, G.; Botosso, C.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Zenoni, A.; Donzella, A.; Perot, B.; Carasco, C.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Valkovic, V.; Sudac, D.; Nad, K.; Peerani, P.; Sequeira, V.; Salvato, M.; Moszynski, M.; Gierlik, M.; Klamra, W.; Le Tourneur, P.; Lhuissier, M.; Colonna, A.; Tintori, C.

    2007-10-01

    A new Tagged Neutron Inspection System (TNIS) able to detect illicit materials such as explosives and narcotics in cargo containers has been developed within the EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) project. After the R&D phase, the inspection portal has been installed and commissioned at the Rijeka seaport in Croatia, where it has been operated in connection with the existing X-ray scanner for a first two-month demonstration campaign. Results obtained are presented and discussed in this paper.

  2. Microbial Monitoring from the Frontlines to Space: A Successful Validation of a Department of Defense (DoD) Funded Small Business Innovation Research (SBIR) Technology on Board the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie; Khodadad, Christina; Castro, Victoria; Ott, Mark; Pollack, Lawrence; Roman, Monsi

    2017-01-01

    The RAZOR EX (Registered Trademark) PCR unit was initially developed by the DoD as part of an SBIR project to detect and identify biothreats during field deployment. The system was evaluated by NASA as a commercial technology for future microbial monitoring requirements and has been successfully demonstrated in microgravity on-board the International Space Station.

  3. The LUCIFER Project: Achievements and Near Future Prospects

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Maino, M.; Nagorny, S. S.; Nisi, S.; Nones, C.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.

    2016-08-01

    In the view of exploring the inverted hierarchy region future experiments investigating the neutrinoless double beta decay have to demand for detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers are very suitable detectors for this task since they provide particle discrimination: the simultaneous detection of the phonon and light signal allows us to identify the interacting type of particle and thus guarantees a suppression of α -induced backgrounds, the key-issue for next-generation tonne-scale bolometric experiments. The LUCIFER project aims at running the first array of enriched scintillating Zn^{ {82}}Se bolometers (total mass of about 8kg of ^{ {82}}Se) with a background level as low as 10^{ {-3}} counts/(keV kg y) in the energy region of interest. The main effort is currently focused on the finalization of the crystal growth procedure in order to achieve high quality Zn^{ {82}}Se crystals both in terms of radiopurity and bolometric properties. We present results from tests of such crystals operated at mK temperatures which demonstrate the excellent background rejection capabilities of this detection approach towards a background-free demonstrator experiment. Besides, the high purity of the enriched ^{ {82}}Se material allows us to establish the most stringent limits on the half-life of the double beta decay of ^{ {82}}Se on excited levels.

  4. Real Time Corner Detection for Miniaturized Electro-Optical Sensors Onboard Small Unmanned Aerial Systems

    PubMed Central

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed. PMID:22368499

  5. X-ray cargo container inspection system with few-view projection imaging

    NASA Astrophysics Data System (ADS)

    Duan, Xinhui; Cheng, Jianping; Zhang, Li; Xing, Yuxiang; Chen, Zhiqiang; Zhao, Ziran

    2009-01-01

    An X-ray cargo inspection system with few-view projection imaging is developed for detecting contraband in air containers. This paper describes this developing inspection system, including its configuration and the process of inspection using three imaging modalities: digital radiography (DR), few view imaging and computed tomography (CT). The few-view imaging can provide 3D images with much faster scanning speed than CT and do great help to quickly locate suspicious cargo in a container. An algorithm to reconstruct tomographic images from severely sparse projection data of few-view imaging is discussed. A cooperative work manner of the three modalities is presented to make the inspection more convenient and effective. Numerous experiments of performance tests and modality comparison are performed on our system for inspecting air containers. Results demonstrate the effectiveness of our methods and implementation of few-view imaging in practical inspection systems.

  6. 5 CFR 470.303 - Eligible parties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.303... demonstration projects under 5 U.S.C. 4701(a)(1) and 4701(b) may conduct demonstration projects after approval...

  7. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  8. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  9. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  10. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  11. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  12. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    PubMed

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  13. Gaseous time projection chambers for rare event detection: results from the T-REX project. I. Double beta decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irastorza, I.G.; Aznar, F.; Castel, J., E-mail: igor.irastorza@cern.ch, E-mail: faznar@unizar.es, E-mail: jfcastel@unizar.es

    2016-01-01

    As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurementmore » of the double beta decay (DBD) of {sup 136}Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ∼ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ∼ 3% FWHM @ Q{sub ββ}. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ∼ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two blobs) show promising background discrimination capabilities out of reach of other experimental implementations. Moreover, microbulk Micromegas have very low levels of intrinsic radioactivity, and offer cost-effective scaling-up options. All these results demonstrate that Micromegas-read HPXe TPC remains a very competitive technique for the next generation DBD experiments.« less

  14. Screening for breast cancer in a high-risk series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodard, E.D.; Hempelmann, L.H.; Janus, J.

    1982-01-01

    A unique cohort of women at increased risk of breast cancer because of prior X-ray treatment of acute mastitis and their selected high-risk siblings were offered periodic breast cancer screening including physical examination of the breasts, mammography, and thermography. Twelve breast cancers were detected when fewer than four would have been expected based on age-specific breast cancer detection rates from the National Cancer institute/American Cancer Society Breast Cancer Demonstration Detection Projects. Mammograpy was positive in all cases but physical examination was positive in only three cases. Thermography was an unreliable indicator of disease. Given the concern over radiation-induced risk, usemore » of low-dose technique and of criteria for participation that select women at high risk of breast cancer will maximize the benefit/risk ratio for mammography screening.« less

  15. Screening for breast cancer in a high-risk series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodard, E.D.; Hempelmann, L.H.; Janus, J.

    1982-01-01

    A unique cohort of women at increased risk of breast cancer because of prior X-ray treatment of acute mastitis and their selected high-risk siblings were offered periodic breast cancer screening including physical examination of the breasts, mammography, and thermography. Twelve breast cancers were detected when fewer than four would have been expected based on age-specific breast cancer detection rates from the National Cancer Institute/American Cancer Society Breast Cancer Demonstration Detection Projects. Mammography was positive in all cases but physical examination was positive in only three cases. Thermography was an unreliable indicator of disease. Given the concern over radiation-induced risk, usemore » of low-dose technique and of criteria for participation that select women at high risk of breast cancer will maximize the benefit/risk ratio for mammography screening.« less

  16. Feasibility of telemedicine in detecting diabetic retinopathy and age-related macular degeneration.

    PubMed

    Vaziri, Kamyar; Moshfeghi, Darius M; Moshfeghi, Andrew A

    2015-03-01

    Age-related macular degeneration and diabetic retinopathy are important causes of visual impairment and blindness in the world. Because of recent advances and newly available treatment modalities along with the devastating consequences associated with late stages of these diseases, much attention has been paid to the importance of early detection and improving patient access to specialist care. Telemedicine or, more specifically, digital retinal imaging utilizing telemedical technology has been proposed as an important alternative screening and management strategy to help meet this demand. In this paper, we perform a literature review and analysis that evaluates the validity and feasibility of telemedicine in detecting diabetic retinopathy and age-related macular degeneration. Understanding both the progress and barriers to progress that have been demonstrated in these two areas is important for future telemedicine research projects and innovations in telemedicine technology.

  17. Cybersecurity Intrusion Detection and Monitoring for Field Area Network: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrowicz, Stanley

    This report summarizes the key technical accomplishments, industry impact and performance of the I2-CEDS grant entitled “Cybersecurity Intrusion Detection and Monitoring for Field Area Network”. Led by Applied Communication Sciences (ACS/Vencore Labs) in conjunction with its utility partner Sacramento Municipal Utility District (SMUD), the project accelerated research on a first-of-its-kind cybersecurity monitoring solution for Advanced Meter Infrastructure and Distribution Automation field networks. It advanced the technology to a validated, full-scale solution that detects anomalies, intrusion events and improves utility situational awareness and visibility. The solution was successfully transitioned and commercialized for production use as SecureSmart™ Continuous Monitoring. Discoveries made withmore » SecureSmart™ Continuous Monitoring led to tangible and demonstrable improvements in the security posture of the US national electric infrastructure.« less

  18. 75 FR 77379 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... Personnel Management Demonstration Project, Department of Navy, Office of Naval Research; Notice #0;#0..., authorizes the Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at... to execute a process and plan to employ the Department's personnel management demonstration project...

  19. 75 FR 30197 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... adopt the Naval Research Laboratory (NRL) Personnel Management Demonstration Project with modifications... Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at DoD laboratories... execute a process and plan to employ the personnel management demonstration project authorities granted to...

  20. 76 FR 12080 - TRICARE Access to Care Demonstration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... DEPARTMENT OF DEFENSE Office of the Secretary TRICARE Access to Care Demonstration Project AGENCY..., Section 1092, entitled Department of Defense TRICARE Access to Care Demonstration Project. The demonstration project is intended to improve access to urgent care including minor illness or injury for Coast...

  1. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  2. 77 FR 21102 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... OMB Review; Comment Request Title: Child Welfare Demonstration Projects Information Collection. OMB No... child welfare waiver demonstration projects. CB is able to approve up to ten child welfare waiver demonstration projects in each of Fiscal Years 2012, 2013 and 2014. These waiver demonstration projects involve...

  3. 77 FR 69601 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... to demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act... the NDAA for FY 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects...

  4. 75 FR 27865 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... of coverage of the AFRL Personnel Demonstration Project to AFRL employees in Business Management and... conduct demonstration projects to determine whether a specified change in personnel management policies or... plan to employ the personnel management demonstration project authorities granted to the Office of...

  5. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  6. 78 FR 29335 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal... 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD...

  7. Hyperspectral Imaging and SPA-LDA Quantitative Analysis for Detection of Colon Cancer Tissue

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Zhang, D.; Wang, Ch.; Dai, B.; Zhao, M.; Li, B.

    2018-05-01

    Hyperspectral imaging (HSI) has been demonstrated to provide a rapid, precise, and noninvasive method for cancer detection. However, because HSI contains many data, quantitative analysis is often necessary to distill information useful for distinguishing cancerous from normal tissue. To demonstrate that HSI with our proposed algorithm can make this distinction, we built a Vis-NIR HSI setup and made many spectral images of colon tissues, and then used a successive projection algorithm (SPA) to analyze the hyperspectral image data of the tissues. This was used to build an identification model based on linear discrimination analysis (LDA) using the relative reflectance values of the effective wavelengths. Other tissues were used as a prediction set to verify the reliability of the identification model. The results suggest that Vis-NIR hyperspectral images, together with the spectroscopic classification method, provide a new approach for reliable and safe diagnosis of colon cancer and could lead to advances in cancer diagnosis generally.

  8. Service and Methods Demonstration - Annual Report

    DOT National Transportation Integrated Search

    1975-11-01

    This report contains a description of the Service and Methods Demonstration Program. Transit demonstration projects undertaken in previous years are reviewed. Recently completed and current demonstration projects are described and project results fro...

  9. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    DOE PAGES

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; ...

    2018-03-26

    A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less

  10. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    NASA Astrophysics Data System (ADS)

    Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.

    2009-06-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  11. Quantum non-demolition detection of an itinerant microwave photon

    NASA Astrophysics Data System (ADS)

    Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.

    2018-06-01

    Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

  12. Darwin--a mission to detect and search for life on extrasolar planets.

    PubMed

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  13. The Citizen Science Project ‘Mueckenatlas’ Helps Monitor the Distribution and Spread of Invasive Mosquito Species in Germany

    PubMed Central

    Walther, Doreen; Kampen, Helge

    2017-01-01

    Abstract The citizen science project ‘Mueckenatlas’ (mosquito atlas) was implemented in early 2012 to improve mosquito surveillance in Germany. Citizens are asked to support the spatiotemporal mapping of culicids by submitting mosquito specimens collected in their private surroundings. The Mueckenatlas has developed into an efficient tool for data collection with close to 30,000 mosquitoes submitted by the end of 2015. While the vast majority of submissions included native mosquito species, a small percentage represented invasive species. The discovery of Aedes albopictus (Skuse) (Diptera: Culicidae), Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) and Aedes koreicus (Edwards) (Diptera: Culicidae) specimens via the Mueckenatlas project prompted targeted monitoring activities in the field which produced additional information on the distribution of these species in Germany. Among others, Mueckenatlas submissions led to the detection of three populations of Ae. j. japonicus in West, North and Southeast Germany in 2012, 2013, and 2015, respectively. As demonstrated by on-site monitoring, the origins of Ae. j. japonicus specimens submitted to the Mueckenatlas mirror the distribution areas of the four presently known German populations as found by active field sampling (the fourth population already reported prior to the launch of the Mueckenatlas). The data suggest that a citizen science project such as the Mueckenatlas may aid in detecting changes in the mosquito fauna and can therefore be used to guide the design of more targeted field surveillance activities. PMID:29029273

  14. The Citizen Science Project 'Mueckenatlas' Helps Monitor the Distribution and Spread of Invasive Mosquito Species in Germany.

    PubMed

    Walther, Doreen; Kampen, Helge

    2017-11-07

    The citizen science project 'Mueckenatlas' (mosquito atlas) was implemented in early 2012 to improve mosquito surveillance in Germany. Citizens are asked to support the spatiotemporal mapping of culicids by submitting mosquito specimens collected in their private surroundings. The Mueckenatlas has developed into an efficient tool for data collection with close to 30,000 mosquitoes submitted by the end of 2015. While the vast majority of submissions included native mosquito species, a small percentage represented invasive species. The discovery of Aedes albopictus (Skuse) (Diptera: Culicidae), Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) and Aedes koreicus (Edwards) (Diptera: Culicidae) specimens via the Mueckenatlas project prompted targeted monitoring activities in the field which produced additional information on the distribution of these species in Germany. Among others, Mueckenatlas submissions led to the detection of three populations of Ae. j. japonicus in West, North and Southeast Germany in 2012, 2013, and 2015, respectively. As demonstrated by on-site monitoring, the origins of Ae. j. japonicus specimens submitted to the Mueckenatlas mirror the distribution areas of the four presently known German populations as found by active field sampling (the fourth population already reported prior to the launch of the Mueckenatlas). The data suggest that a citizen science project such as the Mueckenatlas may aid in detecting changes in the mosquito fauna and can therefore be used to guide the design of more targeted field surveillance activities. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  15. Prospective Study of Respiratory Infections at the U.S. Naval Academy

    DTIC Science & Technology

    2001-09-01

    conducting the .findings were significant in demonstrating infection cause and study at the U.S. Naval Academy: Tomoko Hooper, MD MPH; Richard Jhe large...leven M, Ursi D, Van Bever H, Quint W, Niesters HG, Goossens H: Detection of disease. J Infect Dis 1992; 166: 365-73. Mycoplasmapneumoniaeby two...6. AUTHORS 5d. Project Number: Gregory C. Gray, MD, MPH; Robert G. Schultz, MD; Gary D. Gackstetter, DVM, 5e. Task Number: PhD; Richard Thomas, MD

  16. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  17. Human Detection from a Mobile Robot Using Fusion of Laser and Vision Information

    PubMed Central

    Fotiadis, Efstathios P.; Garzón, Mario; Barrientos, Antonio

    2013-01-01

    This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method. PMID:24008280

  18. Human detection from a mobile robot using fusion of laser and vision information.

    PubMed

    Fotiadis, Efstathios P; Garzón, Mario; Barrientos, Antonio

    2013-09-04

    This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method.

  19. Robust and Heterogeneous Hydrological Changes under Global Warming

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Zwiers, F. W.; Dirmeyer, P.; Lawrence, D. M.; Shrestha, R. R.; Werner, A. T.

    2015-12-01

    The Intergovernmental Panel on Climate Change (IPCC) has continued to find it difficult to make clear assessments of streamflow changes [Assessment Report 5, Working Group II, Chapter 3] in large part because of the heterogeneity of observed and projected hydrological changes. While prior studies have found some evidence of human influence on precipitation changes, the detection of streamflow changes is not robust. Here, we show that the terrestrial branch of the hydrological cycle, namely the partitioning of precipitation into evapotranspiration and runoff, is an important piece of the puzzle that may explain the apparent disconnect between the detectability of precipitation and streamflow changes. We apply Budyko framework to quantify sensitivity of hydrological changes to climate driven changes in water balance regionally. We demonstrate that the hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited (wet regions) than water limited (dry regions), and therefore the detectability of streamflow changes is also greater by 30-40% in wet regions. Evidence from observations in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 climate models at global scales indicate that use of the Budyko framework can help identify robust and spatially heterogeneous hydrological responses to external forcing on the climate system.

  20. Free-Flight Terrestrial Rocket Lander Demonstration for NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; Epp, Chirold; Robertson, Ed

    2012-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project is chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. Since its inception in 2006, the ALHAT Project has executed four field test campaigns to characterize and mature sensors and algorithms that support real-time hazard detection and global/local precision navigation for planetary landings. The driving objective for Government Fiscal Year 2012 (GFY2012) is to successfully demonstrate autonomous, real-time, closed loop operation of the ALHAT system in a realistic free flight scenario on Earth using the Morpheus lander developed at the Johnson Space Center (JSC). This goal represents an aggressive target consistent with a lean engineering culture of rapid prototyping and development. This culture is characterized by prioritizing early implementation to gain practical lessons learned and then building on this knowledge with subsequent prototyping design cycles of increasing complexity culminating in the implementation of the baseline design. This paper provides an overview of the ALHAT/Morpheus flight demonstration activities in GFY2012, including accomplishments, current status, results, and lessons learned. The ALHAT/Morpheus effort is also described in the context of a technology path in support of future crewed and robotic planetary exploration missions based upon the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN).

  1. Raspberry Shake- A World-Wide Citizen Seismograph Network

    NASA Astrophysics Data System (ADS)

    Christensen, B. C.; Blanco Chia, J. F.

    2017-12-01

    Raspberry Shake was conceived as an inexpensive plug-and-play solution to satisfy the need for universal, quick and accurate earthquake detections. First launched on Kickstarter's crowdfunding platform in July of 2016, the Raspberry Shake project was funded within hours of the launch date and, by the end of the campaign, reached more than 1000% of its initial funding goal. This demonstrated for the first time that there exists a strong interest among Makers, Hobbyists and Do It Yourselfers for personal seismographs. From here, a citizen scientist network was created and it has steadily been growing. The Raspberry Shake network is currently being used in conjunction with publicly available broadband data from the GSN and other state-run seismic networks available through the IRIS, Geoscope and GEOFON data centers to detect and locate earthquakes large and small around the globe. Raspberry Shake looks well positioned to improve local monitoring of earthquakes on a global scale, deepen community's understanding of earthquakes, and serve as a formidable teaching tool. We present the main results of the project, the current state of the network, and the new Raspberry Shake models that are being built.

  2. Using a Smartphone Camera for Nanosatellite Attitude Determination

    NASA Astrophysics Data System (ADS)

    Shimmin, R.

    2014-09-01

    The PhoneSat project at NASA Ames Research Center has repeatedly flown a commercial cellphone in space. As this project continues, additional utility is being extracted from the cell phone hardware to enable more complex missions. The camera in particular shows great potential as an instrument for position and attitude determination, but this requires complex image processing. This paper outlines progress towards that image processing capability. Initial tests on a small collection of sample images have demonstrated the determination of a Moon vector from an image by automatic thresholding and centroiding, allowing the calibration of existing attitude control systems. Work has been undertaken on a further set of sample images towards horizon detection using a variety of techniques including thresholding, edge detection, applying a Hough transform, and circle fitting. Ultimately it is hoped this will allow calculation of an Earth vector for attitude determination and an approximate altitude. A quick discussion of work towards using the camera as a star tracker is then presented, followed by an introduction to further applications of the camera on space missions.

  3. Network for the Detection of Mesopause Change (NDMC): What can we learn from airglow measurements in terms of better understanding atmospheric dynamics?

    NASA Astrophysics Data System (ADS)

    Bittner, Michael

    2013-04-01

    The international Network for the Detection of Mesopause Change (NDMC, http://wdc.dlr.de/ndmc) is a global program with the mission to promote international cooperation among research groups investigating the mesopause region (80-100 km) with the goal of early identification of changing climate signals. NDMC is contributing to the European Project "Atmospheric dynamics Research Infrastructure in Europe, ARISE". Measurements of the airglow at the mesopause altitude region (80-100km) from most of the European NDMC stations including spectro-photometers and imagers allow monitoring atmospheric variability at time scales comprising long-term trends, annual and seasonal variability, planetary and gravity waves and infrasonic signals. The measurements also allow validating satellite-based measurements such as from the TIMED-SABER instrument. Examples will be presented for airglow measurements and for related atmospheric dynamics analysis on the abovementioned spatio-temporal scales and comparisons with satellite-based instruments as well as with LIDAR soundings in order to demonstrate the contribution of NDMC to the ARISE project.

  4. Extracting valley-ridge lines from point-cloud-based 3D fingerprint models.

    PubMed

    Pang, Xufang; Song, Zhan; Xie, Wuyuan

    2013-01-01

    3D fingerprinting is an emerging technology with the distinct advantage of touchless operation. More important, 3D fingerprint models contain more biometric information than traditional 2D fingerprint images. However, current approaches to fingerprint feature detection usually must transform the 3D models to a 2D space through unwrapping or other methods, which might introduce distortions. A new approach directly extracts valley-ridge features from point-cloud-based 3D fingerprint models. It first applies the moving least-squares method to fit a local paraboloid surface and represent the local point cloud area. It then computes the local surface's curvatures and curvature tensors to facilitate detection of the potential valley and ridge points. The approach projects those points to the most likely valley-ridge lines, using statistical means such as covariance analysis and cross correlation. To finally extract the valley-ridge lines, it grows the polylines that approximate the projected feature points and removes the perturbations between the sampled points. Experiments with different 3D fingerprint models demonstrate this approach's feasibility and performance.

  5. EndoTOFPET-US - A Miniaturised Calorimeter for Endoscopic Time-of-Flight Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zvolský, Milan; EndoTOFPET-US Collaboration

    2015-02-01

    In the scope of the EndoTOFPET-US project, a novel multimodal device for Ultrasound (US) Endoscopy and Positron Emission Tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional markers and developing new biomarkers for pancreas and prostate oncology. Exploiting the Time-of-Flight (TOF) information of the gamma rays allows for a more sensitive, more precise and lower radiation- dose imaging and intervention on small internal structures. The detection of the gamma rays is realised with the help of scintillator crystals with Silicon Photomultiplier (SiPM) read-out, aiming at a coincidence time resolution of 200 ps and a spatial resolution of ≈ 1 mm. For the endoscopic detector, digital SiPMs are utilised for the first time in an instrument planned for clinical applications. The functionality of the instrument as well as the challenges that accompany the high miniaturisation of the endoscopic detector and the asymmetric and variable geometry of the system, are presented. The demands on the system involve the fields of scintillating crystallography, ultra-fast photon detection, highly integrated electronics, system integration as well as image reconstruction. The single detector components have been fully characterised and are performing up to specifications. Two dedicated ASIC chips have been developed for the project. The first PET images have been acquired with a test setup that consists solely of hardware and software developed within the collaboration and demonstrate that the data acquisition and reconstruction chain is operational. In this talk, the characterisation of the single components and the status of the detector integration and comissioning is presented.

  6. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  7. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  8. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  9. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  10. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  11. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Demonstration Projects for the Integration... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  12. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.

  13. Electroanalytical Evaluation of Nanoparticles by Nano-impact Electrochemistry

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita

    Applications of engineered nanoparticles in electronics, catalysis, solid oxide fuel cells, medicine and sensing continue to increase. Traditionally, nanoparticle systems are characterized by spectroscopic and microscopic techniques. These methods are cumbersome and expensive, which limit their routine use for screening purposes. Electrochemistry is a powerful, yet underutilized tool, for the detection and classification of nanoparticles. The first part of this dissertation investigates a recently developed electrochemical method -- nanoparticle collision electrochemistry -- for detection and characterization of nanoparticles. Three independent projects have been described to evaluate the use of this technique for characterizing nanoparticle based systems including: conjugation with biomolecules, interaction with environmental contaminants and fundamental investigation of conformational changes of nanoparticle capping ligands. The thesis reports the first use of nano-impact electrochemistry to quantitatively investigate bioconjugation and biomolecular recognition at conductive nanoparticles. Furthermore, we also demonstrate the potential of this method as a single step, reagentless and label-free technique for the ultra-sensitive detection of biomolecular targets. A fundamental study of biorecognition is important for the development of therapeutics and molecular diagnosis probes in the biomedical, biosensing and biotechnology fields. The second project describes the use of this method as a screening tool of particle reactivity. We study the interaction and adsorption of a toxic environmental metalloid (Arsenic) with metal oxide nanoparticles to extract mechanistic, speciation and loading information. We discuss the potential of this approach to complement or replace costly characterization techniques and enable routine study of nanoparticles and their reactivity. In the third project, we use the nano-impact method to study the pH-dependent conformational changes of polymeric capping agents on the surface of silver nanoparticles. Nano-impact elecrochemistry has demonstrated promising results for studying functionality, stability and conformational changes of stabilizing agents. The second part of this thesis explores the use of carbon nanomaterials such as graphene and Pt-doped CeO2 for the rational design of enzyme-conjugated nanostructures for biosensing applications. The dissertation reports fabrication, characterization and properties of hybrid CeO2-based bioelectrocatalytic nanostructure material with PEDOT:PSS [poly(3,4ethylenedioxythiophene):poly-styrene-sulfonic acid] on porous carbon materials as novel materials for designing high performance laccase (Lac) biocathodes and biofuel cells.

  14. Dynamic optical projection of acquired luminescence for aiding oncologic surgery

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Gullicksrud, Kyle; Mondal, Suman; Sudlow, Gail P.; Achilefu, Samuel; Akers, Walter J.

    2013-12-01

    Optical imaging enables real-time visualization of intrinsic and exogenous contrast within biological tissues. Applications in human medicine have demonstrated the power of fluorescence imaging to enhance visualization in dermatology, endoscopic procedures, and open surgery. Although few optical contrast agents are available for human medicine at this time, fluorescence imaging is proving to be a powerful tool in guiding medical procedures. Recently, intraoperative detection of fluorescent molecular probes that target cell-surface receptors has been reported for improvement in oncologic surgery in humans. We have developed a novel system, optical projection of acquired luminescence (OPAL), to further enhance real-time guidance of open oncologic surgery. In this method, collected fluorescence intensity maps are projected onto the imaged surface rather than via wall-mounted display monitor. To demonstrate proof-of-principle for OPAL applications in oncologic surgery, lymphatic transport of indocyanine green was visualized in live mice for intraoperative identification of sentinel lymph nodes. Subsequently, peritoneal tumors in a murine model of breast cancer metastasis were identified using OPAL after systemic administration of a tumor-selective fluorescent molecular probe. These initial results clearly show that OPAL can enhance adoption and ease-of-use of fluorescence imaging in oncologic procedures relative to existing state-of-the-art intraoperative imaging systems.

  15. The retinal funduscope demonstration project

    NASA Technical Reports Server (NTRS)

    Wilhelm, Jim

    1994-01-01

    A lightweight, relatively inexpensive electronic and photographic instrument has been re-developed for the detection, monitoring, and objective quantification of ocular/ systemic disease or physiological alterations of the retina, blood vessels, or other structures in the anterior and posterior chambers of the eye. The instrument can be operated with little training. It can function with a human or animal subject seated, recumbent, inverted, or in almost any other orientation; and in a hospital, laboratory, field, or other environment. The instrument produces video images that can be viewed directly and/or digitized for simultaneous or subsequent analysis. It can also be equipped to produce photographs and/or fitted with adaptors to produce stereoscopic or magnified images ot the skin, nose, ear, throat, or mouth to detect lesions or diseases.

  16. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, V. M.; Bauch, E.; Jarmola, A.

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 {mu}m{sup 3}, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nT{sub rms} at {approx}110 Hzmore » in one second of acquisition.« less

  17. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  18. A versatile microprocessor-controlled hybrid receiver. [with firmware control for operation over large frequency uncertainty

    NASA Technical Reports Server (NTRS)

    Grant, T. L.

    1978-01-01

    A hybrid receiver has been designed for the Galileo Project. The receiver, located on the Galileo Orbiter, will autonomously acquire and track signals from the first atmospheric probe of Jupiter as well as demodulate, bit-synchronize, and buffer the telemetry data. The receiver has a conventional RF and LF front end but performs multiple functions digitally under firmware control. It will be a self-acquiring receiver that operates under a large frequency uncertainty; it can accommodate different modulation types, bit rates, and other parameter changes via reprogramming. A breadboard receiver and test set demonstrate a preliminary version of the sequential detection process and verify the hypothesis that a fading channel does not reduce the probability of detection.

  19. Results from early programmatic implementation of Xpert MTB/RIF testing in nine countries

    PubMed Central

    2014-01-01

    Background The Xpert MTB/RIF assay has garnered significant interest as a sensitive and rapid diagnostic tool to improve detection of sensitive and drug resistant tuberculosis. However, most existing literature has described the performance of MTB/RIF testing only in study conditions; little information is available on its use in routine case finding. TB REACH is a multi-country initiative focusing on innovative ways to improve case notification. Methods We selected a convenience sample of nine TB REACH projects for inclusion to cover a range of implementers, regions and approaches. Standard quarterly reports and machine data from the first 12 months of MTB/RIF implementation in each project were utilized to analyze patient yields, rifampicin resistance, and failed tests. Data was collected from September 2011 to March 2013. A questionnaire was implemented and semi-structured interviews with project staff were conducted to gather information on user experiences and challenges. Results All projects used MTB/RIF testing for people with suspected TB, as opposed to testing for drug resistance among already diagnosed patients. The projects placed 65 machines (196 modules) in a variety of facilities and employed numerous case-finding strategies and testing algorithms. The projects consumed 47,973 MTB/RIF tests. Of valid tests, 7,195 (16.8%) were positive for MTB. A total of 982 rifampicin resistant results were found (13.6% of positive tests). Of all tests conducted, 10.6% failed. The need for continuous power supply was noted by all projects and most used locally procured solutions. There was considerable heterogeneity in how results were reported and recorded, reflecting the lack of standardized guidance in some countries. Conclusions The findings of this study begin to fill the gaps among guidelines, research findings, and real-world implementation of MTB/RIF testing. Testing with Xpert MTB/RIF detected a large number of people with TB that routine services failed to detect. The study demonstrates the versatility and impact of the technology, but also outlines various surmountable barriers to implementation. The study is not representative of all early implementer experiences with MTB/RIF testing but rather provides an overview of the shared issues as well as the many different approaches to programmatic MTB/RIF implementation. PMID:24383553

  20. SU-D-207-05: Real-Time Intrafractional Motion Tracking During VMAT Delivery Using a Conventional Elekta CBCT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yang-Kyun; Sharp, Gregory C.; Gierga, David P.

    2015-06-15

    Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36more » cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a conventional Elekta linear accelerator. MV-scatter suppression is needed to improve tracking accuracy during MV delivery. This research is funded by Motion Management Research Grant from Elekta.« less

  1. Accelerating access to quality TB care for pediatric TB cases through better diagnostic strategy in four major cities of India.

    PubMed

    Raizada, Neeraj; Khaparde, Sunil D; Salhotra, Virender Singh; Rao, Raghuram; Kalra, Aakshi; Swaminathan, Soumya; Khanna, Ashwani; Chopra, Kamal Kishore; Hanif, M; Singh, Varinder; Umadevi, K R; Nair, Sreenivas Achuthan; Huddart, Sophie; Prakash, C H Surya; Mall, Shalini; Singh, Pooja; Saha, B K; Denkinger, Claudia M; Boehme, Catharina; Sarin, Sanjay

    2018-01-01

    Diagnosis of TB in children is challenging, and is largely based on positive history of contact with a TB case, clinical and radiological findings, often without microbiological confirmation. Diagnostic efforts are also undermined by challenges in specimen collection and the limited availability of high sensitivity, rapid diagnostic tests that can be applied with a quick turnaround time. The current project was undertaken in four major cities of India to address TB diagnostic challenges in pediatric population, by offering free of cost Xpert testing to pediatric presumptive TB cases, thereby paving the way for better TB care. A high throughput lab was established in each of the four project cities, and linked to various health care providers across the city through rapid specimen transportation and electronic reporting linkages. Free Xpert testing was offered to all pediatric (0-14 years) presumptive TB cases (both pulmonary and extra-pulmonary) seeking care at public and private health facilities. The current project enrolled 42,238 pediatric presumptive TB cases from April, 2014 to June, 2016. A total of 3,340 (7.91%, CI 7.65-8.17) bacteriologically confirmed TB cases were detected, of which 295 (8.83%, CI 7.9-9.86) were rifampicin-resistant. The level of rifampicin resistance in the project cohort was high. Overall Xpert yielded a high proportion of valid results and TB detection rates were more than three-fold higher than smear microscopy. The project provided same-day testing and early availability of results led to rapid treatment initiation and success rates and very low rates of treatment failure and loss to follow-up. The current project demonstrated the feasibility of rolling out rapid and upfront Xpert testing for pediatric presumptive TB cases through a single Xpert lab per city in an efficient manner. Rapid turnaround testing time facilitated prompt and appropriate treatment initiation. These results suggest that the upfront Xpert assay is a promising solution to address TB diagnosis in children. The high levels of rifampicin resistance detected in presumptive pediatric TB patients tested under the project are a major cause of concern from a public health perspective which underscores the need to further prioritize upfront Xpert access to this vulnerable population.

  2. Accelerating access to quality TB care for pediatric TB cases through better diagnostic strategy in four major cities of India

    PubMed Central

    Raizada, Neeraj; Khaparde, Sunil D.; Salhotra, Virender Singh; Rao, Raghuram; Kalra, Aakshi; Swaminathan, Soumya; Khanna, Ashwani; Chopra, Kamal Kishore; Hanif, M.; Singh, Varinder; Umadevi, K. R.; Nair, Sreenivas Achuthan; Huddart, Sophie; Prakash, C. H. Surya; Mall, Shalini; Singh, Pooja; Saha, B. K.; Denkinger, Claudia M.; Boehme, Catharina

    2018-01-01

    Background Diagnosis of TB in children is challenging, and is largely based on positive history of contact with a TB case, clinical and radiological findings, often without microbiological confirmation. Diagnostic efforts are also undermined by challenges in specimen collection and the limited availability of high sensitivity, rapid diagnostic tests that can be applied with a quick turnaround time. The current project was undertaken in four major cities of India to address TB diagnostic challenges in pediatric population, by offering free of cost Xpert testing to pediatric presumptive TB cases, thereby paving the way for better TB care. Methods A high throughput lab was established in each of the four project cities, and linked to various health care providers across the city through rapid specimen transportation and electronic reporting linkages. Free Xpert testing was offered to all pediatric (0–14 years) presumptive TB cases (both pulmonary and extra-pulmonary) seeking care at public and private health facilities. Results The current project enrolled 42,238 pediatric presumptive TB cases from April, 2014 to June, 2016. A total of 3,340 (7.91%, CI 7.65–8.17) bacteriologically confirmed TB cases were detected, of which 295 (8.83%, CI 7.9–9.86) were rifampicin-resistant. The level of rifampicin resistance in the project cohort was high. Overall Xpert yielded a high proportion of valid results and TB detection rates were more than three-fold higher than smear microscopy. The project provided same-day testing and early availability of results led to rapid treatment initiation and success rates and very low rates of treatment failure and loss to follow-up. Conclusion The current project demonstrated the feasibility of rolling out rapid and upfront Xpert testing for pediatric presumptive TB cases through a single Xpert lab per city in an efficient manner. Rapid turnaround testing time facilitated prompt and appropriate treatment initiation. These results suggest that the upfront Xpert assay is a promising solution to address TB diagnosis in children. The high levels of rifampicin resistance detected in presumptive pediatric TB patients tested under the project are a major cause of concern from a public health perspective which underscores the need to further prioritize upfront Xpert access to this vulnerable population. PMID:29489887

  3. The Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets

    NASA Astrophysics Data System (ADS)

    Gillon, M.; Demory, B.-O.; Lovis, C.; Deming, D.; Ehrenreich, D.; Lo Curto, G.; Mayor, M.; Pepe, F.; Queloz, D.; Seager, S.; Ségransan, D.; Udry, S.

    2017-05-01

    Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117

  4. Direct detection of saponins in crude extracts of soapnuts by FTIR.

    PubMed

    Almutairi, Meshari Saad; Ali, Muhammad

    2015-01-01

    Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.

  5. Characterization of sintered SiC by using NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1988-01-01

    Capabilities of projection microfocus X-radiography and of ultrasonic velocity and attenuation for characterizing silicon carbide specimens were assessed. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room-temperature, four-point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined. Radiography proved useful in detecting high-density inclusions and isolated voids, but failed in detecting surface and subsurface agglomerates and large grains as fracture origins. Ultrasonic velocity dependency on density was evident. Attenuation dependency on density and mean pore size was clearly demonstrated. Understanding attenuation as a function of toughness was limited by shortcomings in K sub IC determination.

  6. [Subsidized project of hearing aid purchase for mild-moderate hearing impaired children in Akita prefecture].

    PubMed

    Sato, Teruyuki; Nakazawa, Misao; Takahashi, Shin; Ishikawa, Kazuo

    2013-06-01

    The dissemination of newborn hearing screening has detected children with mild-moderate hearing impairment at an early age. However, there is no nation-wide welfare system for children with mild-moderate hearing impairment in Japan. Under these kinds of social conditions, a subsidized project of hearing aid purchase for mild-moderate hearing impaired children has come into force from April 2010 in Akita prefecture. All 18 candidates who applied for this project were subsidized in Akita prefecture. Eighteen children purchased their hearing aids using this subsidy. The feature of this project was that every child could have access to subsidies as long as their doctor recognized the effectiveness of hearing aids because children with hearing impairment need to learn language. They contacted the hospital, prefectural government and institutes related to hearing loss before this project come into force. We recognized parents who are raising a child with mild-moderate hearing impairment have high interest in this project. Hearing aids can represent a considerable expense for young parents who are raising a child. We encountered some children who had to give up the idea of hearing aids due to their parents' economic circumstances before this project become effective. These situations were completely avoided after this project came into being. This administrative purpose was of demonstrated value in children with mild-moderate hearing impairment.

  7. Using advanced computer vision algorithms on small mobile robots

    NASA Astrophysics Data System (ADS)

    Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.

    2006-05-01

    The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.

  8. A technology demonstrator for development of ultra-lightweight, large aperture, deployable telescope for space applications

    NASA Astrophysics Data System (ADS)

    Zuccaro Marchi, Alessandro; Gambicorti, Lisa; Simonetti, Francesca; Salinari, Piero; Lisi, Franco; Bursi, Alessandro; Olivier, Massimiliano; Gallieni, Daniele

    2017-11-01

    This work presents the latest results of new technological concepts for large aperture, lightweight telescopes using thin deployable active mirrors. The study is originally addressed to a spaceborne DIAL (Differential Absorption Lidar) at 935.5 nm for the measurement of water vapour profile in atmosphere, as an output of an ESA contract (whose preliminary results were presented at ICSO 2006). The high versatility of these concepts allows to exploit the presented technology for any project willing to consider large aperture, segmented lightweight telescopes. A possible scientific application is for Ultra High Energy Cosmic Rays detection through the fluorescence traces in atmosphere and diffused Cerenkov signals observation via a Schmidt-like spaceborne LEO telescope with large aperture, wide Field of View (FOV) and low f/#. A technology demonstrator has been manufactured and tested in order to investigate two project critical areas identified during the preliminary design: the performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch. In particular, this breadboard demonstrates at first that the mirror actuators are able to control with the adequate accuracy the surface shape and to recover a deployment error with their long stroke; secondly, the mirror survivability has been demonstrated using an electrostatic locking between mirror and backplane able to withstand without failure a vibration test representative of the launch environment.

  9. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction

    PubMed Central

    Nikazad, T; Davidi, R; Herman, G. T.

    2013-01-01

    We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data. PMID:23440911

  10. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction.

    PubMed

    Nikazad, T; Davidi, R; Herman, G T

    2012-03-01

    We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.

  11. [Impact of European e-commerce liberalisation on pharmaceutical crime : The ALPhA research project].

    PubMed

    Sinn, Arndt

    2017-11-01

    The trading of illicit and falsified pharmaceuticals is a growth market. Factors influencing this illegal market are high profit margins, a low risk of detection, low control density, an obscure legal situation, and lastly, the easy and anonymous ways of selling over the Internet, usually across national borders. This situation was the background for the research project on the impact of European e‑commerce liberalisation on pharmaceutical crime (ALPhA). The goal of the project was to develop concrete recommendations for action regarding the improved prosecution of internet-based pharmaceutical crime and to create a broad body of data for effective law-making by legislators.In this article the initial situation regarding pharmaceutical crime and its risk potential is described and some of the results from the comparative-law investigation of the ALPhA research project are presented along with its final recommendations. The latter are directed at policy-makers and law enforcement agencies in addition to industry and science and demonstrate the type of framework to be designed to increase safety for the public and to minimize risks when purchasing pharmaceuticals.

  12. Explosives detection and identification using surface plasmon-coupled emission

    NASA Astrophysics Data System (ADS)

    Ja, Shiou-Jyh

    2012-06-01

    To fight against the explosives-related threats in defense and homeland security applications, a smarter sensing device that not only detects but differentiates multiple true threats from false positives caused by environmental interferents is essential. A new optical detection system is proposed to address these issues by using the temporal and spectroscopic information generated by the surface plasmon coupling emission (SPCE) effect. Innovative SPCE optics have been designed using Zemax software to project the fluorescence signal into clear "rainbow rings" on a CCD with subnanometer wavelength resolution. The spectroscopic change of the fluorescence signal and the time history of such changes due to the presence of a certain explosive analyte are unique and can be used to identify explosives. Thanks to high optical efficiency, reporter depositions as small as 160-μm in diameter can generate a sufficient signal, allowing a dense array of different reporters to be interrogated with wavelength multiplexing and detect a wide range of explosives. We have demonstrated detection and classification of explosives, such as TNT, NT, NM, RDX, PETN, and AN, with two sensing materials in a prototype.

  13. Design and test of a capacitance detection circuit based on a transimpedance amplifier

    NASA Astrophysics Data System (ADS)

    Linfeng, Mu; Wendong, Zhang; Changde, He; Rui, Zhang; Jinlong, Song; Chenyang, Xue

    2015-07-01

    This paper presents a transimpedance amplifier (TIA) capacitance detection circuit aimed at detecting micro-capacitance, which is caused by ultrasonic stimulation applied to the capacitive micro-machined ultrasonic transducer (CMUT). In the capacitance interface, a TIA is adopted to amplify the received signal with a center frequency of 400 kHz, and finally detect ultrasound pressure. The circuit has a strong anti-stray property and this paper also studies the calculation of compensation capacity in detail. To ensure high resolution, noise analysis is conducted. After optimization, the detected minimum ultrasound pressure is 2.1 Pa, which is two orders of magnitude higher than the former. The test results showed that the circuit was sensitive to changes in ultrasound pressure and the distance between the CMUT and stumbling block, which also successfully demonstrates the functionality of the developed TIA of the analog-front-end receiver. Project supported by the National Natural Science Foundation of China (No. 61127008) and the Subsidized Program of the National High Technology Research and Development Program of China (No. 2011AA040404).

  14. Dim target trajectory-associated detection in bright earth limb background

    NASA Astrophysics Data System (ADS)

    Chen, Penghui; Xu, Xiaojian; He, Xiaoyu; Jiang, Yuesong

    2015-09-01

    The intensive emission of earth limb in the field of view of sensors contributes much to the observation images. Due to the low signal-to-noise ratio (SNR), it is a challenge to detect small targets in earth limb background, especially for the detection of point-like targets from a single frame. To improve the target detection, track before detection (TBD) based on the frame sequence is performed. In this paper, a new technique is proposed to determine the target associated trajectories, which jointly carries out background removing, maximum value projection (MVP) and Hough transform. The background of the bright earth limb in the observation images is removed according to the profile characteristics. For a moving target, the corresponding pixels in the MVP image are shifting approximately regularly in time sequence. And the target trajectory is determined by Hough transform according to the pixel characteristics of the target and the clutter and noise. Comparing with traditional frame-by-frame methods, determining associated trajectories from MVP reduces the computation load. Numerical simulations are presented to demonstrate the effectiveness of the approach proposed.

  15. Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace

    NASA Astrophysics Data System (ADS)

    Wollenweber, S. D.; Tsui, B. M. W.; Lalush, D. S.; Frey, E. C.; Gullberg, G. T.

    1998-08-01

    The objective of this study was to implement the Hotelling trace (HT) to evaluate the potential increase in defect detection in myocardial SPECT using high-resolution fan-beam (HRF) versus parallel-hole (HRP) collimation and compare results to a previously reported human observer study (G.K. Gregoriou et al., ibid., vol. 42, p. 1267-75, 1995). Projection data from the 3D MCAT torso phantom were simulated including the effects of attenuation, collimator-detector response blurring and scatter. Poisson noise fluctuations were then simulated. The HRP and HRF collimators had the same spatial resolution at 20 cm. The total counts in the projection data sets were proportional to the detection efficiencies of the collimators and on the order of that found in clinical Tc-99m studies. In six left-ventricular defect locations, the HT found for HRF was superior to that for HRP collimation. For HRF collimation, the HT was calculated for reconstructed images using 64/spl times/64, 128/spl times/128 and 192/spl times/192 grid sizes. The results demonstrate substantial improvement in myocardial defect detection when the grid size was increased from 64/spl times/64 to 128/spl times/128 and slight improvement from 128/spl times/128 to 192/spl times/192. Also, the performance of the Hotelling observer in terms of the HT at the different grid sizes correlates at better than 0.95 to that found in human observers in a previously reported observer experiment and ROC study.

  16. Strategy Guideline. Demonstration Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  17. Strategy Guideline: Demonstration Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  18. On the detection of early osteoarthritis by quantitative microscopic imaging

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Daniel John

    Articular cartilage is a thin layer of connective tissue that protects the ends of bones in diarthroidal joints. Cartilage distributes mechanical forces during daily movement throughout its unique depth-dependent structure. The extracellular matrix (ECM) of cartilage primarily contains water, collagen, and glycosaminoglycan (GAG). The collagen fibers are intertwined with negatively charged GAG and surround the cells (i.e. chondrocytes) in cartilage. Degradation to the ECM reduces the load bearing properties of cartilage which can be initiated by injury (e.g. anterior cruciate ligament (ACL) rupture) or disease (e.g. osteoarthritis (OA)). Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) are noninvasive imaging techniques that are increasingly being used in the clinical detection of cartilage degradation. The aim of the first project in this dissertation was to quantify and compare the depth-dependent GAG concentration from healthy and biochemically degraded humeral ex vivo articular cartilage using quantitative contrast enhanced micro-computed tomography (qCECT) at high resolution. The second project in this dissertation was aimed to measure the topographical and depth-dependent GAG concentration using qCECT and delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) from the medial tibia cartilage three weeks after unilateral ACL transection which is an animal model of OA (i.e. modified Pond-Nuki model). These GAG measurements were correlated with a biochemical method, inductively couple plasma optical emission spectrometry, to compare the degradation on the medial tibia between the OA and contralateral cartilage. The third project in this dissertation used the same cartilage specimens as in project two to investigate the change in T2 due to OA and the effect on T2 from a contrast agent. Furthermore, the change in T2 relaxation was investigated from static unconfined compression with correlations by biomechanical measurements. These studies demonstrate the ability to use two quantitative microscopic imaging techniques, microCT and microMRI, to detect microscopic changes in collagen and GAG from healthy, biochemically degraded, and early OA cartilage. The capability for microscopic imaging to detect alterations at the earliest stages of OA will ultimately improve the understanding of degradation and may help aid in the detection for the prevention of disease and repair of damaged cartilage.

  19. Submarine Combat Systems Engineering Project Capstone Project

    DTIC Science & Technology

    2011-06-06

    sonar , imaging, Electronic Surveillance (ES) and communications. These sensors passively detect contacts, which emit... passive sensors is included. A Search Detect Identify Track Decide Engage Assess 3 contact can be sensed by the system as either surface or... Detect Track Avoid Search Detect Identify Track Search Engage Assess Detect Track Avoid Search • SONAR •Imagery •TC • SONAR • SONAR •EW •Imagery •ESM

  20. Rationale, design, and methods for process evaluation in the Childhood Obesity Research Demonstration project

    USDA-ARS?s Scientific Manuscript database

    The cross-site process evaluation plan for the Childhood Obesity Research Demonstration (CORD) project is described here. The CORD project comprises 3 unique demonstration projects designed to integrate multi-level, multi-setting health care and public health interventions over a 4-year funding peri...

  1. Golden Gate Vanpool Demonstration Project

    DOT National Transportation Integrated Search

    1979-07-01

    The report evaluates the Golden Gate Vanpool Demonstration Project activities begun in October 1977. The objective of the demonstration is to successfuly promote commuter ridesharing through vanpools. The project grantee, the Golden Gate Bridge, High...

  2. FY15 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Aaron A.; Larche, Michael R.; Mathews, Royce

    2015-09-01

    This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).

  3. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  4. 78 FR 16476 - Notice for Termination of a Disease Management Demonstration Project for TRICARE Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Management Demonstration Project for TRICARE Standard Beneficiaries.'' The demonstration provided disease... DEPARTMENT OF DEFENSE Office of the Secretary Notice for Termination of a Disease Management Demonstration Project for TRICARE Standard Beneficiaries AGENCY: Office of the Secretary of Defense, (Health...

  5. 76 FR 80903 - Extension of Autism Services Demonstration Project for TRICARE Beneficiaries Under the Extended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Extension of Autism Services Demonstration Project... Enhanced Access to Autism Services Demonstration Project under the Extended Care Health Option for beneficiaries diagnosed with an Autism Spectrum Disorder (ASD). Under the demonstration, the Department...

  6. 78 FR 78342 - Extension of Autism Services Demonstration Project for TRICARE Beneficiaries Under the Extended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... DEPARTMENT OF DEFENSE Office of the Secretary Extension of Autism Services Demonstration Project... (the Department) Enhanced Access to Autism Services Demonstration Project (Autism Demonstration) under the Extended Care Health Option (ECHO) for beneficiaries diagnosed with an Autism Spectrum Disorder...

  7. Machine Learning Based Malware Detection

    DTIC Science & Technology

    2015-05-18

    A TRIDENT SCHOLAR PROJECT REPORT NO. 440 Machine Learning Based Malware Detection by Midshipman 1/C Zane A. Markel, USN...COVERED (From - To) 4. TITLE AND SUBTITLE Machine Learning Based Malware Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...suitably be projected into realistic performance. This work explores several aspects of machine learning based malware detection . First, we

  8. A further study to investigate the detection and enhancement of latent fingerprints using visible absorption and luminescence chemical imaging.

    PubMed

    Payne, Gemma; Reedy, Brian; Lennard, Chris; Comber, Bruce; Exline, David; Roux, Claude

    2005-05-28

    This study investigated the application of chemical imaging to the detection of latent fingerprints using the Condor macroscopic chemical imaging system (ChemImage Corp., Pittsburgh, USA). Methods were developed and optimised for the visualisation of untreated latent fingerprints and fingerprints processed with DFO, ninhydrin, cyanoacrylate, and cyanoacrylate plus rhodamine 6G stain. The results obtained with chemical imaging were compared to the detection achieved using conventional imaging techniques. The Condor significantly improved the detection of many prints, especially those that might be considered poor quality or borderline prints. Prints on newspaper treated with ninhydrin and DFO, and prints on white and yellow paper treated with ninhydrin, benefited the most from chemical imaging detection. In many cases, fingerprints undetectable using conventional imaging techniques could be visualised with chemical imaging. Ridge detail from untreated prints on yellow paper was also detected using the Condor. When prints of high quality were examined, both detection techniques produced quality results. The results of this project demonstrate that chemical imaging offers advantages over conventional visualisation techniques when examining latent fingerprints, especially those that would be considered difficult, such as weak prints or prints on surfaces that produce highly luminescent backgrounds. Standard testing procedures for the detection and enhancement of fingerprints by chemical imaging are presented and discussed.

  9. Technology Development of Miniaturized Far-Infrared Sources for Biomolecular Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kono, Junichiro

    2003-01-01

    The objective of this project was to develop a purely solid-state based, thus miniaturized, far-infrared (FIR) (also known as terahertz (THz)) wave source using III-V semiconductor nanostructures for biomolecular detection and sensing. Many biomolecules, such as DNA and proteins, have distinct spectroscopic features in the FIR wavelength range as a result of vibration-rotation-tunneling motions and various inter- and intra-molecule collective motions. Spectroscopic characterization of such molecules requires narrow linewidth, sufficiently high power, tunable (in wavelength), and coherent FIR sources. Unfortunately, the FIR frequency is one of the least technologically developed ranges in the electromagnetic spectrum. Currently available FIR sources based on non-solid state technology are bulky, inefficient, and very often incoherent. In this project we investigated antimonide based compound semiconductor (ABCS) nanostructures as the active medium to generate FIR radiation. The final goal of this project was to demonstrate a semiconductor THz source integrated with a pumping diode laser module to achieve a compact system for biomolecular applications.

  10. Improved application of independent component analysis to functional magnetic resonance imaging study via linear projection techniques.

    PubMed

    Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li

    2009-02-01

    Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.

  11. MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Bierden, Paul; Cornelissen, S.; Ryan, P.

    2014-01-01

    In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.

  12. Debris Impact Detection Instrument for Crewed Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J.; Corsaro, R.; Giovanes, F.; Lio, J.-C.

    2012-01-01

    When micrometeoroid or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. This is especially important because the outer walls of pressurized volumes are often not easily accessible, blocked by racks or cabinets. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules. The HIMS uses multiple passive, thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA s 2010 and 2011 Desert Research and Technologies Studies (Desert-RATS or D-RATS). The HDU lab module, as seen from above, has an open circular floorplan divided into eight wedge-shaped Segments. The side wall of the module -- the surface used for this technology demonstration -- is a hard fiberglass composite covered with a layer of sprayed-on foam insulation. Four sensor locations were assigned near the corners of a rectangular pattern on the wall of one segment of the HDU lab module. The flat, self-adhesive sensors were applied to the module during its initial outfitting. To study the influence of the wall s construction (thickness and materials), three sets of four sensors were installed at different layer depths: on the interior of the module s wall, on the exterior of the same wall, and on the exterior of the foam insulation. The signal produced when a vibration passes through a sensor is first sent through a pre-amplifier. The amplified signal then is sent to the data acquisition and data processing systems. The vibration data from the sensors are then processed and reduced to a form suitable for presentation to the crew.

  13. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.301 Program expectations. (a) Demonstration projects permit the Office of Personnel...

  14. Signal Detection Theory-Based Information Processing for the Detection of Breast Cancer at Microwave Frequencies

    DTIC Science & Technology

    2002-08-01

    the measurement noise, as well as the physical model of the forward scattered electric field. The Bayesian algorithms for the Uncertain Permittivity...received at multiple sensors. In this research project a tissue- model -based signal-detection theory approach for the detection of mammary tumors in the...oriented information processors. In this research project a tissue- model - based signal detection theory approach for the detection of mammary tumors in the

  15. 75 FR 8927 - Autism Services Demonstration Project for TRICARE Beneficiaries Under the Extended Care Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... DEPARTMENT OF DEFENSE Office of the Secretary Autism Services Demonstration Project for TRICARE... Access to Autism Services Demonstration Project under the Extended Care Health Option for beneficiaries diagnosed with an Autism Spectrum Disorder (ASD). Under the demonstration, the Department implemented a...

  16. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  17. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  18. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  19. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  20. Detection of the nipple in automated 3D breast ultrasound using coronal slab-average-projection and cumulative probability map

    NASA Astrophysics Data System (ADS)

    Kim, Hannah; Hong, Helen

    2014-03-01

    We propose an automatic method for nipple detection on 3D automated breast ultrasound (3D ABUS) images using coronal slab-average-projection and cumulative probability map. First, to identify coronal images that appeared remarkable distinction between nipple-areola region and skin, skewness of each coronal image is measured and the negatively skewed images are selected. Then, coronal slab-average-projection image is reformatted from selected images. Second, to localize nipple-areola region, elliptical ROI covering nipple-areola region is detected using Hough ellipse transform in coronal slab-average-projection image. Finally, to separate the nipple from areola region, 3D Otsu's thresholding is applied to the elliptical ROI and cumulative probability map in the elliptical ROI is generated by assigning high probability to low intensity region. False detected small components are eliminated using morphological opening and the center point of detected nipple region is calculated. Experimental results show that our method provides 94.4% nipple detection rate.

  1. Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy.

    PubMed

    Nishino, Hiroshi; Mukai, Hiromi; Takanashi, Takuma

    2016-12-01

    Hemipteran insects use sophisticated vibrational communications by striking body appendages on the substrate or by oscillating the abdominal tymbal. There has been, however, little investigation of sensory channels for processing vibrational signals. Using sensory nerve stainings and low invasive confocal analyses, we demonstrate the comprehensive neuronal mapping of putative vibration-responsive chordotonal organs (COs) in stink bugs (Pentatomidae and Cydinidae) and cicadas (Cicadidae). The femoral CO (FCO) in stink bugs consists of ventral and dorsal scoloparia, homologous to distal and proximal scoloparia in locusts, which are implicated in joint movement detection and vibration detection, respectively. The ligament of the dorsal scoloparium is distally attached to the accessory extensor muscle, whereas that of the ventral scoloparium is attached to a specialized tendon. Their afferents project to the dorso-lateral neuropil and the central region of the medial ventral association center (mVAC) in the ipsilateral neuromere, where presumed dorsal scoloparium afferents and subgenual organ afferents are largely intermingled. In contrast, FCOs in cicadas have decreased dorsal scoloparium neurons and lack projections to the mVAC. The tymbal CO of stink bugs contains four sensory neurons that are distally attached to fat body cells via a ligament. Their axons project intersegmentally to the dorsal region of mVACs in all neuromeres. Together with comparisons of COs in different insect groups, the results suggest that hemipteran COs have undergone structural modification for achieving faster signaling of resonating peripheral tissues. The conserved projection patterns of COs suggest functional importance of the FCO and subgenual organ for vibrational communications.

  2. Fringe projection application for surface variation analysis on helical shaped silicon breast

    NASA Astrophysics Data System (ADS)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.

  3. A blind transform based approach for the detection of isolated astrophysical pulses

    NASA Astrophysics Data System (ADS)

    Alkhweldi, Marwan; Schmid, Natalia A.; Prestage, Richard M.

    2017-06-01

    This paper presents a blind algorithm for the automatic detection of isolated astrophysical pulses. The detection algorithm is applied to spectrograms (also known as "filter bank data" or "the (t,f) plane"). The detection algorithm comprises a sequence of three steps: (1) a Radon transform is applied to the spectrogram, (2) a Fourier transform is applied to each projection parametrized by an angle, and the total power in each projection is calculated, and (3) the total power of all projections above 90° is compared to the total power of all projections below 90° and a decision in favor of an astrophysical pulse present or absent is made. Once a pulse is detected, its Dispersion Measure (DM) is estimated by fitting an analytically developed expression for a transformed spectrogram containing a pulse, with varying value of DM, to the actual data. The performance of the proposed algorithm is numerically analyzed.

  4. LROC Investigation of Three Strategies for Reducing the Impact of Respiratory Motion on the Detection of Solitary Pulmonary Nodules in SPECT

    NASA Astrophysics Data System (ADS)

    Smyczynski, Mark S.; Gifford, Howard C.; Dey, Joyoni; Lehovich, Andre; McNamara, Joseph E.; Segars, W. Paul; King, Michael A.

    2016-02-01

    The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPNs) in single-photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this nonuniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99 m NeoTect. Similarly, spherical phantoms of 1.0-cm diameter were generated to model small SPN for each of the 150 uniquely located sites within the lungs whose respiratory motion was based on the motion of normal structures in the volunteer CT studies. The SIMIND Monte Carlo program was used to produce SPECT projection data from these. Normal and single-lesion containing SPECT projection sets with a clinically realistic Poisson noise level were created for the cases of 1) the end-expiration (EE) frame with all counts, 2) respiration-averaged motion with all counts, 3) one fourth of the 32 frames centered around EE (Quarter Binning), 4) one half of the 32 frames centered around EE (Half Binning), and 5) eight temporally binned frames spanning the respiratory cycle. Each of the sets of combined projection data were reconstructed with RBI-EM with system spatial-resolution compensation (RC). Based on the known motion for each of the 150 different lesions, the reconstructed volumes of respiratory bins were shifted so as to superimpose the locations of the SPN onto that in the first bin (Reconstruct and Shift). Five human observers performed localization receiver operating characteristics (LROC) studies of SPN detection. The observer results were analyzed for statistical significance differences in SPN detection accuracy among the three correction strategies, the standard acquisition, and the ideal case of the absence of respiratory motion. Our human-observer LROC determined that Quarter Binning and Half Binning strategies resulted in SPN detection accuracy statistically significantly below ( ) that of standard clinical acquisition, whereas the Reconstruct and Shift strategy resulted in a detection accuracy not statistically significantly different from that of the ideal case. This investigation demonstrates that tumor detection based on acquisitions associated with less than all the counts which could potentially be employed may result in poorer detection despite limiting the motion of the lesion. The Reconstruct and Shift method results in tumor detection that is equivalent to ideal motion correction.

  5. Pilot Study to Confirm that Fat and Liver can be Distinguished by Spectroscopic Tissue Response on a Medipix-All-Resolution System-CT (MARS-CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Kyra B.; Anderson, Nigel G.; Butler, Alexandra P.

    2009-07-23

    NAFLD, liver component of the 'metabolic' syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.

  6. Pilot Study to Confirm that Fat and Liver can be Distinguished by Spectroscopic Tissue Response on a Medipix-All-Resolution System-CT (MARS-CT)

    NASA Astrophysics Data System (ADS)

    Berg, Kyra B.; Carr, James M.; Clark, Michael J.; Cook, Nick J.; Anderson, Nigel G.; Scott, Nicola J.; Butler, Alexandra P.; Butler, Philip H.; Butler, Anthony P.

    2009-07-01

    NAFLD, liver component of the "metabolic" syndrome, has become the most common liver disease in western nations. Non-invasive imaging techniques exist, but have limitations, especially in detection and quantification of mild to moderate fatty liver. In this pilot study, we produced attenuation curves from biomedical-quality projection images of liver and fat using the MARS spectroscopic-CT scanner. Difficulties obtaining attenuation spectra after reconstruction demonstrated that standard reconstruction programs do not preserve spectral information.

  7. DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...

    EPA Pesticide Factsheets

    The demonstration of technologies for determining the presence of dioxin in soil and sediment is being conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in Saginaw, Michigan, at Green Point Environmental Learning Center from approximately April 26 to May 6, 2004. The primary purpose of the demonstration is to evaluate innovative monitoring technologies. The technologies listed below will be demonstrated. .AhRC PCRTM Kit, Hybrizyme Corporation .Ah-IMMUNOASSY@ Kit, Paralsian, Inc. .Coplanar PCB Immunoassay Kit, Abraxis LLC .DF-l Dioxin/Furan Immunoassay Kit, CAPE Technologies L.L.C. .CALUX@ by Xenobiotic Detection Systems, Inc- .Dioxin ELISA Kit, Wako Pure Chemical Industries LTD. This demonstration plan describes the procedures that will be used to verify the performance and cost of these technologies. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to document each technology's performance and cost. A separate innovative technology verification report (ITVR) will.be prepared for each technology. The ITVRs will present the demonstration findings associated with the demonstration objectives. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.

  8. Enhanced Control of Attention by Stimulating Mesolimbic-Corticopetal Cholinergic Circuitry

    PubMed Central

    St. Peters, Megan; Demeter, Elise; Lustig, Cindy; Bruno, John P.; Sarter, Martin

    2011-01-01

    Sustaining and recovering attentional performance requires interactions between the brain’s motivation and attention systems. The first experiment demonstrated that in rats performing a sustained attention task (SAT), presentation of a distractor (dSAT) augmented performance-associated increases in cholinergic neurotransmission in prefrontal cortex (PFC). Because stimulation of NMDA receptors in the shell of the nucleus accumbens (NAC) activates PFC cholinergic neurotransmission, a second experiment demonstrated that bilateral infusions of NMDA into the NAC shell, but not core, improved dSAT-performance to levels observed in the absence of a distractor. A third experiment demonstrated that removal of prefrontal or posterior parietal cholinergic inputs, by intra-cortical infusions of the cholinotoxin 192 IgG saporin, attenuated the beneficial effects of NMDA on dSAT perfomance. Mesolimbic activation of cholinergic projections to the cortex benefits the cognitive control of attentional performance by enhancing the detection of cues and the filtering of distractors. PMID:21715641

  9. DOTD support for UTC project : traffic counting using existing video detection cameras, [research project capsule].

    DOT National Transportation Integrated Search

    2013-10-01

    This study will evaluate the video detection technologies currently adopted by the city : of Baton Rouge, LA, and DOTD with the purpose of establishing design guidelines based : on the detection needs, functionality, and cost. The study will also dev...

  10. Detection of pneumothorax and pleural effusion with horizontal beam radiography.

    PubMed

    Lynch, Katherine C; Oliveira, Cintia R; Matheson, Jodi S; Mitchell, Mark A; O'Brien, Robert T

    2012-01-01

    Forty-seven patients with a known history of thoracic trauma or clinical suspicion of pneumothorax were selected for thoracic imaging. The patient population was composed of 42 dogs and five cats. Standard vertical beam (VB) left and right lateral and ventrodorsal/dorsoventral (VD/DV) projections were obtained for each patient, and at least one horizontal beam (HB) projection (VD projection made in lateral recumbency). A total of 240 images were reviewed. Subjective assessment for the presence and degree of pneumothorax and pleural effusion was made more confidently with HB projections. Pneumothorax was identified in at least one projection in 26 patients (26 dogs) and pleural effusion in 21 patients (19 dogs and two cats). Pneumothorax and pleural effusion were present concurrently in 17 dogs. Pneumothorax and pleural effusion were graded for each image as absent, mild, moderate, or severe. Right (P < 0.001) and left (P < 0.05) lateral HB VD projections and the standard VB left lateral projection (P < 0.05) were significantly more likely to detect and grade pneumothorax severely than the VB VD/DV views. The right lateral HB projection had the highest rate of detection and gradation of severity for pneumothorax compared with other views. VD/DV projections had the lowest sensitivity for detection of the pneumothorax and gradation of severity for pneumothorax and pleural effusion. No significant difference in diagnosis (P = 0.9149) and grade (P = 0.7757) of pleural effusion were seen between views, although the left lateral HB had both the highest rate of detection and grade of severity.

  11. Lane detection algorithm for an onboard camera

    NASA Astrophysics Data System (ADS)

    Bellino, Mario; Lopez de Meneses, Yuri; Ryser, Peter; Jacot, Jacques

    2005-02-01

    After analysing the major causes of injuries and death on roads, it is understandable that one of the main goals in the automotive industry is to increase vehicle safety. The European project SPARC (Secure Propulsion using Advanced Redundant Control) is developing the next generation of trucks that will fulfil these aims. The main technologies that will be used in the SPARC project to achieve the desiderated level of safety will be presented. In order to avoid accidents in critical situations, it is necessary to have a representation of the environment of the vehicle. Thus, several solutions using different sensors will be described and analysed. Particularly, a division of this project aims to integrate cameras in automotive vehicles to increase security and prevent driver's mistakes. Indeed, with this vision platform it would be possible to extract the position of the lane with respect to the vehicle, and thus, help the driver to follow the optimal trajectory. A definition of lane is proposed, and a lane detection algorithm is presented. In order to improve the detection, several criteria are explained and detailed. Regrettably, such an embedded camera is subject to the vibration of the truck, and the resulting sequence of images is difficult to analyse. Thus, we present different solutions to stabilize the images and particularly a new approach developed by the "Laboratoire de Production Microtechnique". Indeed, it was demonstrated in previous works that the presence of noise can be used, through a phenomenon called Stochastic Resonance. Thus, instead of decreasing the influence of noise in industrial applications, which has non negligible costs, it is perhaps interesting to use this phenomenon to reveal some useful information, such as for example the contour of the objects and lanes.

  12. FM and FSK response of tunable two-electrode DFB lasers and their performance with noncoherent detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, A.E.; Kuznetsov, M.; Kaminow, I.P.

    1989-12-01

    Two-electrode DFB lasers show promise for combining high speed and frequency tunability for FDM-FSK networks. The authors have measured the FM and FSK response of such lasers up to modulation frequencies of {approximately} GHz. Using these lasers in a noncoherent detection system in which a fiber Fabry-Perot tunable optical filter converts an FSK signal into ASK format, the authors demonstrate 10{sup {minus}9} BER up to 1 Gbit/s. Nonuniform FM response and consequent tone broadening of the optical-filtering FSK spectra can lead to system power penalties due to optical-filtering effects. Thus, for a given FM response, they can project the behaviormore » of these lasers in FSK optical systems.« less

  13. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  14. Expanded envelope concepts for aircraft control-element failure detection and identification

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1988-01-01

    The purpose of this effort was to develop and demonstrate concepts for expanding the envelope of failure detection and isolation (FDI) algorithms for aircraft-path failures. An algorithm which uses analytic-redundancy in the form of aerodynamic force and moment balance equations was used. Because aircraft-path FDI uses analytical models, there is a tradeoff between accuracy and the ability to detect and isolate failures. For single flight condition operation, design and analysis methods are developed to deal with this robustness problem. When the departure from the single flight condition is significant, algorithm adaptation is necessary. Adaptation requirements for the residual generation portion of the FDI algorithm are interpreted as the need for accurate, large-motion aero-models, over a broad range of velocity and altitude conditions. For the decision-making part of the algorithm, adaptation may require modifications to filtering operations, thresholds, and projection vectors that define the various hypothesis tests performed in the decision mechanism. Methods of obtaining and evaluating adequate residual generation and decision-making designs have been developed. The application of the residual generation ideas to a high-performance fighter is demonstrated by developing adaptive residuals for the AFTI-F-16 and simulating their behavior under a variety of maneuvers using the results of a NASA F-16 simulation.

  15. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradationmore » of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).« less

  16. 5 CFR 890.1303 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL... Demonstration Project § 890.1303 Eligibility. (a) To enroll in the demonstration project, an individual must... benefit plans offered through the FEHB Program under the demonstration project. (d) When determining...

  17. 5 CFR 470.309 - Public hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.309... present their written or oral views concerning the proposed demonstration project. The notice of public...

  18. Accelerated Innovation Deployment (AID) Demonstration Project : Intelligent Compaction and Infrared Scanning Projects

    DOT National Transportation Integrated Search

    2018-02-01

    This report documents the Missouri Department of Transportation (MoDOT) demonstration grant award for field demonstration projects using intelligent compaction (IC) and infrared scanning (IR) (also called paver-mounted thermal profiles PMTP in the AA...

  19. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  20. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  1. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  2. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  3. Model-based iterative reconstruction in low-dose CT colonography-feasibility study in 65 patients for symptomatic investigation.

    PubMed

    Vardhanabhuti, Varut; James, Julia; Nensey, Rehaan; Hyde, Christopher; Roobottom, Carl

    2015-05-01

    To compare image quality on computed tomographic colonography (CTC) acquired at standard dose (STD) and low dose (LD) using filtered-back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) techniques. A total of 65 symptomatic patients were prospectively enrolled for the study and underwent STD and LD CTC with filtered-back projection, adaptive statistical iterative reconstruction, and MBIR to allow direct per-patient comparison. Objective image noise, subjective image analyses, and polyp detection were assessed. Objective image noise analysis demonstrates significant noise reduction using MBIR technique (P < .05) despite being acquired at lower doses. Subjective image analyses were superior for LD MBIR in all parameters except visibility of extracolonic lesions (two-dimensional) and visibility of colonic wall (three-dimensional) where there were no significant differences. There was no significant difference in polyp detection rates (P > .05). Doses: LD (dose-length product, 257.7), STD (dose-length product, 483.6). LD MBIR CTC objectively shows improved image noise using parameters in our study. Subjectively, image quality is maintained. Polyp detection shows no significant difference but because of small numbers needs further validation. Average dose reduction of 47% can be achieved. This study confirms feasibility of using MBIR in this context of CTC in symptomatic population. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  4. Demonstration and Validation of a Portable Raman Sensor for In-Situ Detection and Monitoring of Perchlorate (ClO 4 -)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzinger, Paul B.; Eres, Gyula; Gu, Baohua

    Costs for environmental analysis and monitoring are increasing at a rapid rate and represent a significant percentage of the total and future remedial expenses at many U.S. Department of Defense (DoD) contaminated sites. It has been reported that about 30 to 40% of the remediation budget is usually spent on long-term monitoring (LTM), of which a large percentage represents laboratory analytical costs. Energetics such as perchlorate (ClO 4 -) are among the most frequently detected contaminants in groundwater and surface water at or near military installations due to their persistence and mobility. Currently, the standard protocol entails collecting samples inmore » the field, packaging them, and shipping them overnight to a designated laboratory for analysis. This process requires significant sample preparation and handling, and analytical results may not be available for several days to weeks. In this project, we developed and demonstrated a portable Raman sensor based on surface enhanced Raman scattering (SERS) technology to detect ClO 4 - in contaminated water. We summarize major accomplishments as follows: • A SERS sensor based on elevated gold (Au) nano-ellipse dimer architectures was designed and developed for ClO 4 - with a detection limit of ~10 -6 M (or 100 μg/L); The performance of these sensors was evaluated and optimized through variation of their geometric characteristics (i.e., dimer aspect ratio, dimer separation, etc.). • Large-scale commercial production of SERS substrate sensors via nanoimprinting by Nanova Inc. and Nanoimprint lithography (NIL) technology was successfully demonstrated. This is a substantial step forward toward the commercialization of the SERS sensors and may potentially lead to significantly reduced fabrication costs of SERS substrates. • Commercially produced SERS sensors were demonstrated to detect ClO 4 - at levels above 10 -6 M using a portable Raman analyzer. The performance of the commercial SERS sensors for ClO 4 - detection in the presence and absence of interferences was determined for a series of standard solutions. Sulfate (SO 4 2-) was found to exhibit the greatest interference for the anions tested, which included Cl-, NO 3 -, and SO 4 2-. • Field demonstration of the portable Raman sensor with commercially produced SERS substrates was completed at two Department of Defense (DoD) sites; twice at the Indian Head Naval Surface Warfare Center, Indian Head, MD, and once at Redstone Arsenal, Huntsville, AL. Multiple wells were sampled at both DoD sites, where a standard addition method was employed using the sensor to determine the ClO 4 -4 - and possibly other energetics that are both important for environmental monitoring and of interest for national security. However, we point out that SERS technology is also prone to interferences due to its sensitivity and responses to other ionic species, such as NO 3 -, SO 4 2-, and dissolved organics or co-contaminants present in the groundwater, which could potentially mask the SERS signal of the target analyte (i.e., ClO 4 -). As such, SERS analysis was subject to significant variations (e.g., ±20% or more), and its detection limit for ClO 4 --8 M) and was substantially higher than what we anticipated from laboratory studies. However, despite these complications, the portable Raman sensor developed in this project could be used as a rapid screening tool for ClO 4 - at concentrations above 10 -6 M. Future studies are warranted to further develop the technology and to optimize its performance, and eventually to bring the technology to the market. With additional development and demonstration, the sensor has the potential to reduce analytical costs by eliminating shipping and typical costs associated with laboratory analysis. A cost savings of 30–45% may be realized during a typical sampling event and, more importantly, the technology could allow rapid turn-around of information to decision makers for site characterization and remediation.« less

  5. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    USGS Publications Warehouse

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June 2009. Baseline data from EC monitoring is being used to characterize pre-injection conditions, and may then be used to detect changes in net exchange CO2 fluxes (Fc) that could be the result of CO2 leakage into the near-surface environment during or following injection. When injection at IBDP begins, soil and net CO2 monitoring efforts will have established a baseline of near-surface conditions that will be important to help demonstrate the effectiveness of storage activities. ?? 2011 Published by Elsevier Ltd.

  6. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  7. Performance of an RPM based on Gd-lined plastic scintillator for neutron and gamma detection [ANIMMA--2015-IO-372

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanchini, Erica

    A Radiation Portal Monitor (RPM) was developed by the Istituto Nazionale di Fisica Nucleare (INFN) and Ansaldo Nucleare (ANN) within the FP7 SCINTILLA European project. The system was designed to detect both gamma and neutron radiation with a single technology. It is conceived to monitor vehicle and cargo containers in transits across borders or ports, to find radioactive elements and to avoid illegal trafficking of strategic nuclear materials. The system is based on a {sup 3}He-free neutron detection technology using plastic scintillators coupled to Gadolinium to detect and discriminate gamma from neutron signals. During the 3 years of the SCINTILLAmore » project the construction and test of the first two prototypes drove the definition of the final layout of a full RPM system consisting of two twin pillars as a portal for vehicle and cargo container scan. A custom System Control Software (SCS) manages the electronics of the RPM, the ancillary devices and the data analysis. The combination of the detector layout and of the software functionalities enables both to distinguish neutrons and gammas and to identify the energy range of a detected gamma source. The system was initially characterized via static tests with gamma and neutron sources in the INFN laboratory. These measurements were used to calibrate the detector, evaluate the response of the single pillars as well as of the full system, and optimize the RPM configuration and discrimination algorithm. During this phase, specific tests were performed to study the stability over time of the system, monitoring the measured the neutron and gamma count rates over periods of several weeks. The results allow us to demonstrate the reliability and robustness of the RPM. In a second time the RPM performance was studied via dynamic tests performed during the SCINTILLA test and benchmark campaigns. These measurements took place in the JRC ITRAP+10 facility at Ispra (Varese-Italy). The laboratory is equipped with an experimental set-up for dynamic tests of multiple systems according to international standards. The performed measurements utilized radioactive sources with activities selected according to ANSI and IEC standards to test the detector alarm performances in terms of gamma and neutron response, sensitivity to high gamma fields, sensitivity to moderated neutron sources as well as false alarm rates (FAR). In addition, the RPM was tested in challenging configurations exceeding the requirements set by international standards to determine the real limits of the system. The results obtained during these campaigns demonstrated that the system detection efficiency is not only compliant to international standards for its category, but often exceeds them, demonstrating the validity of the chosen technology and of the implemented layout. The positive performance also showed the effectiveness of the SCS and of its functionalities. To further demonstrate the system capabilities, a test in a real-life environment of the RPM is planned to happen in a near future by installing the detectors in a seaport. In this presentation I will give an overview of the RPM characteristics, of its performances as determined in the test campaign mentioned above and of future plans, to demonstrate how this technology can be an effective choice for the realization of {sup 3}He-free RPM detectors. (authors)« less

  8. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    PubMed

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  9. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    NASA Astrophysics Data System (ADS)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  10. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Project evaluation. 470.317 Section 470... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.317 Project evaluation. (a) Compliance evaluation. OPM will review the operation of the...

  11. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Project evaluation. 470.317 Section 470... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.317 Project evaluation. (a) Compliance evaluation. OPM will review the operation of the...

  12. Use of electrical resistivity to detect underground mine voids in Ohio : research implementation plan.

    DOT National Transportation Integrated Search

    2005-09-01

    This project was a natural extension of the 1996-1997 void detection work completed by the USGS for : ODOT. This earlier project was entitled Detection of Underground Mine Voids in Ohio by Use of : Geophysical Methods and was published as U. S....

  13. 5 CFR 470.311 - Final project approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.311 Final project approval. (a) The Office of Personnel Management will consider all timely...) The Office of Personnel Management shall provide a copy of the final version of the project plan to...

  14. Formal methods demonstration project for space applications

    NASA Technical Reports Server (NTRS)

    Divito, Ben L.

    1995-01-01

    The Space Shuttle program is cooperating in a pilot project to apply formal methods to live requirements analysis activities. As one of the larger ongoing shuttle Change Requests (CR's), the Global Positioning System (GPS) CR involves a significant upgrade to the Shuttle's navigation capability. Shuttles are to be outfitted with GPS receivers and the primary avionics software will be enhanced to accept GPS-provided positions and integrate them into navigation calculations. Prior to implementing the CR, requirements analysts at Loral Space Information Systems, the Shuttle software contractor, must scrutinize the CR to identify and resolve any requirements issues. We describe an ongoing task of the Formal Methods Demonstration Project for Space Applications whose goal is to find an effective way to use formal methods in the GPS CR requirements analysis phase. This phase is currently under way and a small team from NASA Langley, ViGYAN Inc. and Loral is now engaged in this task. Background on the GPS CR is provided and an overview of the hardware/software architecture is presented. We outline the approach being taken to formalize the requirements, only a subset of which is being attempted. The approach features the use of the PVS specification language to model 'principal functions', which are major units of Shuttle software. Conventional state machine techniques form the basis of our approach. Given this background, we present interim results based on a snapshot of work in progress. Samples of requirements specifications rendered in PVS are offered to illustration. We walk through a specification sketch for the principal function known as GPS Receiver State processing. Results to date are summarized and feedback from Loral requirements analysts is highlighted. Preliminary data is shown comparing issues detected by the formal methods team versus those detected using existing requirements analysis methods. We conclude by discussing our plan to complete the remaining activities of this task.

  15. TPS In-Flight Health Monitoring Project Progress Report

    NASA Technical Reports Server (NTRS)

    Kostyk, Chris; Richards, Lance; Hudston, Larry; Prosser, William

    2007-01-01

    Progress in the development of new thermal protection systems (TPS) is reported. New approaches use embedded lightweight, sensitive, fiber optic strain and temperature sensors within the TPS. Goals of the program are to develop and demonstrate a prototype TPS health monitoring system, develop a thermal-based damage detection algorithm, characterize limits of sensor/system performance, and develop ea methodology transferable to new designs of TPS health monitoring systems. Tasks completed during the project helped establish confidence in understanding of both test setup and the model and validated system/sensor performance in a simple TPS structure. Other progress included complete initial system testing, commencement of the algorithm development effort, generation of a damaged thermal response characteristics database, initial development of a test plan for integration testing of proven FBG sensors in simple TPS structure, and development of partnerships to apply the technology.

  16. Detection of abandoned mines/caves using airborne LWIR hyperspectral data

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Roettiger, Kurt A.

    2012-09-01

    The detection of underground structures, both natural and man-made, continues to be an important requirement in both the military/intelligence and civil communities. There are estimates that as many as 70,000 abandoned mines/caves exist across the nation. These mines represent significant hazards to public health and safety, and they are of concern to Government agencies at the local, state, and federal levels. NASA is interested in the detection of caves on Mars and the Moon in anticipation of future manned space missions. And, the military/ intelligence community is interested in detecting caves, mines, and other underground structures that may be used to conceal the production of weapons of mass destruction or to harbor insurgents or other persons of interest by the terrorists. Locating these mines/caves scattered over millions of square miles is an enormous task, and limited resources necessitate the development of an efficient and effective broad area search strategy using remote sensing technologies. This paper describes an internally-funded research project of The Aerospace Corporation (Aerospace) to assess the feasibility of using airborne hyperspectral data to detect abandoned cave/mine entrances in a broad-area search application. In this research, we have demonstrated the potential utility of using thermal contrast between the cave/mine entrance and the ambient environment as a discriminatory signature. We have also demonstrated the use of a water vapor absorption line at12.55 μm and a quartz absorption feature at 9.25 μm as discriminatory signatures. Further work is required to assess the broader applicability of these signatures.

  17. Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning

    NASA Astrophysics Data System (ADS)

    Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.

    2017-05-01

    We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.

  18. Anomaly Detection for Next-Generation Space Launch Ground Operations

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Iverson, David L.; Hall, David R.; Taylor, William M.; Patterson-Hine, Ann; Brown, Barbara; Ferrell, Bob A.; Waterman, Robert D.

    2010-01-01

    NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly.

  19. 5 CFR 470.305 - Submission of proposals for demonstration projects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Submission of proposals for demonstration projects. 470.305 Section 470.305 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements...

  20. Scalable Static and Dynamic Community Detection Using Grappolo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman

    Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detectionmore » are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.« less

  1. In vivo retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope.

    PubMed

    Vienola, Kari V; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F

    2018-02-01

    Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts.

  2. In vivo retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope

    PubMed Central

    Vienola, Kari V.; Damodaran, Mathi; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.

    2018-01-01

    Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts. PMID:29552396

  3. Neutron Tomography of a Fuel Cell: Statistical Learning Implementation of a Penalized Likelihood Method

    NASA Astrophysics Data System (ADS)

    Coakley, Kevin J.; Vecchia, Dominic F.; Hussey, Daniel S.; Jacobson, David L.

    2013-10-01

    At the NIST Neutron Imaging Facility, we collect neutron projection data for both the dry and wet states of a Proton-Exchange-Membrane (PEM) fuel cell. Transmitted thermal neutrons captured in a scintillator doped with lithium-6 produce scintillation light that is detected by an amorphous silicon detector. Based on joint analysis of the dry and wet state projection data, we reconstruct a residual neutron attenuation image with a Penalized Likelihood method with an edge-preserving Huber penalty function that has two parameters that control how well jumps in the reconstruction are preserved and how well noisy fluctuations are smoothed out. The choice of these parameters greatly influences the resulting reconstruction. We present a data-driven method that objectively selects these parameters, and study its performance for both simulated and experimental data. Before reconstruction, we transform the projection data so that the variance-to-mean ratio is approximately one. For both simulated and measured projection data, the Penalized Likelihood method reconstruction is visually sharper than a reconstruction yielded by a standard Filtered Back Projection method. In an idealized simulation experiment, we demonstrate that the cross validation procedure selects regularization parameters that yield a reconstruction that is nearly optimal according to a root-mean-square prediction error criterion.

  4. Central Atlantic Regional Ecological Test Site (CARETS): A prototype regional environmental information system

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Accomplishments have included: (1) completion of the research design for the USGS/CARETS demonstration project; (2) preparation of photomossics and land use maps at a scale of 1:100,000 for entire area; (3) demonstration of the feasibility of extracting several categories of land use information from ERTS-1 MSS data for a portion of the CARETS region; (4) demonstration of the feasibility of detecting some significant land use changes on ERTS-1 imagery; (5) demonstration of the feasibility of attaching environmental impact significance to the remote sensor-derived land use data; (6) delivery of land use information derived from high altitude aircraft data to the Maryland state planning agency for use in its statewide land use inventory; (7) demonstration of high interest by other use groups in the test region in products and services provided by investigation; and (8) determination of the viability of setting up a computerized geographic information system as part of the CARETS investigation, to facilitate handling of sensor-derived land use data in a variety of formats to suit user requirements.

  5. Pre-exposure prophylaxis for HIV-negative persons with partners living with HIV: uptake, use, and effectiveness in an open-label demonstration project in East Africa

    PubMed Central

    Heffron, Renee; Ngure, Kenneth; Odoyo, Josephine; Bulya, Nulu; Tindimwebwa, Edna; Hong, Ting; Kidoguchi, Lara; Donnell, Deborah; Mugo, Nelly R.; Bukusi, Elizabeth A.; Katabira, Elly; Asiimwe, Stephen; Morton, Jennifer; Morrison, Susan; Haugen, Harald; Mujugira, Andrew; Haberer, Jessica E.; Ware, Norma C.; Wyatt, Monique A.; Marzinke, Mark A.; Frenkel, Lisa M.; Celum, Connie; Baeten, Jared M.

    2017-01-01

    Introduction: Pre-exposure prophylaxis (PrEP) can provide high protection against HIV infection and is a recommended intervention for HIV-negative persons with substantial HIV risk, such as individuals with a partner living with HIV.  Demonstration projects of PrEP have been conducted in diverse settings worldwide to illustrate practical examples of how PrEP can be delivered.  Methods: We evaluated delivery of PrEP for HIV-negative partners within heterosexual HIV serodiscordant couples in an open-label demonstration project in East Africa.  The delivery model integrated PrEP into HIV treatment services, prioritizing PrEP for HIV-negative partners within serodiscordant couples prior to and during the first 6 months after the partner living with HIV initiated antiretroviral therapy (ART).  We measured adherence to PrEP through medication event monitoring system (MEMS) bottle caps and quantification of tenofovir in plasma among a random sample of participants. We estimated HIV infections prevented using a counterfactual cohort simulated from the placebo arm of a previous PrEP clinical trial. Results: We enrolled 1,010 HIV serodiscordant couples that were naïve to ART and PrEP.  Ninety-seven percent (97%) of HIV-negative partners initiated PrEP, and when PrEP was dispensed, objective measures suggest high adherence: 71% of HIV-negative participants took ≥80% of expected doses, as recorded via MEMS, and 81% of plasma samples had tenofovir detected.  A total of 4 incident HIV infections were observed (incidence rate=0.24 per 100 person-years), a 95% reduction (95% CI 86-98%, p<0.0001) in HIV incidence, relative to estimated HIV incidence for the population in the absence of PrEP integrated into HIV treatment services.   Conclusions: PrEP uptake and adherence were high and incident HIV was rare in this PrEP demonstration project for African HIV-negative individuals whose partners were known to be living with HIV.  Delivery of PrEP to HIV-negative partners within HIV serodiscordant couples was feasible and should be prioritized for wide-scale implementation. PMID:29355231

  6. Pre-exposure prophylaxis for HIV-negative persons with partners living with HIV: uptake, use, and effectiveness in an open-label demonstration project in East Africa.

    PubMed

    Heffron, Renee; Ngure, Kenneth; Odoyo, Josephine; Bulya, Nulu; Tindimwebwa, Edna; Hong, Ting; Kidoguchi, Lara; Donnell, Deborah; Mugo, Nelly R; Bukusi, Elizabeth A; Katabira, Elly; Asiimwe, Stephen; Morton, Jennifer; Morrison, Susan; Haugen, Harald; Mujugira, Andrew; Haberer, Jessica E; Ware, Norma C; Wyatt, Monique A; Marzinke, Mark A; Frenkel, Lisa M; Celum, Connie; Baeten, Jared M

    2017-11-06

    Introduction : Pre-exposure prophylaxis (PrEP) can provide high protection against HIV infection and is a recommended intervention for HIV-negative persons with substantial HIV risk, such as individuals with a partner living with HIV.  Demonstration projects of PrEP have been conducted in diverse settings worldwide to illustrate practical examples of how PrEP can be delivered.  Methods : We evaluated delivery of PrEP for HIV-negative partners within heterosexual HIV serodiscordant couples in an open-label demonstration project in East Africa.  The delivery model integrated PrEP into HIV treatment services, prioritizing PrEP for HIV-negative partners within serodiscordant couples prior to and during the first 6 months after the partner living with HIV initiated antiretroviral therapy (ART).  We measured adherence to PrEP through medication event monitoring system (MEMS) bottle caps and quantification of tenofovir in plasma among a random sample of participants. We estimated HIV infections prevented using a counterfactual cohort simulated from the placebo arm of a previous PrEP clinical trial. Results : We enrolled 1,010 HIV serodiscordant couples that were naïve to ART and PrEP.  Ninety-seven percent (97%) of HIV-negative partners initiated PrEP, and when PrEP was dispensed, objective measures suggest high adherence: 71% of HIV-negative participants took ≥80% of expected doses, as recorded via MEMS, and 81% of plasma samples had tenofovir detected.  A total of 4 incident HIV infections were observed (incidence rate=0.24 per 100 person-years), a 95% reduction (95% CI 86-98%, p<0.0001) in HIV incidence, relative to estimated HIV incidence for the population in the absence of PrEP integrated into HIV treatment services.   Conclusions : PrEP uptake and adherence were high and incident HIV was rare in this PrEP demonstration project for African HIV-negative individuals whose partners were known to be living with HIV.  Delivery of PrEP to HIV-negative partners within HIV serodiscordant couples was feasible and should be prioritized for wide-scale implementation.

  7. Evaluating Fluorscence-Based Metrics for Early Detection of ...

    EPA Pesticide Factsheets

    Summary: This paper discusses the results of an ongoing Water Research Foundation project on developing a fluorescence sensor system for early detection of distribution system nitrification Summary: This paper discusses the results of an ongoing Water Research Foundation project on developing a fluorescence sensor system for early detection of distribution system nitrification

  8. The value of demonstration projects for new interventions: The case of human papillomavirus vaccine introduction in low- and middle-income countries.

    PubMed

    Howard, N; Mounier-Jack, S; Gallagher, K E; Kabakama, S; Griffiths, U K; Feletto, M; LaMontagne, D S; Burchett, H E D; Watson-Jones, D

    2016-09-01

    Demonstration projects or pilots of new public health interventions aim to build learning and capacity to inform country-wide implementation. Authors examined the value of HPV vaccination demonstration projects and initial national programmes in low-income and lower-middle-income countries, including potential drawbacks and how value for national scale-up might be increased. Data from a systematic review and key informant interviews, analyzed thematically, included 55 demonstration projects and 8 national programmes implemented between 2007-2015 (89 years' experience). Initial demonstration projects quickly provided consistent lessons. Value would increase if projects were designed to inform sustainable national scale-up. Well-designed projects can test multiple delivery strategies, implementation for challenging areas and populations, and integration with national systems. Introduction of vaccines or other health interventions, particularly those involving new target groups or delivery strategies, needs flexible funding approaches to address specific questions of scalability and sustainability, including learning lessons through phased national expansion.

  9. Nigrothalamic projections in the monkey demonstrated by autoradiographic technics.

    PubMed

    Carpenter, M B; Nakano, K; Kim, R

    1976-02-15

    In spite of repeated demonstrations by degeneration technics, nigrothalamic fibers have been regarded with some skepticism. Attempts were made to trace nigral efferent projections in the monkey by autoradiographic technics. Tritiated amino acids (L-leucine, L-lysine and L-proline), injected into portions of the substantia nigra (SN), labeled cells in four regions, designated as, (1) rostrolateral, (2) caudolateral, (3) rostromedial and (4) central. Rostrolateral nigral neurons transported radioactive label preferentially and abundantly to thalamic nuclei; localized isotope was found in parts of three thalamic nuclei, the medial part of the ventral lateral nucleus (VLm), the magnocellular part of the ventral anterior nucleus (VAmc), and the paralaminar part of the dorsomedial nucleus (DMpl)9 Lateral neurons in the caudal half of the SN transmitted radioactive label to the same thalamic nuclei as rostrolateral nigral neuron. Isotope transported to portions of the striatum was modest and localized. Radioactive label taken up by large cells in the caudal third of the SN was transported to portions of the striatum, but not to thalamic nuclei. Labeled nigral neurons in the medial two-thirds of the rostral half of the SN, and in the middle third of the central part of the SN, transported the label mainly to parts of the caudate nucleus and putamen. In these animals modest radioactive label was seen in VLm and VAmc, but not in other thalamic nuclei. There was no evidence that nigral neurons project to the subthalamic nucleus. No radioactive transport from nigral neurons was detected in the superior colliculus, the midbrain tegmentum, or the red nucleus, and none was transported to more caudal brain stem nuclei. Nigrothalamic fibers arise particularly from cells in rostral and lateral parts of the substantia nigra. While some cells in other parts of the nigra project to thalamic nuclei, these appear scattered and less numerous. Large cells in caudal parts of the SN do not project to thalamic nuclei. These observations confirm nigrothalamic projections to VLm and VAmc, and identify a new nigral projection to part of the dorsomedial nucleus of the thalamus (DMpl). No nigral efferent fibers project to any of the intralaminar thalamic nuclei.

  10. Application for 3d Scene Understanding in Detecting Discharge of Domesticwaste Along Complex Urban Rivers

    NASA Astrophysics Data System (ADS)

    Ninsalam, Y.; Qin, R.; Rekittke, J.

    2016-06-01

    In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1) a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2) depth for each image is generated through a backward projection of the point clouds; 3) a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D) data; 4) point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5) then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  11. A Water Mass Tracer Detected in Aerosols Demonstrates Ocean-Atmosphere Mass Transfer and Links Sea Spray Aerosol to Source Waters

    NASA Astrophysics Data System (ADS)

    Pendergraft, M.; Grimes, D. J.; Giddings, S. N.; Feddersen, F.; Prather, K. A.; Santander, M.; Lee, C.; Beall, C.

    2016-12-01

    During September and October of 2015 the Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) project released rhodamine WT dye to study nearshore water movement and exchange offshore along a Southern California sandy beach. We utilized this opportunity to investigate ocean-atmosphere mass transfer via sea spray aerosol and linkage to source waters. Aerosol-concentrating sampling equipment was deployed at beachside and inland locations during three dye releases. Concentrated aerosol samples were analyzed for dye content using fluorescence spectroscopy. Here we present the ocean and atmosphere conditions associated with the presence and absence of dye in aerosol samples. Dye was identified in aerosol samples collected 0.1-0.3 km from the shoreline for 6 hs during the first and third dye releases of the CSIDE project. During these releases the dye persisted in the waters upwind of the sampling equipment. Dye was not detected in aerosol samples collected during the second release during which dye was moved away from waters upwind of the sampling equipment. Recovery of a chemical tracer in sea spray aerosol allows direct linkage to a known source area in the ocean that is independent of, but supported by, wind data. Our observations demonstrate: a tight ocean-atmosphere spatial coupling; a short residence time of coastal marine constituents before transfer to the atmosphere; that the ocean is both a sink for and a source of atmospheric and terrestrial material; and that human inputs to the ocean can return to us in sea spray aerosol.

  12. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array

    PubMed Central

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-01-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045

  13. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    PubMed

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  14. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection

    NASA Astrophysics Data System (ADS)

    Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu

    2018-01-01

    The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.

  15. System for rapid detection of antibiotic resistance of airborne pathogens

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Noiseux, I.; Mouslinkina, L.; Vernon, M. L.; Laflamme, C.; Filion, G.; Duchaine, C.; Ho, J.

    2009-05-01

    This project uses function-based detection via a fundamental understanding of the genetic markers of AR to distinguish harmful organisms from innocuous ones. This approach circumvents complex analyses to unravel the taxonomic details of 1399 pathogen species, enormously simplifying detection requirements. Laval Hospital's fast permeabilization strategy enables AR revelation in <1hr. Packaging the AR protocols in liquid-processing cartridges and coupling these to our in-house miniature fiber optic flow cell (FOFC) provides first responders with timely information on-site. INO's FOFC platform consists of a specialty optical fiber through which a hole is transversally bored by laser micromachining. The analyte solution is injected into the hole of the fiber and the particles are detected and counted. The advantage with respect to classic free space FC is that alignment occurs in the fabrication process only and complex excitation and collection optics are replaced by optical fibers. Moreover, we use a sheathless configuration which has the advantage of increase the portability of the system, to reduce excess biohazard material and the need for weekly maintenance. In this paper we present the principle of our FOFC along with a, demonstration of the basic capability of the platform for detection of bacillus cereus spores using permeabilized staining.

  16. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor

    NASA Technical Reports Server (NTRS)

    Liou, J. -C.; Corsaro, R.; Giovane, F.; Anderson, C.; Sadilek, A.; Burchell, M.; Hamilton, J.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the millimeter or smaller size regime. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but are still large enough to be a serious safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of a DRAGONS unit is 1 m2, consisting of several independently operated panels. The approach of the DRAGONS design is to combine different particle impact detection principles to maximize information that can be extracted from detected events. After more than 10 years of concept and technology development, a 1 m2 DRAGONS system has been selected for deployment on the International Space Station (ISS) in August 2016. The project team achieved a major milestone when the Preliminary Design Review (PDR) was completed in May 2015. Once deployed on the ISS, this multi-year mission will provide a unique opportunity to demonstrate the MMOD detection capability of the DRAGONS technologies and to collect data to better define the small MMOD environment at the ISS altitude.

  17. Less-simplified models of dark matter for direct detection and the LHC

    NASA Astrophysics Data System (ADS)

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-04-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  18. Development of an Intelligent Monitoring System for Geological Carbon Sequestration (GCS) Systems

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Jeong, H.; Xu, W.; Hovorka, S. D.; Zhu, T.; Templeton, T.; Arctur, D. K.

    2016-12-01

    To provide stakeholders timely evidence that GCS repositories are operating safely and efficiently requires integrated monitoring to assess the performance of the storage reservoir as the CO2 plume moves within it. As a result, GCS projects can be data intensive, as a result of proliferation of digital instrumentation and smart-sensing technologies. GCS projects are also resource intensive, often requiring multidisciplinary teams performing different monitoring, verification, and accounting (MVA) tasks throughout the lifecycle of a project to ensure secure containment of injected CO2. How to correlate anomaly detected by a certain sensor to events observed by other devices to verify leakage incidents? How to optimally allocate resources for task-oriented monitoring if reservoir integrity is in question? These are issues that warrant further investigation before real integration can take place. In this work, we are building a web-based, data integration, assimilation, and learning framework for geologic carbon sequestration projects (DIAL-GCS). DIAL-GCS will be an intelligent monitoring system (IMS) for automating GCS closed-loop management by leveraging recent developments in high-throughput database, complex event processing, data assimilation, and machine learning technologies. Results will be demonstrated using realistic data and model derived from a GCS site.

  19. An assessment of adherence to basic ecological principles by payments for ecosystem service projects.

    PubMed

    Prager, C M; Varga, A; Olmsted, P; Ingram, J C; Cattau, M; Freund, C; Wynn-Grant, R; Naeem, S

    2016-08-01

    Programs and projects employing payments for ecosystem service (PES) interventions achieve their objectives by linking buyers and sellers of ecosystem services. Although PES projects are popular conservation and development interventions, little is known about their adherence to basic ecological principles. We conducted a quantitative assessment of the degree to which a global set of PES projects adhered to four ecological principles that are basic scientific considerations for any project focused on ecosystem management: collection of baseline data, identification of threats to an ecosystem service, monitoring, and attention to ecosystem dynamics or the formation of an adaptive management plan. We evaluated 118 PES projects in three markets-biodiversity, carbon, and water-compiled using websites of major conservation organizations; ecology, economic, and climate-change databases; and three scholarly databases (ISI Web of Knowledge, Web of Science, and Google Scholar). To assess adherence to ecological principles, we constructed two scientific indices (one additive [ASI] and one multiplicative [MSI]) based on our four ecological criteria and analyzed index scores by relevant project characteristics (e.g., sector, buyer, seller). Carbon-sector projects had higher ASI values (P < 0.05) than water-sector projects and marginally higher ASI scores (P < 0.1) than biodiversity-sector projects, demonstrating their greater adherence to ecological principles. Projects financed by public-private partnerships had significantly higher ASI values than projects financed by governments (P < 0.05) and marginally higher ASI values than those funded by private entities (P < 0.1). We did not detect differences in adherence to ecological principles based on the inclusion of cobenefits, the spatial extent of a project, or the size of a project's budget. These findings suggest, at this critical phase in the rapid growth of PES projects, that fundamental ecological principles should be considered more carefully in PES project design and implementation in an effort to ensure PES project viability and sustainability. © 2015 Society for Conservation Biology.

  20. A Waveform Detector that Targets Template-Decorrelated Signals and Achieves its Predicted Performance: Demonstration with IMS Data

    NASA Astrophysics Data System (ADS)

    Carmichael, J.

    2016-12-01

    Waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and target signals that are only partially correlated with the waveform template. We reform the waveform correlation detector hypothesis test to accommodate deterministic uncertainty in template/target waveform similarity and thereby derive a new detector from convex set projections (the "cone detector") for use in explosion monitoring. Our analyses give probability density functions that quantify the detectors' degraded performance with decreasing waveform similarity. We then apply our results to three announced North Korean nuclear tests and use International Monitoring System (IMS) arrays to determine the probability that low magnitude, off-site explosions can be reliably detected with a given waveform template. We demonstrate that cone detectors provide (1) an improved predictive capability over correlation detectors to identify such spatially separated explosive sources, (2) competitive detection rates, and (3) reduced false alarms on background seismicity. Figure Caption: Observed and predicted receiver operating characteristic curves for correlation statistic r(x) (left) and cone statistic s(x) (right) versus semi-empirical explosion magnitude. a: Shaded region shows range of ROC curves for r(x) that give the predicted detection performance in noise conditions recorded over 24 hrs on 8 October 2006. Superimposed stair plot shows the empirical detection performance (recorded detections/total events) averaged over 24 hr of data. Error bars indicate the demeaned range in observed detection probability over the day; means are removed to avoid risk of misinterpreting range to indicate probabilities can exceed one. b: Shaded region shows range of ROC curves for s(x) that give the predicted detection performance for the cone detector. Superimposed stair plot show observed detection performance averaged over 24 hr of data analogous to that shown in a.

  1. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  2. Real-time imaging and detection of intracranial haemorrhage by electrical impedance tomography in a piglet model.

    PubMed

    Xu, C H; Wang, L; Shi, X T; You, F S; Fu, F; Liu, R G; Dai, M; Zhao, Z W; Gao, G D; Dong, X Z

    2010-01-01

    The aim of this study was to use electrical impedance tomography (EIT) to detect and image acute intracranial haemorrhage (ICH) in an animal model. Blood was infused into the frontal lobe of the brains of anaesthetized piglets and impedance was measured using 16 electrodes placed in a circle on the scalp. The EIT images were constructed using a filtered back-projection algorithm. The mean of all the pixel intensities within a region of interest--the mean resistivity value (MRV)--was used to evaluate the relative impedance changes in the target region. A symmetrical index (SI), reflecting the relative impedance on both sides of the brain, was also calculated. Changes in MRV and SI were associated with the injection of blood, demonstrating that EIT can successfully detect ICH in this animal model. The unique features of EIT may be beneficial for diagnosing ICH early in patients after cranial surgery, thereby reducing the risk of complications and mortality.

  3. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.

  4. ADVANTG An Automated Variance Reduction Parameter Generator, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, Scott W.; Johnson, Seth R.; Bevill, Aaron M.

    2015-08-01

    The primary objective of ADVANTG is to reduce both the user effort and the computational time required to obtain accurate and precise tally estimates across a broad range of challenging transport applications. ADVANTG has been applied to simulations of real-world radiation shielding, detection, and neutron activation problems. Examples of shielding applications include material damage and dose rate analyses of the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source and High Flux Isotope Reactor (Risner and Blakeman 2013) and the ITER Tokamak (Ibrahim et al. 2011). ADVANTG has been applied to a suite of radiation detection, safeguards, and special nuclear materialmore » movement detection test problems (Shaver et al. 2011). ADVANTG has also been used in the prediction of activation rates within light water reactor facilities (Pantelias and Mosher 2013). In these projects, ADVANTG was demonstrated to significantly increase the tally figure of merit (FOM) relative to an analog MCNP simulation. The ADVANTG-generated parameters were also shown to be more effective than manually generated geometry splitting parameters.« less

  5. Clean Coal Technology Demonstration Program: Program Update 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  6. 78 FR 64204 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Personnel Management Demonstration Project, Department of Navy, Office of Naval Research (ONR); Amendment... ONR Personnel Management Demonstration Project (75 FR 77380-77447, December 10, 2010). SUMMARY: On December 10, 2010 (75 FR 77380-77447), DoD published a notice of approval of a personnel management...

  7. DEMONSTRATION PROJECT FOR THE ABATEMENT OF NITROGEN OXIDES EMISSIONS USING REBURN TECHNOLOGY FOR COGENERATION PLANTS IN TAIWAN

    EPA Science Inventory

    The report summarizes the key technical results of a joint demonstration project between the U.S. Environmental Protection Agency and the Taiwan Environmental Protection Administration. The project demonstrated that coal reburning can be used to reduce nitrogen oxides (NOX) emiss...

  8. 77 FR 19682 - Proposed Information Collection; Wolf Livestock Demonstration Project Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-FF09E30000] Proposed Information Collection; Wolf Livestock Demonstration Project Grant Program AGENCY: Fish... Interior and the Secretary of Agriculture to develop a Wolf Livestock Demonstration Project Grant Program... of livestock loss due to predation by wolves; and Compensate livestock producers for livestock losses...

  9. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  10. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  11. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  12. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  13. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  14. Hawaii Demonstration Project to Avert Unintended Teenage Pregnancy: 1978-1982. Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Levitt-Merin, Marta; Sutter, Sharon Kingdon

    This final report provides a descriptive overview of three approaches which the Hawaii Demonstration Project initiated to reduce unintended teenage pregnancies. Project evaluation findings are summarized; both qualitative and quantitative data are presented for a comprehensive picture of the project and its input. Project limitations and successes…

  15. OPERATIONAL RETRIEVAL, THE BASIC EDUCATION COMPONENT OF EXPERIMENTAL AND DEMONSTRATION PROJECTS (E/D) FOR DISADVANTAGED YOUTHS.

    ERIC Educational Resources Information Center

    SEXTON, PATRICIA CAYO

    IN THIS STUDY OF EXPERIMENTAL AND DEMONSTRATION BASIS EDUCATION PROJECTS FOR DISADVANTAGED YOUTHS, VISITS WERE MADE TO THE JOB UPGRADING PROJECT (NORTH RICHMOND, CALIFORNIA), THE MAYOR'S YOUTH EMPLOYMENT PROJECT (DETROIT), THE LANE COUNTY YOUTH PROJECT (EUGENE, OREGON), JOB OPPORTUNITIES, THROUGH BETTER SKILLS (CHICAGO), THE YMCA…

  16. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  17. Experimental demonstration of multiple monoenergetic gamma radiography for effective atomic number identification in cargo inspection

    NASA Astrophysics Data System (ADS)

    Henderson, Brian S.; Lee, Hin Y.; MacDonald, Thomas D.; Nelson, Roberts G.; Danagoulian, Areg

    2018-04-01

    The smuggling of special nuclear materials (SNMs) through international borders could enable nuclear terrorism and constitutes a significant threat to global security. This paper presents the experimental demonstration of a novel radiographic technique for quantitatively reconstructing the density and type of material present in commercial cargo containers, as a means of detecting such threats. Unlike traditional techniques which use sources of bremsstrahlung photons with a continuous distribution of energies, multiple monoenergetic gamma radiography utilizes monoenergetic photons from nuclear reactions, specifically the 4.4 and 15.1 MeV photons from the 11B(d,nγ)12C reaction. By exploiting the Z-dependence of the photon interaction cross sections at these two specific energies, it is possible to simultaneously determine the areal density and the effective atomic number as a function of location for a 2D projection of a scanned object. The additional information gleaned from using and detecting photons of specific energies for radiography substantially increases the resolving power between different materials. This paper presents results from the imaging of mock cargo materials ranging from Z ≈5 -92 , demonstrating accurate reconstruction of the effective atomic number and areal density of the materials over the full range. In particular, the system is capable of distinguishing pure materials with Z ≳ 70 , such as lead and uranium—a critical requirement of a system designed to detect SNM. This methodology could be used to screen commercial cargoes with high material specificity, to distinguish most benign materials from SNM, such as uranium and plutonium.

  18. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon

    NASA Astrophysics Data System (ADS)

    Anderson, Mitchell D.; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe

    2018-06-01

    We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n =1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n ≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.

  19. Detection of degenerative change in lateral projection cervical spine x-ray images

    NASA Astrophysics Data System (ADS)

    Jebri, Beyrem; Phillips, Michael; Knapp, Karen; Appelboam, Andy; Reuben, Adam; Slabaugh, Greg

    2015-03-01

    Degenerative changes to the cervical spine can be accompanied by neck pain, which can result from narrowing of the intervertebral disc space and growth of osteophytes. In a lateral x-ray image of the cervical spine, degenerative changes are characterized by vertebral bodies that have indistinct boundaries and limited spacing between vertebrae. In this paper, we present a machine learning approach to detect and localize degenerative changes in lateral x-ray images of the cervical spine. Starting from a user-supplied set of points in the center of each vertebral body, we fit a central spline, from which a region of interest is extracted and image features are computed. A Random Forest classifier labels regions as degenerative change or normal. Leave-one-out cross-validation studies performed on a dataset of 103 patients demonstrates performance of above 95% accuracy.

  20. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon.

    PubMed

    Anderson, Mitchell D; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe

    2018-06-08

    We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n=1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.

  1. Detecting asphalt pavement raveling using emerging 3D laser technology and macrotexture analysis.

    DOT National Transportation Integrated Search

    2015-08-01

    This research project comprehensively tested and validated the automatic raveling detection, classification, : and measurement algorithms using 3D laser technology that were developed through a project sponsored by : the National Cooperative Highway ...

  2. A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals

    PubMed Central

    2014-01-01

    Background The inter-patient classification schema and the Association for the Advancement of Medical Instrumentation (AAMI) standards are important to the construction and evaluation of automated heartbeat classification systems. The majority of previously proposed methods that take the above two aspects into consideration use the same features and classification method to classify different classes of heartbeats. The performance of the classification system is often unsatisfactory with respect to the ventricular ectopic beat (VEB) and supraventricular ectopic beat (SVEB). Methods Based on the different characteristics of VEB and SVEB, a novel hierarchical heartbeat classification system was constructed. This was done in order to improve the classification performance of these two classes of heartbeats by using different features and classification methods. First, random projection and support vector machine (SVM) ensemble were used to detect VEB. Then, the ratio of the RR interval was compared to a predetermined threshold to detect SVEB. The optimal parameters for the classification models were selected on the training set and used in the independent testing set to assess the final performance of the classification system. Meanwhile, the effect of different lead configurations on the classification results was evaluated. Results Results showed that the performance of this classification system was notably superior to that of other methods. The VEB detection sensitivity was 93.9% with a positive predictive value of 90.9%, and the SVEB detection sensitivity was 91.1% with a positive predictive value of 42.2%. In addition, this classification process was relatively fast. Conclusions A hierarchical heartbeat classification system was proposed based on the inter-patient data division to detect VEB and SVEB. It demonstrated better classification performance than existing methods. It can be regarded as a promising system for detecting VEB and SVEB of unknown patients in clinical practice. PMID:24981916

  3. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the targetmore » contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.« less

  4. Advanced Ship Detection For Spaceborne Based Maritime Awareness

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Ferreira, Joao; Carmo, Paulo; Marques, Paulo

    2013-12-01

    In the last years the increase in marine traffic generated the necessity of global monitoring for marine environment management in terms of safety, security and fisheries. The increasing number of new satellite-based Synthetic Aperture Radar (SAR) systems, and the intrinsic capability of the transmitted electromagnetic pulses to interact with the ships and to retrieve its cinematic characteristics, made this instrument particularly fit to improve global maritime awareness through the fusion with cooperative data (AIS, VMS, LRIT). The growing need of global maritime awareness gave a push to the realization of different projects in the European context, each one focused on a different particular objective. Particularly useful is the synergy between the operational and research aspects, being the goal of the last to improve the state of the art in the field of ship detection. Two European projects are the key to strive this synergy: the project MARitime Security Service (MARISS), which implements the operational capability, and the R&D Dolphin projects, which is focused on the deep exploitation of remote sensing data and on the technological development of advanced techniques for ship detection and classification purposes, and Seabilla project, which is also dedicated to improve the current ship detection capability and to fuse all the available information from different data sources for border surveillance optimization. This paper introduces the multipurpose Edisoft Vessel Detection software (EdiVDC) implemented by the EDISOFT company, which comes from the necessity to respect increasingly stringent requirements in terms of ship detection. The EdiVDC software is being operationally used in the framework of the MARISS project and it integrates advanced processing algorithms, developed in the scope of the Dolphin project with the cooperation of ISEL-IT (Instituto de Telecomunicações), and data simulators, developed in the context of the Seabilla project, improving the software capability and introducing new functionalities. In this work we present the functionalities of the software and the main results achieved with different types of SAR data.

  5. Conceptual model for collision detection and avoidance for runway incursion prevention

    NASA Astrophysics Data System (ADS)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State Processor, Projection, Collision Detection, and Alerting and Resolution. The underlying algorithms in the Projection module are linear projection and Kalman filtering which are used to estimate the future state of the aircraft. The Resolution and Alerting module is comprised of two algorithms: a generic alerting algorithm and the potential fields algorithm [71]. The conceptual model was created using Enterprise Architect RTM and MATLAB RTM was used to code the methods and to simulate conflict scenarios.

  6. The Interdisciplinary Generalist Curriculum Project: A National Medical School Demonstration Project.

    ERIC Educational Resources Information Center

    Kahn, Norman B., Jr.; And Others

    1995-01-01

    The Interdisciplinary Generalist Curriculum Project was developed to encourage schools of medicine and colleges of osteopathic medicine to implement interdisciplinary generalist curricula in the preclinical years. Five sites were competitively established as demonstration projects, and rigorous attention to creating and maintaining an…

  7. Demonstration of a Particle Impact Monitoring System for Crewed Space Exploration Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J. N.; Liou, J.-C.; Corsaro, R.; Giovane, F.; Anz-Meador, P.

    2011-01-01

    When micrometeorite or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules, both in space and on the surfaces of Solar System bodies. The HIMS uses multiple thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA?s 2010 Desert Research and Technologies Studies (Desert-RATS). Four sensor locations were assigned near the corners of a rectangular pattern. To study the influence of wall thickness, three sets of four sensors were installed at different layer depths: on the interior of the PEM wall, on the exterior of the same wall, and on the exterior of a layer of foam insulation applied to the exterior wall. Once the system was activated, particle impacts were periodically applied by firing a pneumatic pellet gun at the exterior wall section. Impact signals from the sensors were recognized by a data acquisition system when they occurred, and recorded on a computer for later analysis. Preliminary analysis of the results found that the HIMS system located the point of impact to within 8 cm, provided a measure of the impact energy / damage produced, and was insensitive to other acoustic events. Based on this success, a fully automated version of this system will be completed and demonstrated as part of a crew "Caution/Warning" system at the 2011 Desert-RATS, along with a crew response procedure.

  8. ESONET LIDO Demonstration Mission: the Iberian Margin node.

    NASA Astrophysics Data System (ADS)

    Embriaco, Davide; André, Michel; Zitellini, Nevio; Esonet Lido Demonstration Mission Team

    2010-05-01

    The Gulf of Cadiz is one of two the test sites chosen for the demonstration of the ESONET - LIDO Demonstration Mission (DM) [1], which will establish a first nucleus of regional network of multidisciplinary sea floor observatories. The Gulf of Cadiz is a highly populated area, characterized by tsunamigenic sources, which caused the devastating earthquake and tsunamis that struck Lisbon in 1755. The seismic activity is concentrated along a belt going from this region to the Azores and the main tsunamigenic tectonic sources are located near the coastline. In the framework of the EU - NEAREST project [2] the GEOSTAR deep ocean bottom multi-parametric observatory was deployed for a one year mission off cape Saint Vincent at about 3200 m depth. GEOSTAR was equipped with a set of oceanographic, seismic and geophysical sensors and with a new tsunami detector prototype. In November 2009 the GEOSTAR abyssal station equipped with the tsunami prototype was redeployed at the same site on behalf of NEAREST and ESONET - LIDO DM. The system is able to communicate from the ocean bottom to the land station via an acoustic and satellite link. The abyssal station is designed both for long term geophysical and oceanographic observation and for tsunami early warning purpose. The tsunami detection is performed by two different algorithms: a new real time dedicated tsunami detection algorithm which analyses the water pressure data, and a seismic algorithm which triggers on strong events. Examples of geophysical and oceanographic data acquired by the abyssal station during the one year mission will be shown. The development of a new acoustic antenna equipped with a stand alone and autonomous acquisition system will allow the recording of marine mammals and the evaluation of environmental noise. References [1] M. André and The ESONET LIDO Demonstration Mission Team, "Listening to the deep-ocean environment: an ESONET initiative for the real-time monitoring of geohazards and marine ambient noise", EGU General Assembly, Vienna 2-7 May 2010 [2] EU - NEAREST Project web site: http://nearest.bo.ismar.cnr.it/

  9. Computer Link Offering Variable Educational Records (Project CLOVER). A National Diffusion Network Developer/Demonstrator Project.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    Project CLOVER (Computerized Link Offering Variable Educational Records) is a demonstration project designed to increase use of the Migrant Student Record Transfer System (MSRTS). Project CLOVER (1) helps to ensure that schools attended by migrant students have the capability to receive and transmit academic and medical information on students;…

  10. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  11. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  12. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  13. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  14. Using operational active remote sensing devices to detect Saharan dust advections and evaluate their contribution to the PM10 levels: The EU LIFE+ "DIAPASON" project

    NASA Astrophysics Data System (ADS)

    Gobbi, Gian Paolo; Wille, Holger; Sozzi, Roberto; Barnaba, Francesca; Costabile, Francesca; Angelini, Federico; Frey, Steffen; Bolignano, Andrea; Morelli, Matteo

    2013-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average mass concentrations can be significant all over Southern Europe. The Directive 2008/50/EC allows subtraction of PM10 exceedances caused by natural contributions from the statistic used to determine air-quality levels in Europe. To this purpose, the Commission Staff Working Paper 6771/11 (EC, 2011) provides specific Guidelines on methods to quantify and subtract the contribution of these sources in the framework of the Air Quality Directive. For Saharan dust, the EC methodology is largely based on a thorough analysis performed over the Iberian Peninsula (Escudero et al, 2007), although revision of the current methodology is in progress. In line with the EC Guidelines, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs"), funded under the EC LIFE+ program, has been formulated to provide a robust, user-oriented, and demonstrated method to assess the presence of desert dust and evaluate its contribution to PM10 levels at the monitoring sites. To this end, in addition to satellite-based data and model forecasts already included in the EC Guidelines, DIAPASON will take advantage, in both the Project implementation and demonstration phase, of innovative and affordable technologies (partly prototyped within the project itself), namely operational Polarization Lidar-Ceilometers (PLC) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The PLC prototypes have been already finalized during the initial phase of the Project. Three of them will be networked in relevant air quality monitoring stations located in the Rome metropolitan area (Italy) during the DIAPASON observational phase (one-year long field campaign) starting in March 2013. The Rome region was chosen as the DIAPASON pilot scale area since highly impacted by urban pollution and frequently affected by Saharan dust transport events. In fact, a preliminary assessment of the role of Saharan dust in this area, based on a four-year dataset (2001-2004) has shown average increases of PM10 levels of the order of 11.9 µg/m3 when Saharan dust presence is either predicted by models or observed by a depolarization lidar. Conversely, PM10 increases computed relying only on the Lidar detections (i.e., presence of dust layers actually observed) were of the order of 15.6 µg/m3. Both analyses indicate the annual average contribution of dust advections to the city PM10 mass concentrations to be of the order of 2.3 µg/m3 (Gobbi et al., 2013). These results confirm Saharan advections in the central Mediterranean as important modulators of PM10 loads and exceedances. After the demonstrative pilot scale study, the DIAPASON results will be spatially generalised to a wider area. The final DIAPASON methodology to detect/quantify the Saharan dust contribution to PM10 will be tailored for a national scale application, and easily transferable to other air-quality and meteorological agencies in Europe. In this work, preliminary results from the combined analysis of Saharan dust model predictions, PM10 data and lidar records performed within DIAPASON will be shown, with particular focus on the added-value provided by continuous polarization lidar data in integrating the present EC Methodology. - EC, Commission Staff Working Paper 6771/11 establishing guidelines for demonstration and subtraction of exceedances attributable to natural sources under the Directive 2008/50/EC on ambient air quality and cleaner air for Europe, European Commission, 2011. - Escudero, M., Querol, X., Pey, J., Alastuey, A., Pérez, N., Ferreira, F., Alonso, S., Rodríguez, S. and Cuevas, E., A methodology for the quantification of the net African dust load in air quality monitoring networks, Atmos. Envir., 41, 5516-5524, 2007. - Gobbi,G. P., F. Angelini, F. Barnaba, F. Costabile, J. M. Baldasano, S. Basart, R. Sozzi and A. Bolignano, Changes in Particulate Matter Physical Properties During Saharan Advections over Rome (Italy): A Four-Year Study, 2001-2004, Atmos. Chem. Phys., Discus., 2013.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.

    A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less

  16. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  17. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1976-01-01

    One phase of the large area crop inventory project is presented. Wheat yield models based on the input of environmental variables potentially obtainable through the use of space remote sensing were developed and demonstrated. By the use of a unique method for visually qualifying daily plant development and subsequent multifactor computer analyses, it was possible to develop practical models for predicting crop development and yield. Development of wheat yield prediction models was based on the discovery that morphological changes in plants are detected and quantified on a daily basis, and that this change during a portion of the season was proportional to yield.

  18. Borehole geophysical monitoring of amendment emplacement and geochemical changes during vegetable oil biostimulation, Anoka County Riverfront Park, Fridley, Minnesota

    USGS Publications Warehouse

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Joesten, Peter K.; Kochiss, Christopher S.

    2007-01-01

    Based on the geophysical data, conceptual models of the distributions of emulsified vegetable oil and ground water with altered chemistry were developed. The field data indicate that, in several cases, the plume of ground water with altered chemistry would not be detected by direct chemical sampling given the construction of monitoring wells; hence the geophysical data provide valuable site-specific insights for the interpretation of water samples and monitoring of biostimulation projects. Application of geophysical methods to data from the ACP demonstrated the utility of radar for monitoring biostimulation injections.

  19. Photon Detector System Timing Performance in the DUNE 35-ton Prototype Liquid Argon Time Projection Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.L.; et al.

    The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less

  20. Marine Mammals and Active Sonar

    DTIC Science & Technology

    2005-10-01

    Stafford , K. M., C. G. Fox, and D. S. Clark. 1998 . Long - range acoustic detection , localization of blue whale calls in the northeast...signal processing generated by other projects. The current effort on detection , classification, and localization of northern right whales as well as a...causal mechanisms of sonar-related beaked whale strandings. ONR is funding various research projects including passive acoustic detection

  1. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Gene

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb 3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber opticmore » sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh backscattered laser signals that are shifted by the changes in the fiber that are induced by a local change in the YBCO temperature or strain. One goal of this project was to show that modern technology can be used to interrogate the signals from a (very expensive) YBCO magnet to detect an impending quench in time to protect it from self-destruction. The results show that Rayleigh-backscattering interrogated optical fibers (RIOF) have significant advantages over traditional techniques, including very high spatial resolution and the ability to detect a hot-spot well before the peak local temperature becomes so high that the conductor can be damaged. RIOF quench detection is intrinsically faster than voltage taps, and this intrinsic advantage is greater as the coil size and/or current margin increases. We describe the development and testing program performed under the grant.« less

  2. Multiview Projection Using CADKEY Freeze-Frame Demonstrations.

    ERIC Educational Resources Information Center

    Kelso, Robert P.; Ziai, M. Reza

    1988-01-01

    Describes a three-dimensional computer aided design software package, CADKEY, for demonstrating orthographic orthodirectional projection theory to a classroom. Provides several figures for showing the demonstrations. (Author/YP)

  3. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  4. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  5. Fringe-period selection for a multifrequency fringe-projection phase unwrapping method

    NASA Astrophysics Data System (ADS)

    Zhang, Chunwei; Zhao, Hong; Jiang, Kejian

    2016-08-01

    The multi-frequency fringe-projection phase unwrapping method (MFPPUM) is a typical phase unwrapping algorithm for fringe projection profilometry. It has the advantage of being capable of correctly accomplishing phase unwrapping even in the presence of surface discontinuities. If the fringe frequency ratio of the MFPPUM is too large, fringe order error (FOE) may be triggered. FOE will result in phase unwrapping error. It is preferable for the phase unwrapping to be kept correct while the fewest sets of lower frequency fringe patterns are used. To achieve this goal, in this paper a parameter called fringe order inaccuracy (FOI) is defined, dominant factors which may induce FOE are theoretically analyzed, a method to optimally select the fringe periods for the MFPPUM is proposed with the aid of FOI, and experiments are conducted to research the impact of the dominant factors in phase unwrapping and demonstrate the validity of the proposed method. Some novel phenomena are revealed by these experiments. The proposed method helps to optimally select the fringe periods and detect the phase unwrapping error for the MFPPUM.

  6. Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.

    2017-12-01

    Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.

  7. Year 2000 Computerized Farm Project. Final Report.

    ERIC Educational Resources Information Center

    McGrann, James M.; Lippke, Lawrence A.

    An ongoing project was funded to develop and demonstrate a computerized approach to operation and management of a commercial-sized farm. Other project objectives were to facilitate the demonstration of the computerized farm to the public and to develop individual software packages and make them available to the public. Project accomplishments…

  8. Alternative Youth Employment Strategies Project: Final Report.

    ERIC Educational Resources Information Center

    Sadd, Susan; And Others

    The Alternative Youth Employment Strategies (AYES) Project began as one of the demonstration projects funded under the Youth Employment and Demonstration Project Act in 1980. The program, which features three training models, is targeted toward high-risk, disadvantaged youth, especially minority youths from urban areas who had prior involvement…

  9. An Evaluation of the Community Education Demonstration Projects.

    ERIC Educational Resources Information Center

    Wynne, Ronald D.

    The report summarizes a six-month evaluation (July-December 1967) of 11 community education projects funded by the Office of Economic Opportunity. Major focus is on eight projects which comprised a special series of Section 207 Community Education Demonstration Projects--Appalachian Volunteers, Inc., the Columbia College Citizenship Council…

  10. Online damage detection using recursive principal component analysis and recursive condition indicators

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.

    2017-08-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.

  11. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  12. Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations.

    PubMed

    Chin, Ephrem L H; da Silva, Cristina; Hegde, Madhuri

    2013-02-19

    Detecting mutations in disease genes by full gene sequence analysis is common in clinical diagnostic laboratories. Sanger dideoxy terminator sequencing allows for rapid development and implementation of sequencing assays in the clinical laboratory, but it has limited throughput, and due to cost constraints, only allows analysis of one or at most a few genes in a patient. Next-generation sequencing (NGS), on the other hand, has evolved rapidly, although to date it has mainly been used for large-scale genome sequencing projects and is beginning to be used in the clinical diagnostic testing. One advantage of NGS is that many genes can be analyzed easily at the same time, allowing for mutation detection when there are many possible causative genes for a specific phenotype. In addition, regions of a gene typically not tested for mutations, like deep intronic and promoter mutations, can also be detected. Here we use 20 previously characterized Sanger-sequenced positive controls in disease-causing genes to demonstrate the utility of NGS in a clinical setting using standard PCR based amplification to assess the analytical sensitivity and specificity of the technology for detecting all previously characterized changes (mutations and benign SNPs). The positive controls chosen for validation range from simple substitution mutations to complex deletion and insertion mutations occurring in autosomal dominant and recessive disorders. The NGS data was 100% concordant with the Sanger sequencing data identifying all 119 previously identified changes in the 20 samples. We have demonstrated that NGS technology is ready to be deployed in clinical laboratories. However, NGS and associated technologies are evolving, and clinical laboratories will need to invest significantly in staff and infrastructure to build the necessary foundation for success.

  13. 75 FR 59237 - TRICARE Co-Pay Waiver at Captain James A. Lovell Federal Health Care Center Demonstration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Federal Health Care Center Demonstration Project AGENCY: Office of the Secretary, Department of Defense. ACTION: Notice of TRICARE Co-Pay waiver at Captain James A. Lovell Federal Health Care Center... ``TRICARE Co-Pay Waiver at Captain James A. Lovell Federal Health Care (FHCC) Demonstration Project.'' Under...

  14. A mathematical model approach toward combining information from multiple image projections of the same patient

    NASA Astrophysics Data System (ADS)

    Chawla, Amarpreet S.; Samei, Ehsan; Abbey, Craig

    2007-03-01

    In this study, we used a mathematical observer model to combine information obtained from multiple angular projections of the same breast to determine the overall detection performance of a multi-projection breast imaging system in detectability of a simulated mass. 82 subjects participated in the study and 25 angular projections of each breast were acquired. Projections from a simulated 3 mm 3-D lesion were added to the projection images. The lesion was assumed to be embedded in the compressed breast at a distance of 3 cm from the detector. Hotelling observer with Laguerre-Gauss channels (LG CHO) was applied to each image. Detectability was analyzed in terms of ROC curves and the area under ROC curves (AUC). The critical question studied is how to best integrate the individual decision variables across multiple (correlated) views. Towards that end, three different methods were investigated. Specifically, 1) ROCs from different projections were simply averaged; 2) the test statistics from different projections were averaged; and 3) a Bayesian decision fusion rule was used. Finally, AUC of the combined ROC was used as a parameter to optimize the acquisition parameters to maximize the performance of the system. It was found that the Bayesian decision fusion technique performs better than the other two techniques and likely offers the best approximation of the diagnostic process. Furthermore, if the total dose level is held constant at 1/25th of dual-view mammographic screening dose, the highest detectability performance is observed when considering only two projections spread along an angular span of 11.4°.

  15. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  16. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  17. Development of a liquid xenon time projection chamber for the XENON dark matter search

    NASA Astrophysics Data System (ADS)

    Ni, Kaixuan

    This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, between scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detecting very low energy events. Two major quantities related to the dark matter detection, the scintillation efficiency and ionization yield of nuclear recoils in LXe, have been established. A prototype dual phase detector (XENON3) has been built and tested extensively in above ground laboratory. The 3D position sensitivity, as well as the background discrimination potential demonstrated from the XENON3 prototype, allows the construction of a 10 kg scale detector (XENON10), to be deployed underground in early 2006. With 99.5% electron recoil rejection efficiency and 16 keVr nuclear recoil energy threshold, XENON10 will be able to probe the WIMP-nucleon cross-section down to 2 x 10-44 cm2 in the supersymmetry parameter space, after one month operation in the Gran Sasso underground laboratory.

  18. Automated fiber placement: Evolution and current demonstrations

    NASA Technical Reports Server (NTRS)

    Grant, Carroll G.; Benson, Vernon M.

    1993-01-01

    The automated fiber placement process has been in development at Hercules since 1980. Fiber placement is being developed specifically for aircraft and other high performance structural applications. Several major milestones have been achieved during process development. These milestones are discussed in this paper. The automated fiber placement process is currently being demonstrated on the NASA ACT program. All demonstration projects to date have focused on fiber placement of transport aircraft fuselage structures. Hercules has worked closely with Boeing and Douglas on these demonstration projects. This paper gives a description of demonstration projects and results achieved.

  19. Development and demonstration of autonomous behaviors for urban environment exploration

    NASA Astrophysics Data System (ADS)

    Ahuja, Gaurav; Fellars, Donald; Kogut, Gregory; Pacis Rius, Estrellina; Schoolov, Misha; Xydes, Alexander

    2012-06-01

    Under the Urban Environment Exploration project, the Space and Naval Warfare Systems Center Pacic (SSC- PAC) is maturing technologies and sensor payloads that enable man-portable robots to operate autonomously within the challenging conditions of urban environments. Previously, SSC-PAC has demonstrated robotic capabilities to navigate and localize without GPS and map the ground oors of various building sizes.1 SSC-PAC has since extended those capabilities to localize and map multiple multi-story buildings within a specied area. To facilitate these capabilities, SSC-PAC developed technologies that enable the robot to detect stairs/stairwells, maintain localization across multiple environments (e.g. in a 3D world, on stairs, with/without GPS), visualize data in 3D, plan paths between any two points within the specied area, and avoid 3D obstacles. These technologies have been developed as independent behaviors under the Autonomous Capabilities Suite, a behavior architecture, and demonstrated at a MOUT site at Camp Pendleton. This paper describes the perceptions and behaviors used to produce these capabilities, as well as an example demonstration scenario.

  20. Quantification of the effectiveness of handheld equipment for ground verification of detected rail internal defects.

    DOT National Transportation Integrated Search

    2014-04-01

    The objective of this project was to quantify the effectiveness of the rail inspection ground verification process. More specifically, : the project focused on comparing the effectiveness of conventional versus phased array probes to manually detect ...

  1. 77 FR 5258 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Information Collection Activity; Comment Request Proposed Projects Title: Child Welfare Demonstration Projects... agencies to submit proposals for new child welfare waiver demonstration projects. CB is able to approve up to ten child welfare [[Page 5259

  2. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Project evaluation. 470.317 Section 470.317 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration...

  3. PenMap demonstration project, landslide mapping system

    DOT National Transportation Integrated Search

    2002-12-01

    This report documents the findings of a technology transfer project to demonstrate the effectiveness of a portable field mapping system to landslide field reconnaissance work. The objective of this project was to expose the latest field data collecti...

  4. Design of dual multiple aperture devices for dynamical fluence field modulated CT.

    PubMed

    Mathews, Aswin John; Tilley, Steven; Gang, Grace; Kawamoto, Satomi; Zbijewski, Wojciech; Siewerdsen, Jeffrey H; Levinson, Reuven; Webster Stayman, J

    2016-07-01

    A Multiple Aperture Device (MAD) is a novel x-ray beam modulator that uses binary filtration on a fine scale to spatially modulate an x-ray beam. Using two MADs in series enables a large variety of fluence profiles by shifting the MADS relative to each other. This work details the design and control of dual MADs for a specific class of desired fluence patterns. Specifically, models of MAD operation are integrated into a best fit objective followed by CMA-ES optimization. To illustrate this framework we demonstrate the design process for an abdominal phantom with the goal of uniform detected signal. Achievable fluence profiles show good agreement with target fluence profiles, and the ability to flatten projections when a phantom is scanned is demonstrated. Simulated data reconstruction using traditional tube current modulation (TCM) and MAD filtering with TCM are investigated with the dual MAD system demonstrating more uniformity in noise and illustrating the potential for dose reduction under a maximum noise level constraint.

  5. Texas Labor Mobility, Experimental and Demonstration Project. Final Report.

    ERIC Educational Resources Information Center

    Texas Employment Commission, Austin.

    The Texas Labor Mobility Project's purpose was to demonstrate the effectiveness of using financial assistance to create stability in migrant workers and to reduce unemployment. The program was designed as a research project to gather information about all phases of the Mobility Project. This was handled through the Texas Employment Commission. In…

  6. Implementing Interactive Telecommunications Services. Final Report on Problems Which Arise During Implementation of Field Trials and Demonstration Projects.

    ERIC Educational Resources Information Center

    Elton, Martin C. J.; Carey, John

    Intended primarily for use by individuals about to assume responsibility for the implementation of field trials and demonstration projects built around interactive telecommunication systems, this report provides brief descriptions of 20 telemedicine projects, 12 teleconferencing projects, and seven involving two-way applications of cable…

  7. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor

    NASA Technical Reports Server (NTRS)

    Liou, J. C.; Sadilek, Albert; Burchell, Mark; Corsaro, Robert; Giovane, Frank

    2012-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy Sensor (DRAGONS) is intended to be a large area impact sensor for in-situ measurements of micrometeoroids and orbital debris (MMOD) in the approx.0.2 to 1 mm size regime. These MMOD particles are too small to be detected by groundbased radars and optical telescopes, but still large enough to be a safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of DRAGONS is 1 sq m, consisting of four 0.5 m x 0.5 m independently operated panels. The concept of the DRAGONS design is to combine three different detection technologies to maximize information extracted from each detected impact. The first technology is a resistive grid consisting of 62.5-microns-wide resistive lines, coated in parallel and separated by 62.5 micron gaps on a Kapton film. When a particle a few hundred micrometers or larger strikes the grid, it world penetrate the film and sever some resistive lines. The size of the damage area can be estimated from the increased resistance. The second technology employs a dual-layer, 25-microns-thick Kapton film with a 10 cm separation. By measuring the time difference between impacts on the two films, the impact speed can be calculated. The third technology is based on polyvinylidene fluoride (PVDF) acoustic impact sensors. Multiple PVDF sensors are attached to the backside of both Kapton films to provide impact timing measurements. The impact location on each film can be identified from the triangulation of signals received at different PVDF sensors and provides an estimate of the impact direction. The development of DRAGONS is supported by the NASA Orbital Debris Program Office. The project is led by the U.S. Naval Academy (USNA), with additional collaboration from the U.S. Naval Research Laboratory (NRL), the University of Kent at Canterbury in Great Britain, and Virginia Tech (VT). The short-term goal of DRAGONS is to advance its Technology Readiness Level to 9 and to demonstrate the system capabilities of detecting and characterizing submillimeter MMOD impacts. The long-term goal is to deploy a large detection area (>1 sq m) DRAGONS to 700-1000 km altitude and collect sufficient data for better environment definition of MMOD in the 0.2- to 1-mm size regime. The Preliminary Design Review (PRD) of DRAGONS was held at the USNA in June 2012. The Critical Design Review (CDR) is scheduled for early 2013. A flight-ready unit with a 0.25 sq m detection area will be completed and tested by the end of September 2013. The biggest challenge for the project, however, is to identify a demonstration opportunity on the International Space Station in the coming years.

  8. Mycobacterium avium subsp. hominissuis infection in swine associated with peat used for bedding.

    PubMed

    Johansen, Tone Bjordal; Agdestein, Angelika; Lium, Bjørn; Jørgensen, Anne; Djønne, Berit

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an environmental bacterium causing opportunistic infections in swine, resulting in economic losses. Additionally, the zoonotic aspect of such infections is of concern. In the southeastern region of Norway in 2009 and 2010, an increase in condemnation of pig carcasses with tuberculous lesions was seen at the meat inspection. The use of peat as bedding in the herds was suspected to be a common factor, and a project examining pigs and environmental samples from the herds was initiated. Lesions detected at meat inspection in pigs originating from 15 herds were sampled. Environmental samples including peat from six of the herds and from three peat production facilities were additionally collected. Samples were analysed by culture and isolates genotyped by MLVA analysis. Mycobacterium avium subsp. hominissuis was detected in 35 out of 46 pigs, in 16 out of 20 samples of peat, and in one sample of sawdust. MLVA analysis demonstrated identical isolates from peat and pigs within the same farms. Polyclonal infection was demonstrated by analysis of multiple isolates from the same pig. To conclude, the increase in condemnation of porcine carcasses at slaughter due to mycobacteriosis seemed to be related to untreated peat used as bedding.

  9. Mycobacterium avium subsp. hominissuis Infection in Swine Associated with Peat Used for Bedding

    PubMed Central

    Johansen, Tone Bjordal; Lium, Bjørn; Jørgensen, Anne; Djønne, Berit

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an environmental bacterium causing opportunistic infections in swine, resulting in economic losses. Additionally, the zoonotic aspect of such infections is of concern. In the southeastern region of Norway in 2009 and 2010, an increase in condemnation of pig carcasses with tuberculous lesions was seen at the meat inspection. The use of peat as bedding in the herds was suspected to be a common factor, and a project examining pigs and environmental samples from the herds was initiated. Lesions detected at meat inspection in pigs originating from 15 herds were sampled. Environmental samples including peat from six of the herds and from three peat production facilities were additionally collected. Samples were analysed by culture and isolates genotyped by MLVA analysis. Mycobacterium avium subsp. hominissuis was detected in 35 out of 46 pigs, in 16 out of 20 samples of peat, and in one sample of sawdust. MLVA analysis demonstrated identical isolates from peat and pigs within the same farms. Polyclonal infection was demonstrated by analysis of multiple isolates from the same pig. To conclude, the increase in condemnation of porcine carcasses at slaughter due to mycobacteriosis seemed to be related to untreated peat used as bedding. PMID:25431762

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Aaron A.; Chamberlin, Clyde E.; Edwards, Matthew K.

    This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1Dmore » probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.« less

  11. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals

    PubMed Central

    Baum, Michael J.

    2012-01-01

    Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition. PMID:22679420

  12. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.

  13. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects

    PubMed Central

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB PMID:25281234

  14. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects.

    PubMed

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.

  15. Detection and discrimination of colour, a comparison of physiological and psychophysical data

    NASA Astrophysics Data System (ADS)

    Valberg, A.; Lee, B. B.

    1989-01-01

    Whereas the physiological basis of colorimetry (colour matches) is well understood in terms of the trireceptor theory of colour vision, colour discrimination and scaling still lack a comparable foundation. We present here experimental data that demonstrate how sensitivity and responsiveness of different types of cone-opponent and non-opponent cells of the macaque monkey correlate with human threshold sensitivity on the one hand, and how they in combination can be used to construct a suprathreshold equidistant colour space. Psychophysical thresholds correlate well with the threshold envelope of the most sensitive cells when stimuli are projected upon a steady white background. Detection thresholds for stimuli of differing wavelength and purity (saturation) generally indicate a transition from a phasic non-opponent system to a tonic opponent system of on-centre cells as purity increases. Detection and chromatic discrimination thresholds coincide only for long and short wavelengths of high purity, whereas they differ for mid-spectral lights. Different cell types may thus support detection and discrimination with different stimuli. With chromatic scaling of surface colours on the other hand, when stimuli are darker than an adaptation field still other cell types are needed. We demonstrate that it is possible, from a combination of on- and off-opponent cells, to reconstruct a uniform colour space, using summed outputs of cells with the same cone combination and vector addition for cells with different combinations. Different hues are represented by opponent cells with inputs from different cone types, the hue percept being related to the ratio of the activities of these cell systems.

  16. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisniega, A; Zbijewski, W; Stayman, J

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced formore » additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain trauma imaging at the point of care in sports and military applications. Research grant from Carestream Health. JY is an employee of Carestream Health.« less

  17. From a Viewpoint of Clinical Settings: Pharmacoepidemiology as Reverse Translational Research (rTR).

    PubMed

    Kawakami, Junichi

    2017-01-01

    Clinical pharmacology and pharmacoepidemiology research may converge in practise. Pharmacoepidemiology is the study of pharmacotherapy and risk management in patient groups. For many drugs, adverse reaction(s) that were not seen and/or clarified during research and development stages have been reported in the real world. Pharmacoepidemiology can detect and verify adverse drug reactions as reverse translational research. Recently, development and effective use of medical information databases (MID) have been conducted in Japan and elsewhere for the purpose of post-marketing safety of drugs. The Ministry of Health, Labour and Welfare, Japan has been promoting the development of 10-million scale database in 10 hospitals and hospital groups as "the infrastructure project of medical information database (MID-NET)". This project enables estimation of the frequency of adverse reactions, the distinction between drug-induced reactions and basal health-condition changes, and usefulness verification of administrative measures of drug safety. However, because the database information is different from detailed medical records, construction of methodologies for the detection and evaluation of adverse reactions is required. We have been performing database research using medical information system in some hospitals to establish and demonstrate useful methods for post-marketing safety. In this symposium, we aim to discuss the possibility of reverse translational research from clinical settings and provide an introduction to our research.

  18. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  19. ALMA Observations of a Misaligned Binary Protoplanetary Disk System in Orion

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; Mann, Rita K.; Di Francesco, James; Andrews, Sean M.; Hughes, A. Meredith; Ricci, Luca; Bally, John; Johnstone, Doug; Matthews, Brenda

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ~9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ~72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  20. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    A major hazards in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. In this paper, we present the results of a study to demonstrate a variety of seismic techniques to detect the presence of a karst analog in form of a vertical water-collection shaft located on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We used the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys to detect and locate the object. Furthermore, we showed that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  1. Management tools for R&D engineering projects: Coordination perspective for large international consortium (NeXOS)

    NASA Astrophysics Data System (ADS)

    Castro, Ayoze; Memè, Simone; Quevedo, Eduardo; Waldmann, Christoph; Pearlman, Jay; Delory, Eric; Llinás, Octavio

    2017-04-01

    NeXOS is a cross-functional and multidisciplinary project funded under the EU FP7 Program, which involves 21 organizations from six different European countries. They all have different backgrounds, interests, business models and perspectives. To be successful, NeXOS applied an international recognized management methodology tailored to the specific project's environment and conditions, with an explicit structure based on defined roles and responsibilities for the people involved in the project and a means for effective communication between them (Fig.1). The project, divided in four different stages of requirements, design, integration, validation and demonstration, allows a clearer monitor of its progress, a comparison of the level of achievement in accordance with the plan and an earlier detection of problems/issues, leading to implementation of less disruptive, but still effective corrective actions. NeXOS is following an ambitious plan to develop innovative sensor systems with a high degree of modularity and interoperability, starting with requirements definition through validation and demonstration phase. To make this integrative approach possible, a management development strategy has been used incorporating systems engineering methods (Fig.2). Although this is standard practice in software development and large scale systems such as aircraft production, it is still new in the ocean hardware business and therefore NeXOS was a test case for this development concept. The question is one of scale as ocean observation systems are typically built on the scale of a few with co-located teams. With a system of diverse technologies (optical, acoustic, platform interfaces), there are cultural differences that must be bridged. The greatest challenge is in the implementation and the willingness of different teams to work with an engineering process, which may help ultimate system integration, but may place additional burdens on individual participants. This presentation will address approaches for effective operations in this environment.

  2. Robust method to detect and locate local earthquakes by means of amplitude measurements.

    NASA Astrophysics Data System (ADS)

    del Puy Papí Isaba, María; Brückl, Ewald

    2016-04-01

    In this study we present a robust new method to detect and locate medium and low magnitude local earthquakes. This method is based on an empirical model of the ground motion obtained from amplitude data of earthquakes in the area of interest, which were located using traditional methods. The first step of our method is the computation of maximum resultant ground velocities in sliding time windows covering the whole period of interest. In the second step, these maximum resultant ground velocities are back-projected to every point of a grid covering the whole area of interest while applying the empirical amplitude - distance relations. We refer to these back-projected ground velocities as pseudo-magnitudes. The number of operating seismic stations in the local network equals the number of pseudo-magnitudes at each grid-point. Our method introduces the new idea of selecting the minimum pseudo-magnitude at each grid-point for further analysis instead of searching for a minimum of the L2 or L1 norm. In case no detectable earthquake occurred, the spatial distribution of the minimum pseudo-magnitudes constrains the magnitude of weak earthquakes hidden in the ambient noise. In the case of a detectable local earthquake, the spatial distribution of the minimum pseudo-magnitudes shows a significant maximum at the grid-point nearest to the actual epicenter. The application of our method is restricted to the area confined by the convex hull of the seismic station network. Additionally, one must ensure that there are no dead traces involved in the processing. Compared to methods based on L2 and even L1 norms, our new method is almost wholly insensitive to outliers (data from locally disturbed seismic stations). A further advantage is the fast determination of the epicenter and magnitude of a seismic event located within a seismic network. This is possible due to the method of obtaining and storing a back-projected matrix, independent of the registered amplitude, for each seismic station. As a direct consequence, we are able to save computing time for the calculation of the final back-projected maximum resultant amplitude at every grid-point. The capability of the method was demonstrated firstly using synthetic data. In the next step, this method was applied to data of 43 local earthquakes of low and medium magnitude (1.7 < magnitude scale < 4.3). These earthquakes were recorded and detected by the seismic network ALPAACT (seismological and geodetic monitoring of Alpine PAnnonian ACtive Tectonics) in the period 2010/06/11 to 2013/09/20. Data provided by the ALPAACT network is used in order to understand seismic activity in the Mürz Valley - Semmering - Vienna Basin transfer fault system in Austria and what makes it such a relatively high earthquake hazard and risk area. The method will substantially support our efforts to involve scholars from polytechnic schools in seismological work within the Sparkling Science project Schools & Quakes.

  3. Characterization of the visibility of wildfire smoke clouds

    NASA Astrophysics Data System (ADS)

    de Vries, Jan S.; den Breejen, Eric

    1993-09-01

    In order to investigate the smoke cloud visibility of small wildfires a series of controlled biomass burning experiments has been carried out to investigate the characteristics of smoke clouds using various remote sensing techniques. These techniques include simultaneous scattering and transmission measurements in four wavelength bands, near-, mid-, and far- infrared video imagery, high resolution Fourier spectrometry, and particle size distribution measurements. The characterization and, in particular, knowledge on the contrast of smoke from small, beginning wildfires against a vegetation background is required in order to predict the performance of autonomous surveillance systems. This paper describes the preliminary analysis of experiments which have been carried out in Ypenburg (the Netherlands) in 1992. The results of these experiments are used to estimate the wildfire detection efficiency of a demonstration sensor which is being developed in a project financed by the Commission of the European Communities and by Bosschap. The autonomous wildfire detection sensor is described.

  4. Matching traditional and scientific observations to detect environmental change: a discussion on Arctic terrestrial ecosystems.

    PubMed

    Huntington, Henry; Callaghan, Terry; Fox, Shari; Krupnik, Igor

    2004-11-01

    Recent environmental changes are having, and are expected to continue to have, significant impacts in the Arctic as elsewhere in the world. Detecting those changes and determining the mechanisms that cause them are far from trivial problems. The use of multiple methods of observation can increase confidence in individual observations, broaden the scope of information available about environmental change, and contribute to insights concerning mechanisms of change. In this paper, we examine the ways that using traditional ecological knowledge (TEK) together with scientific observations can achieve these objectives. A review of TEK observations in comparison with scientific observations demonstrates the promise of this approach, while also revealing several challenges to putting it into practice on a large scale. Further efforts are suggested, particularly in undertaking collaborative projects designed to produce parallel observations that can be readily compared and analyzed in greater detail than is possible in an opportunistic sample.

  5. Computation of the ensemble channelized Hotelling observer signal-to-noise ratio for ordered-subset image reconstruction using noisy data

    NASA Astrophysics Data System (ADS)

    Soares, Edward J.; Gifford, Howard C.; Glick, Stephen J.

    2003-05-01

    We investigated the estimation of the ensemble channelized Hotelling observer (CHO) signal-to-noise ratio (SNR) for ordered-subset (OS) image reconstruction using noisy projection data. Previously, we computed the ensemble CHO SNR using a method for approximating the channelized covariance of OS reconstruction, which requires knowledge of the noise-free projection data. Here, we use a "plug-in" approach, in which noisy data is used in place of the noise-free data in the aforementioned channelized covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance calculation. The task was detection of a 10% contrast Gaussian signal within a slice of the MCAT phantom. Simulated projections of the MCAT phantom were scaled and Poisson noise was added to create 100 noisy signal-absent data sets. Simulated projections of the scaled signal were then added to the noisy background projections to create 100 noisy signal-present data set. These noisy data sets were then used to generate 100 estimates of the ensemble CHO SNR for reconstructions at various iterates. For comparison purposes, the same calculation was repeated with the noise-free data. The results, reported as plots of the average CHO SNR generated in this fashion, along with 95% confidence intervals, demonstrate that this approach works very well, and would allow optimization of imaging systems and reconstruction methods using a more accurate object model (i.e., real patient data).

  6. Accelerated SPECT Monte Carlo Simulation Using Multiple Projection Sampling and Convolution-Based Forced Detection

    NASA Astrophysics Data System (ADS)

    Liu, Shaoying; King, Michael A.; Brill, Aaron B.; Stabin, Michael G.; Farncombe, Troy H.

    2008-02-01

    Monte Carlo (MC) is a well-utilized tool for simulating photon transport in single photon emission computed tomography (SPECT) due to its ability to accurately model physical processes of photon transport. As a consequence of this accuracy, it suffers from a relatively low detection efficiency and long computation time. One technique used to improve the speed of MC modeling is the effective and well-established variance reduction technique (VRT) known as forced detection (FD). With this method, photons are followed as they traverse the object under study but are then forced to travel in the direction of the detector surface, whereby they are detected at a single detector location. Another method, called convolution-based forced detection (CFD), is based on the fundamental idea of FD with the exception that detected photons are detected at multiple detector locations and determined with a distance-dependent blurring kernel. In order to further increase the speed of MC, a method named multiple projection convolution-based forced detection (MP-CFD) is presented. Rather than forcing photons to hit a single detector, the MP-CFD method follows the photon transport through the object but then, at each scatter site, forces the photon to interact with a number of detectors at a variety of angles surrounding the object. This way, it is possible to simulate all the projection images of a SPECT simulation in parallel, rather than as independent projections. The result of this is vastly improved simulation time as much of the computation load of simulating photon transport through the object is done only once for all projection angles. The results of the proposed MP-CFD method agrees well with the experimental data in measurements of point spread function (PSF), producing a correlation coefficient (r2) of 0.99 compared to experimental data. The speed of MP-CFD is shown to be about 60 times faster than a regular forced detection MC program with similar results.

  7. Cyber Security Audit and Attack Detection Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dale

    2012-05-31

    This goal of this project was to develop cyber security audit and attack detection tools for industrial control systems (ICS). Digital Bond developed and released a tool named Bandolier that audits ICS components commonly used in the energy sector against an optimal security configuration. The Portaledge Project developed a capability for the PI Historian, the most widely used Historian in the energy sector, to aggregate security events and detect cyber attacks.

  8. Design and analysis of a spectro-angular surface plasmon resonance biosensor operating in the visible spectrum

    NASA Astrophysics Data System (ADS)

    Filion-Côté, Sandrine; Roche, Philip J. R.; Foudeh, Amir M.; Tabrizian, Maryam; Kirk, Andrew G.

    2014-09-01

    Surface plasmon resonance (SPR) sensing is one of the most widely used methods to implement biosensing due to its sensitivity and capacity for label-free detection. Whilst most commercial SPR sensors operate in the angular regime, it has recently been shown that an increase in sensitivity and a greater robustness against noise can be achieved by measuring the reflectivity when varying both the angle and wavelength simultaneously, in a so-called spectro-angular SPR biosensor. A single value decomposition method is used to project the two-dimensional spectro-angular reflection signal onto a basis set and allow the image obtained from an unknown refractive index sample to be compared very accurately with a pre-calculated reference set. Herein we demonstrate that a previously reported system operated in the near infra-red has a lower detection limit when operating in the visible spectrum due to the improved spatial resolution and numerical precision of the image sensor. The SPR biosensor presented here has an experimental detection limit of 9.8 × 10-7 refractive index unit. To validate the system as a biosensor, we also performed the detection of synthetic RNA from pathogenic Legionella pneumophila with the developed biosensing platform.

  9. [Study on the early detection of Sclerotinia of Brassica napus based on combinational-stimulated bands].

    PubMed

    Liu, Fei; Feng, Lei; Lou, Bing-gan; Sun, Guang-ming; Wang, Lian-ping; He, Yong

    2010-07-01

    The combinational-stimulated bands were used to develop linear and nonlinear calibrations for the early detection of sclerotinia of oilseed rape (Brassica napus L.). Eighty healthy and 100 Sclerotinia leaf samples were scanned, and different preprocessing methods combined with successive projections algorithm (SPA) were applied to develop partial least squares (PLS) discriminant models, multiple linear regression (MLR) and least squares-support vector machine (LS-SVM) models. The results indicated that the optimal full-spectrum PLS model was achieved by direct orthogonal signal correction (DOSC), then De-trending and Raw spectra with correct recognition ratio of 100%, 95.7% and 95.7%, respectively. When using combinational-stimulated bands, the optimal linear models were SPA-MLR (DOSC) and SPA-PLS (DOSC) with correct recognition ratio of 100%. All SPA-LSSVM models using DOSC, De-trending and Raw spectra achieved perfect results with recognition of 100%. The overall results demonstrated that it was feasible to use combinational-stimulated bands for the early detection of Sclerotinia of oilseed rape, and DOSC-SPA was a powerful way for informative wavelength selection. This method supplied a new approach to the early detection and portable monitoring instrument of sclerotinia.

  10. Acoustic facilitation of object movement detection during self-motion

    PubMed Central

    Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.

    2011-01-01

    In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050

  11. Indo-Pacific humpback dolphin occurrence north of Lantau Island, Hong Kong, based on year-round passive acoustic monitoring.

    PubMed

    Munger, Lisa; Lammers, Marc O; Cifuentes, Mattie; Würsig, Bernd; Jefferson, Thomas A; Hung, Samuel K

    2016-10-01

    Long-term passive acoustic monitoring (PAM) was conducted to study Indo-Pacific humpback dolphins, Sousa chinensis, as part of environmental impact assessments for several major coastal development projects in Hong Kong waters north of Lantau Island. Ecological acoustic recorders obtained 2711 days of recording at 13 sites from December 2012 to December 2014. Humpback dolphin sounds were manually detected on more than half of days with recordings at 12 sites, 8 of which were within proposed reclamation areas. Dolphin detection rates were greatest at Lung Kwu Chau, with other high-occurrence locations northeast of the Hong Kong International Airport and within the Lung Kwu Tan and Siu Ho Wan regions. Dolphin detection rates were greatest in summer and autumn (June-November) and were significantly reduced in spring (March-May) compared to other times of year. Click detection rates were significantly higher at night than during daylight hours. These findings suggest high use of many of the proposed reclamation/development areas by humpback dolphins, particularly at night, and demonstrate the value of long-term PAM for documenting spatial and temporal patterns in dolphin occurrence to help inform management decisions.

  12. Hazard Detection Analysis for a Forward-Looking Interferometer

    NASA Technical Reports Server (NTRS)

    West, Leanne; Gimmestad, Gary; Herkert, Ralph; Smith, William L.; Kireev, Stanislav; Schaffner, Philip R.; Daniels, Taumi S.; Cornman, Larry B.; Sharman, Robert; Weekley, Andrew; hide

    2010-01-01

    The Forward-Looking Interferometer (FLI) is a new instrument concept for obtaining the measurements required to alert flight crews to potential weather hazards to safe flight. To meet the needs of the commercial fleet, such a sensor should address multiple hazards to warrant the costs of development, certification, installation, training, and maintenance. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry (FTS) technologies that have been developed for satellite remote sensing. These technologies have also been applied to the detection of aerosols and gases for other purposes. The FLI concept is being evaluated for its potential to address multiple hazards including clear air turbulence (CAT), volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing during all phases of flight (takeoff, cruise, and landing). The research accomplished in this second phase of the FLI project was in three major areas: further sensitivity studies to better understand the potential capabilities and requirements for an airborne FLI instrument, field measurements that were conducted in an effort to provide empirical demonstrations of radiometric hazard detection, and theoretical work to support the development of algorithms to determine the severity of detected hazards

  13. Development of High Quantum Efficiency UV/Blue Photocathode Epitaxial Semiconductor Heterostructures for Scintillation and Cherenkov Radiation Detection

    NASA Technical Reports Server (NTRS)

    Leopold, Daniel J.

    2002-01-01

    The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.

  14. Advanced superconducting gradiometers for mine detection

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.

    1996-05-01

    Sensors incorporating superconducting quantum interference devices provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980s, the Coastal Systems Station (CSS) developed a superconducting magnetic gradiometer capable of operation outside of the laboratory environment. With this sensor, the CSS was able to demonstrate buried mine detection for the U.S. Navy. Subsequently, the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines Project. This sensor using thin film niobium and a new liquid helium cooling concept was developed to provide significant increases in sensitivity and detection range. In the late 1980s, a new class of `high- Tc' superconductor were discovered with critical temperatures above the boiling point of liquid nitrogen (77 K). This advance has opened up new opportunities for mine reconnaissance and hunting, especially for operation onboard small unmanned underwater vehicles. A high-Tc sensor concept using liquid nitrogen refrigeration has been developed and a test article of that concept is currently being evaluated for its applicability to mobile operation. The design principles for the two new sensor approaches and the results of their evaluations will be described. Finally, the implications of these advances to mine reconnaissance and hunting will be discussed.

  15. GNSS in real-time: Demonstration experiment at Berlin Airport International

    NASA Astrophysics Data System (ADS)

    Wickert, Jens; Dick, Galina; Ge, Maorong; Heise, Stefan; Li, XingXing; Ming, Shangguan; Nischan, Thomas; Ramatschi, Markus; Schuh, Harald; Alberding, Jürgen; Weigmann, Uwe

    2013-04-01

    Real-time (RT) applications are in focus of recent GNSS research. International activities related to the RT data collection and distribution, as well as provision of specific RT data products (e.g., satellite orbits and clocks, station coordinates) are coordinated within the Real-Time Project of the International GNSS Service (IGS). Currently IGS provides real-time data from more than 100 globally distributed GNSS ground stations. This number, in parallel with the extension of various additional international real-time networks, is continuously increasing. In parallel to the rapid development of GNSS RT activities also innovative geophysical applications were pioneered by GNSS research groups and institutions, including GFZ. One prominent example is the use of GNSS components in early warning systems. GNSS measurements can be used there for the rapid detection and characterization of deformation fields, related to earthquakes, which induce Tsunamis. Such deformation data cannot be provided by seismometer measurements, but are important for the prediction of the tsunami wave propagation caused by earthquakes. The GNSS real-time group at GFZ is involved in several research projects related to geophysical RT GNSS applications, and also operates one of the RT analysis centers of the IGS. We introduce results of a real-time GNSS demonstration project, which was performed in 2012 at the new Berlin International Airport BER at Schönefeld, south-east of Berlin city center. The main goal of the project was the demonstration of the functionality of a complex RT-PPP server-client solution for dynamic applications which was developed within a joint research project of GFZ and the company Alberding GmbH. Compared to the standard PPP (clock & orbit) this solution uses additional information (ionosphere, uncalibrated phase delays UPD) to increase the positioning accuracy and to reduce the convergence time. The major challenges of the experiment were the stable operation of the entire server-client system, the implementation of a mainly for scientific purposes developed software to a potentially commercial positioning solution, the real-time GNSS data management, and the generation and usage of the correction data. We evaluate the server-client system functionality and PPP results of the experiment in view of the project goals and indicate problems to be focused in future work. In addition, the GNSS data from a temporary ground station at the air-field was used to derive vertically integrated water vapor (IWV) data to demonstrate the potential of real-time water vapor data to improve the weather forecast at the airport. The IWV data are compared with measurements from nearby stations of the permanent German GNSS network for atmosphere sounding and with a water vapor radiometer, operated at GFZ.

  16. Summary Report of the Demonstration and Evaluation for the City/University EPSDT Day Care Project.

    ERIC Educational Resources Information Center

    Hierta, Ebba L., Ed.; Axelrod, Pearl G., Ed.

    This summary report from a 3-year research and demonstration project describes the framework, methods and materials used by the University of Michigan-Ann Arbor Early Periodic Screening Diagnosis and Treatment (EPSDT) Day Care Project. The project served approximately 750 children and their families through day care centers and family day care…

  17. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT SPRINGFIELD, OH. PROJECT SUMMARY

    EPA Science Inventory

    This document is a eight page summary of the final report on arsenic demonstration project at the Chateau Estates Mobile Home Park in Springfield, OH. The objectives of the project are to evaluate the effectiveness of AdEdge Technologies’ AD-33 media in removing arsenic to meet t...

  18. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. USEPA DEMONSTRATION PROJECT AT CLIMAX, MN. PROJECT SUMMARY

    EPA Science Inventory

    This document is an eight page summary of the final report on arsenic demonstration project at Climax, MN (EPA/600/R-06/152). The objectives of the project are to evaluate the effectiveness of the Kinetico iron removal system in removing arsenic to meet the new arsenic maximum co...

  19. The Social Security Administration's Youth Transition Demonstration Projects: Implementation Lessons from the Original Projects

    ERIC Educational Resources Information Center

    Martinez, John; Fraker, Thomas; Manno, Michelle; Baird, Peter; Mamun, Arif; O'Day, Bonnie; Rangarajan, Anu; Wittenburg, David

    2010-01-01

    This report focuses on the seven original Youth Transition Demonstration (YTD) projects selected for funding in 2003. Three of the original seven projects were selected for a national random assignment evaluation in 2005; however, this report only focuses on program operations prior to joining the random assignment evaluation for the three…

  20. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.

    PubMed

    Kay, Jeremy N; De la Huerta, Irina; Kim, In-Jung; Zhang, Yifeng; Yamagata, Masahito; Chu, Monica W; Meister, Markus; Sanes, Joshua R

    2011-05-25

    The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.

  1. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  2. Serving Gifted/Handicapped Preschoolers and Their Families: A Demonstration Project.

    ERIC Educational Resources Information Center

    Leonard, Judith E.; Cansler, Dorothy P.

    1980-01-01

    The Chapel Hill Training Outreach Project, a demonstration project for gifted/handicapped preschool children and their families, is described. Identification of the population is reviewed, and the criteria for admission to the program and curriculum content are discussed. (PHR)

  3. 5 CFR 890.1308 - Carrier participation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 890.1308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... Program Demonstration Project § 890.1308 Carrier participation. (a) All carriers who participate in the... project areas must participate in the demonstration project, except as provided for in paragraphs (b), (c...

  4. Assisting Newcomers through Employment and Support Services: An Evaluation of the New Americans Centers Demonstration Project in Arkansas and Iowa. Final Report

    ERIC Educational Resources Information Center

    Koralek, Robin; Johnson, Heidi; Ratcliffe, Caroline; Vericker, Tracy

    2010-01-01

    This report presents the final results for the evaluation of the New Americans Centers (NACs) demonstration project in Arkansas and Iowa. It focuses on program operations and plans for program sustainability, while highlighting services provided through the demonstration projects in Arkansas and Iowa. It also documents outcomes for New Iowan…

  5. Bilingual Readiness in Earliest School Years; A Curriculum Demonstration Project. Bilingual Readiness in Primary Grades; An Early Childhood Demonstration Project. Final Report.

    ERIC Educational Resources Information Center

    Finocchiaro, Mary; King, Paul F.

    These two curriculum demonstration projects on bilingual readiness in the earliest school years contain many similarities. Both were formed on the thesis that young children can and will learn a second language readily and that the urban classroom mixture of Spanish-speaking, English-speaking, and Negro-dialect speaking children can be capitalized…

  6. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific to help locate convergence zones for marine debris detection (i.e., the GhostNet project); (3) in marine sanctuaries for internal wave climatology in support of marine ecosystem studies, and vessel detection for sanctuary protection; and (4) in coastal areas for ocean feature mapping (eddies, river plumes, upwelling, fronts). These applications demonstrations have added to our understanding of ocean and atmospheric processes and their interaction, particularly in the coastal environment. A much improved knowledge of the highly variable nature of coastal winds such as gap winds and barrier jets is a good example of the contribution that SAR imagery and derived products have made to our understanding of coastal processes.

  7. Observations of coastal sediment dynamics of the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project, Imperial Beach, California

    USGS Publications Warehouse

    Warrick, Jonathan A.; Rosenberger, Kurt J.; Lam, Angela; Ferreiera, Joanne; Miller, Ian M.; Rippy, Meg; Svejkovsky, Jan; Mustain, Neomi

    2012-01-01

    Coastal restoration and management must address the presence, use, and transportation of fine sediment, yet little information exists on the patterns and/or processes of fine-sediment transport and deposition for these systems. To fill this information gap, a number of State of California, Federal, and private industry partners developed the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project ("Demonstration Project") with the purpose of monitoring the transport, fate, and impacts of fine sediment from beach-sediment nourishments in 2008 and 2009 near the Tijuana River estuary, Imperial Beach, California. The primary purpose of the Demonstration Project was to collect and provide information about the directions, rates, and processes of fine-sediment transport along and across a California beach and nearshore setting. To achieve these goals, the U.S. Geological Survey monitored water, beach, and seafloor properties during the 2008–2009 Demonstration Project. The project utilized sediment with ~40 percent fine sediment by mass so that the dispersal and transport of fine sediment would be easily recognizable. The purpose of this report is to present and disseminate the data collected during the physical monitoring of the Demonstration Project. These data are available online at the links noted in the "Additional Digital Information" section. Synthesis of these data and results will be provided in subsequent publications.

  8. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less

  9. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  10. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedges, Edward T.

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  11. Investigation on location dependent detectability in cone beam CT images with uniform and anatomical backgrounds

    NASA Astrophysics Data System (ADS)

    Han, Minah; Baek, Jongduk

    2017-03-01

    We investigate location dependent lesion detectability of cone beam computed tomography images for different background types (i.e., uniform and anatomical), image planes (i.e., transverse and longitudinal) and slice thicknesses. Anatomical backgrounds are generated using a power law spectrum of breast anatomy, 1/f3. Spherical object with a 5mm diameter is used as a signal. CT projection data are acquired by the forward projection of uniform and anatomical backgrounds with and without the signal. Then, projection data are reconstructed using the FDK algorithm. Detectability is evaluated by a channelized Hotelling observer with dense difference-of-Gaussian channels. For uniform background, off-centered images yield higher detectability than iso-centered images for the transverse plane, while for the longitudinal plane, detectability of iso-centered and off-centered images are similar. For anatomical background, off-centered images yield higher detectability for the transverse plane, while iso-centered images yield higher detectability for the longitudinal plane, when the slice thickness is smaller than 1.9mm. The optimal slice thickness is 3.8mm for all tasks, and the transverse plane at the off-center (iso-center and off-center) produces the highest detectability for uniform (anatomical) background.

  12. Demonstration Report: ESTCP UXO Discrimination Study ESTCP PROJECT # MM-0838

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika

    2010-02-15

    In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date,more » testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation will require demonstration to regulators of not only individual technologies, but of an entire decision making process. This characterization study was be the second phase in what is expected to be a continuing effort that will span several years. The FY06 Defense Appropriation contained funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program (ESTCP). ESTCP responded by conducting a UXO Discrimination Study at the former Camp Sibert, AL. The results of this first demonstration were very encouraging. Although conditions were favorable at this site, a single target of interest (4.2-in mortar) and benign topography and geology, all of the classification approaches demonstrated were able to correctly identify a sizable fraction of the anomalies as arising from non-hazardous items that could be safely left in the ground. To build upon the success of the first phase of this study, ESTCP sponsored a second study in 2009 at the former Camp San Luis Obispo, CA, a site with more challenging topography and a wider mix of targets-of-interest (TOI). There were two primary objectives of this study: (1) Test and validate detection and discrimination capabilities of currently available and emerging technologies on real sites under operational conditions; and (2) Investigate in cooperation with regulators and program managers how discrimination technologies can be implemented in cleanup operations.« less

  13. Measuring Primary Students' Graph Interpretation Skills Via a Performance Assessment: A case study in instrument development

    NASA Astrophysics Data System (ADS)

    Peterman, Karen; Cranston, Kayla A.; Pryor, Marie; Kermish-Allen, Ruth

    2015-11-01

    This case study was conducted within the context of a place-based education project that was implemented with primary school students in the USA. The authors and participating teachers created a performance assessment of standards-aligned tasks to examine 6-10-year-old students' graph interpretation skills as part of an exploratory research project. Fifty-five students participated in a performance assessment interview at the beginning and end of a place-based investigation. Two forms of the assessment were created and counterbalanced within class at pre and post. In situ scoring was conducted such that responses were scored as correct versus incorrect during the assessment's administration. Criterion validity analysis demonstrated an age-level progression in student scores. Tests of discriminant validity showed that the instrument detected variability in interpretation skills across each of three graph types (line, bar, dot plot). Convergent validity was established by correlating in situ scores with those from the Graph Interpretation Scoring Rubric. Students' proficiency with interpreting different types of graphs matched expectations based on age and the standards-based progression of graphs across primary school grades. The assessment tasks were also effective at detecting pre-post gains in students' interpretation of line graphs and dot plots after the place-based project. The results of the case study are discussed in relation to the common challenges associated with performance assessment. Implications are presented in relation to the need for authentic and performance-based instructional and assessment tasks to respond to the Common Core State Standards and the Next Generation Science Standards.

  14. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  15. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiser,J.H.; Adams, J.; Dietz, R..

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100'smore » of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow detection of up to seven PFTs at part per quadrillion levels (1015) with sample times as short as 60 seconds. The Continuous Dual-Trap Analyzer (CDTA) was developed for leak hunting applications and can continuously sample the air for PFTs without interruption. Sample time can be as short as 60 seconds. The CDTA has been extensively used in the commercial sector to detect PFTs that have been introduced to leaking buried dielectric fluid-filled cables or leaking subsurface gas lines. The PFTs travel through the cable or pipe until they reach the leak site. PFTs then escape into the surrounding soil and permeate/diffuse to the surface where they can be detected with the CDTA. Typically a cable is tagged with ppm levels of PFTs resulting in ppt to ppq concentrations in the air at the leak site. The CDTA is proven to be rugged, reliable and has a proven track record of successful leak location. The application of the CDTA to PFT detection for TTL is identical to application for leak detection. The CDTA operator has a general idea, with a few miles of roadway, where the leak is located, but no specific knowledge of the location (it can be any where along the road). The CDTA is mounted in a Chevy Astro Van and is dispatched to the field. In the field the van is driven at nominally 15 mph along the road. The CDTA continuously samples the air outside the van (via a 1/4-inch plastic sample tube stuck out a side window) until a positive detection occurs. The van then covers the road section where the detection occurred at a slightly slower pace to pin-point the area where the leak is and to direct soil probe samples. The soil probe samples take soil gas samples every 10 yards or so and the samples are analyzed on the CDTA. The leak can be located to within a few feet in 95% of the cases. To date the CDTA has been successful in every leak hunt performed by BNL. One interesting case was a leak hunt that resulted in repeated negative detections. The confidence in the CDTA forced the utility to recheck its 'plumbing' which lead to the discovery that a valve was turned that shouldn't have been so that gas was being diverted rather than leaking (the pressure drop was due to this diversion of the gas to another line). For TTL application, a tagged item or person is known to be in a general area and can be located by detecting the PFT emanating from the tagging source. The CDTA can be deployed in the area and by sampling in a grid fashion (starting on the downwind side of the area of interest) can easily find even very small sources. The CDTA is a perfect match for this application and the leak hunt use basically a simulation of Track and Locate. No other PFT detection technology has the detection sensitivity, proven track record and ruggedness of the CDTA. For these reasons, BNL offered to demonstrate the CDTA for TTL as a no cost addition to the TTL lidar demonstration project. This report details the demonstration scenario and results.« less

  16. Project management plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2010-12-01

    The Dallas Integrated Corridor Management System Demonstration Project is a multi-agency, de-centralized operation which will utilize a set of regional systems to integrate the operations of the corridor. The purpose of the Dallas ICM System is to im...

  17. Increasing seat belt use through state-level demonstration projects : a compendium of initial findings

    DOT National Transportation Integrated Search

    2008-08-01

    This report summarizes the efforts and results from four of six State-level demonstration projects supported with cooperative agreements from the National Highway Traffic Safety Administration. The projects were intended to increase seat belt use sta...

  18. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    NASA Astrophysics Data System (ADS)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  19. Access Restoration Project Task 1.2 Report 2 (of 2) Algorithms for Debris Volume and Water Depth Computation : Appendix A

    DOT National Transportation Integrated Search

    0000-01-01

    n the Access Restoration Project Task 1.2 Report 1, the algorithms for detecting roadway debris piles and flooded areas were described in detail. Those algorithms take CRS data as input and automatically detect the roadway obstructions. Although the ...

  20. 5 CFR 890.1307 - Data collection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1307 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... Program Demonstration Project § 890.1307 Data collection. Each carrier will compile, maintain, and when... demonstration project. (b) The number of eligible beneficiaries who elected to participate in the demonstration...

  1. National Ridesharing Demonstration Program : Employer and Community-Based Rideshare Promotion in Cincinnati, Ohio

    DOT National Transportation Integrated Search

    1985-01-01

    The Cincinnati ridesharing demonstration project (Project Rideshare) began in May 1980 to promote carpooling, vanpooling, and transit usage through the three-state area of greater Cincinnati. Key elements of the demonstration included employer-, comm...

  2. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus

    PubMed Central

    Bullock, Daniel; Barbas, Helen

    2016-01-01

    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective ‘framing’ effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders. PMID:26828203

  3. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  4. Lawrence Children's Health Project. A Demonstration of a Collaborative Brokering Model and School-Based EPSDT. Final Report.

    ERIC Educational Resources Information Center

    Himes, John H.; And Others

    The Lawrence (Massachusetts) Children's Health Project (LCHP) was a demonstration project consisting of an alternative approach to providing health care to children, many of whom were not receiving health services. The project was carried out by the Merrimack Education Center and focused on a school-based model for Early Periodic Screening,…

  5. Field transportable beta spectrometer. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Test Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies. One such capability being addressed by the D and D Focus Area is rapid characterization for facility contaminants. The technology was field demonstrated during the period January 7 through January 9, 1997, and offers several potentialmore » benefits, including faster turn-around time, cost reduction, and reduction in secondary waste. This report describes a PC controlled, field-transportable beta counter-spectrometer which uses solid scintillation coincident counting and low-noise photomultiplier tubes to count element-selective filters and other solid media. The dry scintillation counter used in combination with an element-selective technology eliminates the mess and disposal costs of liquid scintillation cocktails. Software in the instrument provides real-time spectral analysis. The instrument can detect and measure Tc-99, Sr-90, and other beta emitters reaching detection limits in the 20 pCi range (with shielding). Full analysis can be achieved in 30 minutes. The potential advantages of a field-portable beta counter-spectrometer include the savings gained from field generated results. The basis for decision-making is provided with a rapid turnaround analysis in the field. This technology would be competitive with the radiometric analysis done in fixed laboratories and the associated chain of custody operations.« less

  6. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, R P; Langlois, R G; Nasarabadi, S

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flowmore » cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.« less

  7. Automated recording of home cage activity and temperature of individual rats housed in social groups: The Rodent Big Brother project

    PubMed Central

    Tse, Karen; Grant, Claire; Keerie, Amy; Simpson, David J.; Pedersen, John C.; Rimmer, Victoria; Leslie, Lauren; Klein, Stephanie K.; Karp, Natasha A.; Sillito, Rowland; Chartsias, Agis; Lukins, Tim; Heward, James; Vickers, Catherine; Chapman, Kathryn; Armstrong, J. Douglas

    2017-01-01

    Measuring the activity and temperature of rats is commonly required in biomedical research. Conventional approaches necessitate single housing, which affects their behavior and wellbeing. We have used a subcutaneous radiofrequency identification (RFID) transponder to measure ambulatory activity and temperature of individual rats when group-housed in conventional, rack-mounted home cages. The transponder location and temperature is detected by a matrix of antennae in a baseplate under the cage. An infrared high-definition camera acquires side-view video of the cage and also enables automated detection of vertical activity. Validation studies showed that baseplate-derived ambulatory activity correlated well with manual tracking and with side-view whole-cage video pixel movement. This technology enables individual behavioral and temperature data to be acquired continuously from group-housed rats in their familiar, home cage environment. We demonstrate its ability to reliably detect naturally occurring behavioral effects, extending beyond the capabilities of routine observational tests and conventional monitoring equipment. It has numerous potential applications including safety pharmacology, toxicology, circadian biology, disease models and drug discovery. PMID:28877172

  8. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  9. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR.

    PubMed

    Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P

    2016-07-01

    The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

  10. Automated recording of home cage activity and temperature of individual rats housed in social groups: The Rodent Big Brother project.

    PubMed

    Redfern, William S; Tse, Karen; Grant, Claire; Keerie, Amy; Simpson, David J; Pedersen, John C; Rimmer, Victoria; Leslie, Lauren; Klein, Stephanie K; Karp, Natasha A; Sillito, Rowland; Chartsias, Agis; Lukins, Tim; Heward, James; Vickers, Catherine; Chapman, Kathryn; Armstrong, J Douglas

    2017-01-01

    Measuring the activity and temperature of rats is commonly required in biomedical research. Conventional approaches necessitate single housing, which affects their behavior and wellbeing. We have used a subcutaneous radiofrequency identification (RFID) transponder to measure ambulatory activity and temperature of individual rats when group-housed in conventional, rack-mounted home cages. The transponder location and temperature is detected by a matrix of antennae in a baseplate under the cage. An infrared high-definition camera acquires side-view video of the cage and also enables automated detection of vertical activity. Validation studies showed that baseplate-derived ambulatory activity correlated well with manual tracking and with side-view whole-cage video pixel movement. This technology enables individual behavioral and temperature data to be acquired continuously from group-housed rats in their familiar, home cage environment. We demonstrate its ability to reliably detect naturally occurring behavioral effects, extending beyond the capabilities of routine observational tests and conventional monitoring equipment. It has numerous potential applications including safety pharmacology, toxicology, circadian biology, disease models and drug discovery.

  11. Big Data Solution for CTBT Monitoring Using Global Cross Correlation

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Bobrov, D.; Dupont, A.; Grenouille, A.; Kitov, I. O.; Rozhkov, M.

    2014-12-01

    Due to the mismatch between data volume and the performance of the Information Technology infrastructure used in seismic data centers, it becomes more and more difficult to process all the data with traditional applications in a reasonable elapsed time. To fulfill their missions, the International Data Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO/IDC) and the Département Analyse Surveillance Environnement of Commissariat à l'Energie atomique et aux énergies alternatives (CEA/DASE) collect, process and produce complex data sets whose volume is growing exponentially. In the medium term, computer architectures, data management systems and application algorithms will require fundamental changes to meet the needs. This problem is well known and identified as a "Big Data" challenge. To tackle this major task, the CEA/DASE takes part during two years to the "DataScale" project. Started in September 2013, DataScale gathers a large set of partners (research laboratories, SMEs and big companies). The common objective is to design efficient solutions using the synergy between Big Data solutions and the High Performance Computing (HPC). The project will evaluate the relevance of these technological solutions by implementing a demonstrator for seismic event detections thanks to massive waveform correlations. The IDC has developed an expertise on such techniques leading to an algorithm called "Master Event" and provides a high-quality dataset for an extensive cross correlation study. The objective of the project is to enhance the Master Event algorithm and to reanalyze 10 years of waveform data from the International Monitoring System (IMS) network thanks to a dedicated HPC infrastructure operated by the "Centre de Calcul Recherche et Technologie" at the CEA of Bruyères-le-Châtel. The dataset used for the demonstrator includes more than 300,000 seismic events, tens of millions of raw detections and more than 30 terabytes of continuous seismic data from the primary IMS stations. In this talk, we will present the Master Event algorithm and the associated workflow, we will give an overview of the designed technical solutions (from the building blocks to the global infrastructure), and we will show the preliminary results at a regional scale.

  12. Northwestern Pennsylvania Cooperative Demonstration Project (High Technology). Final Report.

    ERIC Educational Resources Information Center

    Indiana Univ. of Pennsylvania. Center for Vocational Personnel Preparation.

    This document reports on a project designed to customize training for employees of manufacturing industries in six western Pennsylvania counties. Project goals were to facilitate collaborative vocational and technical training programs between educational institutions and private sector companies and to establish demonstration sites, manufacturing…

  13. Childhood Obesity Research Demonstration project: Cross-site evaluation method

    USDA-ARS?s Scientific Manuscript database

    The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which th...

  14. MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT

    EPA Science Inventory

    This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...

  15. Learning through a portfolio of carbon capture and storage demonstration projects

    NASA Astrophysics Data System (ADS)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  16. Monitoring wetlands change using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Hardin, D. L.

    1981-01-01

    A wetlands monitoring study was initiated as part of Delaware's LANDSAT applications demonstration project. Classifications of digital data are conducted in an effort to determine the location and acreage of wetlands loss or gain, species conversion, and application for the inventory and typing of freshwater wetlands. A multi-seasonal approach is employed to compare data from two different years. Unsupervised classifications were conducted for two of the four dates examined. Initial results indicate the multi-seasonal approach allows much better separation of wetland types for both tidal and non-tidal wetlands than either season alone. Change detection is possible but generally misses the small acreages now impacted by man.

  17. DANSSino: a pilot version of the DANSS neutrino detector

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kobyakin, A.; Medvedev, D.; Mizuk, R.; Novikov, E.; Olshevsky, A.; Rozov, S.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Yakushev, E.; Zhitnikov, I.; Zinatulina, D.

    2014-07-01

    DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant—KNPP). Numerous tests performed at a distance of 11 m from the reactor core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20 × 20 × 100 cm3), the pilot detector turned out to be quite sensitive to reactor antineutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.

  18. Oscillatory flow in the cochlea visualized by a magnetic resonance imaging technique.

    PubMed

    Denk, W; Keolian, R M; Ogawa, S; Jelinski, L W

    1993-02-15

    We report a magnetic resonance imaging technique that directly measures motion of cochlear fluids. It uses oscillating magnetic field gradients phase-locked to an external stimulus to selectively visualize and quantify oscillatory fluid motion. It is not invasive, and it does not require optical line-of-sight access to the inner ear. It permits the detection of displacements far smaller than the spatial resolution. The method is demonstrated on a phantom and on living rats. It is projected to have applications for auditory research, for the visualization of vocal tract dynamics during speech and singing, and for determination of the spatial distribution of mechanical relaxations in materials.

  19. Astronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Scheers, B.; Kersten, M.; Ivanova, M.; Nes, N.

    2012-09-01

    SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical data processing using examples from the Transient Key Project of the LOFAR radio telescope. In particular, how the LOFAR light-curve database of all detected sources can be constructed, by correlating sources across the spatial, frequency, time and polarisation domains.

  20. Automated Measurement and Verification and Innovative Occupancy Detection Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Phillip; Bruce, Nordman; Piette, Mary Ann

    In support of DOE’s sensors and controls research, the goal of this project is to move toward integrated building to grid systems by building on previous work to develop and demonstrate a set of load characterization measurement and evaluation tools that are envisioned to be part of a suite of applications for transactive efficient buildings, built upon data-driven load characterization and prediction models. This will include the ability to include occupancy data in the models, plus data collection and archival methods to include different types of occupancy data with existing networks and a taxonomy for naming these data within amore » Volttron agent platform.« less

Top