Towards Loophole-Free Optical Bell Test of CHSH Inequality
NASA Astrophysics Data System (ADS)
Tan, Yong-gang; Li, Hong-wei
2016-09-01
Bell test had been suggested to end the long-standing debate on the EPR paradox, while the imperfections of experimental devices induce some loopholes in Bell test experiments and hence the assumption of local reality by EPR cannot be excluded with current experimental results. In optical Bell test experiments, the locality loophole can be closed easily, while the attempt of closing detection loophole requires very high efficiency of single photon detectors. Previous studies showed that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality with maximally entangled states requires the detection efficiency to be higher than 82.8 %. In this paper, we raise a modified CHSH inequality that covers all measurement events including the efficient and inefficient detections in the Bell test and prove that all local hidden models can be excluded when the inequality is violated. We find that, when non-maximally entangled states are applied to the Bell test, the lowest detection efficiency for violation of the present inequality is 66.7 %. This makes it feasible to close the detection loophole and the locality loophole simultaneously in optical Bell test of CHSH inequality.
High resolution PET breast imager with improved detection efficiency
Majewski, Stanislaw
2010-06-08
A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.
Tracking photosynthetic efficiency with narrow-band spectroradiometry
NASA Technical Reports Server (NTRS)
Gamon, John A.; Field, Christopher B.
1992-01-01
Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.
Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes
NASA Astrophysics Data System (ADS)
Rosenfeld, Wenjamin; Burchardt, Daniel; Garthoff, Robert; Redeker, Kai; Ortegel, Norbert; Rau, Markus; Weinfurter, Harald
2017-07-01
An experimental test of Bell's inequality allows ruling out any local-realistic description of nature by measuring correlations between distant systems. While such tests are conceptually simple, there are strict requirements concerning the detection efficiency of the involved measurements, as well as the enforcement of spacelike separation between the measurement events. Only very recently could both loopholes be closed simultaneously. Here we present a statistically significant, event-ready Bell test based on combining heralded entanglement of atoms separated by 398 m with fast and efficient measurements of the atomic spin states closing essential loopholes. We obtain a violation with S =2.221 ±0.033 (compared to the maximal value of 2 achievable with models based on local hidden variables) which allows us to refute the hypothesis of local realism with a significance level P <2.57 ×10-9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabello, Adan
We introduce an extended version of a previous all-versus-nothing proof of impossibility of Einstein-Podolsky-Rosen's local elements of reality for two photons entangled both in polarization and path degrees of freedom (A. Cabello, quant-ph/0507259), which leads to a Bell's inequality where the classical bound is 8 and the quantum prediction is 16. A simple estimation of the detection efficiency required to close the detection loophole using this extended version gives {eta}>0.69. This efficiency is lower than that required for previous proposals.
A Smart DNA Tweezer for Detection of Human Telomerase Activity.
Xu, Xiaowen; Wang, Lei; Li, Kan; Huang, Qihong; Jiang, Wei
2018-03-06
Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG) n . TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold-mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/μL for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and ≥5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.
Early seizure detection in an animal model of temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Talathi, Sachin S.; Hwang, Dong-Uk; Ditto, William; Carney, Paul R.
2007-11-01
The performance of five seizure detection schemes, i.e., Nonlinear embedding delay, Hurst scaling, Wavelet Scale, autocorrelation and gradient of accumulated energy, in their ability to detect EEG seizures close to the seizure onset time were evaluated to determine the feasibility of their application in the development of a real time closed loop seizure intervention program (RCLSIP). The criteria chosen for the performance evaluation were, high statistical robustness as determined through the predictability index, the sensitivity and the specificity of a given measure to detect an EEG seizure, the lag in seizure detection with respect to the EEG seizure onset time, as determined through visual inspection and the computational efficiency for each detection measure. An optimality function was designed to evaluate the overall performance of each measure dependent on the criteria chosen. While each of the above measures analyzed for seizure detection performed very well in terms of the statistical parameters, the nonlinear embedding delay measure was found to have the highest optimality index due to its ability to detect seizure very close to the EEG seizure onset time, thereby making it the most suitable dynamical measure in the development of RCLSIP in rat model with chronic limbic epilepsy.
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.
2015-01-01
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P
2015-06-10
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272
Avionics-compatible video facial cognizer for detection of pilot incapacitation.
Steffin, Morris
2006-01-01
High-acceleration loss of consciousness is a serious problem for military pilots. In this laboratory, a video cognizer has been developed that in real time detects facial changes closely coupled to the onset of loss of consciousness. Efficient algorithms are compatible with video digital signal processing hardware and are thus configurable on an autonomous single board that generates alarm triggers to activate autopilot, and is avionics-compatible.
NASA Astrophysics Data System (ADS)
You, Lixing; Li, Hao; Zhang, Weijun; Yang, Xiaoyan; Zhang, Lu; Chen, Sijing; Zhou, Hui; Wang, Zhen; Xie, Xiaoming
2017-08-01
The detection efficiency (DE) of superconducting nanowire single-photon detectors (SNSPDs) at 1550 nm has been significantly improved in the past decades as a result of evolution of the optical structure, the materials, and the fabrication process. We discuss the general optical design for a high-efficiency SNSPD based on dielectric optical films that can detect wavelengths from visible to near infrared regions. This structure shows close-to-unity absorption and good insensitivity to the fine wavelength and the incident angle. We demonstrate an SNSPD specifically fabricated for the detection of 1064 nm wavelength with a maximal system DE of 87.4% ± 3.7%. The DEs of the SNSPDs for visible and near infrared wavelengths are also summarized and compared with those of semiconducting detectors.
Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun
2012-09-01
Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.
NASA Astrophysics Data System (ADS)
Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli
In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.
Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Shan, Yutong; Johnson, John A.; Morton, Timothy D.
2015-11-01
We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.
NASA Astrophysics Data System (ADS)
Tang, Yadong; Shi, Jian; Li, Sisi; Wang, Li; Cayre, Yvon E.; Chen, Yong
2014-08-01
Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.
Cross-Neutralization between Human and African Bat Mumps Viruses.
Katoh, Hiroshi; Kubota, Toru; Ihara, Toshiaki; Maeda, Ken; Takeda, Makoto; Kidokoro, Minoru
2016-04-01
Recently, a new paramyxovirus closely related to human mumps virus (MuV) was detected in bats. We generated recombinant MuVs carrying either or both of the fusion and hemagglutinin-neuraminidase bat virus glycoproteins. These viruses showed replication kinetics similar to human MuV in cultured cells and were neutralized efficiently by serum from healthy humans.
Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors
NASA Astrophysics Data System (ADS)
Zhao, Yiliang; Gaur, Girija; Mernaugh, Raymond L.; Laibinis, Paul E.; Weiss, Sharon M.
2016-09-01
Efficient mass transport through porous networks is essential for achieving rapid response times in sensing applications utilizing porous materials. In this work, we show that open-ended porous membranes can overcome diffusion challenges experienced by closed-ended porous materials in a microfluidic environment. A theoretical model including both transport and reaction kinetics is employed to study the influence of flow velocity, bulk analyte concentration, analyte diffusivity, and adsorption rate on the performance of open-ended and closed-ended porous sensors integrated with flow cells. The analysis shows that open-ended pores enable analyte flow through the pores and greatly reduce the response time and analyte consumption for detecting large molecules with slow diffusivities compared with closed-ended pores for which analytes largely flow over the pores. Experimental confirmation of the results was carried out with open- and closed-ended porous silicon (PSi) microcavities fabricated in flow-through and flow-over sensor configurations, respectively. The adsorption behavior of small analytes onto the inner surfaces of closed-ended and open-ended PSi membrane microcavities was similar. However, for large analytes, PSi membranes in a flow-through scheme showed significant improvement in response times due to more efficient convective transport of analytes. The experimental results and theoretical analysis provide quantitative estimates of the benefits offered by open-ended porous membranes for different analyte systems.
Vision Based Obstacle Detection in Uav Imaging
NASA Astrophysics Data System (ADS)
Badrloo, S.; Varshosaz, M.
2017-08-01
Detecting and preventing incidence with obstacles is crucial in UAV navigation and control. Most of the common obstacle detection techniques are currently sensor-based. Small UAVs are not able to carry obstacle detection sensors such as radar; therefore, vision-based methods are considered, which can be divided into stereo-based and mono-based techniques. Mono-based methods are classified into two groups: Foreground-background separation, and brain-inspired methods. Brain-inspired methods are highly efficient in obstacle detection; hence, this research aims to detect obstacles using brain-inspired techniques, which try to enlarge the obstacle by approaching it. A recent research in this field, has concentrated on matching the SIFT points along with, SIFT size-ratio factor and area-ratio of convex hulls in two consecutive frames to detect obstacles. This method is not able to distinguish between near and far obstacles or the obstacles in complex environment, and is sensitive to wrong matched points. In order to solve the above mentioned problems, this research calculates the dist-ratio of matched points. Then, each and every point is investigated for Distinguishing between far and close obstacles. The results demonstrated the high efficiency of the proposed method in complex environments.
Nanoparticles rapidly assess specific IgE in plasma
NASA Astrophysics Data System (ADS)
Ashraf, Sarmadia; Qadri, Shahnaz; al-Ramadi, Basel; Haik, Yousef
2012-08-01
Allergy is the sixth leading cause of chronic disease in the world. This study demonstrates the feasibility of detecting allergy indicators in human plasma, noninvasively, at the point of care and with a comparable efficiency and reduced turnaround time compared with the gold standard. Peanut allergy was utilized as a model due to its widespread occurrence among the US population and fatality if not treated. The detection procedure utilized magnetic nanoparticles that were coated with an allergen layer (peanut protein extract). Peanut immunoglobulin E (IgE) was detected in concentrations close to the minimum detection range of CAP assay. The results were obtained in minutes compared with the CAP assay which requires more than 3 h.
The detection of a population of submillimeter-bright, strongly lensed galaxies.
Negrello, Mattia; Hopwood, R; De Zotti, G; Cooray, A; Verma, A; Bock, J; Frayer, D T; Gurwell, M A; Omont, A; Neri, R; Dannerbauer, H; Leeuw, L L; Barton, E; Cooke, J; Kim, S; da Cunha, E; Rodighiero, G; Cox, P; Bonfield, D G; Jarvis, M J; Serjeant, S; Ivison, R J; Dye, S; Aretxaga, I; Hughes, D H; Ibar, E; Bertoldi, F; Valtchanov, I; Eales, S; Dunne, L; Driver, S P; Auld, R; Buttiglione, S; Cava, A; Grady, C A; Clements, D L; Dariush, A; Fritz, J; Hill, D; Hornbeck, J B; Kelvin, L; Lagache, G; Lopez-Caniego, M; Gonzalez-Nuevo, J; Maddox, S; Pascale, E; Pohlen, M; Rigby, E E; Robotham, A; Simpson, C; Smith, D J B; Temi, P; Thompson, M A; Woodgate, B E; York, D G; Aguirre, J E; Beelen, A; Blain, A; Baker, A J; Birkinshaw, M; Blundell, R; Bradford, C M; Burgarella, D; Danese, L; Dunlop, J S; Fleuren, S; Glenn, J; Harris, A I; Kamenetzky, J; Lupu, R E; Maddalena, R J; Madore, B F; Maloney, P R; Matsuhara, H; Michaowski, M J; Murphy, E J; Naylor, B J; Nguyen, H; Popescu, C; Rawlings, S; Rigopoulou, D; Scott, D; Scott, K S; Seibert, M; Smail, I; Tuffs, R J; Vieira, J D; van der Werf, P P; Zmuidzinas, J
2010-11-05
Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater.
Dobrowsky, P H; Carstens, M; De Villiers, J; Cloete, T E; Khan, W
2015-12-01
Many studies have concluded that roof harvested rainwater is susceptible to chemical and microbial contamination. The aim of the study was thus to conduct a preliminary investigation into the efficiency of a closed-coupled solar pasteurization system in reducing the microbiological load in harvested rainwater and to determine the change in chemical components after pasteurization. The temperature of the pasteurized tank water samples collected ranged from 55 to 57°C, 64 to 66°C, 72 to 74°C, 78 to 81°C and 90 to 91°C. Cations analyzed were within drinking water guidelines, with the exception of iron [195.59 μg/L (55°C)-170.1 μg/L (91°C)], aluminum [130.98 μg/L (78°C)], lead [12.81 μg/L (55°C)-13.2 μg/L (91°C)] and nickel [46.43 μg/L (55°C)-32.82 μg/L (78°C)], which were detected at levels above the respective guidelines in the pasteurized tank water samples. Indicator bacteria including, heterotrophic bacteria, Escherichia coli and total coliforms were reduced to below the detection limit at pasteurization temperatures of 72°C and above. However, with the use of molecular techniques Yersinia spp., Legionella spp. and Pseudomonas spp. were detected in tank water samples pasteurized at temperatures greater than 72°C. The viability of the bacteria detected in this study at the higher temperature ranges should thus be assessed before pasteurized harvested rainwater is used as a potable water source. In addition, it is recommended that the storage tank of the pasteurization system be constructed from an alternative material, other than stainless steel, in order for a closed-coupled pasteurization system to be implemented and produce large quantities of potable water from roof harvested rainwater. Copyright © 2015 Elsevier B.V. All rights reserved.
A closed-form solution to tensor voting: theory and applications.
Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard
2012-08-01
We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2013-09-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro .
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2014-01-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126
Target recognitions in multiple-camera closed-circuit television using color constancy
NASA Astrophysics Data System (ADS)
Soori, Umair; Yuen, Peter; Han, Ji Wen; Ibrahim, Izzati; Chen, Wentao; Hong, Kan; Merfort, Christian; James, David; Richardson, Mark
2013-04-01
People tracking in crowded scenes from closed-circuit television (CCTV) footage has been a popular and challenging task in computer vision. Due to the limited spatial resolution in the CCTV footage, the color of people's dress may offer an alternative feature for their recognition and tracking. However, there are many factors, such as variable illumination conditions, viewing angles, and camera calibration, that may induce illusive modification of intrinsic color signatures of the target. Our objective is to recognize and track targets in multiple camera views using color as the detection feature, and to understand if a color constancy (CC) approach may help to reduce these color illusions due to illumination and camera artifacts and thereby improve target recognition performance. We have tested a number of CC algorithms using various color descriptors to assess the efficiency of target recognition from a real multicamera Imagery Library for Intelligent Detection Systems (i-LIDS) data set. Various classifiers have been used for target detection, and the figure of merit to assess the efficiency of target recognition is achieved through the area under the receiver operating characteristics (AUROC). We have proposed two modifications of luminance-based CC algorithms: one with a color transfer mechanism and the other using a pixel-wise sigmoid function for an adaptive dynamic range compression, a method termed enhanced luminance reflectance CC (ELRCC). We found that both algorithms improve the efficiency of target recognitions substantially better than that of the raw data without CC treatment, and in some cases the ELRCC improves target tracking by over 100% within the AUROC assessment metric. The performance of the ELRCC has been assessed over 10 selected targets from three different camera views of the i-LIDS footage, and the averaged target recognition efficiency over all these targets is found to be improved by about 54% in AUROC after the data are processed by the proposed ELRCC algorithm. This amount of improvement represents a reduction of probability of false alarm by about a factor of 5 at the probability of detection of 0.5. Our study concerns mainly the detection of colored targets; and issues for the recognition of white or gray targets will be addressed in a forthcoming study.
Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos
NASA Astrophysics Data System (ADS)
Juneja, Medha; Grover, Priyanka
2013-12-01
Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.
NASA Astrophysics Data System (ADS)
Liang, Sheng-Fu; Chen, Yi-Chun; Wang, Yu-Lin; Chen, Pin-Tzu; Yang, Chia-Hsiang; Chiueh, Herming
2013-08-01
Objective. Around 1% of the world's population is affected by epilepsy, and nearly 25% of patients cannot be treated effectively by available therapies. The presence of closed-loop seizure-triggered stimulation provides a promising solution for these patients. Realization of fast, accurate, and energy-efficient seizure detection is the key to such implants. In this study, we propose a two-stage on-line seizure detection algorithm with low-energy consumption for temporal lobe epilepsy (TLE). Approach. Multi-channel signals are processed through independent component analysis and the most representative independent component (IC) is automatically selected to eliminate artifacts. Seizure-like intracranial electroencephalogram (iEEG) segments are fast detected in the first stage of the proposed method and these seizures are confirmed in the second stage. The conditional activation of the second-stage signal processing reduces the computational effort, and hence energy, since most of the non-seizure events are filtered out in the first stage. Main results. Long-term iEEG recordings of 11 patients who suffered from TLE were analyzed via leave-one-out cross validation. The proposed method has a detection accuracy of 95.24%, a false alarm rate of 0.09/h, and an average detection delay time of 9.2 s. For the six patients with mesial TLE, a detection accuracy of 100.0%, a false alarm rate of 0.06/h, and an average detection delay time of 4.8 s can be achieved. The hierarchical approach provides a 90% energy reduction, yielding effective and energy-efficient implementation for real-time epileptic seizure detection. Significance. An on-line seizure detection method that can be applied to monitor continuous iEEG signals of patients who suffered from TLE was developed. An IC selection strategy to automatically determine the most seizure-related IC for seizure detection was also proposed. The system has advantages of (1) high detection accuracy, (2) low false alarm, (3) short detection latency, and (4) energy-efficient design for hardware implementation.
NASA Astrophysics Data System (ADS)
Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.
2017-08-01
Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.
CCOMP: An efficient algorithm for complex roots computation of determinantal equations
NASA Astrophysics Data System (ADS)
Zouros, Grigorios P.
2018-01-01
In this paper a free Python algorithm, entitled CCOMP (Complex roots COMPutation), is developed for the efficient computation of complex roots of determinantal equations inside a prescribed complex domain. The key to the method presented is the efficient determination of the candidate points inside the domain which, in their close neighborhood, a complex root may lie. Once these points are detected, the algorithm proceeds to a two-dimensional minimization problem with respect to the minimum modulus eigenvalue of the system matrix. In the core of CCOMP exist three sub-algorithms whose tasks are the efficient estimation of the minimum modulus eigenvalues of the system matrix inside the prescribed domain, the efficient computation of candidate points which guarantee the existence of minima, and finally, the computation of minima via bound constrained minimization algorithms. Theoretical results and heuristics support the development and the performance of the algorithm, which is discussed in detail. CCOMP supports general complex matrices, and its efficiency, applicability and validity is demonstrated to a variety of microwave applications.
Multispectral processing based on groups of resolution elements
NASA Technical Reports Server (NTRS)
Richardson, W.; Gleason, J. M.
1975-01-01
Several nine-point rules are defined and compared with previously studied rules. One of the rules performed well in boundary areas, but with reduced efficiency in field interiors; another combined best performance on field interiors with good sensitivity to boundary detail. The basic threshold gradient and some modifications were investigated as a means of boundary point detection. The hypothesis testing methods of closed-boundary formation were also tested and evaluated. An analysis of the boundary detection problem was initiated, employing statistical signal detection and parameter estimation techniques to analyze various formulations of the problem. These formulations permit the atmospheric and sensor system effects on the data to be thoroughly analyzed. Various boundary features and necessary assumptions can also be investigated in this manner.
Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M
2013-02-01
Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. © 2012 John Wiley & Sons A/S.
Decoupled tracking and thermal monitoring of non-stationary targets.
Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng
2009-10-01
Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.
Direct tests of micro channel plates as the active element of a new shower maximum detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzhin, A.; Los, S.; Ramberg, E.
2015-05-22
We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. Furthermore, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.
Sensing Using Rare-Earth-Doped Upconversion Nanoparticles
Hao, Shuwei; Chen, Guanying; Yang, Chunhui
2013-01-01
Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480
NASA Astrophysics Data System (ADS)
Van Eeghem, Anabelle; Werquin, Sam; Hoste, Jan-Willem; Goes, Arne; Vanderleyden, Els; Bienstman, Peter; Dubruel, Peter
2017-05-01
In this paper, a method for detection of DNA molecules using silicon-on-insulator (SOI) microring resonators is described. The influence of temperature and the use of formamide on the hybridization efficiency were studied. It was shown that 50 v/v% of formamide in the hybridization buffer can ensure hybridization when working close to physiological temperature. Furthermore, the use of hexaethylene glycol (HEG) as backfilling agent was studied in order to resolve issues of non-specific adsorption to the surface. The results indicated that not only non-specific binding was reduced significantly but also that HEG improves the orientation of the DNA probes on the surface. This led to a 4-fold increase in hybridization efficiency and thus in an equal decrease in the detection limit, compared to hybridization without the use of HEG. An improvement in robustness of the assay was also observed. This DNA reorientation hypothesis was confirmed by studying the thickness and density of the layers by using dual polarization microring sensing. Finally, the different steps in the sensing experiment were characterized in more detail by static contact angle (SCA) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed quantitatively that the surface modifications were successful.
Progress towards a loophole-free test of nonlocality
NASA Astrophysics Data System (ADS)
McCusker, Kevin; Christensen, Bradley; Kwiat, Paul; Altepeter, Joseph
2012-02-01
We report on our progress towards a loophole-free test of nonlocality using spontaneous parametric down-conversion (SPDC). While the timing loophole can be easily closed in such a system by moving the detectors far apart [1], closing the detector loophole is significantly more difficult. In the standard Bell entangled states with the maximal violation of the CHSH inequality [2], an overall efficiency of 83% is required. This limit can be lowered to 67% by using non-maximally entangled states (although sensitivity to noise is greatly increased) [3]. We are carefully engineering our source to achieve maximal heralding efficiency, by optimizing both the spatial and spectral filtering, while keeping noise low using high-extinction-ratio polarizing beamsplitters. Combined with high-efficiency detectors, either optimized visible-light photon counters [4] or transition-edge sensors [5], closure of the detection loophole is within reach. [4pt] [1] G. Weihs et al., Phys. Rev. Lett. 81, 5039 (1998).[2] J. F. Clauser et al., Phys. Rev. Lett. 23, 880 (1969).[3] P.H. Eberhard, Phys. Rev. A 47, R747 (1993).[4] S. Takeuchi et al., Appl. Phys. Lett. 74, 1063 (1999).[5] A. E. Lita, A. J. Miller, and S. Nam, Opt. Exp. 16, 3032 (2008).
Bayesian Multiscale Modeling of Closed Curves in Point Clouds
Gu, Kelvin; Pati, Debdeep; Dunson, David B.
2014-01-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a ‘central curve’ that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem. PMID:25544786
Wu, Chinglin; Zhong, Suyu; Chen, Hsuehchih
2016-01-01
Remote association is a core ability that influences creative output. In contrast to close association, remote association is commonly agreed to be connected with more original and unique concepts. However, although existing studies have discovered that creativity is closely related to the white-matter structure of the brain, there are no studies that examine the relevance between the connectivity efficiencies and creativity of the brain regions from the perspective of networks. Consequently, this study constructed a brain white matter network structure that consisted of cerebral tissues and nerve fibers and used graph theory to analyze the connection efficiencies among the network nodes, further illuminating the differences between remote and close association in relation to the connectivity of the brain network. Researchers analyzed correlations between the scores of 35 healthy adults with regard to remote and close associations and the connectivity efficiencies of the white-matter network of the brain. Controlling for gender, age, and verbal intelligence, the remote association positively correlated with the global efficiency and negatively correlated with the levels of small-world. A close association negatively correlated with the global efficiency. Notably, the node efficiency in the middle temporal gyrus (MTG) positively correlated with remote association and negatively correlated with close association. To summarize, remote and close associations work differently as patterns in the brain network. Remote association requires efficient and convenient mutual connections between different brain regions, while close association emphasizes the limited connections that exist in a local region. These results are consistent with previous results, which indicate that creativity is based on the efficient integration and connection between different regions of the brain and that temporal lobes are the key regions for discriminating remote and close associations. PMID:27760177
A simple system for detection of EEG artifacts in polysomnographic recordings.
Durka, P J; Klekowicz, H; Blinowska, K J; Szelenberger, W; Niemcewicz, Sz
2003-04-01
We present an efficient parametric system for automatic detection of electroencephalogram (EEG) artifacts in polysomnographic recordings. For each of the selected types of artifacts, a relevant parameter was calculated for a given epoch. If any of these parameters exceeded a threshold, the epoch was marked as an artifact. Performance of the system, evaluated on 18 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the interexpert agreement and the repeatability of expert's decisions, assessed via a double-blind test. Complete software (Matlab source code) for the presented system is freely available from the Internet at http://brain.fuw.edu.pl/artifacts.
Sequential detection of learning in cognitive diagnosis.
Ye, Sangbeak; Fellouris, Georgios; Culpepper, Steven; Douglas, Jeff
2016-05-01
In order to look more closely at the many particular skills examinees utilize to answer items, cognitive diagnosis models have received much attention, and perhaps are preferable to item response models that ordinarily involve just one or a few broadly defined skills, when the objective is to hasten learning. If these fine-grained skills can be identified, a sharpened focus on learning and remediation can be achieved. The focus here is on how to detect when learning has taken place for a particular attribute and efficiently guide a student through a sequence of items to ultimately attain mastery of all attributes while administering as few items as possible. This can be seen as a problem in sequential change-point detection for which there is a long history and a well-developed literature. Though some ad hoc rules for determining learning may be used, such as stopping after M consecutive items have been successfully answered, more efficient methods that are optimal under various conditions are available. The CUSUM, Shiryaev-Roberts and Shiryaev procedures can dramatically reduce the time required to detect learning while maintaining rigorous Type I error control, and they are studied in this context through simulation. Future directions for modelling and detection of learning are discussed. © 2016 The British Psychological Society.
The MetaTelescope, a System for the Detection of Objects in Low and Higher Earth Orbits
NASA Astrophysics Data System (ADS)
Boer, M.
We present an original design involving several telescopes for the detection of mobiles in space over a very wide field of view. The system uses relatively simple and cheap telescopes associated with commercial CCD cameras that can be placed either in a single location or in relatively close (100m - 10km) locations. This last set-up opens the possibility of detecting parallaxes, but sky conditions should remain almost identical. Areas on the order of 800 square degrees can be surveyed. The system is versatile, i.e. it can detect and follow up objects either in the LEO or higher orbits. We will present the system, how it can be operated in order to have a more efficient setup while using even less telescopes, and possible implementations for space surveillance activities.
Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers
NASA Technical Reports Server (NTRS)
Monson, D. J.
1976-01-01
Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.
A closed-loop compressive-sensing-based neural recording system.
Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S; Hsiao, Steven; Tran, Trac D; Yazicioglu, Firat; Etienne-Cummings, Ralph
2015-06-01
This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm(2)/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.
Deng, Mingjun; Kuo, Dave T F; Wu, Qihang; Zhang, Ying; Liu, Xinyu; Liu, Shengyu; Hu, Xiaodong; Mai, Bixian; Liu, Zhineng; Zhang, Haozhi
2018-05-01
The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L -1 to 103.91 ng L -1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L -1 , respectively. Thirteen regulated heavy metals - including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) - have been detected in all wastewater samples at sub-mg L -1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pohlmann, Anne; Starick, Elke; Harder, Timm; Grund, Christian; Höper, Dirk; Globig, Anja; Staubach, Christoph; Dietze, Klaas; Strebelow, Günter; Ulrich, Reiner G; Schinköthe, Jan; Teifke, Jens P; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin
2017-04-01
In November 2016, an influenza A(H5N8) outbreak caused deaths of wild birds and domestic poultry in Germany. Clade 2.3.4.4 virus was closely related to viruses detected at the Russia-Mongolia border in 2016 but had new polymerase acidic and nucleoprotein segments. These new strains may be more efficiently transmitted to and shed by birds.
A proposed technique for the Venus balloon telemetry and Doppler frequency recovery
NASA Technical Reports Server (NTRS)
Jurgens, R. F.; Divsalar, D.
1985-01-01
A technique is proposed to accurately estimate the Doppler frequency and demodulate the digitally encoded telemetry signal that contains the measurements from balloon instruments. Since the data are prerecorded, one can take advantage of noncausal estimators that are both simpler and more computationally efficient than the usual closed-loop or real-time estimators for signal detection and carrier tracking. Algorithms for carrier frequency estimation subcarrier demodulation, bit and frame synchronization are described. A Viterbi decoder algorithm using a branch indexing technique has been devised to decode constraint length 6, rate 1/2 convolutional code that is being used by the balloon transmitter. These algorithms are memory efficient and can be implemented on microcomputer systems.
Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A; Collados, Raquel; Berruete, Isabel M; López, María M
2011-01-01
Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material.
Cobb, K A; Novotny, M V
1992-01-01
The use of two different amino acid-selective fluorogenic reagents for the derivatization of peptides is investigated. One such scheme utilizes a selective reaction of benzoin with the guanidine moiety to derivatize arginine residues occurring in a peptide. The second scheme involves the formylation of tyrosine, followed by reaction with 4-methoxy-1,2-phenylenediamine. The use of capillary electrophoresis and laser-induced fluorescence detection allows enhanced efficiencies and sensitivities to be obtained for the separations of either arginine- or tyrosine-containing peptides. A helium-cadmium laser (325 nm) is ideally suited for the laser-based detection system due to a close match of the excitation maxima of derivatized peptides from both reactions. A detection limit of 270 amol is achieved for model arginine-containing peptides, while the detection limit for model tyrosine-containing peptides is measured at 390 amol. Both derivatization reactions are found to be useful for high-sensitivity peptide mapping applications in which only the peptides containing the derivatized amino acids are detected.
An efficient semi-supervised community detection framework in social networks.
Li, Zhen; Gong, Yong; Pan, Zhisong; Hu, Guyu
2017-01-01
Community detection is an important tasks across a number of research fields including social science, biology, and physics. In the real world, topology information alone is often inadequate to accurately find out community structure due to its sparsity and noise. The potential useful prior information such as pairwise constraints which contain must-link and cannot-link constraints can be obtained from domain knowledge in many applications. Thus, combining network topology with prior information to improve the community detection accuracy is promising. Previous methods mainly utilize the must-link constraints while cannot make full use of cannot-link constraints. In this paper, we propose a semi-supervised community detection framework which can effectively incorporate two types of pairwise constraints into the detection process. Particularly, must-link and cannot-link constraints are represented as positive and negative links, and we encode them by adding different graph regularization terms to penalize closeness of the nodes. Experiments on multiple real-world datasets show that the proposed framework significantly improves the accuracy of community detection.
A loophole-free Bell's inequality experiment
NASA Astrophysics Data System (ADS)
Kwiat, Paul G.; Steinberg, Aephraim M.; Chiao, Raymond Y.; Eberhard, Philippe H.
1994-05-01
The proof of Nature's nonlocality through Bell-type experiments is a topic of longstanding interest. Nevertheless, no experiments performed thus far have avoided the so-called 'detection loophole,' arising from low detector efficiencies and angular-correlation difficulties. In fact, most, if not all, of the systems employed to date can never close this loophole, even with perfect detectors. In addition, another loophole involving the non-rapid, non-random switching of various parameter settings exists in all past experiments. We discuss a proposal for a potentially loophole-free Bell's inequality experiment. The source of the EPR-correlated pairs consists of two simultaneously-pumped type-2 phase-matched nonlinear crystals and a polarizing beam splitter. The feasibility of such a scheme with current detector technology seems high, and will be discussed. We also present a single-crystal version, motivated by other work presented at this conference. In a separate experiment, we have measured the absolute detection efficiency and time response of four single-photon detectors. The highest observed efficiencies were 70.7 plus or minus 1.9 percent (at 633 nm, with a device from Rockwell International) and 76.4 plus or minus 2.3 percent (at 702 nm, with an EG&G counting module). Possible efficiencies as high as 90 percent were implied. The EG&G devices displayed sub-nanosecond time resolution.
A loophole-free Bell's inequality experiment
NASA Technical Reports Server (NTRS)
Kwiat, Paul G.; Steinberg, Aephraim M.; Chiao, Raymond Y.; Eberhard, Philippe H.
1994-01-01
The proof of Nature's nonlocality through Bell-type experiments is a topic of longstanding interest. Nevertheless, no experiments performed thus far have avoided the so-called 'detection loophole,' arising from low detector efficiencies and angular-correlation difficulties. In fact, most, if not all, of the systems employed to date can never close this loophole, even with perfect detectors. In addition, another loophole involving the non-rapid, non-random switching of various parameter settings exists in all past experiments. We discuss a proposal for a potentially loophole-free Bell's inequality experiment. The source of the EPR-correlated pairs consists of two simultaneously-pumped type-2 phase-matched nonlinear crystals and a polarizing beam splitter. The feasibility of such a scheme with current detector technology seems high, and will be discussed. We also present a single-crystal version, motivated by other work presented at this conference. In a separate experiment, we have measured the absolute detection efficiency and time response of four single-photon detectors. The highest observed efficiencies were 70.7 plus or minus 1.9 percent (at 633 nm, with a device from Rockwell International) and 76.4 plus or minus 2.3 percent (at 702 nm, with an EG&G counting module). Possible efficiencies as high as 90 percent were implied. The EG&G devices displayed sub-nanosecond time resolution.
Imitation-tumor targeting based on continuous-wave near-infrared tomography.
Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei
2017-12-01
Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.
Trangoni, Marcos D; Gioffré, Andrea K; Cravero, Silvio L
2017-01-01
LAMP (loop-mediated isothermal amplification) is an isothermal nucleic acid amplification technique that is characterized by its efficiency, rapidity, high yield of final product, robustness, sensitivity, and specificity, with the blueprint that it can be implemented in laboratories of low technological complexity. Despite the conceptual complexity underlying the mechanistic basis for the nucleic acid amplification, the technique is simple to use and the amplification and detection can be carried out in just one step. In this chapter, we present a protocol based on LAMP for the rapid identification of isolates of Brucella spp. and Mycobacterium avium subsp. paratuberculosis, two major bacterial pathogens in veterinary medicine.
Oxygen sensor signal validation for the safety of the rebreather diver.
Sieber, Arne; L'abbate, Antonio; Bedini, Remo
2009-03-01
In electronically controlled, closed-circuit rebreather diving systems, the partial pressure of oxygen inside the breathing loop is controlled with three oxygen sensors, a microcontroller and a solenoid valve - critical components that may fail. State-of-the-art detection of sensor failure, based on a voting algorithm, may fail under circumstances where two or more sensors show the same but incorrect values. The present paper details a novel rebreather controller that offers true sensor-signal validation, thus allowing efficient and reliable detection of sensor failure. The core components of this validation system are two additional solenoids, which allow an injection of oxygen or diluent gas directly across the sensor membrane.
Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Y. H.; He, Q. L.; Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China
2013-04-29
Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.
Flux transformers made of commercial high critical temperature superconducting wires.
Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M
2008-02-01
We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.
Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube
Bondarev, I. V.
2015-01-01
Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.
3D-printed focused collimator for intra-operative gamma-ray detection
NASA Astrophysics Data System (ADS)
Holdsworth, David W.; Nikolov, Hristo N.; Pollmann, Steven I.
2017-03-01
Recent developments in targeted radiopharmaceutical labels have increased the need for sensitive, real-time gamma detection during cancer surgery and biopsy. Additive manufacturing (3D printing) in metal has now made it possible to design and fabricate complex metal collimators for compact gamma probes. We describe the design and implementation of a 3D-printed focused collimator that allows for real-time detection of gamma radiation from within a small volume of interest, using a single-crystal large-area detector. The collimator was fabricated using laser melting of powdered stainless steel (316L), using a commercial 3D metal printer (AM125, Renishaw plc). The prototype collimator is 20 mm thick, with hexagonal close-packed holes designed to focus to a point 35 mm below the surface of the collimator face. Tests were carried out with a low-activity (<1 μCi) 241 Am source, using a conventional gamma-ray detector probe, incorporating a 2.5 cm diameter, 2.5 cm thick NaI crystal coupled to a photomultiplier. The measured full-width half maximum (FWHM) was less than 5.6 mm, and collimator detection efficiency was 44%. The ability to fabricate fine features in solid metal makes it possible to develop optimized designs for high-efficiency, focused gamma collimators for real-time intraoperative imaging applications.
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-01-01
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations. PMID:28406449
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control.
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-04-13
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations.
Quan, Ji; Hu, Zeshu
2018-01-01
Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562
Evaluation of DNA barcode candidates for the discrimination of Artemisia L.
Liu, Geyu; Ning, Huixia; Ayidaerhan, Nurbolati; Aisa, Haji Akber
2017-11-01
Because of the very similar morphologies and wide diversity of Artemisia L. varieties, they are difficult to identify, and there have been many arguments about the systematic classification Artemisia L., especially concerning the division of species. DNA barcode technology is used to rapidly identify species based on standard short DNA sequences. To evaluate seven candidate DNA barcodes (ITS, ITS2, psbA-trnH, rbcL, matK, rpoB, and rpoC1) regarding their ability to identify closely related species of the Artemisia genus in Xinjiang. The corresponding PCR amplification efficiency, detectable genetic divergence, identification efficiency and phylogenetic tree were assessed. We found that the internal transcribed spacer (ITS) region exhibited the highest interspecific divergence, which was significantly higher than the observed intraspecific variation and showed the highest identification efficiency, followed by ITS2, psbA-trnH and, finally, rpoB. matK, rbcL, and rpoC1 performed poorly in this evaluation. ITS, ITS2, and psbA-trnH were able to perfectly identify the tested species Artemisia annua, A. absinthium, A. rupestris, A. tonurnefortiana, A. austriaca, A. dracunculus, A. vulgaris, and A. macrocephala. Therefore, we propose the ITS, ITS2, and psbA-trnH regions as promising DNA barcodes for the closely related species of Artemisia L. in Xinjiang.
Optimizing Imaging Instruments for Emission Mammography
NASA Astrophysics Data System (ADS)
Weinberg, Irving N.
1996-05-01
Clinical studies have demonstrated that radiotracer methods can noninvasively detect breast cancers in vivo(L.P. Adler, J.P.Crowe, N.K. Al-Kaisis, et al, Radiology 187,743-750 (1993)) (I. Khalkhali, I. Mena, E. Jouanne, et al, J. Am. Coll. Surg. 178, 491-497 (1994)). Due to spatial resolution and count efficiency considerations, users of conventional nuclear medicine instruments have had difficulty in detecting subcentimeter cancers. This limitation is unfortunate, since cancer therapy is generally most efficacious when tumor diameter at detection is less than a centimeter. A more subtle limitation of conventional nuclear medicine imaging instruments is that they are poorly suited to guiding interventions. With the assistance of C.J. Thompson from McGill University, and the CEBAF Detector Physics Group, we have explored the possibility of configuring detectors for nuclear medicine imaging devices into geometries that resemble conventional x-ray mammography cameras(I.N. Weinberg, U.S.Patent 5,252,830 (1993)). Phantom and pilot clinical studies suggest that applying breast compression within such geometries may offer several advantages(C.J. Thompson, K. Murthy, I.N. Weinberg, et al, Med. Physics 21, 259-538 (1994)): For coincident detection of positron emitters, efficiency and spatial resolution are improved by bringing the detectors very close to the source (the breast tumor). For single-photon detection, attenuation due to overlying tissue is reduced. Since, for a high-efficiency collimator, spatial resolution worsens with increasing source to collimator distance, adoption of compression allows more efficient collimators to be employed. Economics are favorable in that detectors can be deployed in the region of interest, rather than around the entire body, and that such detectors can be mounted in conventional mammographic gantries. The application of conventional mammographic geometry promises to assist physicians in conducting radiotracer-guided biopsies, and in correlating biochemical with x-ray data. The primary challenge of conducting studies with dedicated emission mammography devices has been dealing with high count rates due to cardiac activity.
Automated Detection and Closing of Holes in Aerial Point Clouds Using AN Uas
NASA Astrophysics Data System (ADS)
Fiolka, T.; Rouatbi, F.; Bender, D.
2017-08-01
3D terrain models are an important instrument in areas like geology, agriculture and reconnaissance. Using an automated UAS with a line-based LiDAR can create terrain models fast and easily even from large areas. But the resulting point cloud may contain holes and therefore be incomplete. This might happen due to occlusions, a missed flight route due to wind or simply as a result of changes in the ground height which would alter the swath of the LiDAR system. This paper proposes a method to detect holes in 3D point clouds generated during the flight and adjust the course in order to close them. First, a grid-based search for holes in the horizontal ground plane is performed. Then a check for vertical holes mainly created by buildings walls is done. Due to occlusions and steep LiDAR angles, closing the vertical gaps may be difficult or even impossible. Therefore, the current approach deals with holes in the ground plane and only marks the vertical holes in such a way that the operator can decide on further actions regarding them. The aim is to efficiently create point clouds which can be used for the generation of complete 3D terrain models.
Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip
2017-10-11
Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.
NASA Astrophysics Data System (ADS)
van den Berg, Maureen C.
2015-08-01
The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim, E-mail: sjchung@kasi.re.kr, E-mail: leecu@kasi.re.kr, E-mail: koojr@kasi.re.kr
2014-04-20
Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCPmore » events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M {sub E} planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M {sub E} planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.« less
THE THOMSON SURFACE. I. REALITY AND MYTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu
2012-06-20
The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the 'Thomson surface', the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90 Degree-Sign range of solar exit angles at each given position in the imagemore » plane. We call this range of angles the 'Thomson plateau'. We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.« less
Ball, Cameron S; Light, Yooli K; Koh, Chung-Yan; Wheeler, Sarah S; Coffey, Lark L; Meagher, Robert J
2016-04-05
Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of the reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read "quasar"), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). Furthermore, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.
Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering
NASA Astrophysics Data System (ADS)
Wittmann, Bernhard; Ramelow, Sven; Steinlechner, Fabian; Langford, Nathan K.; Brunner, Nicolas; Wiseman, Howard M.; Ursin, Rupert; Zeilinger, Anton
2012-05-01
Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there remains the crucial challenge of simultaneously closing all major loopholes—the locality, freedom-of-choice and detection loopholes—in a single experiment. An important sub-class of local realistic theories can be tested with the concept of ‘steering’. The term ‘steering’ was introduced by Schrödinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein-Podolsky-Rosen (EPR) argument. Einstein called this ‘spooky action at a distance’. EPR-steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization-entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we exclude—for the first time loophole-free—an important class of local realistic theories considered by EPR. Besides its foundational importance, loophole-free steering also allows the distribution of quantum entanglement secure event in the presence of an untrusted party.
Quantitative three-dimensional transrectal ultrasound (TRUS) for prostate imaging
NASA Astrophysics Data System (ADS)
Pathak, Sayan D.; Aarnink, Rene G.; de la Rosette, Jean J.; Chalana, Vikram; Wijkstra, Hessel; Haynor, David R.; Debruyne, Frans M. J.; Kim, Yongmin
1998-06-01
With the number of men seeking medical care for prostate diseases rising steadily, the need of a fast and accurate prostate boundary detection and volume estimation tool is being increasingly experienced by the clinicians. Currently, these measurements are made manually, which results in a large examination time. A possible solution is to improve the efficiency by automating the boundary detection and volume estimation process with minimal involvement from the human experts. In this paper, we present an algorithm based on SNAKES to detect the boundaries. Our approach is to selectively enhance the contrast along the edges using an algorithm called sticks and integrate it with a SNAKES model. This integrated algorithm requires an initial curve for each ultrasound image to initiate the boundary detection process. We have used different schemes to generate the curves with a varying degree of automation and evaluated its effects on the algorithm performance. After the boundaries are identified, the prostate volume is calculated using planimetric volumetry. We have tested our algorithm on 6 different prostate volumes and compared the performance against the volumes manually measured by 3 experts. With the increase in the user inputs, the algorithm performance improved as expected. The results demonstrate that given an initial contour reasonably close to the prostate boundaries, the algorithm successfully delineates the prostate boundaries in an image, and the resulting volume measurements are in close agreement with those made by the human experts.
Closed flume inlet efficiency.
DOT National Transportation Integrated Search
2014-04-01
The goal of the present study was to determine the efficiency of a specific culvert geometry, labeled as : Index 216 Closed Flume Inlet (CFI) in the FDOTs Design Standards, and to determine if geometric changes : affect the efficiency of the curre...
Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply
NASA Astrophysics Data System (ADS)
Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.
2015-06-01
Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.
Strategies to Improve Efficiency and Specificity of Degenerate Primers in PCR.
Campos, Maria Jorge; Quesada, Alberto
2017-01-01
PCR with degenerate primers can be used to identify the coding sequence of an unknown protein or to detect a genetic variant within a gene family. These primers, which are complex mixtures of slightly different oligonucleotide sequences, can be optimized to increase the efficiency and/or specificity of PCR in the amplification of a sequence of interest by the introduction of mismatches with the target sequence and balancing their position toward the primers 5'- or 3'-ends. In this work, we explain in detail examples of rational design of primers in two different applications, including the use of specific determinants at the 3'-end, to: (1) improve PCR efficiency with coding sequences for members of a protein family by fully degeneration at a core box of conserved genetic information, with the reduction of degeneration at the 5'-end, and (2) optimize specificity of allelic discrimination of closely related orthologous by 5'-end degenerate primers.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-01-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel
2016-10-01
Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.
Efficient coding and detection of ultra-long IDs for visible light positioning systems.
Zhang, Hualong; Yang, Chuanchuan
2018-05-14
Visible light positioning (VLP) is a promising technique to complement Global Navigation Satellite System (GNSS) such as Global positioning system (GPS) and BeiDou Navigation Satellite System (BDS) which features the advantage of low-cost and high accuracy. The situation becomes even more crucial for indoor environments, where satellite signals are weak or even unavailable. For large-scale application of VLP, there would be a considerable number of Light emitting diode (LED) IDs, which bring forward the demand of long LED ID detection. In particular, to provision indoor localization globally, a convenient way is to program a unique ID into each LED during manufacture. This poses a big challenge for image sensors, such as the CMOS camera in everybody's hands since the long ID covers the span of multiple frames. In this paper, we investigate the detection of ultra-long ID using rolling shutter cameras. By analyzing the pattern of data loss in each frame, we proposed a novel coding technique to improve the efficiency of LED ID detection. We studied the performance of Reed-Solomon (RS) code in this system and designed a new coding method which considered the trade-off between performance and decoding complexity. Coding technique decreases the number of frames needed in data processing, significantly reduces the detection time, and improves the accuracy of detection. Numerical and experimental results show that the detected LED ID can be much longer with the coding technique. Besides, our proposed coding method is proved to achieve a performance close to that of RS code while the decoding complexity is much lower.
Detection of Unknown LEO Satellite Using Radar Measurements
NASA Astrophysics Data System (ADS)
Kamensky, S.; Samotokhin, A.; Khutorovsky, Z.; Alfriend, T.
While processing of the radar information aimed at satellite catalog maintenance some measurements do not correlate with cataloged and tracked satellites. These non-correlated measurements participate in the detection (primary orbit determination) of new (not cataloged) satellites. The satellite is considered newly detected when it is missing in the catalog and the primary orbit determination on the basis of the non-correlated measurements provides the accuracy sufficient for reliable correlation of future measurements. We will call this the detection condition. One non-correlated measurement in real conditions does not have enough accuracy and thus does not satisfy the detection condition. Two measurements separated by a revolution or more normally provides orbit determination with accuracy sufficient for selection of other measurements. However, it is not always possible to say with high probability (close to 1) that two measurements belong to one satellite. Three measurements for different revolutions, which are included into one orbit, have significantly higher chances to belong to one satellite. Thus the suggested detection (primary orbit determination) algorithm looks for three uncorrelated measurements in different revolutions for which we can determine the orbit inscribing them. The detection procedure based on search for the triplets is rather laborious. Thus only relatively high efficiency can be the reason for its practical implementation. The work presents the detailed description of the suggested detection procedure based on the search for triplets of uncorrelated measurements (for radar measurements). The break-ups of the tracked satellites provide the most difficult conditions for the operation of the detection algorithm and reveal explicitly its characteristics. The characteristics of time efficiency and reliability of the detected orbits are of maximum interest. Within this work we suggest to determine these characteristics using simulation of break-ups with further acquisition of measurements generated by the fragments. In particular, using simulation we can not only evaluate the characteristics of the algorithm but adjust its parameters for certain conditions: the orbit of the fragmented satellite, the features of the break-up, capabilities of detection radars etc. We describe the algorithm performing the simulation of radar measurements produced by the fragments of the parent satellite. This algorithm accounts of the basic factors affecting the characteristics of time efficiency and reliability of the detection. The catalog maintenance algorithm includes two major components detection and tracking. These are two processes permanently interacting with each other. This is actually in place for the processing of real radar data. The simulation must take this into account since one cannot obtain reliable characteristics of detection procedure simulating only this process. Thus we simulated both processes in their interaction. The work presents the results of simulation for the simplest case of a break-up in near-circular orbit with insignificant atmospheric drag. The simulations show rather high efficiency. We demonstrate as well that the characteristics of time efficiency and reliability of determined orbits essentially depend on the density of the observed break-up fragments.
Plenoptic camera wavefront sensing with extended sources
NASA Astrophysics Data System (ADS)
Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun
2016-09-01
The wavefront sensor is used in adaptive optics to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. Different from the Shack-Hartmann sensor that has been widely used with point sources, the plenoptic camera wavefront sensor has been proposed as an alternative wavefront sensor adequate for extended objects in recent years. In this paper, the plenoptic camera wavefront sensing with extended sources is discussed systematically. Simulations are performed to investigate the wavefront measurement error and the closed-loop performance of the plenoptic sensor. The results show that there are an optimal lenslet size and an optimal number of pixels to make the best performance. The RMS of the resulting corrected wavefront in closed-loop adaptive optics system is less than 108 nm (0.2λ) when D/r0 ≤ 10 and the magnitude M ≤ 5. Our investigation indicates that the plenoptic sensor is efficient to operate on extended sources in the closed-loop adaptive optics system.
Development of Pulsar Detection Methods for a Galactic Center Search
NASA Astrophysics Data System (ADS)
Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami
2018-01-01
Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.
Heinze, Brian C; Gamboa, Jessica R; Kim, Keesung; Song, Jae-Young; Yoon, Jeong-Yeol
2010-11-01
This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL(-1) in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.
Enzyme-free detection and quantification of double-stranded nucleic acids.
Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Hänni, Catherine; Daniel, Isabelle
2012-08-01
We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection.
Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation
NASA Astrophysics Data System (ADS)
Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.
2017-06-01
Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.
Automatic textual annotation of video news based on semantic visual object extraction
NASA Astrophysics Data System (ADS)
Boujemaa, Nozha; Fleuret, Francois; Gouet, Valerie; Sahbi, Hichem
2003-12-01
In this paper, we present our work for automatic generation of textual metadata based on visual content analysis of video news. We present two methods for semantic object detection and recognition from a cross modal image-text thesaurus. These thesaurus represent a supervised association between models and semantic labels. This paper is concerned with two semantic objects: faces and Tv logos. In the first part, we present our work for efficient face detection and recogniton with automatic name generation. This method allows us also to suggest the textual annotation of shots close-up estimation. On the other hand, we were interested to automatically detect and recognize different Tv logos present on incoming different news from different Tv Channels. This work was done jointly with the French Tv Channel TF1 within the "MediaWorks" project that consists on an hybrid text-image indexing and retrieval plateform for video news.
Farrow, Blake; Hsueh, Connie L.; Deyle, Kaycie M.; Kim, Jocelyn T.; Lai, Bert T.; Heath, James R.
2013-01-01
We report on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60oC. PMID:24116098
Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong
2012-10-20
The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.
Miyake, Noriko; Chong, Yong; Nishida, Ruriko; Nagasaki, Yoji; Kibe, Yasushi; Kiyosuke, Makiko; Shimomura, Takeshi; Shimono, Nobuyuki; Shimoda, Shinji; Akashi, Koichi
2015-11-01
In our hospital, positive blood culture rates of Helicobacter cinaedi dramatically increased after introducing the Bactec system. A simulated culture model of H. cinaedi bacteremia demonstrated no positive signals using the BacT/Alert system, despite efficient growth in bottles. Clinically suspected H. cinaedi bacteremia should be monitored more closely when using the BacT/Alert system, preferably with subcultivation after 7days of incubation. Copyright © 2015 Elsevier Inc. All rights reserved.
Mehl, Benjamin T; Martin, R Scott
2018-01-07
The ability to use microchip-based electrophoresis for fast, high-throughput separations provides researchers with a tool for close-to real time analysis of biological systems. While PDMS-based electrophoresis devices are popular, the separation efficiency is often an issue due to the hydrophobic nature of PDMS. In this study, a hybrid microfluidic capillary device was fabricated to utilize the positive features of PDMS along with the electrophoretic performance of fused silica. A capillary loop was embedded in a polystyrene base that can be coupled with PDMS microchannels at minimal dead volume interconnects. A method for cleaning out the capillaries after a wet-polishing step was devised through the use of 3D printed syringe attachment. By comparing the separation efficiency of fluorescein and CBI-glycine with both a PDMS-based serpentine device and the embedded capillary loop device, it was shown that the embedded capillary loop device maintained higher theoretical plates for both analytes. A Pd decoupler with a carbon or Pt detection electrode were embedded along with the loop allowing integration of the electrophoretic separation with electrochemical detection. A series of catecholamines were separated to show the ability to resolve similar analytes and detect redox active species. The release of dopamine and norepinephrine from PC 12 cells was also analyzed showing the compatibility of these improved microchip separations with high ionic cell buffers associated with cell culture.
Nine-analyte detection using an array-based biosensor
NASA Technical Reports Server (NTRS)
Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.
2002-01-01
A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.
Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.
Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng
2016-12-08
This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.
Brownian rotational relaxation and power absorption in magnetite nanoparticles
NASA Astrophysics Data System (ADS)
Goya, G. F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M. R.
2007-09-01
We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ″(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3O 4 nanoparticles, whereas a second Fe 3O 4-based dispersion of similar concentration could be heated up to 12 K after 30 min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.
NASA Technical Reports Server (NTRS)
Degaudenzi, R.; Elia, C.; Viola, R.
1990-01-01
Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.
Commissioning of the ATLAS Muon Spectrometer with cosmic rays
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Martin, T. Fonseca; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martini, A.; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Garcia, R. Murillo; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Oliver, J.; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M. S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X. H.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Della Porta, G. Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.
2010-12-01
The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan
Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less
Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan; ...
2016-03-16
Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less
Photosynthetic Machineries in Nano-Systems
Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco
2014-01-01
Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673
The effects of oxygen scavenging on jet fuel thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneghan, S.P.; Williams, T.F.; Whitacre, S.
1996-10-01
Preliminary tests with a proposed oxygen scavenger (triphenyl-phosphine, TPP) have been done in closed static and flowing systems to study its effects on the oxidation and the deposit formation of jet fuel. TPP was found to significantly slow the oxidation of hexadecane or jet fuel at some temperatures/concentrations and increase the oxidation rate at other conditions. The additive helped decrease the formation of deposits at higher concentrations (200 mg/l) but not at lower concentrations. No evidence of phosphorous was observed in the deposits that were formed. Gas chomatography combined with mass spectrometry and atomic emission detection showed that TPP producedmore » the expected oxidation product (triphenylphosphineoxide) and an unexpected triphenylphosphine-sulfide. The GC/AED allowed A quantitative analysis of the conversion efficiency of TPP to TPPO upon stressing in a closed system.« less
77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... Portland, OR. This deviation is necessary to accommodate the efficient movement of light rail and roadway... the Steel Bridge to remain in the closed position to facilitate efficient movement of event patrons... Steel Bridge remain closed to vessel traffic to facilitate safe efficient movement of light rail and...
Efficient dynamic modeling of manipulators containing closed kinematic loops
NASA Astrophysics Data System (ADS)
Ferretti, Gianni; Rocco, Paolo
An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.
Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions
NASA Astrophysics Data System (ADS)
Factor, Samuel M.; Kraus, Adam L.
2017-06-01
Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.
ARCOCT: Automatic detection of lumen border in intravascular OCT images.
Cheimariotis, Grigorios-Aris; Chatzizisis, Yiannis S; Koutkias, Vassilis G; Toutouzas, Konstantinos; Giannopoulos, Andreas; Riga, Maria; Chouvarda, Ioanna; Antoniadis, Antonios P; Doulaverakis, Charalambos; Tsamboulatidis, Ioannis; Kompatsiaris, Ioannis; Giannoglou, George D; Maglaveras, Nicos
2017-11-01
Intravascular optical coherence tomography (OCT) is an invaluable tool for the detection of pathological features on the arterial wall and the investigation of post-stenting complications. Computational lumen border detection in OCT images is highly advantageous, since it may support rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typically include various artifacts that impact image clarity, including features such as side branches and intraluminal blood presence. This paper presents ARCOCT, a segmentation method for fully-automatic detection of lumen border in OCT images. ARCOCT relies on multiple, consecutive processing steps, accounting for image preparation, contour extraction and refinement. In particular, for contour extraction ARCOCT employs the transformation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue and, for contour refinement, local regression using weighted linear least squares and a 2nd degree polynomial model is employed to achieve artifact and small-branch correction as well as smoothness of the artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT images, i.e., even in challenging cases with branches and artifacts. ARCOCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native segments) obtained from 20 patients. ARCOCT was compared against ground-truth manual segmentation performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diameter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and the undirected average distance), using standard statistical analysis methods. The proposed method was proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for most of the examined metrics. ARCOCT allows accurate and fully-automated lumen border detection in OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.
3D modeling of building indoor spaces and closed doors from imagery and point clouds.
Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro
2015-02-03
3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS
The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cyclesmore » to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.« less
Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping.
Navarro, Joan; Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G
2016-01-01
Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.
Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping
Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G.
2016-01-01
Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps. PMID:27448048
Optical rectification using geometrical field enhancement in gold nano-arrays
NASA Astrophysics Data System (ADS)
Piltan, S.; Sievenpiper, D.
2017-11-01
Conversion of photons to electrical energy has a wide variety of applications including imaging, solar energy harvesting, and IR detection. A rectenna device consists of an antenna in addition to a rectifying element to absorb the incident radiation within a certain frequency range. We designed, fabricated, and measured an optical rectifier taking advantage of asymmetrical field enhancement for forward and reverse currents due to geometrical constraints. The gold nano-structures as well as the geometrical parameters offer enhanced light-matter interaction at 382 THz. Using the Taylor expansion of the time-dependent current as a function of the external bias and oscillating optical excitation, we obtained responsivities close to quantum limit of operation. This geometrical approach can offer an efficient, broadband, and scalable solution for energy conversion and detection in the future.
Malfunctions in radioactivity sensors' networks
NASA Astrophysics Data System (ADS)
Khalipova, Veronika; Damart, Guillaume; Beauzamy, Bernard; Bruna, Giovanni
2018-01-01
The capacity to promptly and efficiently detect any source of contamination of the environment (a radioactive cloud) at a local and a country scale is mandatory to a safe and secure exploitation of civil nuclear energy. It must rely upon a robust network of measurement devices, to be optimized vs. several parameters, including the overall reliability, the investment, the operation and maintenance costs. We show that a network can be arranged in different ways, but many of them are inadequate. Through simulations, we test the efficiency of several configurations of sensors, in the same domain. The denser arrangement turns out to be the more efficient, but the efficiency is increased when sensors are non-uniformly distributed over the country, with accumulation at the borders. In the case of France, as radioactive threats are most likely to come from the East, the best solution is densifying the sensors close to the eastern border. Our approach differs from previous work because it is "failure oriented": we determine the laws of probability for all types of failures and deduce in this respect the best organization of the network.
The role of shape complexity in the detection of closed contours.
Wilder, John; Feldman, Jacob; Singh, Manish
2016-09-01
The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparative study on the performance of textural image features for active contour segmentation.
Moraru, Luminita; Moldovanu, Simona
2012-07-01
We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard deviation textural feature and a 5×5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the contrast-to-gradient method. The experiments showed promising segmentation results.
NASA Astrophysics Data System (ADS)
Rahman, Nurul Hidayah Ab; Abdullah, Nurul Azma; Hamid, Isredza Rahmi A.; Wen, Chuah Chai; Jelani, Mohamad Shafiqur Rahman Mohd
2017-10-01
Closed-Circuit TV (CCTV) system is one of the technologies in surveillance field to solve the problem of detection and monitoring by providing extra features such as email alert or motion detection. However, detecting and alerting the admin on CCTV system may complicate due to the complexity to integrate the main program with an external Application Programming Interface (API). In this study, pixel processing algorithm is applied due to its efficiency and SMS alert is added as an alternative solution for users who opted out email alert system or have no Internet connection. A CCTV system with SMS alert (CMDSA) was developed using evolutionary prototyping methodology. The system interface was implemented using Microsoft Visual Studio while the backend components, which are database and coding, were implemented on SQLite database and C# programming language, respectively. The main modules of CMDSA are motion detection, capturing and saving video, image processing and Short Message Service (SMS) alert functions. Subsequently, the system is able to reduce the processing time making the detection process become faster, reduce the space and memory used to run the program and alerting the system admin instantly.
NASA Astrophysics Data System (ADS)
Wu, Yunxia; Xing, Da; Tang, Yonghong
2004-07-01
It is reported that apoptosis of cancer cells in photodynamic therapy (PDT) is caused by 1O2 generated in photosensitization. In order to study the mechanism of this kind of 1O2-induced apoptosis, it is necessary to establish a special technique to dynamically detect intracellular production and localization of 1O2. FCLA, as a chemiluminescence probe to detect singlet oxygen (1O2) and superoxide (O2-.), has been used successfully in photodynamic and sonodynamic diagnosis in tissue level, recently. This paper reported a preliminary result of morphological study on permeating efficiency and localization of FCLA and hematoporphyrin derivative (HpD) through cellular membrane. Human lung cancer cell line (ASTC-a-1) was used in the experiment. The result of this research showed that both HpD and FCLA could permeate through cellular membrane and localize to prinuclear area, when HpD or FCLA was incubated with cells. Although the molecular weight of HpD is close to FCLA's, the permeating efficiency of HpD through membrane was different from that of FCLA. Intracellular FCLA concentration reached a peak after incubation for only 30 - 45 minutes, but amount of HpD in cells approached the equilibrium after incubation for near 22 h. In the experiment, we did not observe the evidence of FCLA or HpD penetrating into nucleolus. This study suggests that it is possibly to use a specific chemiluminescence probe to dynamcially detect the production and localization of 1O2 or 02-. in cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulej, M., E-mail: marek.tulej@space.unibe.ch; Meyer, S.; Lüthi, M.
2015-08-15
High-energy e{sup –} and π{sup –} were measured by the multichannel plate (MCP) detector at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The measurements provide the absolute detection efficiencies for these particles: 5.8% ± 0.5% for electrons in the beam momenta range 17.5–300 MeV/c and 6.0% ± 1.3% for pions in the beam momenta range 172–345 MeV/c. The pulse height distribution determined from the measurements is close to an exponential function with negative exponent, indicating that the particles penetrated the MCP material before producing the signal somewhere insidemore » the channel. Low charge extraction and nominal gains of the MCP detector observed in this study are consistent with the proposed mechanism of the signal formation by penetrating radiation. A very similar MCP ion detector will be used in the Neutral Ion Mass (NIM) spectrometer designed for the JUICE mission of European Space Agency (ESA) to the Jupiter system, to perform measurements of the chemical composition of the Galilean moon exospheres. The detection efficiency for penetrating radiation determined in the present studies is important for the optimisation of the radiation shielding of the NIM detector against the high-rate and high-energy electrons trapped in Jupiter’s magnetic field. Furthermore, the current studies indicate that MCP detectors can be useful to measure high-energy particle beams at high temporal resolution.« less
Efficient Detection of Copy Number Mutations in PMS2 Exons with a Close Homolog.
Herman, Daniel S; Smith, Christina; Liu, Chang; Vaughn, Cecily P; Palaniappan, Selvi; Pritchard, Colin C; Shirts, Brian H
2018-07-01
Detection of 3' PMS2 copy-number mutations that cause Lynch syndrome is difficult because of highly homologous pseudogenes. To improve the accuracy and efficiency of clinical screening for these mutations, we developed a new method to analyze standard capture-based, next-generation sequencing data to identify deletions and duplications in PMS2 exons 9 to 15. The approach captures sequences using PMS2 targets, maps sequences randomly among regions with equal mapping quality, counts reads aligned to homologous exons and introns, and flags read count ratios outside of empirically derived reference ranges. The method was trained on 1352 samples, including 8 known positives, and tested on 719 samples, including 17 known positives. Clinical implementation of the first version of this method detected new mutations in the training (N = 7) and test (N = 2) sets that had not been identified by our initial clinical testing pipeline. The described final method showed complete sensitivity in both sample sets and false-positive rates of 5% (training) and 7% (test), dramatically decreasing the number of cases needing additional mutation evaluation. This approach leveraged the differences between gene and pseudogene to distinguish between PMS2 and PMS2CL copy-number mutations. These methods enable efficient and sensitive Lynch syndrome screening for 3' PMS2 copy-number mutations and may be applied similarly to other genomic regions with highly homologous pseudogenes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
The IMPORTance of the Nucleus during Flavivirus Replication
Lopez-Denman, Adam J.; Mackenzie, Jason M.
2017-01-01
Flaviviruses are a large group of arboviruses of significant medical concern worldwide. With outbreaks a common occurrence, the need for efficient viral control is required more than ever. It is well understood that flaviviruses modulate the composition and structure of membranes in the cytoplasm that are crucial for efficient replication and evading immune detection. As the flavivirus genome consists of positive sense RNA, replication can occur wholly within the cytoplasm. What is becoming more evident is that some viral proteins also have the ability to translocate to the nucleus, with potential roles in replication and immune system perturbation. In this review, we discuss the current understanding of flavivirus nuclear localisation, and the function it has during flavivirus infection. We also describe—while closely related—the functional differences between similar viral proteins in their nuclear translocation. PMID:28106839
Leap-dynamics: efficient sampling of conformational space of proteins and peptides in solution.
Kleinjung, J; Bayley, P; Fraternali, F
2000-03-31
A molecular simulation scheme, called Leap-dynamics, that provides efficient sampling of protein conformational space in solution is presented. The scheme is a combined approach using a fast sampling method, imposing conformational 'leaps' to force the system over energy barriers, and molecular dynamics (MD) for refinement. The presence of solvent is approximated by a potential of mean force depending on the solvent accessible surface area. The method has been successfully applied to N-acetyl-L-alanine-N-methylamide (alanine dipeptide), sampling experimentally observed conformations inaccessible to MD alone under the chosen conditions. The method predicts correctly the increased partial flexibility of the mutant Y35G compared to native bovine pancreatic trypsin inhibitor. In particular, the improvement over MD consists of the detection of conformational flexibility that corresponds closely to slow motions identified by nuclear magnetic resonance techniques.
Wireless Sensor Networks for Ambient Assisted Living
Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe
2013-01-01
This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665
Fate of pharmaceuticals and pesticides in fly larvae composting.
Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B
2016-09-15
A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Efficient blind search for similar-waveform earthquakes in years of continuous seismic data
NASA Astrophysics Data System (ADS)
Yoon, C. E.; Bergen, K.; Rong, K.; Elezabi, H.; Bailis, P.; Levis, P.; Beroza, G. C.
2017-12-01
Cross-correlating an earthquake waveform template with continuous seismic data has proven to be a sensitive, discriminating detector of small events missing from earthquake catalogs, but a key limitation of this approach is that it requires advance knowledge of the earthquake signals we wish to detect. To overcome this limitation, we can perform a blind search for events with similar waveforms, comparing waveforms from all possible times within the continuous data (Brown et al., 2008). However, the runtime for naive blind search scales quadratically with the duration of continuous data, making it impractical to process years of continuous data. The Fingerprint And Similarity Thresholding (FAST) detection method (Yoon et al., 2015) enables a comprehensive blind search for similar-waveform earthquakes in a fast, scalable manner by adapting data-mining techniques originally developed for audio and image search within massive databases. FAST converts seismic waveforms into compact "fingerprints", which are efficiently organized and searched within a database. In this way, FAST avoids the unnecessary comparison of dissimilar waveforms. To date, the longest duration of continuous data used for event detection with FAST was 3 months at a single station near Guy-Greenbrier, Arkansas, which revealed microearthquakes closely correlated with stages of hydraulic fracturing (Yoon et al., 2017). In this presentation we introduce an optimized, parallel version of the FAST software with improvements to the fingerprinting algorithm and the ability to detect events using continuous data from a network of stations (Bergen et al., 2016). We demonstrate its ability to detect low-magnitude earthquakes within several years of continuous data at locations of interest in California.
Online SVT Commissioning and Monitoring using a Service-Oriented Architecture Framework
NASA Astrophysics Data System (ADS)
Ruger, Justin; Gotra, Yuri; Weygand, Dennis; Ziegler, Veronique; Heddle, David; Gore, David
2014-03-01
Silicon Vertex Tracker detectors are devices used in high energy experiments for precision measurement of charged tracks close to the collision point. Early detection of faulty hardware is essential and therefore code development of monitoring and commissioning software is essential. The computing framework for the CLAS12 experiment at Jefferson Lab is a service-oriented architecture that allows efficient data-flow from one service to another through loose coupling. I will present the strategy and development of services for the CLAS12 Silicon Tracker data monitoring and commissioning within this framework, as well as preliminary results using test data.
A General Simulation Method for Multiple Bodies in Proximate Flight
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
2003-01-01
Methods of unsteady aerodynamic simulation for an arbitrary number of independent bodies flying in close proximity are considered. A novel method to efficiently detect collision contact points is described. A method to compute body trajectories in response to aerodynamic loads, applied loads, and inter-body collisions is also given. The physical correctness of the methods are verified by comparison to a set of analytic solutions. The methods, combined with a Navier-Stokes solver, are used to demonstrate the possibility of predicting the unsteady aerodynamics and flight trajectories of moving bodies that involve rigid-body collisions.
SNM detection with an optimized water Cherenkov neutron detector
NASA Astrophysics Data System (ADS)
Dazeley, S.; Sweany, M.; Bernstein, A.
2012-11-01
Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype [1]—a technology that could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions [2], demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In this paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. Our simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.
SNM Detection with an Optimized Water Cherenkov Neutron Detector
Dazeley, S.; Sweany, M.; Bernstein, A.
2012-07-23
Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype—a technology thatmore » could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions, demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In our paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. These simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.« less
Evaluation of collimation and imaging configuration in scintimammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.M.W.; Frey, E.C.; Wessell, D.E.
1996-12-31
Conventional scintimammography (SM) with {sup 99m}Tc sestamibi has been limited to taking a single lateral view of the breast using a parallel-hole high resolution (LEHR) collimator. The collimator is placed close to the breast for best possible spatial resolution. However, the collimator geometry precludes imaging the breast from other views. We evaluated using a pinhole collimator instead of a LEHR collimator in SM for improved spatial resolution and detection efficiency, and to allow additional imaging views. Results from theoretical calculations indicated that pinhole collimators could be designed with higher spatial resolution and detection efficiency than LEHR when imaging small tomore » medium size breasts. The geometrical shape of the pinhole collimator allows imaging of the breasts from both the lateral and craniocaudal views. The dual-view images allow better determination of the location of the tumors within the breast and improved detection of tumors located in the medial region of the breast. A breast model that simulates the shape and composition of the breast and breast tumors with different sizes and locations was added to an existing 3D mathematical cardiac-torso (MCAT) phantom. A cylindrically shaped phantom with 10 cm diameter and spherical inserts with different sizes and {sup 99m}Tc sestamibi uptakes with respect to the background provide physical models of breast with tumors. Simulation studies using the breast and MCAT phantoms and experimental studies using the cylindrical phantom confirmed the utility of the pinhole collimator in SM for improved breast tumor detection.« less
Basheer, Chanbasha
2018-04-01
An efficient on-site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro-solid-phase extraction device placed inside a portable battery-operated pump was used for the on-site extraction of seawater samples. Before on-site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on-site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on-site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high-performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05-20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004-0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid-phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9-95.2%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Knowledge-based segmentation and feature analysis of hand and wrist radiographs
NASA Astrophysics Data System (ADS)
Efford, Nicholas D.
1993-07-01
The segmentation of hand and wrist radiographs for applications such as skeletal maturity assessment is best achieved by model-driven approaches incorporating anatomical knowledge. The reasons for this are discussed, and a particular frame-based or 'blackboard' strategy for the simultaneous segmentation of the hand and estimation of bone age via the TW2 method is described. The new approach is structured for optimum robustness and computational efficiency: features of interest are detected and analyzes in order of their size and prominence in the image, the largest and most distinctive being dealt with first, and the evidence generated by feature analysis is used to update a model of hand anatomy and hence guide later stages of the segmentation. Closed bone boundaries are formed by a hybrid technique combining knowledge-based, one-dimensional edge detection with model-assisted heuristic tree searching.
The MUSE-Wide survey: detection of a clustering signal from Lyman α emitters in the range 3 < z < 6
NASA Astrophysics Data System (ADS)
Diener, C.; Wisotzki, L.; Schmidt, K. B.; Herenz, E. C.; Urrutia, T.; Garel, T.; Kerutt, J.; Saust, R. L.; Bacon, R.; Cantalupo, S.; Contini, T.; Guiderdoni, B.; Marino, R. A.; Richard, J.; Schaye, J.; Soucail, G.; Weilbacher, P. M.
2017-11-01
We present a clustering analysis of a sample of 238 Ly α emitters at redshift 3 ≲ z ≲ 6 from the MUSE-Wide survey. This survey mosaics extragalactic legacy fields with 1h MUSE pointings to detect statistically relevant samples of emission line galaxies. We analysed the first year observations from MUSE-Wide making use of the clustering signal in the line-of-sight direction. This method relies on comparing pair-counts at close redshifts for a fixed transverse distance and thus exploits the full potential of the redshift range covered by our sample. A clear clustering signal with a correlation length of r0=2.9^{+1.0}_{-1.1} Mpc (comoving) is detected. Whilst this result is based on only about a quarter of the full survey size, it already shows the immense potential of MUSE for efficiently observing and studying the clustering of Ly α emitters.
a Voxel-Based Metadata Structure for Change Detection in Point Clouds of Large-Scale Urban Areas
NASA Astrophysics Data System (ADS)
Gehrung, J.; Hebel, M.; Arens, M.; Stilla, U.
2018-05-01
Mobile laser scanning has not only the potential to create detailed representations of urban environments, but also to determine changes up to a very detailed level. An environment representation for change detection in large scale urban environments based on point clouds has drawbacks in terms of memory scalability. Volumes, however, are a promising building block for memory efficient change detection methods. The challenge of working with 3D occupancy grids is that the usual raycasting-based methods applied for their generation lead to artifacts caused by the traversal of unfavorable discretized space. These artifacts have the potential to distort the state of voxels in close proximity to planar structures. In this work we propose a raycasting approach that utilizes knowledge about planar surfaces to completely prevent this kind of artifacts. To demonstrate the capabilities of our approach, a method for the iterative volumetric approximation of point clouds that allows to speed up the raycasting by 36 percent is proposed.
Stochastic multiresonance in coupled excitable FHN neurons
NASA Astrophysics Data System (ADS)
Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua
2018-04-01
In this paper, effects of noise on Watts-Strogatz small-world neuronal networks, which are stimulated by a subthreshold signal, have been investigated. With the numerical simulations, it is surprisingly found that there exist several optimal noise intensities at which the subthreshold signal can be detected efficiently. This indicates the occurrence of stochastic multiresonance in the studied neuronal networks. Moreover, it is revealed that the occurrence of stochastic multiresonance has close relationship with the period of subthreshold signal Te and the noise-induced mean period of the neuronal networks T0. In detail, we find that noise could induce the neuronal networks to generate stochastic resonance for M times if Te is not very large and falls into the interval ( M × T 0 , ( M + 1 ) × T 0 ) with M being a positive integer. In real neuronal system, subthreshold signal detection is very meaningful. Thus, the obtained results in this paper could give some important implications on detecting subthreshold signal and propagating neuronal information in neuronal systems.
NASA Astrophysics Data System (ADS)
Wang, Yi; Zhang, Ao; Ma, Jing
2017-07-01
Minimum-shift keying (MSK) has the advantages of constant envelope, continuous phase, and high spectral efficiency, and it is applied in radio communication and optical fiber communication. MSK modulation of coherent detection is proposed in the ground-to-satellite laser communication system; in addition, considering the inherent noise of uplink, such as intensity scintillation and beam wander, the communication performance of the MSK modulation system with coherent detection is studied in the uplink ground-to-satellite laser. Based on the gamma-gamma channel model, the closed form of bit error rate (BER) of MSK modulation with coherent detection is derived. In weak, medium, and strong turbulence, the BER performance of the MSK modulation system is simulated and analyzed. To meet the requirements of the ground-to-satellite coherent MSK system to optimize the parameters and configuration of the transmitter and receiver, the influence of the beam divergence angle, the zenith angle, the transmitter beam radius, and the receiver diameter are studied.
Detection of reactive oxygen species in mainstream cigarette smoke by a fluorescent probe
NASA Astrophysics Data System (ADS)
Liu, Li; Xu, Shi-jie; Li, Song-zhan
2009-07-01
A mass of reactive oxygen species(ROS) are produced in the process of smoking. Superfluous ROS can induce the oxidative stress in organism, which will cause irreversible damage to cells. Fluorescent probe is taken as a marker of oxidative stress in biology and has been applied to ROS detection in the field of biology and chemistry for high sensitivity, high simplicity of data collection and high resolution. As one type of fluorescent probe, dihydrorhodamine 6G (dR6G) will be oxidized to the fluorescent rhodamine 6G, which could be used to detect ROS in mainstream cigarette smoke. We investigated the action mechanism of ROS on dR6G, built up the standard curve of R6G fluorescence intensity with its content, achieved the variation pattern of R6G fluorescence intensity with ROS content in mainstream cigarette smoke and detected the contents of ROS from the 4 types of cigarettes purchased in market. The result shows that the amount of ROS has close relationship with the types of tobacco and cigarette production technology. Compared with other detecting methods such as electronic spin resonance(ESR), chromatography and mass spectrometry, this detection method by the fluorescent probe has higher efficiency and sensitivity and will have wide applications in the ROS detection field.
Detection of Antibodies in Blood Plasma Using Bioluminescent Sensor Proteins and a Smartphone.
Arts, Remco; den Hartog, Ilona; Zijlema, Stefan E; Thijssen, Vito; van der Beelen, Stan H E; Merkx, Maarten
2016-04-19
Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.
Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu
2015-01-01
DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimization of Neutral Atom Imagers
NASA Technical Reports Server (NTRS)
Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.
2008-01-01
The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.
Cycle of a closed gas-turbine plant with a gas-dynamic energy-separation device
NASA Astrophysics Data System (ADS)
Leontiev, A. I.; Burtsev, S. A.
2017-09-01
The efficiency of closed gas-turbine space-based plants is analyzed. The weight-size characteristics of closed gas-turbine plants are shown in many respects as determined by the refrigerator-radiator parameters. The scheme of closed gas-turbine plants with a gas-dynamic temperature-stratification device is proposed, and a calculation model is developed. This model shows that the cycle efficiency decreases by 2% in comparison with that of the closed gas-turbine plants operating by the traditional scheme with increasing temperature at the output from the refrigerator-radiator by 28 K and decreasing its area by 13.7%.
A study of response of a LuYAP:Ce array with innovative assembling for PET
NASA Astrophysics Data System (ADS)
Pani, Roberto; Cinti, Maria Nerina; Scafè, Raffaele; Bennati, Paolo; Lo Meo, Sergio; Preziosi, Enrico; Pellegrini, Rosanna; De Vincentis, Giuseppe; Sacco, Donatella; Fabbri, Andrea
2015-09-01
We propose the characterization of a first array of 10×10 Lutetium Yttrium Orthoaluminate Perovskite (LuYAP:Ce) crystals, 2 mm×2 mm×10 mm pixel size, with an innovative assembling designed to enhance light output, uniformity and detection efficiency. The innovation consists of the use of 0.015 mm thick dielectric coating as inter-pixel light-insulators, manufactured by Crytur (Czech Republic) intended to improve crystal insulation and then light collection. Respect to the traditional treatment with 0.2 mm of white epoxy, a thinner pixel gap enhances packing fraction up to 98% with a consequent improvement of detection efficiency. Spectroscopic characterization of the array was performed by a Hamamatsu R6231 photomultiplier tube. A pixel-by-pixel scanning with a collimated 99mTc radioisotope (140 keV photon energy) highlighted a deviation in pulse height close to 3.5% respect to the overall mean value. Meanwhile, in term of energy resolution a difference between the response of single pixel and the array of about 10% was measured. Results were also supported and validated by Monte Carlo simulations performed with GEANT4. Although the dielectric coating pixel insulator cannot overcome the inherent limitations of LuYAP crystal due to its self-absorption of light (still present), this study demonstrated that the new coating treatment allows better light collection (nearly close to the expected one) with in addition a very good uniformity between different pixels. These results confirm the high potentiality of this coating for any other crystal array suited for imaging application and new expectations for the use of LuYAP for PET systems.
Photon counting detector for the personal radiography inspection system "SIBSCAN"
NASA Astrophysics Data System (ADS)
Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.
2017-02-01
X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.
An energy-efficient readout circuit for resonant sensors based on ring-down measurement
NASA Astrophysics Data System (ADS)
Zeng, Z.; Pertijs, M. A. P.; Karabacak, D. M.
2013-02-01
This paper presents an energy-efficient readout circuit for resonant sensors that operates based on a transient measurement method. The resonant sensor is driven at a frequency close to its resonance frequency by an excitation source that can be intermittently disconnected, causing the sensor to oscillate at its resonance frequency with exponentially decaying amplitude. By counting the zero crossings of this ring-down response, the interface circuit can detect the resonance frequency. In contrast with oscillator-based readout, the presented readout circuit is readily able to detect quality factor (Q) of the resonator from the envelope of the ring-down response, and can be used even in the presence of large parasitic capacitors. A prototype of the readout circuit has been integrated in 0.35 μm CMOS technology, and consumes only 36 μA from a 3.3 V supply during a measurement time of 2 ms. The resonance frequency and quality factor of a micro-machined SiN resonator obtained using this prototype are in good agreement with results obtained using impedance analysis. Furthermore, a clear transient response is observed to ethanol flow using the presented readout, demonstrating the use of this technique in sensing applications.
Evaluation of Oil-Palm Fungal Disease Infestation with Canopy Hyperspectral Reflectance Data
Lelong, Camille C. D.; Roger, Jean-Michel; Brégand, Simon; Dubertret, Fabrice; Lanore, Mathieu; Sitorus, Nurul A.; Raharjo, Doni A.; Caliman, Jean-Pierre
2010-01-01
Fungal disease detection in perennial crops is a major issue in estate management and production. However, nowadays such diagnostics are long and difficult when only made from visual symptom observation, and very expensive and damaging when based on root or stem tissue chemical analysis. As an alternative, we propose in this study to evaluate the potential of hyperspectral reflectance data to help detecting the disease efficiently without destruction of tissues. This study focuses on the calibration of a statistical model of discrimination between several stages of Ganoderma attack on oil palm trees, based on field hyperspectral measurements at tree scale. Field protocol and measurements are first described. Then, combinations of pre-processing, partial least square regression and linear discriminant analysis are tested on about hundred samples to prove the efficiency of canopy reflectance in providing information about the plant sanitary status. A robust algorithm is thus derived, allowing classifying oil-palm in a 4-level typology, based on disease severity from healthy to critically sick stages, with a global performance close to 94%. Moreover, this model discriminates sick from healthy trees with a confidence level of almost 98%. Applications and further improvements of this experiment are finally discussed. PMID:22315565
Huang, Jin; Ying, Le; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Xie, Nuli; Ou, Min; Zhou, Qifeng; Wang, Kemin
2015-09-01
We designed a new ratiometric fluorescent nanoprobe for sensing pH values in living cells. Briefly, the nanoprobe consists of a gold nanoparticle (AuNP), short single-stranded oligonucleotides, and dual-fluorophore-labeled i-motif sequences. The short oligonucleotides are designed to bind with the i-motif sequences and immobilized on the AuNP surface via Au-S bond. At neutral pH, the dual fluorophores are separated, resulting in very low fluorescence resonance energy transfer (FRET) efficiency. At acidic pH, the i-motif strands fold into a quadruplex structure and leave the AuNP, bringing the dual fluorophores into close proximity, resulting in high FRET efficiency, which could be used as a signal for pH sensing. The nanoprobe possesses abilities of cellular transfection, enzymatic protection, fast response and quantitative pH detection. The in vitro and intracellular applications of the nanoprobe were demonstrated, which showed excellent response in the physiological pH range. Furthermore, our experimental results suggested that the nanoprobe showed excellent spatial and temporal resolution in living cells. We think that the ratiometric sensing strategy could potentially be applied to create a variety of new multicolor sensors for intracellular detection.
Huang, Y-W; Shen, G-H; Lee, J-J; Yang, W-T
2010-11-01
Both the tuberculin skin test (TST) and the QuantiFERON®-TB Gold In-Tube test (QFT-GIT) may be used to detect Mycobacterium tuberculosis infection. A positive reaction to either test can indicate latent tuberculosis infection (LTBI). These tests can be used to study the rate of infection in contacts of multidrug-resistant tuberculosis (MDR-TB) patients. To evaluate the transmission status of MDR-TB patients in Taiwan by examining their close contacts and to compare the efficiency of TST and QFT-GIT. Chest radiographs, TST and QFT-GIT were performed in household contacts of confirmed MDR-TB patients to determine their infection status. A total of 78 close contacts of confirmed MDR-TB patients were included in the study. The majority of the MDR-TB patients were parents of the close contacts and lived in the same building; 46% of the subjects were TST-positive and 19% were QFT-GIT-positive, indicating LTBI that was likely to develop into active MDR-TB. There was a lack of consistency between TST and QFT-GIT results in subjects with previous bacille Calmette-Guérin vaccination. Household contacts of MDR-TB patients are likely to develop LTBI; thus, follow-up and monitoring are mandatory to provide treatment and reduce the occurrence of active infection.
Guo, Xudong; Ge, Bin; Wang, Wenxing
2013-08-01
In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.
Espinosa-García, A C; Díaz-Ávalos, C; Solano-Ortiz, R; Tapia-Palacios, M A; Vázquez-Salvador, N; Espinosa-García, S; Sarmiento-Silva, R E; Mazari-Hiriart, M
2014-03-01
Municipal water disinfection systems in some areas are not always able to meet water consumer needs, such as ensuring distributed water quality, because household water management can be a contributing factor in water re-contamination. This fact is related to the storage options that are common in places where water is scarce or is distributed over limited time periods. The aim of this study is to assess the removal capacity of a multiple-barrier water disinfection device for protozoa, bacteria, and viruses. Water samples were taken from households in Mexico City and spiked with a known amount of protozoa (Giardia cyst, Cryptosporidium oocyst), bacteria (Escherichia coli), and viruses (rotavirus, adenovirus, F-specific ribonucleic acid (FRNA) coliphage). Each inoculated sample was processed through a multiple-barrier device. The efficiency of the multiple-barrier device to remove E. coli was close to 100%, and more than 87% of Cryptosporidium oocysts and more than 98% of Giardia cysts were removed. Close to 100% of coliphages were removed, 99.6% of the adenovirus was removed, and the rotavirus was almost totally removed. An effect of site by zone was detected; this observation is important because the water characteristics could indicate the efficiency of the multiple-barrier disinfection device.
Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection
Roskos, Kristina; Hickerson, Anna I.; Lu, Hsiang-Wei; Ferguson, Tanya M.; Shinde, Deepali N.; Klaue, Yvonne; Niemz, Angelika
2013-01-01
Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706
Swallowing disorders in Parkinson's disease.
Mamolar Andrés, Sandra; Santamarina Rabanal, María Liliana; Granda Membiela, Carla María; Fernández Gutiérrez, María José; Sirgo Rodríguez, Paloma; Álvarez Marcos, César
Parkinson's disease is a type of chronic neurodegenerative pathology with a typical movement pattern, as well as different, less studied symptoms such as dysphagia. Disease-related disorders in efficacy or safety in the process of swallowing usually lead to malnutrition, dehydration or pneumonias. The aim of this study was identifying and analyzing swallowing disorders in Parkinson's disease. The initial sample consisted of 52 subjects with Parkinson's disease to whom the specific test for dysphagia SDQ was applied. Nineteen participants (36.5%) with some degree of dysphagia in the SDQ test were selected to be evaluated by volume-viscosity clinical exploration method and fiberoptic endoscopic evaluation of swallowing. Disorders in swallowing efficiency and safety were detected in 94.7% of the selected sample. With regards to efficiency, disorders were found in food transport (89.5%), insufficient labial closing (68.4%) and oral residues (47.4%), relating to duration of ingestion. Alterations in security were also observed: pharynx residues (52.7%), coughing (47.4%), penetration (31.64%), aspiration and decrease of SaO 2 (5.3%), relating to the diagnosis of respiratory pathology in the previous year. The SDQ test detected swallowing disorders in 36.5% of the subjects with Parkinson's disease. Disorders in swallowing efficiency and safety were demonstrated in 94.7% of this subset. Disorders of efficiency were more frequent than those of safety, establishing a relationship with greater time in ingestion and the appearance of respiratory pathology and pneumonias. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
NASA Astrophysics Data System (ADS)
Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L. Ph. H.; Stohner, J.; Berger, R.; Czasch, A.; Jagutzki, O.; Jahnke, T.; Dörner, R.; Schöffler, M. S.
2018-04-01
Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ɛ is as high as possible, as the overall efficiency scales with ɛn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.
Ionization imaging—A new method to search for 0- ν ββ decay
NASA Astrophysics Data System (ADS)
Chinowski, W.; Goldschmidt, A.; Nygren, D.; Bernstein, A.; Heffner, M.; Millaud, J.
2007-10-01
We present a new method to search for 0- ν ββ decay in 136Xe, the Ionization Imaging Chamber. This concept is based on 3-D track reconstruction by detection of ionization, without avalanche gain, in a novel time projection chamber (TPC) geometry. The rejection efficiency of external charged particle backgrounds is optimized by the realization of a maximal, fully active, closed, and ex post facto variable fiducial surface. Event localization within the fiducial volume and detailed event reconstruction mitigate external neutral particle backgrounds; larger detectors offer higher rejection efficiencies. Energy resolution at the Q-value of 2.5 MeV is expected to be better than 1% FWHM, reducing the potential impact of allowed 2- ν ββ decays. Scaling from ˜25 kg prototype to 1000+ kg target mass is graceful. A new possible methodology for the identification of the daughter barium nucleus is also described.
Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, T.; Sepaniak, M.J.; Guiochon, G.
1997-08-01
The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less
Algorithm for Controlling a Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Benedict, Scott M.
2004-01-01
An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.
Resource-Efficient Measurement-Device-Independent Entanglement Witness
Verbanis, E.; Martin, A.; Rosset, D.; ...
2016-05-09
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng
2016-08-15
Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.
Commissioning of the ATLAS Muon Spectrometer with cosmic rays
Aad, G; Abbott, B; Abdallah, J; ...
2010-12-01
The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. Themore » results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions. © 2010 CERN for the benefit of the ATLAS collaboration.« less
Wang, Xiayan; Cheng, Chang; Wang, Shili; Zhao, Meiping; Dasgupta, Purnendu K.; Liu, Shaorong
2009-01-01
We have recently examined the potential of bare nanocapillaries for free solution DNA separations and demonstrated efficiencies exceeding 106 theoretical plates/m. In the present work, we demonstrate the use of bare and hydroxypropylcellulose (HPC) coated open tubular nanocapillaries for protein separations. Using 1.5 μm inner diameter (i.d.) capillary columns, hydrodynamically injecting femto to picoliter (fL-pL) volumes of fluorescent or fluorescent dye labeled protein samples, utilizing a pneumatically pressurized chamber containing 1.0 mM sodium tetraborate solution eluent (typ. 200 psi) as the pump and performing on-column detection using a simple laser-induced fluorescence detector, we demonstrate efficiencies of close to a million theoretical plates/m while generating single digit μL volumes of waste for a complete chromatographic run. We achieve baseline resolution for a protein mixture consisting of transferrin, α-lactalbumin, insulin, and α -2-macroglobulin. PMID:19663450
Experimental investigations of aeration efficiency in high-head gated circular conduits.
Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet
2014-01-01
The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.
Hadad, Bat-Sheva; Kimchi, Ruth
2006-11-01
In two experiments, visual search was used to study the grouping of shape on the basis of perceptual closure among participants 5-23 years of age. We first showed that young children, like adults, demonstrate an efficient search for a concave target among convex distractors for closed connected stimuli but an inefficient search for open stimuli. Reliable developmental differences, however, were observed in search for fragmented stimuli as a function of spatial proximity and collinearity between the closure-inducing fragments. When only closure was available, search for all the age groups was equally efficient for spatially close fragments and equally inefficient for spatially distant fragments. When closure and collinearity were available, search for spatially close fragments was equally efficient for all the age groups, but search for spatially distant fragments was inefficient for younger children and improved significantly between ages 5 and 10. These findings suggest that young children can utilize closure as efficiently as can adults for the grouping of shape for closed or nearly closed stimuli. When the closure-inducing fragments are spatially distant, only older children and adults, but not 5-year-olds, can utilize collinearity to enhance closure for the perceptual grouping of shape.
Efficient Planning of Wind-Optimal Routes in North Atlantic Oceanic Airspace
NASA Technical Reports Server (NTRS)
Rodionova, Olga; Sridhar, Banavar
2017-01-01
The North Atlantic oceanic airspace (NAT) is crossed daily by more than a thousand flights, which are greatly affected by strong jet stream air currents. Several studies devoted to generating wind-optimal (WO) aircraft trajectories in the NAT demonstrated great efficiency of such an approach for individual flights. However, because of the large separation norms imposed in the NAT, previously proposed WO trajectories induce a large number of potential conflicts. Much work has been done on strategic conflict detection and resolution (CDR) in the NAT. The work presented here extends previous methods and attempts to take advantage of the NAT traffic structure to simplify the problem and improve the results of CDR. Four approaches are studied in this work: 1) subdividing the existing CDR problem into sub-problems of smaller sizes, which are easier to handle; 2) more efficient data reorganization within the considered time period; 3) problem localization, i.e. concentrating the resolution effort in the most conflicted regions; 4) applying CDR to the pre-tactical decision horizon (a couple of hours in advance). Obtained results show that these methods efficiently resolve potential conflicts at the strategic and pre-tactical levels by keeping the resulting trajectories close to the initial WO ones.
Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng
2016-01-01
Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection. PMID:26799713
Fan, Wei; Zong, Jie; Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng
2016-01-01
Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection.
A novel approach to automatic threat detection in MMW imagery of people scanned in portals
NASA Astrophysics Data System (ADS)
Vaidya, Nitin M.; Williams, Thomas
2008-04-01
We have developed a novel approach to performing automatic detection of concealed threat objects in passive MMW imagery of people scanned in a portal setting. It is applicable to the significant class of imaging scanners that use the protocol of having the subject rotate in front of the camera in order to image them from several closely spaced directions. Customary methods of dealing with MMW sequences rely on the analysis of the spatial images in a frame-by-frame manner, with information extracted from separate frames combined by some subsequent technique of data association and tracking over time. We contend that the pooling of information over time in traditional methods is not as direct as can be and potentially less efficient in distinguishing threats from clutter. We have formulated a more direct approach to extracting information about the scene as it evolves over time. We propose an atypical spatio-temporal arrangement of the MMW image data - to which we give the descriptive name Row Evolution Image (REI) sequence. This representation exploits the singular aspect of having the subject rotate in front of the camera. We point out which features in REIs are most relevant to detecting threats, and describe the algorithms we have developed to extract them. We demonstrate results of successful automatic detection of threats, including ones whose faint image contrast renders their disambiguation from clutter very challenging. We highlight the ease afforded by the REI approach in permitting specialization of the detection algorithms to different parts of the subject body. Finally, we describe the execution efficiency advantages of our approach, given its natural fit to parallel processing. mage
TRStalker: an efficient heuristic for finding fuzzy tandem repeats.
Pellegrini, Marco; Renda, M Elena; Vecchio, Alessio
2010-06-15
Genomes in higher eukaryotic organisms contain a substantial amount of repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are originated via phenomena such as replication slippage and are characterized by close spatial contiguity. They play an important role in several molecular regulatory mechanisms, and also in several diseases (e.g. in the group of trinucleotide repeat disorders). While for TRs with a low or medium level of divergence the current methods are rather effective, the problem of detecting TRs with higher divergence (fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic to enriching our view of their role in regulatory mechanisms and diseases. Fuzzy TRs are also important as tools to shed light on the evolutionary history of the genome, where higher divergence correlates with more remote duplication events. We have developed an algorithm (christened TRStalker) with the aim of detecting efficiently TRs that are hard to detect because of their inherent fuzziness, due to high levels of base substitutions, insertions and deletions. To attain this goal, we developed heuristics to solve a Steiner version of the problem for which the fuzziness is measured with respect to a motif string not necessarily present in the input string. This problem is akin to the 'generalized median string' that is known to be an NP-hard problem. Experiments with both synthetic and biological sequences demonstrate that our method performs better than current state of the art for fuzzy TRs and that the fuzzy TRs of the type we detect are indeed present in important biological sequences. TRStalker will be integrated in the web-based TRs Discovery Service (TReaDS) at bioalgo.iit.cnr.it. Supplementary data are available at Bioinformatics online.
Integrated Circuits for Rapid Sample Processing and Electrochemical Detection of Biomarkers
NASA Astrophysics Data System (ADS)
Besant, Justin
The trade-off between speed and sensitivity of detection is a fundamental challenge in the design of point-of-care diagnostics. As the relevant molecules in many diseases exist natively at extremely low levels, many gold-standard diagnostic tests are designed with high sensitivity at the expense of long incubations needed to amplify the target analytes. The central aim of this thesis is to design new strategies to detect biologically relevant analytes with both high speed and sensitivity. The response time of a biosensor is limited by the ability of the target analyte to accumulate to detectable levels at the sensor surface. We overcome this limitation by designing a range of integrated devices to optimize the flux of the analyte to the sensor by increasing the effective analyte concentration, shortening the required diffusion distance, and confining the analyte in close proximity to the sensor. We couple these devices with novel ultrasensitive electrochemical transduction strategies to convert rare analytes into a detectable signal. We showcase the clinical utility of these approaches with several applications including cancer diagnosis, bacterial identification, and antibiotic susceptibility profiling. We design and optimize a device to isolate rare cancer cells from the bloodstream with near 100% efficiency and 10 000-fold specificity. We analyse pathogen specific nucleic acids by lysing bacteria in close proximity to an electrochemical sensor and find that this approach has 10-fold higher sensitivity than standard lysis in bulk solution. We design an electronic chip to readout the antibiotic susceptibility profile with an hour-long incubation by concentrating bacteria into nanoliter chambers with integrated electrodes. Finally, we report a strategy for ultrasensitive visual readout of nucleic acids as low as 100 fM within 10 minutes using an amplification cascade. The strategies presented could guide the development of fast, sensitive and low-cost diagnostics for diseases not previously detectable at the point-of-care.
Banerjee, Surajita; Sarkar, Kamalesh; Gupta, Soma; Mahapatra, Prasanta Sinha; Gupta, Siddhartha; Guha, Samudra; Bandhopadhayay, Debasis; Ghosal, Chaitry; Paine, Suman Kalyan; Dutta, Rathindra Nath; Biswas, Nibir; Bhattacharya, Basudev
2010-08-24
Implementation of Multi drug Therapy (MDT) regimen has resulted in the decline of the total number of leprosy cases in the world. Though the prevalence rate has been declining, the incidence rate remains more or less constant and high in South East Asian countries particularly in India, Nepal, Bangladesh, Pakistan and Srilanka. Leprosy, particularly that of multibacillary type spreads silently before it is clinically detected. An early detection and treatment would help to prevent transmission in the community. Multiplex PCR (M-PCR) technique appears to be promising towards early detection among contacts of leprosy cases. A total of 234 paucibacillary (PB) and 205 multibacillary (MB) leprosy cases were studied in a community of an endemic area of Bankura district of West Bengal (Eastern India). They were assessed by smear examination for acid-fast bacilli (AFB) and M-PCR technique. These patients were treated with Multidrug Therapy (MDT) as prescribed by WHO following detection. A total of 110 MB and 72 PB contacts were studied by performing M-PCR in their nasal swab samples. 83.4% of MB patients were observed to be positive by smear examination for AFB and 89.2% by M-PCR. While 22.2% of PB patients were found to be positive by smear examination for AFB, 80.3% of these patients were positive by M-PCR. Among leprosy contacts (using M-PCR), 10.9% were found to be positive among MB contacts and 1.3% among PB contacts. Interestingly, two contacts of M-PCR positive MB cases developed leprosy during the period of two years follow up. The M-PCR technique appears to be an efficient tool for early detection of leprosy cases in community based contact tracing amongst close associates of PB and MB cases. Early contact tracing using a molecular biology tool can be of great help in curbing the incidence of leprosy further.
Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai
2018-03-15
Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The STIS MAMA status: Current detector performance
NASA Technical Reports Server (NTRS)
Danks, A. C.; Joseph, C.; Bybee, R.; Argebright, V.; Abraham, J.; Kimble, R.; Woodgate, B.
1992-01-01
The STIS (Space Telescope Imaging Spectrograph) is a second generation Hubble instrument scheduled to fly in 1997. Through a variety of modes, the instrument will provide spectral resolutions from R approximately 50 in the objective spectroscopy mode to 100,000 in the high resolution echelle mode in the wavelength region from 115 to 1000 nm. In the UV the instrument employs two MAMA (Multimode Anode Microchannel plate Arrays) 1024 by 1024 pixel detectors, which provide high DQE (Detective Quantum Efficiency), and good dynamic range and resolution. The current progress and performance of these detectors are reported, illustrating that the technology is mature and that the performance is very close to flight requirements.
Enhancement of quantum-enhanced LADAR receiver in nonideal phase-sensitive amplification
NASA Astrophysics Data System (ADS)
Zhang, Shuan; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing
2017-07-01
The phase-sensitive amplification (PSA) with an injected squeezed vacuum field is theoretically investigated in quantum-enhanced laser detection and ranging (LADAR) receiver. The theoretical model of the amplified process is derived to investigate the quantum fluctuations in detail. A new method of mitigating the unflat gain of nonideal PSA is proposed by adjusting the squeezed angle of the squeezed vacuum field. The simulation results indicate that signal-noise ratio (SNR) of system can be efficiently improved and close to the ideal case by this method. This research will provide an important potential in the applications of quantum-enhanced LADAR receiver.
Acoustic mirror effect increases prey detection distance in trawling bats
NASA Astrophysics Data System (ADS)
Siemers, Björn M.; Baur, Eric; Schnitzler, Hans-Ulrich
2005-06-01
Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called ‘trawling behaviour’. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.
Acoustic mirror effect increases prey detection distance in trawling bats.
Siemers, Björn M; Baur, Eric; Schnitzler, Hans-Ulrich
2005-06-01
Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called 'trawling behaviour'. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.
Wu, Guangfu; Dai, Ziwen; Tang, Xin; Lin, Zihong; Lo, Pik Kwan; Meyyappan, M; Lai, King Wai Chiu
2017-10-01
This study reports biosensing using graphene field-effect transistors with the aid of pyrene-tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe-modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG-FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Algorithms for the detection of chewing behavior in dietary monitoring applications
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Helal, Abdelsalam; Mendez-Vasquez, Andres
2009-08-01
The detection of food consumption is key to the implementation of successful behavior modification in support of dietary monitoring and therapy, for example, during the course of controlling obesity, diabetes, or cardiovascular disease. Since the vast majority of humans consume food via mastication (chewing), we have designed an algorithm that automatically detects chewing behaviors in surveillance video of a person eating. Our algorithm first detects the mouth region, then computes the spatiotemporal frequency spectrum of a small perioral region (including the mouth). Spectral data are analyzed to determine the presence of periodic motion that characterizes chewing. A classifier is then applied to discriminate different types of chewing behaviors. Our algorithm was tested on seven volunteers, whose behaviors included chewing with mouth open, chewing with mouth closed, talking, static face presentation (control case), and moving face presentation. Early test results show that the chewing behaviors induce a temporal frequency peak at 0.5Hz to 2.5Hz, which is readily detected using a distance-based classifier. Computational cost is analyzed for implementation on embedded processing nodes, for example, in a healthcare sensor network. Complexity analysis emphasizes the relationship between the work and space estimates of the algorithm, and its estimated error. It is shown that chewing detection is possible within a computationally efficient, accurate, and subject-independent framework.
Self-assembled KCu7S4 nanowire monolayers for self-powered near-infrared photodetectors.
Wang, You-Yi; Wu, Ya-Dong; Peng, Wei; Song, Yong-Hong; Wang, Bao; Wu, Chun-Yan; Lu, Yang
2018-06-13
Near infrared light (NIR) photodetectors based on one-dimensional semiconductor nanowires have generated considerable interest due to their practical application in versatile fields. We present a facile yet efficient approach to rationally integrating KCu7S4 semiconductor nanowires by the Langmuir-Blodgett (LB) technique. A self-powered near infrared (NIR) light photodetector is fabricated by transferring a close-packed KCu7S4 nanowire monolayer to the surface of a silicon wafer. The as-fabricated Si/KCu7S4 heterojunction with a close-packed and well-aligned nanowire array exhibits splendid photovoltaic performance when illuminated by NIR light, allowing the detection of NIR light without an exterior power supply. The photodetector exhibits a high sensitivity to NIR light (980 nm, 295.3 μW cm-2) with responsivity (R) 15 mA W-1 and detectivity (D*) 2.15 × 1012 cm Hz1/2 W-1. Significantly, the device shows the capability to work under high pulsed light irradiation up to 50 kHz with a high-speed response (response time τr 7.4 μs and recovery time τf 8.6 μs). This facilitates the fabrication of low-cost and high-speed photodetectors and integrated optoelectronic sensor circuitry.
GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies
Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio
2013-01-01
We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243
Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J
2016-09-02
Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, J.D.; Zhang, J.; Rember, W.C.
Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduousmore » species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.« less
Tissue modification with feedback: the smart scalpel
NASA Astrophysics Data System (ADS)
Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.
1998-10-01
While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.
Susceptibility-matched plugs for microcoil NMR probes
NASA Astrophysics Data System (ADS)
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 μL) and larger volume (15-20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.
Susceptibility-matched plugs for microcoil NMR probes.
Kc, Ravi; Gowda, Yashas N; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 microL) and larger volume (15-20 microL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krantz, C.; Novotný, O.; Becker, A.; George, S.; Grieser, M.; Hahn, R. von; Meyer, C.; Schippers, S.; Spruck, K.; Vogel, S.; Wolf, A.
2017-04-01
We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (∼keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ∼ 6 K , the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaver, Justin M; Borges, Raymond Charles; Buckner, Mark A
Critical infrastructure Supervisory Control and Data Acquisition (SCADA) systems were designed to operate on closed, proprietary networks where a malicious insider posed the greatest threat potential. The centralization of control and the movement towards open systems and standards has improved the efficiency of industrial control, but has also exposed legacy SCADA systems to security threats that they were not designed to mitigate. This work explores the viability of machine learning methods in detecting the new threat scenarios of command and data injection. Similar to network intrusion detection systems in the cyber security domain, the command and control communications in amore » critical infrastructure setting are monitored, and vetted against examples of benign and malicious command traffic, in order to identify potential attack events. Multiple learning methods are evaluated using a dataset of Remote Terminal Unit communications, which included both normal operations and instances of command and data injection attack scenarios.« less
Susceptibility-matched plugs for microcoil NMR probes
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-01-01
For mass limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5 to 2 μL) and larger volume (15 to 20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6 to 12 fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. PMID:20510638
Automatic generation of pictorial transcripts of video programs
NASA Astrophysics Data System (ADS)
Shahraray, Behzad; Gibbon, David C.
1995-03-01
An automatic authoring system for the generation of pictorial transcripts of video programs which are accompanied by closed caption information is presented. A number of key frames, each of which represents the visual information in a segment of the video (i.e., a scene), are selected automatically by performing a content-based sampling of the video program. The textual information is recovered from the closed caption signal and is initially segmented based on its implied temporal relationship with the video segments. The text segmentation boundaries are then adjusted, based on lexical analysis and/or caption control information, to account for synchronization errors due to possible delays in the detection of scene boundaries or the transmission of the caption information. The closed caption text is further refined through linguistic processing for conversion to lower- case with correct capitalization. The key frames and the related text generate a compact multimedia presentation of the contents of the video program which lends itself to efficient storage and transmission. This compact representation can be viewed on a computer screen, or used to generate the input to a commercial text processing package to generate a printed version of the program.
40 CFR 61.349 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Standard for Benzene Waste Operations § 61.349 Standards: Closed-vent systems and control devices... efficiency of 95 weight percent or greater, or shall recover or control the benzene emissions vented to it..., or shall recover or control the benzene emissions vented to it with an efficiency of 98 weight...
40 CFR 61.349 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Standard for Benzene Waste Operations § 61.349 Standards: Closed-vent systems and control devices... efficiency of 95 weight percent or greater, or shall recover or control the benzene emissions vented to it..., or shall recover or control the benzene emissions vented to it with an efficiency of 98 weight...
Robust excitons inhabit soft supramolecular nanotubes
Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.
2014-01-01
Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336
Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection
Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; Huang, Cheng-Sheng; Schulz, Stephen; Cunningham, Brian T.
2010-01-01
A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate. PMID:21164826
Cevallos-Larrea, Pablo; Pereira, Thobias; Santos, Wagner; Frota, Silvana M; Infantosi, Antonio F; Ichinose, Roberto M; Tierra-Criollo, Carlos
2016-08-01
This study investigated the performance of Frequency Specific Auditory Steady-State Response (FS-ASSR) detection elicited by the amplitude modulated tone with 2-order exponential envelope (AM2), using objective response detection (ORD) techniques of Spectral F-Test (SFT) and Magnitude Squared Coherence (MSC). ASSRs from 24 normal hearing adults were obtained during binaural multi-tone stimulation of amplitude-modulation (AM) and AM2 at intensities of 60, 45 and 30 dBSPL. The carrier frequencies were 500, 1000, 2000, and 4000 Hz, modulated between 77 and 105 Hz. AM2 achieve FS-ASSR amplitudes higher than AM by 16%, 18% and 12% at 60, 45 and 30 dBSPL, respectively, with a major increase at 500 Hz (22.5%). AMS2PL increased the Detection Rate (DR) up to 8.3% at 500 Hz for 30 dBSPL, which is particularly beneficial for FS-ASSR detection near the hearing threshold. In addition, responses in 1000 and 4000 Hz were consistently increased. The MSC and SFT presented no differences in Detection Rate (DR). False Detection Rate (FDR) was close to 5% for both techniques and tones. Detection times to reach DR over 90% were 3.5 and 4.9 min at 60 and 45 dBSPL, respectively. Further investigation concerning efficient multiple FS-ASSR is still necessary, such as testing subjects with hearing loss.
Method and apparatus for operating a powertrain system upon detecting a stuck-closed clutch
Hansen, R. Anthony
2014-02-18
A powertrain system includes a multi-mode transmission having a plurality of torque machines. A method for controlling the powertrain system includes identifying all presently applied clutches including commanded applied clutches and the stuck-closed clutch upon detecting one of the torque-transfer clutches is in a stuck-closed condition. A closed-loop control system is employed to control operation of the multi-mode transmission accounting for all the presently applied clutches.
He, Yue; Lin, Yi; Tang, Hongwu; Pang, Daiwen
2012-03-21
Mucin 1 (MUC1) which presents in epithelial malignancies, is a well-known tumor biomarker. In this paper, a highly sensitive and selective fluorescent aptasensor for Mucin 1 (MUC1) detection is constructed, utilizing graphene oxide (GO) as a quencher which can quench the fluorescence of single-stranded dye-labeled MUC1 specific aptamer. In the absence of MUC1, the adsorption of the dye-labeled aptamer on GO brings the dyes in close proximity to the GO surface resulting in high efficiency quenching of dye fluorescence. Therefore, the fluorescence of the designed aptasensor is completely quenched by GO, and the system shows very low background fluorescence. Conversely, and very importantly, upon the adding of MUC1, the quenched fluorescence is recovered significantly, and MUC1 can be detected in a wide range of 0.04-10 μM with a detection limit of 28 nM and good selectivity. Moreover, the results have also been verified for real sample application by testing 2% serum containing buffer solution spiked with a series of concentrations of MUC1. This journal is © The Royal Society of Chemistry 2012
Tun, Tin A; Baskaran, Mani; Tan, Shayne S; Perera, Shamira A; Aung, Tin; Husain, Rahat
2017-01-01
To evaluate the diagnostic performance of the anterior segment angle-to-angle scan of the Cirrus high-definition optical coherence tomography (HD-OCT) in detecting eyes with closed angles. All subjects underwent dark-room gonioscopy by an ophthalmologist. A technician performed anterior segment imaging with Cirrus (n = 202) and Visante OCT (n = 85) under dark-room conditions. All eyes were categorized by two masked graders as per number of closed quadrants. Each quadrant of anterior chamber angle was categorized as a closed angle if posterior trabecular meshwork could not be seen on gonioscopy or if there was any irido-corneal contact anterior to scleral spur in Cirrus and Visante images. An eye was graded as having a closed angle if two or more quadrants were closed. Agreement and area under the curve (AUC) were performed. There were 50 (24.8%) eyes with closed angles. The agreements of closed-angle diagnosis (by eye) between Cirrus HD-OCT and gonioscopy (k = 0.59; 95% confidence interval (CI) 0.45-0.72; AC1 = 0.76) and between Cirrus and Visante OCT (k = 0.65; 95% CI 0.48-0.82, AC1 = 0.77) were moderate. The AUC for diagnosing the eye with gonioscopic closed angle by Cirrus HD-OCT was good (AUC = 0.86; sensitivity = 83.33; specificity = 77.78). The diagnostic performance of Cirrus HD-OCT in detecting the eyes with closed angles was similar to that of Visante (AUC 0.87 vs. 0.9, respectively; P = 0.51). The anterior segment angle-to-angle scans of Cirrus HD-OCT demonstrated similar diagnostic performance as Visante in detecting gonioscopic closed angles. The agreement between Cirrus and gonioscopy for detecting eyes with closed angles was moderate.
Ultrathin flexible piezoelectric sensors for monitoring eye fatigue
NASA Astrophysics Data System (ADS)
Lü, Chaofeng; Wu, Shuang; Lu, Bingwei; Zhang, Yangyang; Du, Yangkun; Feng, Xue
2018-02-01
Eye fatigue is a symptom induced by long-term work of both eyes and brains. Without proper treatment, eye fatigue may incur serious problems. Current studies on detecting eye fatigue mainly focus on computer vision detect technology which can be very unreliable due to occasional bad visual conditions. As a solution, we proposed a wearable conformal in vivo eye fatigue monitoring sensor that contains an array of piezoelectric nanoribbons integrated on an ultrathin flexible substrate. By detecting strains on the skin of eyelid, the sensors may collect information about eye blinking, and, therefore, reveal human’s fatigue state. We first report the design and fabrication of the piezoelectric sensor and experimental characterization of voltage responses of the piezoelectric sensors. Under bending stress, the output voltage curves yield key information about the motion of human eyelid. We also develop a theoretical model to reveal the underlying mechanism of detecting eyelid motion. Both mechanical load test and in vivo test are conducted to convince the working performance of the sensors. With satisfied durability and high sensitivity, this sensor may efficiently detect abnormal eyelid motions, such as overlong closure, high blinking frequency, low closing speed and weak gazing strength, and may hopefully provide feedback for assessing eye fatigue in time so that unexpected situations can be prevented.
Experimental study on the crack detection with optimized spatial wavelet analysis and windowing
NASA Astrophysics Data System (ADS)
Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine
2018-05-01
In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.
The optimal community detection of software based on complex networks
NASA Astrophysics Data System (ADS)
Huang, Guoyan; Zhang, Peng; Zhang, Bing; Yin, Tengteng; Ren, Jiadong
2016-02-01
The community structure is important for software in terms of understanding the design patterns, controlling the development and the maintenance process. In order to detect the optimal community structure in the software network, a method Optimal Partition Software Network (OPSN) is proposed based on the dependency relationship among the software functions. First, by analyzing the information of multiple execution traces of one software, we construct Software Execution Dependency Network (SEDN). Second, based on the relationship among the function nodes in the network, we define Fault Accumulation (FA) to measure the importance of the function node and sort the nodes with measure results. Third, we select the top K(K=1,2,…) nodes as the core of the primal communities (only exist one core node). By comparing the dependency relationships between each node and the K communities, we put the node into the existing community which has the most close relationship. Finally, we calculate the modularity with different initial K to obtain the optimal division. With experiments, the method OPSN is verified to be efficient to detect the optimal community in various softwares.
Markoutsa, Stavroula; Bahr, Ute; Papasotiriou, Dimitrios G; Häfner, Ann-Kathrin; Karas, Michael; Sorg, Bernd L
2014-03-01
The discovery of PTMs in proteins by MS requires nearly complete sequence coverage of the detected proteolytic peptides. Unfortunately, mass spectrometric analysis of the desired sequence fragments is often impeded due to low ionization efficiency and/or signal suppression in complex samples. When several lysine residues are in close proximity tryptic peptides may be too short for mass analysis. Moreover, modified peptides often appear in low stoichiometry and need to be enriched before analysis. We present here how the use of sulfo-NHS-SS-biotin derivatization of lysine side chain can help to detect PTMs in lysine-rich proteins. This label leads to a mass shift which can be adjusted by reduction of the SS bridge and alkylation with different reagents. Low intensity peptides can be enriched by use of streptavidin beads. Using this method, the functionally relevant protein kinase A phosphorylation site in 5-lipoxygenase was detected for the first time by MS. Additionally, methylation and acetylation could be unambiguously determined in histones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T
2012-01-01
We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.
Sawaya, Michael A.; Stetz, Jeffrey B.; Clevenger, Anthony P.; Gibeau, Michael L.; Kalinowski, Steven T.
2012-01-01
We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears ( = 73.5, 95% CI = 64–94 in 2006; = 50.4, 95% CI = 49–59 in 2008) and black bears ( = 62.6, 95% CI = 51–89 in 2006; = 81.8, 95% CI = 72–102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males ( = 0.93, 95% CI = 0.74–1.17) and females ( = 0.90, 95% CI = 0.67–1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains. PMID:22567089
Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems
NASA Astrophysics Data System (ADS)
Park, Yu-Chul
2016-04-01
Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).
Adaptive transmission disequilibrium test for family trio design.
Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning
2009-01-01
The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.
Study on initiative vibration absorbing technology of optics in strong disturbed environment
NASA Astrophysics Data System (ADS)
Jia, Si-nan; Xiong, Mu-di; Zou, Xiao-jie
2007-12-01
Strong disturbed environment is apt to cause irregular vibration, which seriously affects optical collimation. To improve the performance of laser beam, three-point dynamic vibration absorbing method is proposed, and laser beam initiative vibration absorbing system is designed. The maladjustment signal is detected by position sensitive device (PSD), three groups of PZT are driven to adjust optical element in real-time, so the performance of output-beam is improved. The coupling model of the system is presented. Multivariable adaptive closed-loop decoupling arithmetic is used to design three-input-three-output decoupling controller, so that high precision dynamic adjusting is realized. Experiments indicate that the system has good shock absorbing efficiency.
FDI and Accommodation Using NN Based Techniques
NASA Astrophysics Data System (ADS)
Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro
Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.
Automation of Silica Bead-based Nucleic Acid Extraction on a Centrifugal Lab-on-a-Disc Platform
NASA Astrophysics Data System (ADS)
Kinahan, David J.; Mangwanya, Faith; Garvey, Robert; Chung, Danielle WY; Lipinski, Artur; Julius, Lourdes AN; King, Damien; Mohammadi, Mehdi; Mishra, Rohit; Al-Ofi, May; Miyazaki, Celina; Ducrée, Jens
2016-10-01
We describe a centrifugal microfluidic ‘Lab-on-a-Disc’ (LoaD) technology for DNA purification towards eventual integration into a Sample-to-Answer platform for detection of the pathogen Escherichia coli O157:H7 from food samples. For this application, we use a novel microfluidic architecture which combines ‘event-triggered’ dissolvable film (DF) valves with a reaction chamber gated by a centrifugo-pneumatic siphon valve (CPSV). This architecture permits comprehensive flow control by simple changes in the speed of the platform innate spindle motor. Even before method optimisation, characterisation by DNA fluorescence reveals an extraction efficiency of 58%, which is close to commercial spin columns.
Verifying genuine high-order entanglement.
Li, Che-Ming; Chen, Kai; Reingruber, Andreas; Chen, Yueh-Nan; Pan, Jian-Wei
2010-11-19
High-order entanglement embedded in multipartite multilevel quantum systems (qudits) with many degrees of freedom (DOFs) plays an important role in quantum foundation and quantum engineering. Verifying high-order entanglement without the restriction of system complexity is a critical need in any experiments on general entanglement. Here, we introduce a scheme to efficiently detect genuine high-order entanglement, such as states close to genuine qudit Bell, Greenberger-Horne-Zeilinger, and cluster states as well as multilevel multi-DOF hyperentanglement. All of them can be identified with two local measurement settings per DOF regardless of the qudit or DOF number. The proposed verifications together with further utilities such as fidelity estimation could pave the way for experiments by reducing dramatically the measurement overhead.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.
Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images
NASA Astrophysics Data System (ADS)
Doshi, Trushali; Soraghan, John; Grose, Derek; MacKenzie, Kenneth; Petropoulakis, Lykourgos
2015-03-01
Detection of larynx cancer from medical imaging is important for the quantification and for the definition of target volumes in radiotherapy treatment planning (RTP). Magnetic resonance imaging (MRI) is being increasingly used in RTP due to its high resolution and excellent soft tissue contrast. Manually detecting larynx cancer from sequential MRI is time consuming and subjective. The large diversity of cancer in terms of geometry, non-distinct boundaries combined with the presence of normal anatomical regions close to the cancer regions necessitates the development of automatic and robust algorithms for this task. A new automatic algorithm for the detection of larynx cancer from 2D gadoliniumenhanced T1-weighted (T1+Gd) MRI to assist clinicians in RTP is presented. The algorithm employs edge detection using spatial neighborhood information of pixels and incorporates this information in a fuzzy c-means clustering process to robustly separate different tissues types. Furthermore, it utilizes the information of the expected cancerous location for cancer regions labeling. Comparison of this automatic detection system with manual clinical detection on real T1+Gd axial MRI slices of 2 patients (24 MRI slices) with visible larynx cancer yields an average dice similarity coefficient of 0.78+/-0.04 and average root mean square error of 1.82+/-0.28 mm. Preliminary results show that this fully automatic system can assist clinicians in RTP by obtaining quantifiable and non-subjective repeatable detection results in a particular time-efficient and unbiased fashion.
Lohmann, Ingrid
2012-01-01
In multi-cellular organisms, spatiotemporal activity of cis-regulatory DNA elements depends on their occupancy by different transcription factors (TFs). In recent years, genome-wide ChIP-on-Chip, ChIP-Seq and DamID assays have been extensively used to unravel the combinatorial interaction of TFs with cis-regulatory modules (CRMs) in the genome. Even though genome-wide binding profiles are increasingly becoming available for different TFs, single TF binding profiles are in most cases not sufficient for dissecting complex regulatory networks. Thus, potent computational tools detecting statistically significant and biologically relevant TF-motif co-occurrences in genome-wide datasets are essential for analyzing context-dependent transcriptional regulation. We have developed COPS (Co-Occurrence Pattern Search), a new bioinformatics tool based on a combination of association rules and Markov chain models, which detects co-occurring TF binding sites (BSs) on genomic regions of interest. COPS scans DNA sequences for frequent motif patterns using a Frequent-Pattern tree based data mining approach, which allows efficient performance of the software with respect to both data structure and implementation speed, in particular when mining large datasets. Since transcriptional gene regulation very often relies on the formation of regulatory protein complexes mediated by closely adjoining TF binding sites on CRMs, COPS additionally detects preferred short distance between co-occurring TF motifs. The performance of our software with respect to biological significance was evaluated using three published datasets containing genomic regions that are independently bound by several TFs involved in a defined biological process. In sum, COPS is a fast, efficient and user-friendly tool mining statistically and biologically significant TFBS co-occurrences and therefore allows the identification of TFs that combinatorially regulate gene expression. PMID:23272209
Multimodality instrument for tissue characterization
NASA Technical Reports Server (NTRS)
Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)
2004-01-01
A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.
Ngoepe, Mpho; Choonara, Yahya E.; Tyagi, Charu; Tomar, Lomas Kumar; du Toit, Lisa C.; Kumar, Pradeep; Ndesendo, Valence M. K.; Pillay, Viness
2013-01-01
Recent advances in biosensor design and sensing efficacy need to be amalgamated with research in responsive drug delivery systems for building superior health or illness regimes and ensuring good patient compliance. A variety of illnesses require continuous monitoring in order to have efficient illness intervention. Physicochemical changes in the body can signify the occurrence of an illness before it manifests. Even with the usage of sensors that allow diagnosis and prognosis of the illness, medical intervention still has its downfalls. Late detection of illness can reduce the efficacy of therapeutics. Furthermore, the conventional modes of treatment can cause side-effects such as tissue damage (chemotherapy and rhabdomyolysis) and induce other forms of illness (hepatotoxicity). The use of drug delivery systems enables the lowering of side-effects with subsequent improvement in patient compliance. Chronic illnesses require continuous monitoring and medical intervention for efficient treatment to be achieved. Therefore, designing a responsive system that will reciprocate to the physicochemical changes may offer superior therapeutic activity. In this respect, integration of biosensors and drug delivery is a proficient approach and requires designing an implantable system that has a closed loop system. This offers regulation of the changes by means of releasing a therapeutic agent whenever illness biomarkers prevail. Proper selection of biomarkers is vital as this is key for diagnosis and a stimulation factor for responsive drug delivery. By detecting an illness before it manifests by means of biomarkers levels, therapeutic dosing would relate to the severity of such changes. In this review various biosensors and drug delivery systems are discussed in order to assess the challenges and future perspectives of integrating biosensors and drug delivery systems for detection and management of chronic illness. PMID:23771157
VRPI Temporal Progression of Closed Globe Injury from Blast Exposure
2015-09-01
significant increases in VEGF have been reported in many ocular disorders including diabetic retinopathy , diffuse macular edema, retinal vein...Open globe injury is often readily identifiable and typically undergoes urgent surgical repair. However, closed globe injury may not be detected ...including shrapnel or debris to the eye, is easily identified and rapidly treated. Closed globe trauma may not be detected right away, and little is
Testing & Evaluation of Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions
DOT National Transportation Integrated Search
2012-01-01
This report summarizes activities in support of the DOT contract on Testing & Evaluating Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions & Improve Visual Inspection Procedures. The work of this project was performed by Dr...
Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood
Bondell, Howard D.; Stefanski, Leonard A.
2013-01-01
Large- and finite-sample efficiency and resistance to outliers are the key goals of robust statistics. Although often not simultaneously attainable, we develop and study a linear regression estimator that comes close. Efficiency obtains from the estimator’s close connection to generalized empirical likelihood, and its favorable robustness properties are obtained by constraining the associated sum of (weighted) squared residuals. We prove maximum attainable finite-sample replacement breakdown point, and full asymptotic efficiency for normal errors. Simulation evidence shows that compared to existing robust regression estimators, the new estimator has relatively high efficiency for small sample sizes, and comparable outlier resistance. The estimator is further illustrated and compared to existing methods via application to a real data set with purported outliers. PMID:23976805
Luo, Jun; Cui, Xiuji; Gao, Lu
2017-01-01
ABSTRACT Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3′ exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3′ end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5′ end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. PMID:28637752
Magnetic Force Switches for Magnetic Fluid Micromixing
NASA Astrophysics Data System (ADS)
Wei, Zung-Hang; Lee, Chiun-Peng; Lai, Mei-Feng
2010-01-01
A magnetic fluid micromixer with energy-saving magnetic force switches that can manipulate the magnetic fluid flow is proposed. The micromixer of high mixing efficiency uses single-domain micro magnets that have strong magnetic anisotropy to produce the magnetic force for the mixing. By altering the magnetization directions of the magnets that have different aspect ratios and coercivities, open and closed magnetic fluxes can be produced around each magnet cluster. For open magnetic flux, the mixing efficiency is numerically found to increase with the saturation magnetization of the magnets. On the contrary, the magnet clusters barely affects the mixing efficiency in the case of closed magnetic flux. Due to the different magnetic forces produced in open and closed magnetic fluxes, the magnetic fluid mixing can be switched on and off.
Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun
2016-06-15
Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large TiO₂ NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO₂ NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO₂ NPs. By introducing Ag NPs and/or large TiO₂ NPs to open-ended freestanding TiO₂ nanotube array-based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO₂ NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO₂ NPs. Moreover, compared to closed-ended freestanding TiO₂ nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO₂ nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component-Ag NPs, TiO₂ NPs, and open-ended freestanding TiO₂ nanotube arrays-enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency.
Caetano-Anollés, G; Gresshoff, P M
1996-06-01
DNA amplification fingerprinting (DAF) with mini-hairpins harboring arbitrary "core" sequences at their 3' termini were used to fingerprint a variety of templates, including PCR products and whole genomes, to establish genetic relationships between plant tax at the interspecific and intraspecific level, and to identify closely related fungal isolates and plant accessions. No correlation was observed between the sequence of the arbitrary core, the stability of the mini-hairpin structure and DAF efficiency. Mini-hairpin primers with short arbitrary cores and primers complementary to simple sequence repeats present in microsatellites were also used to generate arbitrary signatures from amplification profiles (ASAP). The ASAP strategy is a dual-step amplification procedure that uses at least one primer in each fingerprinting stage. ASAP was able to reproducibly amplify DAF products (representing about 10-15 kb of sequence) following careful optimization of amplification parameters such as primer and template concentration. Avoidance of primer sequences partially complementary to DAF product termini was necessary in order to produce distinct fingerprints. This allowed the combinatorial use of oligomers in nucleic acid screening, with numerous ASAP fingerprinting reactions based on a limited number of primer sequences. Mini-hairpin primers and ASAP analysis significantly increased detection of polymorphic DNA, separating closely related bermudagrass (Cynodon) cultivars and detecting putatively linked markers in bulked segregant analysis of the soybean (Glycine max) supernodulation (nitrate-tolerant symbiosis) locus.
Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin
2012-01-01
Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436
Idrissi, Omar; Udupa, Sripada M.; De Keyser, Ellen; McGee, Rebecca J.; Coyne, Clarice J.; Saha, Gopesh C.; Muehlbauer, Fred J.; Van Damme, Patrick; De Riek, Jan
2016-01-01
Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL) analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL (QRSratioIX-2.30) related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 and 28.9% for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL (QLRNIII-98.64) related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL (QSRLIV-61.63) associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labor-intensive conventional breeding methods. PMID:27602034
Tuning Single Quantum Dot Emission with a Micromirror.
Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul
2018-02-14
The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.
Cohn, Timothy A.
2005-01-01
This paper presents an adjusted maximum likelihood estimator (AMLE) that can be used to estimate fluvial transport of contaminants, like phosphorus, that are subject to censoring because of analytical detection limits. The AMLE is a generalization of the widely accepted minimum variance unbiased estimator (MVUE), and Monte Carlo experiments confirm that it shares essentially all of the MVUE's desirable properties, including high efficiency and negligible bias. In particular, the AMLE exhibits substantially less bias than alternative censored‐data estimators such as the MLE (Tobit) or the MLE followed by a jackknife. As with the MLE and the MVUE the AMLE comes close to achieving the theoretical Frechet‐Cramér‐Rao bounds on its variance. This paper also presents a statistical framework, applicable to both censored and complete data, for understanding and estimating the components of uncertainty associated with load estimates. This can serve to lower the cost and improve the efficiency of both traditional and real‐time water quality monitoring.
NASA Technical Reports Server (NTRS)
Monson, D. J.
1978-01-01
Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).
NASA Technical Reports Server (NTRS)
Amos, D. J.; Fentress, W. K.; Stahl, W. F.
1976-01-01
Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.
CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi, E-mail: ogihara@nagoya-u.jp
2013-11-20
We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision withmore » the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small.« less
Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi
2014-01-01
With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).
Differentiation in the water-use strategies among oak species from central Mexico.
Aguilar-Romero, Rafael; Pineda-Garcia, Fernando; Paz, Horacio; González-Rodríguez, Antonio; Oyama, Ken
2017-07-01
Oak species (Fagaceae: Quercus) differ in their distribution at the landscape scale, specializing to a certain portion of environmental gradients. This suggests that functional differentiation favors habitat partitioning among closely related species. To elucidate the mechanisms of species coexistence in oak forests, we explored patterns of interspecific variation in functional traits involved in water-use strategies. We tested the hypothesis that oak species segregate along key trade-offs between xylem hydraulic efficiency and safety, and between hydraulic safety and drought avoidance capacity, leading to species niche partitioning across a gradient of aridity. To do so, we quantified biophysical and physiological traits in four red and five white oak species (sections Lobatae and Quercus, respectively) across an aridity gradient in central Mexico. We also explored the trade-offs guiding species differentiation, particularly between the drought tolerance versus water acquisition capacity, and determined whether the water-use strategy was associated with the portion of the environmental gradient that the species occupy. In a trait-by-trait analysis, we detected differences between white and red oak species. However, a larger part of the variation was explained at the species rather than at the section level. We detected two primary axes of trait covariation. The first exhibited differences between species with dense tissues and species with soft tissues (the tissue construction cost axis); however, the oak sections did not constitute separate groups, while the second suggested a trade-off between xylem resistance to cavitation and tree deciduousness. As expected, the water-use strategies of the species were related to the environment; oak species from arid areas had more deciduousness and a higher instantaneous water-use efficiency. In contrast, their humid counterparts had less deciduousness and had a xylem that was more resistant to embolisms. Altogether, these results suggest that aridity filters closely related species, resulting in habitat partitioning and niche divergence. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.
2000-08-01
JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.
ELISA for detection of variant rabbit haemorrhagic disease virus RHDV2 antigen in liver extracts.
Dalton, K P; Podadera, A; Granda, V; Nicieza, I; Del Llano, D; González, R; de Los Toyos, J R; García Ocaña, M; Vázquez, F; Martín Alonso, J M; Prieto, J M; Parra, F; Casais, R
2018-01-01
The emergence and rapid spread of variant of the rabbit hemorrhagic disease virus (RHDV2) require new diagnostic tools to ensure that efficient control measures are adopted. In the present study, a specific sandwich enzyme-linked immunosorbent assay (ELISA) for detection of RHDV2 antigens in rabbit liver homogenates, based on the use of an RHDV2-specific monoclonal antibody (Mab) 2D9 for antigen capture and an anti-RHDV2 goat polyclonal antibody (Pab), was developed. This ELISA was able to successfully detect RHDV2 and RHDV2 recombinant virions with high sensitivity (100%) and specificity (97.22%). No cross-reactions were detected with RHDV G1 viruses while low cross-reactivity was detected with one of the RHDVa samples analyzed. The ELISA afforded good repeatability and had high analytical sensitivity as it was able to detect a dilution 1:163,640 (6.10ng/mL) of purified RHDV-N11 VLPs, which contained approximately 3.4×10 8 molecules/mL particles. The reliable discrimination between closely related viruses is crucial to understand the epidemiology and the interaction of co-existing pathogens. In the work described here we design and validate an ELISA for laboratory based, specific, sensitive and reliable detection of RHDVb/RHDV2. This ELISA is a valuable, specific virological tool for monitoring virus circulation, which will permit a better control of this disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Uddin, M B; Chow, C M; Su, S W
2018-03-26
Sleep apnea (SA), a common sleep disorder, can significantly decrease the quality of life, and is closely associated with major health risks such as cardiovascular disease, sudden death, depression, and hypertension. The normal diagnostic process of SA using polysomnography is costly and time consuming. In addition, the accuracy of different classification methods to detect SA varies with the use of different physiological signals. If an effective, reliable, and accurate classification method is developed, then the diagnosis of SA and its associated treatment will be time-efficient and economical. This study aims to systematically review the literature and present an overview of classification methods to detect SA using respiratory and oximetry signals and address the automated detection approach. Sixty-two included studies revealed the application of single and multiple signals (respiratory and oximetry) for the diagnosis of SA. Both airflow and oxygen saturation signals alone were effective in detecting SA in the case of binary decision-making, whereas multiple signals were good for multi-class detection. In addition, some machine learning methods were superior to the other classification methods for SA detection using respiratory and oximetry signals. To deal with the respiratory and oximetry signals, a good choice of classification method as well as the consideration of associated factors would result in high accuracy in the detection of SA. An accurate classification method should provide a high detection rate with an automated (independent of human action) analysis of respiratory and oximetry signals. Future high-quality automated studies using large samples of data from multiple patient groups or record batches are recommended.
An efficient approach for video information retrieval
NASA Astrophysics Data System (ADS)
Dong, Daoguo; Xue, Xiangyang
2005-01-01
Today, more and more video information can be accessed through internet, satellite, etc.. Retrieving specific video information from large-scale video database has become an important and challenging research topic in the area of multimedia information retrieval. In this paper, we introduce a new and efficient index structure OVA-File, which is a variant of VA-File. In OVA-File, the approximations close to each other in data space are stored in close positions of the approximation file. The benefit is that only a part of approximations close to the query vector need to be visited to get the query result. Both shot query algorithm and video clip algorithm are proposed to support video information retrieval efficiently. The experimental results showed that the queries based on OVA-File were much faster than that based on VA-File with small loss of result quality.
Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Harada, N.
2005-01-01
A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.
Supernovae Discovery Efficiency
NASA Astrophysics Data System (ADS)
John, Colin
2018-01-01
Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.
A Hybrid Multiuser Detector Based on MMSE and AFSA for TDRS System Forward Link
Yin, Zhendong; Liu, Xiaohui
2014-01-01
This study mainly focuses on multiuser detection in tracking and data relay satellite (TDRS) system forward link. Minimum mean square error (MMSE) is a low complexity multiuser detection method, but MMSE detector cannot achieve satisfactory bit error ratio and near-far resistance, whereas artificial fish swarm algorithm (AFSA) is expert in optimization and it can realize the global convergence efficiently. Therefore, a hybrid multiuser detector based on MMSE and AFSA (MMSE-AFSA) is proposed in this paper. The result of MMSE and its modified formations are used as the initial values of artificial fishes to accelerate the speed of global convergence and reduce the iteration times for AFSA. The simulation results show that the bit error ratio and near-far resistance performances of the proposed detector are much better, compared with MF, DEC, and MMSE, and are quite close to OMD. Furthermore, the proposed MMSE-AFSA detector also has a large system capacity. PMID:24883418
Raman spectroscopic differentiation of beef and horse meat using a 671 nm microsystem diode laser
NASA Astrophysics Data System (ADS)
Ebrahim, Halah Al; Sowoidnich, Kay; Kronfeldt, Heinz-Detlef
2013-11-01
A non-invasive Raman spectroscopic approach for meat species identification and quality detection was successfully demonstrated for the two closely related species beef and horse. Fresh beef and horse muscles were cut and ice-stored at 5 °C, and time-dependent Raman measurements were performed daily up to 12 days postmortem. Applying a 671 nm microsystem diode laser and a laser power of 50 mW, spectra were recorded with integration times of 1-4 s. A pronounced offset of the Raman spectra was observed between horse and beef, with high fluorescence background for horse compared to beef for all days of storage. Principal components analysis was applied for data evaluation revealing a clear distinction between beef and horse meat which can be attributed to differences in the myoglobin content of both species. Furthermore, separations according to aging and spoilage for the two species could be identified simultaneously. Therefore, Raman spectroscopy might be an efficient test method for meat species identification in combination with spoilage detection.
Characterization of the Hamamatsu 8" R5912-MOD Photomultiplier tube
NASA Astrophysics Data System (ADS)
Kaptanoglu, Tanner
2018-05-01
Current and future neutrino and direct detection dark matter experiments hope to take advantage of improving technologies in photon detection. Many of these detectors are large, monolithic optical detectors that use relatively low-cost, large-area, and efficient photomultiplier tubes (PMTs). A candidate PMT for future experiments is a newly developed prototype Hamamatsu PMT, the R5912-MOD. In this paper we describe measurements made of the single photoelectron time and charge response of the R5912-MOD, as well as detail some direct comparisons to similar PMTs. Most of these measurements were performed on three R5912-MOD PMTs operating at gains close to 1 × 107. The transit time spread (σ) and the charge peak-to-valley were measured to be on average 680ps and 4.2 respectively. The results of this paper show the R5912-MOD is an excellent candidate for future experiments in several regards, particularly due to its narrow spread in timing.
Viral factors in influenza pandemic risk assessment
Lipsitch, Marc; Barclay, Wendy; Raman, Rahul; Russell, Charles J; Belser, Jessica A; Cobey, Sarah; Kasson, Peter M; Lloyd-Smith, James O; Maurer-Stroh, Sebastian; Riley, Steven; Beauchemin, Catherine AA; Bedford, Trevor; Friedrich, Thomas C; Handel, Andreas; Herfst, Sander; Murcia, Pablo R; Roche, Benjamin; Wilke, Claus O; Russell, Colin A
2016-01-01
The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk. DOI: http://dx.doi.org/10.7554/eLife.18491.001 PMID:27834632
Giant light-harvesting nanoantenna for single-molecule detection in ambient light
Trofymchuk, Kateryna; Reisch, Andreas; Didier, Pascal; Fras, François; Gilliot, Pierre; Mely, Yves; Klymchenko, Andrey S.
2017-01-01
Here, we explore the enhancement of single molecule emission by polymeric nano-antenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nano-antenna, the cationic dyes are brought together in very close proximity using bulky counterions, thus enabling ultrafast diffusion of excitation energy (≤30 fs) with minimal losses. Our 60-nm nanoparticles containing >10,000 rhodamine-based donor dyes can efficiently transfer energy to 1-2 acceptors resulting in an antenna effect of ~1,000. Therefore, single Cy5-based acceptors become 25-fold brighter than quantum dots QD655. This unprecedented amplification of the acceptor dye emission enables observation of single molecules at illumination powers (1-10 mW cm-2) that are >10,000-fold lower than typically required in single-molecule measurements. Finally, using a basic setup, which includes a 20X air objective and a sCMOS camera, we could detect single Cy5 molecules by simply shining divergent light on the sample at powers equivalent to sunlight. PMID:28983324
Automatic temperature adjustment apparatus
Chaplin, James E.
1985-01-01
An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.
Einstein observations of selected close binaries and shell stars
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Koch, R. H.; Plavec, M. J.
1984-01-01
Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.
Absolute calibration of a multichannel plate detector for low energy O, O-, and O+
NASA Astrophysics Data System (ADS)
Stephen, T. M.; Peko, B. L.
2000-03-01
Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.
A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation.
Kovács, I; Julesz, B
1993-08-15
Detection of fragmented closed contours against a cluttered background occurs much beyond the local coherence distance (maximal separation between segments) of nonclosed contours. This implies that the extent of interaction between locally connected detectors is boosted according to the global stimulus structure. We further show that detection of a target probe is facilitated when the probe is positioned inside a closed circle. To explain the striking contour segregation ability found here, and performance enhancement inside closed boundaries, we propose the existence of a synergetic process in early vision.
Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming
2017-06-21
The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. Copyright © 2017 American Society for Microbiology.
NASA Technical Reports Server (NTRS)
Tsu, T. C.
1976-01-01
A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.
Detection of bone disease by hybrid SST-watershed x-ray image segmentation
NASA Astrophysics Data System (ADS)
Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim
2001-07-01
Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.
NASA Astrophysics Data System (ADS)
Donde, Oscar Omondi; Tian, Cuicui; Xiao, Bangding
2017-11-01
The presence of feacal-derived pathogens in water is responsible for several infectious diseases and deaths worldwide. As a solution, sources of fecal pollution in waters must be accurately assessed, properly determined and strictly controlled. However, the exercise has remained challenging due to the existing overlapping characteristics by different members of faecal coliform bacteria and the inadequacy of information pertaining to the contribution of seasonality and weather condition on tracking the possible sources of pollution. There are continued efforts to improve the Faecal Contamination Source Tracking (FCST) techniques such as Microbial Source Tracking (MST). This study aimed to make contribution to MST by evaluating the efficacy of combining site specific quantification of faecal contamination indicator bacteria and detection of DNA markers while accounting for seasonality and weather conditions' effects in tracking the major sources of faecal contamination in a freshwater system (Donghu Lake, China). The results showed that the use of cyd gene in addition to lacZ and uidA genes differentiates E. coli from other closely related faecal bacteria. The use of selective media increases the pollution source tracking accuracy. BSA addition boosts PCR detection and increases FCST efficiency. Seasonality and weather variability also influence the detection limit for DNA markers.
Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott
2015-01-01
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849
Zhan, Yuanjin; Luo, Fang; Guo, Longhua; Qiu, Bin; Lin, Yuhong; Li, Juan; Chen, Guonan; Lin, Zhenyu
2017-11-22
Hypochlorite (ClO - ) is one of the most important reactive oxygen species (ROS), which plays an important role in sustaining human innate immunity during microbial invasion. Moreover, ClO - is a powerful oxidizer for water treatment. The safety of drinking water is closely related to its content. Herein, m-phenylenediamine (mPD) is used as a precursor to prepare carbon dots (named m-CDs) with highly fluorescent quantum yield (31.58% in water), and our investigation shows that the strong fluorescent emission of m-CDs can be effectively quenched by ClO - . Based on these findings, we developed a novel fluorescent nanoprobe (m-CDs) for highly selective detection of ClO - . The linear range was from 0.05 to 7 μM (R 2 = 0.998), and the limit of detection (S/N = 3) was as low as 0.012 μM. Moreover, a portable agarose hydrogel solid matrix-based ratiometric fluorescent nanoprobe (m-CDs@[Ru(bpy) 3 ] 2+ ) sensor was subsequently developed for visual on-site detection of ClO - with the naked eyes under a UV lamp, suggesting its potential in practical application with low cost and excellent performance in water quality monitoring. Additionally, intracellular detection of exogenous ClO - was demonstrated via ratiometric imaging microscopy.
[Eco-efficiency change and its driving factors in Tongling City of Anhui Province].
Wang, Yi-Chen; Wang, Yuan; Zhu, Xiao-Dong; Wu, Xiao-Qing; Wang, Ke; Ren, Ke-Xiu; Lu, Gen-Fa
2011-02-01
This paper first applied material flow analysis (MFA) to construct three levels of regional eco-efficiency indicators, i.e., regional direct eco-efficiency (RDE), regional total eco-efficiency (RTE), and holistic eco-efficiency (HE), and adopted the newly developed data envelopment analysis (DEA) to evaluate the eco-efficiency of Tongling City during the period of 1990-2008. We also applied Malmquist productivity index (MPI) to explore the eco-efficiency change between two following years and its driving factors. The main results were summarized as 1) though the RDE of Tongling City in 1990-2008 kept an increasing trend, its mean eco-efficiency was not high (close to 0.8 in 80% of the years), being lower than that of the RTE and HE, and 2) the RDE change was closely relevant to the improvement in resource management and the technical input in environmental protection in recent years. In order to further improve the RDE of the City, it would be necessary to raise its eco-efficiency via expanding raw material input, reducing domestic extraction, promoting resources productivity, and taking more measures on environmental protection facilities construction.
Experiments and Analysis of Close-Shot Identification of On-Branch Citrus Fruit with RealSense
Liu, Jizhan; Yuan, Yan; Zhou, Yao; Zhu, Xinxin
2018-01-01
Fruit recognition based on depth information has been a hot topic due to its advantages. However, the present equipment and methods cannot meet the requirements of rapid and reliable recognition and location of fruits in close shot for robot harvesting. To solve this problem, we propose a recognition algorithm for citrus fruit based on RealSense. This method effectively utilizes depth-point cloud data in a close-shot range of 160 mm and different geometric features of the fruit and leaf to recognize fruits with a intersection curve cut by the depth-sphere. Experiments with close-shot recognition of six varieties of fruit under different conditions were carried out. The detection rates of little occlusion and adhesion were from 80–100%. However, severe occlusion and adhesion still have a great influence on the overall success rate of on-branch fruits recognition, the rate being 63.8%. The size of the fruit has a more noticeable impact on the success rate of detection. Moreover, due to close-shot near-infrared detection, there was no obvious difference in recognition between bright and dark conditions. The advantages of close-shot limited target detection with RealSense, fast foreground and background removal and the simplicity of the algorithm with high precision may contribute to high real-time vision-servo operations of harvesting robots. PMID:29751594
Polarimetry Microlensing of Close-in Planetary Systems
NASA Astrophysics Data System (ADS)
Sajadian, Sedighe; Hundertmark, Markus
2017-04-01
A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.
Water Detection Based on Color Variation
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.
2012-01-01
This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.
Perrineau, M M; Le Roux, C; Galiana, A; Faye, A; Duponnois, R; Goh, D; Prin, Y; Béna, G
2014-09-01
Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Designing small universal k-mer hitting sets for improved analysis of high-throughput sequencing
Kingsford, Carl
2017-01-01
With the rapidly increasing volume of deep sequencing data, more efficient algorithms and data structures are needed. Minimizers are a central recent paradigm that has improved various sequence analysis tasks, including hashing for faster read overlap detection, sparse suffix arrays for creating smaller indexes, and Bloom filters for speeding up sequence search. Here, we propose an alternative paradigm that can lead to substantial further improvement in these and other tasks. For integers k and L > k, we say that a set of k-mers is a universal hitting set (UHS) if every possible L-long sequence must contain a k-mer from the set. We develop a heuristic called DOCKS to find a compact UHS, which works in two phases: The first phase is solved optimally, and for the second we propose several efficient heuristics, trading set size for speed and memory. The use of heuristics is motivated by showing the NP-hardness of a closely related problem. We show that DOCKS works well in practice and produces UHSs that are very close to a theoretical lower bound. We present results for various values of k and L and by applying them to real genomes show that UHSs indeed improve over minimizers. In particular, DOCKS uses less than 30% of the 10-mers needed to span the human genome compared to minimizers. The software and computed UHSs are freely available at github.com/Shamir-Lab/DOCKS/ and acgt.cs.tau.ac.il/docks/, respectively. PMID:28968408
Perrineau, M. M.; Le Roux, C.; Galiana, A.; Faye, A.; Duponnois, R.; Goh, D.; Prin, Y.
2014-01-01
Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices. PMID:25002434
Regular Deployment of Wireless Sensors to Achieve Connectivity and Information Coverage
Cheng, Wei; Li, Yong; Jiang, Yi; Yin, Xipeng
2016-01-01
Coverage and connectivity are two of the most critical research subjects in WSNs, while regular deterministic deployment is an important deployment strategy and results in some pattern-based lattice WSNs. Some studies of optimal regular deployment for generic values of rc/rs were shown recently. However, most of these deployments are subject to a disk sensing model, and cannot take advantage of data fusion. Meanwhile some other studies adapt detection techniques and data fusion to sensing coverage to enhance the deployment scheme. In this paper, we provide some results on optimal regular deployment patterns to achieve information coverage and connectivity as a variety of rc/rs, which are all based on data fusion by sensor collaboration, and propose a novel data fusion strategy for deployment patterns. At first the relation between variety of rc/rs and density of sensors needed to achieve information coverage and connectivity is derived in closed form for regular pattern-based lattice WSNs. Then a dual triangular pattern deployment based on our novel data fusion strategy is proposed, which can utilize collaborative data fusion more efficiently. The strip-based deployment is also extended to a new pattern to achieve information coverage and connectivity, and its characteristics are deduced in closed form. Some discussions and simulations are given to show the efficiency of all deployment patterns, including previous patterns and the proposed patterns, to help developers make more impactful WSN deployment decisions. PMID:27529246
Atmosphere Resource Recovery and Environmental Monitoring
NASA Technical Reports Server (NTRS)
Roman, Monsi; Howard, David
2015-01-01
Atmosphere Resource Recovery and Environmental Monitoring (ARREM) is a project focused on evolving existing and maturing emerging 'closed loop' atmosphere revitalization (AR) life support systems that produce clean, breathable air for crewmembers, and developing a suite of low mass, low power environmental monitors to detect and measure air- and waterborne constituents and contaminants. The objective is to improve reliability and efficiency, reduce mass and volume, and increase recovery of oxygen from carbon dioxide created by human metabolism from 43% to greater than 90%. The technology developments under ARREM are vital to extending human space missions from low-Earth orbit like the International Space Station to destinations deeper into space such as Mars where dependency on Earth for resupply of maintenance items and critical life support elements such as water and oxygen is not possible. The primary goal of the ARREM project is to demonstrate that systems meet the more stringent performance parameters for deep space exploration and are compatible with other systems within closed loop life support through a series of integrated tests performed in an environmental test chamber capable of simulating human metabolic activities and measuring systems outputs.
Mother and newborn baby: mutual regulation of physiology and behavior--a selective review.
Winberg, Jan
2005-11-01
This article reviews 30 years of work demonstrating that interactions between mother and newborn infant in the period just after birth influence the physiology and behavior of both. Close body contact of the infant with his/her mother helps regulate the newborn's temperature, energy conservation, acid-base balance, adjustment of respiration, crying, and nursing behaviors. Similarly, the baby may regulate--i.e., increase--the mother's attention to his/her needs, the initiation and maintenance of breastfeeding, and the efficiency of her energy economy through vagus activation and a surge of gastrointestinal tract hormone release resulting in better exploitation of ingested calories. The effects of some of these changes can be detected months later. Parallels to animal research and possible mechanisms are discussed.
A quantitative witness for Greenberger-Horne-Zeilinger entanglement.
Eltschka, Christopher; Siewert, Jens
2012-01-01
Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger-type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties.
Matter-wave teleportation via cavity-field trans-pads
NASA Astrophysics Data System (ADS)
Ul-Islam, Rameez; Awais Haider, Syed; Abbas, Tasawar; Ikram, Manzoor
2016-10-01
We propose experimentally feasible schematics to teleport one of the major attributes of matter—i.e. atomic motion in the momentum space—with the assistance of Bragg regime atom-cavity field interactions. In this context, the procedure for teleportation of a superposition of the external momentum of a neutral atom along with its atomic momentum Bell state is described in detail. The protocol is then generalized to cover the teleportation of any high-dimensional entangled state. Such schematics based on a hybrid system—i.e. atoms and photons—may solve a long standing problem by efficiently closing both the detection as well as locality loopholes simultaneously for Bell’s inequality testing, an option not available with either photons or atoms alone.
A quantitative witness for Greenberger-Horne-Zeilinger entanglement
Eltschka, Christopher; Siewert, Jens
2012-01-01
Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger–type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties. PMID:23267431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009
This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.
Shatov, A V
2003-01-01
The aim of the study was to evaluate the efficiency of low-field (0.14 T) magnetic resonance imaging (MRI) in the diagnosis and treatment of cancer of the cervix uteri. Low-field MRI was performed in 39 patients with cancer of the cervix uteri to define the stage of the tumor and to follow up the outcomes of their treatment. Particular emphasis was laid on the determination of the size of the tumor and the presence of parametral invasion and on metastatic lesions of lymph nodes. MRI data were compared with clinical, morphological, and surgical staging results. In detecting the stage of cancer of the cervix uteri, the accuracy of MRI was 72% whereas that of clinical study was 51%. In determining parametral invasion, the accuracy of clinical study and low-field MRI was 71 and 90%, respectively. The sensitivity and specificity of MRI were 83 and 92%, respectively. The anterioposterior tumor size was an important prognostic factor in following up the outcomes of treatment as there was its close association and the incidence of tumor recurrences. The present study has indicated that the high efficiency of low-field MRI in detecting the stage of invasive cancer of cervix uteri makes it the method of choice in planning treatment and monitoring the outcomes of combined radiation therapy.
Traveling salesman problems with PageRank Distance on complex networks reveal community structure
NASA Astrophysics Data System (ADS)
Jiang, Zhongzhou; Liu, Jing; Wang, Shuai
2016-12-01
In this paper, we propose a new algorithm for community detection problems (CDPs) based on traveling salesman problems (TSPs), labeled as TSP-CDA. Since TSPs need to find a tour with minimum cost, cities close to each other are usually clustered in the tour. This inspired us to model CDPs as TSPs by taking each vertex as a city. Then, in the final tour, the vertices in the same community tend to cluster together, and the community structure can be obtained by cutting the tour into a couple of paths. There are two challenges. The first is to define a suitable distance between each pair of vertices which can reflect the probability that they belong to the same community. The second is to design a suitable strategy to cut the final tour into paths which can form communities. In TSP-CDA, we deal with these two challenges by defining a PageRank Distance and an automatic threshold-based cutting strategy. The PageRank Distance is designed with the intrinsic properties of CDPs in mind, and can be calculated efficiently. In the experiments, benchmark networks with 1000-10,000 nodes and varying structures are used to test the performance of TSP-CDA. A comparison is also made between TSP-CDA and two well-established community detection algorithms. The results show that TSP-CDA can find accurate community structure efficiently and outperforms the two existing algorithms.
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-05-01
An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.
Efficient search for a face by chimpanzees (Pan troglodytes).
Tomonaga, Masaki; Imura, Tomoko
2015-07-16
The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces--but not monkey faces--efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model.
Efficient search for a face by chimpanzees (Pan troglodytes)
Tomonaga, Masaki; Imura, Tomoko
2015-01-01
The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces-but not monkey faces-efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model. PMID:26180944
Saatchi, Mahdi; Beever, Jonathan E; Decker, Jared E; Faulkner, Dan B; Freetly, Harvey C; Hansen, Stephanie L; Yampara-Iquise, Helen; Johnson, Kristen A; Kachman, Stephen D; Kerley, Monty S; Kim, JaeWoo; Loy, Daniel D; Marques, Elisa; Neibergs, Holly L; Pollak, E John; Schnabel, Robert D; Seabury, Christopher M; Shike, Daniel W; Snelling, Warren M; Spangler, Matthew L; Weaber, Robert L; Garrick, Dorian J; Taylor, Jeremy F
2014-11-20
The identification of genetic markers associated with complex traits that are expensive to record such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify large-effect QTL, we performed a series of genome-wide association studies and functional analyses using 50 K and 770 K SNP genotypes scored in 5,133 animals from 4 independent beef cattle populations (Cycle VII, Angus, Hereford and Simmental×Angus) with phenotypes for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake. A total of 5, 6, 11 and 10 significant QTL (defined as 1-Mb genome windows with Bonferroni-corrected P-value<0.05) were identified for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake, respectively. The identified QTL were population-specific and had little overlap across the 4 populations. The pleiotropic or closely linked QTL on BTA 7 at 23 Mb identified in the Angus population harbours a promising candidate gene ACSL6 (acyl-CoA synthetase long-chain family member 6), and was the largest effect QTL associated with dry matter intake and mid-test body weight explaining 10.39% and 14.25% of the additive genetic variance, respectively. Pleiotropic or closely linked QTL associated with average daily gain and mid-test body weight were detected on BTA 6 at 38 Mb and BTA 7 at 93 Mb confirming previous reports. No QTL for residual feed intake explained more than 2.5% of the additive genetic variance in any population. Marker-based estimates of heritability ranged from 0.21 to 0.49 for residual feed intake across the 4 populations. This GWAS study, which is the largest performed for feed efficiency and its component traits in beef cattle to date, identified several large-effect QTL that cumulatively explained a significant percentage of additive genetic variance within each population. Differences in the QTL identified among the different populations may be due to differences in power to detect QTL, environmental variation, or differences in the genetic architecture of trait variation among breeds. These results enhance our understanding of the biology of growth, feed intake and utilisation in beef cattle.
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
NASA Astrophysics Data System (ADS)
Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.
2014-02-01
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.
Visual Detection and Tracking System for a Spherical Amphibious Robot
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-01-01
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134
Methods for transfer a saliva based alcohol content test to a dermal patch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silks, III, Louis A.
Detection and quantitation of ethanol which is highly sensitive, specific, and efficient has been a commercial target for sometime. Clearly analytical methods are useful such as gas and liquid chromatography, mass spectrometry, and NMR spectroscopy. However, those methods are best used in the laboratory and a less useful for detection and quantitation of ethanol in the field. Enzymes have been employed for the detection and quantitation of EtOH. Enzymes are proteins that perform a particular task in a bio-catalytic way. Most of the chemistry that these enzymes do are frequently exquisitely specific in that only one alcohol reacts and onlymore » one product is produced. One enzyme molecule can catalyze the reaction of numerous substrate molecules which in itself is an amplification of the recognition signal. Alcohol dehydrogenase (ADH) and alcohol oxidase (AO) are two possible enzymatic targets for EtOH sensor development.1 The ADH oxidizes the alcohol using a co-factor nicotinamide adenine dinucleotide. This co-factor needs to be within close proximity of the ADH. AO also oxidizes the ethanol using molecular oxygen giving rise to the production of the aldehyde and hydrogen peroxide.« less
Visual Detection and Tracking System for a Spherical Amphibious Robot.
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-04-15
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.
Feature-aided multiple target tracking in the image plane
NASA Astrophysics Data System (ADS)
Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.
2006-05-01
Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Thomas Martin; Patton, Bruce W
The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. Inmore » this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.« less
Bowen, Amanda L; Martin, R. Scott
2010-01-01
While it has been shown that microchip electrophoresis with electrochemical detection can be used to separate and detect electroactive species, there is a need to increase the separation performance of these devices so that complex mixtures can be routinely analyzed. Previous work in microchip electrophoresis has demonstrated that increasing the separation channel length leads to an increase in resolution between closely eluting analytes. This paper details the use of lengthened serpentine microchannels for microchip electrophoresis and electrochemical detection where a palladium decoupler is used to ground the separation voltage so that the working electrodes remain in the fluidic network. In this work, palladium electrodepositions were used to increase the decoupler surface area and more efficiently dissipate hydrogen produced at the decoupler. Dopamine and norepinephrine, which only differ in structure by a hydroxyl group, were used as model analytes. It was found that increasing the separation channel length led to improvements in both resolution and the number of theoretical plates for these analytes. The use of a bi-layer valving device, where PDMS-based valves are utilized for the injection process, along with serpentine microchannels and amperometric detection resulted in a multi-analyte separation and an average of 28,700 theoretical plates. It was also shown that the increased channel length is beneficial when separating and detecting analytes from a high ionic strength matrix. This was demonstrated by monitoring the stimulated release of neuro-transmitters from a confluent layer of PC 12 cells. PMID:19739137
Becságh, Péter; Szakács, Orsolya
2014-10-01
During diagnostic workflow when detecting sequence alterations, sometimes it is important to design an algorithm that includes screening and direct tests in combination. Normally the use of direct test, which is mainly sequencing, is limited. There is an increased need for effective screening tests, with "closed tube" during the whole process and therefore decreasing the risk of PCR product contamination. The aim of this study was to design such a closed tube, detection probe based screening assay to detect different kind of sequence alterations in the exon 11 of the human c-kit gene region. Inside this region there are variable possible deletions and single nucleotide changes. During assay setup, more probe chemistry formats were screened and tested. After some optimization steps the taqman probe format was selected.
Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2017-08-01
This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.
Nkere, Chukwuemeka K; Oyekanmi, Joshua O; Silva, Gonçalo; Bömer, Moritz; Atiri, Gabriel I; Onyeka, Joseph; Maroya, Norbert G; Seal, Susan E; Kumar, P Lava
2018-04-01
A closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP) assay was developed for the detection of yam mosaic virus (YMV, genus Potyvirus) infecting yam (Dioscorea spp.). The assay uses a set of six oligonucleotide primers targeting the YMV coat protein region, and the amplification products in YMV-positive samples are visualized by chromogenic detection with SYBR Green I dye. The CT-RT-LAMP assay detected YMV in leaf and tuber tissues of infected plants. The assay is 100 times more sensitive in detecting YMV than standard RT-PCR, while maintaining the same specificity.
Moreira, Nuno F F; Sousa, José M; Macedo, Gonçalo; Ribeiro, Ana R; Barreiros, Luisa; Pedrosa, Marta; Faria, Joaquim L; Pereira, M Fernando R; Castro-Silva, Sérgio; Segundo, Marcela A; Manaia, Célia M; Nunes, Olga C; Silva, Adrián M T
2016-05-01
Photocatalytic ozonation was employed for the first time in continuous mode with TiO2-coated glass Raschig rings and light emitting diodes (LEDs) to treat urban wastewater as well as surface water collected from the supply area of a drinking water treatment plant (DWTP). Different levels of contamination and types of contaminants were considered in this work, including chemical priority substances (PSs) and contaminants of emerging concern (CECs), as well as potential human opportunistic antibiotic resistant bacteria and their genes (ARB&ARG). Photocatalytic ozonation was more effective than single ozonation (or even than TiO2 catalytic ozonation) in the degradation of typical reaction by-products (such as oxalic acid), and more effective than photocatalysis to remove the parent micropollutants determined in urban wastewater. In fact, only fluoxetine, clarithromycin, erythromycin and 17-alpha-ethinylestradiol (EE2) were detected after photocatalytic ozonation, by using solid-phase extraction (SPE) pre-concentration and LC-MS/MS analysis. In surface water, this treatment allowed the removal of all determined micropollutants to levels below the limit of detection (0.01-0.20 ng L(-1)). The efficiency of this process was then assessed based on the capacity to remove different groups of cultivable microorganisms and housekeeping (16S rRNA) and antibiotic resistance or related genes (intI1, blaTEM, qnrS, sul1). Photocatalytic ozonation was observed to efficiently remove microorganisms and ARGs. Although after storage total heterotrophic and ARB (to ciprofloxacin, gentamicin, meropenem), fungi, and the genes 16S rRNA and intI1, increased to values close to the pre-treatment levels, the ARGs (blaTEM, qnrS and sul1) were reduced to levels below/close to the quantification limit even after 3-days storage of treated surface water or wastewater. Yeast estrogen screen (YES), thiazolyl blue tetrazolium reduction (MTT) and lactate dehydrogenase (LDH) assays were also performed before and after photocatalytic ozonation to evaluate the potential estrogenic activity, the cellular metabolic activity and the cell viability. Compounds with estrogenic effects and significant differences concerning cell viability were not observed in any case. A slight cytotoxicity was only detected for Caco-2 and hCMEC/D3 cell lines after treatment of the urban wastewater, but not for L929 fibroblasts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range
NASA Astrophysics Data System (ADS)
Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.
2018-02-01
We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.
78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... license for hydropower development at non-powered dams and closed-loop pumped storage projects in... for licensing hydropower development at non-powered dams and closed-loop pumped storage projects... closed- loop pumped storage) affect the steps included in a two-year process? 3.9 Should there be a...
Gas mixtures for spark gap closing switches
Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.
1987-02-20
Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.
Power combining in an array of microwave power rectifiers
NASA Technical Reports Server (NTRS)
Gutmann, R. J.; Borrego, J. M.
1979-01-01
This work analyzes the resultant efficiency degradation when identical rectifiers operate at different RF power levels as caused by the power beam taper. Both a closed-form analytical circuit model and a detailed computer-simulation model are used to obtain the output dc load line of the rectifier. The efficiency degradation is nearly identical with series and parallel combining, and the closed-form analytical model provides results which are similar to the detailed computer-simulation model.
Remote detection of single emitters via optical waveguides
NASA Astrophysics Data System (ADS)
Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert
2014-05-01
The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.
Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images.
Kaya, Sertan; Bayraktar, Mustafa; Kockara, Sinan; Mete, Mutlu; Halic, Tansel; Field, Halle E; Wong, Henry K
2016-10-06
Automated skin lesion border examination and analysis techniques have become an important field of research for distinguishing malignant pigmented lesions from benign lesions. An abrupt pigment pattern cutoff at the periphery of a skin lesion is one of the most important dermoscopic features for detection of neoplastic behavior. In current clinical setting, the lesion is divided into a virtual pie with eight sections. Each section is examined by a dermatologist for abrupt cutoff and scored accordingly, which can be tedious and subjective. This study introduces a novel approach to objectively quantify abruptness of pigment patterns along the lesion periphery. In the proposed approach, first, the skin lesion border is detected by the density based lesion border detection method. Second, the detected border is gradually scaled through vector operations. Then, along gradually scaled borders, pigment pattern homogeneities are calculated at different scales. Through this process, statistical texture features are extracted. Moreover, different color spaces are examined for the efficacy of texture analysis. The proposed method has been tested and validated on 100 (31 melanoma, 69 benign) dermoscopy images. Analyzed results indicate that proposed method is efficient on malignancy detection. More specifically, we obtained specificity of 0.96 and sensitivity of 0.86 for malignancy detection in a certain color space. The F-measure, harmonic mean of recall and precision, of the framework is reported as 0.87. The use of texture homogeneity along the periphery of the lesion border is an effective method to detect malignancy of the skin lesion in dermoscopy images. Among different color spaces tested, RGB color space's blue color channel is the most informative color channel to detect malignancy for skin lesions. That is followed by YCbCr color spaces Cr channel, and Cr is closely followed by the green color channel of RGB color space.
The influence of trading volume on market efficiency: The DCCA approach
NASA Astrophysics Data System (ADS)
Sukpitak, Jessada; Hengpunya, Varagorn
2016-09-01
For a single market, the cross-correlation between market efficiency and trading volume, which is an indicator of market liquidity, is attentively analysed. The study begins with creating time series of market efficiency by applying time-varying Hurst exponent with one year sliding window to daily closing prices. The time series of trading volume corresponding to the same time period used for the market efficiency is derived from one year moving average of daily trading volume. Subsequently, the detrended cross-correlation coefficient is employed to quantify the degree of cross-correlation between the two time series. It was found that values of cross-correlation coefficient of all considered stock markets are close to 0 and are clearly out of range in which correlation being considered significant in almost every time scale. Obtained results show that the market liquidity in term of trading volume hardly has effect on the market efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Dibble, Dean C.; Mengesha, Wondwosen
An ideal 3He detector replacement for the near- to medium-term future will use materials that are easy to produce and well understood, while maintaining thermal neutron detection efficiency and gamma rejection close to the 3He standard. Toward this end, we investigated the use of standard alkali halide scintillators interfaced with 6Li and read out with photomultiplier tubes (PMTs). Thermal neutrons are captured on 6Li with high efficiency, emitting high-energy and triton ( 3H) reaction products. These particles deposit energy in the scintillator, providing a thermal neutron signal; discrimination against gamma interactions is possible via pulse shape discrimination (PSD), since heavymore » particles produce faster pulses in alkali halide crystals. We constructed and tested two classes of detectors based on this concept. In one case 6Li is used as a dopant in polycrystalline NaI; in the other case a thin Li foil is used as a conversion layer. In the configurations studied here, these systems are sensitive to both gamma and neutron radiation, with discrimination between the two and good energy resolution for gamma spectroscopy. We present results from our investigations, including measurements of the neutron efficiency and gamma rejection for the two detector types. We also show a comparison with Cs 2LiYCl 6:Ce (CLYC), which is emerging as the standard scintillator for simultaneous gamma and thermal neutron detection, and also allows PSD. We conclude that 6Li foil with CsI scintillating crystals has near-term promise as a thermal neutron detector in applications previously dominated by 3He detectors. The other approach, 6Li-doped alkali halides, has some potential, but require more work to understand material properties and improve fabrication processes.« less
An artificial neural network method for lumen and media-adventitia border detection in IVUS.
Su, Shengran; Hu, Zhenghui; Lin, Qiang; Hau, William Kongto; Gao, Zhifan; Zhang, Heye
2017-04-01
Intravascular ultrasound (IVUS) has been well recognized as one powerful imaging technique to evaluate the stenosis inside the coronary arteries. The detection of lumen border and media-adventitia (MA) border in IVUS images is the key procedure to determine the plaque burden inside the coronary arteries, but this detection could be burdensome to the doctor because of large volume of the IVUS images. In this paper, we use the artificial neural network (ANN) method as the feature learning algorithm for the detection of the lumen and MA borders in IVUS images. Two types of imaging information including spatial, neighboring features were used as the input data to the ANN method, and then the different vascular layers were distinguished accordingly through two sparse auto-encoders and one softmax classifier. Another ANN was used to optimize the result of the first network. In the end, the active contour model was applied to smooth the lumen and MA borders detected by the ANN method. The performance of our approach was compared with the manual drawing method performed by two IVUS experts on 461 IVUS images from four subjects. Results showed that our approach had a high correlation and good agreement with the manual drawing results. The detection error of the ANN method close to the error between two groups of manual drawing result. All these results indicated that our proposed approach could efficiently and accurately handle the detection of lumen and MA borders in the IVUS images. Copyright © 2016 Elsevier Ltd. All rights reserved.
Homojunction GaAs solar cells grown by close space vapor transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.
2014-06-08
We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping,more » and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.« less
Novel imaging closed loop control strategy for heliostats
NASA Astrophysics Data System (ADS)
Bern, Gregor; Schöttl, Peter; Heimsath, Anna; Nitz, Peter
2017-06-01
Central Receiver Systems use up to thousands of heliostats to concentrate solar radiation. The precise control of heliostat aiming points is crucial not only for efficiency but also for reliable plant operation. Besides the calibration of open loop control systems, closed loop tracking strategies are developed to address a precise and efficient aiming strategy. The need for cost reductions in the heliostat field intensifies the motivation for economic closed loop control systems. This work introduces an approach for a closed loop heliostat tracking strategy using image analysis and signal modulation. The approach aims at the extraction of heliostat focal spot position within the receiver domain by means of a centralized remote vision system decoupled from the rough conditions close to the focal area. Taking an image sequence of the receiver while modulating a signal on different heliostats, their aiming points are retrieved. The work describes the methodology and shows first results from simulations and practical tests performed in small scale, motivating further investigation and deployment.
Towards radiation hard converter material for SiC-based fast neutron detectors
NASA Astrophysics Data System (ADS)
Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.
2018-05-01
In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection efficiency of a stacked structure concept has been explored by juxtaposing several converter-detector layers to improve the efficiency of LiH-SiC-based FNDs . It is observed that approximately tenfold efficiency improvement has been achieved—0.93% for ten layers stacked configuration vis-à-vis 0.1% of single converter-detector layer configuration. Finally, stacked detectors have also been simulated for different converter thicknesses to attain the efficiency as high as ~ 3.25% with the help of 50 stacked layers.
Recurrent neural network based virtual detection line
NASA Astrophysics Data System (ADS)
Kadikis, Roberts
2018-04-01
The paper proposes an efficient method for detection of moving objects in the video. The objects are detected when they cross a virtual detection line. Only the pixels of the detection line are processed, which makes the method computationally efficient. A Recurrent Neural Network processes these pixels. The machine learning approach allows one to train a model that works in different and changing outdoor conditions. Also, the same network can be trained for various detection tasks, which is demonstrated by the tests on vehicle and people counting. In addition, the paper proposes a method for semi-automatic acquisition of labeled training data. The labeling method is used to create training and testing datasets, which in turn are used to train and evaluate the accuracy and efficiency of the detection method. The method shows similar accuracy as the alternative efficient methods but provides greater adaptability and usability for different tasks.
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-03-02
We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Finally, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.« less
Follicular and percutaneous penetration pathways of topically applied minoxidil foam.
Blume-Peytavi, Ulrike; Massoudy, Lida; Patzelt, Alexa; Lademann, Jürgen; Dietz, Ekkehart; Rasulev, Utkur; Garcia Bartels, Natalie
2010-11-01
In the past, it was assumed that the intercellular route was the only relevant penetration pathway for topically applied substances. Recent results on follicular penetration emphasize that the hair follicles represent a highly relevant and efficient penetration pathway and reservoir for topically applied substances. This study investigates a selective closure technique of hair follicle orifices in vivo assessing interfollicular and follicular absorption rates of topical minoxidil foam in humans. In delimited skin area, single hair orifices or interfollicular skin were blocked with a microdrop of special varnish-wax-mixture in vivo. Minoxidil foam (5%) was topically applied, and transcutaneous absorption was measured by a new surface ionization mass spectrometry technique in serum. Different settings (open, closed or none of both) enabled to clearly distinguish between interfollicular and follicular penetration of the topically applied minoxidil foam. Five minutes after topical application, minoxidil was detected in blood samples when follicles remained open, whereas with closed follicles 30 min were needed. Highest levels were found first when both pathways were open, followed by open follicles and subsequently by closed follicles. These results demonstrate the high importance of the follicular penetration pathway. Hair follicles are surrounded by a dense network of blood capillaries and dendritic cells and have stem cells in their immediate vicinity, making them ideal targets for drug delivery. Copyright © 2010 Elsevier B.V. All rights reserved.
Rau, Domenico; Rodriguez, Monica; Leonarda Murgia, Maria; Balmas, Virgilio; Bitocchi, Elena; Bellucci, Elisa; Nanni, Laura; Attene, Giovanna; Papa, Roberto
2015-08-07
We examined the local adaptation patterns in a system comprising several interconnected heterogeneous plant populations from which populations of two phylogenetically closely related pathogens were also sampled. The host is Hordeum vulgare (cultivated barley); the pathogens are Pyrenophora teres f. teres (net form) and Pyrenophora teres f. maculata (spot form), the causal agents of barley net blotch. We integrated two approaches, the comparison between the population structures of the host and the pathogens, and a cross-inoculation test. We demonstrated that two closely related pathogens with very similar niche specialisation and life-styles can give rise to different co-evolutionary outcomes on the same host. Indeed, we detected local adaptation for the net form of the pathogen but not for the spot form. We also provided evidence that an a-priori well-known resistance quantitative-trait-locus on barley chromosome 6H is involved in the co-evolutionary 'arms race' between the plant and the net-form pathogen. Moreover, data suggested latitudinal clines of host resistance and that different ecological conditions can result in differential selective pressures at different sites. Our data are of interest for on-farm conservation of plant genetic resources, as also in establishing efficient breeding programs and strategies for deployment of resistance genes of P. teres.
Rau, Domenico; Rodriguez, Monica; Leonarda Murgia, Maria; Balmas, Virgilio; Bitocchi, Elena; Bellucci, Elisa; Nanni, Laura; Attene, Giovanna; Papa, Roberto
2015-01-01
We examined the local adaptation patterns in a system comprising several interconnected heterogeneous plant populations from which populations of two phylogenetically closely related pathogens were also sampled. The host is Hordeum vulgare (cultivated barley); the pathogens are Pyrenophora teres f. teres (net form) and Pyrenophora teres f. maculata (spot form), the causal agents of barley net blotch. We integrated two approaches, the comparison between the population structures of the host and the pathogens, and a cross-inoculation test. We demonstrated that two closely related pathogens with very similar niche specialisation and life-styles can give rise to different co-evolutionary outcomes on the same host. Indeed, we detected local adaptation for the net form of the pathogen but not for the spot form. We also provided evidence that an a-priori well-known resistance quantitative-trait-locus on barley chromosome 6H is involved in the co-evolutionary ‘arms race’ between the plant and the net-form pathogen. Moreover, data suggested latitudinal clines of host resistance and that different ecological conditions can result in differential selective pressures at different sites. Our data are of interest for on-farm conservation of plant genetic resources, as also in establishing efficient breeding programs and strategies for deployment of resistance genes of P. teres. PMID:26248796
An expert system to perform on-line controller restructuring for abrupt model changes
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
1990-01-01
Work in progress on an expert system used to reconfigure and tune airframe/engine control systems on-line in real time in response to battle damage or structural failures is presented. The closed loop system is monitored constantly for changes in structure and performance, the detection of which prompts the expert system to choose and apply a particular control restructuring algorithm based on the type and severity of the damage. Each algorithm is designed to handle specific types of failures and each is applicable only in certain situations. The expert system uses information about the system model to identify the failure and to select the technique best suited to compensate for it. A depth-first search is used to find a solution. Once a new controller is designed and implemented it must be tuned to recover the original closed-loop handling qualities and responsiveness from the degraded system. Ideally, the pilot should not be able to tell the difference between the original and redesigned systems. The key is that the system must have inherent redundancy so that degraded or missing capabilities can be restored by creative use of alternate functionalities. With enough redundancy in the control system, minor battle damage affecting individual control surfaces or actuators, compressor efficiency, etc., can be compensated for such that the closed-loop performance in not noticeably altered. The work is applied to a Black Hawk/T700 system.
Energy-efficient and fast data gathering protocols for indoor wireless sensor networks.
Tümer, Abdullah Erdal; Gündüz, Mesut
2010-01-01
Wireless Sensor Networks have become an important technology with numerous potential applications for the interaction of computers and the physical environment in civilian and military areas. In the routing protocols that are specifically designed for the applications used by sensor networks, the limited available power of the sensor nodes has been taken into consideration in order to extend the lifetime of the networks. In this paper, two protocols based on LEACH and called R-EERP and S-EERP with base and threshold values are presented. R-EERP and S-EERP are two efficient energy aware routing protocols that can be used for some critical applications such as detecting dangerous gases (methane, ammonium, carbon monoxide, etc.) in an indoor environment. In R-EERP, sensor nodes are deployed randomly in a field similar to LEACH. In S-EERP, nodes are deployed sequentially in the rooms of the flats of a multi-story building. In both protocols, nodes forming clusters do not change during a cluster change time, only the cluster heads change. Furthermore, an XOR operation is performed on the collected data in order to prevent the sending of the same data sensed by the nodes close to each other. Simulation results show that our proposed protocols are more energy-efficient than the conventional LEACH protocol.
Sulter, A M; Wit, H P
1996-11-01
Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).
NASA Astrophysics Data System (ADS)
Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.
2018-04-01
Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.
Boulyga, Sergei F; Heumann, Klaus G
2006-01-01
A method by inductively coupled plasma mass spectrometry (ICP-MS) was developed which allows the measurement of (236)U at concentration ranges down to 3 x 10(-14)g g(-1) and extremely low (236)U/(238)U isotope ratios in soil samples of 10(-7). By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5,000 counts fg(-1) uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH(+)/U(+) down to a level of 10(-6). An abundance sensitivity of 3 x 10(-7) was observed for (236)U/(238)U isotope ratio measurements at mass resolution 4000. The detection limit for (236)U and the lowest detectable (236)U/(238)U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the (236)U/(238)U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the (235)U/(238)U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of (236)U in the upper 0-10 cm soil layers varied from 2 x 10(-9)g g(-1) within radioactive spots close to the Chernobyl NPP to 3 x 10(-13)g g(-1) on a sampling site located by >200 km from Chernobyl.
Electricity production coupled to ammonium in a microbial fuel cell.
He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H
2009-05-01
The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.
Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe
2015-09-01
This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro
2015-01-01
This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.
NASA Astrophysics Data System (ADS)
Gales, S.
2015-10-01
Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.
A significant-loophole-free test of Bell's theorem with entangled photons
NASA Astrophysics Data System (ADS)
Giustina, Marissa; Versteegh, Marijn A. M.; Wengerowsky, Sören; Handsteiner, Johannes; Hochrainer, Armin; Phelan, Kevin; Steinlechner, Fabian; Kofler, Johannes; Larsson, Jan-Åke; Abellán, Carlos; Amaya, Waldimar; Mitchell, Morgan W.; Beyer, Jörn; Gerrits, Thomas; Lita, Adriana E.; Shalm, Lynden K.; Nam, Sae Woo; Scheidl, Thomas; Ursin, Rupert; Wittmann, Bernhard; Zeilinger, Anton
2017-10-01
John Bell's theorem of 1964 states that local elements of physical reality, existing independent of measurement, are inconsistent with the predictions of quantum mechanics (Bell, J. S. (1964), Physics (College. Park. Md). Specifically, correlations between measurement results from distant entangled systems would be smaller than predicted by quantum physics. This is expressed in Bell's inequalities. Employing modifications of Bell's inequalities, many experiments have been performed that convincingly support the quantum predictions. Yet, all experiments rely on assumptions, which provide loopholes for a local realist explanation of the measurement. Here we report an experiment with polarization-entangled photons that simultaneously closes the most significant of these loopholes. We use a highly efficient source of entangled photons, distributed these over a distance of 58.5 meters, and implemented rapid random setting generation and high-efficiency detection to observe a violation of a Bell inequality with high statistical significance. The merely statistical probability of our results to occur under local realism is less than 3.74×10-31, corresponding to an 11.5 standard deviation effect.
Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser
NASA Astrophysics Data System (ADS)
Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro
2011-09-01
To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proffitt, Charles R.; Lennon, Daniel J.; Langer, Norbert
2016-06-10
Spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph covering the B iii resonance line have been obtained for 10 early-B stars near the turnoff of the young Galactic open cluster NGC 3293. This is the first sample of boron abundance determinations in a single, clearly defined population of early-B stars that also covers a substantial range of projected rotational velocities. In most of these stars we detect partial depletion of boron at a level consistent with that expected for rotational mixing in single stars, but inconsistent with expectations for depletion from close binarymore » evolution. However, our results do suggest that the efficiency of rotational mixing is at or slightly below the low end of the range predicted by the available theoretical calculations. The two most luminous targets observed have a very large boron depletion and may be the products of either binary interactions or post-main-sequence evolution.« less
Cropley, Rachael L; Williams, Federico J; Urquhart, Andrew J; Vaughan, Owain P H; Tikhov, Mintcho S; Lambert, Richard M
2005-04-27
The selective oxidation of trans-methylstyrene, a phenyl-substituted propene that contains labile allylic hydrogen atoms, has been studied on Cu{111}. Mass spectrometry and synchrotron fast XPS were used to detect, respectively, desorbing gaseous products and the evolution of surface species as a function of temperature and time. Efficient partial oxidation occurs yielding principally the epoxide, and the behavior of the system is sensitive to the order in which reactants are adsorbed. The latter is understandable in terms of differences in the spatial distribution of oxygen adatoms; isolated adatoms lead to epoxidation, while islands of "oxidic" oxygen do not. NEXAFS data taken over a range of coverages and in the presence and absence of coadsorbed oxygen indicate that the adsorbed alkene lies essentially flat with the allylic hydrogen atoms close to the surface. The photoemission results and comparison with the corresponding behavior of styrene on Cu{111} strongly suggest that allylic hydrogen abstraction is indeed a critical factor that limits epoxidation selectivity. An overall mechanism consistent with the structural and reactive properties is proposed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-16
... at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the... process for licensing hydropower development at non-powered dams and closed-loop pumped storage projects...-powered dam versus closed- loop pumped storage) affect the steps included in a two-year process? 3.9...
Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.
Chagren, S; Tekaya, M Ben; Reguigui, N; Gharbi, F
2016-01-01
In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Shock Waves to Improve the Acoustic Properties of Closed-Cell Foams
NASA Astrophysics Data System (ADS)
Brouillette, M.; Hébert, C.; Atalla, N.; Doutres, O.
Foam microstructure can be seen as a collection of interlinked struts forming a packing of cells interconnected to others through pores. Materials with a totality of pores closed by thin membranes are called closed-cell foams. The filtration and acoustic efficiency of closed-cell foams is poor compared to open-cell foams since it is very difficult for the fluid or the acoustic waves to penetrate inside the material.
Heikoop, Daniël D; de Winter, Joost C F; van Arem, Bart; Stanton, Neville A
2017-04-01
Platooning, whereby automated vehicles travel closely together in a group, is attractive in terms of safety and efficiency. However, concerns exist about the psychological state of the platooning driver, who is exempted from direct control, yet remains responsible for monitoring the outside environment to detect potential threats. By means of a driving simulator experiment, we investigated the effects on recorded and self-reported measures of workload and stress for three task-instruction conditions: (1) No Task, in which participants had to monitor the road, (2) Voluntary Task, in which participants could do whatever they wanted, and (3) Detection Task, in which participants had to detect red cars. Twenty-two participants performed three 40-min runs in a constant-speed platoon, one condition per run in counterbalanced order. Contrary to some classic literature suggesting that humans are poor monitors, in the Detection Task condition participants attained a high mean detection rate (94.7%) and a low mean false alarm rate (0.8%). Results of the Dundee Stress State Questionnaire indicated that automated platooning was less distressing in the Voluntary Task than in the Detection Task and No Task conditions. In terms of heart rate variability, the Voluntary Task condition yielded a lower power in the low-frequency range relative to the high-frequency range (LF/HF ratio) than the Detection Task condition. Moreover, a strong time-on-task effect was found, whereby the mean heart rate dropped from the first to the third run. In conclusion, participants are able to remain attentive for a prolonged platooning drive, and the type of monitoring task has effects on the driver's psychological state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V
2014-05-19
We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.
Nutritional criteria for closed-loop space food systems
NASA Technical Reports Server (NTRS)
Rambaut, P. C.
1980-01-01
The nutritional requirements for Skylab crews are summarized as a data base for long duration spaceflight nutrient requirements. Statistically significant increases in energy consumption were detected after three months, along with CO2/O2 exhalation during exercise and thyroxine level increases. Linoleic acid amounting to 3-4 g/day was found to fulfill all fat requirements, and carbohydrate and protein (amino acid) necessities are discussed, noting that vigorous exercise programs avoid deconditioning which enhances nitrogen loss. Urinary calcium losses continued at a rate 100% above a baseline figure, a condition which ingestion of vitamin D2 did not correct. Projections are given that spaceflights lasting more than eight years will necessitate recycling of human waste for nutrient growth, which can be processed into highly efficient space food with a variety of tastes.
A real-time optical tracking and measurement processing system for flying targets.
Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu
2014-01-01
Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control.
A Real-Time Optical Tracking and Measurement Processing System for Flying Targets
Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu
2014-01-01
Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control. PMID:24987748
Development of a closed-loop system for tremor suppression in patients with Parkinson's disease.
Xu, F L; Hao, M Z; Xu, S Q; Hu, Z X; Xiao, Q; Lan, N
2016-08-01
More than 70% of patients suffering Parkinson's disease (PD) exhibit resting tremor in their extremities, hampering their ability to perform daily activities. Based on our earlier studies on corticospinal transmission of tremor signals [10,11], we hypothesize that cutaneous afferents evoked by surface stimulation can produce an inhibitory effect on propriospinal neurons (PN), which in turn will suppress tremor signals passing through the PN. This paper presents the development of a closed-loop system for tremor suppression by transcutaneous electrical nerve stimulation (TENS) of sensory fibers beneath the skin. The closed-loop system senses EMGs of forearm muscles, and detects rhythmic bursting in the EMG signal. When a tremor is detected by the system, a command signal triggers a stimulator to output a train of bi-phasic, current regulated pulses to a pair of surface electrodes. The stimulation electrode is placed on the dorsal hand skin near the metacarpophalangeal joint of index finger, which is innervated by the superficial radial nerve that projects an inhibitory afferent to PNs of forearm muscles. We tested the closed-loop system in 3 normal subjects to verify the algorithm and in 2 tremor dominated PD subjects for feasibility of tremor detecting and suppression. Preliminary results indicate that the closed-loop system can detect tremor in all subjects, and tremor in PD patients was suppressed significantly by electrical stimulation of cutaneous afferents.
Efficiency analysis of semi-open sorption heat pump systems
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar; ...
2016-08-10
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
Efficiency analysis of semi-open sorption heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim
We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.
Methods for automatic detection of artifacts in microelectrode recordings.
Bakštein, Eduard; Sieger, Tomáš; Wild, Jiří; Novák, Daniel; Schneider, Jakub; Vostatek, Pavel; Urgošík, Dušan; Jech, Robert
2017-10-01
Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database. We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson's disease patients. The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results. The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5-10%. This was close to the level of agreement among raters using manual annotation (93.5%). We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ranran; Li, Qiyao; Smith, Lloyd M.
2014-08-01
In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.
Study of Wastewater Treatment by OH Radicals Using DC and Pulsed Corona Discharge over Water
NASA Astrophysics Data System (ADS)
Tochikubo, Fumiyoshi; Furuta, Yasutomo; Uchida, Satoshi; Watanabe, Tsuneo
2006-04-01
Water treatment by OH radicals is studied using dc and pulsed corona discharge over water at atmospheric pressure and reduced pressure. In particular, we pay attention to the influence of discharge configuration on the efficiency of wastewater treatment. Experiment is carried out in N2 to clarify the contribution of OH radicals. Needle-cylinder electrodes are designed expecting the efficient generation of OH radicals close to the water surface. N,N-dimethyl- p-nitrosoaniline (RNO) solution is used as a persistent test pollutant. The results strongly suggest that OH radical production close to the water surface is a key factor for efficient wastewater treatment. The use of pulsed discharge at reduced pressure is effective in improving RNO reduction efficiency because of the rapid diffusion of OH radicals to the water surface.
Chahar, Madhvi; Anvikar, Anup; Dixit, Rajnikant; Valecha, Neena
2018-07-01
Loop mediated isothermal amplification (LAMP) assay is sensitive, prompt, high throughput and field deployable technique for nucleic acid amplification under isothermal conditions. In this study, we have developed and optimized four different visualization methods of loop-mediated isothermal amplification (LAMP) assay to detect Pfcrt K76T mutants of P. falciparum and compared their important features for one-pot in-field applications. Even though all the four tested LAMP methods could successfully detect K76T mutants of P. falciparum, however considering the time, safety, sensitivity, cost and simplicity, the malachite green and HNB based methods were found more efficient. Among four different visual dyes uses to detect LAMP products accurately, hydroxynaphthol blue and malachite green could produce long stable color change and brightness in a close tube-based approach to prevent cross-contamination risk. Our results indicated that the LAMP offers an interesting novel and convenient best method for the rapid, sensitive, cost-effective, and fairly user friendly tool for detection of K76T mutants of P. falciparum and therefore presents an alternative to PCR-based assays. Based on our comparative analysis, better field based LAMP visualization method can be chosen easily for the monitoring of other important drug targets (Kelch13 propeller region). Copyright © 2018 Elsevier Inc. All rights reserved.
Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector
NASA Technical Reports Server (NTRS)
Huntington, Andrew
2013-01-01
The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.
A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Xiong, Tian-Yi
2015-04-01
Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the secondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman-Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the China Postdoctoral Science Foundation (Grant No. 2014M550479), and the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011).
Zhang, Zhen; Xiang, Xia; Shi, Jianbin; Huang, Fenghong; Xia, Xiaoyang; Zheng, Mingming; Han, Ling; Tang, Hu
2018-10-05
An amplified fluorescence strategy is described for the detection of sinapine (SP) by using a cationic conjugated polymer (PFP) and graphene oxide (GO). It is observed that the fluorescein (FAM)-labeled single-stranded DNA (FAM-DNA) is absorbed on the surface of GO if SP is absent. This causes that fluorescence resonance energy transfer (FRET) from PFP to FAM is inefficient when adding PFP into FAM-DNA/GO complex. If SP is added to FAM-DNA/GO complex, FAM-DNA is desorbed from GO surface due to the competitive binding of SP and FAM-DNA toward GO. In this case, FAM-DNA is close to PFP in the presence of PFP through strong electrostatic interaction, leading to the occurrence of efficient FRET. Based on the above phenomenon, we demonstrate a method to amplify fluorescence signal of traditional GO-based SP assay by introducing PFP. In comparison to the use of single GO, the combination of PFP with GO-based strategy displays high turn-on ratio and enhanced sensitivity with a limit of detection as low as 7.3 ng mL -1 for SP detection. Satisfactory results in practical samples are also obtained by the recovery experiments, demonstrating the potential application of cationic conjugated polymer in plant-derived small molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania
2013-12-01
Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.
The design and hardware implementation of a low-power real-time seizure detection algorithm
NASA Astrophysics Data System (ADS)
Raghunathan, Shriram; Gupta, Sumeet K.; Ward, Matthew P.; Worth, Robert M.; Roy, Kaushik; Irazoqui, Pedro P.
2009-10-01
Epilepsy affects more than 1% of the world's population. Responsive neurostimulation is emerging as an alternative therapy for the 30% of the epileptic patient population that does not benefit from pharmacological treatment. Efficient seizure detection algorithms will enable closed-loop epilepsy prostheses by stimulating the epileptogenic focus within an early onset window. Critically, this is expected to reduce neuronal desensitization over time and lead to longer-term device efficacy. This work presents a novel event-based seizure detection algorithm along with a low-power digital circuit implementation. Hippocampal depth-electrode recordings from six kainate-treated rats are used to validate the algorithm and hardware performance in this preliminary study. The design process illustrates crucial trade-offs in translating mathematical models into hardware implementations and validates statistical optimizations made with empirical data analyses on results obtained using a real-time functioning hardware prototype. Using quantitatively predicted thresholds from the depth-electrode recordings, the auto-updating algorithm performs with an average sensitivity and selectivity of 95.3 ± 0.02% and 88.9 ± 0.01% (mean ± SEα = 0.05), respectively, on untrained data with a detection delay of 8.5 s [5.97, 11.04] from electrographic onset. The hardware implementation is shown feasible using CMOS circuits consuming under 350 nW of power from a 250 mV supply voltage from simulations on the MIT 180 nm SOI process.
NASA Astrophysics Data System (ADS)
Blain, Andrew
2007-12-01
The technology for mega-pixel mm/submm-wave cameras is being developed, and 10,000-pixel cameras are close to being deployed. These parameters correspond to degree-sized fields, and challenge the optical performance of current telescopes. Next-generation cameras will enable a survey of a large fraction of the sky, to detect active and star-forming dust-enshrouded galaxies. However, to avoid being limited by confusion, and finding only `monsters' it is necessary to push to large telescopes and short wavelengths. The CCAT project will enable the necessary performance to survey the sky to detect ultraluminous galaxies at z>2, each of which can then be imaged in detail with ALMA. The combination of image quality, collecting area and field-of-view will also enable CCAT to probe much deeper, to detect all the sources in legacy fields from the Spitzer and Herschel Space Telescopes. Unlike ALMA, CCAT will still be limited to detecting `normal' galaxies at z 3-5; however, by generating huge catalogs, CCAT will enable a dramatic increase in ALMA's efficiency, and almost completely remove the need for ALMA to conduct its own imaging survey. I will discuss the nature of galaxy surveys that will be enabled by CCAT, the issues of prioritizing and executing follow-up imaging spectroscopy with ALMA, and the links with the forthcoming NASA WISE mission, and future space-based far-infrared missions.
Dumón, A D; Argüello Caro, E B; Mattio, M F; Alemandri, V; Del Vas, M; Truol, G
2018-04-01
Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) causes one of the most important diseases in maize (Zea mays L.) in Argentina and has been detected in mixed infections with a rhabdovirus closely related to Maize yellow striate virus. In nature both viruses are able to infect maize and several grasses including wheat, and are transmitted in a persistent propagative manner by Delphacodes kuscheli Fennah (Hemiptera: Delphacidae). This work describes the interactions between MRCV and rhabdovirus within their natural vector and the consequences of such co-infection regarding virus transmission and symptom expression. First- and third-instar D. kuscheli nymphs were fed on MRCV-infected wheat plants or MRCV-rhabdovirus-infected oat plants, and two latency periods were considered. Transmission efficiency and viral load of MRCV-transmitting and non-transmitting planthoppers were determined by real-time quantitative polymerase chain reaction analysis (RTqPCR). Vector transmission efficiency was related to treatments (life stages at acquisition and latency periods). Nevertheless, no correlation between transmission efficiency and type of inoculum used to infect insects with MRCV was found. Treatment by third-instar nymphs 17 days after Acquisition Access Period was the most efficient for MRCV transmission, regardless of the type of inoculum. Plants co-infected with MRCV and rhabdovirus showed the typical MRCV symptoms earlier than plants singly infected with MRCV. The transmitting planthoppers showed significantly higher MRCV titers than non-transmitting insects fed on single or mixed inocula, confirming that successful MRCV transmission is positively associated with viral accumulation in the insect. Furthermore, MRCV viral titers were higher in transmitting planthoppers that acquired this virus from a single inoculum than in those that acquired the virus from a mixed inoculum, indicating that the presence of the rhabdovirus somehow impaired MRCV replication and/or acquisition. This is the first study about interactions between MRCV and a rhabdovirus closely related to Maize yellow striate virus in this insect vector (D. kuscheli), and contributes to a better understanding of planthopper-virus interactions and their epidemiological implications.
Hou, Yali; Bickhart, Derek M; Chung, Hoyoung; Hutchison, Jana L; Norman, H Duane; Connor, Erin E; Liu, George E
2012-11-01
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. In this study, we performed an initial analysis of copy number variations (CNVs) using BovineHD SNP genotyping data from 147 Holstein cows identified as having high or low feed efficiency as estimated by residual feed intake (RFI). We detected 443 candidate CNV regions (CNVRs) that represent 18.4 Mb (0.6 %) of the genome. To investigate the functional impacts of CNVs, we created two groups of 30 individual animals with extremely low or high estimated breeding values (EBVs) for RFI, and referred to these groups as low intake (LI; more efficient) or high intake (HI; less efficient), respectively. We identified 240 (~9.0 Mb) and 274 (~10.2 Mb) CNVRs from LI and HI groups, respectively. Approximately 30-40 % of the CNVRs were specific to the LI group or HI group of animals. The 240 LI CNVRs overlapped with 137 Ensembl genes. Network analyses indicated that the LI-specific genes were predominantly enriched for those functioning in the inflammatory response and immunity. By contrast, the 274 HI CNVRs contained 177 Ensembl genes. Network analyses indicated that the HI-specific genes were particularly involved in the cell cycle, and organ and bone development. These results relate CNVs to two key variables, namely immune response and organ and bone development. The data indicate that greater feed efficiency relates more closely to immune response, whereas cattle with reduced feed efficiency may have a greater capacity for organ and bone development.
NASA Astrophysics Data System (ADS)
Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques
The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.
Retinal hemorrhage detection by rule-based and machine learning approach.
Di Xiao; Shuang Yu; Vignarajan, Janardhan; Dong An; Mei-Ling Tay-Kearney; Kanagasingam, Yogi
2017-07-01
Robust detection of hemorrhages (HMs) in color fundus image is important in an automatic diabetic retinopathy grading system. Detection of the hemorrhages that are close to or connected with retinal blood vessels was found to be challenge. However, most methods didn't put research on it, even some of them mentioned this issue. In this paper, we proposed a novel hemorrhage detection method based on rule-based and machine learning methods. We focused on the improvement of detection of the hemorrhages that are close to or connected with retinal blood vessels, besides detecting the independent hemorrhage regions. A preliminary test for detecting HM presence was conducted on the images from two databases. We achieved sensitivity and specificity of 93.3% and 88% as well as 91.9% and 85.6% on the two datasets.
BridgeRank: A novel fast centrality measure based on local structure of the network
NASA Astrophysics Data System (ADS)
Salavati, Chiman; Abdollahpouri, Alireza; Manbari, Zhaleh
2018-04-01
Ranking nodes in complex networks have become an important task in many application domains. In a complex network, influential nodes are those that have the most spreading ability. Thus, identifying influential nodes based on their spreading ability is a fundamental task in different applications such as viral marketing. One of the most important centrality measures to ranking nodes is closeness centrality which is efficient but suffers from high computational complexity O(n3) . This paper tries to improve closeness centrality by utilizing the local structure of nodes and presents a new ranking algorithm, called BridgeRank centrality. The proposed method computes local centrality value for each node. For this purpose, at first, communities are detected and the relationship between communities is completely ignored. Then, by applying a centrality in each community, only one best critical node from each community is extracted. Finally, the nodes are ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. We have also modified the proposed method by weighting the original BridgeRank and selecting several nodes from each community based on the density of that community. Our method can find the best nodes with high spread ability and low time complexity, which make it applicable to large-scale networks. To evaluate the performance of the proposed method, we use the SIR diffusion model. Finally, experiments on real and artificial networks show that our method is able to identify influential nodes so efficiently, and achieves better performance compared to other recent methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhikov, V.; Grinyov, B.; Piven, L.
It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed ZnSe(Te) scintillator material provides high gamma-radiation detection efficiency in that energy range. This new type of gamma-neutron detector is based on a 'sandwich' structure using a ZnSe composite film and light guide with a fast neutron detection efficiency of about 6%. Its high detection efficiency of low-energy gamma-radiation allows a substantial increase (by an order of magnitude) in the efficiency of detection of neutron sources and transuranic materials by means of simultaneous detection of accompanying gamma-radiation. The design and fabrication technology of this detector allows the creation of gamma-neutron detectors characterized by high sensitivity at relatively low costs (as compared with analogs using oxide scintillators) for portable inspection systems. The sandwich structure can be comprised of any number of plates, with no limitations on thickness or area.« less
Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.
Hudak, Paul F
2004-01-01
This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.
NASA Astrophysics Data System (ADS)
Chen, Mingdong; Zhao, Dingxuan
2017-01-01
Considering the disadvantage of higher throttling loss for the open-circuit hydrostatic transmission at present, a novel gravitational potential energy regeneration system (GPERS) of the boom of hydraulic excavator, namely the closed-circuit GPERS, is proposed in this paper. The closed-circuit GPERS is based on a closed-circuit hydrostatic transmission and adopts a hydraulic accumulator as main energy storage element fabricated in novel configuration to recover the entire gravitational potential energy of the boom of hydraulic excavator. The matching parameter and control system design are carried out for the proposed system, and the system is modeled based on its physical attributes. Simulation and experiments are performed to validate the employed mathematical models, and then, the velocity and the pressure performance of system are analyzed. It is observed that the closed-circuit GPERS shows better velocity control of the boom and response characteristics. After that, the average working efficiency of the closed-circuit GPERS of boom is estimated under different load conditions. The results indicate that the proposed system is highly effective and that the average working efficiency in different load conditions varied from 60% to 68.2% for the experiment platform.
Horn, M; Patel, N; MacLellan, D M; Millard, N
2016-06-01
Exposure to blood and body fluids is a major concern to health care professionals working in operating rooms (ORs). Thus, it is essential that hospitals use fluid waste management systems that minimise risk to staff, while maximising efficiency. The current study compared the utility of a 'closed' system with a traditional canister-based 'open' system in the OR in a private hospital setting. A total of 30 arthroscopy, urology, and orthopaedic cases were observed. The closed system was used in five, four, and six cases, respectively and the open system was used in nine, two, and four cases, respectively. The average number of opportunities for staff to be exposed to hazardous fluids were fewer for the closed system when compared to the open during arthroscopy and urology procedures. The open system required nearly 3.5 times as much staff time for set-up, maintenance during procedures, and post-procedure disposal of waste. Theatre staff expressed greater satisfaction with the closed system than with the open. In conclusion, compared with the open system, the closed system offers a less hazardous and more efficient method of disposing of fluid waste generated in the OR.
NASA Technical Reports Server (NTRS)
Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.
2003-01-01
Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992) demonstrated the close relationship between absorbed radiation and yield in an optimal environment.
Nie, Qi-Yang; Maurer, Mara; Müller, Hermann J; Conci, Markus
2016-05-01
Illusory Kanizsa figures demonstrate that a perceptually completed whole is more than the sum of its composite parts. In the current study, we explored part/whole relationships in object completion using the configural superiority effect (CSE) with illusory figures (Pomerantz & Portillo, 2011). In particular, we investigated to which extent the CSE is modulated by closure in target and distractor configurations. Our results demonstrated a typical CSE, with detection of a configural whole being more efficient than the detection of a corresponding part-level target. Moreover, the CSE was more pronounced when grouped objects were presented in distractors rather than in the target. A follow-up experiment systematically manipulated closure in whole target or, respectively, distractor configurations. The results revealed the effect of closure to be again stronger in distractor, rather than in target configurations, suggesting that closure primarily affects the inhibition of distractors, and to a lesser extent the selection of the target. In addition, a drift-diffusion model analysis of our data revealed that efficient distractor inhibition expedites the rate of evidence accumulation, with closure in distractors particularly speeding the drift toward the decision boundary. In sum, our findings demonstrate that the CSE in Kanizsa figures derives primarily from the inhibition of closed distractor objects, rather than being driven by a conspicuous target configuration. Altogether, these results support a fundamental role of inhibition in driving configural superiority effects in visual search. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and application of a data-independent precursor and product ion repository.
Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J
2012-10-01
The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.
Dye-enhanced reflectance and fluorescence confocal microscopy as an optical pathology tool
NASA Astrophysics Data System (ADS)
Yaroslavsky, Anna N.; Salomatina, Elena; Novak, John; Amat-Roldan, Ivan; Castano, Ana; Hamblin, Michael
2006-02-01
Early detection and precise excision of neoplasms are imperative requirements for successful cancer treatment. In this study we evaluated the use of dye-enhanced confocal microscopy as an optical pathology tool in the ex vivo trial with fresh thick non-melanoma skin cancer excisions and in vivo trial with B16F10 melanoma cancer in mice. For the experiments the tumors were rapidly stained using aqueous solutions of either toluidine blue or methylene blue and imaged using multimodal confocal microscope. Reflectance images were acquired at the wavelengths of 630nm and 650 nm. Fluorescence was excited at 630 nm and 650 nm. Fluorescence emission was registered in the range between 680 nm and 710 nm. The images were compared to the corresponding en face frozen H&E sections. The results of the study indicate confocal images of stained cancerous tissue closely resemble corresponding H&E sections both in vivo and in vitro. This remarkable similarity enables interpretation of confocal images in a manner similar to that of histopathology. The developed technique may provide an efficient real-time optical tool for detecting skin pathology.
A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines
Zhang, Lei; Dou, Xiao-Wen; Zhang, Cheng; Logrieco, Antonio F.; Yang, Mei-Hua
2018-01-01
The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies. PMID:29393905
NASA Astrophysics Data System (ADS)
Vijverberg, Koen; Ghafoorian, Mohsen; van Uden, Inge W. M.; de Leeuw, Frank-Erik; Platel, Bram; Heskes, Tom
2016-03-01
Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with deterioration in cognitive performance, parkinsonism, motor and mood impairments. White matter hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of multiple neurological disorders such as MS and SVD. Almost all of the published (semi-)automated WMH detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid hand-crafted features, but rather to automatically learn a more efficient set of features. Experimental results show that a computer aided detection system with a USFL system outperforms a hand-crafted approach. Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system separately, getting close to the performance of an independent human expert.
Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A
2010-01-01
We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.
Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.
2010-01-01
We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648
Wiggins, Paul A
2015-07-21
This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Yang, Zhongyuan; Sassa, Fumihiro; Hayashi, Kenshi
2018-06-22
Improving the efficiency of detecting the spatial distribution of gas information with a mobile robot is a great challenge that requires rapid sample collection, which is basically determined by the speed of operation of gas sensors. The present work developed a robot equipped with a high-speed gas sensor module based on localized surface plasmon resonance. The sensor module is designed to sample gases from an on-ground odor source, such as a footprint material or artificial odor marker, via a fine sampling tubing. The tip of the sampling tubing was placed close to the ground to reduce the sampling time and the effect of natural gas diffusion. On-ground ethanol odor sources were detected by the robot at high resolution (i.e., 2.5 cm when the robot moved at 10 cm/s), and the reading of gas information was demonstrated experimentally. This work may help in the development of environmental sensing robots, such as the development of odor source mapping and multirobot systems with pheromone tracing.
Development of a morphological convolution operator for bearing fault detection
NASA Astrophysics Data System (ADS)
Li, Yifan; Liang, Xihui; Liu, Weiwei; Wang, Yan
2018-05-01
This paper presents a novel signal processing scheme, namely morphological convolution operator (MCO) lifted morphological undecimated wavelet (MUDW), for rolling element bearing fault detection. In this scheme, a MCO is first designed to fully utilize the advantage of the closing & opening gradient operator and the closing-opening & opening-closing gradient operator for feature extraction as well as the merit of excellent denoising characteristics of the convolution operator. The MCO is then introduced into MUDW for the purpose of improving the fault detection ability of the reported MUDWs. Experimental vibration signals collected from a train wheelset test rig and the bearing data center of Case Western Reserve University are employed to evaluate the effectiveness of the proposed MCO lifted MUDW on fault detection of rolling element bearings. The results show that the proposed approach has a superior performance in extracting fault features of defective rolling element bearings. In addition, comparisons are performed between two reported MUDWs and the proposed MCO lifted MUDW. The MCO lifted MUDW outperforms both of them in detection of outer race faults and inner race faults of rolling element bearings.
Closed flume inlet efficiency : [summary].
DOT National Transportation Integrated Search
2014-04-01
The storm drain is an inconspicuous but critical : part of the roadway, especially in Florida. Drains : look deceptively simple, but they must capture : water as efficiently as possible. To help assure : the performance of storm drains, the Florida :...
There is at present no comprehensive early-detection monitoring for exotic species in the Great Lakes, despite their continued arrival and impacts and recognition that early detection is key to effective management. We evaluated strategies for efficient early-detection monitorin...
Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang
2018-01-22
A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.
Solar photocatalytic disinfection with immobilised TiO(2) at pilot-plant scale.
Sordo, Carlos; Van Grieken, Rafael; Marugán, Javier; Fernández-Ibáñez, Pilar
2010-01-01
The photocatalytic disinfection efficiency has been investigated for two immobilized TiO(2) catalytic systems (wall reactor and fixed-bed reactor) in a solar pilot plant. Their performances have been compared with the use of a slurry reactor and the solar disinfection without catalyst. The use of photocatalytic TiO(2) wall reactors does no show clear benefits over the solar disinfection process in the absence of catalyst. The reason is that the efficiency of the solar disinfection is so high that the presence of titania in the reactor wall reduces the global efficiency due to the competition for the absorption of photons. As expected, the maximum efficiency was shown by the slurry TiO(2) reactor, due to the optimum contact between bacteria and catalyst. However, it is noticeable that the use of the fixed-bed reactor leads to inactivation rate quite close to that of the slurry, requiring comparable accumulated solar energy of about 6 kJ L(-1) to achieve a 6-log decrease in the concentration of viable bacteria and allowing a total disinfection of the water (below the detection limit of 1 CFU mL(-1)). Not only the high titania surface area of this configuration is responsible for the bacteria inactivation but the important contribution of the mechanical stress has to be considered. The main advantage of the fixed-bed TiO(2) catalyst is the outstanding stability, without deactivation effects after ten reaction cycles, being readily applicable for continuous water treatment systems.
NASA Astrophysics Data System (ADS)
Tan, Zheng-Hong; Zhang, Yi-Ping; Deng, Xiao-Bao; Song, Qing-Hai; Liu, Wen-Jie; Deng, Yun; Tang, Jian-Wei; Liao, Zhi-Yong; Zhao, Jun-Fu; Song, Liang; Yang, Lian-Yan
2015-01-01
used a continuous 9 year (2003-2011) eddy flux time series with 30 min resolution to examine water use efficiency in a tropical rainforest and determine its environmental controls. The multiyear mean water use efficiency (Wue) of this rainforest was 3.16 ± 0.33 gC per kg H2O, which is close to that of boreal forests, but higher than subtropical forests, and lower than temperate forests. The water vapor deficit (VPD) had a strong impact on instantaneous Wue, in the manner predicted by stomatal optimization theory. At the seasonal scale, temperature was the dominant controller of Wue. The negative correlation between temperature and Wue was probably caused by high continuous photosynthesis during low-temperature periods. The VPD did not correlate with Wue at the interannual scale. No interannual trend was detected in Wue or inherent water use efficiency (Wei), either annually or seasonally. The fact that no increasing trend of Wei was found in the studied tropical rainforest, along with other evidence of CO2 stimulation in tropical rainforests, requires special attention and data validation. There was no significant difference between Wue during a drought and the 9 year mean values in the forest we studied, but we found that dry season transpiration (Tr) was consistently lower during the drought compared to the mean values. Finally, whether Wue increases or decreases during a drought is determined by the drought sensitivity of gross primary production (GPP).
Fundamental and Applied Investigations in Atomic Spectrometric Analysis
NASA Astrophysics Data System (ADS)
Wu, Min
Simultaneous laser-excited fluorescence and absorption measurements were performed and the results have revealed that any interference caused by easily ionized elements does not originate from variations in analyte emission (quantum) efficiency. A closely related area, the roles of wet and dry aerosols in the matrix interference are clarified through spatially resolved imaging of the plasma by a charged coupled device camera. To eliminate matrix interference effects practically, various methods have been developed based on the above studies. The use of column pre-concentration with flow injection analysis has been found to provide a simple solution for reducing interference effects and increasing sensitivity of elemental analysis. A novel mini-spray chamber was invented. The new vertical rotary spray chamber combines gravitational, centrifugal, turbulent, and impact droplet segregation mechanisms to achieve a higher efficiency of small-droplet formation in a nebulized sample spray. As a result, it offers also higher sample-transport efficiency, lower memory effects, and improved analytical figures of merit over existing devices. This new device was employed with flow injection analysis to simulate an interface for coupling high performance liquid chromatography (HPLC) to a microwave plasma for chromatographic detection. The detection limits for common metallic elements are in the range of 5-50 mug/mL, and are degraded only twofold when the elements are presented in an organic solvent such as ethanol or methanol. Other sample-introduction schemes have also been investigated to improve sample-introduction technology. The direct coupling of hydride-generation techniques to the helium microwave plasma torch was evaluated for the determination of arsenic, antimony and tin by atomic emission spectrometry. A manually controlled peristaltic pump was modified for computer control and continuous flow injection was evaluated for standard calibration and trace elemental analysis. The present work evaluates the coupling of a novel microwave plasma torch with a quadruple mass spectrometer for the detection of ionic species from different nonmetals. Initial work performed with such a combination is demonstrated to be not only practicable but also promising. Detection limits for the halogens (F, Cl, Br, I) and S are in the range between 10 ng/mL and 1mug/mL. Further improvements have been realized through the use of chemical -vapor generation and by optimization of the plasma and the mass spectrometer. (Abstract shortened by UMI.).
Infrared Signal Detection by Upconversion Technique
NASA Technical Reports Server (NTRS)
Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William E.
2014-01-01
We demonstrated up-conversion assisted detection of a 2.05-micron signal by using a bulk periodically poled Lithium niobate crystal. The 94% intrinsic up-conversion efficiency and 22.58% overall detection efficiency at pW level of 2.05-micron was achieved.
Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geyko, Vasily; Fisch, Nathaniel
2014-02-27
The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.
Enhanced efficiency of internal combustion engines by employing spinning gas.
Geyko, V I; Fisch, N J
2014-08-01
The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.
ERIC Educational Resources Information Center
Hill, Anita; And Others
1985-01-01
To test ways of predicting how efficiently visually impaired children learn travel skills, a criteria checklist of spatial skills was developed for close-body space, local space, and geographical/travel space. Comparison was made between predictors of efficient learning including subjective ratings of teachers, personal qualities and factors of…
Optimization of single photon detection model based on GM-APD
NASA Astrophysics Data System (ADS)
Chen, Yu; Yang, Yi; Hao, Peiyu
2017-11-01
One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.
Clinical applications of correlational vestibular autorotation test.
Hsieh, Li-Chun; Lin, Te-Ming; Chang, Yu-Min; Kuo, Terry B J; Lee, Gho-She
2015-06-01
The correlational vestibular autorotation test (VAT) system has the advantages of good test-retest reliability and calibrations of absolute degrees of eye movement are unnecessary when acquiring a cross correlation coefficient (CCC). The approach is able to efficiently detect peripheral vestibulopathies. A VAT has some drawbacks including poor test-retest reliability and slippage of sensor. This study aimed to develop a correlational VAT system and to evaluate the reliability and applicability of this system. Twenty healthy participants and 10 vertiginous patients were enrolled. Vertical and horizontal autorotations from 0 to 3 Hz with either closed or open eyes were performed. A small sensor and a wireless transmission technique were used to acquire the electro-ocular graph and head velocity signals. The two signals were analyzed using CCCs to assess the functioning of the vestibular ocular reflex (VOR). The results showed a significantly greater CCC for open-eye versus closed-eye of head autorotations. The CCCs also increased significantly with head rotational frequencies. Moreover, the CCCs significantly correlated with the VOR gains at autorotation frequencies ≥1.0 Hz. The test-retest reliability was good (intraclass correlation coefficients ≥0.85). The vertiginous participants had significantly lower individual CCCs and overall average CCC than age- and-gender matched controls.
Investigation of a high power electromagnetic pulse source.
Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo
2012-09-01
A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.
NASA Astrophysics Data System (ADS)
Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi
2016-12-01
Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.
A New FPGA Architecture of FAST and BRIEF Algorithm for On-Board Corner Detection and Matching.
Huang, Jingjin; Zhou, Guoqing; Zhou, Xiang; Zhang, Rongting
2018-03-28
Although some researchers have proposed the Field Programmable Gate Array (FPGA) architectures of Feature From Accelerated Segment Test (FAST) and Binary Robust Independent Elementary Features (BRIEF) algorithm, there is no consideration of image data storage in these traditional architectures that will result in no image data that can be reused by the follow-up algorithms. This paper proposes a new FPGA architecture that considers the reuse of sub-image data. In the proposed architecture, a remainder-based method is firstly designed for reading the sub-image, a FAST detector and a BRIEF descriptor are combined for corner detection and matching. Six pairs of satellite images with different textures, which are located in the Mentougou district, Beijing, China, are used to evaluate the performance of the proposed architecture. The Modelsim simulation results found that: (i) the proposed architecture is effective for sub-image reading from DDR3 at a minimum cost; (ii) the FPGA implementation is corrected and efficient for corner detection and matching, such as the average value of matching rate of natural areas and artificial areas are approximately 67% and 83%, respectively, which are close to PC's and the processing speed by FPGA is approximately 31 and 2.5 times faster than those by PC processing and by GPU processing, respectively.
Mathew, Boby; Léon, Jens; Sannemann, Wiebke; Sillanpää, Mikko J.
2018-01-01
Gene-by-gene interactions, also known as epistasis, regulate many complex traits in different species. With the availability of low-cost genotyping it is now possible to study epistasis on a genome-wide scale. However, identifying genome-wide epistasis is a high-dimensional multiple regression problem and needs the application of dimensionality reduction techniques. Flowering Time (FT) in crops is a complex trait that is known to be influenced by many interacting genes and pathways in various crops. In this study, we successfully apply Sure Independence Screening (SIS) for dimensionality reduction to identify two-way and three-way epistasis for the FT trait in a Multiparent Advanced Generation Inter-Cross (MAGIC) barley population using the Bayesian multilocus model. The MAGIC barley population was generated from intercrossing among eight parental lines and thus, offered greater genetic diversity to detect higher-order epistatic interactions. Our results suggest that SIS is an efficient dimensionality reduction approach to detect high-order interactions in a Bayesian multilocus model. We also observe that many of our findings (genomic regions with main or higher-order epistatic effects) overlap with known candidate genes that have been already reported in barley and closely related species for the FT trait. PMID:29254994
Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi
2016-01-01
Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746
Imaging characteristics of scintimammography using parallel-hole and pinhole collimators
NASA Astrophysics Data System (ADS)
Tsui, B. M. W.; Wessell, D. E.; Zhao, X. D.; Wang, W. T.; Lewis, D. P.; Frey, E. C.
1998-08-01
The purpose of the study is to investigate the imaging characteristics of scintimammography (SM) using parallel-hole (PR) and pinhole (PN) collimators in a clinical setting. Experimental data were acquired from a phantom that models the breast with small lesions using a low energy high resolution (LEHR) PR and a PN collimator. At close distances, the PN collimator provides better spatial resolution and higher detection efficiency than the PR collimator, at the expense of a smaller field-of-view (FOV). Detection of small breast lesions can be further enhanced by noise smoothing, field uniformity correction, scatter subtraction and resolution recovery filtering. Monte Carlo (MC) simulation data were generated from the 3D MCAT phantom that realistically models the Tc-99m sestamibi uptake and attenuation distributions in an average female patient. For both PR and PN collimation, the scatter to primary ratio (S/P) decreases from the base of the breast to the nipple and is higher in the left than right breast due to scatter of photons from the heart. Results from the study add to understanding of the imaging characteristics of SM using PR and PN collimators and assist in the design of data acquisition and image processing methods to enhance the detection of breast lesions using SM.
Chandra, Amaresh; Keizerweerd, Amber T; Que, Youxiong; Grisham, Michael P
2015-08-01
Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials (setts) are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop a loop-mediated isothermal amplification (LAMP) assay for the detection of C. falcatum. C. falcatum genomic DNA was isolated from pure mycelium culture and infected tissues. Four sets of primers corresponding to a unique DNA sequence specific to C. falcatum were designed. Specificity of the LAMP test was checked with DNA of another fungal pathogen of sugarcane, Puccinia melanocephala, as well as two closely-related species, Colletotrichum fructivorum and Colletotrichum acutatum. No reaction was found with the three pathogens. When C. falcatum DNA from pure culture was used in a detection limit analysis, sensitivity of the LAMP method was observed to be ten times higher than that of conventional PCR; however, sensitivity was only 5 times higher when DNA from C. falcatum-infected tissues was used. Using the LAMP assay, C. falcatum DNA is amplified with high specificity, efficiency, and rapidity under isothermal conditions. Moreover, visual judgment of color change in <1 h without further post-amplification processing makes the LAMP method convenient, economical, and useful in diagnostic laboratories and the field.
Luo, Zewei; Wang, Yimin; Lu, Xiaoyong; Chen, Junman; Wei, Fujing; Huang, Zhijun; Zhou, Chen; Duan, Yixiang
2017-09-01
Antibiotic abuse has been bringing serious pollution in water, which is closely related to human health. It is desirable to develop a new strategy for antibiotic detection. To address this problem, a sensitive fluorescent aptasensor for antibiotic detection was developed by utilizing gold nanoparticles modified magnetic bead composites (AuNPs/MBs) and nicking enzyme. AuNPs/MBs were synthesized with the help of polyethylenimine (PEI). The prepared AuNPs/MBs acted as dual-functional scaffolds that owned excellent magnetic separation capacity and strong covalent bio-conjugation. The non-specifically absorbed aptamers in AuNPs/MBs were less than that in MBs. Hence, the fluorescent aptasensor based on AuNPs/MBs show a better signal to background ratio than that based on carboxyl modified magnetic beads (MBs). In this work, ampicillin was employed as a model analyte. In the presence of ampicillin, the specific binding between ampicillin and aptamer induced structure-switching that led to the release of partial complementary DNA (cDNA) of aptamer. Then, the released cDNA initiated the cycle of nicking enzyme assisted signal amplification (NEASA). Therefore, a large amount of taqman probes were cleaved and fluorescence signal was amplified. The prepared fluorescent aptasensor bring sensitive detection in range of 0.1-100 ng mL -1 with the limit of detection of 0.07 ng mL -1 . Furthermore, this aptasensor was also successfully applied in real sample detection with acceptable accuracy. The fluorescent aptasensor provides a promising method for efficient, rapid and sensitive antibiotic detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Mailler, R; Gasperi, J; Rocher, V; Gilbert-Pawlik, S; Geara-Matta, D; Moilleron, R; Chebbo, G
2014-04-01
This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.
2013-09-01
We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.
Biomechanics of forearm rotation: force and efficiency of pronator teres.
Ibáñez-Gimeno, Pere; Galtés, Ignasi; Jordana, Xavier; Malgosa, Assumpció; Manyosa, Joan
2014-01-01
Biomechanical models are useful to assess the effect of muscular forces on bone structure. Using skeletal remains, we analyze pronator teres rotational efficiency and its force components throughout the entire flexion-extension and pronation-supination ranges by means of a new biomechanical model and 3D imaging techniques, and we explore the relationship between these parameters and skeletal structure. The results show that maximal efficiency is the highest in full elbow flexion and is close to forearm neutral position for each elbow angle. The vertical component of pronator teres force is the highest among all components and is greater in pronation and elbow extension. The radial component becomes negative in pronation and reaches lower values as the elbow flexes. Both components could enhance radial curvature, especially in pronation. The model also enables to calculate efficiency and force components simulating changes in osteometric parameters. An increase of radial curvature improves efficiency and displaces the position where the radial component becomes negative towards the end of pronation. A more proximal location of pronator teres radial enthesis and a larger humeral medial epicondyle increase efficiency and displace the position where this component becomes negative towards forearm neutral position, which enhances radial curvature. Efficiency is also affected by medial epicondylar orientation and carrying angle. Moreover, reaching an object and bringing it close to the face in a close-to-neutral position improve efficiency and entail an equilibrium between the forces affecting the elbow joint stability. When the upper-limb skeleton is used in positions of low efficiency, implying unbalanced force components, it undergoes plastic changes, which improve these parameters. These findings are useful for studies on ergonomics and orthopaedics, and the model could also be applied to fossil primates in order to infer their locomotor form. Moreover, activity patterns in human ancient populations could be deduced from parameters reported here.
Green fiber lasers: An alternative to traditional DPSS green lasers for flow cytometry
Telford, William G.; Babin, Sergey A.; Khorev, Serge V.; Rowe, Stephen H.
2009-01-01
Green and yellow diode-pumped solid state (DPSS) lasers (532 and 561 nm) have become common fixtures on flow cytometers, due to their efficient excitation of phycoerythrin (PE) and its tandems, and their ability to excite an expanding array of expressible red fluorescent proteins. Nevertheless, they have some disadvantages. DPSS 532 nm lasers emit very close to the fluorescein bandwidth, necessitating optical modifications to permit detection of fluorescein and GFP. DPSS 561 nm lasers likewise emit very close to the PE detection bandwidth, and also cause unwanted excitation of APC and its tandems, requiring high levels of crossbeam compensation to reduce spectral overlap into the PE tandems. In this paper, we report the development of a new generation of green fiber lasers that can be engineered to emit in the range between 532 and 561 nm. A 550 nm green fiber laser was integrated into both a BD LSR II™ cuvette and FACSVantage DiVa™ jet-in-air cell sorter. This laser wavelength avoided both the fluorescein and PE bandwidths, and provided better excitation of PE and the red fluorescent proteins DsRed and dTomato than a power-matched 532 nm source. Excitation at 550 nm also caused less incidental excitation of APC and its tandems, reducing the need for crossbeam compensation. Excitation in the 550 nm range therefore proved to be a good compromise between 532 and 561 nm sources. Fiber laser technology is therefore providing the flexibility necessary for precisely matching laser wavelengths to our flow cytometry applications. PMID:19777600
Performance analysis and an assessment of operational issues of Ya-21U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paramonov, D.V.; El-Genk, M.S.
1996-03-01
Extensive testing of the Soviet made TOPAZ-II space nuclear power system unit designated {open_quote}{open_quote}Ya-21U{close_quote}{close_quote} was conducted both in the USSR (1989{endash}1990) and in the US (August 1993 to March 1995). The unit underwent a total of 15 tests for a cumulative test/operation time of almost 8000 hours. These tests included steady-state operation at different power levels, fast startups and power optimizations. Leaks were detected in some of the Thermionic Fuel Elements (TFEs) after the first test in the US. These leaks that facilitated air incursion into the interelectrode gap caused operational changes in both electric power and conversion efficiency andmore » changed the optimum cesium pressure and load voltage. Additional changes in operational performance were detected following shock and vibration tests performed in August 1994. Test data was examined and analyzed to assess the performance of not only individual TFEs, and also the whole Ya-21U unit, and identify causes for measured operational performance changes; most probable causes were identified and discussed. The Ya-21U unit remained operational throughout extensive testing for 8000 hours at conditions far exceeding the design limits of the TOPAZ-II system. No single TFE was damaged during testing and measured operational performance changes were uniform among working section TFEs. In addition to providing a unique knowledge base for future development and operation of thermionic power systems, the test results testify to the reliability and ruggedness of the TOPAZ-II system design. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alparslan, Burcu, E-mail: burcu.alparslan@gmail.com; Nas, Omer Fatih, E-mail: omerfatihnas@gmail.com; Eritmen, Ulku Turpcu, E-mail: drulkutur@hotmail.com.tr
PurposeThe aim of this study was to investigate the effect of stent cell geometry on midterm results of carotid artery stenting (CAS).Materials and MethodOne hundred fifty-five patients underwent CAS between February 2010 and December 2012. Ninety-one open- and 84 closed-cell stents were used in this non-randomized, retrospective study. Periprocedural complications were defined as the ones happened during the procedure or within 30 days afterwards. Starting from the 6th month after the procedure, in-stent restenosis was detected with multidetector computed tomography angiography and classified into four groups from focal restenosis to occlusion.ResultsEleven complications were encountered in the periprocedural period (four on themore » open- and seven on the closed-cell group). Total complication rate was 6.3 % (11/175). No significant difference was detected in terms of periprocedural complications between two groups (p = 0.643). There was statistically significant difference between stent design groups in regard to radiological findings (p = 0.002). Sixteen of open-cell stents and three of closed-cell stents had focal restenosis. One closed-cell stent had diffuse proliferative restenosis and one open-cell stent had total occlusion.ConclusionIn-stent restenosis was more common in open-cell stent group, which have larger free cell area than closed-cell stents. Although our radiologic findings promote us to use closed-cell design if ‘possible’, no difference was detected in terms of clinical outcomes.« less
Koehler, Kirsten A.; Anthony, T. Renee; Van Dyke, Michael
2016-01-01
The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min−1 of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies through screened inlets and that particle bounce, for solid particles, is an important determinant of aspiration and sampling efficiencies for samplers with screened inlets. PMID:21965462
Hippocampal closed-loop modeling and implications for seizure stimulation design
NASA Astrophysics Data System (ADS)
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2015-10-01
Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Hippocampal closed-loop modeling and implications for seizure stimulation design.
Sandler, Roman A; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W; Marmarelis, Vasilis Z
2015-10-01
Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Hippocampal Closed-Loop Modeling and Implications for Seizure Stimulation Design
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2016-01-01
Objective Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the Entorhinal Cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3→CA1, via the Schaffer-Collateral synapse, and CA1→CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (Principal Dynamic Modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main Results Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance DBS is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy. PMID:26355815
Surface electromyographic mapping of the orbicularis oculi muscle for real-time blink detection.
Frigerio, Alice; Cavallari, Paolo; Frigeni, Marta; Pedrocchi, Alessandra; Sarasola, Andrea; Ferrante, Simona
2014-01-01
Facial paralysis is a life-altering condition that significantly impairs function, appearance, and communication. Facial rehabilitation via closed-loop pacing represents a potential but as yet theoretical approach to reanimation. A first critical step toward closed-loop facial pacing in cases of unilateral paralysis is the detection of healthy movements to use as a trigger to prosthetically elicit automatic artificial movements on the contralateral side of the face. To test and to maximize the performance of an electromyography (EMG)-based blink detection system for applications in closed-loop facial pacing. Blinking was detected across the periocular region by means of multichannel surface EMG at an academic neuroengineering and medical robotics laboratory among 15 healthy volunteers. Real-time blink detection was accomplished by mapping the surface of the orbicularis oculi muscle on one side of the face with a multichannel surface EMG. The biosignal from each channel was independently processed; custom software registered a blink when an amplitude-based or slope-based suprathreshold activity was detected. The experiments were performed when participants were relaxed and during the production of particular orofacial movements. An F1 score metric was used to analyze software performance in detecting blinks. The maximal software performance was achieved when a blink was recorded from the superomedial orbit quadrant. At this recording location, the median F1 scores were 0.89 during spontaneous blinking, 0.82 when chewing gum, 0.80 when raising the eyebrows, and 0.70 when smiling. The overall performance of blink detection was significantly better at the superomedial quadrant (F1 score, 0.75) than at the traditionally used inferolateral quadrant (F1 score, 0.40) (P < .05). Electromyographic recording represents an accurate tool to detect spontaneous blinks as part of closed-loop facial pacing systems. The early detection of blink activity may allow real-time pacing via rapid triggering of contralateral muscles. Moreover, an EMG detection system can be integrated in external devices and in implanted neuroprostheses. A potential downside to this approach involves cross talk from adjacent muscles, which can be notably reduced by recording from the superomedial quadrant of the orbicularis oculi muscle and by applying proper signal processing. NA.
Detecting and evaluating communities in complex human and biological networks
NASA Astrophysics Data System (ADS)
Morrison, Greg; Mahadevan, L.
2012-02-01
We develop a simple method for detecting the community structure in a network can by utilizing a measure of closeness between nodes. This approach readily leads to a method of coarse graining the network, which allows the detection of the natural hierarchy (or hierarchies) of community structure without appealing to an unknown resolution parameter. The closeness measure can also be used to evaluate the robustness of an individual node's assignment to its community (rather than evaluating only the quality of the global structure). Each of these methods in community detection and evaluation are illustrated using a variety of real world networks of either biological or sociological importance and illustrate the power and flexibility of the approach.
Weatherization Plays a Starring Role in Mississippi: Weatherization Assistance Close-Up Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
D&R International
2001-10-10
Mississippi demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
Designing efficient photochromic dithienylethene dyads.
Fihey, Arnaud; Jacquemin, Denis
2015-06-01
Aiming at designing more efficient multiphotochromes, we investigate with the help of ab initio tools the impact of the substitution on a series of dimers constituted of two dithienylethene (DTE) moieties, strongly coupled to each other through an ethynyl linker. The electronic structure and the optical properties of a large panel of compounds, substituted on different positions by various types of electroactive groups, have been compared with the aim of designing a dyad in which the three possible isomers (open-open, closed-open, closed-closed) can be reached. We show that appending the reactive carbons atoms of the DTE core with electroactive groups on one of the two photochromes allows cyclisation to be induced on a specific moiety, which leads to the formation of the desired closed-open isomer. Substituting the lateral positions of the thiophene rings provides further control of the topology of the frontier molecular orbitals, so that the electronic transition inducing the second ring closure stands out in the spectrum of the intermediate isomer.
[Relevance of MRI After Closed Reduction of Traumatic Hip Dislocation in Children].
Strüwind, Christoph Mauritz; von Rüden, Christian; Thannheimer, Andreas; Bühren, Volker; Schneidmueller, Dorien
2018-05-14
Traumatic hip dislocation in children and adolescents is a rare entity that typically results from high-energy trauma. After closed joint reduction, further treatment depends on the specific pattern of the lesion as identified using cross sectional imaging. The aim of this retrospective analysis was to evaluate relevant side effects after traumatic hip dislocation in children and adolescents in order to examine the need for focused diagnostics. This retrospective analysis covered 8 adolescents under 18 years suffering isolated traumatic hip joint dislocation between 2001 and 2017. In all patients, closed joint reduction was performed immediately after admission to the emergency room. In order to evaluate the complete extent of the injury, 5 patients received an MRI and 3 patients a CT scan following closed joint reduction. Two female and 6 male patients with a median age of 11 (range 5 - 16) years were included. In 2 cases, a free joint body was detected in the posterior joint gap in the posttraumatic CT scan after closed joint reduction. Interposition of the labrum into the joint gap was detected intraoperatively in both cases. In one patient who received posttraumatic MRI, labral interposition into the joint gap was observed after closed reduction. These findings were confirmed intraoperatively. In 4 other patients, no posttraumatic labral lesion was detected in the MRI after closed reduction. The reported side effects included ruptured anterior inferior iliac spine and ruptured femoral head ligament. MRI is gaining increasing importance following traumatic hip dislocation in children and adolescents. A missing chondral or osteochondral fragment in the CT scan does not exclude a labral lesion or interposition. Therefore, MRI following closed reduction is mandatory in any case. Georg Thieme Verlag KG Stuttgart · New York.
Burghardt, T P; Thompson, N L
1984-01-01
We consider the effect of planar dielectric interfaces (e.g., solid/liquid) on the fluorescence emission of nearby probes. First, we derive an integral expression for the electric field radiated by an oscillating electric dipole when it is close to a dielectric interface. The electric field depends on the refractive indices of the interface, the orientation of the dipole, the distance from the dipole to the interface, and the position of observation. We numerically calculate the electric field intensity for a dipole on an interface, as a function of observation position. These results are applicable to fluorescent molecules excited by the evanescent field of a totally internally reflected laser beam and thus very close to a solid/liquid interface. Next, we derive an integral expression for the electric field radiated when a second dielectric interface is also close to the fluorescent molecule. We numerically calculate this intensity as observed through the second interface. These results are useful when the fluorescence is collected by a high-aperture microscope objective. Finally, we define and calculate a "dichroic factor," which describes the efficiency of collection, in the two-interface system, of polarized fluorescence. The limit when the first interface is removed is applicable for any high-aperture collection of polarized or unpolarized fluorescence. The limit when the second interface is removed has application in the collection of fluorescence with any aperture from molecules close to a dielectric interface. The results of this paper are required for the interpretation of order parameter measurements on fluorescent probes in supported phospholipid monolayers (Thompson, N.L., H. M. McConnell, and T. P. Burghardt, 1984, Biophys. J., 46:739-747). PMID:6518253
Sensitive Infrared Signal Detection by Upconversion Technique
NASA Technical Reports Server (NTRS)
Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.
2014-01-01
We demonstrated upconversion assisted detection of a 2.05-micron signal by sum frequency generation to generate a 700-nm light using a bulk periodically poled lithium niobate crystal. The achieved 94% intrinsic upconversion efficiency and 22.58% overall detection efficiency at a pW level of 2.05 micron pave the path to detect extremely weak infrared (IR) signals for remote sensing applications.
Supramolecular control over recognition and efficient detection of picric acid.
Béreau, Virginie; Duhayon, Carine; Sutter, Jean-Pascal
2014-10-18
Bimetallic Schiff-base Al(3+) complexes bearing ester functions at the periphery of the ligands are shown to be efficient fluorescent chemosensors for picric acid detection. The prominent role of an association between the chemosensor and the picric acid in the detection process is demonstrated. The detection of picric acid in water is achieved with the sensor deposited on paper.
NASA Astrophysics Data System (ADS)
Koch, Wolfgang
1996-05-01
Sensor data processing in a dense target/dense clutter environment is inevitably confronted with data association conflicts which correspond with the multiple hypothesis character of many modern approaches (MHT: multiple hypothesis tracking). In this paper we analyze the efficiency of retrodictive techniques that generalize standard fixed interval smoothing to MHT applications. 'Delayed estimation' based on retrodiction provides uniquely interpretable and accurate trajectories from ambiguous MHT output if a certain time delay is tolerated. In a Bayesian framework the theoretical background of retrodiction and its intimate relation to Bayesian MHT is sketched. By a simulated example with two closely-spaced targets, relatively low detection probabilities, and rather high false return densities, we demonstrate the benefits of retrodiction and quantitatively discuss the achievable track accuracies and the time delays involved for typical radar parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbanis, E.; Martin, A.; Rosset, D.
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
The Portuguese gamma irradiation facility
NASA Astrophysics Data System (ADS)
Mendes, C. M.; Almeida, J. C.; Botelho, M. L.; Cavaco, M. C.; Almeida-Vara, E.; Andrade, M. E.
A Gamma Radiation Facility was built up in the National Laboratory of Industrial Technology and Engineering (LNETI), Lisbon, Portugal. This plant (UTR GAMA-Pi) is a Cobalt-60 dry storage continuous facility with a nominal capacity of 1.5X10 16 Bq. The initial activity is 1.1X10 16 Bq and the troughput capacity 10 3 ton/year for product with a bulk density of 0.2 g/cm 3 treated with a minimum absorbed dose of 25 kGy. Complementary control devices were installed: ventilation system, closed water refrigeration circuit, internal TV system, detection and extinction fire system and emergency power group. It must be emphasized that the best attention was given to the conception and efficiency of the interlock safety systems. This facility will be utilized mainly for radiosterilization of medical articles and decontamination of wine cork stoppers.
NASA Astrophysics Data System (ADS)
Tsabaris, C.; Patiris, D. L.; Lykousis, V.
2011-01-01
The detection system KATERINA has been used in the National Laboratory of Gran Sasso (close to L’ Aquila) in Italy for short term continuous monitoring of radon daughter concentrations in a groundwater path. The system was immersed in an water tank which was supplied with groundwater discharged from the mountain of Gran Sasso. The system offers quantitative results using calibration parameters obtained by reference sources and appropriate system efficiency simulation. Measurements were performed in two periods (December 2005 and November 2007) exhibiting almost constant radon level 2.8 Bq/l in the first period, while in the second period it increased up to 6.8 Bq/l. This gradual enhancement of radon background level could be attributed to the increase of microseismicity that occurred from late of 2007 till April 2009.
[Electrical response of inner membrane structures of corynebacteria during electrotransformation].
Tiurin, M V; Voroshilova, E B; Rostova, Iu G; Oparina, N Iu; Gusiatiner, M M
1998-01-01
The efficiency of the electrotransformation of intact cells of corynebacteria by a solitary impulse with a complex shape amounted to 10(6) transformants/microgram of plasmid pNV1 DNA at an electric field strength of 14.2 kW/cm; the voltage-current curve of the cell samples was nonlinear. Under these conditions, the structure of the electric current impulse passing intact cells or protoplasts included oscillations characterized by increasing amplitude and a duration of 170 microseconds, which were not detected in the structure of the electric current impulses at field strengths insufficient for obtaining transformants. These changes in the impulse shape suggest the involvement of internal closed membrane structures in the electrical response of cells to the exogenous electric impulse. Most probably, under conditions of electrical treatment optimal for transformation, electropores are formed in the intracellular membranes of corynebacteria.
High-resolution retinal imaging through open-loop adaptive optics
NASA Astrophysics Data System (ADS)
Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li
2010-07-01
Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.
A Sensor Failure Simulator for Control System Reliability Studies
NASA Technical Reports Server (NTRS)
Melcher, K. J.; Delaat, J. C.; Merrill, W. C.; Oberle, L. G.; Sadler, G. G.; Schaefer, J. H.
1986-01-01
A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec.
Spectral analysis of major heart tones
NASA Astrophysics Data System (ADS)
Lejkowski, W.; Dobrowolski, A. P.; Majka, K.; Olszewski, R.
2018-04-01
The World Health Organization (WHO) figures clearly indicate that cardiovascular disease is the most common cause of death and disability in the world. Early detection of cardiovascular pathologies may contribute to reducing such a high mortality rate. Auscultatory examination is one of the first and most important step in cardiologic diagnostics. Unfortunately, proper diagnosis is closely related to long-term practice and medical experience. The article presents the author's system of recording phonocardiograms and the way of saving data, as well as the outline of the analysis algorithm, which will allow to assign a case to a patient with heart failure or healthy voluntaries' with a certain high probability. The results of a pilot study of phonocardiographic signals were also presented as an introduction to further research aimed at the development of an efficient diagnostic algorithm based on spectral analysis of the heart tone.
Zhang, Zhongqiang; Yang, Xiu; Lin, Guang
2016-04-14
Sensor placement at the extrema of Proper Orthogonal Decomposition (POD) is efficient and leads to accurate reconstruction of the wind field from a limited number of measure- ments. In this paper we extend this approach of sensor placement and take into account measurement errors and detect possible malfunctioning sensors. We use the 48 hourly spa- tial wind field simulation data sets simulated using the Weather Research an Forecasting (WRF) model applied to the Maine Bay to evaluate the performances of our methods. Specifically, we use an exclusion disk strategy to distribute sensors when the extrema of POD modes are close.more » It turns out that this strategy can also reduce the error of recon- struction from noise measurements. Also, by a cross-validation technique, we successfully locate the malfunctioning sensors.« less
Acousto-optical Transducer with Surface Plasmons
NASA Astrophysics Data System (ADS)
Kolomenskii, A. A.; Surovic, E.; Schuessler, H. A.
2018-04-01
The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.
An abuttable CCD imager for visible and X-ray focal plane arrays
NASA Technical Reports Server (NTRS)
Burke, Barry E.; Mountain, Robert W.; Harrison, David C.; Bautz, Marshall W.; Doty, John P.
1991-01-01
A frame-transfer silicon charge-coupled-device (CCD) imager has been developed that can be closely abutted to other imagers on three sides of the imaging array. It is intended for use in multichip arrays. The device has 420 x 420 pixels in the imaging and frame-store regions and is constructed using a three-phase triple-polysilicon process. Particular emphasis has been placed on achieving low-noise charge detection for low-light-level imaging in the visible and maximum energy resolution for X-ray spectroscopic applications. Noise levels of 6 electrons at 1-MHz and less than 3 electrons at 100-kHz data rates have been achieved. Imagers have been fabricated on 1000-Ohm-cm material to maximize quantum efficiency and minimize split events in the soft X-ray regime.
A sensor failure simulator for control system reliability studies
NASA Astrophysics Data System (ADS)
Melcher, K. J.; Delaat, J. C.; Merrill, W. C.; Oberle, L. G.; Sadler, G. G.; Schaefer, J. H.
A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec.
Detectable close-in planets around white dwarfs through late unpacking
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Gänsicke, Boris T.
2015-02-01
Although 25-50 per cent of white dwarfs (WDs) display evidence for remnant planetary systems, their orbital architectures and overall sizes remain unknown. Vibrant close-in (≃1 R⊙) circumstellar activity is detected at WDs spanning many Gyr in age, suggestive of planets further away. Here we demonstrate how systems with 4 and 10 closely packed planets that remain stable and ordered on the main sequence can become unpacked when the star evolves into a WD and experience pervasive inward planetary incursions throughout WD cooling. Our full-lifetime simulations run for the age of the Universe and adopt main-sequence stellar masses of 1.5, 2.0 and 2.5 M⊙, which correspond to the mass range occupied by the progenitors of typical present-day WDs. These results provide (i) a natural way to generate an ever-changing dynamical architecture in post-main-sequence planetary systems, (ii) an avenue for planets to achieve temporary close-in orbits that are potentially detectable by transit photometry and (iii) a dynamical explanation for how residual asteroids might pollute particularly old WDs.
NASA Technical Reports Server (NTRS)
Brown, D. H.; Corman, J. C.
1976-01-01
Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.
Closed-Loop- and Decision-Assist-Guided Fluid Therapy of Human Hemorrhage.
Hundeshagen, Gabriel; Kramer, George C; Ribeiro Marques, Nicole; Salter, Michael G; Koutrouvelis, Aristides K; Li, Husong; Solanki, Daneshvari R; Indrikovs, Alexander; Seeton, Roger; Henkel, Sheryl N; Kinsky, Michael P
2017-10-01
We sought to evaluate the efficacy, efficiency, and physiologic consequences of automated, endpoint-directed resuscitation systems and compare them to formula-based bolus resuscitation. Experimental human hemorrhage and resuscitation. Clinical research laboratory. Healthy volunteers. Subjects (n = 7) were subjected to hemorrhage and underwent a randomized fluid resuscitation scheme on separate visits 1) formula-based bolus resuscitation; 2) semiautonomous (decision assist) fluid administration; and 3) fully autonomous (closed loop) resuscitation. Hemodynamic variables, volume shifts, fluid balance, and cardiac function were monitored during hemorrhage and resuscitation. Treatment modalities were compared based on resuscitation efficacy and efficiency. All approaches achieved target blood pressure by 60 minutes. Following hemorrhage, the total amount of infused fluid (bolus resuscitation: 30 mL/kg, decision assist: 5.6 ± 3 mL/kg, closed loop: 4.2 ± 2 mL/kg; p < 0.001), plasma volume, extravascular volume (bolus resuscitation: 17 ± 4 mL/kg, decision assist: 3 ± 1 mL/kg, closed loop: -0.3 ± 0.3 mL/kg; p < 0.001), body weight, and urinary output remained stable under decision assist and closed loop and were significantly increased under bolus resuscitation. Mean arterial pressure initially decreased further under bolus resuscitation (-10 mm Hg; p < 0.001) and was lower under bolus resuscitation than closed loop at 20 minutes (bolus resuscitation: 57 ± 2 mm Hg, closed loop: 69 ± 4 mm Hg; p = 0.036). Colloid osmotic pressure (bolus resuscitation: 19.3 ± 2 mm Hg, decision assist, closed loop: 24 ± 0.4 mm Hg; p < 0.05) and hemoglobin concentration were significantly decreased after bolus fluid administration. We define efficacy of decision-assist and closed-loop resuscitation in human hemorrhage. In comparison with formula-based bolus resuscitation, both semiautonomous and autonomous approaches were more efficient in goal-directed resuscitation of hemorrhage. They provide favorable conditions for the avoidance of over-resuscitation and its adverse clinical sequelae. Decision-assist and closed-loop resuscitation algorithms are promising technological solutions for constrained environments and areas of limited resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D&R International
2001-10-10
New Jersey demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.
Ferreira, Daniele C; Monteiro, Camila S; Chaves, Claudilene R; Sáfar, Gustavo A M; Moreira, Roberto L; Pinheiro, Maurício V B; Martins, Dayse C S; Ladeira, Luiz Orlando; Krambrock, Klaus
2017-02-01
Gold nanostructures of two different shapes (spheres and rods) were synthesized to form a colloidal hybrid system with 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tosylate salt (H 2 TM4PyP(OTs) 4 ) (POR) for applications in photodynamic therapy (PDT) using light in the visible spectral range. Electron paramagnetic resonance (EPR) experiments in combination with spin trapping were used for the detection of reactive oxygen species (ROS) and evaluation of the efficiency of these novel hybrid systems as photosensitizers. It is shown that the hybrid system consisting of gold nanorods (AuNR) and porphyrin (POR) is by far more efficient than its isolated components. This enhanced efficiency is explained by a synergetic effect between the AuNR and the porphyrin, wherein a rapid energy transfer from the former to the latter produces a large amount of singlet oxygen followed by its conversion into hydroxyl radicals. The mechanism was investigated using different spin traps and different ROS inhibitors. On the other hand, spherical gold nanoparticles (AuNP) do not show this synergetic effect. The synergetic effect for gold nanorods/POR hybrid is attributed to a larger field enhancement close to the gold nanorod surface in addition to the electrostatic attraction between the components of the hybrid system. Copyright © 2016 Elsevier B.V. All rights reserved.
Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast
Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora
2006-01-01
Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four “high” sporulation alleles are derived from the “low” sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one “QTL region” that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318
Zhang, Ling; Sun, Yue; Liang, Yan-Yu; He, Jian-Ping; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2016-11-15
Herein the influence of ultrasmall Ag nanoclusters (Ag NCs) against CdS quantum dots (QDs) in a photoelectrochemical (PEC) nanosystem was exploited for the first time, based on which a novel PEC bioanalysis was successfully developed via the efficient quenching effect of Ag NCs against the CdS QDs. In a model system, DNA assay was achieved by using molecular beacon (MB) probes anchored on a CdS QDs modified electrode, and the MB probes contain two segments that can hybridize with both target DNA sequence and the label of DNA encapsulated Ag NCs. After the MB probe was unfolded by the target DNA sequence, the labels of oligonucleotide encapsulated Ag NCs would be brought in close proximity to the CdS QDs electrode surface, and efficient photocurrent quenching of QDs could be resulted from an energy transfer process that originated from NCs. Thus, by monitoring the attenuation in the photocurrent signal, an elegant and sensitive PEC DNA bioanalysis could be accomplished. The developed biosensor displayed a linear range from 1.0pM to 10nM and the detection limit was experimentally found to be of 0.3pM. This work presents a feasible signaling principle that could act as a common basis for general PEC bioanalysis development. Copyright © 2016 Elsevier B.V. All rights reserved.
Solid State Lasers from an Efficiency Perspective
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2007-01-01
Solid state lasers have remained a vibrant area of research because several major innovations expanded their capability. Major innovations are presented with emphasis focused on the laser efficiency. A product of efficiencies approach is developed and applied to describe laser performance. Efficiency factors are presented in closed form where practical and energy transfer effects are included where needed. In turn, efficiency factors are used to estimate threshold and slope efficiency, allowing a facile estimate of performance. Spectroscopic, thermal, and mechanical data are provided for common solid state laser materials.
Efficient, deep-blue TADF-emitters for OLED display applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Volz, Daniel; Baumann, Thomas
2016-09-01
Currently, the mobile display market is strongly shifting towards AMOLED technology, in order to enable curved and flexible displays. This leads to a growing demand for highly efficient OLED emitters to reduce the power consumption and increase display resolution at the same time. While highly efficient green and red OLEDs already found their place in commercial OLED-displays, the lack of efficient blue emitters is still an issue. Consequently, the active area for blue is considerably larger than for green and red pixels, to make up for the lower efficiency. We intend to close this efficiency-gap with novel emitters based on thermally activated delayed fluorescence (TADF) technology. Compared to state-of-the-art fluorescent dopants, the efficiency of TADF-emitters is up to four times higher. At the same time, it is possible to design them in a way to maintain deep blue emission, i.e. CIE y < 0.2. These aspects are relevant to produce efficient high resolution AMOLED displays. Apart from these direct customer benefits, our TADF technology does not contain any rare elements, which allows for the fabrication of sustainable OLED technology. In this work, we highlight one of our recently developed blue TADF materials. Basic material properties as well as first device results are discussed. In a bottom-emitting device, a CIEx/CIEy coordinate of (0.16/0.17) was achieved with efficiency values close to 20% EQE.
Dietrich, Philipp-Immanuel; Harris, Robert J; Blaicher, Matthias; Corrigan, Mark K; Morris, Tim M; Freude, Wolfgang; Quirrenbach, Andreas; Koos, Christian
2017-07-24
Coupling of light into multi-core fibers (MCF) for spatially resolved spectroscopy is of great importance to astronomical instrumentation. To achieve high coupling efficiencies along with fill-fractions close to unity, micro-optical elements are required to concentrate the incoming light to the individual cores of the MCF. In this paper we demonstrate facet-attached lens arrays (LA) fabricated by two-photon polymerization. The LA provide close to 100% fill-fraction along with efficiencies of up to 73% (down to 1.4 dB loss) for coupling of light from free space into an MCF core. We show the viability of the concept for astrophotonic applications by integrating an MCF-LA assembly in an adaptive-optics test bed and by assessing its performance as a tip/tilt sensor.
Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy.
Ramgopal, Sriram; Thome-Souza, Sigride; Jackson, Michele; Kadish, Navah Ester; Sánchez Fernández, Iván; Klehm, Jacquelyn; Bosl, William; Reinsberger, Claus; Schachter, Steven; Loddenkemper, Tobias
2014-08-01
Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy. Copyright © 2014. Published by Elsevier Inc.
Chen, Gaosong; Hai, Jun; Wang, Hao; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui
2017-03-02
Nowadays, the development of a multifunction system for the simultaneous multiple signal amplification detection and fast removal of Hg 2+ remains a major challenge. Herein, we for the first time used gold nanoparticles (Au NPs) and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of Hg 2+ . Such a system was based on the formation of gold amalgam and a gold amalgam-based reaction between rhodamine B (RhB) and NaBH 4 with fluorescence and colorimetric sensing functions. When the gold amalgam catalyzes the reduction of RhB, the red color and orange fluorescence of RhB gradually changed to colorless by switching the amount of Hg 2+ deposited on 13 nm Au NPs. The detection limit of the fluorescence assay and colorimetric assay is 1.16 nM and 2.54 nM for Hg 2+ , respectively. Interestingly, the color and fluorescence of RhB could be recovered when the above colorless reaction solution was exposed to air for about 2 hours. Taking advantage of the above optical phenomenon, a recyclable paper-based sensor has been developed by immobilizing the Au NPs and RhB dye on filter paper and has been successfully used for detection of Hg 2+ in real water samples. In addition, the filter membrane immobilized Au NPs could allow fast removal of mercury ions in Yellow river water and tap water with the removal efficiency close to 99%.
Oellig, Claudia
2017-07-21
Ergot alkaloids are generally determined by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD) or mass selective detection, analyzing the individual compounds. However, fast and easy screening methods for the determination of the total ergot alkaloid content are more suitable, since for monitoring only the sum of the alkaloids is relevant. The herein presented screening uses lysergic acid amide (LSA) as chemical marker, formed from ergopeptine alkaloids, and ergometrine for the determination of the total ergot alkaloids in rye with high-performance thin-layer chromatography-fluorescence detection (HPTLC-FLD). An ammonium acetate buffered extraction step was followed by liquid-liquid partition for clean-up before the ergopeptine alkaloids were selectively transformed to LSA and analyzed by HPTLC-FLD on silica gel with isopropyl acetate/methanol/water/25% ammonium hydroxide solution (80:10:3.8:1.1, v/v/v/v) as the mobile phase. The enhanced native fluorescence of LSA and unaffected ergometrine was used for quantitation without any interfering matrix. Limits of detection and quantitation were 8 and 26μg LSA/kg rye, which enables the determination of the total ergot alkaloids far below the applied quality criterion limit for rye. Close to 100% recoveries for different rye flours at relevant spiking levels were obtained. Thus, reliable results were guaranteed, and the fast and efficient screening for the total ergot alkaloids in rye offers a rapid alternative to the HPLC analysis of the individual compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, T.J.; Barnes, R.H.
1990-11-01
Two new methods for real-time measurement of gaseous formaldehyde have been developed. One is a spectroscopic method based on direct fluorescence detection of gaseous formaldehyde following excitation with UV light. This method has been developed to the prototype stage by modifications of a commercial fluorescence SO2 detector to convert it to formaldehyde detection. The prototype spectroscopic formaldehyde monitor exhibits a detection limit of <30 ppbv, with a time response of about one minute. The second method is based on derivatization of formaldehyde in aqueous solution to form a fluorescent product. The detection of fluorescent product was made more sensitive bymore » using intense 254 nm light from a mercury lamp for excitation, thereby allowing use of a simple and efficient glass coil scrubber for collection of gaseous formaldehyde. The wet chemical formaldehyde monitor incorportating these improvements exhibits a detection limit for gaseous formaldehyde of 0.2 ppbv and for aqueous formaldehyde of 0.2 micromolar with time response of about one minute, following a lag time of 2 minutes. Both instruments were tested in the laboratory with gaseous formaldehyde standards, and the aqueous scrubbing/analysis method was field tested by continuous operation over a 10-day period in which outdoor and indoor air were sampled for alternate half-hour periods. A comparison of real-time (aqueous scrubbing/analysis) and integrated measurements, using dinitrophenylhydrazine (DNPH) impingers, showed close agreement between the real-time and DNPH data, even at concentrations as low as 1 ppbv.« less
Detection of a Very Bright Source Close to the LMC Supernova SN 1987A: Erratum
NASA Astrophysics Data System (ADS)
Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.
1988-01-01
In the Letter "Detection of a Very Bright Source Close to the LMC Supernova SN 1987A" by P. Nisenson, C. Papaliolios, M. Karovska, and R. Noyes (1987 Ap. J. [Letters], 320, L15), two of the figure labels for Figure 1 were inadvertently transposed in the production process. A corrected version of the figure appears as Plate L4. The Journal regrets the error.
A Gibbs sampler for motif detection in phylogenetically close sequences
NASA Astrophysics Data System (ADS)
Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric
2004-03-01
Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.
Assisted closed-loop optimization of SSVEP-BCI efficiency
Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo
2012-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214
Assisted closed-loop optimization of SSVEP-BCI efficiency.
Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo
2013-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.
Novel sensors to enable closed-loop active clearance control in gas turbine engines
NASA Astrophysics Data System (ADS)
Geisheimer, Jonathan; Holst, Tom
2014-06-01
Active clearance control within the turbine section of gas turbine engines presents and opportunity within aerospace and industrial applications to improve operating efficiencies and the life of downstream components. Open loop clearance control is currently employed during the development of all new large core aerospace engines; however, the ability to measure the gap between the blades and the case and close down the clearance further presents as opportunity to gain even greater efficiencies. The turbine area is one of the harshest environments for long term placement of a sensor in addition to the extreme accuracy requirements required to enable closed loop clearance control. This paper gives an overview of the challenges of clearance measurements within the turbine as well as discusses the latest developments of a microwave sensor designed for this application.
Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.
2014-01-01
To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the uncorrected data. The peptide library and detection efficiencies presented here may serve as a resource to facilitate studies in the epigenetics and proteomics fields. PMID:25000943
Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming
2011-01-01
JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.
Wang, Jixiang; Gao, Lin; Han, Donglai; Pan, Jianming; Qiu, Hao; Li, Hongji; Wei, Xiao; Dai, Jiangdong; Yang, Jinghai; Yao, Hui; Yan, Yongsheng
2015-03-11
In this study, fluorescent molecularly imprinted polymers (FMIPs), which were for the selective recognition and fluorescence detection of λ-cyhalothrin (LC), were synthesized via fluorescein 5(6)-isothiocyanate (FITC) and 3-aminopropyltriethoxysilane (APTS)/SiO2 particles. The SiO2@FITC-APTS@MIPs were characterized by Fourier transform infrared (FT-IR), UV-vis spectrophotometer (UV-vis), fluorescence spectrophotometer, thermogravimetric analysis (TGA), confocal laser scanning microscope (CLSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized SiO2@FITC-APTS@MIPs with an imprinted polymer film (thickness was about 100 nm) was demonstrated to be spherically shaped and had good monodispersity, high fluorescence intensity, and good selective recognition. Using fluorescence quenching as the detection tool, the largest fluorescence quenching efficiency (F0/F - 1) of SiO2@FITC-APTS@MIPs is close to 2.5 when the concentration of the LC is 1.0 μM L(-1). In addition, a linear relationship (F0/F - 1= 0.0162C + 0.0272) could be obtained covering a wide concentration range of 0-60 nM L(-1) with a correlation coefficient of 0.9968 described by the Stern-Volmer equation. Moreover, the limit of detection (LOD) of the SiO2@FITC-APTS@MIPs was 9.17 nM L(-1). The experiment results of practical detection revealed that the SiO2@FITC-APTS@MIPs as an attractive recognition element was satisfactory for the determination of LC in Chinese spirits. Therefore, this study demonstrated the potential of SiO2@FITC-APTS@MIPs for the recognition and detection of LC in food.
Xu, Qi; Yuan, Hao; Dong, Xulin; Zhang, Yan; Asif, Muhammad; Dong, Zehua; He, Wenshan; Ren, Jinghua; Sun, Yimin; Xiao, Fei
2018-06-01
The development of high-efficient technologies for cancer biomarkers detection has attracted tremendous research effort for its great clinic significance. In this work, we designed a new type of flexible and robust nanohybrid microelectrode by modifying carbon fiber with dual nanoenzyme, i.e., AuPd alloy nanoparticles (AuPd-ANPs) decorated graphene quantum dots (GQDs) assembly, and explored its practical application in electrochemical sensing system for sensitive detection of cancer biomarker hydrogen peroxide (H 2 O 2 ) in human breast cancer cells and tissue. For the preparation of dual nanoenzyme modified microelectrode, ionic liquid was used as the electrolyte for the effective electrodeposition of GQDs on carbon fiber substrate to form a close-packed assembly under a very negative potential, then the highly dense AuPd-ANPs were uniformly decorated on GQDs assembly by electrodeposition. In virtue of the structural merits and synergistic contribution of dual nanoenzyme in enhancing the electrocatalytic activity to H 2 O 2 , the resultant nanohybrid microelectrode exhibited good sensing performances for electrochemical detection of H 2 O 2 , including a high sensitivity of 371 μA cm -2 mM -1 , a wide linear range from 1.0 μM to 18.44 mM, a low detection limit of 500 nM (a signal-to-noise ratio of 3:1), as well as good selectivity and biocompatibility, which could be used for real-time tracking H 2 O 2 released from different types of human breast cells and in situ sensitive detection of H 2 O 2 in clinical breast cancer tissue. Copyright © 2018 Elsevier B.V. All rights reserved.
Edge detection and mathematic fitting for corneal surface with Matlab software.
Di, Yue; Li, Mei-Yan; Qiao, Tong; Lu, Na
2017-01-01
To select the optimal edge detection methods to identify the corneal surface, and compare three fitting curve equations with Matlab software. Fifteen subjects were recruited. The corneal images from optical coherence tomography (OCT) were imported into Matlab software. Five edge detection methods (Canny, Log, Prewitt, Roberts, Sobel) were used to identify the corneal surface. Then two manual identifying methods (ginput and getpts) were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve (y=Ax 2 +Bx+C), Polynomial curve [p(x)=p1x n +p2x n-1 +....+pnx+pn+1] and Conic section (Ax 2 +Bxy+Cy 2 +Dx+Ey+F=0) were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally, the eccentricity (e) obtained by corneal topography and conic section were compared with paired t -test. Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis, eccentricity, circle center, etc . There were no significant differences between 'e' values by corneal topography and conic section ( t =0.9143, P =0.3760 >0.05). It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.
Pedestrian detection in video surveillance using fully convolutional YOLO neural network
NASA Astrophysics Data System (ADS)
Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.
2017-06-01
More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, B.; Stern, W.; Colley, J.
International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less
A systematic approach to novel virus discovery in emerging infectious disease outbreaks.
Sridhar, Siddharth; To, Kelvin K W; Chan, Jasper F W; Lau, Susanna K P; Woo, Patrick C Y; Yuen, Kwok-Yung
2015-05-01
The discovery of novel viruses is of great importance to human health-both in the setting of emerging infectious disease outbreaks and in disease syndromes of unknown etiology. Despite the recent proliferation of many efficient virus discovery methods, careful selection of a combination of methods is important to demonstrate a novel virus, its clinical associations, and its relevance in a timely manner. The identification of a patient or an outbreak with distinctive clinical features and negative routine microbiological workup is often the starting point for virus hunting. This review appraises the roles of culture, electron microscopy, and nucleic acid detection-based methods in optimizing virus discovery. Cell culture is generally slow but may yield viable virus. Although the choice of cell line often involves trial and error, it may be guided by the clinical syndrome. Electron microscopy is insensitive but fast, and may provide morphological clues to choice of cell line or consensus primers for nucleic acid detection. Consensus primer PCR can be used to detect viruses that are closely related to known virus families. Random primer amplification and high-throughput sequencing can catch any virus genome but cannot yield an infectious virion for testing Koch postulates. A systematic approach that incorporates carefully chosen combinations of virus detection techniques is required for successful virus discovery. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Le, Binh Huy; Seo, Young Jun
2018-01-25
We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dT F fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dT F residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications
NASA Technical Reports Server (NTRS)
Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James
2014-01-01
An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.
Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Pentilla, Merja [Helsinki, FI; Ilmen, Marja [Helsinki, FI; Ruohonen, Laura [Helsinki, FI; Koivuranta, Kari [Vantaa, FI; Roberg-Perez, Kevin [Minneapolis, MN
2012-01-17
Cells of the species Issatchenkia orientalis and closely related yeast species are transformed with a vector to introduce an exogenous lactate dehydrogenase gene. The cells produce lactic acid efficiently and are resistant at low pH, high lactate titer conditions.
Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie
2016-01-01
Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.
Localized contourlet features in vehicle make and model recognition
NASA Astrophysics Data System (ADS)
Zafar, I.; Edirisinghe, E. A.; Acar, B. S.
2009-02-01
Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic Number Plate Recognition (ANPR) systems. Several vehicle MMR systems have been proposed in literature. In parallel to this, the usefulness of multi-resolution based feature analysis techniques leading to efficient object classification algorithms have received close attention from the research community. To this effect, Contourlet transforms that can provide an efficient directional multi-resolution image representation has recently been introduced. Already an attempt has been made in literature to use Curvelet/Contourlet transforms in vehicle MMR. In this paper we propose a novel localized feature detection method in Contourlet transform domain that is capable of increasing the classification rates up to 4%, as compared to the previously proposed Contourlet based vehicle MMR approach in which the features are non-localized and thus results in sub-optimal classification. Further we show that the proposed algorithm can achieve the increased classification accuracy of 96% at significantly lower computational complexity due to the use of Two Dimensional Linear Discriminant Analysis (2DLDA) for dimensionality reduction by preserving the features with high between-class variance and low inter-class variance.
Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie
2016-01-01
Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works. PMID:27327657
Considerations of a ship defense with a pulsed COIL
NASA Astrophysics Data System (ADS)
Takehisa, K.
2015-10-01
Ship defense system with a pulsed COIL (Chemical Oxygen-Iodine Laser) has been considered. One of the greatest threats for battle ships and carriers in warfare are supersonic anti-ship cruise missiles (ASCMs). A countermeasure is considered to be a supersonic RAM (Rolling Airframe Missile) at first. A gun-type CIWS (Close-In Weapon System) should be used as the last line of defense. However since an ASCM can be detected at only 30-50km away due to radar horizon, a speed-of-light weapon is desirable as the first defense especially if the ASCM flies at >Mach 6. Our previous report explained several advantages of a giant pulse from a chemical oxygen laser (COL) to shoot down supersonic aircrafts. Since the first defense has the target distance of ~30km, the use of COIL is better considering its beam having high transmissivity in air. Therefore efficient operation of a giant-pulsed COIL has been investigated with rate-equation simulations. The simulation results indicate that efficient single-pass amplification can be expected. Also a design example of a giant-pulsed COIL MOPA (master oscillator and power amplifier) system has been shown, in which the output energy can be increased without limit.
High reliability outdoor sonar prototype based on efficient signal coding.
Alvarez, Fernando J; Ureña, Jesús; Mazo, Manuel; Hernández, Alvaro; García, Juan J; de Marziani, Carlos
2006-10-01
Many mobile robots and autonomous vehicles designed for outdoor operation have incorporated ultrasonic sensors in their navigation systems, whose function is mainly to avoid possible collisions with very close obstacles. The use of these systems in more precise tasks requires signal encoding and the incorporation of pulse compression techniques that have already been used with success in the design of high-performance indoor sonars. However, the transmission of ultrasonic encoded signals outdoors entails a new challenge because of the effects of atmospheric turbulence. This phenomenon causes random fluctuations in the phase and amplitude of traveling acoustic waves, a fact that can make the encoded signal completely unrecognizable by its matched receiver. Atmospheric turbulence is investigated in this work, with the aim of determining the conditions under which it is possible to assure the reliable outdoor operation of an ultrasonic pulse compression system. As a result of this analysis, a novel sonar prototype based on complementary sequences coding is developed and experimentally tested. This encoding scheme provides the system with very useful additional features, namely, high robustness to noise, multi-mode operation capability (simultaneous emissions with minimum cross talk interference), and the possibility of applying an efficient detection algorithm that notably decreases the hardware resource requirements.
Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao
2017-12-05
The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.
A SYSTEM FOR CONTINUOUS MEASUREMENT OF RADIOACTIVITY IN FLOWING STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapkin, E.; Gibbs, J.A.
1962-10-31
An apparatus for the determination of alpha or BETA radioactivity in either circulating liquid or gas streams was developed. Solid anthracene crystals are used. The detector consists of a Lucite light pipe coated with titanium dioxide and coupled to two photomultipliers which are in turn fed to appropriate coincidence type circuitry. The detection cell, which consists of a 9-mm OD glass tube with appropriate fittings on either end, was packed with anthracene crystals. A glass frit, or glass wool, was incorporated in the cell on the downstream side to contain the anthracene and a pledget of glass wool was placedmore » above the anthracene on the upstream side. Carbon-14 counting efficiency was found to be of the order of 50% with a coincident background from 100 divisions to infinity of less than 40 cpm at 900 v. Tritium counting efficiency was in the range of 7% and the integral background from 100 divisions to infinity was about 90 cpm at 1130 v. Discussion is also given on the electronics of the detector and the performance in closed flowing systems and gas analysis. (P.C.H.)« less
ERIC Educational Resources Information Center
Wu, Chung-Hsien; Su, Hung-Yu; Liu, Chao-Hong
2013-01-01
This study presents an efficient approach to personalized mispronunciation detection of Taiwanese-accented English. The main goal of this study was to detect frequently occurring mispronunciation patterns of Taiwanese-accented English instead of scoring English pronunciations directly. The proposed approach quickly identifies personalized…
Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei
2018-04-04
Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.
NASA Astrophysics Data System (ADS)
Li, Jia; Wang, Qiang; Yan, Wenjie; Shen, Yi
2015-12-01
Cooperative spectrum sensing exploits the spatial diversity to improve the detection of occupied channels in cognitive radio networks (CRNs). Cooperative compressive spectrum sensing (CCSS) utilizing the sparsity of channel occupancy further improves the efficiency by reducing the number of reports without degrading detection performance. In this paper, we firstly and mainly propose the referred multi-candidate orthogonal matrix matching pursuit (MOMMP) algorithms to efficiently and effectively detect occupied channels at fusion center (FC), where multi-candidate identification and orthogonal projection are utilized to respectively reduce the number of required iterations and improve the probability of exact identification. Secondly, two common but different approaches based on threshold and Gaussian distribution are introduced to realize the multi-candidate identification. Moreover, to improve the detection accuracy and energy efficiency, we propose the matrix construction based on shrinkage and gradient descent (MCSGD) algorithm to provide a deterministic filter coefficient matrix of low t-average coherence. Finally, several numerical simulations validate that our proposals provide satisfactory performance with higher probability of detection, lower probability of false alarm and less detection time.
Heath, Jason E; McKenna, Sean A; Dewers, Thomas A; Roach, Jesse D; Kobos, Peter H
2014-01-21
CO2 storage efficiency is a metric that expresses the portion of the pore space of a subsurface geologic formation that is available to store CO2. Estimates of storage efficiency for large-scale geologic CO2 storage depend on a variety of factors including geologic properties and operational design. These factors govern estimates on CO2 storage resources, the longevity of storage sites, and potential pressure buildup in storage reservoirs. This study employs numerical modeling to quantify CO2 injection well numbers, well spacing, and storage efficiency as a function of geologic formation properties, open-versus-closed boundary conditions, and injection with or without brine extraction. The set of modeling runs is important as it allows the comparison of controlling factors on CO2 storage efficiency. Brine extraction in closed domains can result in storage efficiencies that are similar to those of injection in open-boundary domains. Geomechanical constraints on downhole pressure at both injection and extraction wells lower CO2 storage efficiency as compared to the idealized scenario in which the same volumes of CO2 and brine are injected and extracted, respectively. Geomechanical constraints should be taken into account to avoid potential damage to the storage site.
Connolly, Patrick J.; Wolf, Keith; O'Neal, Jennifer S.
2010-01-01
With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.
Guidelines for calculating and enhancing detection efficiency of PIT tag interrogation systems
Connolly, Patrick J.
2010-01-01
With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.
NASA Astrophysics Data System (ADS)
Zhang, Bin; Chen, Cheng; Han, Junbo; Jin, Chuan; Chen, Jianxin; Wang, Xingjun
2018-04-01
The effect of the thermal annealing on the optical and spin properties in GaAs0.44Sb0.56 epilayers grown on InP was investigated via photoreflectance, power-dependent and time-resolved photoluminescence spectroscopy as well as optical orientation measurement. The carrier's localization and the optical spin detection efficiency increase with an increase of annealing temperature up to 600 °C. The enhancement of the spin detection efficiency is attributed to both the shortening of the electron lifetime and the prolonging of the spin lifetime as a result of the enhanced carriers' localization induced by the annealing process. Our results provided an approach to enhance spin detection efficiency of GaAsSb with its PL emission in the 1.55 μm region.
Cassette, Philippe
2016-03-01
In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.
On-chip detection of non-classical light by scalable integration of single-photon detectors
Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.; Bellei, Francesco; Dane, Andrew; Lee, Catherine; Hu, Xiaolong; Kharel, Prashanta; Marsili, Francesco; Assefa, Solomon; Berggren, Karl K.; Englund, Dirk
2015-01-01
Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light. PMID:25575346
NASA Astrophysics Data System (ADS)
Peko, B. L.; Stephen, T. M.
2000-12-01
Measured absolute detection efficiencies are presented for H, H - and H n+ ( n=1,2,3) impacting a commercially available, dual multichannel plate (MCP) electron multiplier at kinetic energies ranging from 30 to 1000 eV. Measurements involving isotopic substitutions (D, D -, D n+) and Ar + are also presented. In addition, atomic hydrogen detection efficiencies relative to those of H + and H - are given, as they may have a more universal application. For the three charge states, H, H + and H -, the absolute detection efficiencies are markedly different at low energies and converge to a nearly uniform value of ˜70% with increasing projectile energy. The energy dependence is strongest for H +, varying nearly three orders of magnitude over the energy range studied, and weakest for H -, varying by less than one order of magnitude. In general, for the low energy positive ions at a given energy, the lighter the incident particle mass, the greater the probability of its detection.
Minimum Requirements for Accurate and Efficient Real-Time On-Chip Spike Sorting
Navajas, Joaquin; Barsakcioglu, Deren Y.; Eftekhar, Amir; Jackson, Andrew; Constandinou, Timothy G.; Quiroga, Rodrigo Quian
2014-01-01
Background Extracellular recordings are performed by inserting electrodes in the brain, relaying the signals to external power-demanding devices, where spikes are detected and sorted in order to identify the firing activity of different putative neurons. A main caveat of these recordings is the necessity of wires passing through the scalp and skin in order to connect intracortical electrodes to external amplifiers. The aim of this paper is to evaluate the feasibility of an implantable platform (i.e. a chip) with the capability to wirelessly transmit the neural signals and perform real-time on-site spike sorting. New Method We computationally modelled a two-stage implementation for online, robust, and efficient spike sorting. In the first stage, spikes are detected on-chip and streamed to an external computer where mean templates are created and sent back to the chip. In the second stage, spikes are sorted in real-time through template matching. Results We evaluated this procedure using realistic simulations of extracellular recordings and describe a set of specifications that optimise performance while keeping to a minimum the signal requirements and the complexity of the calculations. Comparison with Existing Methods A key bottleneck for the development of long-term BMIs is to find an inexpensive method for real-time spike sorting. Here, we simulated a solution to this problem that uses both offline and online processing of the data. Conclusions Hardware implementations of this method therefore enable low-power long-term wireless transmission of multiple site extracellular recordings, with application to wireless BMIs or closed-loop stimulation designs. PMID:24769170
Sensing fluctuating airflow with spider silk
2017-01-01
The ultimate aim of flow sensing is to represent the perturbations of the medium perfectly. Hundreds of millions of years of evolution resulted in hair-based flow sensors in terrestrial arthropods that stand out among the most sensitive biological sensors known, even better than photoreceptors which can detect a single photon (10−18–10−19 J) of visible light. These tiny sensory hairs can move with a velocity close to that of the surrounding air at frequencies near their mechanical resonance, despite the low viscosity and low density of air. No man-made technology to date demonstrates comparable efficiency. Here we show that nanodimensional spider silk captures fluctuating airflow with maximum physical efficiency (Vsilk/Vair ∼ 1) from 1 Hz to 50 kHz, providing an effective means for miniaturized flow sensing. Our mathematical model shows excellent agreement with experimental results for silk with various diameters: 500 nm, 1.6 µm, and 3 µm. When a fiber is sufficiently thin, it can move with the medium flow perfectly due to the domination of forces applied to it by the medium over those associated with its mechanical properties. These results suggest that the aerodynamic property of silk can provide an airborne acoustic signal to a spider directly, in addition to the well-known substrate-borne information. By modifying a spider silk to be conductive and transducing its motion using electromagnetic induction, we demonstrate a miniature, directional, broadband, passive, low-cost approach to detect airflow with full fidelity over a frequency bandwidth that easily spans the full range of human hearing, as well as that of many other mammals. PMID:29087323
Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems
2014-01-01
Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365
GaAs CLEFT solar cells for space applications. [CVD thin film growth technology
NASA Technical Reports Server (NTRS)
Fan, J. C. C.; Mcclelland, R. W.; King, B. D.
1984-01-01
Although GaAs solar cells are radiation-resistant and have high conversion efficiencies, there are two major obstacles that such cells must overcome before they can be widely adopted for space applications: GaAs wafers are too expensive and cells made from these wafers are too heavy. The CLEFT process permits the growth of thin single-crystal films on reusable substrates, resulting in a drastic reduction in both cell cost and cell weight. Recent advances in CLEFT technology have made it possible to achieve efficiencies of about 14 percent AM0 for 0.51-sq cm GaAs solar cells 5 microns thick with a 41-mil-thick coverglass. In preliminary experiments efficiencies close to 19 percent AM1 have been obtained for 10-micron-thick cells. It is suggested that the CLEFT technology should yield inexpensive, highly efficient modules with a beginning-of-life specific power close to 1 kW/kg (for a coverglass thickness of 4 mils).
NASA Astrophysics Data System (ADS)
Zhang, H.-m.; Chen, X.-f.; Chang, S.
- It is difficult to compute synthetic seismograms for a layered half-space with sources and receivers at close to or the same depths using the generalized R/T coefficient method (Kennett, 1983; Luco and Apsel, 1983; Yao and Harkrider, 1983; Chen, 1993), because the wavenumber integration converges very slowly. A semi-analytic method for accelerating the convergence, in which part of the integration is implemented analytically, was adopted by some authors (Apsel and Luco, 1983; Hisada, 1994, 1995). In this study, based on the principle of the Repeated Averaging Method (Dahlquist and Björck, 1974; Chang, 1988), we propose an alternative, efficient, numerical method, the peak-trough averaging method (PTAM), to overcome the difficulty mentioned above. Compared with the semi-analytic method, PTAM is not only much simpler mathematically and easier to implement in practice, but also more efficient. Using numerical examples, we illustrate the validity, accuracy and efficiency of the new method.
Van Dalem, Annelien; Demeester, Simke; Balti, Eric V; Decochez, Katelijn; Weets, Ilse; Vandemeulebroucke, Evy; Van de Velde, Ursule; Walgraeve, An; Seret, Nicole; De Block, Christophe; Ruige, Johannes; Gillard, Pieter; Keymeulen, Bart; Pipeleers, Daniel G; Gorus, Frans K
2015-12-01
We examined whether measures of glycaemic variability (GV), assessed by continuous glucose monitoring (CGM) and self-monitoring of blood glucose (SMBG), can complement or replace measures of beta cell function and insulin action in detecting the progression of preclinical disease to type 1 diabetes. Twenty-two autoantibody-positive (autoAb(+)) first-degree relatives (FDRs) of patients with type 1 diabetes who were themselves at high 5-year risk (50%) for type 1 diabetes underwent CGM, a hyperglycaemic clamp test and OGTT, and were followed for up to 31 months. Clamp variables were used to estimate beta cell function (first-phase [AUC5-10 min] and second-phase [AUC120-150 min] C-peptide release) combined with insulin resistance (glucose disposal rate; M 120-150 min). Age-matched healthy volunteers (n = 20) and individuals with recent-onset type 1 diabetes (n = 9) served as control groups. In autoAb(+) FDRs, M 120-150 min below the 10th percentile (P10) of controls achieved 86% diagnostic efficiency in discriminating between normoglycaemic FDRs and individuals with (impending) dysglycaemia. M 120-150 min outperformed AUC5-10 min and AUC120-150 min C-peptide below P10 of controls, which were only 59-68% effective. Among GV variables, CGM above the reference range was better at detecting (impending) dysglycaemia than elevated SMBG (77-82% vs 73% efficiency). Combined CGM measures were equally efficient as M 120-150 min (86%). Daytime GV variables were inversely correlated with clamp variables, and more strongly with M 120-150 min than with AUC5-10 min or AUC120-150 min C-peptide. CGM-derived GV and the glucose disposal rate, reflecting both insulin secretion and action, outperformed SMBG and first- or second-phase AUC C-peptide in identifying FDRs with (impending) dysglycaemia or diabetes. Our results indicate the feasibility of developing minimally invasive CGM-based criteria for close metabolic monitoring and as outcome measures in trials.
Carim, Kellie J; Christianson, Kyle R; McKelvey, Kevin M; Pate, William M; Silver, Douglas B; Johnson, Brett M; Galloway, Benjamin T; Young, Michael K; Schwartz, Michael K
2016-01-01
The spread of Mysis diluviana, a small glacial relict crustacean, outside its native range has led to unintended shifts in the composition of native fish communities throughout western North America. As a result, biologists seek accurate methods of determining the presence of M. diluviana, especially at low densities or during the initial stages of an invasion. Environmental DNA (eDNA) provides one solution for detecting M. diluviana, but building eDNA markers that are both sensitive and species-specific is challenging when the distribution and taxonomy of closely related non-target taxa are poorly understood, published genetic data are sparse, and tissue samples are difficult to obtain. To address these issues, we developed a pair of independent eDNA markers to increase the likelihood of a positive detection of M. diluviana when present and reduce the probability of false positive detections from closely related non-target species. Because tissue samples of closely-related and possibly sympatric, non-target taxa could not be obtained, we used synthetic DNA sequences of closely related non-target species to test the specificity of eDNA markers. Both eDNA markers yielded positive detections from five waterbodies where M. diluviana was known to be present, and no detections in five others where this species was thought to be absent. Daytime samples from varying depths in one waterbody occupied by M. diluviana demonstrated that samples near the lake bottom produced 5 to more than 300 times as many eDNA copies as samples taken at other depths, but all samples tested positive regardless of depth.
Karamintziou, Sofia D; Custódio, Ana Luísa; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stéphan; Stathis, Pantelis G; Tagaris, George A; Sakas, Damianos E; Polychronaki, Georgia E; Tsirogiannis, George L; David, Olivier; Nikita, Konstantina S
2017-01-01
Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson's disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications.
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...
2018-04-09
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
[Quant efficiency of the detection as a quality parameter of the visualization equipment].
Morgun, O N; Nemchenko, K E; Rogov, Iu V
2003-01-01
The critical parameter of notion "quant efficiency of detection" is defined in the paper. Different methods of specifying the detection quant efficiency (DQE) are under discussion. Thus, techniques of DQE determination for a whole unit and means of DQE finding at terminal space frequency are addressed. The notion of DQE at zero frequency is in the focus of attention. Finally, difficulties occurring in determining the above parameter as well as its disadvantages (as a parameter characterizing the quality of X-ray irradiation visualizing systems) are also discussed.
Designing efficient surveys: spatial arrangement of sample points for detection of invasive species
Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight
2015-01-01
Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...
Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maity, A.; Grenadier, S. J.; Li, J.
Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.
Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors
Maity, A.; Grenadier, S. J.; Li, J.; ...
2017-07-17
Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.
Analysis of the restricting factors of laser countermeasure active detection technology
NASA Astrophysics Data System (ADS)
Zhang, Yufa; Sun, Xiaoquan
2016-07-01
The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.
Efficient human face detection in infancy.
Jakobsen, Krisztina V; Umstead, Lindsey; Simpson, Elizabeth A
2016-01-01
Adults detect conspecific faces more efficiently than heterospecific faces; however, the development of this own-species bias (OSB) remains unexplored. We tested whether 6- and 11-month-olds exhibit OSB in their attention to human and animal faces in complex visual displays with high perceptual load (25 images competing for attention). Infants (n = 48) and adults (n = 43) passively viewed arrays containing a face among 24 non-face distractors while we measured their gaze with remote eye tracking. While OSB is typically not observed until about 9 months, we found that, already by 6 months, human faces were more likely to be detected, were detected more quickly (attention capture), and received longer looks (attention holding) than animal faces. These data suggest that 6-month-olds already exhibit OSB in face detection efficiency, consistent with perceptual attunement. This specialization may reflect the biological importance of detecting conspecific faces, a foundational ability for early social interactions. © 2015 Wiley Periodicals, Inc.
Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.
Fast and Efficient Discrimination of Traveling Salesperson Problem Stimulus Difficulty
ERIC Educational Resources Information Center
Dry, Matthew J.; Fontaine, Elizabeth L.
2014-01-01
The Traveling Salesperson Problem (TSP) is a computationally difficult combinatorial optimization problem. In spite of its relative difficulty, human solvers are able to generate close-to-optimal solutions in a close-to-linear time frame, and it has been suggested that this is due to the visual system's inherent sensitivity to certain geometric…
Budgeting for Efficiency and Effectiveness
ERIC Educational Resources Information Center
Pereus, Steven C.
2012-01-01
For most districts, budgeting has become a cost-cutting exercise designed to close the gap between revenues and expenses. During this process, decision makers inherently assume that existing operations are efficient and effective--an assumption that is rarely validated by facts. Cutting programs and services balances budgets but does not…
Direct Exoplanet Detection with Binary Differential Imaging
NASA Astrophysics Data System (ADS)
Rodigas, Timothy J.; Weinberger, Alycia; Mamajek, Eric E.; Males, Jared R.; Close, Laird M.; Morzinski, Katie; Hinz, Philip M.; Kaib, Nathan
2015-10-01
Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at a high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4″ with MagAO/Clio-2 at 3.9 μm, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI’s 5σ contrast is ˜0.5 mag better than ADI’s within ˜1″ for the particular binary we observed. Because planets typically reside close to their host stars, BDI is a promising technique for discovering exoplanets in stellar systems that are often ignored. BDI is also 2-4× more efficient than ADI and classical reference PSF subtraction, since planets can be detected around both the target and PSF reference simultaneously. We are currently exploiting this technique in a new MagAO survey for giant planets in 140 young nearby visual binaries. BDI on a space-based telescope would not be limited by isoplanatism effects and would therefore be an even more powerful tool for imaging and discovering planets. This paper includes data obtained at the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
NASA Astrophysics Data System (ADS)
Lazic, V.; Laserna, J. J.; Jovicevic, S.
2013-04-01
Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid-vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Subo; Katz, Boaz; Socrates, Aristotle
2014-01-20
We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 days ≲ P ≲ 100 days) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter distances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by general relativity, placing a strong upper limit on the perturber's separation. For a warm Jupiter at a ∼ 0.2 AU, a Jupiter-mass (solar-mass) perturbermore » is required to be ≲ 3 AU (≲ 30 AU) and can be identified observationally. Among warm Jupiters detected by radial velocities (RVs), ≳ 50% (5 out of 9) with large eccentricities (e ≳ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, ≲ 20% (3 out of 17) of the low-e (e ≲ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e ≲ 0.2) are not misaligned, in contrast with low-e hot Jupiters.« less
MOA-2012-BLG-505Lb: A Super-Earth-mass Planet That Probably Resides in the Galactic Bulge
NASA Astrophysics Data System (ADS)
Nagakane, M.; Sumi, T.; Koshimoto, N.; Bennett, D. P.; Bond, I. A.; Rattenbury, N.; Suzuki, D.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Matsuo, T.; Muraki, Y.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yonehara, A.; MOA Collaboration
2017-07-01
We report the discovery of a super-Earth-mass planet in the microlensing event MOA-2012-BLG-505. This event has the second shortest event timescale of t E = 10 ± 1 days where the observed data show evidence of a planetary companion. Our 15 minute high cadence survey observation schedule revealed the short subtle planetary signature. The system shows the well known close/wide degeneracy. The planet/host-star mass ratio is q = 2.1 × 10-4 and the projected separation normalized by the Einstein radius is s = 1.1 or 0.9 for the wide and close solutions, respectively. We estimate the physical parameters of the system by using a Bayesian analysis and find that the lens consists of a super-Earth with a mass of {6.7}-3.6+10.7 {M}\\oplus orbiting around a brown dwarf or late-M-dwarf host with a mass of {0.10}-0.05+0.16 {M}⊙ with a projected star-planet separation of {0.9}-0.2+0.3 {au}. The system is at a distance of 7.2 ± 1.1 kpc, I.e., it is likely to be in the Galactic bulge. The small angular Einstein radius (θ E = 0.12 ± 0.02 mas) and short event timescale are typical for a low-mass lens in the Galactic bulge. Such low-mass planetary systems in the Bulge are rare because the detection efficiency of planets in short microlensing events is relatively low. This discovery may suggest that such low-mass planetary systems are abundant in the Bulge and currently on-going high cadence survey programs will detect more such events and may reveal an abundance of such planetary systems.
Desai, A; Wu, H; Sun, L; Sesterhenn, I A; Mostofi, F K; McLeod, D; Amling, C; Kusuda, L; Lance, R; Herring, J; Foley, J; Baldwin, D; Bishoff, J T; Soderdahl, D; Moul, J W
2002-01-01
The objectives of this work were to evaluate the efficacy of controlled close step-sectioned and whole-mounted radical prostatectomy specimen processing in prediction of clinical outcome as compared to the traditional processing techniques. Two-hundred and forty nine radical prostatectomy (RP) specimens were whole-mounted and close step-sectioned at caliper-measured 2.2-2.3 mm intervals. A group of 682 radical prostatectomy specimens were partially sampled as control. The RPs were performed during 1993-1999 with a mean follow-up of 29.3 months, pretreatment PSA of 0.1-40, and biopsy Gleason sums of 5-8. Disease-free survival based on biochemical or clinical recurrence and secondary intervention were computed using a Kaplan-Meier analysis. There were no significant differences in age at diagnosis, age at surgery, PSA at diagnosis, or biopsy Gleason between the two groups (P<0.05). Compared with the non-close step-sectioned group, the close step-sectioned group showed higher detection rates of extra-prostatic extension (215 (34.1%) vs, 128 (55.4%), P<0.01), and seminal vesicle invasion (50 (7.6%) vs 35 (14.7%), P<0.01). The close step-sectioned group correlated with greater 3-y disease-free survival in organ-confined (P<0.01) and specimen-confined (P<0.01) cases, over the non-uniform group. The close step-sectioned group showed significantly higher disease-free survival for cases with seminal vesicle invasion (P=0.046). No significant difference in disease-free survival was found for the positive margin group (P=0.39) between the close step-sectioned and non-uniform groups. The close step-sectioned technique correlates with increased disease-free survival rates for organ and specimen confined cases, possibly due to higher detection rates of extra-prostatic extension and seminal vesicle invasion. Close step-sectioning provides better assurance of organ-confined disease, resulting in enhanced prediction of outcome by pathological (TNM) stage.
Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T
2007-03-01
A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.
Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S
2001-08-01
A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.
Spatial Lattice Modulation for MIMO Systems
NASA Astrophysics Data System (ADS)
Choi, Jiwook; Nam, Yunseo; Lee, Namyoon
2018-06-01
This paper proposes spatial lattice modulation (SLM), a spatial modulation method for multipleinput-multiple-output (MIMO) systems. The key idea of SLM is to jointly exploit spatial, in-phase, and quadrature dimensions to modulate information bits into a multi-dimensional signal set that consists oflattice points. One major finding is that SLM achieves a higher spectral efficiency than the existing spatial modulation and spatial multiplexing methods for the MIMO channel under the constraint ofM-ary pulseamplitude-modulation (PAM) input signaling per dimension. In particular, it is shown that when the SLM signal set is constructed by using dense lattices, a significant signal-to-noise-ratio (SNR) gain, i.e., a nominal coding gain, is attainable compared to the existing methods. In addition, closed-form expressions for both the average mutual information and average symbol-vector-error-probability (ASVEP) of generic SLM are derived under Rayleigh-fading environments. To reduce detection complexity, a low-complexity detection method for SLM, which is referred to as lattice sphere decoding, is developed by exploiting lattice theory. Simulation results verify the accuracy of the conducted analysis and demonstrate that the proposed SLM techniques achieve higher average mutual information and lower ASVEP than do existing methods.
Li, Yong; Cai, Rui; Yan, Bei; Zainal Abidin, Ilham Mukriz; Jing, Haoqing; Wang, Yi
2018-05-28
For fuel transmission and structural strengthening, small-diameter pipes of nonmagnetic materials are extensively adopted in engineering fields including aerospace, energy, transportation, etc. However, the hostile and corrosive environment leaves them vulnerable to external corrosion which poses a severe threat to structural integrity of pipes. Therefore, it is imperative to nondestructively detect and evaluate the external corrosion in nonmagnetic pipes. In light of this, a capsule-type Electromagnetic Acoustic Transducer (EMAT) for in-situ nondestructive evaluation of nonmagnetic pipes and fast screening of external corrosion is proposed in this paper. A 3D hybrid model for efficient prediction of responses from the proposed transducer to external corrosion is established. Closed-form expressions of field quantities of electromagnetics and EMAT signals are formulated. Simulations based on the hybrid model indicate feasibility of the proposed transducer in detection and evaluation of external corrosion in nonmagnetic pipes. In parallel, experiments with the fabricated transducer have been carried out. Experimental results are supportive of the conclusion drawn from simulations. The investigation via simulations and experiments implies that the proposed capsule-type EMAT is capable of fast screening of external corrosion, which is beneficial to the in-situ nondestructive evaluation of small-diameter nonmagnetic pipes.
The multiple disguises of spiders: web colour and decorations, body colour and movement
Théry, Marc; Casas, Jérôme
2008-01-01
Diverse functions have been assigned to the visual appearance of webs, spiders and web decorations, including prey attraction, predator deterrence and camouflage. Here, we review the pertinent literature, focusing on potential camouflage and mimicry. Webs are often difficult to detect in a heterogeneous visual environment. Static and dynamic web distortions are used to escape visual detection by prey, although particular silk may also attract prey. Recent work using physiological models of vision taking into account visual environments rarely supports the hypothesis of spider camouflage by decorations, but most often the prey attraction and predator confusion hypotheses. Similarly, visual modelling shows that spider coloration is effective in attracting prey but not in conveying camouflage. Camouflage through colour change might be used by particular crab spiders to hide from predator or prey on flowers of different coloration. However, results obtained on a non-cryptic crab spider suggest that an alternative function of pigmentation may be to avoid UV photodamage through the transparent cuticle. Numerous species are clearly efficient locomotory mimics of ants, particularly in the eyes of their predators. We close our paper by highlighting gaps in our knowledge. PMID:18990672
Physics and Applications of Metallic Magnetic Calorimeters
NASA Astrophysics Data System (ADS)
Kempf, S.; Fleischmann, A.; Gastaldo, L.; Enss, C.
2018-03-01
Metallic magnetic calorimeters (MMCs) are calorimetric low-temperature particle detectors that are currently strongly advancing the state of the art in energy-dispersive single particle detection. They are typically operated at temperatures below 100 mK and make use of a metallic, paramagnetic temperature sensor to transduce the temperature rise of the detector upon the absorption of an energetic particle into a change of magnetic flux which is sensed by a superconducting quantum interference device. This outstanding interplay between a high-sensitivity thermometer and a near quantum-limited amplifier results in a very fast signal rise time, an excellent energy resolution, a large dynamic range, a quantum efficiency close to 100% as well as an almost ideal linear detector response. For this reason, a growing number of groups located all over the world is developing MMC arrays of various sizes which are routinely used in a variety of applications. Within this paper, we briefly review the state of the art of metallic magnetic calorimeters. This includes a discussion of the detection principle, sensor materials and detector geometries, readout concepts, the structure of modern detectors as well as the state-of-the-art detector performance.
Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus
NASA Astrophysics Data System (ADS)
Gorički, Špela; Stanković, David; Snoj, Aleš; Kuntner, Matjaž; Jeffery, William R.; Trontelj, Peter; Pavićević, Miloš; Grizelj, Zlatko; Năpăruş-Aljančič, Magdalena; Aljančič, Gregor
2017-03-01
Europe’s obligate cave-dwelling amphibian Proteus anguinus inhabits subterranean waters of the north-western Balkan Peninsula. Because only fragments of its habitat are accessible to humans, this endangered salamander’s exact distribution has been difficult to establish. Here we introduce a quantitative real time polymerase chain reaction-based environmental DNA (eDNA) approach to detect the presence of Proteus using water samples collected from karst springs, wells or caves. In a survey conducted along the southern limit of its known range, we established a likely presence of Proteus at seven new sites, extending its range to Montenegro. Next, using specific molecular probes to discriminate the rare black morph of Proteus from the closely related white morph, we detected its eDNA at five new sites, thus more than doubling the known number of sites. In one of these we found both black and white Proteus eDNA together. This finding suggests that the two morphs may live in contact with each other in the same body of groundwater and that they may be reproductively isolated species. Our results show that the eDNA approach is suitable and efficient in addressing questions in biogeography, evolution, taxonomy and conservation of the cryptic subterranean fauna.
Visual-search models for location-known detection tasks
NASA Astrophysics Data System (ADS)
Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.
2017-03-01
Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.
NASA Astrophysics Data System (ADS)
Zellweger, Matthieu; Martoccia, Carla; Mengin, Matthieu; Iselin, Christophe; Bergh, Hubert van den; Wagnières, Georges
2015-06-01
Fluorescence cystoscopy (FC) efficiently enhances the detection and improves the therapeutic management of early bladder cancer. During an FC, about 150 ml of water is needed to inflate the bladder. The water is quickly diluted by urine which can be fluorescent. If this bladder washout fluid (BWF) becomes fluorescent, the FC images are frequently degraded. Unfortunately, it is unclear which elements of the diet may contribute to this background fluorescence. We propose to start this exploration with over-the-counter (OTC) vitamin supplements. To this end, we measured excitation-emission matrices of urine samples and the kinetics of modifications of urine fluorescence obtained from nine healthy volunteers before, during, and after intake of a commercially available OTC vitamin supplement. The pharmacokinetics shows that the BWF fluorescence values reach a maximum 8 to 10 h after vitamin intake. They decrease in the half-day that follows and reach values close to baseline ˜1 day afterward. Based on these results, we conclude that, in order to avoid degradations of fluorescence images, it is likely best that the intake of OTC vitamin supplements be avoided during the week preceding an FC.
NASA Astrophysics Data System (ADS)
Janzen, Kathryn Louise
Largely because of their resistance to magnetic fields, silicon photomultipliers (SiPMs) are being considered as the readout for the GlueX Barrel Calorimeter, a key component of the GlueX detector located immediately inside a 2.2 T superconducting solenoid. SiPMs with active area 1 x 1 mm2 have been investigated for use in other experiments, but detectors with larger active areas are required for the GlueX BCAL. This puts the GlueX collaboration in the unique position of being pioneers in the use of this frontend detection revolution by driving the technology for larger area sensors. SensL, a photonics research and development company in Ireland, has been collaborating with the University of Regina GlueX group to develop prototype large area SiPMs comprising 16 - 3x3 mm2 cells assembled in a close-packed matrix. Performance parameters of individual SensL 1x1 mm2 and 3x3 mm2 SiPMs along with prototype SensL SiPM arrays are tested, including current versus voltage characteristics, photon detection efficiency, and gain uniformity, in an effort to determine the suitability of these detectors to the GlueX BCAL readout.
Detecting communities using asymptotical surprise
NASA Astrophysics Data System (ADS)
Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.
2015-08-01
Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.
The spectral analysis of fuel oils using terahertz radiation and chemometric methods
NASA Astrophysics Data System (ADS)
Zhan, Honglei; Zhao, Kun; Zhao, Hui; Li, Qian; Zhu, Shouming; Xiao, Lizhi
2016-10-01
The combustion characteristics of fuel oils are closely related to both engine efficiency and pollutant emissions, and the analysis of oils and their additives is thus important. These oils and additives have been found to generate distinct responses to terahertz (THz) radiation as the result of various molecular vibrational modes. In the present work, THz spectroscopy was employed to identify a number of oils, including lubricants, gasoline and diesel, with different additives. The identities of dozens of these oils could be readily established using statistical models based on principal component analysis. The THz spectra of gasoline, diesel, sulfur and methyl methacrylate (MMA) were acquired and linear fittings were obtained. By using chemometric methods, including back propagation, artificial neural network and support vector machine techniques, typical concentrations of sulfur in gasoline (ppm-grade) could be detected, together with MMA in diesel below 0.5%. The absorption characteristics of the oil additives were also assessed using 2D correlation spectroscopy, and several hidden absorption peaks were discovered. The technique discussed herein should provide a useful new means of analyzing fuel oils with various additives and impurities in a non-destructive manner and therefore will be of benefit to the field of chemical detection and identification.
NASA Astrophysics Data System (ADS)
Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.
2008-07-01
The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawanabe, T.; Asakura, M.; Shina, T.
1987-09-01
An air intake side secondary air supply system is described for an internal combustion engine having an air intake passage with a carburetor and an exhaust passage, comprising: an air intake side secondary air supply passage communicating with the air intake passage on the downstream side of the carburetor; an open/close valve disposed in the air intake side secondary air supply passage; an oxygen concentration sensor disposed in the exhaust passage; and detection and control means for detecting whether an air-fuel ratio of mixture to be supplied to the engine is leaner or richer with respect to a target air-fuelmore » ratio through a level of an output signal of the oxygen concentration sensor and for periodically actuating the open/close valve, the detection and control means decreasing a valve open period of the open/close valve within each cyclic period by a first predetermined amount when a detected air-fuel ratio of mixture is leaner than the target air-fuel ratio and increasing the valve open period by a second predetermined amount when the detected air-fuel ratio of mixture is richer than the target air-fuel ratio. The second predetermined amount is different from the first predetermined amount.« less
WANG, Lih-Chiann; HUANG, Dean; CHEN, Hui-Wen
2016-01-01
The H6N1 avian influenza virus has circulated in Taiwan for more than 40 years. The sporadic activity of low pathogenic H5N2 virus has been noted since 2003, and highly pathogenic H5N2 avian influenza virus has been detected since 2008. Ressortant viruses between H6N1 and H5N2 viruses have become established and enzootic in chickens throughout Taiwan. Outbreaks caused by Novel highly pathogenic H5 avian influenza viruses whose HA genes were closely related to that of the H5N8 virus isolated from ducks in Korea in 2014 were isolated from outbreaks in Taiwan since early 2015. The avian influenza virus infection status is becoming much more complicated in chickens in Taiwan. This necessitates a rapid and simple approach to detect and differentiate the viruses that prevail. H6N1, H5N2 and novel H5 viruses were simultaneously subtyped and pathotyped in this study using reverse transcription loop-mediated isothermal amplification and microarray, with detection limits of 10°, 101 and 10° viral copy numbers, respectively. The microarray signals were read by the naked eye with no expensive equipment needed. The method developed in this study could greatly improve avian influenza virus surveillance efficiency. PMID:27086860
Liang, L; Lazoff, S; Chan, C; Horvat, M; Woods, J S
1998-11-01
A method for trace determination of total arsenic in ambient waters is described. Arsenic is separated on-line from a large volume water sample by hydride generation and purging, pre-collected on a Pd coated pyrolytic platform cuvette using a simple and inexpensive system, and finally detected by GFAAS. Instrument parameters, hydride generation, transportation, and collection were optimized. The analytical behavior for major species including As(3+), As(5+), monomethyl As (MMA), and dimethyl As (DMA) were investigated individually. Problems arising from use of the system were discussed and eliminated. The necessity of sample digestion and an efficient digestion method were studied. Sample digestion for water with low organic content such as tap water and clean ground water and some clean surface water can be omitted. The method detection limit (MDL) is 0.3 ng l(-1) for a 25 ml water sample. Recoveries close to 100% with R.S.D.<5% can be easily achieved. Typical aqueous samples including tap, ground, lake, river, rain, sewage effluent, and saline water from different origins in the US, China, and Canada were collected and analyzed using ultra clean sampling and analysis techniques. The background levels of As in most water analyzed were established for the first time, and found to be far above the EPA's health effect criteria, 18 ng l(-1).
Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten
2014-03-01
We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.
Multimodality Instrument for Tissue Characterization
NASA Technical Reports Server (NTRS)
Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)
2000-01-01
A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.
Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System
NASA Technical Reports Server (NTRS)
Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.
2013-01-01
We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.
Structural Damage Detection Using Virtual Passive Controllers
NASA Technical Reports Server (NTRS)
Lew, Jiann-Shiun; Juang, Jer-Nan
2001-01-01
This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures, where passive controllers are energy dissipative devices and thus guarantee the closed-loop stability. The use of the identified parameters of various closed-loop systems can solve the problem that reliable identified parameters, such as natural frequencies of the open-loop system may not provide enough information for damage detection. Only a small number of sensors are required for the proposed approaches. The identified natural frequencies, which are generally much less sensitive to noise and more reliable than the identified natural frequencies, are used for damage detection. Two damage detection techniques are presented. One technique is based on the structures with direct output feedback controllers while the other technique uses the second-order dynamic feedback controllers. A least-squares technique, which is based on the sensitivity of natural frequencies to damage variables, is used for accurately identifying the damage variables.
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
Thermodynamics of energy, charge, and spin currents in a thermoelectric quantum-dot spin valve
NASA Astrophysics Data System (ADS)
Tang, Gaomin; Thingna, Juzar; Wang, Jian
2018-04-01
We provide a thermodynamically consistent description of energy, charge, and spin transfers in a thermoelectric quantum-dot spin valve in the collinear configuration based on nonequilibrium Green's function and full counting statistics. We use the fluctuation theorem symmetry and the concept of entropy production to characterize the efficiency with which thermal gradients can transduce charges or spins against their chemical potentials, arbitrary far from equilibrium. Close to equilibrium, we recover the Onsager reciprocal relations and the connection to linear response notions of performance such as the figure of merit. We also identify regimes where work extraction is more efficient far then close from equilibrium.
Schwartz, Jacob
1978-01-01
An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.
Energy Efficient Engine: Control system preliminary definition report
NASA Technical Reports Server (NTRS)
Howe, David C.
1986-01-01
The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.
Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.
Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F
2014-12-10
The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values. Copyright © 2014 Elsevier B.V. All rights reserved.
Denis, Jean-Baptiste; Vandenbogaert, Mathias; Caro, Valérie
2016-01-01
The detection and characterization of emerging infectious agents has been a continuing public health concern. High Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies have proven to be promising approaches for efficient and unbiased detection of pathogens in complex biological samples, providing access to comprehensive analyses. As NGS approaches typically yield millions of putatively representative reads per sample, efficient data management and visualization resources have become mandatory. Most usually, those resources are implemented through a dedicated Laboratory Information Management System (LIMS), solely to provide perspective regarding the available information. We developed an easily deployable web-interface, facilitating management and bioinformatics analysis of metagenomics data-samples. It was engineered to run associated and dedicated Galaxy workflows for the detection and eventually classification of pathogens. The web application allows easy interaction with existing Galaxy metagenomic workflows, facilitates the organization, exploration and aggregation of the most relevant sample-specific sequences among millions of genomic sequences, allowing them to determine their relative abundance, and associate them to the most closely related organism or pathogen. The user-friendly Django-Based interface, associates the users’ input data and its metadata through a bio-IT provided set of resources (a Galaxy instance, and both sufficient storage and grid computing power). Galaxy is used to handle and analyze the user’s input data from loading, indexing, mapping, assembly and DB-searches. Interaction between our application and Galaxy is ensured by the BioBlend library, which gives API-based access to Galaxy’s main features. Metadata about samples, runs, as well as the workflow results are stored in the LIMS. For metagenomic classification and exploration purposes, we show, as a proof of concept, that integration of intuitive exploratory tools, like Krona for representation of taxonomic classification, can be achieved very easily. In the trend of Galaxy, the interface enables the sharing of scientific results to fellow team members. PMID:28451381
Johny, Shajahan; Kyei-Poku, George
2014-10-01
Emerald ash borer is an invasive species from Asia. Beauveria bassiana strain L49-1AA is being tested for the control of emerald ash borer in Canada, using an autocontamination trapping system. We have developed a simplified allele discrimination polymerase chain reaction (PCR) assay to screen B. bassiana strain, L49-1AA from other Beauveria species by targeting the inter-strain genetic differences in 5' end of EF1-α gene of the genus Beauveria. A single nucleotide polymorphism (SNP) site, T→C was identified only in L49-1AA and was used to develop a simplified allele discrimination polymerase chain reaction (PCR) assay based on a modified allelic inhibition of displacement activity (AIDA) approach for distinguishing B. bassiana L49-1AA from all background Beauveria isolates. The SNP site was employed to design inner primers but with a deliberate mismatch introduced at the 3' antepenultimate from the mutation site in order to maximize specificity and detection efficiency. Amplification was specific to L49-1AA without cross-reaction with DNA from other Beauveria strains. In addition, the designed primers were also tested against environmental samples in L49-1AA released plots and observed to be highly efficient in detecting and discriminating the target strain, L49-1AA from both pure and crude DNA samples. This new method can potentially allow for more discriminatory tracking and monitoring of released L49-1AA in our autocontamination and dissemination projects for managing EAB populations. Additionally, the modified-AIDA format has potential as a tool for simultaneously identifying and differentiating closely related Beauveria species, strains/isolates as well as general classification of other pathogens or organisms. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Correia, Damien; Doppelt-Azeroual, Olivia; Denis, Jean-Baptiste; Vandenbogaert, Mathias; Caro, Valérie
2015-01-01
The detection and characterization of emerging infectious agents has been a continuing public health concern. High Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies have proven to be promising approaches for efficient and unbiased detection of pathogens in complex biological samples, providing access to comprehensive analyses. As NGS approaches typically yield millions of putatively representative reads per sample, efficient data management and visualization resources have become mandatory. Most usually, those resources are implemented through a dedicated Laboratory Information Management System (LIMS), solely to provide perspective regarding the available information. We developed an easily deployable web-interface, facilitating management and bioinformatics analysis of metagenomics data-samples. It was engineered to run associated and dedicated Galaxy workflows for the detection and eventually classification of pathogens. The web application allows easy interaction with existing Galaxy metagenomic workflows, facilitates the organization, exploration and aggregation of the most relevant sample-specific sequences among millions of genomic sequences, allowing them to determine their relative abundance, and associate them to the most closely related organism or pathogen. The user-friendly Django-Based interface, associates the users' input data and its metadata through a bio-IT provided set of resources (a Galaxy instance, and both sufficient storage and grid computing power). Galaxy is used to handle and analyze the user's input data from loading, indexing, mapping, assembly and DB-searches. Interaction between our application and Galaxy is ensured by the BioBlend library, which gives API-based access to Galaxy's main features. Metadata about samples, runs, as well as the workflow results are stored in the LIMS. For metagenomic classification and exploration purposes, we show, as a proof of concept, that integration of intuitive exploratory tools, like Krona for representation of taxonomic classification, can be achieved very easily. In the trend of Galaxy, the interface enables the sharing of scientific results to fellow team members.
Cavalcanti, Eliane Bezerra; Garcia-Segura, Sergi; Centellas, Francesc; Brillas, Enric
2013-04-01
The electrochemical incineration of omeprazole, a widely prescribed gastrointestinal drug which is detected in natural waters, has been studied in a phosphate buffer of pH 7.0 by anodic oxidation with electrogenerated H(2)O(2) (AO-H(2)O(2)) operating at constant current density (j). The experiments were carried out in a cell equipped with either a Pt or a boron-doped diamond (BDD) anode and an air-diffusion cathode to continuously produce H(2)O(2). In these systems, organics are mainly oxidized by hydroxyl radicals formed at the Pt or BDD surface from water oxidation. A partial total organic carbon (TOC) abatement close to 78% for omeprazole was achieved by AO-H(2)O(2) with a BDD anode after consumption of 18 Ah L(-1) at 100 mA cm(-2), whereas the alternative use of Pt did not allow mineralizing the drug. However, the drug was totally removed using both anodes, although it decayed more rapidly using BDD. In this latter system, increasing j accelerated the degradation process, but lowering the mineralization current efficiency. Greater drug content also enhanced the degradation rate with higher mineralization degree and current efficiency. The kinetics for omeprazole decay always followed a pseudo-first-order reaction and its rate constant increased with increasing j and with decreasing its concentration. Seven heteroaromatic intermediates and four hydroxylated derivatives were detected by LC-MS, while nine short-linear carboxylic acids were identified and quantified by ion-exclusion HPLC. These acids were largely accumulated using Pt and rapidly removed using BDD, thus explaining the partial mineralization of omeprazole achieved by AO-H(2)O(2) with the latter anode. The release of inorganic ions such as NO(3)(-), NH(4)(+) and SO(4)(2-) was followed by ionic chromatography. A plausible reaction sequence for omeprazole mineralization involving all intermediates detected is proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akhoondzadeh, M.
2013-04-01
In this paper, a number of classical and intelligent methods, including interquartile, autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and support vector machine (SVM), have been proposed to quantify potential thermal anomalies around the time of the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4). The duration of the data set, which is comprised of Aqua-MODIS land surface temperature (LST) night-time snapshot images, is 62 days. In order to quantify variations of LST data obtained from satellite images, the air temperature (AT) data derived from the meteorological station close to the earthquake epicenter has been taken into account. For the models examined here, results indicate the following: (i) ARIMA models, which are the most widely used in the time series community for short-term forecasting, are quickly and easily implemented, and can efficiently act through linear solutions. (ii) A multilayer perceptron (MLP) feed-forward neural network can be a suitable non-parametric method to detect the anomalous changes of a non-linear time series such as variations of LST. (iii) Since SVMs are often used due to their many advantages for classification and regression tasks, it can be shown that, if the difference between the predicted value using the SVM method and the observed value exceeds the pre-defined threshold value, then the observed value could be regarded as an anomaly. (iv) ANN and SVM methods could be powerful tools in modeling complex phenomena such as earthquake precursor time series where we may not know what the underlying data generating process is. There is good agreement in the results obtained from the different methods for quantifying potential anomalies in a given LST time series. This paper indicates that the detection of the potential thermal anomalies derive credibility from the overall efficiencies and potentialities of the four integrated methods.