Sample records for detection fault isolation

  1. Robust Fault Detection and Isolation for Stochastic Systems

    NASA Technical Reports Server (NTRS)

    George, Jemin; Gregory, Irene M.

    2010-01-01

    This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.

  2. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  3. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  4. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  5. Fault detection and isolation for complex system

    NASA Astrophysics Data System (ADS)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  6. Multi-thresholds for fault isolation in the presence of uncertainties.

    PubMed

    Touati, Youcef; Mellal, Mohamed Arezki; Benazzouz, Djamel

    2016-05-01

    Monitoring of the faults is an important task in mechatronics. It involves the detection and isolation of faults which are performed by using the residuals. These residuals represent numerical values that define certain intervals called thresholds. In fact, the fault is detected if the residuals exceed the thresholds. In addition, each considered fault must activate a unique set of residuals to be isolated. However, in the presence of uncertainties, false decisions can occur due to the low sensitivity of certain residuals towards faults. In this paper, an efficient approach to make decision on fault isolation in the presence of uncertainties is proposed. Based on the bond graph tool, the approach is developed in order to generate systematically the relations between residuals and faults. The generated relations allow the estimation of the minimum detectable and isolable fault values. The latter is used to calculate the thresholds of isolation for each residual. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. PV Systems Reliability Final Technical Report: Ground Fault Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  8. ASCS online fault detection and isolation based on an improved MPCA

    NASA Astrophysics Data System (ADS)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  9. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  10. Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach

    PubMed Central

    2017-01-01

    Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673

  11. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  12. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  13. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  14. A distributed fault-tolerant signal processor /FTSP/

    NASA Astrophysics Data System (ADS)

    Bonneau, R. J.; Evett, R. C.; Young, M. J.

    1980-01-01

    A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.

  15. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  16. Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques.

    PubMed

    Hajihosseini, Payman; Anzehaee, Mohammad Mousavi; Behnam, Behzad

    2018-05-22

    The early fault detection and isolation in industrial systems is a critical factor in preventing equipment damage. In the proposed method, instead of using the time signals of sensors, the 2D image obtained by placing these signals next to each other in a matrix has been used; and then a novel fault detection and isolation procedure has been carried out based on image processing techniques. Different features including texture, wavelet transform, mean and standard deviation of the image accompanied with MLP and RBF neural networks based classifiers have been used for this purpose. Obtained results indicate the notable efficacy and success of the proposed method in detecting and isolating faults of the Tennessee Eastman benchmark process and its superiority over previous techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less

  18. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Sharan; Zhao, Qing

    2016-12-01

    This paper presents a novel data driven technique for the detection and isolation of faults, which generate impacts in a rotating equipment. The technique is built upon the principles of empirical mode decomposition (EMD), envelope analysis and pseudo-fault signal for fault separation. Firstly, the most dominant intrinsic mode function (IMF) is identified using EMD of a raw signal, which contains all the necessary information about the faults. The envelope of this IMF is often modulated with multiple vibration sources and noise. A second level decomposition is performed by applying pseudo-fault signal (PFS) assisted EMD on the envelope. A pseudo-fault signal is constructed based on the known fault characteristic frequency of the particular machine. The objective of using external (pseudo-fault) signal is to isolate different fault frequencies, present in the envelope . The pseudo-fault signal serves dual purposes: (i) it solves the mode mixing problem inherent in EMD, (ii) it isolates and quantifies a particular fault frequency component. The proposed technique is suitable for real-time implementation, which has also been validated on simulated fault and experimental data corresponding to a bearing and a gear-box set-up, respectively.

  19. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  20. Autonomous power expert system advanced development

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.

  1. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    PubMed

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  2. Integral Sensor Fault Detection and Isolation for Railway Traction Drive

    PubMed Central

    del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-01-01

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251

  3. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  4. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).

  5. Detecting and isolating abrupt changes in linear switching systems

    NASA Astrophysics Data System (ADS)

    Nazari, Sohail; Zhao, Qing; Huang, Biao

    2015-04-01

    In this paper, a novel fault detection and isolation (FDI) method for switching linear systems is developed. All input and output signals are assumed to be corrupted with measurement noises. In the proposed method, a 'lifted' linear model named as stochastic hybrid decoupling polynomial (SHDP) is introduced. The SHDP model governs the dynamics of the switching linear system with all different modes, and is independent of the switching sequence. The error-in-variable (EIV) representation of SHDP is derived, and is used for the fault residual generation and isolation following the well-adopted local approach. The proposed FDI method can detect and isolate the fault-induced abrupt changes in switching models' parameters without estimating the switching modes. Furthermore, in this paper, the analytical expressions of the gradient vector and Hessian matrix are obtained based on the EIV SHDP formulation, so that they can be used to implement the online fault detection scheme. The performance of the proposed method is then illustrated by simulation examples.

  6. Parameter Transient Behavior Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob

    2003-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.

  7. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  8. Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach

    PubMed Central

    Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.

    2017-01-01

    Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303

  9. Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.

    PubMed

    Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang

    2017-03-01

    This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.

  11. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  12. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  13. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    NASA Astrophysics Data System (ADS)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  14. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  15. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Astrophysics Data System (ADS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-11-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  16. Enhanced data validation strategy of air quality monitoring network.

    PubMed

    Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem

    2018-01-01

    Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.

  17. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  18. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  19. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  20. Qualitative Event-Based Diagnosis: Case Study on the Second International Diagnostic Competition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil

    2010-01-01

    We describe a diagnosis algorithm entered into the Second International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed and provide corresponding recovery recommendations. The diagnosis algorithm embodies a model-based approach, centered around qualitative event-based fault isolation. Faults produce deviations in measured values from model-predicted values. The sequence of these deviations is matched to those predicted by the model in order to isolate faults. We augment this approach with model-based fault identification, which determines fault parameters and helps to further isolate faults. We describe the diagnosis approach, provide diagnosis results from running the algorithm on provided example scenarios, and discuss the issues faced, and lessons learned, from implementing the approach

  1. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.

  2. Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared- Residuals Approach

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2009-01-01

    Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.

  3. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  4. A single dynamic observer-based module for design of simultaneous fault detection, isolation and tracking control scheme

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Meskin, N.; Khorasani, K.

    2018-03-01

    The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).

  5. Model-Based Diagnostics for Propellant Loading Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.

    2011-01-01

    The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.

  6. Sensor fault detection and isolation system for a condensation process.

    PubMed

    Castro, M A López; Escobar, R F; Torres, L; Aguilar, J F Gómez; Hernández, J A; Olivares-Peregrino, V H

    2016-11-01

    This article presents the design of a sensor Fault Detection and Isolation (FDI) system for a condensation process based on a nonlinear model. The condenser is modeled by dynamic and thermodynamic equations. For this work, the dynamic equations are described by three pairs of differential equations which represent the energy balance between the fluids. The thermodynamic equations consist in algebraic heat transfer equations and empirical equations, that allow for the estimation of heat transfer coefficients. The FDI system consists of a bank of two nonlinear high-gain observers, in order to detect, estimate and to isolate the fault in any of both outlet temperature sensors. The main contributions of this work were the experimental validation of the condenser nonlinear model and the FDI system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Multiple sensor fault diagnosis for dynamic processes.

    PubMed

    Li, Cheng-Chih; Jeng, Jyh-Cheng

    2010-10-01

    Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  9. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    NASA Astrophysics Data System (ADS)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  10. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  11. Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benwell, Andrew; Kemp, Mark; Burkhart, Craig

    2010-06-11

    An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.

  12. Optimization of Second Fault Detection Thresholds to Maximize Mission POS

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2018-01-01

    In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.

  13. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    NASA Technical Reports Server (NTRS)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  14. Optimal Sensor Allocation for Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann

    2004-01-01

    Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.

  15. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  16. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2016-09-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  17. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  18. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  19. Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.

  20. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Fault detection and isolation in motion monitoring system.

    PubMed

    Kim, Duk-Jin; Suk, Myoung Hoon; Prabhakaran, B

    2012-01-01

    Pervasive computing becomes very active research field these days. A watch that can trace human movement to record motion boundary as well as to study of finding social life pattern by one's localized visiting area. Pervasive computing also helps patient monitoring. A daily monitoring system helps longitudinal study of patient monitoring such as Alzheimer's and Parkinson's or obesity monitoring. Due to the nature of monitoring sensor (on-body wireless sensor), however, signal noise or faulty sensors errors can be present at any time. Many research works have addressed these problems any with a large amount of sensor deployment. In this paper, we present the faulty sensor detection and isolation using only two on-body sensors. We have been investigating three different types of sensor errors: the SHORT error, the CONSTANT error, and the NOISY SENSOR error (see more details on section V). Our experimental results show that the success rate of isolating faulty signals are an average of over 91.5% on fault type 1, over 92% on fault type 2, and over 99% on fault type 3 with the fault prior of 30% sensor errors.

  2. Detection, isolation and diagnosability analysis of intermittent faults in stochastic systems

    NASA Astrophysics Data System (ADS)

    Yan, Rongyi; He, Xiao; Wang, Zidong; Zhou, D. H.

    2018-02-01

    Intermittent faults (IFs) have the properties of unpredictability, non-determinacy, inconsistency and repeatability, switching systems between faulty and healthy status. In this paper, the fault detection and isolation (FDI) problem of IFs in a class of linear stochastic systems is investigated. For the detection and isolation of IFs, it includes: (1) to detect all the appearing time and the disappearing time of an IF; (2) to detect each appearing (disappearing) time of the IF before the subsequent disappearing (appearing) time; (3) to determine where the IFs happen. Based on the outputs of the observers we designed, a novel set of residuals is constructed by using the sliding-time window technique, and two hypothesis tests are proposed to detect all the appearing time and disappearing time of IFs. The isolation problem of IFs is also considered. Furthermore, within a statistical framework, the definition of the diagnosability of IFs is proposed, and a sufficient condition is brought forward for the diagnosability of IFs. Quantitative performance analysis results for the false alarm rate and missing detection rate are discussed, and the influences of some key parameters of the proposed scheme on performance indices such as the false alarm rate and missing detection rate are analysed rigorously. The effectiveness of the proposed scheme is illustrated via a simulation example of an unmanned helicopter longitudinal control system.

  3. Automatic detection of electric power troubles (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint

    1987-01-01

    The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.

  4. Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger

    NASA Astrophysics Data System (ADS)

    Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun

    2011-04-01

    This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.

  5. A signal-based fault detection and classification method for heavy haul wagons

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Luo, Shihui; Cole, Colin; Spiryagin, Maksym; Sun, Yanquan

    2017-12-01

    This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.

  6. Neural networks and fault probability evaluation for diagnosis issues.

    PubMed

    Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method.

  7. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  8. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  9. A residual based adaptive unscented Kalman filter for fault recovery in attitude determination system of microsatellites

    NASA Astrophysics Data System (ADS)

    Le, Huy Xuan; Matunaga, Saburo

    2014-12-01

    This paper presents an adaptive unscented Kalman filter (AUKF) to recover the satellite attitude in a fault detection and diagnosis (FDD) subsystem of microsatellites. The FDD subsystem includes a filter and an estimator with residual generators, hypothesis tests for fault detections and a reference logic table for fault isolations and fault recovery. The recovery process is based on the monitoring of mean and variance values of each attitude sensor behaviors from residual vectors. In the case of normal work, the residual vectors should be in the form of Gaussian white noise with zero mean and fixed variance. When the hypothesis tests for the residual vectors detect something unusual by comparing the mean and variance values with dynamic thresholds, the AUKF with real-time updated measurement noise covariance matrix will be used to recover the sensor faults. The scheme developed in this paper resolves the problem of the heavy and complex calculations during residual generations and therefore the delay in the isolation process is reduced. The numerical simulations for TSUBAME, a demonstration microsatellite of Tokyo Institute of Technology, are conducted and analyzed to demonstrate the working of the AUKF and FDD subsystem.

  10. Orion GN&C Fault Management System Verification: Scope And Methodology

    NASA Technical Reports Server (NTRS)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  11. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  12. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  13. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    PubMed

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  14. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    PubMed Central

    Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-01-01

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434

  15. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  16. Fault detection and identification in missile system guidance and control: a filtering approach

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.

    1996-03-01

    Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.

  17. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-01-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  18. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Astrophysics Data System (ADS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-11-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  19. Communications and tracking expert systems study

    NASA Technical Reports Server (NTRS)

    Leibfried, T. F.; Feagin, Terry; Overland, David

    1987-01-01

    The original objectives of the study consisted of five broad areas of investigation: criteria and issues for explanation of communication and tracking system anomaly detection, isolation, and recovery; data storage simplification issues for fault detection expert systems; data selection procedures for decision tree pruning and optimization to enhance the abstraction of pertinent information for clear explanation; criteria for establishing levels of explanation suited to needs; and analysis of expert system interaction and modularization. Progress was made in all areas, but to a lesser extent in the criteria for establishing levels of explanation suited to needs. Among the types of expert systems studied were those related to anomaly or fault detection, isolation, and recovery.

  20. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  1. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor or actuator fault occurs, large estimation errors are generated by all filters except the one using the correct hypothesis. By monitoring the residual output of each filter, the specific fault that has occurred can be detected and isolated on the basis of the decision rules. A set of parameters that indicate the performance of the engine components is estimated by the "correct" Kalman filter for use in detecting component faults. To reduce the loss of diagnostic accuracy and sensitivity in the face of aging, the FDI system accepts information from a steady-state-condition-monitoring system. This information is used to update the Kalman filters and a data bank of trim values representative of the current aging condition.

  2. Method and apparatus for in-situ detection and isolation of aircraft engine faults

    NASA Technical Reports Server (NTRS)

    Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)

    2007-01-01

    A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.

  3. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  4. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  5. Fault detection and diagnosis in a spacecraft attitude determination system

    NASA Astrophysics Data System (ADS)

    Pirmoradi, F. N.; Sassani, F.; de Silva, C. W.

    2009-09-01

    This paper presents a new scheme for fault detection and diagnosis (FDD) in spacecraft attitude determination (AD) sensors. An integrated attitude determination system, which includes measurements of rate and angular position using rate gyros and vector sensors, is developed. Measurement data from all sensors are fused by a linearized Kalman filter, which is designed based on the system kinematics, to provide attitude estimation and the values of the gyro bias. Using this information the erroneous sensor measurements are corrected, and unbounded sensor measurement errors are avoided. The resulting bias-free data are used in the FDD scheme. The FDD algorithm uses model-based state estimation, combining the information from the rotational dynamics and kinematics of a spacecraft with the sensor measurements to predict the future sensor outputs. Fault isolation is performed through extended Kalman filters (EKFs). The innovation sequences of EKFs are monitored by several statistical tests to detect the presence of a failure and to localize the failures in all AD sensors. The isolation procedure is developed in two phases. In the first phase, two EKFs are designed, which use subsets of measurements to provide state estimates and form residuals, which are used to verify the source of the fault. In the second phase of isolation, testing of multiple hypotheses is performed. The generalized likelihood ratio test is utilized to identify the faulty components. In the scheme developed in this paper a relatively small number of hypotheses is used, which results in faster isolation and highly distinguishable fault signatures. An important feature of the developed FDD scheme is that it can provide attitude estimations even if only one type of sensors is functioning properly.

  6. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  7. Towards Certification of a Space System Application of Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Markosian, Lawrence Z.

    2008-01-01

    Advanced fault detection, isolation and recovery (FDIR) software is being investigated at NASA as a means to the improve reliability and availability of its space systems. Certification is a critical step in the acceptance of such software. Its attainment hinges on performing the necessary verification and validation to show that the software will fulfill its requirements in the intended setting. Presented herein is our ongoing work to plan for the certification of a pilot application of advanced FDIR software in a NASA setting. We describe the application, and the key challenges and opportunities it offers for certification.

  8. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  9. Fault Detection and Isolation for Hydraulic Control

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.

  10. Development and evaluation of a Fault-Tolerant Multiprocessor (FTMP) computer. Volume 3: FTMP test and evaluation

    NASA Technical Reports Server (NTRS)

    Lala, J. H.; Smith, T. B., III

    1983-01-01

    The experimental test and evaluation of the Fault-Tolerant Multiprocessor (FTMP) is described. Major objectives of this exercise include expanding validation envelope, building confidence in the system, revealing any weaknesses in the architectural concepts and in their execution in hardware and software, and in general, stressing the hardware and software. To this end, pin-level faults were injected into one LRU of the FTMP and the FTMP response was measured in terms of fault detection, isolation, and recovery times. A total of 21,055 stuck-at-0, stuck-at-1 and invert-signal faults were injected in the CPU, memory, bus interface circuits, Bus Guardian Units, and voters and error latches. Of these, 17,418 were detected. At least 80 percent of undetected faults are estimated to be on unused pins. The multiprocessor identified all detected faults correctly and recovered successfully in each case. Total recovery time for all faults averaged a little over one second. This can be reduced to half a second by including appropriate self-tests.

  11. Combining Particle Filters and Consistency-Based Approaches for Monitoring and Diagnosis of Stochastic Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel

    2004-01-01

    Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.

  12. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  13. Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan

    2010-01-01

    The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.

  14. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  15. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem.

    PubMed

    Talebi, H A; Khorasani, K; Tafazoli, S

    2009-01-01

    This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.

  16. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  17. A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.

    PubMed

    Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar

    2017-11-01

    High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.

  18. Simplified Interval Observer Scheme: A New Approach for Fault Diagnosis in Instruments

    PubMed Central

    Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M.; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P.; Adam-Medina, Manuel

    2011-01-01

    There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors. PMID:22346593

  19. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  20. Spacecraft fault tolerance: The Magellan experience

    NASA Technical Reports Server (NTRS)

    Kasuda, Rick; Packard, Donna Sexton

    1993-01-01

    Interplanetary and earth orbiting missions are now imposing unique fault tolerant requirements upon spacecraft design. Mission success is the prime motivator for building spacecraft with fault tolerant systems. The Magellan spacecraft had many such requirements imposed upon its design. Magellan met these requirements by building redundancy into all the major subsystem components and designing the onboard hardware and software with the capability to detect a fault, isolate it to a component, and issue commands to achieve a back-up configuration. This discussion is limited to fault protection, which is the autonomous capability to respond to a fault. The Magellan fault protection design is discussed, as well as the developmental and flight experiences and a summary of the lessons learned.

  1. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  2. A structural model decomposition framework for systems health management

    NASA Astrophysics Data System (ADS)

    Roychoudhury, I.; Daigle, M.; Bregon, A.; Pulido, B.

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  3. A Structural Model Decomposition Framework for Systems Health Management

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Daigle, Matthew J.; Bregon, Anibal; Pulido, Belamino

    2013-01-01

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  4. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  5. Gaining Insight Into Femtosecond-scale CMOS Effects using FPGAs

    DTIC Science & Technology

    2015-03-24

    paths or detecting gross path delay faults , but for characterizing subtle aging effects, there is a need to isolate very short paths and detect very...data using COTS FPGAs and novel self-test. Hardware experiments using a 28 nm FPGA demonstrate isolation of small sets of transistors, detection of...hold the static configuration data specifying the LUT function. A set of inverters drive the SRAM contents into a pass-gate multiplexor tree; we

  6. FIESTA: An operational decision aid for space network fault isolation

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn; Quillin, Bob; Matteson, Nadine; Wilkinson, Bill; Miksell, Steve

    1987-01-01

    The Fault Tolerance Expert System for Tracking and Data Relay Satellite System (TDRSS) Applications (FIESTA) is a fault detection and fault diagnosis expert system being developed as a decision aid to support operations in the Network Control Center (NCC) for NASA's Space Network. The operational objectives which influenced FIESTA development are presented and an overview of the architecture used to achieve these goals are provided. The approach to the knowledge engineering effort and the methodology employed are also presented and illustrated with examples drawn from the FIESTA domain.

  7. Sensor fault detection and isolation via high-gain observers: application to a double-pipe heat exchanger.

    PubMed

    Escobar, R F; Astorga-Zaragoza, C M; Téllez-Anguiano, A C; Juárez-Romero, D; Hernández, J A; Guerrero-Ramírez, G V

    2011-07-01

    This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon

    2009-01-01

    Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.

  9. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  10. Model-Based Diagnosis and Prognosis of a Water Recycling System

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Hafiychuk, Vasyl; Goebel, Kai Frank

    2013-01-01

    A water recycling system (WRS) deployed at NASA Ames Research Center s Sustainability Base (an energy efficient office building that integrates some novel technologies developed for space applications) will serve as a testbed for long duration testing of next generation spacecraft water recycling systems for future human spaceflight missions. This system cleans graywater (waste water collected from sinks and showers) and recycles it into clean water. Like all engineered systems, the WRS is prone to standard degradation due to regular use, as well as other faults. Diagnostic and prognostic applications will be deployed on the WRS to ensure its safe, efficient, and correct operation. The diagnostic and prognostic results can be used to enable condition-based maintenance to avoid unplanned outages, and perhaps extend the useful life of the WRS. Diagnosis involves detecting when a fault occurs, isolating the root cause of the fault, and identifying the extent of damage. Prognosis involves predicting when the system will reach its end of life irrespective of whether an abnormal condition is present or not. In this paper, first, we develop a physics model of both nominal and faulty system behavior of the WRS. Then, we apply an integrated model-based diagnosis and prognosis framework to the simulation model of the WRS for several different fault scenarios to detect, isolate, and identify faults, and predict the end of life in each fault scenario, and present the experimental results.

  11. Detection of arcing location on photovoltaic systems using filters

    DOEpatents

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  12. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  13. A High Power Solid State Circuit Breaker for Military Hybrid Electric Vehicle Applications

    DTIC Science & Technology

    2012-08-01

    the SSCB to isolate a fault, breaker opening is latched and can be reset to reclose the breaker via remote logic input. SSCB state and health...rated load current (125 A). Figure 10 shows that after the SSCB detects a fault and opens, it can also be repeatedly reclosed remotely to attempt to

  14. Fault Management Metrics

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  15. Fault Management Technology Maturation for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.

    2010-01-01

    This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.

  16. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  17. Evaluating the Effect of Integrated System Health Management on Mission Effectiveness

    DTIC Science & Technology

    2013-03-01

    Health Status, Fault Detection , IMS Commands «Needline» 110 B.6 OV-5a « O V -5 » a c t O V -5 [ O V -5 a...UAS to self- detect , isolate, and diagnose system health problems. Current flight avionics architectures may include lower level sub-system health ... monitoring or may isolate health monitoring functions to a black box configuration, but a vehicle-wide health monitoring information system has

  18. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics.

  19. Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Oostdyk, Rebecca

    2010-01-01

    The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project

  20. FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.

    1985-01-01

    Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.

  1. NASA ground terminal communication equipment automated fault isolation expert systems

    NASA Technical Reports Server (NTRS)

    Tang, Y. K.; Wetzel, C. R.

    1990-01-01

    The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC).

  2. Model-Based Fault Diagnosis for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Green, Michael D.; Duyar, Ahmet; Litt, Jonathan S.

    1998-01-01

    Tests are described which, when used to augment the existing periodic maintenance and pre-flight checks of T700 engines, can greatly improve the chances of uncovering a problem compared to the current practice. These test signals can be used to expose and differentiate between faults in various components by comparing the responses of particular engine variables to the expected. The responses can be processed on-line in a variety of ways which have been shown to reveal and identify faults. The combination of specific test signals and on-line processing methods provides an ad hoc approach to the isolation of faults which might not otherwise be detected during pre-flight checkout.

  3. A new fault diagnosis algorithm for AUV cooperative localization system

    NASA Astrophysics Data System (ADS)

    Shi, Hongyang; Miao, Zhiyong; Zhang, Yi

    2017-10-01

    Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.

  4. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.

  5. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    NASA Astrophysics Data System (ADS)

    Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.

  6. Galileo spacecraft power distribution and autonomous fault recovery

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1982-01-01

    There is a trend in current spacecraft design to achieve greater fault tolerance through the implemenation of on-board software dedicated to detecting and isolating failures. A combination of hardware and software is utilized in the Galileo power system for autonomous fault recovery. Galileo is a dual-spun spacecraft designed to carry a number of scientific instruments into a series of orbits around the planet Jupiter. In addition to its self-contained scientific payload, it will also carry a probe system which will be separated from the spacecraft some 150 days prior to Jupiter encounter. The Galileo spacecraft is scheduled to be launched in 1985. Attention is given to the power system, the fault protection requirements, and the power fault recovery implementation.

  7. Robust sensor fault detection and isolation of gas turbine engines subjected to time-varying parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar

    2016-08-01

    In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.

  8. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    NASA Astrophysics Data System (ADS)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  9. Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 1: Flight test summary

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.

  10. Aircraft applications of fault detection and isolation techniques

    NASA Astrophysics Data System (ADS)

    Marcos Esteban, Andres

    In this thesis the problems of fault detection & isolation and fault tolerant systems are studied from the perspective of LTI frequency-domain, model-based techniques. Emphasis is placed on the applicability of these LTI techniques to nonlinear models, especially to aerospace systems. Two applications of Hinfinity LTI fault diagnosis are given using an open-loop (no controller) design approach: one for the longitudinal motion of a Boeing 747-100/200 aircraft, the other for a turbofan jet engine. An algorithm formalizing a robust identification approach based on model validation ideas is also given and applied to the previous jet engine. A general linear fractional transformation formulation is given in terms of the Youla and Dual Youla parameterizations for the integrated (control and diagnosis filter) approach. This formulation provides better insight into the trade-off between the control and the diagnosis objectives. It also provides the basic groundwork towards the development of nested schemes for the integrated approach. These nested structures allow iterative improvements on the control/filter Youla parameters based on successive identification of the system uncertainty (as given by the Dual Youla parameter). The thesis concludes with an application of Hinfinity LTI techniques to the integrated design for the longitudinal motion of the previous Boeing 747-100/200 model.

  11. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  12. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  13. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    NASA Astrophysics Data System (ADS)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  14. Advanced information processing system: Fault injection study and results

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.

    1992-01-01

    The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.

  15. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    NASA Astrophysics Data System (ADS)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  16. AGSM Functional Fault Models for Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    This project implements functional fault models to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  17. Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed.

  18. TES: A modular systems approach to expert system development for real time space applications

    NASA Technical Reports Server (NTRS)

    England, Brenda; Cacace, Ralph

    1987-01-01

    A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.

  19. A fault isolation method based on the incidence matrix of an augmented system

    NASA Astrophysics Data System (ADS)

    Chen, Changxiong; Chen, Liping; Ding, Jianwan; Wu, Yizhong

    2018-03-01

    A new approach is proposed for isolating faults and fast identifying the redundant sensors of a system in this paper. By introducing fault signal as additional state variable, an augmented system model is constructed by the original system model, fault signals and sensor measurement equations. The structural properties of an augmented system model are provided in this paper. From the viewpoint of evaluating fault variables, the calculating correlations of the fault variables in the system can be found, which imply the fault isolation properties of the system. Compared with previous isolation approaches, the highlights of the new approach are that it can quickly find the faults which can be isolated using exclusive residuals, at the same time, and can identify the redundant sensors in the system, which are useful for the design of diagnosis system. The simulation of a four-tank system is reported to validate the proposed method.

  20. Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2014-01-01

    This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  1. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  2. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob A.; Lewis, Mark E.; Perotti, Jose M.; Brown, Barbara L.; Oostdyk, Rebecca L.; Goetz, Jesse W.

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC). Part of the0 overall implementation of National Aeronautics and Space Administration's (NASA's) CxP, FDIR is being implemented in three main components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) initiated a task for it under their Integrated System Health Management (ISHM) research area. This task, referred to as the FDIIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground Operations baseline. Currently, Qualtech Systems Inc (QSI) Commercial Off The Shelf (COTS) software products Testability Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. One of the most significant challenges related to integration is to ensure that FFMs developed by different organizations can be integrated easily and without errors. Software Interface Control Documents (ICDs) for the FFMs and their usage will be addressed as the solution to this issue. In particular, the advantages and disadvantages of these ICDs across physically separate development groups will be delineated.

  3. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines.

    PubMed

    Amozegar, M; Khorasani, K

    2016-04-01

    In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  5. Study of fault tolerant software technology for dynamic systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Zacharias, G. L.

    1985-01-01

    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.

  6. Seismic response evaluation of base-isolated reinforced concrete buildings under bidirectional excitation

    NASA Astrophysics Data System (ADS)

    Bhagat, Satish; Wijeyewickrema, Anil C.

    2017-04-01

    This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.

  7. Mission Management Computer and Sequencing Hardware for RLV-TD HEX-01 Mission

    NASA Astrophysics Data System (ADS)

    Gupta, Sukrat; Raj, Remya; Mathew, Asha Mary; Koshy, Anna Priya; Paramasivam, R.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator Hypersonic Experiment (RLV-TD HEX-01) mission posed some unique challenges in the design and development of avionics hardware. This work presents the details of mission critical avionics hardware mainly Mission Management Computer (MMC) and sequencing hardware. The Navigation, Guidance and Control (NGC) chain for RLV-TD is dual redundant with cross-strapped Remote Terminals (RTs) interfaced through MIL-STD-1553B bus. MMC is Bus Controller on the 1553 bus, which does the function of GPS aided navigation, guidance, digital autopilot and sequencing for the RLV-TD launch vehicle in different periodicities (10, 20, 500 ms). Digital autopilot execution in MMC with a periodicity of 10 ms (in ascent phase) is introduced for the first time and successfully demonstrated in the flight. MMC is built around Intel i960 processor and has inbuilt fault tolerance features like ECC for memories. Fault Detection and Isolation schemes are implemented to isolate the failed MMC. The sequencing hardware comprises Stage Processing System (SPS) and Command Execution Module (CEM). SPS is `RT' on the 1553 bus which receives the sequencing and control related commands from MMCs and posts to downstream modules after proper error handling for final execution. SPS is designed as a high reliability system by incorporating various fault tolerance and fault detection features. CEM is a relay based module for sequence command execution.

  8. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Smith, K.; Ireland, J.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ionmore » battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.« less

  9. Motion-Based System Identification and Fault Detection and Isolation Technologies for Thruster Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Sutter, David W.; Berkovitz, Dustin; Betts, Bradley J.; Kong, Edmund; delMundo, Rommel; Lages, Christopher R.; Mah, Robert W.; Papasin, Richard

    2003-01-01

    By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the improved system robustness and performance that comes with the thruster fault tolerance and system ID can be achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test results from the SPHERES implementation, as flown aboard the NASA KC-1 35A 0-g simulator aircraft in November 2003 are presented.

  10. Intelligent fault-tolerant controllers

    NASA Technical Reports Server (NTRS)

    Huang, Chien Y.

    1987-01-01

    A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.

  11. An Integrated Framework for Model-Based Distributed Diagnosis and Prognosis

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew J.; Roychoudhury, Indranil

    2012-01-01

    Diagnosis and prognosis are necessary tasks for system reconfiguration and fault-adaptive control in complex systems. Diagnosis consists of detection, isolation and identification of faults, while prognosis consists of prediction of the remaining useful life of systems. This paper presents a novel integrated framework for model-based distributed diagnosis and prognosis, where system decomposition is used to enable the diagnosis and prognosis tasks to be performed in a distributed way. We show how different submodels can be automatically constructed to solve the local diagnosis and prognosis problems. We illustrate our approach using a simulated four-wheeled rover for different fault scenarios. Our experiments show that our approach correctly performs distributed fault diagnosis and prognosis in an efficient and robust manner.

  12. Machine learning techniques for fault isolation and sensor placement

    NASA Technical Reports Server (NTRS)

    Carnes, James R.; Fisher, Douglas H.

    1993-01-01

    Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance.

  13. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  14. Reliability analysis and fault-tolerant system development for a redundant strapdown inertial measurement unit. [inertial platforms

    NASA Technical Reports Server (NTRS)

    Motyka, P.

    1983-01-01

    A methodology is developed and applied for quantitatively analyzing the reliability of a dual, fail-operational redundant strapdown inertial measurement unit (RSDIMU). A Markov evaluation model is defined in terms of the operational states of the RSDIMU to predict system reliability. A 27 state model is defined based upon a candidate redundancy management system which can detect and isolate a spectrum of failure magnitudes. The results of parametric studies are presented which show the effect on reliability of the gyro failure rate, both the gyro and accelerometer failure rates together, false alarms, probability of failure detection, probability of failure isolation, and probability of damage effects and mission time. A technique is developed and evaluated for generating dynamic thresholds for detecting and isolating failures of the dual, separated IMU. Special emphasis is given to the detection of multiple, nonconcurrent failures. Digital simulation time histories are presented which show the thresholds obtained and their effectiveness in detecting and isolating sensor failures.

  15. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  16. Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  17. Propulsion Health Monitoring for Enhanced Safety

    NASA Technical Reports Server (NTRS)

    Butz, Mark G.; Rodriguez, Hector M.

    2003-01-01

    This report presents the results of the NASA contract Propulsion System Health Management for Enhanced Safety performed by General Electric Aircraft Engines (GE AE), General Electric Global Research (GE GR), and Pennsylvania State University Applied Research Laboratory (PSU ARL) under the NASA Aviation Safety Program. This activity supports the overall goal of enhanced civil aviation safety through a reduction in the occurrence of safety-significant propulsion system malfunctions. Specific objectives are to develop and demonstrate vibration diagnostics techniques for the on-line detection of turbine rotor disk cracks, and model-based fault tolerant control techniques for the prevention and mitigation of in-flight engine shutdown, surge/stall, and flameout events. The disk crack detection work was performed by GE GR which focused on a radial-mode vibration monitoring technique, and PSU ARL which focused on a torsional-mode vibration monitoring technique. GE AE performed the Model-Based Fault Tolerant Control work which focused on the development of analytical techniques for detecting, isolating, and accommodating gas-path faults.

  18. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Astrophysics Data System (ADS)

    Glass, B. J.

    1992-10-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  19. Identification of faulty sensor using relative partial decomposition via independent component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Quek, S. T.

    2015-07-01

    Performance of any structural health monitoring algorithm relies heavily on good measurement data. Hence, it is necessary to employ robust faulty sensor detection approaches to isolate sensors with abnormal behaviour and exclude the highly inaccurate data in the subsequent analysis. The independent component analysis (ICA) is implemented to detect the presence of sensors showing abnormal behaviour. A normalized form of the relative partial decomposition contribution (rPDC) is proposed to identify the faulty sensor. Both additive and multiplicative types of faults are addressed and the detectability illustrated using a numerical and an experimental example. An empirical method to establish control limits for detecting and identifying the type of fault is also proposed. The results show the effectiveness of the ICA and rPDC method in identifying faulty sensor assuming that baseline cases are available.

  20. Real-time diagnostics for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Merrill, W.; Duyar, A.

    1992-01-01

    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.

  1. A satellite-based digital data system for low-frequency geophysical data

    USGS Publications Warehouse

    Silverman, S.; Mortensen, C.; Johnston, M.

    1989-01-01

    A reliable method for collection, display, and analysis of low-frequency geophysical data from isolated sites, which can be throughout North and South America and the Pacific Rim, has been developed for use with the Geostationary Operational Environmental Satellite (GEOS) system. This system provides real-time monitoring of crustal deformation parameters such as tilt, strain, fault displacement, local magnetic field, crustal geochemistry, and water levels, as well as meteorological and other parameters, along faults in California and Alsaka, and in volcanic regions in the western United States, Rabaul, and other locations in the New Britain region of the South pacific. Various mathematical, statistical, and graphical algorithms process the incoming data to detect changes in crustal deformation and fault slip that may indicate the first stages of catastrophic fault failure. -from Authors

  2. A Voyager attitude control perspective on fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.; Litty, E. C.

    1981-01-01

    In current spacecraft design, a trend can be observed to achieve greater fault tolerance through the application of on-board software dedicated to detecting and isolating failures. Whether fault tolerance through software can meet the desired objectives depends on very careful consideration and control of the system in which the software is imbedded. The considered investigation has the objective to provide some of the insight needed for the required analysis of the system. A description is given of the techniques which have been developed in this connection during the development of the Voyager spacecraft. The Voyager Galileo Attitude and Articulation Control Subsystem (AACS) fault tolerant design is discussed to emphasize basic lessons learned from this experience. The central driver of hardware redundancy implementation on Voyager was known as the 'single point failure criterion'.

  3. Sequential Test Strategies for Multiple Fault Isolation

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.

    1997-01-01

    In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.

  4. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  5. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  6. 78 FR 31592 - T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,371] T-Mobile Usa, Inc., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania; Notice of Affirmative Determination...., Core Fault Isolation Team, Engineering Division, Bethlehem, Pennsylvania (subject firm). The...

  7. Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey

    NASA Astrophysics Data System (ADS)

    Athamnia, B.; Ounis, A.; Abdeddaim, M.

    2017-12-01

    This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.

  8. Distributed reconfigurable control strategies for switching topology networked multi-agent systems.

    PubMed

    Gallehdari, Z; Meskin, N; Khorasani, K

    2017-11-01

    In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  10. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.

  11. Evaluation of an expert system for fault detection, isolation, and recovery in the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Rushby, John; Crow, Judith

    1990-01-01

    The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.

  12. GenSAA: A tool for advancing satellite monitoring with graphical expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1993-01-01

    During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.

  13. Testability analysis on a hydraulic system in a certain equipment based on simulation model

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Cong, Hua; Liu, Yuanhong; Feng, Fuzhou

    2018-03-01

    Aiming at the problem that the complicated structure and the shortage of fault statistics information in hydraulic systems, a multi value testability analysis method based on simulation model is proposed. Based on the simulation model of AMESim, this method injects the simulated faults and records variation of test parameters ,such as pressure, flow rate, at each test point compared with those under normal conditions .Thus a multi-value fault-test dependency matrix is established. Then the fault detection rate (FDR) and fault isolation rate (FIR) are calculated based on the dependency matrix. Finally the system of testability and fault diagnosis capability are analyzed and evaluated, which can only reach a lower 54%(FDR) and 23%(FIR). In order to improve testability performance of the system,. number and position of the test points are optimized on the system. Results show the proposed test placement scheme can be used to solve the problems that difficulty, inefficiency and high cost in the system maintenance.

  14. FDI and Accommodation Using NN Based Techniques

    NASA Astrophysics Data System (ADS)

    Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro

    Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.

  15. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  16. Improving Multiple Fault Diagnosability using Possible Conflicts

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2012-01-01

    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  17. Fault isolation detection expert (FIDEX). Part 1: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    NASA Technical Reports Server (NTRS)

    Durkin, John; Schlegelmilch, Richard; Tallo, Donald

    1992-01-01

    LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system.

  18. KEA-71 Smart Current Signature Sensor (SCSS)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  19. Impact of coverage on the reliability of a fault tolerant computer

    NASA Technical Reports Server (NTRS)

    Bavuso, S. J.

    1975-01-01

    A mathematical reliability model is established for a reconfigurable fault tolerant avionic computer system utilizing state-of-the-art computers. System reliability is studied in light of the coverage probabilities associated with the first and second independent hardware failures. Coverage models are presented as a function of detection, isolation, and recovery probabilities. Upper and lower bonds are established for the coverage probabilities and the method for computing values for the coverage probabilities is investigated. Further, an architectural variation is proposed which is shown to enhance coverage.

  20. Development of a space-systems network testbed

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas

    1988-01-01

    This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.

  1. Fault Detection/Isolation Verification,

    DTIC Science & Technology

    1982-08-01

    63 - A I MCC ’I UNCLASSIFIED SECURITY CLASSIPICATION OP THIS PAGE tMh*f Dal f&mered, REPORT D00CUMENTATION PAGE " .O ORM 1. REPORT NUM.9ft " 2. GOVT...test the performance of th .<ver) DO 2" 1473 EoIoTON OP iNov os i OSoLTe UNCLASSIFIED SECURITY CLASSIPICATION 0 T"IS PAGE (P 3 . at Sted) I...UNCLASSIFIED Acumy, C .AMICATIN Of THIS PAGS. (m ... DO&.m , Algorithm on these netowrks , several different fault scenarios were designed for each network. Each

  2. Care 3 phase 2 report, maintenance manual

    NASA Technical Reports Server (NTRS)

    Bryant, L. A.; Stiffler, J. J.

    1982-01-01

    CARE 3 (Computer-Aided Reliability Estimation, version three) is a computer program designed to help estimate the reliability of complex, redundant systems. Although the program can model a wide variety of redundant structures, it was developed specifically for fault-tolerant avionics systems--systems distinguished by the need for extremely reliable performance since a system failure could well result in the loss of human life. It substantially generalizes the class of redundant configurations that could be accommodated, and includes a coverage model to determine the various coverage probabilities as a function of the applicable fault recovery mechanisms (detection delay, diagnostic scheduling interval, isolation and recovery delay, etc.). CARE 3 further generalizes the class of system structures that can be modeled and greatly expands the coverage model to take into account such effects as intermittent and transient faults, latent faults, error propagation, etc.

  3. An architecture for object-oriented intelligent control of power systems in space

    NASA Technical Reports Server (NTRS)

    Holmquist, Sven G.; Jayaram, Prakash; Jansen, Ben H.

    1993-01-01

    A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation process uses the FSM level for its reasoning base.

  4. Quality-based Multimodal Classification Using Tree-Structured Sparsity

    DTIC Science & Technology

    2014-03-08

    Pennsylvania State University soheil@psu.edu Asok Ray Pennsylvania State University axr2@psu.edu@psu.edu Nasser M. Nasrabadi Army Research Laboratory...clustering for on- line fault detection and isolation. Applied Intelligence, 35(2):269–284, 2011. 4 [2] S. Bahrampour, A. Ray , S. Sarkar, T. Damarla, and N

  5. Fault Isolation Filter for Networked Control System with Event-Triggered Sampling Scheme

    PubMed Central

    Li, Shanbin; Sauter, Dominique; Xu, Bugong

    2011-01-01

    In this paper, the sensor data is transmitted only when the absolute value of difference between the current sensor value and the previously transmitted one is greater than the given threshold value. Based on this send-on-delta scheme which is one of the event-triggered sampling strategies, a modified fault isolation filter for a discrete-time networked control system with multiple faults is then implemented by a particular form of the Kalman filter. The proposed fault isolation filter improves the resource utilization with graceful fault estimation performance degradation. An illustrative example is given to show the efficiency of the proposed method. PMID:22346590

  6. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  7. Interface Supports Multiple Broadcast Transceivers for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2011-01-01

    A wireless avionics interface provides a mechanism for managing multiple broadcast transceivers. This interface isolates the control logic required to support multiple transceivers so that the flight application does not have to manage wireless transceivers. All of the logic to select transceivers, detect transmitter and receiver faults, and take autonomous recovery action is contained in the interface, which is not restricted to using wireless transceivers. Wired, wireless, and mixed transceiver technologies are supported. This design s use of broadcast data technology provides inherent cross strapping of data links. This greatly simplifies the design of redundant flight subsystems. The interface fully exploits the broadcast data link to determine the health of other transceivers used to detect and isolate faults for fault recovery. The interface uses simplified control logic, which can be implemented as an intellectual-property (IP) core in a field-programmable gate array (FPGA). The interface arbitrates the reception of inbound data traffic appearing on multiple receivers. It arbitrates the transmission of outbound traffic. This system also monitors broadcast data traffic to determine the health of transmitters in the network, and then uses this health information to make autonomous decisions for routing traffic through transceivers. Multiple selection strategies are supported, like having an active transceiver with the secondary transceiver powered off except to send periodic health status reports. Transceivers can operate in round-robin for load-sharing and graceful degradation.

  8. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Oostdyk, Rebecca; Perotti, Jose

    2009-01-01

    When setting out to model and/or simulate a complex mechanical or electrical system, a modeler is faced with a vast array of tools, software, equations, algorithms and techniques that may individually or in concert aid in the development of the model. Mature requirements and a well understood purpose for the model may considerably shrink the field of possible tools and algorithms that will suit the modeling solution. Is the model intended to be used in an offline fashion or in real-time? On what platform does it need to execute? How long will the model be allowed to run before it outputs the desired parameters? What resolution is desired? Do the parameters need to be qualitative or quantitative? Is it more important to capture the physics or the function of the system in the model? Does the model need to produce simulated data? All these questions and more will drive the selection of the appropriate tools and algorithms, but the modeler must be diligent to bear in mind the final application throughout the modeling process to ensure the model meets its requirements without needless iterations of the design. The purpose of this paper is to describe the considerations and techniques used in the process of creating a functional fault model of a liquid hydrogen (LH2) system that will be used in a real-time environment to automatically detect and isolate failures.

  9. Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Martin, Rodney; Waterman, Robert; Oostdyk, Rebecca; Ossenfort, John; Matthews, Bryan

    2010-01-01

    Automating prelaunch diagnostics for launch vehicles offers three potential benefits. First, it potentially improves safety by detecting faults that might otherwise have been missed so that they can be corrected before launch. Second, it potentially reduces launch delays by more quickly diagnosing the cause of anomalies that occur during prelaunch processing. Reducing launch delays will be critical to the success of NASA's planned future missions that require in-orbit rendezvous. Third, it potentially reduces costs by reducing both launch delays and the number of people needed to monitor the prelaunch process. NASA is currently developing the Ares I launch vehicle to bring the Orion capsule and its crew of four astronauts to low-earth orbit on their way to the moon. Ares I-X will be the first unmanned test flight of Ares I. It is scheduled to launch on October 27, 2009. The Ares I-X Ground Diagnostic Prototype is a prototype ground diagnostic system that will provide anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage thrust vector control (TVC) and for the associated ground hydraulics while it is in the Vehicle Assembly Building (VAB) at John F. Kennedy Space Center (KSC) and on the launch pad. It will serve as a prototype for a future operational ground diagnostic system for Ares I. The prototype combines three existing diagnostic tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool that is commercially produced by Qualtech Systems, Inc. It uses a qualitative model of failure propagation to perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC to use for diagnostics and developed a TEAMS model of the ground hydraulics. The second tool, Spacecraft Health Inference Engine (SHINE), is a rule-based expert system developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification. The prototype uses the outputs of SHINE as inputs to TEAMS. The third tool, the Inductive Monitoring System (IMS), is an anomaly detection tool developed at NASA Ames Research Center and is currently used to monitor the International Space Station Control Moment Gyroscopes. IMS automatically "learns" a model of historical nominal data in the form of a set of clusters and signals an alarm when new data fails to match this model. IMS offers the potential to detect faults that have not been modeled. The three tools have been integrated and deployed to Hangar AE at KSC where they interface with live data from the Ares I-X vehicle and from the ground hydraulics. The outputs of the tools are displayed on a console in Hangar AE, one of the locations from which the Ares I-X launch will be monitored. The full paper will describe how the prototype performed before the launch. It will include an analysis of the prototype's accuracy, including false-positive rates, false-negative rates, and receiver operating characteristics (ROC) curves. It will also include a description of the prototype's computational requirements, including CPU usage, main memory usage, and disk usage. If the prototype detects any faults during the prelaunch period then the paper will include a description of those faults. Similarly, if the prototype has any false alarms then the paper will describe them and will attempt to explain their causes.

  10. SIRU development. Volume 1: System development

    NASA Technical Reports Server (NTRS)

    Gilmore, J. P.; Cooper, R. J.

    1973-01-01

    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results.

  11. SIRU development. Volume 3: Software description and program documentation

    NASA Technical Reports Server (NTRS)

    Oehrle, J.

    1973-01-01

    The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.

  12. Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Ambur, Ramakrishnan; Rinderknecht, Stephan

    2018-03-01

    Machines which are developed today are highly automated due to increased use of mechatronic systems. To ensure their reliable operation, fault detection and isolation (FDI) is an important feature along with a better control. This research work aims to achieve and integrate both these functions with minimum number of components in a mechatronic system. This article investigates a rotating machine with active bearings equipped with piezoelectric actuators. There is an inherent coupling between their electrical and mechanical properties because of which they can also be used as sensors. Mechanical deflection can be reconstructed from these self-sensing actuators from measured voltage and current signals. These virtual sensor signals are utilised to detect unbalance in a rotor system. Parameters of unbalance such as its magnitude and phase are detected by parametric estimation method in frequency domain. Unbalance location has been identified using hypothesis of localization of faults. Robustness of the estimates against outliers in measurements is improved using weighted least squares method. Unbalances are detected in a real test bench apart from simulation using its model. Experiments are performed in stationary as well as in transient case. As a further step unbalances are estimated during simultaneous actuation of actuators in closed loop with an adaptive algorithm for vibration minimisation. This strategy could be used in systems which aim for both fault detection and control action.

  13. Software-implemented fault insertion: An FTMP example

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1987-01-01

    This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.

  14. A hierarchically distributed architecture for fault isolation expert systems on the space station

    NASA Technical Reports Server (NTRS)

    Miksell, Steve; Coffer, Sue

    1987-01-01

    The Space Station Axiomatic Fault Isolating Expert Systems (SAFTIES) system deals with the hierarchical distribution of control and knowledge among independent expert systems doing fault isolation and scheduling of Space Station subsystems. On its lower level, fault isolation is performed on individual subsystems. These fault isolation expert systems contain knowledge about the performance requirements of their particular subsystem and corrective procedures which may be involved in repsonse to certain performance errors. They can control the functions of equipment in their system and coordinate system task schedules. On a higher level, the Executive contains knowledge of all resources, task schedules for all systems, and the relative priority of all resources and tasks. The executive can override any subsystem task schedule in order to resolve use conflicts or resolve errors that require resources from multiple subsystems. Interprocessor communication is implemented using the SAFTIES Communications Interface (SCI). The SCI is an application layer protocol which supports the SAFTIES distributed multi-level architecture.

  15. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  16. Development of the self-learning machine for creating models of microprocessor of single-phase earth fault protection devices in networks with isolated neutral voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.

    2018-02-01

    The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.

  17. Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario

    2015-04-01

    The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.

  18. Expert systems for automated maintenance of a Mars oxygen production system

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Huang, Jen-Kuang; Ho, Ming-Tsang

    1989-01-01

    A prototype expert system was developed for maintaining autonomous operation of a Mars oxygen production system. Normal operation conditions and failure modes according to certain desired criteria are tested and identified. Several schemes for failure detection and isolation using forward chaining, backward chaining, knowledge-based and rule-based are devised to perform several housekeeping functions. These functions include self-health checkout, an emergency shut down program, fault detection and conventional control activities. An effort was made to derive the dynamic model of the system using Bond-Graph technique in order to develop the model-based failure detection and isolation scheme by estimation method. Finally, computer simulations and experimental results demonstrated the feasibility of the expert system and a preliminary reliability analysis for the oxygen production system is also provided.

  19. Optimization of seismic isolation systems via harmony search

    NASA Astrophysics Data System (ADS)

    Melih Nigdeli, Sinan; Bekdaş, Gebrail; Alhan, Cenk

    2014-11-01

    In this article, the optimization of isolation system parameters via the harmony search (HS) optimization method is proposed for seismically isolated buildings subjected to both near-fault and far-fault earthquakes. To obtain optimum values of isolation system parameters, an optimization program was developed in Matlab/Simulink employing the HS algorithm. The objective was to obtain a set of isolation system parameters within a defined range that minimizes the acceleration response of a seismically isolated structure subjected to various earthquakes without exceeding a peak isolation system displacement limit. Several cases were investigated for different isolation system damping ratios and peak displacement limitations of seismic isolation devices. Time history analyses were repeated for the neighbouring parameters of optimum values and the results proved that the parameters determined via HS were true optima. The performance of the optimum isolation system was tested under a second set of earthquakes that was different from the first set used in the optimization process. The proposed optimization approach is applicable to linear isolation systems. Isolation systems composed of isolation elements that are inherently nonlinear are the subject of a future study. Investigation of the optimum isolation system parameters has been considered in parametric studies. However, obtaining the best performance of a seismic isolation system requires a true optimization by taking the possibility of both near-fault and far-fault earthquakes into account. HS optimization is proposed here as a viable solution to this problem.

  20. Development, Interaction and Linkage of Normal Fault Segments along the 100-km Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.

    2016-12-01

    Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.

  1. Comparison of Fault Detection Algorithms for Real-time Diagnosis in Large-Scale System. Appendix E

    NASA Technical Reports Server (NTRS)

    Kirubarajan, Thiagalingam; Malepati, Venkat; Deb, Somnath; Ying, Jie

    2001-01-01

    In this paper, we present a review of different real-time capable algorithms to detect and isolate component failures in large-scale systems in the presence of inaccurate test results. A sequence of imperfect test results (as a row vector of I's and O's) are available to the algorithms. In this case, the problem is to recover the uncorrupted test result vector and match it to one of the rows in the test dictionary, which in turn will isolate the faults. In order to recover the uncorrupted test result vector, one needs the accuracy of each test. That is, its detection and false alarm probabilities are required. In this problem, their true values are not known and, therefore, have to be estimated online. Other major aspects in this problem are the large-scale nature and the real-time capability requirement. Test dictionaries of sizes up to 1000 x 1000 are to be handled. That is, results from 1000 tests measuring the state of 1000 components are available. However, at any time, only 10-20% of the test results are available. Then, the objective becomes the real-time fault diagnosis using incomplete and inaccurate test results with online estimation of test accuracies. It should also be noted that the test accuracies can vary with time --- one needs a mechanism to update them after processing each test result vector. Using Qualtech's TEAMS-RT (system simulation and real-time diagnosis tool), we test the performances of 1) TEAMSAT's built-in diagnosis algorithm, 2) Hamming distance based diagnosis, 3) Maximum Likelihood based diagnosis, and 4) HidderMarkov Model based diagnosis.

  2. Joint University Program for Air Transportation Research, 1990-1991

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1991-01-01

    The goals of this program are consistent with the interests of both NASA and the FAA in furthering the safety and efficiency of the National Airspace System. Research carried out at the Massachusetts Institute of Technology (MIT), Ohio University, and Princeton University are covered. Topics studied include passive infrared ice detection for helicopters, the cockpit display of hazardous windshear information, fault detection and isolation for multisensor navigation systems, neural networks for aircraft system identification, and intelligent failure tolerant control.

  3. Final Technical Report: PV Fault Detection Tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Bruce Hardison; Jones, Christian Birk

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  4. A dual-processor multi-frequency implementation of the FINDS algorithm

    NASA Technical Reports Server (NTRS)

    Godiwala, Pankaj M.; Caglayan, Alper K.

    1987-01-01

    This report presents a parallel processing implementation of the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a dual processor configured target flight computer. First, a filter initialization scheme is presented which allows the no-fail filter (NFF) states to be initialized using the first iteration of the flight data. A modified failure isolation strategy, compatible with the new failure detection strategy reported earlier, is discussed and the performance of the new FDI algorithm is analyzed using flight recorded data from the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. The results show that low level MLS, IMU, and IAS sensor failures are detected and isolated instantaneously, while accelerometer and rate gyro failures continue to take comparatively longer to detect and isolate. The parallel implementation is accomplished by partitioning the FINDS algorithm into two parts: one based on the translational dynamics and the other based on the rotational kinematics. Finally, a multi-rate implementation of the algorithm is presented yielding significantly low execution times with acceptable estimation and FDI performance.

  5. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  6. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system validation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.

  7. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  8. Development of monitoring and diagnostic methods for robots used in remediation of waste sites. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecza, J.

    1998-06-01

    'Safe and efficient clean up of hazardous and radioactive waste sites throughout the DOE complex will require extensive use of robots. This research effort focuses on developing Monitoring and Diagnostic (M and D) methods for robots that will provide early detection, isolation, and tracking of impending faults before they result in serious failure. The utility and effectiveness of applying M and D methods to hydraulic robots has never been proven. The present research program is utilizing seeded faults in a laboratory test rig that is representative of an existing hydraulically-powered remediation robot. This report summarizes activity conducted in the firstmore » 9 months of the project. The research team has analyzed the Rosie Mobile Worksystem as a representative hydraulic robot, developed a test rig for implanted fault testing, developed a test plan and agenda, and established methods for acquiring and analyzing the test data.'« less

  9. Implementing a real time reasoning system for robust diagnosis

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Morris, William; Robertson, Charlie

    1993-01-01

    The objective of the Thermal Control System Automation Project (TCSAP) is to develop an advanced fault detection, isolation, and recovery (FDIR) capability for use on the Space Station Freedom (SSF) External Active Thermal Control System (EATCS). Real-time monitoring, control, and diagnosis of the EATCS will be performed with a knowledge based system (KBS). Implementation issues for the current version of the KBS are discussed.

  10. One-man, self-contained CO2 concentrating system

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.; Powell, J. D.

    1972-01-01

    A program to design, fabricate, and test a 1-man, self-contained, electrochemical CO2 concentrating system is described. The system was designed with electronic controls and instrumentation to regulate performance, to analyze and display performance trends, and to detect and isolate faults. Ground support accessories were included to provide power, fluids, and a Parametric Data Display allowing real time indication of operating status in engineering units.

  11. Safety Analysis and Protection Measures of the Control System of the Pulsed High Magnetic Field Facility in WHMFC

    NASA Astrophysics Data System (ADS)

    Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.

    2013-03-01

    A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.

  12. Fault isolation techniques

    NASA Technical Reports Server (NTRS)

    Dumas, A.

    1981-01-01

    Three major areas that are considered in the development of an overall maintenance scheme of computer equipment are described. The areas of concern related to fault isolation techniques are: the programmer (or user), company and its policies, and the manufacturer of the equipment.

  13. Distributed processing of a GPS receiver network for a regional ionosphere map

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Ho; Hoo Lim, Joon; Yoo, Won Jae; Lee, Hyung Keun

    2018-01-01

    This paper proposes a distributed processing method applicable to GPS receivers in a network to generate a regional ionosphere map accurately and reliably. For accuracy, the proposed method is operated by multiple local Kalman filters and Kriging estimators. Each local Kalman filter is applied to a dual-frequency receiver to estimate the receiver’s differential code bias and vertical ionospheric delays (VIDs) at different ionospheric pierce points. The Kriging estimator selects and combines several VID estimates provided by the local Kalman filters to generate the VID estimate at each ionospheric grid point. For reliability, the proposed method uses receiver fault detectors and satellite fault detectors. Each receiver fault detector compares the VID estimates of the same local area provided by different local Kalman filters. Each satellite fault detector compares the VID estimate of each local area with that projected from the other local areas. Compared with the traditional centralized processing method, the proposed method is advantageous in that it considerably reduces the computational burden of each single Kalman filter and enables flexible fault detection, isolation, and reconfiguration capability. To evaluate the performance of the proposed method, several experiments with field collected measurements were performed.

  14. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  16. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  17. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    NASA Astrophysics Data System (ADS)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-11-01

    Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  18. Real-Time Simulation for Verification and Validation of Diagnostic and Prognostic Algorithms

    NASA Technical Reports Server (NTRS)

    Aguilar, Robet; Luu, Chuong; Santi, Louis M.; Sowers, T. Shane

    2005-01-01

    To verify that a health management system (HMS) performs as expected, a virtual system simulation capability, including interaction with the associated platform or vehicle, very likely will need to be developed. The rationale for developing this capability is discussed and includes the limited capability to seed faults into the actual target system due to the risk of potential damage to high value hardware. The capability envisioned would accurately reproduce the propagation of a fault or failure as observed by sensors located at strategic locations on and around the target system and would also accurately reproduce the control system and vehicle response. In this way, HMS operation can be exercised over a broad range of conditions to verify that it meets requirements for accurate, timely response to actual faults with adequate margin against false and missed detections. An overview is also presented of a real-time rocket propulsion health management system laboratory which is available for future rocket engine programs. The health management elements and approaches of this lab are directly applicable for future space systems. In this paper the various components are discussed and the general fault detection, diagnosis, isolation and the response (FDIR) concept is presented. Additionally, the complexities of V&V (Verification and Validation) for advanced algorithms and the simulation capabilities required to meet the changing state-of-the-art in HMS are discussed.

  19. Meeting the Challenges of Exploration Systems: Health Management Technologies for Aerospace Systems With Emphasis on Propulsion

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Sowers, T. Shane; Maul, William A.

    2005-01-01

    The constraints of future Exploration Missions will require unique Integrated System Health Management (ISHM) capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays all require an ISHM system that can span distinct yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation, and support the Exploration Mission from beginning to end. NASA Glenn Research Center has developed and applied health management system technologies to aerospace propulsion systems for almost two decades. Lessons learned from past activities help define the approach to proper ISHM development: sensor selection- identifies sensor sets required for accurate health assessment; data qualification and validation-ensures the integrity of measurement data from sensor to data system; fault detection and isolation-uses measurements in a component/subsystem context to detect faults and identify their point of origin; information fusion and diagnostic decision criteria-aligns data from similar and disparate sources in time and use that data to perform higher-level system diagnosis; and verification and validation-uses data, real or simulated, to provide variable exposure to the diagnostic system for faults that may only manifest themselves in actual implementation, as well as faults that are detectable via hardware testing. This presentation describes a framework for developing health management systems and highlights the health management research activities performed by the Controls and Dynamics Branch at the NASA Glenn Research Center. It illustrates how those activities contribute to the development of solutions for Integrated System Health Management.

  20. Design and Analysis of an Attitude Determination and Control Subsystem (ADCS) for AFIT’s 6U Standard Bus

    DTIC Science & Technology

    2014-03-27

    Fault Detection and Isolation GUI Graphical User Interface IGRF International Geomagnetic Reference Field IMU Inertial Measurement Unit IR infrared xv...ADCS hardware components were either commercially purchased or built in-house and include an Inertial Measurement Unit ( IMU ), external magnetometer, 4...3.2.1.3 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1.4 External Magnetometer . . . . . . . . . . . . . . . . . . 48 3.2.2

  1. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Main propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    A total of 48 operational flight instrumentation measurements were identified for use in performance monitoring and fault detection. The Operational Flight Instrumentation List contains all measurements identified for fault detection and annunciation. Some 16 controller data words were identified for use in fault detection and annunciation.

  3. Asymmetry identification in rigid rotating bodies—Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bucher, Izhak; Shomer, Ofer

    2013-12-01

    Asymmetry and anisotropy are important parameters in rotating devices that can cause instability; indicate a manufacturing defect or a developing fault. The present paper discusses an identification method capable of detecting minute levels of asymmetry by exploiting the unique dynamics of parametric excitation caused by asymmetry and rotation. The detection relies on rigid body dynamics without resorting to nonlinear vibration analysis, and the natural dynamics of elastically supported systems is exploited in order to increase the sensitivity to asymmetry. It is possible to isolate asymmetry from other rotation-induced phenomena like unbalance. An asymmetry detection machine which was built in the laboratory demonstrates the method alongside theoretical analysis.

  4. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  5. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    PubMed

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids.

    PubMed

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-04-28

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability.

  7. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids

    PubMed Central

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-01-01

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability. PMID:28452925

  8. Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection

    NASA Technical Reports Server (NTRS)

    Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje

    2005-01-01

    This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.

  9. Towards an operational fault isolation expert system for French telecommunication satellite Telecom 2

    NASA Astrophysics Data System (ADS)

    Haziza, M.

    1990-10-01

    The DIAMS satellite fault isolation expert system shell concept is described. The project, initiated in 1985, has led to the development of a prototype Expert System (ES) dedicated to the Telecom 1 attitude and orbit control system. The prototype ES has been installed in the Telecom 1 satellite control center and evaluated by Telecom 1 operations. The development of a fault isolation ES covering a whole spacecraft (the French telecommunication satellite Telecom 2) is currently being undertaken. Full scale industrial applications raise stringent requirements in terms of knowledge management and software development methodology. The approach used by MATRA ESPACE to face this challenge is outlined.

  10. How Do Normal Faults Grow?

    NASA Astrophysics Data System (ADS)

    Jackson, C. A. L.; Bell, R. E.; Rotevatn, A.; Tvedt, A. B. M.

    2015-12-01

    Normal faulting accommodates stretching of the Earth's crust and is one of the fundamental controls on landscape evolution and sediment dispersal in rift basins. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate that, in the case of seismic-scale growth faults, growth strata thickness patterns and relay zone kinematics, rather than displacement backstripping, should be assessed to directly constrain fault length and thus tip behaviour through time. We conclude that rapid length establishment prior to displacement accumulation may be more common than is typically assumed, thus challenging the well-established, widely cited and perhaps overused, isolated fault model.

  11. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    PubMed Central

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  12. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  13. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  14. Functional requirements for an intelligent RPC. [remote power controller for spaceborne electrical distribution system

    NASA Technical Reports Server (NTRS)

    Aucoin, B. M.; Heller, R. P.

    1990-01-01

    An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.

  15. A model-based executive for commanding robot teams

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2005-01-01

    The paper presents a way to robustly command a system of systems as a single entity. Instead of modeling each component system in isolation and then manually crafting interaction protocols, this approach starts with a model of the collective population as a single system. By compiling the model into separate elements for each component system and utilizing a teamwork model for coordination, it circumvents the complexities of manually crafting robust interaction protocols. The resulting systems are both globally responsive by virtue of a team oriented interaction model and locally responsive by virtue of a distributed approach to model-based fault detection, isolation, and recovery.

  16. Measurement of fault latency in a digital avionic miniprocessor

    NASA Technical Reports Server (NTRS)

    Mcgough, J. G.; Swern, F. L.

    1981-01-01

    The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test.

  17. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    PubMed

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  18. Modeling of a latent fault detector in a digital system

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.

    1978-01-01

    Methods of modeling the detection time or latency period of a hardware fault in a digital system are proposed that explain how a computer detects faults in a computational mode. The objectives were to study how software reacts to a fault, to account for as many variables as possible affecting detection and to forecast a given program's detecting ability prior to computation. A series of experiments were conducted on a small emulated microprocessor with fault injection capability. Results indicate that the detecting capability of a program largely depends on the instruction subset used during computation and the frequency of its use and has little direct dependence on such variables as fault mode, number set, degree of branching and program length. A model is discussed which employs an analog with balls in an urn to explain the rate of which subsequent repetitions of an instruction or instruction set detect a given fault.

  19. Prognostics & Health Management: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.

    2015-01-01

    How can advanced automation techniques developed by NASA to perform Fault Detection, Isolation, and Recovery (FDIR) in space missions be used here on Earth in the Oil & Gas industry? Whether on a Mars orbiter or an oil platform, having an intelligent machine to back up the crew/operators to help monitor and diagnose the systems for possible problems and aid in determining a corrective action/response is an important and useful attribute for multiple industries.

  20. An overview of the artificial intelligence and expert systems component of RICIS

    NASA Technical Reports Server (NTRS)

    Feagin, Terry

    1987-01-01

    Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.

  1. Integrated rate isolation sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye (Inventor); Henderson, Timothy (Inventor); Phillips, Richard (Inventor); Zimpfer, Doug (Inventor); Crain, Tim (Inventor)

    2012-01-01

    In one embodiment, a system for providing fault-tolerant inertial measurement data includes a sensor for measuring an inertial parameter and a processor. The sensor has less accuracy than a typical inertial measurement unit (IMU). The processor detects whether a difference exists between a first data stream received from a first inertial measurement unit and a second data stream received from a second inertial measurement unit. Upon detecting a difference, the processor determines whether at least one of the first or second inertial measurement units has failed by comparing each of the first and second data streams to the inertial parameter.

  2. A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering

    NASA Astrophysics Data System (ADS)

    Ushaq, Muhammad; Fang, Jiancheng

    2013-10-01

    Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be applied to the navigation system of aircraft or unmanned aerial vehicle (UAV).

  3. Potential fault region detection in TFDS images based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Sun, Junhua; Xiao, Zhongwen

    2016-10-01

    In recent years, more than 300 sets of Trouble of Running Freight Train Detection System (TFDS) have been installed on railway to monitor the safety of running freight trains in China. However, TFDS is simply responsible for capturing, transmitting, and storing images, and fails to recognize faults automatically due to some difficulties such as such as the diversity and complexity of faults and some low quality images. To improve the performance of automatic fault recognition, it is of great importance to locate the potential fault areas. In this paper, we first introduce a convolutional neural network (CNN) model to TFDS and propose a potential fault region detection system (PFRDS) for simultaneously detecting four typical types of potential fault regions (PFRs). The experimental results show that this system has a higher performance of image detection to PFRs in TFDS. An average detection recall of 98.95% and precision of 100% are obtained, demonstrating the high detection ability and robustness against various poor imaging situations.

  4. Fault Detection for Nonlinear Process With Deterministic Disturbances: A Just-In-Time Learning Based Data Driven Method.

    PubMed

    Yin, Shen; Gao, Huijun; Qiu, Jianbin; Kaynak, Okyay

    2017-11-01

    Data-driven fault detection plays an important role in industrial systems due to its applicability in case of unknown physical models. In fault detection, disturbances must be taken into account as an inherent characteristic of processes. Nevertheless, fault detection for nonlinear processes with deterministic disturbances still receive little attention, especially in data-driven field. To solve this problem, a just-in-time learning-based data-driven (JITL-DD) fault detection method for nonlinear processes with deterministic disturbances is proposed in this paper. JITL-DD employs JITL scheme for process description with local model structures to cope with processes dynamics and nonlinearity. The proposed method provides a data-driven fault detection solution for nonlinear processes with deterministic disturbances, and owns inherent online adaptation and high accuracy of fault detection. Two nonlinear systems, i.e., a numerical example and a sewage treatment process benchmark, are employed to show the effectiveness of the proposed method.

  5. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.

  6. A Thermal Expert System (TEXSYS) development overview - AI-based control of a Space Station prototype thermal bus

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hack, E. C.

    1990-01-01

    A knowledge-based control system for real-time control and fault detection, isolation and recovery (FDIR) of a prototype two-phase Space Station Freedom external thermal control system (TCS) is discussed in this paper. The Thermal Expert System (TEXSYS) has been demonstrated in recent tests to be capable of both fault anticipation and detection and real-time control of the thermal bus. Performance requirements were achieved by using a symbolic control approach, layering model-based expert system software on a conventional numerical data acquisition and control system. The model-based capabilities of TEXSYS were shown to be advantageous during software development and testing. One representative example is given from on-line TCS tests of TEXSYS. The integration and testing of TEXSYS with a live TCS testbed provides some insight on the use of formal software design, development and documentation methodologies to qualify knowledge-based systems for on-line or flight applications.

  7. Distributed adaptive neural network control for a class of heterogeneous nonlinear multi-agent systems subject to actuation failures

    NASA Astrophysics Data System (ADS)

    Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi

    2017-02-01

    In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.

  8. Aircraft engine sensor fault diagnostics using an on-line OBEM update method.

    PubMed

    Liu, Xiaofeng; Xue, Naiyu; Yuan, Ye

    2017-01-01

    This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM) to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI) system, in which a Hybrid Kalman Filter (HKF) was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV) model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault.

  9. Aircraft engine sensor fault diagnostics using an on-line OBEM update method

    PubMed Central

    Liu, Xiaofeng; Xue, Naiyu; Yuan, Ye

    2017-01-01

    This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM) to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI) system, in which a Hybrid Kalman Filter (HKF) was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV) model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault. PMID:28182692

  10. On the design of fault-tolerant robotic manipulator systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert

    1993-01-01

    Robotic systems are finding increasing use in space applications. Many of these devices are going to be operational on board the Space Station Freedom. Fault tolerance has been deemed necessary because of the criticality of the tasks and the inaccessibility of the systems to maintenance and repair. Design for fault tolerance in manipulator systems is an area within robotics that is without precedence in the literature. In this paper, we will attempt to lay down the foundations for such a technology. Design for fault tolerance demands new and special approaches to design, often at considerable variance from established design practices. These design aspects, together with reliability evaluation and modeling tools, are presented. Mechanical architectures that employ protective redundancies at many levels and have a modular architecture are then studied in detail. Once a mechanical architecture for fault tolerance has been derived, the chronological stages of operational fault tolerance are investigated. Failure detection, isolation, and estimation methods are surveyed, and such methods for robot sensors and actuators are derived. Failure recovery methods are also presented for each of the protective layers of redundancy. Failure recovery tactics often span all of the layers of a control hierarchy. Thus, a unified framework for decision-making and control, which orchestrates both the nominal redundancy management tasks and the failure management tasks, has been derived. The well-developed field of fault-tolerant computers is studied next, and some design principles relevant to the design of fault-tolerant robot controllers are abstracted. Conclusions are drawn, and a road map for the design of fault-tolerant manipulator systems is laid out with recommendations for a 10 DOF arm with dual actuators at each joint.

  11. How do normal faults grow?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette

    2016-04-01

    Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate that, in the case of seismic-scale growth faults, growth strata thickness patterns and relay zone kinematics, rather than displacement backstripping, should be assessed to directly constrain fault length and thus tip behaviour through time. We conclude that rapid length establishment prior to displacement accumulation may be more common than is typically assumed, thus challenging the well-established, widely cited and perhaps overused, isolated fault model.

  12. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

  13. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  14. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    PubMed Central

    Moghadas, Amin A.; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  15. Methanogenic archaea isolated from Taiwan's Chelungpu fault.

    PubMed

    Wu, Sue-Yao; Lai, Mei-Chin

    2011-02-01

    Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the subsurface environment.

  16. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  17. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  18. A Kalman Filter Based Technique for Stator Turn-Fault Detection of the Induction Motors

    NASA Astrophysics Data System (ADS)

    Ghanbari, Teymoor; Samet, Haidar

    2017-11-01

    Monitoring of the Induction Motors (IMs) through stator current for different faults diagnosis has considerable economic and technical advantages in comparison with the other techniques in this content. Among different faults of an IM, stator and bearing faults are more probable types, which can be detected by analyzing signatures of the stator currents. One of the most reliable indicators for fault detection of IMs is lower sidebands of power frequency in the stator currents. This paper deals with a novel simple technique for detecting stator turn-fault of the IMs. Frequencies of the lower sidebands are determined using the motor specifications and their amplitudes are estimated by a Kalman Filter (KF). Instantaneous Total Harmonic Distortion (ITHD) of these harmonics is calculated. Since variation of the ITHD for the three-phase currents is considerable in case of stator turn-fault, the fault can be detected using this criterion, confidently. Different simulation results verify high performance of the proposed method. The performance of the method is also confirmed using some experiments.

  19. An uncertainty-based distributed fault detection mechanism for wireless sensor networks.

    PubMed

    Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong

    2014-04-25

    Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio.

  20. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  1. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    PubMed

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Expert System Detects Power-Distribution Faults

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Quinn, Todd M.

    1994-01-01

    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  3. Detection of CMOS bridging faults using minimal stuck-at fault test sets

    NASA Technical Reports Server (NTRS)

    Ijaz, Nabeel; Frenzel, James F.

    1993-01-01

    The performance of minimal stuck-at fault test sets at detecting bridging faults are evaluated. New functional models of circuit primitives are presented which allow accurate representation of bridging faults under switch-level simulation. The effectiveness of the patterns is evaluated using both voltage and current testing.

  4. Robust fault-tolerant tracking control design for spacecraft under control input saturation.

    PubMed

    Bustan, Danyal; Pariz, Naser; Sani, Seyyed Kamal Hosseini

    2014-07-01

    In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Online model-based diagnosis to support autonomous operation of an advanced life support system.

    PubMed

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  6. Online model-based diagnosis to support autonomous operation of an advanced life support system

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  7. An experimental investigation of fault tolerant software structures in an avionics application

    NASA Technical Reports Server (NTRS)

    Caglayan, Alper K.; Eckhardt, Dave E., Jr.

    1989-01-01

    The objective of this experimental investigation is to compare the functional performance and software reliability of competing fault tolerant software structures utilizing software diversity. In this experiment, three versions of the redundancy management software for a skewed sensor array have been developed using three diverse failure detection and isolation algorithms and incorporated into various N-version, recovery block and hybrid software structures. The empirical results show that, for maximum functional performance improvement in the selected application domain, the results of diverse algorithms should be voted before being processed by multiple versions without enforced diversity. Results also suggest that when the reliability gain with an N-version structure is modest, recovery block structures are more feasible since higher reliability can be obtained using an acceptance check with a modest reliability.

  8. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks.

    PubMed

    Li, Yunji; Wu, QingE; Peng, Li

    2018-01-23

    In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  9. Turbine Engine Fault Detection and Isolation Program. Volume I. Turbine Engine Performance Estimation Methods

    DTIC Science & Technology

    1982-08-01

    DATA NUMBER OF POINTS 1988 CHANNEL MINIMUM MAXIMUM 1 PHMG -130.13 130.00 2 PS3 -218.12 294.77 3 T3 -341.54 738.15 4 T5 -464.78 623.47 5 PT51 12.317...Continued) CRUISE AND TAKE-OFF MODE DATA I NUMBER OF POINTS 4137 CHANNEL MINIMUM MAXIMUM 1 PHMG -130.13 130.00 2 P53 -218.12 376.60 3 T3 -482.72

  10. Space shuttle propulsion systems on-board checkout and monitoring system development study (extension). Volume 1: Summary and technical results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis was conducted of the space shuttle propulsion systems to define the onboard checkout and monitoring function. A baseline space shuttle vehicle and mission were used to establish the techniques and approach for defining the requirements. The requirements were analyzed to formulate criteria for implementing the functions of preflight checkout, performance monitoring, fault isolation, emergency detection, display, data storage, postflight evaluation, and maintenance retest.

  11. Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters

    NASA Astrophysics Data System (ADS)

    Ghasemi, S.; Khorasani, K.

    2015-10-01

    In this paper, the problem of fault detection and isolation (FDI) of the attitude control subsystem (ACS) of spacecraft formation flying systems is considered. For developing the FDI schemes, an extended Kalman filter (EKF) is utilised which belongs to a class of nonlinear state estimation methods. Three architectures, namely centralised, decentralised, and semi-decentralised, are considered and the corresponding FDI strategies are designed and constructed. Appropriate residual generation techniques and threshold selection criteria are proposed for these architectures. The capabilities of the proposed architectures for accomplishing the FDI tasks are studied through extensive numerical simulations for a team of four satellites in formation flight. Using a confusion matrix evaluation criterion, it is shown that the centralised architecture can achieve the most reliable results relative to the semi-decentralised and decentralised architectures at the expense of availability of a centralised processing module that requires the entire team information set. On the other hand, the semi-decentralised performance is close to the centralised scheme without relying on the availability of the entire team information set. Furthermore, the results confirm that the FDI results in formations with angular velocity measurement sensors achieve higher level of accuracy, true faulty, and precision, along with lower level of false healthy misclassification as compared to the formations that utilise attitude measurement sensors.

  12. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  13. Fault Analysis and Detection in Microgrids with High PV Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Khatib, Mohamed; Hernandez Alvidrez, Javier; Ellis, Abraham

    In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgridmore » modes of operation.« less

  14. Dynamic modeling of gearbox faults: A review

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zuo, Ming J.; Feng, Zhipeng

    2018-01-01

    Gearbox is widely used in industrial and military applications. Due to high service load, harsh operating conditions or inevitable fatigue, faults may develop in gears. If the gear faults cannot be detected early, the health will continue to degrade, perhaps causing heavy economic loss or even catastrophe. Early fault detection and diagnosis allows properly scheduled shutdowns to prevent catastrophic failure and consequently result in a safer operation and higher cost reduction. Recently, many studies have been done to develop gearbox dynamic models with faults aiming to understand gear fault generation mechanism and then develop effective fault detection and diagnosis methods. This paper focuses on dynamics based gearbox fault modeling, detection and diagnosis. State-of-art and challenges are reviewed and discussed. This detailed literature review limits research results to the following fundamental yet key aspects: gear mesh stiffness evaluation, gearbox damage modeling and fault diagnosis techniques, gearbox transmission path modeling and method validation. In the end, a summary and some research prospects are presented.

  15. Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions - 2D generic models with a small isolated fault

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel

    2016-12-01

    This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.

  16. A Solid-State Fault Current Limiting Device for VSC-HVDC Systems

    NASA Astrophysics Data System (ADS)

    Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz

    2013-08-01

    Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.

  17. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  18. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Koga, Dennis (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  19. An Uncertainty-Based Distributed Fault Detection Mechanism for Wireless Sensor Networks

    PubMed Central

    Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong

    2014-01-01

    Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio. PMID:24776937

  20. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    NASA Astrophysics Data System (ADS)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.

  1. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  2. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  3. A testing-coverage software reliability model considering fault removal efficiency and error generation.

    PubMed

    Li, Qiuying; Pham, Hoang

    2017-01-01

    In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.

  4. Fault detection of helicopter gearboxes using the multi-valued influence matrix method

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1993-01-01

    In this paper we investigate the effectiveness of a pattern classifying fault detection system that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes. For detection, the measurements are monitored on-line and flagged upon the detection of abnormalities, so that they can be attributed to a faulty or normal case. As such, the detection system is composed of two components, a quantization matrix to flag the measurements, and a multi-valued influence matrix (MVIM) that represents the behavior of measurements during normal operation and at fault instances. Both the quantization matrix and influence matrix are tuned during a training session so as to minimize the error in detection. To demonstrate the effectiveness of this detection system, it was applied to vibration measurements collected from a helicopter gearbox during normal operation and at various fault instances. The results indicate that the MVIM method provides excellent results when the full range of faults effects on the measurements are included in the training set.

  5. Fault recovery for real-time, multi-tasking computer system

    NASA Technical Reports Server (NTRS)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  6. An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors

    NASA Astrophysics Data System (ADS)

    Li, De Z.; Wang, Wilson; Ismail, Fathy

    2017-11-01

    Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.

  7. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  8. Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner

    NASA Astrophysics Data System (ADS)

    Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2014-10-01

    Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be advantageous but, the achieved results would already benefit scanner operators in their maintenance task.

  9. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  10. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  11. Tidal Sensitivity of Declustered Low Frequency Earthquake Families and Inferred Creep Episodes on the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Babb, A.; Thomas, A.; Bletery, Q.

    2017-12-01

    Low frequency earthquakes (LFEs) are detected at depths of 16-30 km on a 150 km section of the San Andreas Fault centered at Parkfield, CA. The LFEs are divided into 88 families based on waveform similarity. Each family is thought to represent a brittle asperity on the fault surface that repeatedly slips during aseismic slip of the surrounding fault. LFE occurrence is irregular which allows families to be divided into continuous and episodic. In continuous families a burst of a few LFE events recurs every few days while episodic families experience essentially quiescent periods often lasting months followed by bursts of hundreds of events over a few days. The occurrence of LFEs has also been shown to be sensitive to extremely small ( 1kPa) tidal stress perturbations. However, the clustered nature of LFE occurrence could potentially bias estimates of tidal sensitivity. Here we re-evaluate the tidal sensitivity of LFE families on the deep San Andreas using a declustered catalog. In this catalog LFE bursts are isolated based on the recurrence intervals between individual LFE events for each family. Preliminary analysis suggests that declustered LFE families are still highly sensitive to tidal stress perturbations, primarily right-lateral shear stress (RLSS) and to a lesser extent fault normal stress (FNS). We also find inferred creep episodes initiate preferentially during times of positive RLSS.

  12. Geometry of the 1954 Fairview Peak-Dixie Valley earthquake sequence from a joint inversion of leveling and triangulation data

    USGS Publications Warehouse

    Hodgkinson, K.M.; Stein, R.S.; Marshall, G.

    1996-01-01

    In 1954, four earthquakes greater than Ms=6.0 occurred within a 30-km radius and in a period of 6 months. Elevation and angle changes calculated from repeated leveling and triangulation surveys which span the coseismic period provide constraints on the fault geometries and coseismic slip of the faults which were activated. The quality of the coseismic geodetic data is assessed. Corrections are applied to the leveling data for subsidence due to groundwater withdrawal in the Fallon area, and a rod miscalibration error of 150??30 ppm is isolated in leveling surveys made in 1967. The leveling and triangulation observations are then simultaneously inverted using the single value decomposition (SVD) inversion method to determine fault geometries and coseismic slip. Using SVD, it is possible to determine on which faults slip is resolvable given the data distribution. The faults are found to dip between 50?? and 80?? and extend to depths of 5 to 14 km. The geodetically derived slip values are generally equal to, or greater than, the maximum observed displacement along the surface scarps. Where slip is resolvable the geodetic data indicates the 1954 sequence contained a significant component of right-lateral slip. This is consistent with the N15??W trending shear zone which geodetic surveys have detected in western Nevada. Copyright 1996 by the American Geophysical Union.

  13. Control and protection system for paralleled modular static inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1973-01-01

    A control and protection system was developed for use with a paralleled 2.5-kWe-per-module static inverter-converter system. The control and protection system senses internal and external fault parameters such as voltage, frequency, current, and paralleling current unbalance. A logic system controls contactors to isolate defective power conditioners or loads. The system sequences contactor operation to automatically control parallel operation, startup, and fault isolation. Transient overload protection and fault checking sequences are included. The operation and performance of a control and protection system, with detailed circuit descriptions, are presented.

  14. Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.

    2017-06-01

    In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.

  15. Seismic variability and structural controls on fluid migration in Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Keranen, K. M.; Stevens, N. T.

    2016-12-01

    The broad region of seismicity in northern Oklahoma encompasses distinct structural settings; notably, the area contains both high-length, high-offset faults bounding a major structural uplift (the Nemaha uplift), and also encompasses regions of distributed, low-length, low-offset faults on either side of the uplift. Seismicity differs between these structural settings in mode of migration, rate, magnitude, and mechanism. Here we use our catalog from 2015-2016, acquired using a dense network of 55 temporary broadband seismometers, complemented by data from 40+ regional stations, including the IRIS Wavefields stations. We compare seismicity between these structural settings using precise earthquake locations, focal mechanism solutions, and body-wave tomography. Within and along the dominant Nemaha uplift, earthquakes rarely occur on one of the primary uplift-bounding faults. Earthquakes instead occur within the uplift on isolated, discrete faults, and migrate gradually along these faults at 20-30 m/day. The regions peripheral to the uplift hosted the majority of earthquakes within the year, on multiple series of frequently unmapped, densely-spaced, subparallel faults. We did not detect a similar slow migration along these faults. Earthquakes instead occurred via progressive failure of individual segments along a fault, or jumped abruptly from one fault to another nearby. Mechanisms in both regions are dominantly strike-slip, with the interpreted dominant fault plane orientation rotating from N100E in the Wavefields area (west of the uplift) to N50E (within the uplift). We interpret that the distinct variation in seismicity may result from the variation in fault density and length between the uplift and the surrounding regions. Seismic velocity within the upper basement of the uplift is lower than the velocity on either side, possibly indicative of enhanced fracturing within the uplift, as seen in the Nemaha uplift to the north. The fracturing, along with the large faults, may create fluid pathways that facilitate pressure diffusion. Conversely, outside of the uplift, the numerous small-offset faults that are reactivated appear to be less efficient fluid pathways, inhibiting pressure diffusion and resulting in a higher seismicity rate.

  16. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  17. A testing-coverage software reliability model considering fault removal efficiency and error generation

    PubMed Central

    Li, Qiuying; Pham, Hoang

    2017-01-01

    In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091

  18. Fault detection of Tennessee Eastman process based on topological features and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Huiyang; Hu, Yanzhu; Ai, Xinbo; Hu, Yu; Meng, Zhen

    2018-03-01

    Fault detection in industrial process is a popular research topic. Although the distributed control system(DCS) has been introduced to monitor the state of industrial process, it still cannot satisfy all the requirements for fault detection of all the industrial systems. In this paper, we proposed a novel method based on topological features and support vector machine(SVM), for fault detection of industrial process. The proposed method takes global information of measured variables into account by complex network model and predicts whether a system has generated some faults or not by SVM. The proposed method can be divided into four steps, i.e. network construction, network analysis, model training and model testing respectively. Finally, we apply the model to Tennessee Eastman process(TEP). The results show that this method works well and can be a useful supplement for fault detection of industrial process.

  19. Event-Triggered Fault Detection of Nonlinear Networked Systems.

    PubMed

    Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping

    2017-04-01

    This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  20. A System for Fault Management for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.

  1. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.

    PubMed

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-06-20

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.

  2. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions

    PubMed Central

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-01-01

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions. PMID:28773035

  3. Robust Fault Diagnosis in Electric Drives Using Machine Learning

    DTIC Science & Technology

    2004-09-08

    detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.

  4. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  5. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  6. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators

    NASA Astrophysics Data System (ADS)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.

  7. A Sparsity-based Framework for Resolution Enhancement in Optical Fault Analysis of Integrated Circuits

    DTIC Science & Technology

    2015-01-01

    for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of

  8. Creating an automated chiller fault detection and diagnostics tool using a data fault library.

    PubMed

    Bailey, Margaret B; Kreider, Jan F

    2003-07-01

    Reliable, automated detection and diagnosis of abnormal behavior within vapor compression refrigeration cycle (VCRC) equipment is extremely desirable for equipment owners and operators. The specific type of VCRC equipment studied in this paper is a 70-ton helical rotary, air-cooled chiller. The fault detection and diagnostic (FDD) tool developed as part of this research analyzes chiller operating data and detects faults through recognizing trends or patterns existing within the data. The FDD method incorporates a neural network (NN) classifier to infer the current state given a vector of observables. Therefore the FDD method relies upon the availability of normal and fault empirical data for training purposes and therefore a fault library of empirical data is assembled. This paper presents procedures for conducting sophisticated fault experiments on chillers that simulate air-cooled condenser, refrigerant, and oil related faults. The experimental processes described here are not well documented in literature and therefore will provide the interested reader with a useful guide. In addition, the authors provide evidence, based on both thermodynamics and empirical data analysis, that chiller performance is significantly degraded during fault operation. The chiller's performance degradation is successfully detected and classified by the NN FDD classifier as discussed in the paper's final section.

  9. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  10. NASA IVHM Technology Experiment for X-vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Sandra, Hayden; Bajwa, Anupa

    2001-01-01

    The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.

  11. Intelligent Engine Systems Work Element 1.3: Sub System Health Management

    NASA Technical Reports Server (NTRS)

    Ashby, Malcolm; Simpson, Jeffrey; Singh, Anant; Ferguson, Emily; Frontera, mark

    2005-01-01

    The objectives of this program were to develop health monitoring systems and physics-based fault detection models for engine sub-systems including the start, lubrication, and fuel. These models will ultimately be used to provide more effective sub-system fault identification and isolation to reduce engine maintenance costs and engine down-time. Additionally, the bearing sub-system health is addressed in this program through identification of sensing requirements, a review of available technologies and a demonstration of a demonstration of a conceptual monitoring system for a differential roller bearing. This report is divided into four sections; one for each of the subtasks. The start system subtask is documented in section 2.0, the oil system is covered in section 3.0, bearing in section 4.0, and the fuel system is presented in section 5.0.

  12. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..

  13. Multiple fault separation and detection by joint subspace learning for the health assessment of wind turbine gearboxes

    NASA Astrophysics Data System (ADS)

    Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Zi, Yanyang; Yan, Ruqiang

    2017-09-01

    The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurrence of multiple faults in gearbox components is a common phenomenon due to fault induction mechanism. This problem should be considered before planning to replace the components of the WT gearbox. Therefore, the key fault patterns should be reliably identified from noisy observation data for the development of an effective maintenance strategy. However, most of the existing studies focusing on multiple fault diagnosis always suffer from inappropriate division of fault information in order to satisfy various rigorous decomposition principles or statistical assumptions, such as the smooth envelope principle of ensemble empirical mode decomposition and the mutual independence assumption of independent component analysis. Thus, this paper presents a joint subspace learning-based multiple fault detection (JSL-MFD) technique to construct different subspaces adaptively for different fault patterns. Its main advantage is its capability to learn multiple fault subspaces directly from the observation signal itself. It can also sparsely concentrate the feature information into a few dominant subspace coefficients. Furthermore, it can eliminate noise by simply performing coefficient shrinkage operations. Consequently, multiple fault patterns are reliably identified by utilizing the maximum fault information criterion. The superiority of JSL-MFD in multiple fault separation and detection is comprehensively investigated and verified by the analysis of a data set of a 750 kW WT gearbox. Results show that JSL-MFD is superior to a state-of-the-art technique in detecting hidden fault patterns and enhancing detection accuracy.

  14. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  15. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  16. Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zolghadri, Ali

    2012-08-01

    This paper discusses some trends and recent advances in model-based Fault Detection, Isolation and Recovery (FDIR) for aerospace systems. The FDIR challenges range from pre-design and design stages for upcoming and new programs, to improvement of the performance of in-service flying systems. For space missions, optimization of flight conditions and safe operation is intrinsically related to GNC (Guidance, Navigation & Control) system of the spacecraft and includes sensors and actuators monitoring. Many future space missions will require autonomous proximity operations including fault diagnosis and the subsequent control and guidance recovery actions. For upcoming and future aircraft, one of the main issues is how early and robust diagnosis of some small and subtle faults could contribute to the overall optimization of aircraft design. This issue would be an important factor for anticipating the more and more stringent requirements which would come in force for future environmentally-friendlier programs. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry.

  17. Development of a morphological convolution operator for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Liu, Weiwei; Wang, Yan

    2018-05-01

    This paper presents a novel signal processing scheme, namely morphological convolution operator (MCO) lifted morphological undecimated wavelet (MUDW), for rolling element bearing fault detection. In this scheme, a MCO is first designed to fully utilize the advantage of the closing & opening gradient operator and the closing-opening & opening-closing gradient operator for feature extraction as well as the merit of excellent denoising characteristics of the convolution operator. The MCO is then introduced into MUDW for the purpose of improving the fault detection ability of the reported MUDWs. Experimental vibration signals collected from a train wheelset test rig and the bearing data center of Case Western Reserve University are employed to evaluate the effectiveness of the proposed MCO lifted MUDW on fault detection of rolling element bearings. The results show that the proposed approach has a superior performance in extracting fault features of defective rolling element bearings. In addition, comparisons are performed between two reported MUDWs and the proposed MCO lifted MUDW. The MCO lifted MUDW outperforms both of them in detection of outer race faults and inner race faults of rolling element bearings.

  18. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    NASA Astrophysics Data System (ADS)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.

  19. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  20. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  1. Switch failure diagnosis based on inductor current observation for boost converters

    NASA Astrophysics Data System (ADS)

    Jamshidpour, E.; Poure, P.; Saadate, S.

    2016-09-01

    Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.

  2. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Boutros, Tony; Liang, Ming

    2011-08-01

    Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.

  3. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  4. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    PubMed Central

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  5. Development of Hydrologic Characterization Technology of Fault Zones (in Japanese; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two tomore » three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.« less

  6. Intelligent fault isolation and diagnosis for communication satellite systems

    NASA Technical Reports Server (NTRS)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  7. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  8. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    PubMed

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  9. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  10. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  11. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults

    NASA Astrophysics Data System (ADS)

    Golafshan, Reza; Yuce Sanliturk, Kenan

    2016-03-01

    Ball bearings remain one of the most crucial components in industrial machines and due to their critical role, it is of great importance to monitor their conditions under operation. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. This incapability in identifying the faults makes the de-noising process one of the most essential steps in the field of Condition Monitoring (CM) and fault detection. In the present study, Singular Value Decomposition (SVD) and Hankel matrix based de-noising process is successfully applied to the ball bearing time domain vibration signals as well as to their spectrums for the elimination of the background noise and the improvement the reliability of the fault detection process. The test cases conducted using experimental as well as the simulated vibration signals demonstrate the effectiveness of the proposed de-noising approach for the ball bearing fault detection.

  12. A Vibration-Based Approach for Stator Winding Fault Diagnosis of Induction Motors: Application of Envelope Analysis

    DTIC Science & Technology

    2014-10-02

    takes it either as auxiliary to magnetic flux, or is not able to detect the winding faults unless severity is already quite significant. This paper...different loads, speeds and severity levels. The experimental results show that the proposed method was able to detect inter-turn faults in the...maintenance strategy requires the technologies of: (a) on- line condition monitoring, (b) fault detection and diagnosis, and (c) prognostics. Figure 1

  13. A review on data-driven fault severity assessment in rolling bearings

    NASA Astrophysics Data System (ADS)

    Cerrada, Mariela; Sánchez, René-Vinicio; Li, Chuan; Pacheco, Fannia; Cabrera, Diego; Valente de Oliveira, José; Vásquez, Rafael E.

    2018-01-01

    Health condition monitoring of rotating machinery is a crucial task to guarantee reliability in industrial processes. In particular, bearings are mechanical components used in most rotating devices and they represent the main source of faults in such equipments; reason for which research activities on detecting and diagnosing their faults have increased. Fault detection aims at identifying whether the device is or not in a fault condition, and diagnosis is commonly oriented towards identifying the fault mode of the device, after detection. An important step after fault detection and diagnosis is the analysis of the magnitude or the degradation level of the fault, because this represents a support to the decision-making process in condition based-maintenance. However, no extensive works are devoted to analyse this problem, or some works tackle it from the fault diagnosis point of view. In a rough manner, fault severity is associated with the magnitude of the fault. In bearings, fault severity can be related to the physical size of fault or a general degradation of the component. Due to literature regarding the severity assessment of bearing damages is limited, this paper aims at discussing the recent methods and techniques used to achieve the fault severity evaluation in the main components of the rolling bearings, such as inner race, outer race, and ball. The review is mainly focused on data-driven approaches such as signal processing for extracting the proper fault signatures associated with the damage degradation, and learning approaches that are used to identify degradation patterns with regards to health conditions. Finally, new challenges are highlighted in order to develop new contributions in this field.

  14. Fault Diagnosis in HVAC Chillers

    NASA Technical Reports Server (NTRS)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  15. Automatic Fault Characterization via Abnormality-Enhanced Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less

  16. Nonlinear analysis of r.c. framed buildings retrofitted with elastomeric and friction bearings under near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Mazza, Mirko

    2015-12-01

    Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifications and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the superstructure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber bearings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal components of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high values of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction bearings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.

  17. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  18. A study of fault prediction and reliability assessment in the SEL environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Patnaik, Debabrata

    1986-01-01

    An empirical study on estimation and prediction of faults, prediction of fault detection and correction effort, and reliability assessment in the Software Engineering Laboratory environment (SEL) is presented. Fault estimation using empirical relationships and fault prediction using curve fitting method are investigated. Relationships between debugging efforts (fault detection and correction effort) in different test phases are provided, in order to make an early estimate of future debugging effort. This study concludes with the fault analysis, application of a reliability model, and analysis of a normalized metric for reliability assessment and reliability monitoring during development of software.

  19. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants

    NASA Astrophysics Data System (ADS)

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.

  20. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants.

    PubMed

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.

  1. Negative Selection Algorithm for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.

  2. Fault Tolerance Middleware for a Multi-Core System

    NASA Technical Reports Server (NTRS)

    Some, Raphael R.; Springer, Paul L.; Zima, Hans P.; James, Mark; Wagner, David A.

    2012-01-01

    Fault Tolerance Middleware (FTM) provides a framework to run on a dedicated core of a multi-core system and handles detection of single-event upsets (SEUs), and the responses to those SEUs, occurring in an application running on multiple cores of the processor. This software was written expressly for a multi-core system and can support different kinds of fault strategies, such as introspection, algorithm-based fault tolerance (ABFT), and triple modular redundancy (TMR). It focuses on providing fault tolerance for the application code, and represents the first step in a plan to eventually include fault tolerance in message passing and the FTM itself. In the multi-core system, the FTM resides on a single, dedicated core, separate from the cores used by the application. This is done in order to isolate the FTM from application faults and to allow it to swap out any application core for a substitute. The structure of the FTM consists of an interface to a fault tolerant strategy module, a responder module, a fault manager module, an error factory, and an error mapper that determines the severity of the error. In the present reference implementation, the only fault tolerant strategy implemented is introspection. The introspection code waits for an application node to send an error notification to it. It then uses the error factory to create an error object, and at this time, a severity level is assigned to the error. The introspection code uses its built-in knowledge base to generate a recommended response to the error. Responses might include ignoring the error, logging it, rolling back the application to a previously saved checkpoint, swapping in a new node to replace a bad one, or restarting the application. The original error and recommended response are passed to the top-level fault manager module, which invokes the response. The responder module also notifies the introspection module of the generated response. This provides additional information to the introspection module that it can use in generating its next response. For example, if the responder triggers an application rollback and errors are still occurring, the introspection module may decide to recommend an application restart.

  3. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  4. Trapped Ion Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunz, Peter; Wilhelm, Lukas

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systemsmore » of 5 to 15 qubits [6–8].« less

  5. Fault Tree Analysis: Its Implications for Use in Education.

    ERIC Educational Resources Information Center

    Barker, Bruce O.

    This study introduces the concept of Fault Tree Analysis as a systems tool and examines the implications of Fault Tree Analysis (FTA) as a technique for isolating failure modes in educational systems. A definition of FTA and discussion of its history, as it relates to education, are provided. The step by step process for implementation and use of…

  6. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  7. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    PubMed Central

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  8. Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality

    NASA Astrophysics Data System (ADS)

    Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.

    2018-03-01

    This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For deriving high quality short test suites, the approach that is the combination of randomly generated sequences together with sequences which are aimed to detect faults not detected by random tests, allows to reach the good fault coverage using shortest test sequences.

  9. Fault detection in mechanical systems with friction phenomena: an online neural approximation approach.

    PubMed

    Papadimitropoulos, Adam; Rovithakis, George A; Parisini, Thomas

    2007-07-01

    In this paper, the problem of fault detection in mechanical systems performing linear motion, under the action of friction phenomena is addressed. The friction effects are modeled through the dynamic LuGre model. The proposed architecture is built upon an online neural network (NN) approximator, which requires only system's position and velocity. The friction internal state is not assumed to be available for measurement. The neural fault detection methodology is analyzed with respect to its robustness and sensitivity properties. Rigorous fault detectability conditions and upper bounds for the detection time are also derived. Extensive simulation results showing the effectiveness of the proposed methodology are provided, including a real case study on an industrial actuator.

  10. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.

  11. Transient Region Coverage in the Propulsion IVHM Technology Experiment

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Sweet, Adam; Bajwa, Anupa; Maul, William; Fulton, Chris; Chicatelli, amy

    2004-01-01

    Over the last several years researchers at NASA Glenn and Ames Research Centers have developed a real-time fault detection and isolation system for propulsion subsystems of future space vehicles. The Propulsion IVHM Technology Experiment (PITEX), as it is called follows the model-based diagnostic methodology and employs Livingstone, developed at NASA Ames, as its reasoning engine. The system has been tested on,flight-like hardware through a series of nominal and fault scenarios. These scenarios have been developed using a highly detailed simulation of the X-34 flight demonstrator main propulsion system and include realistic failures involving valves, regulators, microswitches, and sensors. This paper focuses on one of the recent research and development efforts under PITEX - to provide more complete transient region coverage. It describes the development of the transient monitors, the corresponding modeling methodology, and the interface software responsible for coordinating the flow of information between the quantitative monitors and the qualitative, discrete representation Livingstone.

  12. SIRU utilization. Volume 2: Software description and program documentation

    NASA Technical Reports Server (NTRS)

    Oehrle, J.; Whittredge, R.

    1973-01-01

    A complete description of the additional analysis, development and evaluation provided for the SIRU system as identified in the requirements for the SIRU utilization program is presented. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The modules are mounted in this package so that their measurement input axes form a unique symmetrical pattern that corresponds to the array of perpendiculars to the faces of a regular dodecahedron. This six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. Documentation of the additional software and software modifications required to implement the utilization capabilities includes assembly listings and flow charts

  13. TES: A modular systems approach to expert system development for real-time space applications

    NASA Technical Reports Server (NTRS)

    Cacace, Ralph; England, Brenda

    1988-01-01

    A major goal of the Space Station era is to reduce reliance on support from ground based experts. The development of software programs using expert systems technology is one means of reaching this goal without requiring crew members to become intimately familiar with the many complex spacecraft subsystems. Development of an expert systems program requires a validation of the software with actual flight hardware. By combining accurate hardware and software modelling techniques with a modular systems approach to expert systems development, the validation of these software programs can be successfully completed with minimum risk and effort. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation tasks as they would otherwise be carried out by a knowledgeable designer. The development process and primary features of TES, a modular systems approach, and the lessons learned are discussed.

  14. Intelligent Control and Health Monitoring. Chapter 3

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  15. Observer synthesis for a class of Takagi-Sugeno descriptor system with unmeasurable premise variable. Application to fault diagnosis

    NASA Astrophysics Data System (ADS)

    López-Estrada, F. R.; Astorga-Zaragoza, C. M.; Theilliol, D.; Ponsart, J. C.; Valencia-Palomo, G.; Torres, L.

    2017-12-01

    This paper proposes a methodology to design a Takagi-Sugeno (TS) descriptor observer for a class of TS descriptor systems. Unlike the popular approach that considers measurable premise variables, this paper considers the premise variables depending on unmeasurable vectors, e.g. the system states. This consideration covers a large class of nonlinear systems and represents a real challenge for the observer synthesis. Sufficient conditions to guarantee robustness against the unmeasurable premise variables and asymptotic convergence of the TS descriptor observer are obtained based on the H∞ approach together with the Lyapunov method. As a result, the designing conditions are given in terms of linear matrix inequalities (LMIs). In addition, sensor fault detection and isolation are performed by means of a generalised observer bank. Two numerical experiments, an electrical circuit and a rolling disc system, are presented in order to illustrate the effectiveness of the proposed method.

  16. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    NASA Astrophysics Data System (ADS)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a multi-scale wear model to explain the evolution of faults with displacement. We suggest that together, asperity failure as a scale invariant process, and the stochastic strength of host rocks are consistent with qualitative and quantitative observational constraints made in this study.

  17. On-line early fault detection and diagnosis of municipal solid waste incinerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Jinsong; Huang Jianchao; Sun Wei

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows thatmore » automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.« less

  18. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  19. Thermal Control System Automation Project (TCSAP)

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.

    1991-01-01

    Information is given in viewgraph form on the Space Station Freedom (SSF) Thermal Control System Automation Project (TCSAP). Topics covered include the assembly of the External Thermal Control System (ETCS); the ETCS functional schematic; the baseline Fault Detection, Isolation, and Recovery (FDIR), including the development of a knowledge based system (KBS) for application of rule based reasoning to the SSF ETCS; TCSAP software architecture; the High Fidelity Simulator architecture; the TCSAP Runtime Object Database (RODB) data flow; KBS functional architecture and logic flow; TCSAP growth and evolution; and TCSAP relationships.

  20. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  1. Arc Fault Detection & Localization by Electromagnetic-Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Vasile, C.; Ioana, C.

    2017-05-01

    Electrical arc faults that occur in photovoltaic systems represent a danger due to their economic impact on production and distribution. In this paper we propose a complete system, with focus on the methodology, that enables the detection and localization of the arc fault, by the use of an electromagnetic-acoustic sensing system. By exploiting the multiple emissions of the arc fault, in conjunction with a real-time detection signal processing method, we ensure accurate detection and localization. In its final form, this present work will present in greater detail the complete system, the methods employed, results and performance, alongside further works that will be carried on.

  2. Fast and accurate spectral estimation for online detection of partial broken bar in induction motors

    NASA Astrophysics Data System (ADS)

    Samanta, Anik Kumar; Naha, Arunava; Routray, Aurobinda; Deb, Alok Kanti

    2018-01-01

    In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.

  3. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals

    PubMed Central

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-01-01

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858

  4. Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network

    NASA Astrophysics Data System (ADS)

    Raj, Nithin; Jagadanand, G.; George, Saly

    2018-04-01

    The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.

  5. A novel end-to-end fault detection and localization protocol for wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Zeng, Hongqing; Vukovic, Alex; Huang, Changcheng

    2005-09-01

    Recently the wavelength division multiplexing (WDM) networks are becoming prevalent for telecommunication networks. However, even a very short disruption of service caused by network faults may lead to high data loss in such networks due to the high date rates, increased wavelength numbers and density. Therefore, the network survivability is critical and has been intensively studied, where fault detection and localization is the vital part but has received disproportional attentions. In this paper we describe and analyze an end-to-end lightpath fault detection scheme in data plane with the fault notification in control plane. The endeavor is focused on reducing the fault detection time. In this protocol, the source node of each lightpath keeps sending hello packets to the destination node exactly following the path for data traffic. The destination node generates an alarm once a certain number of consecutive hello packets are missed within a given time period. Then the network management unit collects all alarms and locates the faulty source based on the network topology, as well as sends fault notification messages via control plane to either the source node or all upstream nodes along the lightpath. The performance evaluation shows such a protocol can achieve fast fault detection, and at the same time, the overhead brought to the user data by hello packets is negligible.

  6. Fault Tree Analysis: An Operations Research Tool for Identifying and Reducing Undesired Events in Training.

    ERIC Educational Resources Information Center

    Barker, Bruce O.; Petersen, Paul D.

    This paper explores the fault-tree analysis approach to isolating failure modes within a system. Fault tree investigates potentially undesirable events and then looks for failures in sequence that would lead to their occurring. Relationships among these events are symbolized by AND or OR logic gates, AND used when single events must coexist to…

  7. Tunable architecture for aircraft fault detection

    NASA Technical Reports Server (NTRS)

    Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)

    2012-01-01

    A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.

  8. The Generic Spacecraft Analyst Assistant (GenSAA): A tool for automating spacecraft monitoring with expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1991-01-01

    Flight Operations Analysts (FOAs) in the Payload Operations Control Center (POCC) are responsible for monitoring a satellite's health and safety. As satellites become more complex and data rates increase, FOAs are quickly approaching a level of information saturation. The FOAs in the spacecraft control center for the COBE (Cosmic Background Explorer) satellite are currently using a fault isolation expert system named the Communications Link Expert Assistance Resource (CLEAR), to assist in isolating and correcting communications link faults. Due to the success of CLEAR and several other systems in the control center domain, many other monitoring and fault isolation expert systems will likely be developed to support control center operations during the early 1990s. To facilitate the development of these systems, a project was initiated to develop a domain specific tool, named the Generic Spacecraft Analyst Assistant (GenSAA). GenSAA will enable spacecraft analysts to easily build simple real-time expert systems that perform spacecraft monitoring and fault isolation functions. Lessons learned during the development of several expert systems at Goddard, thereby establishing the foundation of GenSAA's objectives and offering insights in how problems may be avoided in future project, are described. This is followed by a description of the capabilities, architecture, and usage of GenSAA along with a discussion of its application to future NASA missions.

  9. A Review of Transmission Diagnostics Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakajsek, James J.

    1994-01-01

    This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.

  10. NASA Spacecraft Fault Management Workshop Results

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the findings and recommendations from that workshop, as well as opportunities identified for future investment in tools, processes, and products to facilitate the development of space flight fault management capabilities.

  11. Algorithm-Based Fault Tolerance for Numerical Subroutines

    NASA Technical Reports Server (NTRS)

    Tumon, Michael; Granat, Robert; Lou, John

    2007-01-01

    A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.

  12. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  13. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  14. Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.

    PubMed

    Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng

    2016-12-08

    This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.

  15. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines

    PubMed Central

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088

  16. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  17. Generic, scalable and decentralized fault detection for robot swarms.

    PubMed

    Tarapore, Danesh; Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.

  18. Generic, scalable and decentralized fault detection for robot swarms

    PubMed Central

    Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system’s capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation. PMID:28806756

  19. Comparative Study of Fault Diagnostic Methods in Voltage Source Inverter Fed Three Phase Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Dhumale, R. B.; Lokhande, S. D.

    2017-05-01

    Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.

  20. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  1. Using EMIS to Identify Top Opportunities for Commercial Building Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guanjing; Singla, Rupam; Granderson, Jessica

    Energy Management and Information Systems (EMIS) comprise a broad family of tools and services to manage commercial building energy use. These technologies offer a mix of capabilities to store, display, and analyze energy use and system data, and in some cases, provide control. EMIS technologies enable 10–20 percent site energy savings in best practice implementations. Energy Information System (EIS) and Fault Detection and Diagnosis (FDD) systems are two key technologies in the EMIS family. Energy Information Systems are broadly defined as the web-based software, data acquisition hardware, and communication systems used to analyze and display building energy performance. At amore » minimum, an EIS provides daily, hourly or sub-hourly interval meter data at the whole-building level, with graphical and analytical capability. Fault Detection and Diagnosis systems automatically identify heating, ventilation, and air-conditioning (HVAC) system or equipment-level performances issues, and in some cases are able to isolate the root causes of the problem. They use computer algorithms to continuously analyze system-level operational data to detect faults and diagnose their causes. Many FDD tools integrate the trend log data from a Building Automation System (BAS) but otherwise are stand-alone software packages; other types of FDD tools are implemented as “on-board” equipment-embedded diagnostics. (This document focuses on the former.) Analysis approaches adopted in FDD technologies span a variety of techniques from rule-based methods to process history-based approaches. FDD tools automate investigations that can be conducted via manual data inspection by someone with expert knowledge, thereby expanding accessibility and breath of analysis opportunity, and also reducing complexity.« less

  2. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  3. All-to-all sequenced fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  4. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    NASA Astrophysics Data System (ADS)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  5. Intelligent Method for Diagnosing Structural Faults of Rotating Machinery Using Ant Colony Optimization

    PubMed Central

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called “relative ratio symptom parameters” are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks. PMID:22163833

  6. Intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization.

    PubMed

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called "relative ratio symptom parameters" are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks.

  7. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  8. Various Indices for Diagnosis of Air-gap Eccentricity Fault in Induction Motor-A Review

    NASA Astrophysics Data System (ADS)

    Nikhil; Mathew, Lini, Dr.; Sharma, Amandeep

    2018-03-01

    From the past few years, research has gained an ardent pace in the field of fault detection and diagnosis in induction motors. In the current scenario, software is being introduced with diagnostic features to improve stability and reliability in fault diagnostic techniques. Human involvement in decision making for fault detection is slowly being replaced by Artificial Intelligence techniques. In this paper, a brief introduction of eccentricity fault is presented along with their causes and effects on the health of induction motors. Various indices used to detect eccentricity are being introduced along with their boundary conditions and their future scope of research. At last, merits and demerits of all indices are discussed and a comparison is made between them.

  9. Soft Computing Application in Fault Detection of Induction Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  10. Weak fault detection and health degradation monitoring using customized standard multiwavelets

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Wang, Yu; Peng, Yizhen; Wei, Chenjun

    2017-09-01

    Due to the nonobvious symptoms contaminated by a large amount of background noise, it is challenging to beforehand detect and predictively monitor the weak faults for machinery security assurance. Multiwavelets can act as adaptive non-stationary signal processing tools, potentially viable for weak fault diagnosis. However, the signal-based multiwavelets suffer from such problems as the imperfect properties missing the crucial orthogonality, the decomposition distortion impossibly reflecting the relationships between the faults and signatures, the single objective optimization and independence for fault prognostic. Thus, customized standard multiwavelets are proposed for weak fault detection and health degradation monitoring, especially the weak fault signature quantitative identification. First, the flexible standard multiwavelets are designed using the construction method derived from scalar wavelets, seizing the desired properties for accurate detection of weak faults and avoiding the distortion issue for feature quantitative identification. Second, the multi-objective optimization combined three dimensionless indicators of the normalized energy entropy, normalized singular entropy and kurtosis index is introduced to the evaluation criterions, and benefits for selecting the potential best basis functions for weak faults without the influence of the variable working condition. Third, an ensemble health indicator fused by the kurtosis index, impulse index and clearance index of the original signal along with the normalized energy entropy and normalized singular entropy by the customized standard multiwavelets is achieved using Mahalanobis distance to continuously monitor the health condition and track the performance degradation. Finally, three experimental case studies are implemented to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed method can quantitatively identify the fault signature of a slight rub on the inner race of a locomotive bearing, effectively detect and locate the potential failure from a complicated epicyclic gear train and successfully reveal the fault development and performance degradation of a test bearing in the lifetime.

  11. Latent component-based gear tooth fault detection filter using advanced parametric modeling

    NASA Astrophysics Data System (ADS)

    Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.

    2009-10-01

    In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.

  12. Fault detection of gearbox using time-frequency method

    NASA Astrophysics Data System (ADS)

    Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.

    2017-04-01

    This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).

  13. Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Brown; Bernard Laskowski

    The prospect of substantial investment in wind energy generation represents a significant capital investment strategy. In order to maximize the life-cycle of wind turbines, associated rotors, gears, and structural towers, a capability to detect and predict (prognostics) the onset of mechanical faults at a sufficiently early stage for maintenance actions to be planned would significantly reduce both maintenance and operational costs. Advancement towards this effort has been made through the development of anomaly detection, fault detection and fault diagnosis routines to identify selected fault modes of a wind turbine based on available sensor data preceding an unscheduled emergency shutdown. Themore » anomaly detection approach employs spectral techniques to find an approximation of the data using a combination of attributes that capture the bulk of variability in the data. Fault detection and diagnosis (FDD) is performed using a neural network-based classifier trained from baseline and fault data recorded during known failure conditions. The approach has been evaluated for known baseline conditions and three selected failure modes: pitch rate failure, low oil pressure failure and a gearbox gear-tooth failure. Experimental results demonstrate the approach can distinguish between these failure modes and normal baseline behavior within a specified statistical accuracy.« less

  14. Power plant fault detection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul

    2018-02-01

    The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

  15. Fault diagnosis for wind turbine planetary ring gear via a meshing resonance based filtering algorithm.

    PubMed

    Wang, Tianyang; Chu, Fulei; Han, Qinkai

    2017-03-01

    Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  17. Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)

    2001-01-01

    This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.

  18. Artificial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Preprocessor

    NASA Astrophysics Data System (ADS)

    Paya, B. A.; Esat, I. I.; Badi, M. N. M.

    1997-09-01

    The purpose of condition monitoring and fault diagnostics are to detect and distinguish faults occurring in machinery, in order to provide a significant improvement in plant economy, reduce operational and maintenance costs and improve the level of safety. The condition of a model drive-line, consisting of various interconnected rotating parts, including an actual vehicle gearbox, two bearing housings, and an electric motor, all connected via flexible couplings and loaded by a disc brake, was investigated. This model drive-line was run in its normal condition, and then single and multiple faults were introduced intentionally to the gearbox, and to the one of the bearing housings. These single and multiple faults studied on the drive-line were typical bearing and gear faults which may develop during normal and continuous operation of this kind of rotating machinery. This paper presents the investigation carried out in order to study both bearing and gear faults introduced first separately as a single fault and then together as multiple faults to the drive-line. The real time domain vibration signals obtained for the drive-line were preprocessed by wavelet transforms for the neural network to perform fault detection and identify the exact kinds of fault occurring in the model drive-line. It is shown that by using multilayer artificial neural networks on the sets of preprocessed data by wavelet transforms, single and multiple faults were successfully detected and classified into distinct groups.

  19. Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai F.; Curran, Simon

    2009-01-01

    Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electro-mechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy to severity of fault conditions.

  20. Fault Diagnosis of Power Systems Using Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated from the rest of the system. The benefit of these studies provides NASA with the ability to quickly restore the operating status of a space station from a critical state to a safe degraded mode, thereby saving costs in experimentation rescheduling, fault diagnostics, and prevention of loss-of-life.

  1. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks.

    PubMed

    Yi, Qu; Zhan-ming, Li; Er-chao, Li

    2012-11-01

    A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.

  3. Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

    NASA Technical Reports Server (NTRS)

    Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.

    2011-01-01

    Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.

  4. Distributed fault detection over sensor networks with Markovian switching topologies

    NASA Astrophysics Data System (ADS)

    Ge, Xiaohua; Han, Qing-Long

    2014-05-01

    This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.

  5. Intermittent/transient fault phenomena in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.

    1977-01-01

    An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.

  6. Sensor Selection and Data Validation for Reliable Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Melcher, Kevin J.

    2008-01-01

    For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down-select iteration, and the final selection analysis. The knowledge base required for productive use of S4 consists of system design information and heritage experience together with a focus on components with health implications. The sensor suite down-selection is an iterative process for identifying a group of sensors that provide good fault detection and isolation for targeted fault scenarios. In the final selection analysis, a statistical evaluation algorithm provides the final robustness test for each down-selected sensor suite. NASA GRC has developed an approach to sensor data qualification that applies empirical relationships, threshold detection techniques, and Bayesian belief theory to a network of sensors related by physics (i.e., analytical redundancy) in order to identify the failure of a given sensor within the network. This data quality validation approach extends the state-of-the-art, from red-lines and reasonableness checks that flag a sensor after it fails, to include analytical redundancy-based methods that can identify a sensor in the process of failing. The focus of this effort is on understanding the proper application of analytical redundancy-based data qualification methods for onboard use in monitoring Upper Stage sensors.

  7. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  8. An intelligent control system for failure detection and controller reconfiguration

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.

    1994-01-01

    We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.

  9. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  10. ``DMS-R, the Brain of the ISS'', 10 Years of Continuous Successful Operation in Space

    NASA Astrophysics Data System (ADS)

    Wolff, Bernd; Scheffers, Peter

    2012-08-01

    Space industries on both sides of the Atlantic were faced with a new situation of collaboration in the beginning of the 1990s.In 1995, industrial cooperation between ASTRIUM ST, Bremen and RSC-E, Moscow started aiming the outfitting of the Russian Service Module ZVEZDA for the ISS with computers. The requested equipments had to provide not only redundancy but fault tolerance and high availability. The design and development of two fault tolerant computers, (FTCs) responsible for the telemetry (Telemetry Computer: TC) and the central control (CC), as well as the man machine interface CPC were contracted to ASTRIUM ST, Bremen. The computer system is responsible e.g. for the life support system and the ISS re-boost control.In July 2000, the integration of the Russian Service Module ZVEZDA with Russian ZARYA FGB and American Node 1 bears witness for transatlantic and European cooperation.The Russian Service module ZVEZDA provides several basic functions as Avionics Control, the Environmental Control and Life Support (ECLS) in the ISS and control of the docked Automatic Transfer Vehicle (ATV) which includes re-boost of ISS. If these elementary functions fail or do not work reliable the effects for the ISS will be catastrophic with respect to Safety (manned space) and ISS mission.For that reason the responsible computer system Data Management System - Russia (DMS-R) is also called "The brain of the ISS".The Russian Service module ZVEZDA, including DMS-R, was launched on 12th of July, 2000. DMS-R was operational also during launch and docking.The talk provide information about the definition, design and development of DMS-R, the integration of DMS-R in the Russian Service module and the maintenance of the system in space. Besides the technical aspects are also the German - Russian cooperation an important subject of this speech. An outlook finalises the talk providing further development activities and application of fault tolerant systems.The importance of the DMS-R equipment for the ISS related to availability and reliability is reported in paragraph 1.2, describing a serious incident.The DMS-R architecture, consisting of two fault tolerant computers, their interconnection via MIL 1553 STD Bus and the Control Post Computer (CPC) as man- machine interface is given in figure 1. The main data transfer within the ISS and therefore also the Russian segment is managed by the MIL1553 STD bus. The focus of this script is neither the operational concept nor the fault tolerant design according the Byzantine Theorem, but the architectural embedment. One fault tolerant computer consists out of up to four fault containment regions (FCR), comparing in- and output data and deciding by majority voting whether a faulty FCR has to be isolated. For this purpose all data have to pass the so-called fault management element and are distributed to the other participants in the computer pool (FTC). Each fault containment region is connected to the avionic busses of the vehicle avionics system. In case of a faulty FCR (wrong calculation result was detected by the other FCRs or by build-in self-detection) the dedicated FCR will reset itself or will be reset by the others. The bus controller functions of the isolated FCR will be taken over according to a specific deterministic scheme from another FCR. The FTC data throughput will be maintained, the FTC operation will continue without interruption. Each FCR consists of an application CPU board (ALB), the fault management layer (FML), the avionics bus interface board (AVI) and a power supply (PSU), sharing a VME data bus.The FML is fully transparent, in terms of I/O accessibility, to the application S/W and votes the data autonomously received from the avionics busses and transmitted from the application.

  11. Design of isolated buildings with S-FBI system subjected to near-fault earthquakes using NSGA-II algorithm

    NASA Astrophysics Data System (ADS)

    Ozbulut, O. E.; Silwal, B.

    2014-04-01

    This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

  12. Leak Isolation in Pressurized Pipelines using an Interpolation Function to approximate the Fitting Losses

    NASA Astrophysics Data System (ADS)

    Badillo-Olvera, A.; Begovich, O.; Peréz-González, A.

    2017-01-01

    The present paper is motivated by the purpose of detection and isolation of a single leak considering the Fault Model Approach (FMA) focused on pipelines with changes in their geometry. These changes generate a different pressure drop that those produced by the friction, this phenomenon is a common scenario in real pipeline systems. The problem arises, since the dynamical model of the fluid in a pipeline only considers straight geometries without fittings. In order to address this situation, several papers work with a virtual model of a pipeline that generates a equivalent straight length, thus, friction produced by the fittings is taking into account. However, when this method is applied, the leak is isolated in a virtual length, which for practical reasons does not represent a complete solution. This research proposes as a solution to the problem of leak isolation in a virtual length, the use of a polynomial interpolation function in order to approximate the conversion of the virtual position to a real-coordinates value. Experimental results in a real prototype are shown, concluding that the proposed methodology has a good performance.

  13. Investigating System Dependability Modeling Using AADL

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin R.; Madl, Gabor

    2013-01-01

    This report describes Architecture Analysis & Design Language (AADL) models for a diverse set of fault-tolerant, embedded data networks and describes the methods and tools used to created these models. It also includes error models per the AADL Error Annex. Some networks were modeled using Error Detection Isolation Containment Types (EDICT). This report gives a brief description for each of the networks, a description of its modeling, the model itself, and evaluations of the tools used for creating the models. The methodology includes a naming convention that supports a systematic way to enumerate all of the potential failure modes.

  14. Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation

    NASA Astrophysics Data System (ADS)

    Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.

    2017-08-01

    A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.

  15. A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection

    NASA Astrophysics Data System (ADS)

    Kim, Pyung Soo

    2017-04-01

    In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.

  16. Selection of test paths for solder joint intermittent connection faults under DC stimulus

    NASA Astrophysics Data System (ADS)

    Huakang, Li; Kehong, Lv; Jing, Qiu; Guanjun, Liu; Bailiang, Chen

    2018-06-01

    The test path of solder joint intermittent connection faults under direct-current stimulus is examined in this paper. According to the physical structure of the circuit, a network model is established first. A network node is utilised to represent the test node. The path edge refers to the number of intermittent connection faults in the path. Then, the selection criteria of the test path based on the node degree index are proposed and the solder joint intermittent connection faults are covered using fewer test paths. Finally, three circuits are selected to verify the method. To test if the intermittent fault is covered by the test paths, the intermittent fault is simulated by a switch. The results show that the proposed method can detect the solder joint intermittent connection fault using fewer test paths. Additionally, the number of detection steps is greatly reduced without compromising fault coverage.

  17. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  18. Multi-Frequency Signal Detection Based on Frequency Exchange and Re-Scaling Stochastic Resonance and Its Application to Weak Fault Diagnosis.

    PubMed

    Liu, Jinjun; Leng, Yonggang; Lai, Zhihui; Fan, Shengbo

    2018-04-25

    Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method.

  19. Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems.

    PubMed

    Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed

    2015-07-01

    The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Expert systems applied to fault isolation and energy storage management, phase 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A user's guide for the Fault Isolation and Energy Storage (FIES) II system is provided. Included are a brief discussion of the background and scope of this project, a discussion of basic and advanced operating installation and problem determination procedures for the FIES II system and information on hardware and software design and implementation. A number of appendices are provided including a detailed specification for the microprocessor software, a detailed description of the expert system rule base and a description and listings of the LISP interface software.

  1. Reports on work in support of NASA's tracking and communication division

    NASA Technical Reports Server (NTRS)

    Feagin, Terry; Lekkos, Anthony

    1991-01-01

    This is a report on the research conducted during the period October 1, 1991 through December 31, 1991. The research is divided into two primary areas: (1) generalization of the Fault Isolation using Bit Strings (FIBS) technique to permit fuzzy information to be used to isolate faults in the tracking and communications system of the Space Station; and (2) a study of the activity that should occur in the on board systems in order to attempt to recover from failures that are external to the Space Station.

  2. Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -

    NASA Technical Reports Server (NTRS)

    Chen, Paul Peichuan

    1993-01-01

    Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.

  3. Detection of Rooftop Cooling Unit Faults Based on Electrical Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Laughman, C R.; Leeb, S B.

    Non-intrusive load monitoring (NILM) is accomplished by sampling voltage and current at high rates and reducing the resulting start transients or harmonic contents to concise ''signatures''. Changes in these signatures can be used to detect, and in many cases directly diagnose, equipment and component faults associated with roof-top cooling units. Use of the NILM for fault detection and diagnosis (FDD) is important because (1) it complements other FDD schemes that are based on thermo-fluid sensors and analyses and (2) it is minimally intrusive (one measuring point in the relatively protected confines of the control panel) and therefore inherently reliable. Thismore » paper describes changes in the power signatures of fans and compressors that were found, experimentally and theoretically, to be useful for fault detection.« less

  4. Fault detection and classification in electrical power transmission system using artificial neural network.

    PubMed

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  5. Wind turbine fault detection and classification by means of image texture analysis

    NASA Astrophysics Data System (ADS)

    Ruiz, Magda; Mujica, Luis E.; Alférez, Santiago; Acho, Leonardo; Tutivén, Christian; Vidal, Yolanda; Rodellar, José; Pozo, Francesc

    2018-07-01

    The future of the wind energy industry passes through the use of larger and more flexible wind turbines in remote locations, which are increasingly offshore to benefit stronger and more uniform wind conditions. The cost of operation and maintenance of offshore wind turbines is approximately 15-35% of the total cost. Of this, 80% goes towards unplanned maintenance issues due to different faults in the wind turbine components. Thus, an auspicious way to contribute to the increasing demands and challenges is by applying low-cost advanced fault detection schemes. This work proposes a new method for detection and classification of wind turbine actuators and sensors faults in variable-speed wind turbines. For this purpose, time domain signals acquired from the operating wind turbine are represented as two-dimensional matrices to obtain grayscale digital images. Then, the image pattern recognition is processed getting texture features under a multichannel representation. In this work, four types of texture characteristics are used: statistical, wavelet, granulometric and Gabor features. Next, the most significant ones are selected using the conditional mutual criterion. Finally, the faults are detected and distinguished between them (classified) using an automatic classification tool. In particular, a 10-fold cross-validation is used to obtain a more generalized model and evaluates the classification performance. Coupled non-linear aero-hydro-servo-elastic simulations of a 5 MW offshore type wind turbine are carried out in several fault scenarios. The results show a promising methodology able to detect and classify the most common wind turbine faults.

  6. Control system failure monitoring using generalized parity relations. M.S. Thesis Interim Technical Report

    NASA Technical Reports Server (NTRS)

    Vanschalkwyk, Christiaan Mauritz

    1991-01-01

    Many applications require that a control system must be tolerant to the failure of its components. This is especially true for large space-based systems that must work unattended and with long periods between maintenance. Fault tolerance can be obtained by detecting the failure of the control system component, determining which component has failed, and reconfiguring the system so that the failed component is isolated from the controller. Component failure detection experiments that were conducted on an experimental space structure, the NASA Langley Mini-Mast are presented. Two methodologies for failure detection and isolation (FDI) exist that do not require the specification of failure modes and are applicable to both actuators and sensors. These methods are known as the Failure Detection Filter and the method of Generalized Parity Relations. The latter method was applied to three different sensor types on the Mini-Mast. Failures were simulated in input-output data that were recorded during operation of the Mini-Mast. Both single and double sensor parity relations were tested and the effect of several design parameters on the performance of these relations is discussed. The detection of actuator failures is also treated. It is shown that in all the cases it is possible to identify the parity relations directly from input-output data. Frequency domain analysis is used to explain the behavior of the parity relations.

  7. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    PubMed

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  8. Series and parallel arc-fault circuit interrupter tests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Fresquez, Armando J.; Gudgel, Bob

    2013-07-01

    While the 2011 National Electrical Codeª (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by openingmore » the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.« less

  9. Integrated analysis of error detection and recovery

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1985-01-01

    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.

  10. Numerical modeling of mountain formation on Io

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Jaeger, W. L.; McEwen, A. S.; Keszthelyi, L.

    2000-10-01

    Io has ~ 100 mountains [1] that, although often associated with patera [2], do not appear to be volcanic structures. The mountains are up to 16 km high [3] and are generally isolated from each other. We have performed finite-element simulations of the formation of these mountains, investigating several mountain building scenarios: (1) a volcanic construct due to heterogeneous resurfacing on a coherent, homogeneous lithosphere; (2) a volcanic construct on a faulted, homogeneous lithosphere; (3) a volcanic construct on a faulted, homogeneous lithosphere under compression induced by subsidence due to Io's high resurfacing rate; (4) a faulted, homogeneous lithosphere under subsidence-induced compression; (5) a faulted, heterogeneous lithosphere under subsidence-induced compression; and (6) a mantle upwelling beneath a coherent, homogeneous lithosphere under subsidence-induced compression. The models of volcanic constructs do not produce mountains similar to those observed on Io. Neither do those of pervasively faulted lithospheres under compression; these predict a series of tilted lithospheric blocks or plateaus, as opposed to the isolated structures that are observed. Our models show that rising mantle material impinging on the base of the lithosphere can focus the compressional stresses to localize thrust faulting and mountain building. Such faults could also provide conduits along which magma could reach the surface as is observed near several mountains. [1] Carr et al., Icarus 135, pp. 146-165, 1998. [2] McEwen et al., Science 288, pp. 1193-1198, 2000. [3] Schenk and Bulmer, Science 279, pp. 1514-1517, 1998.

  11. Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.

    PubMed

    Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N

    2017-09-01

    In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.

  12. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Howard; Braun, James E.

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less

  13. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less

  14. Attitude Determination and Control System (ADCS) and Maintenance and Diagnostic System (MDS): A maintenance and diagnostic system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Toms, David; Hadden, George D.; Harrington, Jim

    1990-01-01

    The Maintenance and Diagnostic System (MDS) that is being developed at Honeywell to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude Determination and Control System on Space Station Freedom is described. The MDS demonstrates ways that AI-based techniques can be used to improve the maintainability and safety of the Station by helping to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predictive maintenance capabilities, and by providing expert maintenance assistance. The MDS will address the problems associated with reasoning about dynamic, continuous information versus only about static data, the concerns of porting software based on AI techniques to embedded targets, and the difficulties associated with real-time response. An initial prototype was built of the MDS. The prototype executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further work will evaluate its functionality and develop mechanisms to port the code to Ada.

  15. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    NASA Technical Reports Server (NTRS)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  16. Model-based reasoning for power system management using KATE and the SSM/PMAD

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian

    1993-01-01

    The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.

  17. Galileo spacecraft power management and distribution system

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.; Smith, R. L.

    1990-01-01

    The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies.

  18. Simulation verification techniques study: Simulation self test hardware design and techniques report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.

  19. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.

    PubMed

    Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping

    2018-05-16

    As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Health Monitoring of a Satellite System

    NASA Technical Reports Server (NTRS)

    Chen, Robert H.; Ng, Hok K.; Speyer, Jason L.; Guntur, Lokeshkumar S.; Carpenter, Russell

    2004-01-01

    A health monitoring system based on analytical redundancy is developed for satellites on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and attitude dynamics is modelled as a periodic system. Then, periodic fault detection filters are designed to detect and identify the satellite's actuator and sensor faults. In addition, parity equations are constructed using the algebraic redundant relationship among the actuators and sensors. Furthermore, a residual processor is designed to generate the probability of each of the actuator and sensor faults by using a sequential probability test. Finally, the health monitoring system, consisting of periodic fault detection lters, parity equations and residual processor, is evaluated in the simulation in the presence of disturbances and uncertainty.

  1. Experience of automation failures in training: effects on trust, automation bias, complacency and performance.

    PubMed

    Sauer, Juergen; Chavaillaz, Alain; Wastell, David

    2016-06-01

    This work examined the effects of operators' exposure to various types of automation failures in training. Forty-five participants were trained for 3.5 h on a simulated process control environment. During training, participants either experienced a fully reliable, automatic fault repair facility (i.e. faults detected and correctly diagnosed), a misdiagnosis-prone one (i.e. faults detected but not correctly diagnosed) or a miss-prone one (i.e. faults not detected). One week after training, participants were tested for 3 h, experiencing two types of automation failures (misdiagnosis, miss). The results showed that automation bias was very high when operators trained on miss-prone automation encountered a failure of the diagnostic system. Operator errors resulting from automation bias were much higher when automation misdiagnosed a fault than when it missed one. Differences in trust levels that were instilled by the different training experiences disappeared during the testing session. Practitioner Summary: The experience of automation failures during training has some consequences. A greater potential for operator errors may be expected when an automatic system failed to diagnose a fault than when it failed to detect one.

  2. An Extension to the Kalman Filter for an Improved Detection of Unknown Behavior

    NASA Technical Reports Server (NTRS)

    Benazera, Emmanuel; Narasimhan, Sriram

    2005-01-01

    The use of Kalman filter (KF) interferes with fault detection algorithms based on the residual between estimated and measured variables, since the measured values are used to update the estimates. This feedback results in the estimates being pulled closer to the measured values, influencing the residuals in the process. Here we present a fault detection scheme for systems that are being tracked by a KF. Our approach combines an open-loop prediction over an adaptive window and an information-based measure of the deviation of the Kalman estimate from the prediction to improve fault detection.

  3. Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin

    2018-03-01

    In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.

  4. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan

    In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  5. A probabilistic method to diagnose faults of air handling units

    NASA Astrophysics Data System (ADS)

    Dey, Debashis

    Air handling unit (AHU) is one of the most extensively used equipment in large commercial buildings. This device is typically customized and lacks quality system integration which can result in hardwire failures and controller errors. Air handling unit Performance Assessment Rules (APAR) is a fault detection tool that uses a set of expert rules derived from mass and energy balances to detect faults in air handling units. APAR is computationally simple enough that it can be embedded in commercial building automation and control systems and relies only upon sensor data and control signals that are commonly available in these systems. Although APAR has many advantages over other methods, for example no training data required and easy to implement commercially, most of the time it is unable to provide the diagnosis of the faults. For instance, a fault on temperature sensor could be fixed bias, drifting bias, inappropriate location, complete failure. Also a fault in mixing box can be return and outdoor damper leak or stuck. In addition, when multiple rules are satisfied the list of faults increases. There is no proper way to have the correct diagnosis for rule based fault detection system. To overcome this limitation we proposed Bayesian Belief Network (BBN) as a diagnostic tool. BBN can be used to simulate diagnostic thinking of FDD experts through a probabilistic way. In this study we developed a new way to detect and diagnose faults in AHU through combining APAR rules and Bayesian Belief network. Bayesian Belief Network is used as a decision support tool for rule based expert system. BBN is highly capable to prioritize faults when multiple rules are satisfied simultaneously. Also it can get information from previous AHU operating conditions and maintenance records to provide proper diagnosis. The proposed model is validated with real time measured data of a campus building at University of Texas at San Antonio (UTSA).The results show that BBN is correctly able to prioritize faults which can be verified by manual investigation.

  6. RCS propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The operational flight instrumentation required for performance monitoring and fault detection are presented. Measurements by the burn through monitors are presented along with manifold and helium source pressures.

  7. On damage detection in wind turbine gearboxes using outlier analysis

    NASA Astrophysics Data System (ADS)

    Antoniadou, Ifigeneia; Manson, Graeme; Dervilis, Nikolaos; Staszewski, Wieslaw J.; Worden, Keith

    2012-04-01

    The proportion of worldwide installed wind power in power systems increases over the years as a result of the steadily growing interest in renewable energy sources. Still, the advantages offered by the use of wind power are overshadowed by the high operational and maintenance costs, resulting in the low competitiveness of wind power in the energy market. In order to reduce the costs of corrective maintenance, the application of condition monitoring to gearboxes becomes highly important, since gearboxes are among the wind turbine components with the most frequent failure observations. While condition monitoring of gearboxes in general is common practice, with various methods having been developed over the last few decades, wind turbine gearbox condition monitoring faces a major challenge: the detection of faults under the time-varying load conditions prevailing in wind turbine systems. Classical time and frequency domain methods fail to detect faults under variable load conditions, due to the temporary effect that these faults have on vibration signals. This paper uses the statistical discipline of outlier analysis for the damage detection of gearbox tooth faults. A simplified two-degree-of-freedom gearbox model considering nonlinear backlash, time-periodic mesh stiffness and static transmission error, simulates the vibration signals to be analysed. Local stiffness reduction is used for the simulation of tooth faults and statistical processes determine the existence of intermittencies. The lowest level of fault detection, the threshold value, is considered and the Mahalanobis squared-distance is calculated for the novelty detection problem.

  8. Common faults and their impacts for rooftop air conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuker, M.S.; Braun, J.E.

    This paper identifies important faults and their performance impacts for rooftop air conditioners. The frequencies of occurrence and the relative costs of service for different faults were estimated through analysis of service records. Several of the important and difficult to diagnose refrigeration cycle faults were simulated in the laboratory. Also, the impacts on several performance indices were quantified through transient testing for a range of conditions and fault levels. The transient test results indicated that fault detection and diagnostics could be performed using methods that incorporate steady-state assumptions and models. Furthermore, the fault testing led to a set of genericmore » rules for the impacts of faults on measurements that could be used for fault diagnoses. The average impacts of the faults on cooling capacity and coefficient of performance (COP) were also evaluated. Based upon the results, all of the faults are significant at the levels introduced, and should be detected and diagnosed by an FDD system. The data set obtained during this work was very comprehensive, and was used to design and evaluate the performance of an FDD method that will be reported in a future paper.« less

  9. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  10. Methodology for fault detection in induction motors via sound and vibration signals

    NASA Astrophysics Data System (ADS)

    Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus

    2017-01-01

    Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.

  11. Characterization of emission microscopy and liquid crystal thermography in IC fault localization

    NASA Astrophysics Data System (ADS)

    Lau, C. K.; Sim, K. S.

    2013-05-01

    This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization. It is necessary for a failure analyst to use both techniques when one of the techniques produces no result.

  12. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  13. CPSGrader: Auto-Grading and Feedback Generation for Cyber-Physical Systems Education

    DTIC Science & Technology

    2014-12-21

    to refer to ⋃ C∈C+ Ω(C,Γ(p)) (and⋃ C∈C− Ω(C,Γ(p))). The rationale behind this choice of ρ is two-fold: 1. To increase coverage of fault detection ... fault mentioned in Section 2.3. The purpose of the test is to detect that at some time instant t0, the robot bumps into the obstacle, then turns about...sampling. 5.6 Investigating Unknown Faults Using Clustering CPSGrader works with a fixed pre-defined library of faults and associated test benches

  14. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  15. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.

    PubMed

    Gao, Zheyu; Lin, Jing; Wang, Xiufeng; Xu, Xiaoqiang

    2017-05-24

    Rolling bearings are widely used in rotating equipment. Detection of bearing faults is of great importance to guarantee safe operation of mechanical systems. Acoustic emission (AE), as one of the bearing monitoring technologies, is sensitive to weak signals and performs well in detecting incipient faults. Therefore, AE is widely used in monitoring the operating status of rolling bearing. This paper utilizes Empirical Wavelet Transform (EWT) to decompose AE signals into mono-components adaptively followed by calculation of the correlated kurtosis (CK) at certain time intervals of these components. By comparing these CK values, the resonant frequency of the rolling bearing can be determined. Then the fault characteristic frequencies are found by spectrum envelope. Both simulation signal and rolling bearing AE signals are used to verify the effectiveness of the proposed method. The results show that the new method performs well in identifying bearing fault frequency under strong background noise.

  16. Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.

    PubMed

    Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi

    2016-09-13

    Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.

  17. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  18. Study on UKF based federal integrated navigation for high dynamic aviation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie

    2011-08-01

    High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is superior than EKF based integrated scheme, in which has smaller estimation error and quickly convergence rate.

  19. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Hardebeck, Jeanne L.

    2010-01-01

    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  20. Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.

    1992-01-01

    The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.

  1. Characterization of System Status Signals for Multivariate Time Series Discretization Based on Frequency and Amplitude Variation

    PubMed Central

    2018-01-01

    Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated. PMID:29316731

  2. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures.

    PubMed

    Jiang, Ye; Hu, Qinglei; Ma, Guangfu

    2010-01-01

    In this paper, a robust adaptive fault-tolerant control approach to attitude tracking of flexible spacecraft is proposed for use in situations when there are reaction wheel/actuator failures, persistent bounded disturbances and unknown inertia parameter uncertainties. The controller is designed based on an adaptive backstepping sliding mode control scheme, and a sufficient condition under which this control law can render the system semi-globally input-to-state stable is also provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. Moreover, in the design, the control law does not need a fault detection and isolation mechanism even if the failure time instants, patterns and values on actuator failures are also unknown for the designers, as motivated from a practical spacecraft control application. In addition to detailed derivations of the new controller design and a rigorous sketch of all the associated stability and attitude error convergence proofs, illustrative simulation results of an application to flexible spacecraft show that high precise attitude control and vibration suppression are successfully achieved using various scenarios of controlling effective failures. 2009. Published by Elsevier Ltd.

  3. Benchmarking Gas Path Diagnostic Methods: A Public Approach

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene

    2008-01-01

    Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.

  4. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  5. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  6. Evaluating the performance of a fault detection and diagnostic system for vapor compression equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuker, M.S.; Braun, J.E.

    This paper presents a detailed evaluation of the performance of a statistical, rule-based fault detection and diagnostic (FDD) technique presented by Rossi and Braun (1997). Steady-state and transient tests were performed on a simple rooftop air conditioner over a range of conditions and fault levels. The steady-state data without faults were used to train models that predict outputs for normal operation. The transient data with faults were used to evaluate FDD performance. The effect of a number of design variables on FDD sensitivity for different faults was evaluated and two prototype systems were specified for more complete evaluation. Good performancemore » was achieved in detecting and diagnosing five faults using only six temperatures (2 input and 4 output) and linear models. The performance improved by about a factor of two when ten measurements (three input and seven output) and higher order models were used. This approach for evaluating and optimizing the performance of the statistical, rule-based FDD technique could be used as a design and evaluation tool when applying this FDD method to other packaged air-conditioning systems. Furthermore, the approach could also be modified to evaluate the performance of other FDD methods.« less

  7. A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo

    2009-01-01

    An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.

  8. Online Detection of Broken Rotor Bar Fault in Induction Motors by Combining Estimation of Signal Parameters via Min-norm Algorithm and Least Square Method

    NASA Astrophysics Data System (ADS)

    Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin

    2017-11-01

    Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.

  9. Multi-Frequency Signal Detection Based on Frequency Exchange and Re-Scaling Stochastic Resonance and Its Application to Weak Fault Diagnosis

    PubMed Central

    Leng, Yonggang; Fan, Shengbo

    2018-01-01

    Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method. PMID:29693577

  10. Improving the performance of univariate control charts for abnormal detection and classification

    NASA Astrophysics Data System (ADS)

    Yiakopoulos, Christos; Koutsoudaki, Maria; Gryllias, Konstantinos; Antoniadis, Ioannis

    2017-03-01

    Bearing failures in rotating machinery can cause machine breakdown and economical loss, if no effective actions are taken on time. Therefore, it is of prime importance to detect accurately the presence of faults, especially at their early stage, to prevent sequent damage and reduce costly downtime. The machinery fault diagnosis follows a roadmap of data acquisition, feature extraction and diagnostic decision making, in which mechanical vibration fault feature extraction is the foundation and the key to obtain an accurate diagnostic result. A challenge in this area is the selection of the most sensitive features for various types of fault, especially when the characteristics of failures are difficult to be extracted. Thus, a plethora of complex data-driven fault diagnosis methods are fed by prominent features, which are extracted and reduced through traditional or modern algorithms. Since most of the available datasets are captured during normal operating conditions, the last decade a number of novelty detection methods, able to work when only normal data are available, have been developed. In this study, a hybrid method combining univariate control charts and a feature extraction scheme is introduced focusing towards an abnormal change detection and classification, under the assumption that measurements under normal operating conditions of the machinery are available. The feature extraction method integrates the morphological operators and the Morlet wavelets. The effectiveness of the proposed methodology is validated on two different experimental cases with bearing faults, demonstrating that the proposed approach can improve the fault detection and classification performance of conventional control charts.

  11. The design and implementation of on-line monitoring system for UHV compact shunt capacitors

    NASA Astrophysics Data System (ADS)

    Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao

    2017-08-01

    Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.

  12. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    PubMed Central

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  13. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    PubMed Central

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  14. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    PubMed

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  15. Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette

    2010-01-01

    Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.

  16. Task Identification and Evaluation System (TIES)

    DTIC Science & Technology

    1991-08-01

    Caliorate A N/AVh-11A- iUD -test -sets 127. Calibrate AN/AWII1-55 ASCU test setsI - 128. Calibrate 5001L11 tally punched tape readersI- 129. Perform...11AKHbD test sets -- 132. ?erform fault isolation of U4/AWN-55 ASCU -test sets -- 133. Perform fault isolation of 500 R.M tally punched tape I...AIN/AVM1-11A HfLM test sets- 137. Perf-orm self-tests of AL%/AWL-S5 ASCU test sets G. !MAI.T.T!ING A-7D_ ANUAL TEST SETS 138. Adjust SM-661/AS-388air

  17. Health Monitoring Survey of Bell 412EP Transmissions

    NASA Technical Reports Server (NTRS)

    Tucker, Brian E.; Dempsey, Paula J.

    2016-01-01

    Health and usage monitoring systems (HUMS) use vibration-based Condition Indicators (CI) to assess the health of helicopter powertrain components. A fault is detected when a CI exceeds its threshold value. The effectiveness of fault detection can be judged on the basis of assessing the condition of actual components from fleet aircraft. The Bell 412 HUMS-equipped helicopter is chosen for such an evaluation. A sample of 20 aircraft included 12 aircraft with confirmed transmission and gearbox faults (detected by CIs) and eight aircraft with no known faults. The associated CI data is classified into "healthy" and "faulted" populations based on actual condition and these populations are compared against their CI thresholds to quantify the probability of false alarm and the probability of missed detection. Receiver Operator Characteristic analysis is used to optimize thresholds. Based on the results of the analysis, shortcomings in the classification method are identified for slow-moving CI trends. Recommendations for improving classification using time-dependent receiver-operator characteristic methods are put forth. Finally, lessons learned regarding OEM-operator communication are presented.

  18. An adaptive confidence limit for periodic non-steady conditions fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong

    2016-05-01

    System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.

  19. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  20. A method based on multi-sensor data fusion for fault detection of planetary gearboxes.

    PubMed

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong

    2012-01-01

    Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.

  1. An architecture for the development of real-time fault diagnosis systems using model-based reasoning

    NASA Technical Reports Server (NTRS)

    Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday

    1992-01-01

    Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.

  2. Development and evaluation of a fault-tolerant multiprocessor (FTMP) computer. Volume 1: FTMP principles of operation

    NASA Technical Reports Server (NTRS)

    Smith, T. B., Jr.; Lala, J. H.

    1983-01-01

    The basic organization of the fault tolerant multiprocessor, (FTMP) is that of a general purpose homogeneous multiprocessor. Three processors operate on a shared system (memory and I/O) bus. Replication and tight synchronization of all elements and hardware voting is employed to detect and correct any single fault. Reconfiguration is then employed to repair a fault. Multiple faults may be tolerated as a sequence of single faults with repair between fault occurrences.

  3. Failure detection and fault management techniques for flush airdata sensing systems

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.

    1992-01-01

    Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.

  4. Induction motor inter turn fault detection using infrared thermographic analysis

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.

    2016-07-01

    Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.

  5. Gas Path On-line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Huang, Jin-quan; Ji, Chun-sheng; Zhang, Dong-dong; Jiao, Hua-bin

    2014-08-01

    Gas turbine engine gas path fault diagnosis is closely related technology that assists operators in managing the engine units. However, the performance gradual degradation is inevitable due to the usage, and it result in the model mismatch and then misdiagnosis by the popular model-based approach. In this paper, an on-line integrated architecture based on nonlinear model is developed for gas turbine engine anomaly detection and fault diagnosis over the course of the engine's life. These two engine models have different performance parameter update rate. One is the nonlinear real-time adaptive performance model with the spherical square-root unscented Kalman filter (SSR-UKF) producing performance estimates, and the other is a nonlinear baseline model for the measurement estimates. The fault detection and diagnosis logic is designed to discriminate sensor fault and component fault. This integration architecture is not only aware of long-term engine health degradation but also effective to detect gas path performance anomaly shifts while the engine continues to degrade. Compared to the existing architecture, the proposed approach has its benefit investigated in the experiment and analysis.

  6. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  7. Appropriate IMFs associated with cepstrum and envelope analysis for ball-bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Tsao, Wen-Chang; Pan, Min-Chun

    2014-03-01

    The traditional envelope analysis is an effective method for the fault detection of rolling bearings. However, all the resonant frequency bands must be examined during the bearing-fault detection process. To handle the above deficiency, this paper proposes using the empirical mode decomposition (EMD) to select a proper intrinsic mode function (IMF) for the subsequent detection tools; here both envelope analysis and cepstrum analysis are employed and compared. By virtue of the band-pass filtering nature of EMD, the resonant frequency bands of structure to be measured are captured in the IMFs. As impulses arising from rolling elements striking bearing faults modulate with structure resonance, proper IMFs potentially enable to characterize fault signatures. In the study, faulty ball bearings are used to justify the proposed method, and comparisons with the traditional envelope analysis are made. Post the use of IMFs highlighting faultybearing features, the performance of using envelope analysis and cepstrum analysis to single out bearing faults is objectively compared and addressed; it is noted that generally envelope analysis offers better performance.

  8. Discrete wavelet transform and energy eigen value for rotor bars fault detection in variable speed field-oriented control of induction motor drive.

    PubMed

    Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness

    2018-05-03

    This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.

  9. Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan

    2012-01-01

    In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

  10. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Heyns, P. S.; de Villiers, J. P.

    2018-02-01

    In this paper, a fault diagnostic methodology is developed which is able to detect, locate and trend gear faults under fluctuating operating conditions when only vibration data from a single transducer, measured on a healthy gearbox are available. A two-phase feature extraction and modelling process is proposed to infer the operating condition and based on the operating condition, to detect changes in the machine condition. Information from optimised machine and operating condition hidden Markov models are statistically combined to generate a discrepancy signal which is post-processed to infer the condition of the gearbox. The discrepancy signal is processed and combined with statistical methods for automatic fault detection and localisation and to perform fault trending over time. The proposed methodology is validated on experimental data and a tacholess order tracking methodology is used to enhance the cost-effectiveness of the diagnostic methodology.

  11. A leakage-free resonance sparse decomposition technique for bearing fault detection in gearboxes

    NASA Astrophysics Data System (ADS)

    Osman, Shazali; Wang, Wilson

    2018-03-01

    Most of rotating machinery deficiencies are related to defects in rolling element bearings. Reliable bearing fault detection still remains a challenging task, especially for bearings in gearboxes as bearing-defect-related features are nonstationary and modulated by gear mesh vibration. A new leakage-free resonance sparse decomposition (LRSD) technique is proposed in this paper for early bearing fault detection of gearboxes. In the proposed LRSD technique, a leakage-free filter is suggested to remove strong gear mesh and shaft running signatures. A kurtosis and cosine distance measure is suggested to select appropriate redundancy r and quality factor Q. The signal residual is processed by signal sparse decomposition for highpass and lowpass resonance analysis to extract representative features for bearing fault detection. The effectiveness of the proposed technique is verified by a succession of experimental tests corresponding to different gearbox and bearing conditions.

  12. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    ERIC Educational Resources Information Center

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  13. Advanced Information Processing System - Fault detection and error handling

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1985-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  14. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    PubMed

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  15. Experimental Evaluation of a Structure-Based Connectionist Network for Fault Diagnosis of Helicopter Gearboxes

    NASA Technical Reports Server (NTRS)

    Jammu, V. B.; Danai, K.; Lewicki, D. G.

    1998-01-01

    This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.

  16. On-line bolt-loosening detection method of key components of running trains using binocular vision

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Sun, Junhua

    2017-11-01

    Bolt loosening, as one of hidden faults, affects the running quality of trains and even causes serious safety accidents. However, the developed fault detection approaches based on two-dimensional images cannot detect bolt-loosening due to lack of depth information. Therefore, we propose a novel online bolt-loosening detection method using binocular vision. Firstly, the target detection model based on convolutional neural network (CNN) is used to locate the target regions. And then, stereo matching and three-dimensional reconstruction are performed to detect bolt-loosening faults. The experimental results show that the looseness of multiple bolts can be characterized by the method simultaneously. The measurement repeatability and precision are less than 0.03mm, 0.09mm respectively, and its relative error is controlled within 1.09%.

  17. Analysis of the impact of error detection on computer performance

    NASA Technical Reports Server (NTRS)

    Shin, K. C.; Lee, Y. H.

    1983-01-01

    Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.

  18. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    Specific topics briefly addressed include: the consistent comparison problem in N-version system; analytic models of comparison testing; fault tolerance through data diversity; and the relationship between failures caused by automatically seeded faults.

  19. Infrared thermography based diagnosis of inter-turn fault and cooling system failure in three phase induction motor

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Naikan, V. N. A.

    2017-12-01

    Thermography has been widely used as a technique for anomaly detection in induction motors. International Electrical Testing Association (NETA) proposed guidelines for thermographic inspection of electrical systems and rotating equipment. These guidelines help in anomaly detection and estimating its severity. However, it focus only on location of hotspot rather than diagnosing the fault. This paper addresses two such faults i.e. inter-turn fault and failure of cooling system, where both results in increase of stator temperature. Present paper proposes two thermal profile indicators using thermal analysis of IRT images. These indicators are in compliance with NETA standard. These indicators help in correctly diagnosing inter-turn fault and failure of cooling system. The work has been experimentally validated for healthy and with seeded faults scenarios of induction motors.

  20. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb failure stress up to 0.45 bar/yr. While creeping segments are suggested to act as barriers and arrest rupture, our study implies that SSEs on these zones may trigger seismic events on adjacent locked parts.

Top