Science.gov

Sample records for detection identification location

  1. Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2009-01-01

    In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.

  2. Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.

    2009-01-01

    The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature

  3. Feature Identification and Location Experiment

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.; Wilson, R. G.; Bullock, G. F.; Schappell, R. T.

    1982-01-01

    The Feature Identification and Location Experiment (FILE), which was flown on the second Space Shuttle flight to test a technique for real-time, autonomous classification of water, vegetation and bare land as well as clouds, snow and ice, senses earth radiation in spectral bands centered at 0.65 and 0.85 microns. The radiance ratio classification algorithm has successfully made automatic data selection decisions. A classification image obtained on the mission is providing data needed to evaluate the FILE algorithm and overall system performance.

  4. Optimal Sensor Locations for System Identification

    DTIC Science & Technology

    1988-03-01

    Element Model . 19 3. A METHODOLOGY FOR OPTIMAL SENSOR LOCATIONS FOR PARAMETRIC IDENTIFICATION ................. 37 3.1. Introduction... parametric identification of structural systems depends on the location at which sensors are placed and data gathered, very little by way of a...picture on optimal sensor locations for parametric identification in a noisy measurement 6 z, -. -" environment. Section IV deals with an important aspect

  5. Source Identification and Location Techniques

    NASA Technical Reports Server (NTRS)

    Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert

    2001-01-01

    Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A

  6. Optimal Sensor Locations for Structural Identification

    NASA Technical Reports Server (NTRS)

    Udwadia, F. E.; Garba, J.

    1985-01-01

    The optimum sensor location problem, OSLP, may be thought of in terms of the set of systems, S, the class of input time functions, I, and the identification algorithm (estimator) used, E. Thus, for a given time history of input, the technique of determining the OSL requires, in general, the solution of the optimization and the identification problems simultaneously. A technique which uncouples the two problems is introduced. This is done by means of the concept of an efficient estimator for which the covariance of the parameter estimates is inversely proportional to the Fisher Information Matrix.

  7. Automated identification of neurons and their locations.

    PubMed

    Inglis, A; Cruz, L; Roe, D L; Stanley, H E; Rosene, D L; Urbanc, B

    2008-06-01

    Individual locations of many neuronal cell bodies (>10(4)) are needed to enable statistically significant measurements of spatial organization within the brain such as nearest-neighbour and microcolumnarity measurements. In this paper, we introduce an Automated Neuron Recognition Algorithm (ANRA) which obtains the (x, y) location of individual neurons within digitized images of Nissl-stained, 30 microm thick, frozen sections of the cerebral cortex of the Rhesus monkey. Identification of neurons within such Nissl-stained sections is inherently difficult due to the variability in neuron staining, the overlap of neurons, the presence of partial or damaged neurons at tissue surfaces, and the presence of non-neuron objects, such as glial cells, blood vessels, and random artefacts. To overcome these challenges and identify neurons, ANRA applies a combination of image segmentation and machine learning. The steps involve active contour segmentation to find outlines of potential neuron cell bodies followed by artificial neural network training using the segmentation properties (size, optical density, gyration, etc.) to distinguish between neuron and non-neuron segmentations. ANRA positively identifies 86 +/- 5% neurons with 15 +/- 8% error (mean +/- SD) on a wide range of Nissl-stained images, whereas semi-automatic methods obtain 80 +/- 7%/17 +/- 12%. A further advantage of ANRA is that it affords an unlimited increase in speed from semi-automatic methods, and is computationally efficient, with the ability to recognize approximately 100 neurons per minute using a standard personal computer. ANRA is amenable to analysis of huge photo-montages of Nissl-stained tissue, thereby opening the door to fast, efficient and quantitative analysis of vast stores of archival material that exist in laboratories and research collections around the world.

  8. Martian Resource Locations - Identification and Optimization

    NASA Astrophysics Data System (ADS)

    Chamitoff, G.; James, G.; Barker, D.; Dershowitz, A.

    2002-01-01

    Many physical constituents of the Martian environment can be considered as possible material resources. The identification and utilization of these in-situ Martian natural resources is the key to enabling cost- effective long-duration missions and permanent human settlements on Mars. Also, access to local resources provides an essential safety net for the initial missions. The incident solar radiation, atmosphere, regolith, subsurface materials, polar deposits, and frozen volatiles represent planetary resources that can provide breathable air, water, energy, organic growth media, and building materials. Hence, the characterization and localization of these resources can be viewed as a component of the process of landing/outpost site selection. The locations of early permanent settlements will likely be near the imported and in-situ resources of the initial outposts. Therefore, the initial site selections can have significant long- term ramifications. Although the current information on the location, extent, purity, and ease of extraction of the in-situ resources is limited; this knowledge improves with each electronic bit of information returned from the planet. This paper presents a powerful software tool for the combined organization and analysis of Martian data from all sources. This program, called PROMT (Planetary Resource Optimization and Mapping Tool), is designed to provide a wide range of analysis and display functions that can be applied to raw data or photo- imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that the user can use to process data. Individual maps can then be created to identify surface regions on Mars that meet specific criteria. For example, regions with possible subsurface ice can be identified and shown graphically by combining and analyzing various gamma ray and neutron emission data sets. Other examples might include regions with high atmospheric pressure, steep slopes, evidence of

  9. UXO location and identification using borehole magnetometery

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Al-Nuaimy, Waleed; Huang, Yi; Gascoyne, Jon

    2005-06-01

    It is estimated that 10% of war-time bombs did not explode and can be found at the ground surface or buried at a depth of up to 8 meters depending on the formation of the soil. These unexploded bombs or ordnance (UXO) pose a real danger to construction workers and properties. Ground surface based methods become ineffective for objects sinking into deep places due to rapidly diminishing anomalous field and interfering metal debris distributed over ground surface. To overcome the difficulties, a unique inversion algorithm is proposed in this work with advantages of fast convergence and maximization of information extracted from individual hole measurement. It is more reliable than traditional methods by examining the possibilities within a number of estimations. The information from individual hole measurement is fully interpreted hence suggestion can be made for the positioning of next drilling in order to minimize the number of holes required for clearance. Based upon the recovered information, a comparison method is proposed for the identification and discrimination of UXO items from other objects that may be found in the environment, such as steel pipes and steel barrels. It is not sensitive to the interference in the data once the dipole moment is recovered. The results from a test site demonstrates its supreme capability to deal with real-world inversion problems having small number of available data points.

  10. Martian resource locations: Identification and optimization

    NASA Astrophysics Data System (ADS)

    Chamitoff, Gregory; James, George; Barker, Donald; Dershowitz, Adam

    2005-04-01

    The identification and utilization of in situ Martian natural resources is the key to enable cost-effective long-duration missions and permanent human settlements on Mars. This paper presents a powerful software tool for analyzing Martian data from all sources, and for optimizing mission site selection based on resource collocation. This program, called Planetary Resource Optimization and Mapping Tool (PROMT), provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in situ resource utilization. Preliminary optimization results are shown for a number of mission scenarios.

  11. Locating bomb factories by detecting hydrogen peroxide.

    PubMed

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Failure detection and identification

    NASA Technical Reports Server (NTRS)

    Massoumnia, Mohammad-Ali; Verghese, George C.; Willsky, Alan S.

    1989-01-01

    Using the geometric concept of an unobservability subspace, a solution is given to the problem of detecting and identifying control system component failures in linear, time-invariant systems. Conditions are developed for the existence of a causal, linear, time-invariant processor that can detect and uniquely identify a component failure, first for the case where components can fail simultaneously, and then for the case where they fail only one at a time. Explicit design algorithms are provided when these conditions are satisfied. In addition to time-domain solvability conditions, frequency-domain interpretations of the results are given, and connections are drawn with results already available in the literature.

  13. Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  14. Testing of a locating discriminating metal detector for landmine detection

    NASA Astrophysics Data System (ADS)

    Davidson, Nigel; Hawkins, Mark; Beech, Richard

    2006-05-01

    Conventional metal detectors are established and trusted tools for landmine detection, but their inability to precisely locate a target and discriminate mines from clutter leads to a high false alarm rate and slow rate of progress. This paper reports on developments to the Marmot advanced metal detector, which uses an array of coils to precisely locate a metal target in three dimensions and identify it. Recent developments allow the detector to calculate the magnetic polarizability tensor of a metal object. The magnetic polarizability tensor is unique to a particular target, and is a property of the metal's shape, size, conductivity, permeability and orientation. The eigenvalues of the magnetic polarizability tensor are compared to a library of values in the detector's software, representing common types of mine and clutter. In this way, Marmot can often quickly identify a detected object as a type of mine or a piece of clutter. This identification is independent of the target's orientation and, within limits, its position relative to the search head, thus providing the potential for a target recognition facility. This paper presents the results of tests to determine Marmot's ability to detect, precisely locate and identify common landmines. Tests have been conducted in air and in several types of soil. The instrument is a first step in developing the concept for landmine clearance. Issues for further investigation have been identified, including use of the instrument for identifying high metal content landmines, application of the soil rejection function and signal to noise issues.

  15. Feature detection and letter identification.

    PubMed

    Pelli, Denis G; Burns, Catherine W; Farell, Bart; Moore-Page, Deborah C

    2006-12-01

    Seeking to understand how people recognize objects, we have examined how they identify letters. We expected this 26-way classification of familiar forms to challenge the popular notion of independent feature detection ("probability summation"), but find instead that this theory parsimoniously accounts for our results. We measured the contrast required for identification of a letter briefly presented in visual noise. We tested a wide range of alphabets and scripts (English, Arabic, Armenian, Chinese, Devanagari, Hebrew, and several artificial ones), three- and five-letter words, and various type styles, sizes, contrasts, durations, and eccentricities, with observers ranging widely in age (3 to 68) and experience (none to fluent). Foreign alphabets are learned quickly. In just three thousand trials, new observers attain the same proficiency in letter identification as fluent readers. Surprisingly, despite this training, the observers-like clinical letter-by-letter readers-have the same meager memory span for random strings of these characters as observers seeing them for the first time. We compare performance across tasks and stimuli that vary in difficulty by pitting the human against the ideal observer, and expressing the results as efficiency. We find that efficiency for letter identification is independent of duration, overall contrast, and eccentricity, and only weakly dependent on size, suggesting that letters are identified by a similar computation across this wide range of viewing conditions. Efficiency is also independent of age and years of reading. However, efficiency does vary across alphabets and type styles, with more complex forms yielding lower efficiencies, as one might expect from Gestalt theories of perception. In fact, we find that efficiency is inversely proportional to perimetric complexity (perimeter squared over "ink" area) and nearly independent of everything else. This, and the surprisingly fixed ratio of detection and identification

  16. Tumor location and detectability in mammographic screening

    SciTech Connect

    Schmitt, E.L.; Threatt, B.

    1982-10-01

    The adequacy of a film mammogram that does not visualize the retromammary space or ribs has concerned radiologists. The 79 prevalent cancers detected in the 10,000 self-referred woman at the University of Michigan Breast Cancer Detection Demonstration Project were analyzed for number of films required to detect the cancer, relationship of the cancer to the posterior edge of the film, number of occult lesions, tumor size, histologic type, sensitivity of detection method, and number of interval carcinomas. The mammograms were obtained using a dedicated mammographic machine and the upright position, with visualization of the anterior axillary fold on the mediolateral view. The ribs were not imaged. Of the 79 cancers, 76 were detectable on the mammogram. All were visualized on the mediolateral view, while three were not imaged on the craniocaudal view. Twelve percent of the cancers were within 1 cm of the posterior edge of the film. Only six ''interval'' carcinomas were found in the 10,000 patients within the year of the initial examinations; these women had dense P2 or DY mammographic parenchymal patterns. The detected cancers were smaller and had a significantly higher percentage of noninvasive cancers than in a symptomatic clinical population. Thus, properly exposed film mammograms using vigorous breast compression examine the breast adequately without visualizing the ribs.

  17. Optimal sensor location for parameter identification in soft clay

    NASA Astrophysics Data System (ADS)

    Hölter, R.; Mahmoudi, E.; Schanz, T.

    2015-10-01

    Performing parameter identification for model calibration prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental set-up, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and reduce the number of monitoring points. This paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability factor of soft clays. With an initial set-up of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the aforementioned parameters. Starting from these identified parameters, the optimal measurement set-up is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity.

  18. Demonstration of the Robotic Gamma Locating and Isotopic Identification Device

    SciTech Connect

    Anderson, Matthew Oley; Conner, Craig C; Daniel, Vincent Elvernard; Mckay, Mark D; Yancey, Neal Adam

    2002-08-01

    The United States Department of Energy (DOE) continually seeks safer and more cost- effective technologies for use in decontaminating and decommissioning nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area of DOE's Office of Science and Technology sponsors Large-Scale Demonstration and Deployment Projects (LSDDP) to test new technologies. As part of these projects, developers and vendors showcase new products designed to decrease health and safety risks to personnel and the environment, increase productivity, and lower costs. As part of the FY 2000 and 2001 LSDDP, the Idaho National Engineering and Environmental Laboratory (INEEL) collaborated with the Russian Research and Development Institute of Construction Technology (NIKIMT). This collaboration resulted in the development of the Robotic Gamma Locating and Isotopic Identification Device (RGL&IID) which integrated DOE Robotics Crosscutting (Rbx) technology with NIKIMT Russian gamma locating and isotopic identification technology. This paper will discuss the technologies involved in this integration and results from the demonstration including reduction of personnel exposure, increase in productivity, and reduced risk.

  19. Fault location identification for localized intermittent connection problems on CAN networks

    NASA Astrophysics Data System (ADS)

    Lei, Yong; Yuan, Yong; Sun, Yichao

    2014-09-01

    The intermittent connection(IC) of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem, which may result in system level failures or safety issues. However, there is no online IC location identification method available to detect and locate the position of the problem. To tackle this problem, a novel model based online fault location identification method for localized IC problem is proposed. First, the error event patterns are identified and classified according to different node sources in each error frame. Then generalized zero inflated Poisson process(GZIP) model for each node is established by using time stamped error event sequence. Finally, the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters. To illustrate the proposed method, case studies are conducted on a 3-node controller area network(CAN) test-bed, in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches. The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0), and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node, which agrees with the experimental setup. The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.

  20. Boundary-detection algorithm for locating edges in digital imagery

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Russell, M. J.; Moore, D. G.; Nelson, G. D.

    1975-01-01

    The author has identified the following significant results. Initial development of a computer program which implements a boundary detection algorithm to detect edges in digital images is described. An evaluation of the boundary detection algorithm was conducted to locate boundaries of lakes from LANDSAT-1 imagery. The accuracy of the boundary detection algorithm was determined by comparing the area within boundaries of lakes located using digitized LANDSAT imagery with the area of the same lakes planimetered from imagery collected from an aircraft platform.

  1. Leak Detection and Location Technology Assessment for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Coffey, Neil C.; Madaras, Eric I.

    2008-01-01

    Micro Meteoroid and Orbital Debris (MMOD) and other impacts can cause leaks in the International Space Station and other aerospace vehicles. The early detection and location of leaks is paramount to astronaut safety. Therefore this document surveys the state of the art in leak detection and location technology for aerospace vehicles.

  2. Automated Detection and Location of Indications in Eddy Current Signals

    SciTech Connect

    Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.

    1998-06-30

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, said signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  3. Automated detection and location of indications in eddy current signals

    DOEpatents

    Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.

    2000-01-01

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  4. Equipment Location Plan, partial basement plan. (Includes identification of each ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial basement plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southeast part of the basement.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L DPC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 100, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/100, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Equipment Location Plan, partial first floor plan. (Includes identification of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Equipment Location Plan, partial first floor plan. (Includes identification of each separate CPU, tape drive, hard drive, printer, keyboard, etc., within the data processing center in the southwest part of the first floor.) March Air Force Base, Riverside, California, Combat Operations Center, 465-L EDTCC/EDLCC. By International Electric Corporation, Paramus, New Jersey (3/5/62); for Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 85, approved March, 1962; specifications no. OCI-62-66; D.O. series AW 1596/85, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-quarter inch to one foot. 28.75x40.5 inches. ink on linen - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  6. A morphology-based algorithm for label location and identification

    NASA Astrophysics Data System (ADS)

    Nie, Zhengang; Zhang, Xiaolin; Yang, Xinxin

    2005-07-01

    Label location and recognition has become a crucial task for today"s Unmanned Aerial Vehicles. We proposed a morphology-based algorithm to locate and recognize labels. This algorithm is insensitive to scaling and rotation, and able to work at low resolution. The label positioning and recognition strategy we designed is divided into two steps. First, at the altitude of 10m or so, we apply dilation processing and edge detection on the images sent back by UAV. Then combining the current heading information of the vehicle, we are able to give the topology map of all labels. After that the vehicle is lowered to about 5m and we apply erosion processing on the returned image and then recognize each label using image measurement and image analysis methods. The validity of this algorithm is well verified at ARCC 2004.

  7. Search and rescue emergency locating transmitter detection/location procedure via TIROS satellite

    NASA Technical Reports Server (NTRS)

    Wren, P. E.; Davisson, L. D.

    1980-01-01

    A procedure is described which works effectively to detect and locate emergency locating transmitters (ELTs) and emergency position indicating radio beacons (EPIRBs) in a multisignal environment. Using data generated from several manufactured ELTs with diverse superimposed Doppler curves, as many as 9 simultaneous ELTs can be detected and located at a variety of signal strengths. It is noted that average position errors of 10 km are attainable today at signal power to noise spectral density ratios as low as 17 dB-Hz.

  8. Detection and Identification of Vipera Russelli Venom

    DTIC Science & Technology

    1990-01-01

    adapted for the detection and identification of vier russelli venom. The assay sensitivity was observed to be 10-13 g m7’. Venoms from snakes of the Vipera...Enzyme-linked Immunosorbent Assay (FELISA) has been adapted for the detection and identification of Vipera russelli venom. The assay sensitivity was...observed to _13 _ be 10 g ml . Venoms from snakes of the Vipera group exhibited a high degree of cross reactivity when tested with the anti- body

  9. Detection and location of underground cables using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Goddard, K. F.; Wang, P.; Lewin, P. L.; Swingler, S. G.

    2012-05-01

    This paper describes an experimental study into the detection and location of underground cables using magnetic field measurements. The basic theory behind the technique is discussed. A method of locating and classifying buried cables using measurements of their magnetic field is then introduced and explained. Experimental results are presented, which show that this system can give useful results in uncluttered locations. Some options for extending the system so that it can be used in cluttered locations, and for integrating the system into multi-sensor device, are discussed briefly.

  10. Using context and similarity for face and location identification

    NASA Astrophysics Data System (ADS)

    Davis, Marc; Smith, Michael; Stentiford, Fred; Bamidele, Adetokunbo; Canny, John; Good, Nathan; King, Simon; Janakiraman, Rajkumar

    2006-01-01

    This paper describes a new approach to the automatic detection of human faces and places depicted in photographs taken on cameraphones. Cameraphones offer a unique opportunity to pursue new approaches to media analysis and management: namely to combine the analysis of automatically gathered contextual metadata with media content analysis to fundamentally improve image content recognition and retrieval. Current approaches to content-based image analysis are not sufficient to enable retrieval of cameraphone photos by high-level semantic concepts, such as who is in the photo or what the photo is actually depicting. In this paper, new methods for determining image similarity are combined with analysis of automatically acquired contextual metadata to substantially improve the performance of face and place recognition algorithms. For faces, we apply Sparse-Factor Analysis (SFA) to both the automatically captured contextual metadata and the results of PCA (Principal Components Analysis) of the photo content to achieve a 60% face recognition accuracy of people depicted in our database of photos, which is 40% better than media analysis alone. For location, grouping visually similar photos using a model of Cognitive Visual Attention (CVA) in conjunction with contextual metadata analysis yields a significant improvement over color histogram and CVA methods alone. We achieve an improvement in location retrieval precision from 30% precision for color histogram and CVA image analysis, to 55% precision using contextual metadata alone, to 67% precision achieved by combining contextual metadata with CVA image analysis. The combination of context and content analysis produces results that can indicate the faces and places depicted in cameraphone photos significantly better than image analysis or context analysis alone. We believe these results indicate the possibilities of a new context-aware paradigm for image analysis.

  11. Defining solar park location using shadow over time detection method

    NASA Astrophysics Data System (ADS)

    Martynov, Ivan; Kauranne, Tuomo

    2016-06-01

    There is nowadays a high demand for research on using renewable sources of energy including solar energy. The availability of stable and efficient solar energy is of paramount importance. Therefore, it is vital to install solar panels in locations which are most of the time not in shadow. To illustrate this idea we have developed a shadow identification method for digital elevation models (DEMs) using the computational means of MATLAB whose environment and tools allow fast and easy image processing. As a source of DEMs we use the Shuttle Radar Topography Mission (SRTM) database since it covers most of the terrain of our planet.

  12. Detection and location of metallic objects imbedded in nonmetallic structures

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Neuschaefer, R. W.

    1968-01-01

    Small battery operated eddy current proximity measuring device detects and locates metal objects the size of a dime at distances up to one foot within nonmetallic structures. This device weighs approximately two pounds, occupies approximately 60 cubic inches, and is battery powered.

  13. Fluid pipeline leak detection and location with miniature RF tags

    DOEpatents

    McIntyre, Timothy J.

    2017-05-16

    Sensors locate troublesome leaks in pipes or conduits that carry a flowing medium. These sensors, through tailored physical and geometric properties, preferentially seek conduit leaks or breaches due to flow streaming. The sensors can be queried via transceivers outside the conduit or located and interrogated inside by submersible unmanned vehicle to identify and characterize the nature of a leak. The sensors can be functionalized with other capabilities for additional leak and pipeline characterization if needed. Sensors can be recovered from a conduit flow stream and reused for future leak detection activities.

  14. Detection and Location of Structural Degradation in Mechanical Systems

    SciTech Connect

    Blakeman, E.D.; Damiano, B.; Phillips, L.D.

    1999-08-30

    The investigation of a diagnostic method for detecting and locating the source of structural degradation in a mechanical system is described in this paper. The diagnostic method uses a mathematical model of the mechanical system to determine relationships between system parameters and measurable spectral features. These relationships are incorporated into a neural network, which associates measured spectral features with system parameters. Condition diagnosis is performed by presenting the neural network with measured spectral features and comparing the system parameters estimated by the neural network to previously estimated values. Changes in the estimated system parameters indicate the location and severity of degradation in the mechanical system.

  15. Study of lip-reading detecting and locating technique

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Li, Jie; Zhao, Yanyan

    2008-03-01

    With the development of human computer interaction, lip reading technology has become a topic focus in the multimode technologic field. However, detecting and locating lip accurately are very difficult because lip contours of different people, varied illuminant conditions, head movements and other factors. Based on the methods of detecting and locating lip we proposed the methods which are based on the lips color extracted lip contour using the adaptive chromatic filter from the facial images. It is not sensitive to illumination, but appropriate chromatic lip filter is given by analyzing the entire face color and clustering statistics of lip color. It is proposed the combinable method which is preprocessing the face image including rotating the angle of face and improving image contrast in this paper and the lip region is analyzed clustering characteristics for the skin color and lip color, obtained adaptive chromatic filter which can prominent lips from the facial image. This method overcomes the varied illuminate, incline face. The experiments showed that it enhanced detection and location accurately through rough detecting lip region. It lay a good foundation for extraction the lip feature and tracking lip subsequently.

  16. Rapid detection and identification of infectious agents

    SciTech Connect

    Kingsbury, D.T.; Falkow, S.

    1985-01-01

    This book contains papers divided among five sections. Some of the paper titles are: Aspects of Using Nucleic Acid Filter Hybridization to Characterize and Detect Enteroviral RNAs; Rapid Identification of Lesihmania Species using Specific Hybridization of Kinetoplast DNA Sequences; Selection of DNA Probes for use in the Diagnosis of Infectious Disease; and Summary of DNA Probes.

  17. Methods, systems and devices for detecting and locating ferromagnetic objects

    DOEpatents

    Roybal, Lyle Gene [Idaho Falls, ID; Kotter, Dale Kent [Shelley, ID; Rohrbaugh, David Thomas [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID

    2010-01-26

    Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.

  18. Detection and location of small aftershocks using waveform cross correlation

    NASA Astrophysics Data System (ADS)

    Kitov, Ivan; Sanina, Irina; Sergeev, Sergey

    2017-04-01

    Aftershock sequences of earthquakes with magnitudes 5.0 and lower are difficult to detect and locate by sparse regional networks. Signals from aftershocks with magnitudes 2 to 3 are usually below detection thresholds of standard 3-C seismic stations at near regional distances. For seismic events close in space, the method waveform cross correlation (WCC) allows to reduce detection threshold by at least a unit of magnitude and to improve location precision to a few kilometers. Therefore, the WCC method is directly applicable to weak aftershock sequences. Here, we recover seismic activity after the earthquake near the town of Mariupol (Ukraine) occurred on August 7, 2016. The main shock was detected by many stations of the International monitoring system (IMS), including the closest primary IMS array stations AKASG (6.62 deg.) and BRTR (7.81), as well as 3-C station KBZ (5.00). The International data centre located this event (47.0013N, 37.5427E), estimated its origin time (08:15:4.1 UTC), magnitude (mb=4.5), and depth (6.8 km). This event was also detected by two array stations of the Institute for Dynamics of Geospheres (IDG) of the Russian Academy of Sciences: portable 3-C array RDON (3.28), which is the closest station, and MHVAR (7.96). Using signals from the main shock at five stations as waveform templates, we calculated continuous traces of cross correlation coefficient (CC) from the 7th to the 11th of August. We found that the best templates should include all regional phases, and thus, have the length from 80 s to 180 s. For detection, we used standard STA/LTA method with threshold depending on station. The accuracy of onset time estimation by the STA/LTA detector based on CC-traces is close to one sample, which varies from 0.05 s at BRTR to 0.005 s for RDON and MHVAR. Arrival times of all detected signals were reduced to origin times using the observed travel times from the main shock. Clusters of origin times are considered as event hypotheses in the

  19. The impact of mammographic density and lesion location on detection

    NASA Astrophysics Data System (ADS)

    Al Mousa, Dana; Ryan, Elaine; Lee, Warwick; Nickson, Carolyn; Pietrzyk, Mariusz; Reed, Warren; Poulos, Ann; Li, Yanpeng; Brennan, Patrick

    2013-03-01

    The aim of this study is to examine the impact of breast density and lesion location on detection. A set of 55 mammographic images (23 abnormal images with 26 lesions and 32 normal images) were examined by 22 expert radiologists. The images were classified by an expert radiologist according to the Synoptic Breast Imaging Report of the National Breast Cancer Centre (NBCC) as having low mammographic density (D1<25% glandular and D2> 25-50% glandular) or high density (D3 51-75% glandular and D4> 75-glandular). The observers freely examined the images and located any malignancy using a 5-point confidence. Performance was defined using the following metrics: sensitivity, location sensitivity, specificity, receiver operating characteristic (ROC Az) curves and jackknife free-response receiver operator characteristics (JAFROC) figures of merit. Significant increases in sensitivity (p= 0.0174) and ROC (p=0.0001) values were noted for the higher density compared with lower density images according to NBCC classification. No differences were seen in radiologists' performance between lesions within or outside the fibroglandular region. In conclusion, analysis of our data suggests that radiologists scored higher using traditional metrics in higher mammographic density images without any improvement in lesion localisation. Lesion location whether within or outside the fibroglandular region appeared to have no impact on detection abilities suggesting that if a masking effect is present the impact is minimal. Eye-tracking analyses are ongoing.

  20. Detection and identification of novel actinomycetes.

    PubMed

    Williams, S T; Locci, R; Beswick, A; Kurtböke, D I; Kuznetsov, V D; Le Monnier, F J; Long, P F; Maycroft, K A; Palma, R A; Petrolini, B

    1993-10-01

    The actinomycetes are well known as a group of filamentous, Gram-positive bacteria that produce many useful secondary metabolites, including antibiotics and enzymes. Although they have been intensively studied for both theoretical and practical objectives, there is much scope for developing our basic knowledge of the means of detection and isolation of these microbes. This session concentrated on new methods for the detection and identification of novel actinomycetes from a range of environments. Approaches to the detection of actinomycetes ranged from investigations of neglected habitats and extreme environments (e.g. alkaline soils and oil drills) to the analysis of DNA extracted from the environment and use of specific phages. The continuing problems of the identification of actinomycete isolates were also considered. Topics discussed included use of phage typing, DNA probes, and correlation between phenetic and genotypic species of Streptomyces.

  1. Polymerase chain reaction (PCR)-based methods for detection/identification of mycotoxigenic fungi targeting fumonisin biosynthetic genes: Use of variation in FUM cluster location to distinguish between and quantify

    USDA-ARS?s Scientific Manuscript database

    The fungus Fusarium is an agricultural problem because it can cause disease on most crop plants and can contaminate crops with mycotoxins. There is considerable variation in the presence/absence and genomic location of gene clusters responsible for synthesis of mycotoxins and other secondary metabol...

  2. Advances in the Location and Identification of Hidden Explosive Munitions

    DTIC Science & Technology

    1991-02-01

    learning mode when acquiring a design set from known objects. The location algorithm takes less than one second to execute on an 8MHz Motorola M68000 ...electromagnetic induction. 4. Concept of pattern classification for continuous design sets. 5. "Smart" total field magnetometer developed by ])RES. 6...feature vector of an un- known object ("test vector") with a set of stored feature vectors corresponding to a set of known objects (" design set"). This is

  3. Distress detection, location, and communications using advanced space technology

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  4. Distress detection, location, and communications using advanced space technology

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  5. Sub pixel location identification using super resolved multilooking CHRIS data

    NASA Astrophysics Data System (ADS)

    Sahithi, V. S.; Agrawal, S.

    2014-11-01

    CHRIS /Proba is a multiviewing hyperspectral sensor that monitors the earth in five different zenith angles +55°, +36°, nadir, -36° and -55° with a spatial resolution of 17 m and within a spectral range of 400-1050 nm in mode 3. These multiviewing images are suitable for constructing a super resolved high resolution image that can reveal the mixed pixel of the hyperspectral image. In the present work, an attempt is made to find the location of various features constituted within the 17m mixed pixel of the CHRIS image using various super resolution reconstruction techniques. Four different super resolution reconstruction techniques namely interpolation, iterative back projection, projection on to convex sets (POCS) and robust super resolution were tried on the -36, nadir and +36 images to construct a super resolved high resolution 5.6 m image. The results of super resolution reconstruction were compared with the scaled nadir image and bicubic convoluted image for comparision of the spatial and spectral property preservance. A support vector machine classification of the best super resolved high resolution image was performed to analyse the location of the sub pixel features. Validation of the obtained results was performed using the spectral unmixing fraction images and the 5.6 m classified LISS IV image.

  6. Passive sonic detection and ranging for locating sound sources.

    PubMed

    Wu, Sean F; Zhu, Na

    2013-06-01

    A passive sonic detection and ranging (SODAR) technology is developed to locate sound sources that emit arbitrarily time-dependent signals in a typical environment encountered in practice in real time. This passive SODAR is built on a comprehensive approach including the pre-processing of input data to enhance the signal-to-noise ratio, acoustic modeling of sound radiation from a point source, iterative triangulations, and post-processing of output data to ensure the accuracy in source localization. Moreover, it employs an optimization process to extend the source detection range and improve the source localization accuracy in a highly non-ideal environment that involves a large number of unspecified reflected and diffracted sound waves. This is accomplished through computations based on the source locations predicted by the individual units of four microphones that are not lying on the same plane. Experimental results confirm that passive SODAR works for arbitrarily time-dependent signals that include continuous, transient, impulsive, random, narrow-, and broadband sounds with frequencies above 20 Hz. The minimum number of microphones that are required in passive SODAR is six. These microphones can be mounted anywhere as long as they are not on the same plane and the lines of sight from sound sources remain unblocked.

  7. Visual-search models for location-known detection tasks

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.

    2017-03-01

    Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

  8. Analog Binaural Circuits for Detecting and Locating Leaks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2003-01-01

    Very-large-scale integrated (VLSI) analog binaural signal-processing circuits have been proposed for use in detecting and locating leaks that emit noise in the ultrasonic frequency range. These circuits would be designed to function even in the presence of intense lower-frequency background noise that could include sounds associated with flow and pumping. Each of the proposed circuits would include the approximate electronic equivalent of a right and a left cochlea plus correlator circuits. A pair of transducers (microphones or accelerometers), corresponding to right and left ears, would provide the inputs to their respective cochleas from different locations (e.g., from different positions along a pipe). The correlation circuits plus some additional external circuits would determine the difference between the times of arrival of a common leak sound at the two transducers. Then the distance along the pipe from either transducer to the leak could be estimated from the time difference and the speed of sound along the pipe. If three or more pairs of transducers and cochlear/correlator circuits were available and could suitably be positioned, it should be possible to locate a leak in three dimensions by use of sound propagating through air.

  9. Identification of Groundwater Contaminant Location using Simulation-Optimization Methods with Various Contaminant Properties

    NASA Astrophysics Data System (ADS)

    Park, Y. C.

    2016-12-01

    Identification of groundwater contaminant location is one of the most important part in remediation of contaminated groundwater because remediation processes require enormous time and money. Especially identification of contaminant location could be the most serious part in industrial complexes where many potential contaminant sources exist. Simulation-Optimization methods have been used to identify contaminant location for decays. The accuracy of identification increases when the amount of information of aquifer properties and contaminant properties increases. Artificial contaminated groundwater systems were tested with various aquifer properties and contaminant properties. Deterministic and Stochastic approaches applied to estimate the accuracy of identification using simulation-optimization methods. Additionally, parallel computing techniques were used to improve the speed of simulation-optimization methods. This subject is supported by Korea Ministry of Environment as "The GAIA project".

  10. Detecting and Locating Crosswalks using a Camera Phone.

    PubMed

    Ivanchenko, Volodymyr; Coughlan, James; Shen, Huiying

    2008-01-01

    Urban intersections are the most dangerous parts of a blind or visually impaired person's travel. To address this problem, this paper describes the novel "Crosswatch" system, which uses computer vision to provide information about the location and orientation of crosswalks to a blind or visually impaired pedestrian holding a camera cell phone. A prototype of the system runs on an off-the-shelf Nokia N95 camera phone in real time, which automatically takes a few images per second, analyzes each image in a fraction of a second and sounds an audio tone when it detects a crosswalk. Real-time performance on the cell phone, whose computational resources are limited compared to the type of desktop platform usually used in computer vision, is made possible by coding in Symbian C++. Tests with blind subjects demonstrate the feasibility of the system.

  11. System and Method for Detecting Cracks and their Location

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Shams, Qamar A. (Inventor)

    2007-01-01

    A system and method are provided for detecting cracks and their location in a structure. A circuit coupled to a structure has capacitive strain sensors coupled sequentially and in parallel to one another. When excited by a variable magnetic field, the circuit has a resonant frequency that is different for unstrained and strained states. In terms of strained states, the resonant frequency is indicative of a region of the circuit that is experiencing strain induced by strain in a region of the structure in proximity to the region of the circuit. An inductor is electrically coupled to one end of each circuit. A magnetic field response recorder wirelessly transmits the variable magnetic field to the inductor and senses the resonant frequency of the circuit so-excited by the variable magnetic field.

  12. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  13. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  14. Edge Detection Techniques for Automatic Location of Spectra

    NASA Astrophysics Data System (ADS)

    Zarate, N.; Labrie, K.

    2012-09-01

    To improve the processing of multi-object or cross-dispersed spectroscopic data, especially for systems resulting in curved 2-D spectra, we have implemented in Python edge detection techniques widely used in the photo processing and remote sensing world. The software uses the discontinuity found in a spectral image to precisely locate each dispersed 2-D spectrum on the pixel array. A valid spectrum image edge is defined as continuous and sharp. To this end the best input data is a well illuminated flat field. The algorithm applies a discontinuity detection filter to the image. We find that a 3 × 3 Sobel kernel reliably produces easily traceable edges on our data. Some instruments produce data with large background noise. In those cases, a mild smoothing filter is first applied to reduce noise spikes that would otherwise confuse the edge tracing algorithm. The edges highlighted by the filtering are traced using the SciPy function label. Each edge is represented by a second degree polynomial that follows each slit edge. Currently the software assumes that the spectra are nearly horizontal or nearly vertical. This constraint can easily be lifted with the choice of a different convolution kernel.

  15. Picking vs Waveform based detection and location methods for induced seismicity monitoring

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Boese, Maren; Scarabello, Luca; Diehl, Tobias; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2017-04-01

    Microseismic monitoring is a common operation in various industrial activities related to geo-resouces, such as oil and gas and mining operations or geothermal energy exploitation. In microseismic monitoring we generally deal with large datasets from dense monitoring networks that require robust automated analysis procedures. The seismic sequences being monitored are often characterized by very many events with short inter-event times that can even provide overlapped seismic signatures. In these situations, traditional approaches that identify seismic events using dense seismic networks based on detections, phase identification and event association can fail, leading to missed detections and/or reduced location resolution. In recent years, to improve the quality of automated catalogues, various waveform-based methods for the detection and location of microseismicity have been proposed. These methods exploit the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. Although this family of methods have been applied to different induced seismicity datasets, an extensive comparison with sophisticated pick-based detection and location methods is still lacking. We aim here to perform a systematic comparison in term of performance using the waveform-based method LOKI and the pick-based detection and location methods (SCAUTOLOC and SCANLOC) implemented within the SeisComP3 software package. SCANLOC is a new detection and location method specifically designed for seismic monitoring at local scale. Although recent applications have proved an extensive test with induced seismicity datasets have been not yet performed. This method is based on a cluster search algorithm to associate detections to one or many potential earthquake sources. On the other hand, SCAUTOLOC is more a "conventional" method and is the basic tool for seismic event detection and location in SeisComp3. This approach was specifically designed for

  16. Error-Detecting Identification Codes for Algebra Students.

    ERIC Educational Resources Information Center

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  17. Earthquake Early Warning with Seismogeodesy: Detection, Location, and Magnitude Estimation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2016-12-01

    Earthquake early warning is critical to reducing injuries and casualties in case of a large magnitude earthquake. The system must rely on near-source data to minimize the time between event onset and issuance of a warning. Early warning systems typically use seismic instruments (seismometers and accelerometers), but these instruments experience difficulty maintaining reliable data in the near-source region and undergo magnitude saturation for large events. Global Navigation Satellite System (GNSS) instruments capture the long period motions and have been shown to produce robust estimates of the true size of the earthquake source. However, GNSS is often overlooked in this context in part because it is not precise enough to record the first seismic wave arrivals (P-wave detection), an important consideration for issuing an early warning. GNSS instruments are becoming integrated into early warning, but are not yet fully exploited. Our approach involves the combination of direct measurements from collocated GNSS and accelerometer stations to estimate broadband coseismic displacement and velocity waveforms [Bock et al., 2011], a method known as seismogeodesy. We present the prototype seismogeodetic early warning system developed at Scripps and demonstrate that the seismogeodetic dataset can be used for P-wave detection, hypocenter location, and shaking onset determination. We discuss uncertainties in each of these estimates and include discussion of the sensitivity of our estimates as a function of the azimuthal distribution of monitoring stations. The seismogeodetic combination has previously been shown to be immune to magnitude saturation [Crowell et al., 2013; Melgar et al., 2015]. Rapid magnitude estimation is an important product in earthquake early warning, and is the critical metric in current tsunami hazard warnings. Using the seismogeodetic approach, we refine earthquake magnitude scaling using P-wave amplitudes (Pd) and peak ground displacements (PGD) for a

  18. Detection and Identification of Individual Bioaerosol Microparticles

    NASA Astrophysics Data System (ADS)

    Wolf, J. P.; Boutou, V.; Pan, Y. L.; Chang, R. K.

    Real-time detection and identification of biological aerosols, such as bacteria, viruses, or pollens is a key issue for both environmental and strategic purposes. UV-laser in- duced fluorescence (LIF) is a very efficient technique to detect biological tracers (e.g., amino acids) within airborne microparticles and thus identify bioagents in a mixture of aerosols. In order to obtain selectivity, the fluorescence spectrum of each particle has to be recorded individually. We present the LIF spectra of individual biological particles flowing in the air. The observed spectra reveal the signatures of tryptophan, riboflavin, and NADH. High sensitivity and counting rate are obtained using a novel detection design based on a shot-noise limited 32-anodes photomultiplier. While in- creasing the incident laser energy, parasitic non-linear processes can take place. In particular, we show that the fluorescence spectrum of riboflavin containing microparti- cles is modified by a 2-photon photodegradation- excitation process, which might lead to significant identification errors. However, using ultrashort laser pulses significantly reduces these artefacts since the deposited energy is low. Non-linear multiphoton ex- citation (photodegradation free) can even provide attractive features for bioaerosols identification. In particular, we demonstrated theoretically and experimentally that one-, two-, and three-photon excited fluorescence from dye molecules in spherical microdroplets has an asymmetrical angular distribution and is enhanced in the back- ward direction. Femtosecond excitation allowed us to illuminate the microparticles at high intensity without shape deformation and photodegradation. The enhancement ra- tios (of intensities at 180 and 90) reaches 9 for three-photon excitation. Calculations show a plateau above a given size (1-3 micrometers depending on the process order) under which the enhancement drastically decreases. This change in angular depen- dence might be of

  19. Autonomous system for pathogen detection and identification

    SciTech Connect

    Belgrader, P.; Benett, W.; Bergman, W.; Langlois, R.; Mariella, R.; Milanovich, F.; Miles, R.; Venkateswaran, K.; Long, G.; Nelson, W.

    1998-09-24

    This purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world' s leading, proven, assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction (PCR) for nucleic-acid based assays. With these assays, we must integrate the capability to: l collect samples from aerosols, water, or surfaces; l perform sample preparation prior to the assays; l incubate the prepared samples, if necessary, for a period of time; l transport the prepared, incubated samples to the assays; l perform the assays; l interpret and report the results of the assays. Issues such as reliability, sensitivity and accuracy, quantity of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify simulants for BW agents at concentrations of a few hundred colony-forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 Ymin and concentrates the respirable particles into 1 ml of solution with 70% processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent-containing particle/liter of air.

  20. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    NASA Astrophysics Data System (ADS)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  1. Improving Infrasound Signal Detection and Event Location in the Western US Using Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Dannemann, F. K.; Park, J.; Marcillo, O. E.; Blom, P. S.; Stump, B. W.; Hayward, C.

    2016-12-01

    Data from five infrasound arrays in the western US jointly operated by University of Utah Seismograph Station and Southern Methodist University are used to test a database-centric processing pipeline, InfraPy, for automated event detection, association and location. Infrasonic array data from a one-year time period (January 1 2012 to December 31 2012) are used. This study focuses on the identification and location of 53 ground-truth verified events produced from near surface military explosions at the Utah Test and Training Range (UTTR). Signals are detected using an adaptive F-detector, which accounts for correlated and uncorrelated time-varying noise in order to reduce false detections due to the presence of coherent noise. Variations in detection azimuth and correlation are found to be consistent with seasonal changes in atmospheric winds. The Bayesian infrasonic source location (BISL) method is used to produce source location and time credibility contours based on posterior probability density functions. Updates to the previous BISL methodology include the application of celerity range and azimuth deviation distributions in order to accurately account for the spatial and temporal variability of infrasound propagation through the atmosphere. These priors are estimated by ray tracing through Ground-to-Space (G2S) atmospheric models as a function of season and time of day using historic atmospheric characterizations from 2007 to 2013. Out of the 53 events, 31 are successfully located using the InfraPy pipeline. Confidence contour areas for maximum a posteriori event locations produce error estimates which are reduced a maximum of 98% and an average of 25% from location estimates utilizing a simple time independent uniform atmosphere. We compare real-time ray tracing results with the statistical atmospheric priors used in this study to examine large time differences between known origin times and estimated origin times that might be due to the misidentification of

  2. Re-Identification Risk versus Data Utility for Aggregated Mobility Research Using Mobile Phone Location Data

    PubMed Central

    Yin, Ling; Wang, Qian; Shaw, Shih-Lung; Fang, Zhixiang; Hu, Jinxing; Tao, Ye; Wang, Wei

    2015-01-01

    Mobile phone location data is a newly emerging data source of great potential to support human mobility research. However, recent studies have indicated that many users can be easily re-identified based on their unique activity patterns. Privacy protection procedures will usually change the original data and cause a loss of data utility for analysis purposes. Therefore, the need for detailed data for activity analysis while avoiding potential privacy risks presents a challenge. The aim of this study is to reveal the re-identification risks from a Chinese city’s mobile users and to examine the quantitative relationship between re-identification risk and data utility for an aggregated mobility analysis. The first step is to apply two reported attack models, the top N locations and the spatio-temporal points, to evaluate the re-identification risks in Shenzhen City, a metropolis in China. A spatial generalization approach to protecting privacy is then proposed and implemented, and spatially aggregated analysis is used to assess the loss of data utility after privacy protection. The results demonstrate that the re-identification risks in Shenzhen City are clearly different from those in regions reported in Western countries, which prove the spatial heterogeneity of re-identification risks in mobile phone location data. A uniform mathematical relationship has also been found between re-identification risk (x) and data (y) utility for both attack models: y = -axb+c, (a, b, c>0; 0identification risks and a privacy-utility tradeoff benchmark for improving privacy protection when sharing detailed trajectory data. PMID:26469780

  3. Re-Identification Risk versus Data Utility for Aggregated Mobility Research Using Mobile Phone Location Data.

    PubMed

    Yin, Ling; Wang, Qian; Shaw, Shih-Lung; Fang, Zhixiang; Hu, Jinxing; Tao, Ye; Wang, Wei

    2015-01-01

    Mobile phone location data is a newly emerging data source of great potential to support human mobility research. However, recent studies have indicated that many users can be easily re-identified based on their unique activity patterns. Privacy protection procedures will usually change the original data and cause a loss of data utility for analysis purposes. Therefore, the need for detailed data for activity analysis while avoiding potential privacy risks presents a challenge. The aim of this study is to reveal the re-identification risks from a Chinese city's mobile users and to examine the quantitative relationship between re-identification risk and data utility for an aggregated mobility analysis. The first step is to apply two reported attack models, the top N locations and the spatio-temporal points, to evaluate the re-identification risks in Shenzhen City, a metropolis in China. A spatial generalization approach to protecting privacy is then proposed and implemented, and spatially aggregated analysis is used to assess the loss of data utility after privacy protection. The results demonstrate that the re-identification risks in Shenzhen City are clearly different from those in regions reported in Western countries, which prove the spatial heterogeneity of re-identification risks in mobile phone location data. A uniform mathematical relationship has also been found between re-identification risk (x) and data (y) utility for both attack models: y = -axb+c, (a, b, c>0; 0identification risks and a privacy-utility tradeoff benchmark for improving privacy protection when sharing detailed trajectory data.

  4. GIS applied to location of fires detection towers in domain area of tropical forest.

    PubMed

    Eugenio, Fernando Coelho; Rosa Dos Santos, Alexandre; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; Juvanhol, Ronie Silva; Schettino, Vitor Roberto; Marcatti, Gustavo Eduardo; Domingues, Getúlio Fonseca; Alves Dos Santos, Gleissy Mary Amaral Dino; Pezzopane, José Eduardo Macedo; Pedra, Beatriz Duguy; Banhos, Aureo; Martins, Lima Deleon

    2016-08-15

    In most countries, the loss of biodiversity caused by the fires is worrying. In this sense, the fires detection towers are crucial for rapid identification of fire outbreaks and can also be used in environmental inspection, biodiversity monitoring, telecommunications mechanisms, telemetry and others. Currently the methodologies for allocating fire detection towers over large areas are numerous, complex and non-standardized by government supervisory agencies. Therefore, this study proposes and evaluates different methodologies to best location of points to install fire detection towers considering the topography, risk areas, conservation units and heat spots. Were used Geographic Information Systems (GIS) techniques and unaligned stratified systematic sampling for implementing and evaluating 9 methods for allocating fire detection towers. Among the methods evaluated, the C3 method was chosen, represented by 140 fire detection towers, with coverage of: a) 67% of the study area, b) 73.97% of the areas with high risk, c) 70.41% of the areas with very high risk, d) 70.42% of the conservation units and e) 84.95% of the heat spots in 2014. The proposed methodology can be adapted to areas of other countries.

  5. Pickless event detection and location: The waveform correlation event detection system (WCEDS) revisited

    DOE PAGES

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; ...

    2016-01-01

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less

  6. Pickless event detection and location: The waveform correlation event detection system (WCEDS) revisited

    SciTech Connect

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; Slinkard, Megan Elizabeth

    2016-01-01

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events that generated the phase picks.

  7. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    PubMed

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  8. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks

    NASA Astrophysics Data System (ADS)

    Manconi, Andrea; Picozzi, Matteo; Coviello, Velio; De Santis, Francesca; Elia, Luca

    2016-07-01

    We propose a new real-time approach to detect, locate, and estimate the volume of rockslides by analyzing waveforms acquired from broadband regional seismic networks. The identification of signals generated by rockslides from other sources, such as natural and/or induced earthquakes, is accomplished by exploiting the ratio between local magnitudes (ML) and duration magnitudes (MD). We found that signals associated with rockslides have ML/MD < 0.8, while for earthquakes ML/MD ≅ 1. In addition, we derived an empirical relationship between MD and rockslide volumes, obtaining a preliminary characterization of rockslide volume within seconds after their occurrence. The key points of this study are presented by testing the hypothesis on a recent rockslide event that occurred in northern Italy. We discuss also the potential evolution of the methodology for early warning and/or rapid response purposes.

  9. Detection, Isolation, and Identification of Vibrio cholerae from the Environment

    PubMed Central

    Huq, Anwar; Haley, Bradd J.; Taviani, Elisa; Chen, Arlene; Hasan, Nur A.; Colwell, Rita R.

    2012-01-01

    Recent molecular advances in microbiology have greatly improved the detection of bacterial pathogens in the environment. Improvement and a downward trend in the cost of molecular detection methods have contributed to increased frequency of detection of pathogenic microorganisms where traditional culture-based detection methods have failed. Culture methods also have been greatly improved and the confluence of the two suites of methods provides a powerful tool for detection, isolation, and characterization of pathogens. While molecular detection provides data on the presence and type of pathogens, culturing methods allow a researcher to preserve the organism of interest for “–omics” studies, such as genomic, metabolomic, secretomic, and transcriptomic analysis, which are rapidly becoming more affordable. This has yielded a clearer understanding of the ecology and epidemiology of microorganisms that cause disease. Specifically, important advances have been made over the past several years on isolation, detection, and identification of Vibrio cholerae, the causative agent of cholera in humans. In this unit, we present commonly accepted methods for isolation, detection, and characterization of V. cholerae, providing more extensive knowledge of the ecology and epidemiology of this organism. This unit has been fully revised and updated from the earlier unit (Huq, Grim et al. 2006) with the latest knowledge and additional information not previously included. We have also taken into account of cost of reagents and equipment that may be prohibitive for many researchers and have, therefore, included protocols for all laboratories, including those with limited resources, likely to be located in regions of cholera endemicity. PMID:22875567

  10. Human ability in identification of location and pulse number for electrocutaneous stimulation applied on the forearm

    PubMed Central

    2014-01-01

    Background The need of a sensory feedback system that would improve users’ acceptance in prostheses is generally recognized. Feedback of hand opening and position are among the most important concerns of prosthetic users. To address the two concerns, this study investigated the human capability to identify pulse number and location when electrical stimulation applied on the forearm skin. The pulse number may potentially be used to encode the opening of prosthetic hands and stimulation location to encode finger position. Methods Ten able-bodied subjects participated in the study. Three electrodes were placed transversely across the ventral forearm spatially encoding three fingers (i.e., thumb, index, and middle finger). Five different pulse numbers (1, 4, 8, 12, and 20) encoded five levels of hand opening. The study consisted of three experiments. In the three experiments, each after a training session, the subjects were required to identify among: (a) five stimulation locations, (b) five pulse numbers, or (c) ten paired combinations of location and pulse number, respectively. The subjects’ performance in the three identification tasks was evaluated. Results The main results included: 1) the overall identification rate for stimulation location was 92.2 ± 6.2%, while the success rate in two-site stimulation was lower than one-site stimulation; 2) the overall identification rate for pulse number was 90.8 ± 6.0%, and the subjects showed different performance in identification of the five pulse numbers; 3) the overall identification rate decreased to 80.2 ± 11.7% when the subjects were identifying paired parameters. Conclusions The results indicated that the spatial (location) and temporal (pulse number) identification performance are promising in electrocutaneous stimulation on the forearm. The performance degraded when both parameters had to be identified likely due to increased cognitive load resulting from multiple tasks. Utilizing the proposed

  11. A Theory and Experiments for Detecting Shock Locations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Johnson, D. K.; Adamovsky, G.

    1994-01-01

    In this paper we present a simplified one-dimensional theory for predicting locations of normal shocks in a converging diverging nozzle. The theory assumes that the flow is quasi one-dimensional and the flow is accelerated in the throat area. Optical aspects of the model consider propagation of electromagnetic fields transverse to the shock front. The theory consists of an inverse problem in which from the measured intensity it reconstructs an index of refraction profile for the shock. From this profile and the Dale-Gladstone relation, the density in the flow field is determined, thus determining the shock location. Experiments show agreement with the theory. In particular the location is determined within 10 percent of accuracy. Both the theoretical as well as the experimental results are presented to validate the procedures in this work.

  12. An intelligent subtitle detection model for locating television commercials.

    PubMed

    Huang, Yo-Ping; Hsu, Liang-Wei; Sandnes, Frode-Eika

    2007-04-01

    A strategy for locating television (TV) commercials in TV programs is proposed. Based on the observation that most TV commercials do not have subtitles, the first stage exploits six subtitle constraints and an adaptive neurofuzzy inference system model to determine whether a frame contains a subtitle or not. The second stage involves locating the mark-in/mark-out points using a genetic algorithm. An interactive user interface allows users to efficiently identify and fine-tune the exact boundaries separating the commercials from the program content. Furthermore, erroneous boundaries are manually corrected. Experimental results show that the precision rate and recall rates exceed 90%.

  13. Detection and location of metal fragments in the human body

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Neuschaefer, R. W.

    1970-01-01

    Portable electronic device, based on the design of an eddy current gage, detects ferrous and nonferrous metal fragments. Device is more easily transported than X-ray equipment and does not present a radiation hazard.

  14. Target Detection and Identification Performance Using an Automatic Target Detection System.

    PubMed

    Reiner, Adam J; Hollands, Justin G; Jamieson, Greg A

    2017-03-01

    We investigated the effects of automatic target detection (ATD) on the detection and identification performance of soldiers. Prior studies have shown that highlighting targets can aid their detection. We provided soldiers with ATD that was more likely to detect one target identity than another, potentially acting as an implicit identification aid. Twenty-eight soldiers detected and identified simulated human targets in an immersive virtual environment with and without ATD. Task difficulty was manipulated by varying scene illumination (day, night). The ATD identification bias was also manipulated (hostile bias, no bias, and friendly bias). We used signal detection measures to treat the identification results. ATD presence improved detection performance, especially under high task difficulty (night illumination). Identification sensitivity was greater for cued than uncued targets. The identification decision criterion for cued targets varied with the ATD identification bias but showed a "sluggish beta" effect. ATD helps soldiers detect and identify targets. The effects of biased ATD on identification should be considered with respect to the operational context. Less-than-perfectly-reliable ATD is a useful detection aid for dismounted soldiers. Disclosure of known ATD identification bias to the operator may aid the identification process.

  15. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  16. Novel strategy to detect and locate periodontal pathogens: The PNA-FISH technique.

    PubMed

    Mendes, Luzia; Rocha, Rui; Azevedo, Andreia Sofia; Ferreira, Catarina; Henriques, Mariana; Pinto, Miguel Gonçalves; Azevedo, Nuno Filipe

    2016-11-01

    We aim to develop peptic nucleic acid (PNA) probes for the identification and localization of Aggregatibacter actinomycetemcomintans and Porphyromonas gingivalis in sub-gingival plaque and gingival biopsies by Fluorescence in situ Hybridization (FISH). A PNA probe was designed for each microorganism. The PNA-FISH method was optimized to allow simultaneous hybridization of both microorganisms with their probe (PNA-FISH multiplex). After being tested on representative strains of P. gingivalis and A. actinomycetemcomitans, the PNA-FISH method was then adapted to detect microorganisms in the subgingival plaque and gingival samples, collected from patients with severe periodontitis. The best hybridization conditions were found to be 59°C for 150min for both probes (PgPNA1007 and AaPNA235). The in silico sensitivity and specificity was both 100% for PgPNA1007 probe and 100% and 99.9% for AaPNA235 probe, respectively. Results on clinical samples showed that the PNA-FISH method was able to detect and discriminate target bacteria in the mixed microbial population of the subgingival plaque and within periodontal tissues. This investigation presents a new highly accurate method for P. gingivalis and A. actinomycetemcomitans detection and co-location in clinical samples, in just few hours. With this technique we were able to observe spatial distribution of these species within polymicrobial communities in the periodontal pockets and, for the first time with the FISH method, in the organized gingival tissue. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Locating tube blockage that X-ray cannot detect

    NASA Technical Reports Server (NTRS)

    Hendron, J. A.

    1971-01-01

    Alternate choices to X-ray use in detecting foreign materials in metal assemblies are available, including negative radiography, neutron radiography, liquid-crystal inspection and ultrasonics. Advantages and disadvantages of each method are given. Report is valuable in testings and inspections, including heat exchangers and piping systems.

  18. Detection and location of moving and unmoving people behind obstacles

    NASA Astrophysics Data System (ADS)

    Shipilov, S. E.; Satarov, R. N.; Fedyanin, I. S.; Balzovsky, E. V.; Yakubov, V. P.

    2017-08-01

    This paper features the technology for identifying the location of real people behind the barriers in real time using the UWB sensing. The opportunity to obtain the radar images of moving and not moving people was presented in this paper. The oscillation rate of a human chest can be defined by the continuous recording the not moving person. The point of this technique is in calculation of the differential signal in successive periods of time. The range of application to be extended considering the particular conditions. The research results can be used in intelligence service as well as for searching people trapped under the rubble.

  19. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  20. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  1. Accurate identification of centromere locations in yeast genomes using Hi-C.

    PubMed

    Varoquaux, Nelle; Liachko, Ivan; Ay, Ferhat; Burton, Joshua N; Shendure, Jay; Dunham, Maitreya J; Vert, Jean-Philippe; Noble, William S

    2015-06-23

    Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres' tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms.

  2. [Application of gene detection technology in food species identification].

    PubMed

    Chen, Ying; Wu, Yajun

    2011-07-01

    It is critical to determine the biological identity of all ingredients in food to ensure its safety and quality. Modern gene detection technology makes species identification in food more accurate, sensitive and rapid. A comprehensive review on its current applications in the last decade and the future perspective in food species identification is presented, including a brief introduction of gene detection methods, and their applications in plant-originated food, animal-originated food, high value-added food and highly processed food.

  3. Ambient VLF Transmitter Variation Detected at Many Locations

    NASA Astrophysics Data System (ADS)

    Higginson-Rollins, M. A.; Cohen, M.

    2015-12-01

    Very Low Frequency (3-30 kHz) and Low Frequency (30-300 kHz) radio transmitters are an important means for naval submarine communications. VLF waves travel through the Earth-ionosphere waveguide with low attenuation and penetrate into conducting seawater. These transmitters also serve as a useful diagnostic tool for characterizing the D region of the ionosphere, a region of the ionosphere that is inaccessible to continuous in situ measurement techniques. The temporal variation of these VLF signals are dominated by ionospheric conditions, and their response to localized or global disturbances. However, despite extensive past work on the analysis of these diagnostic signals, little is known about the spatial relationship between ionospheric conditions at multiple locations. We utilize a previously erected global constellation of transmitters and receivers to determine generalized characteristics and trends for ambient daytime conditions of the lower ionosphere. We present the data and analyze them to reveal trends in the amplitude of these transmitters, in an effort to better characterize the ambient ionospheric conditions and their spatial variations on a global scale.

  4. APPARATUS FOR DETECTING AND LOCATING PRESENCE OF FLUIDS

    DOEpatents

    Williamson, R.R.

    1958-09-16

    A system is described fur detecting water leaks in water-cooled neutronic reactors by utilizing an electrical hygrometer having a resistance element variable with the moisture content. The graphite blocks, forming the moderator in many types of reactors, coniain ducts in which helium gas is circulated. When a leak occurs in a coolant tube, the water will seep through the graphite until it oozes into one of the helium ducts, where it will be swept along with the helium into a system of pipes that connect each of the helium ducts. By inserting an electric hygrometer in each of these pipes and connecting it to an alarm system, the moisture content of the helium will cause a change in the electrical resistance of the hygrometer which will initiate a signal alarm indicating the presence and position of the leaky water tube in the reactor.

  5. Identification of Groundwater Contaminant Location and Release History using Simulation-Optimization Method

    NASA Astrophysics Data System (ADS)

    Park, Y. C.

    2015-12-01

    Identification of location and release history of contaminant in groundwater is necessary to improve the remediation accuracy and to decrease the remediation cost. Especially in an industrial complex, groundwater is contaminated by various sources during unknown periods and groundwater remediation turns out complicated problems. A simulation-optimization method is preferred to solve the complicated problems of contaminant source identification because a simulation-optimization method has flexible applicability. For simulations of groundwater flow and contaminant transport, MODFLOW, MT3DMS and RT3D are used. These models are integrated with a genetic algorithm to obtain the optimization of contaminant location and release history. Because computing time and costs are enormous for a simulation-optimization method, a distributed computing technique is used to reduce computing time and costs. The performance of developed computer programs is evaluated with hypothetical examples with combinations of aquifers and contaminants from simple to complicated levels. The results shows the possibility of developed computer program to solve the problem of contaminant location and release history problems. This subject is supported by Korea Ministry of Environment as "The GAIA project".

  6. Location and identification of colloidal gold particles on the cell surface with a scanning electron microscope and energy dispersive analyzer

    SciTech Connect

    Eskelinen, S.; Peura, R.

    1988-09-01

    The use of colloidal gold particles for locating cell surface components by scanning electron microscopy (SEM) has been restricted due to difficulties in the identification of these gold particles under SEM. It is shown here how the gold particles bound to cell surfaces can be located and identified under SEM using the secondary electron imaging (SEI) mode with an energy dispersive X-ray microanalyzer (EDS). This enables reliable identification of gold particles and good quality micrographs of the cells to be achieved at the same time. The distribution of receptors for two lectins, concanavalin A (ConA) and wheat germ agglutinin (WGA), on the surface of cultured Raji cells and human erythrocytes is presented as an example. Raji cells and erythrocytes were fixed with glutaraldehyde, post-fixed with a glutaraldehyde-tannic acid mixture and then incubated with ConA- or WGA-coated gold particles. After dehydration and critical point drying, the specimen filters were mounted on copper stubs and coated with carbon. The cells were examined on a JEOL TEMSCAN 100CX II electron microscope. The gold particles could be identified with the EDS analyzer, which was able to detect the Au spectrum when the electron beam was focused on single gold particles using a magnification of 100,000 or more. High-resolution photographs of the same cells were obtained up to the same magnification of 100,000.

  7. Prospective Identification of Oligoclonal/Abnormal Band of the Same Immunoglobulin Type as the Malignant Clone by Differential Location of M-Spike and Oligoclonal Band.

    PubMed

    Vyas, Shikhar G; Singh, Gurmukh

    2017-10-01

    Serum and urine protein electrophoreses and immunofixation electrophoreses are the gold standards in diagnosing monoclonal gammopathy. Identification of oligoclonal bands in post-treatment patients has emerged as an important issue and recording the location of the malignant monoclonal peak may facilitate prospective identification of a new "monoclonal" spike as being distinct from the malignant peak. We recorded the locations of monoclonal spikes in descriptive terms, such as being in the cathodal region, mid-gamma region, anodal region, and beta region. The location of monoclonal or restricted heterogeneity bands in subsequent protein electrophoreses was compared to the location of the original malignant spike. In a patient with plasma cell myeloma, the original monoclonal IgG kappa band was located at the anodal end of gamma region. Post-treatment, an IgG kappa band was noted in mid-gamma region and the primary malignant clone was not detectable by serum protein immunofixation electrophoresis (SIFE) in post-treatment sample. Even though the κ/λ ratio remained abnormal, we were able to recognize stringent complete response by noting the different location of the new IgG kappa band as a benign regenerative process. Recording the location of the malignant monoclonal spike facilitates the identification of post-treatment oligoclonal bands, prospectively. Recognizing the regenerative, benign, bands in post-transplant patients facilitates the determination of stringent complete response despite an abnormal κ/λ ratio.

  8. Optimal Probe Length and Target Location for Electrochemical Detection of Selected Uropathogens at Ambient Temperature▿

    PubMed Central

    Mastali, Mitra; Babbitt, Jane T.; Li, Yang; Landaw, Elliot M.; Gau, Vincent; Churchill, Bernard M.; Haake, David A.

    2008-01-01

    We have previously demonstrated the clinical validity of the rapid detection of uropathogens by use of a DNA biosensor. This assay involves the hybridization of capture and detector probe pairs with bacterial 16S rRNA target molecules to form a DNA-RNA sandwich on the sensor surface. Horseradish peroxidase-conjugated antibody binds to the detector probe to enzymatically amplify the hybridization signal. These previous studies involved the hybridization of bacterial 16S rRNA target sequences with 35-mer oligonucleotide probe pairs at 65°C. Achievement of point-of-care technology will be greatly facilitated by ambient-temperature detection. The purpose of this study was to examine the effects of probe length and target location on signal intensity using hybridization temperatures of 20 to 25°C. Signal intensity was found to vary dramatically with hybridization location in the species-specific bulge region of 16S rRNA helix 18. Probe pairs of as short as 10 nucleotides in length were able to produce a significant electrochemical signal, and signal intensity was correlated with probe length for probes of 10 to 20 nucleotides in length. The sensitivity of the Escherichia coli-specific 15-mer probe pairs was approximately 330 cells. These shorter probes allowed differentiation of Klebsiella pneumoniae from Proteus mirabilis 16S rRNA target sequences differing by a single nucleotide. A panel of oligonucleotide probe pairs ranging from 11 to 23 nucleotides in length was able to distinguish among seven groups of urinary tract pathogens. In conclusion, we have developed short oligonucleotide probe pairs for the species-specific identification of uropathogens at ambient temperature by use of an electrochemical sensor. PMID:18562584

  9. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    EPA Science Inventory

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  10. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    EPA Science Inventory

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  11. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-30

    primarily the result of spurious identification and incorrect association of phases, and of excessive variability in estimates for the velocity and direction of incoming seismic phases. The mitigation of these causes has led to the development of two complimentary techniques for classifying seismic sources by testing detected signals under mutually exclusive event hypotheses. Both of these techniques require appropriate calibration data from the region to be monitored, and are therefore ideally suited to mining areas or other sites with recurring seismicity. The first such technique is a classification and location algorithm where a template is designed for each site being monitored which defines which phases should be observed, and at which times, for all available regional array stations. For each phase, the variability of measurements (primarily the azimuth and apparent velocity) from previous events is examined and it is determined which processing parameters (array configuration, data window length, frequency band) provide the most stable results. This allows us to define optimal diagnostic tests for subsequent occurrences of the phase in question. The calibration of templates for this project revealed significant results with major implications for seismic processing in both automatic and analyst reviewed contexts: • one or more fixed frequency bands should be chosen for each phase tested for. • the frequency band providing the most stable parameter estimates varies from site to site and a frequency band which provides optimal measurements for one site may give substantially worse measurements for a nearby site. • slowness corrections applied depend strongly on the frequency band chosen. • the frequency band providing the most stable estimates is often neither the band providing the greatest SNR nor the band providing the best array gain. For this reason, the automatic template location estimates provided here are frequently far better than those obtained by

  12. Handbook for the identification, location and investigation of pollution sources affecting ground water

    SciTech Connect

    Oudijk, G.; Mujica, K.

    1989-01-01

    Due to environmental pollution associated with increased urbanization and industrial development in wellhead areas, many public and domestic supply wells are becoming polluted at an ever-increasing rate. To prevent continued pollution of underground drinking water supplies, investigations must be conducted to locate and identify the sources of pollution. To conduct such investigations requires a diverse knowledge of hydrogeology, chemistry, urban planning, industrial and commercial processes, environmental law, and many other disciplines. Groundwater pollution investigations can be subdivided into the following five phases: (1) the background investigation (historical land usage, aerial photographs, pollutant characteristics, local hydrogeology); (2) the field pollution survey (site inspections, initial waste characterization); (3) the site-specific groundwater pollution investigation (monitoring wells, groundwater sampling); (4) data analysis (groundwater elevation contour maps, statistical analysis); and (5) source identification. This process may be used by investigators in order to locate pollution sources affecting aquifers, potable wells, and/or well fields.

  13. Medical isotope identification with large mobile detection systems

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard

    2012-10-01

    The Remote Sensing laboratory (RSL) of National Security Technologies Inc. has built an array of large (5.08 - cm x 10.16 - cm x 40.6 - cm) thallium doped sodium iodide (NaI: Tl) scintillators to locate and screen gamma-ray emitting radioisotopes that are of interests to radiological emergency responders [1]. These vehicle mounted detectors provide the operators with rapid, simple, specific information for radiological threat assessment. Applications include large area inspection, customs inspection, border protection, emergency response, and monitoring of radiological facilities. These RSL mobile units are currently being upgraded to meet the Defense Threat Reduction Agency mission requirements for a next-generation system capable of detecting and identifying nuclear threat materials. One of the challenging problems faced by these gamma-ray detectors is the unambiguous identification of medical isotopes like 131I (364.49 keV [81.7%], 636.99 keV [7.17%]), 99Tcm (140.51 keV [89.1%]) and 67Ga (184.6 keV [19.7%], 300.2 [16.0%], 393.5 [4.5%] that are used in radionuclide therapy and often have overlapping gamma-ray energy regions of interest (ROI). The problem is made worse by short (about 5 seconds) acquisition time of the spectral data necessary for dynamic mobile detectors. This article describes attempts to identify medical isotopes from data collected from this mobile detection system in a short period of time (not exceeding 5 secs) and a large standoff distance (typically ~ 10 meters) The mobile units offer identification capabilities that are based on hardware auto stabilization of the amplifier gain. The 1461 keV gamma-energy line from 40K is tracked. It uses gamma-ray energy windowing along with embedded mobile Gamma Detector Response and Analysis Software (GADRAS) [2] simultaneously to deconvolve any overlapping gamma-energy ROIs. These high sensitivity detectors are capable of resolving complex masking scenarios and exceed all ANSI N42.34 (2006) requirements

  14. The Influence of Attention and Target Identification on Saccadic Eye Movements Depends on Prior Target Location

    PubMed Central

    Hardwick, David R.; Cutmore, Timothy R. H.; Hine, Trevor J.

    2014-01-01

    Saccadic latency is reduced by a temporal gap between fixation point and target, by identification of a target feature, and by movement in a new direction (inhibition of saccadic return, ISR). A simple additive model was compared with a shared resources model that predicts a three-way interaction. Twenty naïve participants made horizontal saccades to targets left and right of fixation in a randomised block design. There was a significant three-way interaction among the factors on saccade latency. This was revealed in a two-way interaction between feature identification and the gap versus no gap factor which was only apparent when the saccade was in the same direction as the previous saccade. No interaction was apparent when the saccade was in the opposite direction. This result supports an attentional inhibitory effect that is present during ISR to a previous location which is only partly released by the facilitative effect of feature identification and gap. Together, anticipatory error data and saccade latency interactions suggest a source of ISR at a higher level of attention, possibly localised in the dorsolateral prefrontal cortex and involving tonic activation. PMID:24719754

  15. Damage location and quantification of a pretensioned concrete beam using stochastic subspace identification

    NASA Astrophysics Data System (ADS)

    Cancelli, Alessandro; Micheli, Laura; Laflamme, Simon; Alipour, Alice; Sritharan, Sri; Ubertini, Filippo

    2017-04-01

    Stochastic subspace identification (SSID) is a first-order linear system identification technique enabling modal analysis through the time domain. Research in the field of structural health monitoring has demonstrated that SSID can be used to successfully retrieve modal properties, including modal damping ratios, using output-only measurements. In this paper, the utilization of SSID for indirectly retrieving structures' stiffness matrix was investigated, through the study of a simply supported reinforced concrete beam subjected to dynamic loads. Hence, by introducing a physical model of the structure, a second-order identification method is achieved. The reconstruction is based on system condensation methods, which enables calculation of reduced order stiffness, damping, and mass matrices for the structural system. The methods compute the reduced order matrices directly from the modal properties, obtained through the use of SSID. Lastly, the reduced properties of the system are used to reconstruct the stiffness matrix of the beam. The proposed approach is first verified through numerical simulations and then validated using experimental data obtained from a full-scale reinforced concrete beam that experienced progressive damage. Results show that the SSID technique can be used to diagnose, locate, and quantify damage through the reconstruction of the stiffness matrix.

  16. A New Position Location System Using DTV Transmitter Identification Watermark Signals

    NASA Astrophysics Data System (ADS)

    Wang, Xianbin; Wu, Yiyan; Chouinard, Jean-Yves

    2006-12-01

    A new position location technique using the transmitter identification (TxID) RF watermark in the digital TV (DTV) signals is proposed in this paper. Conventional global positioning system (GPS) usually does not work well inside buildings due to the high frequency and weak field strength of the signal. In contrast to the GPS, the DTV signals are received from transmitters at relatively short distance, while the broadcast transmitters operate at levels up to the megawatts effective radiated power (ERP). Also the RF frequency of the DTV signal is much lower than the GPS, which makes it easier for the signal to penetrate buildings and other objects. The proposed position location system based on DTV TxID signal is presented in this paper. Practical receiver implementation issues including nonideal correlation and synchronization are analyzed and discussed. Performance of the proposed technique is evaluated through Monte Carlo simulations and compared with other existing position location systems. Possible ways to improve the accuracy of the new position location system is discussed.

  17. Mobile location with NLOS identification and mitigation based on modified Kalman filtering.

    PubMed

    Ke, Wei; Wu, Lenan

    2011-01-01

    In order to enhance accuracy and reliability of wireless location in the mixed line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a robust mobile location algorithm is presented to track the position of a mobile node (MN). An extended Kalman filter (EKF) modified in the updating phase is utilized to reduce the NLOS error in rough wireless environments, in which the NLOS bias contained in each measurement range is estimated directly by the constrained optimization method. To identify the change of channel situation between NLOS and LOS, a low complexity identification method based on innovation vectors is proposed. Numerical results illustrate that the location errors of the proposed algorithm are all significantly smaller than those of the iterated NLOS EKF algorithm and the conventional EKF algorithm in different LOS/NLOS conditions. Moreover, this location method does not require any statistical distribution knowledge of the NLOS error. In addition, complexity experiments suggest that this algorithm supports real-time applications.

  18. Molecular identification and phylogenetic analysis of the forensically important family Piophilidae (Diptera) from different European locations.

    PubMed

    Zajac, Barbara Karolina; Martin-Vega, Daniel; Feddern, Nina; Fremdt, Heike; e Castro, Catharina Prado; Szpila, Krzysztof; Reckel, Frank; Schütt, Svenja; Verhoff, Marcel A; Amendt, Jens; Zehner, Richard

    2016-02-01

    Species identification plays an important role in forensic entomology and is mandatory for an accurate calculation of the minimum post-mortem interval. Many important Diptera and Coleoptera taxa of the cadaver community can already be identified by common barcoding approaches, i.e., by sequencing a 658bp region in the mitochondrial cytochrome c oxidase subunit I (coI) gene. Nevertheless, there is still a lack of reference barcodes for species, in particular, that can be found on cadavers at later decomposition stages. Flies of the family Piophilidae illustrate this gap of knowledge perfectly. Due to the fact that a reliable morphological identification key for the immature stages of this flies is still missing and the immature stages of many piophilids cannot be assigned to a certain species, there is need for additional tools to identify forensically relevant taxa. We collected adult piophilid specimens at 10 locations in five European countries: Spain (n=3 locations), Germany (n=3), Portugal (n=2), Poland (n=1) and Switzerland (n=1). Apart from the coI barcoding region, we additionally analyzed a 398bp long region of the nuclear elongation factor 1 alpha (ef1a) and subsequently established the molecular identifier for nine piophilid species. In addition, we present the molecular phylogeny of the examined taxa.

  19. Apparatus for detecting a magnetic anomaly contiguous to remote location by squid gradiometer and magnetometer systems

    DOEpatents

    Overton, Jr., William C.; Steyert, Jr., William A.

    1984-01-01

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  20. Detection and Location of Gamma-Ray Sources with a Modulating Coded Mask

    SciTech Connect

    Anderson, Dale N.; Stromswold, David C.; Wunschel, Sharon C.; Peurrung, Anthony J.; Hansen, Randy R.

    2006-01-31

    This paper presents methods of detecting and locating a concelaed nuclear gamma-ray source with a coded aperture mask. Energetic gamma rays readily penetrate moderate amounts of shielding material and can be detected at distances of many meters. The detection of high energy gamma-ray sources is vitally important to national security for several reasons, including nuclear materials smuggling interdiction, monitoring weapon components under treaties, and locating nuclear weapons and materials in the possession terrorist organizations.

  1. Apparatus for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    SciTech Connect

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1984-03-13

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  2. Locating Structural Centers: A Density-Based Clustering Method for Community Detection

    PubMed Central

    Liu, Gongshen; Li, Jianhua; Nees, Jan P.

    2017-01-01

    Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030

  3. Source Camera Identification and Blind Tamper Detections for Images

    DTIC Science & Technology

    2007-04-24

    Detecting Image Manipulations, Proc. of IEEE ICIP, 2004. 13 I. Avcibas, B. Sankur and N. Memon, Steganalysis of Watermarking and Steganography Techniques... watermarking cannot be offered as a image tamper detection [6]. The rationale for their technique is that the process of image tampering very kernels with...Final Technical Report Source Camera Identification and Blind Tamper Detections for Images AFOSR Contract Number: FA9550-05-1-0130 January 2005 to

  4. Investigation on location-dependent detectability of a small mass for digital breast tomosynthesis evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Baek, Jongduk; Park, Subok

    2016-03-01

    Digital breast tomosynthesis (DBT) is an emerging imaging modality for improved breast cancer detection and diagnosis [1-5]. Numerous efforts have been made to find quantitative metrics associated with mammographic image quality assessment, such as the exponent β of anatomical noise power spectrum, glandularity, contrast noise ratio, etc. [6-8]. In addition, with the use of Fourier-domain detectability for a task-based assessment of DBT, a stationarity assumption on reconstructed image statistics was often made [9-11], resulting in the use of multiple regions-of-interest (ROIs) from different locations in order to increase sample size. While all these metrics provide some information on mammographic image characteristics and signal detection, the relationship between these metrics and detectability in DBT evaluation has not been fully understood. In this work, we investigated spatial-domain detectability trends and levels as a function of the number of slices Ns at three different ROI locations on the same image slice, where background statistics differ in terms of the aforementioned metrics. Detectabilities for the three ROI locations were calculated using multi-slice channelized Hotelling observers with 2D/3D Laguerre-Gauss channels. Our simulation results show that detectability levels and trends as a function of Ns vary across these three ROI locations. They also show that the exponent β, mean glandularity, and mean attenuation coefficient vary across the three ROI locations but they do not necessarily predict the ranking of detectability levels and trends across these ROI locations.

  5. First identification of a chromosomally located penicillinase gene in Kingella kingae species isolated in continental Europe.

    PubMed

    Basmaci, Romain; Bidet, Philippe; Berçot, Béatrice; Jost, Christelle; Kwon, Thérésa; Gaumetou, Elodie; Bonacorsi, Stéphane

    2014-10-01

    Kingella kingae is the major pathogen causing osteoarticular infections (OAI) in young children in numerous countries. Plasmid-borne TEM-1 penicillinase production has been sporadically detected in a few countries but not in continental Europe, despite a high prevalence of K. kingae infections. We describe here for the first time a K. kingae β-lactamase-producing strain in continental Europe and demonstrate the novel chromosomal location of the blaTEM-1 gene in K. kingae species.

  6. First Identification of a Chromosomally Located Penicillinase Gene in Kingella kingae Species Isolated in Continental Europe

    PubMed Central

    Basmaci, Romain; Bidet, Philippe; Berçot, Béatrice; Jost, Christelle; Kwon, Thérésa; Gaumetou, Elodie

    2014-01-01

    Kingella kingae is the major pathogen causing osteoarticular infections (OAI) in young children in numerous countries. Plasmid-borne TEM-1 penicillinase production has been sporadically detected in a few countries but not in continental Europe, despite a high prevalence of K. kingae infections. We describe here for the first time a K. kingae β-lactamase-producing strain in continental Europe and demonstrate the novel chromosomal location of the blaTEM-1 gene in K. kingae species. PMID:25049250

  7. Global detection and identification of Campylobacter fetus subsp. venerealis.

    PubMed

    van Bergen, M A P; Linnane, S; van Putten, J P M; Wagenaar, J A

    2005-12-01

    Bovine genital campylobacteriosis caused by Campylobacter fetus subsp. venerealis (Cfv) is a genital infection that threatens the cattle industry. Detection and identification of Cfv are key factors in control programmes. Trade regulations should be based on scientifically and internationally accepted methods of detection and identification of Cfv. Such methods are described in the World Organisation for Animal Health (OIE) Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. A study was conducted to determine which methods are in use in OIE Member Countries and to get an overview of new or improved tests. A questionnaire was sent to OIE Member Countries, and 26 out of 166 were returned. Globally, a diversity of methods for the detection and identification of Cfv are in use. The authors conclude that there is a lack of harmonisation that may have consequences for the description of the health status of countries and may lead to disputes with respect to trade regulations.

  8. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  9. Detection and identification of concealed weapons using matrix pencil

    NASA Astrophysics Data System (ADS)

    Adve, Raviraj S.; Thayaparan, Thayananthan

    2011-06-01

    The detection and identification of concealed weapons is an extremely hard problem due to the weak signature of the target buried within the much stronger signal from the human body. This paper furthers the automatic detection and identification of concealed weapons by proposing the use of an effective approach to obtain the resonant frequencies in a measurement. The technique, based on Matrix Pencil, a scheme for model based parameter estimation also provides amplitude information, hence providing a level of confidence in the results. Of specific interest is the fact that Matrix Pencil is based on a singular value decomposition, making the scheme robust against noise.

  10. Infectious pancreatic necrosis: its detection and identification

    USGS Publications Warehouse

    Wolf, K.

    1965-01-01

    Ultimate control of infectious pancreatic necrosis (IPN) in hatcheries depends largely upon learning where the virus occurs. To detect the presence of virus either susceptible fish or susceptible fish cell cultures may be used as test systems. In modern virology, it is generally agreed that cell cultures are more convenient, are usually a much more sensitive test system, and allow more rapid determinations.

  11. An approach for de-identification of point locations of livestock premises for further use in disease spread modeling.

    PubMed

    Martin, Michael K; Helm, Julie; Patyk, Kelly A

    2015-06-15

    We describe a method for de-identifying point location data used for disease spread modeling to allow data custodians to share data with modeling experts without disclosing individual farm identities. The approach is implemented in an open-source software program that is described and evaluated here. The program allows a data custodian to select a level of de-identification based on the K-anonymity statistic. The program converts a file of true farm locations and attributes into a file appropriate for use in disease spread modeling with the locations randomly modified to prevent re-identification based on location. Important epidemiological relationships such as clustering are preserved to as much as possible to allow modeling similar to those using true identifiable data. The software implementation was verified by visual inspection and basic descriptive spatial analysis of the output. Performance is sufficient to allow de-identification of even large data sets on desktop computers available to any data custodian.

  12. Identification of feces by detection of Bacteroides genes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2013-01-01

    In forensic science, the identification of feces is very important in a variety of crime investigations. However, no sensitive and simple fecal identification method using molecular biological techniques has been reported. Here, we focused on the fecal bacteria, Bacteroides uniformis, Bacteroides vulgatus and Bacteroides thetaiotaomicron, and developed a novel fecal identification method by detection of the gene sequences specific to these bacteria in various body (feces, blood, saliva, semen, urine, vaginal fluids and skin surfaces) and forensic (anal adhesions) specimens. Bacterial gene detection was performed by real-time PCR using a minor groove binding probe to amplify the RNA polymerase β-subunit gene of B. uniformis and B. vulgatus, and the α-1-6 mannanase gene of B. thetaiotaomicron. At least one of these bacteria was detected in the feces of 20 donors; the proportions of B. uniformis, B. vulgatus and B. thetaiotaomicron were 95, 85 and 60%, respectively. Bacteroides vulgatus was also detected in one of six vaginal fluid samples, but B. thetaiotaomicron and B. uniformis were not detected in body samples other than feces. Further, we applied this method to forensic specimens from 18 donors. Eighteen anal adhesions also contained at least one of three bacteria; B. uniformis, B. vulgatus and B. thetaiotaomicron were detected in 89, 78 and 56%, respectively, of the specimens. Thus, these bacteria were present at a high frequency in the fecal and forensic specimens, while either B. uniformis or B. vulgatus was detected in all samples. Therefore, B. uniformis and B. vulgatus represent more appropriate target species than B. thetaiotaomicron for the identification of fecal material. If B. vulgatus and/or B. uniformis are detected, it is likely that the sample contains feces. Taken together, our results suggest that the use of molecular biological techniques will aid the detection of feces in forensic practice, although it is possible that the samples contained

  13. Target detection and identification using synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Tantum, Stacy; Collins, Leslie

    2014-05-01

    Recent research has shown that synthetic aperture acoustic (SAA) imaging may be useful for object identification. The goal of this work is to use SAA information to detect and identify four types of objects: jagged rocks, river rocks, small concave capped cylinders, and large concave capped cylinders. More specifically, we examine the use of frequency domain features extracted from the SAA images. We utilize Support Vector Machines (SVMs) for target detection, where an SVM is trained on target and non-target (background) examples for each target type. Assuming perfect target detection, we then compare multivariate Gaussian models for target identification. Experimental results show that SAA-based frequency domain features are able to detect and identify the four types of objects.

  14. Identification of hidden allergens: detection of pistachio traces in mortadella.

    PubMed

    Barbieri, G; Frigeri, G

    2006-12-01

    An analytical method based on the detection of specific DNA was developed and applied to mortadella samples with and without pistachio (Pistacia vera). The method is proposed for the detection of traces of pistachio deriving from previous processes or from accidental contamination, since in predisposed individuals pistachios can cause allergic reactions leading to anaphylactic shock. Three pairs of primers were identified and tested by polymerase chain reaction (PCR) on mortadella samples prepared with pistachio. Accidental contamination was also simulated. The optimized PCR was able to detect the presence of pistachio, even at low concentrations. The primers pair PSTC 1-2 is suggested for unambiguous identification of pistachio in mortadella. The limit of detection for this primers pair was 100 mg kg-1. No interference was observed from other spices or ingredients utilized in the formulation of the mortadella. The method enabled the identification of possible traces of pistachio remaining in the production plant after less than thorough washing.

  15. Explosive Detection and Identification by PGNAA

    SciTech Connect

    E.H. Seabury; A.J. Caffrey

    2004-11-01

    The goal of this project was to determine the feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices (INDs). The studies were carried out using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The model results were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Engineering and Environmental Laboratory (INEEL). The results of the MCNP calculations and PINS measurements are presented in this report. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another.

  16. Bacterial Detection & Identification Using Electrochemical Sensors

    PubMed Central

    Halford, Colin; Gau, Vincent; Churchill, Bernard M.; Haake, David A.

    2013-01-01

    Electrochemical sensors are widely used for rapid and accurate measurement of blood glucose and can be adapted for detection of a wide variety of analytes. Electrochemical sensors operate by transducing a biological recognition event into a useful electrical signal. Signal transduction occurs by coupling the activity of a redox enzyme to an amperometric electrode. Sensor specificity is either an inherent characteristic of the enzyme, glucose oxidase in the case of a glucose sensor, or a product of linkage between the enzyme and an antibody or probe. Here, we describe an electrochemical sensor assay method to directly detect and identify bacteria. In every case, the probes described here are DNA oligonucleotides. This method is based on sandwich hybridization of capture and detector probes with target ribosomal RNA (rRNA). The capture probe is anchored to the sensor surface, while the detector probe is linked to horseradish peroxidase (HRP). When a substrate such as 3,3',5,5'-tetramethylbenzidine (TMB) is added to an electrode with capture-target-detector complexes bound to its surface, the substrate is oxidized by HRP and reduced by the working electrode. This redox cycle results in shuttling of electrons by the substrate from the electrode to HRP, producing current flow in the electrode. PMID:23644406

  17. Detection, identification, and quantification techniques for spills of hazardous chemicals

    NASA Technical Reports Server (NTRS)

    Washburn, J. F.; Sandness, G. A.

    1977-01-01

    The first 400 chemicals listed in the Coast Guard's Chemical Hazards Response Information System were evaluated with respect to their detectability, identifiability, and quantifiability by 12 generalized remote and in situ sensing techniques. Identification was also attempted for some key areas in water pollution sensing technology.

  18. Identification of substorm onset location and preonset sequence using Reimei, THEMIS GBO, PFISR, and Geotail

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M. B.; Lyons, L. R.; Nishimura, Y.; Hirahara, M.; Sakanoi, T.; Asamura, K.; Nicolls, M. J.; Miyashita, Y.; Mende, S. B.; Heinselman, C. J.

    2010-12-01

    We present state-of-the-art multiple instrument observations of an isolated substorm on October 12, 2007. The auroral breakup was observed simultaneously by Reimei, THEMIS ASI, and PFISR. The footprint of Geotail was also near the breakup. These observations allow for detailed study of the breakup location in terms of large- and small-scale auroral morphology, particle precipitation, and ionospheric convection, which has not previously been achieved. It also allows for detailed identification of the sequence leading to the breakup. We report the first spaceborne high spatial and temporal resolution images of part of a breakup arc and a wave-like auroral enhancement captured by Reimei. Observations suggest a sudden plasma sheet thinning initiated ˜10 min before the onset. Wave-like auroral enhancements were observed twice at the most equatorward arc ˜3 min and ˜1 min before the breakup. These enhancements are likely due to some near-Earth instability, such as ballooning instability. Unlike the usual substorm sequence, this most equatorward arc did not develop into the breakup arc but remained almost stable until being engulfed by the auroral equatorward expansion from higher latitude after onset. The wave-like auroral enhancement was associated with three fine inverted V arcs and embedded within energetic ion precipitation. Following this enhancement, an arc, likely a poleward boundary intensification, formed at higher latitude just adjacent to the plasma sheet boundary layer (PSBL). This arc then extended southwestward and led to the breakup arc, which was located poleward of the wavy structures. Assuming longitudinal homogeneity of ion precipitation over 1°, this breakup arc was located in a region without ion precipitation just poleward of the energetic ion precipitation. These observations suggest the possible existence of a low-entropy flow channel associated with the arc adjacent to the PSBL, which might be associated with instability in the near

  19. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.409 Location and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire...

  20. Explosives Detection and Identification by PGNAA

    SciTech Connect

    E. H. Seabury; A. J. Caffrey

    2006-04-01

    The feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices has been studied computationally, using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The Monte Carlo results, in turn were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Laboratory (INL). The results of the MCNP calculations and PINS measurements have been previously reported. In this report we describe measurements performed on actual explosives and compare the results with calculations. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another by PGNAA

  1. Automated Detection of Soma Location and Morphology in Neuronal Network Cultures

    PubMed Central

    Ozcan, Burcin; Negi, Pooran; Laezza, Fernanda; Papadakis, Manos; Labate, Demetrio

    2015-01-01

    Automated identification of the primary components of a neuron and extraction of its sub-cellular features are essential steps in many quantitative studies of neuronal networks. The focus of this paper is the development of an algorithm for the automated detection of the location and morphology of somas in confocal images of neuronal network cultures. This problem is motivated by applications in high-content screenings (HCS), where the extraction of multiple morphological features of neurons on large data sets is required. Existing algorithms are not very efficient when applied to the analysis of confocal image stacks of neuronal cultures. In addition to the usual difficulties associated with the processing of fluorescent images, these types of stacks contain a small number of images so that only a small number of pixels are available along the z-direction and it is challenging to apply conventional 3D filters. The algorithm we present in this paper applies a number of innovative ideas from the theory of directional multiscale representations and involves the following steps: (i) image segmentation based on support vector machines with specially designed multiscale filters; (ii) soma extraction and separation of contiguous somas, using a combination of level set method and directional multiscale filters. We also present an approach to extract the soma’s surface morphology using the 3D shearlet transform. Extensive numerical experiments show that our algorithms are computationally efficient and highly accurate in segmenting the somas and separating contiguous ones. The algorithms presented in this paper will facilitate the development of a high-throughput quantitative platform for the study of neuronal networks for HCS applications. PMID:25853656

  2. Multi-Detection Events, Probability Density Functions, and Reduced Location Area

    SciTech Connect

    Eslinger, Paul W.; Schrom, Brian T.

    2016-03-01

    Abstract Several efforts have been made in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) community to assess the benefits of combining detections of radionuclides to improve the location estimates available from atmospheric transport modeling (ATM) backtrack calculations. We present a Bayesian estimation approach rather than a simple dilution field of regard approach to allow xenon detections and non-detections to be combined mathematically. This system represents one possible probabilistic approach to radionuclide event formation. Application of this method to a recent interesting radionuclide event shows a substantial reduction in the location uncertainty of that event.

  3. Method for tracking the location of mobile agents using stand-off detection technique

    DOEpatents

    Schmitt, Randal L.; Bender, Susan Fae Ann; Rodacy, Philip J.; Hargis, Jr., Philip J.; Johnson, Mark S.

    2006-12-26

    A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.

  4. Portable Raman instrument for rapid biological agent detection and identification

    NASA Astrophysics Data System (ADS)

    Lesaicherre, Marie L.; Paxon, Tracy L.; Mondello, Frank J.; Burrell, Michael C.; Linsebigler, Amy

    2009-05-01

    The rapid and sensitive identification of biological species is a critical need for the 1st responder and military communities. Raman spectroscopy is a powerful tool for substance identification that has gained popularity with the respective communities due to the increasing availability of portable Raman spectrometers. Attempts to use Raman spectroscopy for the direct identification of biological pathogens has been hindered by the complexity of the generated Raman spectrum. We report here the use of a sandwich immunoassay containing antibody modified magnetic beads to capture and concentrate target analytes in solution and Surface Enhanced Raman Spectroscopy (SERS) tags conjugated with these same antibodies for specific detection. Using this approach, the biological complexity of a microorganism can be translated into chemical simplicity and Raman can be used for the identification of biological pathogens. The developed assay has a low limit of detection due to the SERS effect, robust to commonly found white powders interferants, and stable at room temperature over extended period of time. This assay is being implemented into a user-friendly interface to be used in conjunction with the GE Homeland Protection StreetLab MobileTM Raman instrument for rapid, field deployable chemical and biological identification.

  5. Holistic processing improves change detection but impairs change identification.

    PubMed

    Mathis, Katherine M; Kahan, Todd A

    2014-10-01

    It has been just over a century since Gestalt psychologists described the factors that contribute to the holistic processing of visually presented stimuli. Recent research indicates that holistic processing may come at a cost; specifically, the perception of holistic forms may reduce the visibility of constituent parts. In the present experiment, we examined change detection and change identification accuracy with Kanizsa rectangle patterns that were arranged to either form a Gestalt whole or not. Results from an experiment with 62 participants support this trade-off in processing holistic forms. Holistic processing improved the detection of change but obstructed its identification. Results are discussed in terms of both their theoretical significance and their application in areas ranging from baggage screening and the detection of changes in radiological images to the systems that are used to generate composite images of perpetrators on the basis of eyewitness reports.

  6. A new algorithmic approach for fingers detection and identification

    NASA Astrophysics Data System (ADS)

    Mubashar Khan, Arslan; Umar, Waqas; Choudhary, Taimoor; Hussain, Fawad; Haroon Yousaf, Muhammad

    2013-03-01

    Gesture recognition is concerned with the goal of interpreting human gestures through mathematical algorithms. Gestures can originate from any bodily motion or state but commonly originate from the face or hand. Hand gesture detection in a real time environment, where the time and memory are important issues, is a critical operation. Hand gesture recognition largely depends on the accurate detection of the fingers. This paper presents a new algorithmic approach to detect and identify fingers of human hand. The proposed algorithm does not depend upon the prior knowledge of the scene. It detects the active fingers and Metacarpophalangeal (MCP) of the inactive fingers from an already detected hand. Dynamic thresholding technique and connected component labeling scheme are employed for background elimination and hand detection respectively. Algorithm proposed a new approach for finger identification in real time environment keeping the memory and time constraint as low as possible.

  7. Detection and identification of buried objects in shallow water

    NASA Astrophysics Data System (ADS)

    Goo, Gee-In; Au, Withlow W. L.

    1996-05-01

    A variety of experimental results indicate that Dolphins possess a unique and highly sophisticated sonar system. In addition, this sonar system is highly adaptive in detecting, discriminating and recognizing objects in highly reverberating and noisy environments. This paper presents possibly a new technique for target detection and recognition using the G- Transform and a new approach based on Resonance and Resonant Scattering Theory. These results show that this approach and signal processing technique used with neural networks may be useful in detection and identification of buried mine and minelike targets.

  8. Detecting and Locating Seismic Events Without Phase Picks or Velocity Models

    NASA Astrophysics Data System (ADS)

    Arrowsmith, S.; Young, C. J.; Ballard, S.; Slinkard, M.

    2015-12-01

    The standard paradigm for seismic event monitoring is to scan waveforms from a network of stations and identify the arrival time of various seismic phases. A signal association algorithm then groups the picks to form events, which are subsequently located by minimizing residuals between measured travel times and travel times predicted by an Earth model. Many of these steps are prone to significant errors which can lead to erroneous arrival associations and event locations. Here, we revisit a concept for event detection that does not require phase picks or travel time curves and fuses detection, association and location into a single algorithm. Our pickless event detector exploits existing catalog and waveform data to build an empirical stack of the full regional seismic wavefield, which is subsequently used to detect and locate events at a network level using correlation techniques. Because the technique uses more of the information content of the original waveforms, the concept is particularly powerful for detecting weak events that would be missed by conventional methods. We apply our detector to seismic data from the University of Utah Seismograph Stations network and compare our results with the earthquake catalog published by the University of Utah. We demonstrate that the pickless detector can detect and locate significant numbers of events previously missed by standard data processing techniques.

  9. Fast pedestrian detection using deformable part model and pyramid layer location

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Liu, Yang; Xiao, Zhitao; Li, Yuelong; Zhang, Fang

    2017-05-01

    The majority of pedestrian detection approaches use multiscale detection and the sliding window search scheme with high computing complexity. We present a fast pedestrian detection method using the deformable part model and pyramid layer location (PLL). First, the object proposal method is used rather than the traditional sliding window to obtain pedestrian proposal regions. Then, a PLL method is proposed to select the optimal root level in the feature pyramid for each candidate window. On this basis, a single-point calculation scheme is designed to calculate the scores of candidate windows efficiently. Finally, pedestrians can be located from the images. The Institut national de recherche en informatique et en automatique dataset for human detection is used to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method can reduce the number of feature maps and windows requiring calculation in the detection process. Consequently, the computing cost is significantly reduced, with fewer false positives.

  10. Research about the location technologies of forest fire detecting based on GIS

    NASA Astrophysics Data System (ADS)

    Zhang, An; Qi, Qingwen; Jiang, Lili; Guo, Chaohui

    2007-06-01

    Forest fire caused damages of property and loss of human life. Detecting a forest fire and get the location is very significant in the fire early warning. More early and more prompt detecting fire and determining fire position as far as possible could avoid and reduce loss of the disaster. At present there are three ways regarding the forest fire early warning and location determining which included: monitoring form Remote Sense Satellite image, manual observation and patrols, and automatic monitoring through CCD camera long-distance video. Overall evaluation regarding the three location technologies in forest fire early warning, the CCD camera detecting method is suitable in the fire rapid Response. An automatic forest fire surveillance system was running to detect the fire by using visible light images from the remote cameras. If a forest fire was detected, an alarm will be activated. The observation point elevation values, vertical offsets, horizontal and vertical scanning angles, and scanning distances will be also be sent to the central control room. The spatial orientation will be computed and showed on the electronic map. Key location technologies based on CCD camera included the image processing technique for automatically detecting forest fire and the visibility analyzes technique for the digital elevation model. Jing gang Mountain which locates in Jiangxi province of China is taken as an example. With the help of this automatic monitoring through CCD camera long-distance video and visibility analyzes, scientists and government administrators can make decision-supporting easily when they know exactly where a forest fire is. At last the shortage of CCD camera detecting method was discussed. We cannot depend on CCD camera detecting equipment and technologies only. With foundation of the automatic video frequency supervisory system, we should also strengthen manual observation and satellite remote sensing monitor.

  11. Location Error Detection and Compensation for IEEE 802.15.4a Networks in Indoor Environments

    NASA Astrophysics Data System (ADS)

    Kong, Youngbae; Kim, Junseok; Kwon, Younggoo; Park, Gwitae

    IEEE 802.15.4a standard enables location-aided routing or topology control in ZigBee networks, since it uses time-of-arrival (TOA)-based ranging technique. However, TOA based techniques may yield location error due to the non-line-of-sight (NLOS) effects, and hence degrade the network performance. In this letter, we demonstrate the impact of NLOS on the localization performance and propose a location error detection and compensation algorithm for IEEE 802.15.4a networks. The proposed algorithm detects NLOS by using the min-max algorithm and compensates the location error by using the Kalman filter. Experimental results show that the proposed algorithm significantly reduces the localization errors in indoor environments.

  12. Cultivar Evaluation and Essential Test Locations Identification for Sugarcane Breeding in China

    PubMed Central

    Luo, Jun; Xu, Liping; Zhang, Hua; Yuan, Zhaonian; Deng, Zuhu; Chen, Rukai

    2014-01-01

    The discrepancies across test sites and years, along with the interaction between cultivar and environment, make it difficult to accurately evaluate the differences of the sugarcane cultivars. Using a genotype main effect plus genotype-environment interaction (GGE) Biplot software, the yield performance data of seven sugarcane cultivars in the 8th Chinese National Sugarcane Regional Tests were analyzed to identify cultivars recommended for commercial release. Fn38 produced a high and stable sugar yield. Gn02-70 had the lowest cane yield with high stability. Yz06-407 was a high cane yield cultivar with poor stability in sugar yield. Yz05-51 and Lc03-1137 had an unstable cane yield but relatively high sugar yield. Fn39 produced stable high sugar yield with low and unstable cane production. Significantly different sugar and cane yields were observed across seasons due to strong cultivar-environment interactions. Three areas, Guangxi Chongzuo, Guangxi Baise, and Guangxi Hechi, showed better representativeness of cane yield and sugar content than the other four areas. On the other hand, the areas Guangxi Chongzuo, Yunnan Lincang, and Yunnan Baoshan showed strong discrimination ability, while the areas Guangxi Hechi and Guangxi Liuzhou showed poor discrimination ability. This study provides a reference for cultivar evaluation and essential test locations identification for sugarcane breeding in China. PMID:24982939

  13. A comprehensive monitoring system for damage identification and location in large structural and mechanical systems

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; Prime, M.B.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project conducted at the Los Alamos National Laboratory (LANL). This project has focused on developing and experimentally verifying a suite of analytical tools for identifying the onset of damage in structural and mechanical systems from changes in their vibration characteristics. A MATLAB-based computer code referred to as Damage Identification And Modal Analysis of Data (DIAMOND) was developed. The code was then extensively exercised on data obtained from a variety of test structures. The most notable structure was an in situ bridge located ten mile north of Truth or Consequences, New Mexico. The suite of tools contained in DIAMOND is now being applied to the nuclear weapons enhanced surveillance program and an industrial partner has asked to enter into a partnership so that they can implement routines from DIAMOND into their commercial damage assessment hardware for large civil engineering structures. Because of the large volume of requests from around the world for DIAMOND, it can now be downloaded from the web site: http://esaea-www.esa.lanl.gov/damage{_}id.

  14. Cultivar evaluation and essential test locations identification for sugarcane breeding in China.

    PubMed

    Luo, Jun; Pan, Yong-Bao; Xu, Liping; Zhang, Hua; Yuan, Zhaonian; Deng, Zuhu; Chen, Rukai; Que, Youxiong

    2014-01-01

    The discrepancies across test sites and years, along with the interaction between cultivar and environment, make it difficult to accurately evaluate the differences of the sugarcane cultivars. Using a genotype main effect plus genotype-environment interaction (GGE) Biplot software, the yield performance data of seven sugarcane cultivars in the 8th Chinese National Sugarcane Regional Tests were analyzed to identify cultivars recommended for commercial release. Fn38 produced a high and stable sugar yield. Gn02-70 had the lowest cane yield with high stability. Yz06-407 was a high cane yield cultivar with poor stability in sugar yield. Yz05-51 and Lc03-1137 had an unstable cane yield but relatively high sugar yield. Fn39 produced stable high sugar yield with low and unstable cane production. Significantly different sugar and cane yields were observed across seasons due to strong cultivar-environment interactions. Three areas, Guangxi Chongzuo, Guangxi Baise, and Guangxi Hechi, showed better representativeness of cane yield and sugar content than the other four areas. On the other hand, the areas Guangxi Chongzuo, Yunnan Lincang, and Yunnan Baoshan showed strong discrimination ability, while the areas Guangxi Hechi and Guangxi Liuzhou showed poor discrimination ability. This study provides a reference for cultivar evaluation and essential test locations identification for sugarcane breeding in China.

  15. Detection and identification of human targets in radar data

    NASA Astrophysics Data System (ADS)

    Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.

    2007-04-01

    Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.

  16. Full On-Device Stay Points Detection in Smartphones for Location-Based Mobile Applications

    PubMed Central

    Pérez-Torres, Rafael; Torres-Huitzil, César; Galeana-Zapién, Hiram

    2016-01-01

    The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone’s battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution. PMID:27754388

  17. Full On-Device Stay Points Detection in Smartphones for Location-Based Mobile Applications.

    PubMed

    Pérez-Torres, Rafael; Torres-Huitzil, César; Galeana-Zapién, Hiram

    2016-10-13

    The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone's battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution.

  18. Detection and identification of substances using noisy THz signal

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Zakharova, Irina G.; Zagursky, Dmitry Yu.; Varentsova, Svetlana A.

    2017-05-01

    We discuss an effective method for the detection and identification of substances using a high noisy THz signal. In order to model such a noisy signal, we add to the THz signal transmitted through a pure substance, a noisy THz signal obtained in real conditions at a long distance (more than 3.5 m) from the receiver in air. The insufficiency of the standard THz-TDS method is demonstrated. The method discussed in the paper is based on time-dependent integral correlation criteria calculated using spectral dynamics of medium response. A new type of the integral correlation criterion, which is less dependent on spectral characteristics of the noisy signal under investigation, is used for the substance identification. To demonstrate the possibilities of the integral correlation criteria in real experiment, they are applied for the identification of explosive HMX in the reflection mode. To explain the physical mechanism for the false absorption frequencies appearance in the signal we make a computer simulation using 1D Maxwell's equations and density matrix formalism. We propose also new method for the substance identification by using the THz pulse frequency up-conversion and discuss an application of the cascade mechanism of molecules high energy levels excitation for the substance identification.

  19. Detection and Identification of Mycobacterium Species Isolates by DNA Microarray

    PubMed Central

    Fukushima, Masao; Kakinuma, Kenichi; Hayashi, Hiroshi; Nagai, Hiroko; Ito, Kunihiko; Kawaguchi, Ryuji

    2003-01-01

    Rapid identification of Mycobacterium species isolates is necessary for the effective management of tuberculosis. Recently, analysis of DNA gyrase B subunit (gyrB) genes has been identified as a suitable means for the identification of bacterial species. We describe a microarray assay based on gyrB gene sequences that can be used for the identification of Mycobacteria species. Primers specific for a gyrB gene region common to all mycobacteria were synthesized and used for PCR amplification of DNA purified from clinical samples. A set of oligonucleotide probes for specific gyrB gene regions was developed for the identification of 14 Mycobacterium species. Each probe was spotted onto a silylated glass slide with an arrayer and used for hybridization with fluorescently labeled RNA derived from amplified sample DNA to yield a pattern of positive spots. This microarray produced unique hybridization patterns for each species of mycobacteria and could differentiate closely related bacterial species. Moreover, the results corresponded well with those obtained by the conventional culture method for the detection of mycobacteria. We conclude that a gyrB-based microarray can rapidly detect and identify closely related mycobacterial species and may be useful in the diagnosis and effective management of tuberculosis. PMID:12791887

  20. Automated location detection of injection site for preclinical stereotactic neurosurgery procedure

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Wu, Hemmings C. H.

    2017-03-01

    Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.

  1. An Application for Driver Drowsiness Identification based on Pupil Detection using IR Camera

    NASA Astrophysics Data System (ADS)

    Kumar, K. S. Chidanand; Bhowmick, Brojeshwar

    A Driver drowsiness identification system has been proposed that generates alarms when driver falls asleep during driving. A number of different physical phenomena can be monitored and measured in order to detect drowsiness of driver in a vehicle. This paper presents a methodology for driver drowsiness identification using IR camera by detecting and tracking pupils. The face region is first determined first using euler number and template matching. Pupils are then located in the face region. In subsequent frames of video, pupils are tracked in order to find whether the eyes are open or closed. If eyes are closed for several consecutive frames then it is concluded that the driver is fatigued and alarm is generated.

  2. Indoor locating and inventory management based on RFID-Radar detecting data

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Lou, P. C.; Hsieh, Y. G.

    2012-03-01

    The new generation RFID-Radar system provides the function of detecting the targets' locations with the measurements of range and angle using a reader and an antenna array to transmit and receive the RF signals. It enhances the application value for RFID when combined with the geospatial information. In this study, an information system embedded with a plan coordinate detection function was developed using the spatial data provided by the RFID-Radar system, to expand the application of indoor locating and meet the inventory management requirements. The in-house developed management system can work for processing the measurements detected by the RFID-Radar system, calculating the target's location, checking the target's status and analyzing the target's movement occurring between the two detecting epochs through a designed GUI (graphical user interface). The system has been tested to show an internal precision of 0.76 m for locating, based on the stability test of the range and angle measurements, and effectively demonstrates the functions for detecting the target's movement and archiving the inventory's management information with a database.

  3. Event Detection and Location of Earthquakes Using the Cascadia Initiative Dataset

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2015-12-01

    The Cascadia subduction zone (CSZ) produces a range of slip behavior along the plate boundary megathrust, from great earthquakes to episodic slow slip and tremor (ETS). Unlike other subduction zones that produce great earthquakes and ETS, the CSZ is notable for the lack of small and moderate magnitude earthquakes recorded. The seismogenic zone extent is currently estimated to be primarily offshore, thus the lack of observed small, interplate earthquakes may be partially due to the use of only land seismometers. The Cascadia Initiative (CI) community seismic experiment seeks to address this issue by including ocean bottom seismometers (OBS) deployed directly over the locked seismogenic zone, in addition to land seismometers. We use these seismic data to explore whether small magnitude earthquakes are occurring on the plate interface, but have gone undetected by the land-based seismic networks. We select a subset of small magnitude (M0.1-3.7) earthquakes from existing earthquake catalogs, based on land seismic data, whose preliminary hypocentral locations suggest they may have occurred on the plate interface. We window the waveforms on CI OBS and land seismometers around the phase arrival times for these earthquakes to generate templates for subspace detection, which allows for additional flexibility over traditional matched filter detection methods. Here we present event detections from the first year of CI deployment and preliminary locations for the detected events. Initial results of scanning the first year of the CI deployment using one cluster of template events, located near a previously identified subducted seamount, include 473 detections on OBS station M08A (~61.6 km offshore) and 710 detections on OBS station J25A (~44.8 km northeast of M08A). Ongoing efforts include detection using additional OBS stations along the margin, as well as determining locations of clusters detected in the first year of deployment.

  4. Perform Initial Measurements to Investigate Microwave Detection for Location of Hemorrhage Sites Within the Body

    DTIC Science & Technology

    1998-08-01

    ability of electromagnetic waves in the RF and microwave region to detect regions of blood pooling in the body. The purpose is to demonstrate the...exposure to electromagnetic waves. The data presented is based upon research and approximations to the actual problem. RF or microwave energy interactions...DAMD17-96-C-6074 TITLE: Perform Initial Measurements to Investigate Microwave Detection for Location of Hemorrhage Sites Within the Body PRINCIPAL

  5. An Improved Anchor Shot Detection Method Using Fitness of Face Location and Dissimilarity of Icon Region

    NASA Astrophysics Data System (ADS)

    Keum, Ji-Soo; Lee, Hyon-Soo; Hagiwara, Masafumi

    In this letter, we propose an improved anchor shot detection (ASD) method in order to effectively retrieve anchor shots from news video. The face location and dissimilarity of icon region are used to reduce false alarms in the proposed method. According to the results of the experiment on several types of news video, the proposed method obtained high anchor detection results compared with previous methods.

  6. Testing continuous earthquake detection and location in Alentejo (South Portugal) by waveform coherency analysis

    NASA Astrophysics Data System (ADS)

    Matos, Catarina; Grigoli, Francesco; Cesca, Simone; Custódio, Susana

    2015-04-01

    In the last decade a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered Portugal. This extraordinary network coverage enables now the computation of a high-resolution image of the seismicity of Portugal, which in turn will shed light on the seismotectonics of Portugal. The large data volumes available cannot be analyzed by traditional time-consuming manual location procedures. In this presentation we show first results on the automatic detection and location of earthquakes occurred in a selected region in the south of Portugal Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e., lowering the detection threshold). We present a modified version of the automatic seismic event location by waveform coherency analysis developed by Grigoli et al. (2013, 2014), designed to perform earthquake detections and locations in continuous data. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace, while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event detection and location is obtained by performing waveform coherence analysis scanning different hypocentral coordinates. We apply this technique to earthquakes in the Alentejo region (South Portugal), taking advantage from a small aperture seismic network installed in the south of Portugal for two years (2010 - 2011) during the DOCTAR experiment. In addition to the good network coverage, the Alentejo region was chosen for its simple tectonic setting and also because the relationship between seismicity, tectonics and local lithospheric structure is intriguing and still poorly understood. Inside

  7. Long-term particle measurements in Finnish Arctic: Part II - Trend analysis and source location identification

    NASA Astrophysics Data System (ADS)

    Laing, James R.; Hopke, Philip K.; Hopke, Eleanor F.; Husain, Liaquat; Dutkiewicz, Vincent A.; Paatero, Jussi; Viisanen, Yrjö.

    2014-05-01

    Forty-seven years (1964-2010) of weekly trace metal and major ion concentrations in total suspended particle samples from Kevo, Finland were analyzed for long-term trends and by source identification methods. Significant long-term decreasing trends were detected for most species. The largest decreases over the 47 years were Sb (-3.90% yr-1), Pb (-3.87% yr-1), Mn (-3.45% yr-1), Cd (-3.42% yr-1), and Ca (-3.13% yr-1). As, Pb, and Cd concentrations at Kevo were consistent with the reported time-trends of European emissions inventories. Pb concentrations at Kevo have dramatically decreased (92%) in the past 47 years due to the reduced use of leaded gasoline in automobiles. Back-trajectory analysis suggests that the main source areas of anthropogenic species (V, Cd, Mn, Mo, Sb, Tl, W) were predominantly in Eastern Europe, European Russia, and the Baltics. Markers of stationary fuel combustion (V, Mn, Mo, Sb, Se, and Tl) pointed towards source regions in the Pechora Basin and Ural industrial areas in Russia, and near gas and oil fields in western Kazakhstan.

  8. Valles Caldera, New Mexico Microearthquakes: Improved Detection and Location with Expanded Caldera Station Coverage

    NASA Astrophysics Data System (ADS)

    House, L. S.; Roberts, P. M.; Ten Cate, J. A.

    2016-12-01

    The Los Alamos Seismic Network (LASN) has operated for 44 years, providing data to locate more than 2,500 earthquakes in north-central New Mexico. Roughly 1-2 earthquakes are detected and located per month within about 150 km of Los Alamos, a total of over 900 from 1973 to present. LASN's primary purpose is to monitor seismicity close to the Los Alamos National Laboratory (LANL) for seismic hazards; monitoring seismicity associated with the nearby Valles Caldera is secondary. Until 2010 the network comprised only 7 stations, all near LANL or in the nearby Jemez Mountains. Just one station (PER, installed in 1998) was close enough to Valles Caldera to be able to detect microearthquakes located in or near the caldera. An initial study of the data from station PER between 1998 and 2002 identified and located 13 events with magnitudes less than 0.5 using the single-station hodogram technique. Those events were all located south of the caldera within a few kilometers of PER. Recently, two new digital broadband stations were installed inside the caldera, one on a northeastern ring-fracture dome, station CDAB, and the other on a northwestern dome, station SAMT. Also, station PER was upgraded with digital broadband instrumentation. Thus, LASN now can detect and record microearthquakes as small as magnitude -1.5 near the caldera, and they can be located using arrival times at multiple stations. Several recent events located near station SAMT on the caldera's ring fracture are the first that have been seen in that area. Additional events were recorded (by all three stations) and located in the area south of the caldera where the earlier hodogram-only events were located. These new multi-station event recordings allow a more quantitative assessment of the uncertainties in the initial single-station hodogram locations. Each event is located using multiple arrival times as well as the hodogram method at as many as three stations. Thus, improvements can be made to the

  9. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  10. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    PubMed

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  11. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    PubMed Central

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-01-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592

  12. Multistage audiovisual integration of speech: dissociating identification and detection.

    PubMed

    Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias S

    2011-02-01

    Speech perception integrates auditory and visual information. This is evidenced by the McGurk illusion where seeing the talking face influences the auditory phonetic percept and by the audiovisual detection advantage where seeing the talking face influences the detectability of the acoustic speech signal. Here, we show that identification of phonetic content and detection can be dissociated as speech-specific and non-specific audiovisual integration effects. To this end, we employed synthetically modified stimuli, sine wave speech (SWS), which is an impoverished speech signal that only observers informed of its speech-like nature recognize as speech. While the McGurk illusion only occurred for informed observers, the audiovisual detection advantage occurred for naïve observers as well. This finding supports a multistage account of audiovisual integration of speech in which the many attributes of the audiovisual speech signal are integrated by separate integration processes.

  13. Intraoperative Identification of the Parathyroid Gland with a Fluorescence Detection System.

    PubMed

    Shinden, Yoshiaki; Nakajo, Akihiro; Arima, Hideo; Tanoue, Kiyonori; Hirata, Munetsugu; Kijima, Yuko; Maemura, Kosei; Natsugoe, Shoji

    2017-06-01

    Intraoperative identification of the difficult-to-spot parathyroid gland is critical during surgery for thyroid and parathyroid disease. Recently, intrinsic fluorescence of the parathyroid gland was identified, and a new method was developed for intraoperative detection of the parathyroid with an original fluorescent detection apparatus. Here, we describe a method for intraoperative detection of the parathyroid using a ready-made photodynamic eye (PDE) system without any fluorescent dye or contrast agents. Seventeen patients who underwent surgical treatment for thyroid or parathyroid disease at Kagoshima University Hospital were enrolled in this study. Intrinsic fluorescence of various tissues was detected with the PDE system. Intraoperative in vivo and ex vivo intrinsic fluorescence of the parathyroid, thyroid, lymph nodes and fat tissues was measured and analyzed. The parathyroid gland had a significantly higher fluorescence intensity than the other tissues, including the thyroid glands, lymph nodes and fat tissues, and we could identify them during surgery using the fluorescence-guided method. Our method could be applicable for two intraoperative clinical procedures: ex vivo tissue identification of parathyroid tissue and in vivo identification of the location of the parathyroid gland, including ectopic glands. The PDE system may be an easy and highly feasible method to identify the parathyroid gland during surgery.

  14. Failure detection and identification: Application to aircraft control

    NASA Astrophysics Data System (ADS)

    Gopisetty, Sai Manohar

    A theory to detect and identify multiple, simultaneous failures of actuators and sensors in practical control systems is presented. The type of failures that are addressed include zero output, biases, stuck actuators and sensors, hard-over failures, and reversal of control actuation. Using only the measurements from sensors, operator and computer commands, and the knowledge of the mathematical model of the system, an error metric (residual) is developed that contains all the information about the failures. An important feature of the error metric is that it linearly parameterizes the effect of failures, thus enabling detection and identification of multiple failures through a real-time, recursive identification method. Starting with designs based on the linearization of a nonlinear system, the theory is extended to linear-parameter-varying nonlinear systems. The nonlinear error metric is robust to changes in the operating condition while retaining linear relationship to failure parameters. As control systems with redundancies pose special challenges during failure, a systematic procedure to detect and identify failures in redundant actuators and sensors is presented. When there is insufficient knowledge of the control system dynamics, or when the disturbance dynamics is complicated, a method to generate robust input-output maps that can be used as failure detection metrics is developed. The theory is validated though simulations conducted on linear and nonlinear models of commercial aircraft. Realistic models for atmospheric turbulence and measurement noise are used. Multiple failures in actuators and sensors are identified in their source and magnitude. The results demonstrate that failure detection and identification is possible without altering the existing control system and the methods can be used in a retrofittable arrangement to improve aircraft safety.

  15. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm

    PubMed Central

    Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis

    2016-01-01

    Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds. PMID:27827883

  16. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.

    PubMed

    Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis

    2016-11-03

    Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds.

  17. Fast detection and identification of bacteria in potable water

    NASA Astrophysics Data System (ADS)

    Heller, C.; Reidt, U.; Helwig, A.; Müller, G.; Meixner, L.; Neumeier, K.; Lindner, P.; Molz, R.; Wolf, H.; Zullei-Seibert, N.; Preuß, G.; Friedberger, A.

    2009-05-01

    The quality and safety of drinking water is of major importance for human life. Current analytical methods recognizing viable bacteria in potable water are time consuming due to a required cultivation step. Fast and automated detection of water borne pathogenic microorganisms with high sensitivity and selectivity is still a challenging task. We report on a novel biosensor system using micromechanical filters with nano sized pores to capture and enrich bacteria on the filter surface. Thus the accumulated organisms are accessible to different detection methods using fluorescent probes. Depending on the kind of detection - specific (identification of a certain species) or unspecific (total amount of cells) - different assays are applied. For non-specific detection we use fluorescent dyes that bind to or intercalate in the DNA molecules of the bacteria. Upon binding, the fluorescent signal of the dyes increases by a factor of 1000 or more. Additionally, we use enzyme substrates for the detection of active cells. The whole detection process is automated by integrating the microsieves into a fluidic system together with a high performance fluorescence detector. To ensure realistic conditions, real potable water, i.e. including particles, has been spiked with defined amounts of microorganisms. Thus, sampling, enriching and detection of microorganisms - all with a single micromechanical filter - is not only possible with ideal media, e.g. laboratory buffer solutions, but also with tap water. These results show the potential of microfilters for several applications in fast pathogen detection.

  18. Multiband array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-06-01

    We present a new methodology for detection and space-time location of seismic sources based on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multiscale non-stationary statistical characteristics, through multiband higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3-D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time-series of 3-D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3-D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  19. RCUT: A Non-Invasive Method for Detection, Location, and Quantification of Radiological Contaminants in Pipes and Ducts - 12514

    SciTech Connect

    Bratton, Wesley L.; Maresca, Joseph W. Jr.; Beck, Deborah A.

    2012-07-01

    Radiological Characterization Using Tracers (RCUT) is a minimally invasive method for detection and location of residual radiological contamination in pipes and ducts. The RCUT technology utilizes reactive gaseous tracers that dissociate when exposed to gamma and/or beta radiation emitting from a radiological contaminant in a pipe or duct. Sulfur hexafluoride (SF{sub 6}) was selected as a tracer for this radiological application, because it is a chemically inert gas that is both nonflammable, nontoxic, and breaks down when exposed to gamma radiation. Laboratory tests demonstrated that the tracer pair of SF{sub 6} and O{sub 2} formed SO{sub 2}F{sub 2} when exposed to a gamma or beta radioactive field, which indicated the presence of radiological contamination. Field application of RCUT involves first injecting the reactive tracers into the pipe to fill the pipe being inspected and allowing sufficient time for the tracer to interact with any contaminants present. This is followed by the injection of an inert gas at one end of the pipe to push the reactive tracer at a known or constant flow velocity along the pipe and then out the exit and sampling port at the end of the pipeline where its concentration is measured by a gas chromatograph. If a radiological contaminant is present in the pipe being tested, the presence of SO{sub 2}F{sub 2} will be detected. The time of arrival of the SO{sub 2}F{sub 2} can be used to locate the contaminant. If the pipe is free of radiological contamination, no SO{sub 2}F{sub 2} will be detected. RCUT and PCUT are both effective technologies that can be used to detect contamination within pipelines without the need for mechanical or human inspection. These methods can be used to detect, locate, and/or estimate the volume of a variety of radioactive materials and hazardous chemicals such as chlorinated solvents, petroleum products, and heavy metals. While further optimization is needed for RCUT, the key first step of identification of a

  20. A ZigBee-Based Location-Aware Fall Detection System for Improving Elderly Telecare

    PubMed Central

    Huang, Chih-Ning; Chan, Chia-Tai

    2014-01-01

    Falls are the primary cause of accidents among the elderly and frequently cause fatal and non-fatal injuries associated with a large amount of medical costs. Fall detection using wearable wireless sensor nodes has the potential of improving elderly telecare. This investigation proposes a ZigBee-based location-aware fall detection system for elderly telecare that provides an unobstructed communication between the elderly and caregivers when falls happen. The system is based on ZigBee-based sensor networks, and the sensor node consists of a motherboard with a tri-axial accelerometer and a ZigBee module. A wireless sensor node worn on the waist continuously detects fall events and starts an indoor positioning engine as soon as a fall happens. In the fall detection scheme, this study proposes a three-phase threshold-based fall detection algorithm to detect critical and normal falls. The fall alarm can be canceled by pressing and holding the emergency fall button only when a normal fall is detected. On the other hand, there are three phases in the indoor positioning engine: path loss survey phase, Received Signal Strength Indicator (RSSI) collection phase and location calculation phase. Finally, the location of the faller will be calculated by a k-nearest neighbor algorithm with weighted RSSI. The experimental results demonstrate that the fall detection algorithm achieves 95.63% sensitivity, 73.5% specificity, 88.62% accuracy and 88.6% precision. Furthermore, the average error distance for indoor positioning is 1.15 ± 0.54 m. The proposed system successfully delivers critical information to remote telecare providers who can then immediately help a fallen person. PMID:24743841

  1. A ZigBee-based location-aware fall detection system for improving elderly telecare.

    PubMed

    Huang, Chih-Ning; Chan, Chia-Tai

    2014-04-16

    Falls are the primary cause of accidents among the elderly and frequently cause fatal and non-fatal injuries associated with a large amount of medical costs. Fall detection using wearable wireless sensor nodes has the potential of improving elderly telecare. This investigation proposes a ZigBee-based location-aware fall detection system for elderly telecare that provides an unobstructed communication between the elderly and caregivers when falls happen. The system is based on ZigBee-based sensor networks, and the sensor node consists of a motherboard with a tri-axial accelerometer and a ZigBee module. A wireless sensor node worn on the waist continuously detects fall events and starts an indoor positioning engine as soon as a fall happens. In the fall detection scheme, this study proposes a three-phase threshold-based fall detection algorithm to detect critical and normal falls. The fall alarm can be canceled by pressing and holding the emergency fall button only when a normal fall is detected. On the other hand, there are three phases in the indoor positioning engine: path loss survey phase, Received Signal Strength Indicator (RSSI) collection phase and location calculation phase. Finally, the location of the faller will be calculated by a k-nearest neighbor algorithm with weighted RSSI. The experimental results demonstrate that the fall detection algorithm achieves 95.63% sensitivity, 73.5% specificity, 88.62% accuracy and 88.6% precision. Furthermore, the average error distance for indoor positioning is 1.15 ± 0.54 m. The proposed system successfully delivers critical information to remote telecare providers who can then immediately help a fallen person.

  2. Location precision analysis of stereo thermal anti-sniper detection system

    NASA Astrophysics Data System (ADS)

    He, Yuqing; Lu, Ya; Zhang, Xiaoyan; Jin, Weiqi

    2012-06-01

    Anti-sniper detection devices are the urgent requirement in modern warfare. The precision of the anti-sniper detection system is especially important. This paper discusses the location precision analysis of the anti-sniper detection system based on the dual-thermal imaging system. It mainly discusses the following two aspects which produce the error: the digital quantitative effects of the camera; effect of estimating the coordinate of bullet trajectory according to the infrared images in the process of image matching. The formula of the error analysis is deduced according to the method of stereovision model and digital quantitative effects of the camera. From this, we can get the relationship of the detecting accuracy corresponding to the system's parameters. The analysis in this paper provides the theory basis for the error compensation algorithms which are put forward to improve the accuracy of 3D reconstruction of the bullet trajectory in the anti-sniper detection devices.

  3. Automatic Earthquake Detection and Location by Waveform coherency in Alentejo (South Portugal) Using CatchPy

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Matos, C.; Grigoli, F.; Cesca, S.; Heimann, S.; Rio, I.

    2015-12-01

    Seismic data processing is currently undergoing a step change, benefitting from high-volume datasets and advanced computer power. In the last decade, a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered mainland Portugal. This outstanding regional coverage currently enables the computation of a high-resolution image of the seismicity of Portugal, which contributes to fitting together the pieces of the regional seismo-tectonic puzzle. Although traditional manual inspections are valuable to refine automatic results they are impracticable with the big data volumes now available. When conducted alone they are also less objective since the criteria is defined by the analyst. In this work we present CatchPy, a scanning algorithm to detect earthquakes in continuous datasets. Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e. lowering the detection threshold). CatchPY is designed to produce an event database that could be easily located using existing location codes (e.g.: Grigoli et al. 2013, 2014). We use CatchPy to perform automatic detection and location of earthquakes that occurred in Alentejo region (South Portugal), taking advantage of a dense seismic network deployed in the region for two years during the DOCTAR experiment. Results show that our automatic procedure is particularly suitable for small aperture networks. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event location is performed by waveform coherence analysis, scanning different hypocentral coordinates

  4. A Compton telescope for remote location and identification of radioactive material

    NASA Astrophysics Data System (ADS)

    Ryan, James M.; Baker, Justin; Macri, John R.; McConnell, Mark L.; Carande, Richard

    2008-04-01

    The spare detectors from NASA Compton Gamma-Ray Observatory COMPTEL instrument have been reconfigured to demonstrate the capability at ground level to remotely locate and identify sources of g radiation or the movement of material that might shield γ-ray sources. The Gamma-Ray Experimental Telescope Assembly (GRETA) employs two 28 cm diameter scintillation detectors separated by 81 cm: one 8.5 cm thick liquid scintillator detector and one 7.5 cm thick NaI(Tl) detector. The assembly electronics and real-time data acquisition system measures the energy deposits and time-of- flight for each coincident detection and compiles histograms of total energy and incident angle as computed using the kinematics of Compton scattering. The GRETA field of view is a cone with full angle approximately 120°. The sensitive energy range is 0.3 to 2.6 MeV. Energy resolution is ~10% FWHM. The angular resolution, ~19° in the simplified configuration tested, will improve to better than 5° with well-defined enhancements to the data acquisition hardware and data analysis routines. When operated in the mode that was used in space, the instrument is capable of measuring and imaging up to 30 MeV with an angular resolution of 1.5°. The response of the instrument was mapped in the laboratory with 14 Ci 22Na source 3 m from the instrument. Later, we conducted demonstrations under two measurement scenarios. In one, the remotely located instrument observed an increase of background radiation counts at 1.4 MeV when a large amount of lead was removed from a building and a corresponding decrease when the lead was replaced. In the other scenario, the location and isotope-identifying energy spectrum of a 500 μCi 137Cs source 3-5 m from the instrument with two intervening walls was determined in less than one minute. We report details of the instrument design and these measurements.

  5. Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety.

    PubMed

    Saeb, Sohrab; Lattie, Emily G; Kording, Konrad P; Mohr, David C

    2017-08-10

    Is someone at home, at their friend's place, at a restaurant, or enjoying the outdoors? Knowing the semantic location of an individual matters for delivering medical interventions, recommendations, and other context-aware services. This knowledge is particularly useful in mental health care for monitoring relevant behavioral indicators to improve treatment delivery. Local search-and-discovery services such as Foursquare can be used to detect semantic locations based on the global positioning system (GPS) coordinates, but GPS alone is often inaccurate. Mobile phones can also sense other signals (such as movement, light, and sound), and the use of these signals promises to lead to a better estimation of an individual's semantic location. We aimed to examine the ability of mobile phone sensors to estimate semantic locations, and to evaluate the relationship between semantic location visit patterns and depression and anxiety. A total of 208 participants across the United States were asked to log the type of locations they visited daily, using their mobile phones for a period of 6 weeks, while their phone sensor data was recorded. Using the sensor data and Foursquare queries based on GPS coordinates, we trained models to predict these logged locations, and evaluated their prediction accuracy on participants that models had not seen during training. We also evaluated the relationship between the amount of time spent in each semantic location and depression and anxiety assessed at baseline, in the middle, and at the end of the study. While Foursquare queries detected true semantic locations with an average area under the curve (AUC) of 0.62, using phone sensor data alone increased the AUC to 0.84. When we used Foursquare and sensor data together, the AUC further increased to 0.88. We found some significant relationships between the time spent in certain locations and depression and anxiety, although these relationships were not consistent. The accuracy of location

  6. Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety

    PubMed Central

    Lattie, Emily G; Kording, Konrad P; Mohr, David C

    2017-01-01

    Background Is someone at home, at their friend’s place, at a restaurant, or enjoying the outdoors? Knowing the semantic location of an individual matters for delivering medical interventions, recommendations, and other context-aware services. This knowledge is particularly useful in mental health care for monitoring relevant behavioral indicators to improve treatment delivery. Local search-and-discovery services such as Foursquare can be used to detect semantic locations based on the global positioning system (GPS) coordinates, but GPS alone is often inaccurate. Mobile phones can also sense other signals (such as movement, light, and sound), and the use of these signals promises to lead to a better estimation of an individual’s semantic location. Objective We aimed to examine the ability of mobile phone sensors to estimate semantic locations, and to evaluate the relationship between semantic location visit patterns and depression and anxiety. Methods A total of 208 participants across the United States were asked to log the type of locations they visited daily, using their mobile phones for a period of 6 weeks, while their phone sensor data was recorded. Using the sensor data and Foursquare queries based on GPS coordinates, we trained models to predict these logged locations, and evaluated their prediction accuracy on participants that models had not seen during training. We also evaluated the relationship between the amount of time spent in each semantic location and depression and anxiety assessed at baseline, in the middle, and at the end of the study. Results While Foursquare queries detected true semantic locations with an average area under the curve (AUC) of 0.62, using phone sensor data alone increased the AUC to 0.84. When we used Foursquare and sensor data together, the AUC further increased to 0.88. We found some significant relationships between the time spent in certain locations and depression and anxiety, although these relationships were not

  7. Detection and location of fouling on photovoltaic panels using a drone-mounted infrared thermography system

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhang, Lifu; Wu, Taixia; Zhang, Hongming; Sun, Xuejian

    2017-01-01

    Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.

  8. Human Location Detection System Using Micro-Electromechanical Sensor for Intelligent Fan

    NASA Astrophysics Data System (ADS)

    Parnin, S.; Rahman, M. M.

    2017-03-01

    This paper presented the development of sensory system for detection of both the presence and the location of human in a room spaces using MEMS Thermal sensor. The system is able to detect the surface temperature of occupants by a non-contact detection at the maximum of 6 meters far. It can be integrated to any swing type of electrical appliances such as standing fan or a similar devices. Differentiating human from other moving and or static object by heat variable is nearly impossible since human, animals and electrical appliances produce heat. The uncontrollable heat properties which can change and transfer will add to the detection issue. Integrating the low cost MEMS based thermal sensor can solve the first of human sensing problem by its ability to detect human in stationary. Further discrimination and analysis must therefore be made to the measured temperature data to distinguish human from other objects. In this project, the fan is properly designed and program in such a way that it can adapt to different events starting from the human sensing stage to its dynamic and mechanical moving parts. Up to this stage initial testing to the Omron D6T microelectromechanical thermal sensor is currently under several experimental stages. Experimental result of the sensor tested on stationary and motion state of human are behaviorally differentiable and successfully locate the human position by detecting the maximum temperature of each sensor reading.

  9. Detecting activity locations from raw GPS data: a novel kernel-based algorithm

    PubMed Central

    2013-01-01

    Background Health studies and mHealth applications are increasingly resorting to tracking technologies such as Global Positioning Systems (GPS) to study the relation between mobility, exposures, and health. GPS tracking generates large sets of geographic data that need to be transformed to be useful for health research. This paper proposes a method to test the performance of activity place detection algorithms, and compares the performance of a novel kernel-based algorithm with a more traditional time-distance cluster detection method. Methods A set of 750 artificial GPS tracks containing three stops each were generated, with various levels of noise.. A total of 9,000 tracks were processed to measure the algorithms’ capacity to detect stop locations and estimate stop durations, with varying GPS noise and algorithm parameters. Results The proposed kernel-based algorithm outperformed the traditional algorithm on most criteria associated to activity place detection, and offered a stronger resilience to GPS noise, managing to detect up to 92.3% of actual stops, and estimating stop duration within 5% error margins at all tested noise levels. Conclusions Capacity to detect activity locations is an important feature in a context of increasing use of GPS devices in health and place research. While further testing with real-life tracks is recommended, testing algorithms’ performance with artificial track sets for which characteristics are controlled is useful. The proposed novel algorithm outperformed the traditional algorithm under these conditions. PMID:23497213

  10. An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano

    USGS Publications Warehouse

    Hoblitt, R.P.

    1994-01-01

    A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

  11. Detection and location of 127 anatomical landmarks in diverse CT datasets

    NASA Astrophysics Data System (ADS)

    Dabbah, Mohammad A.; Murphy, Sean; Pello, Hippolyte; Courbon, Romain; Beveridge, Erin; Wiseman, Stewart; Wyeth, Daniel; Poole, Ian

    2014-03-01

    The automatic detection and localization of anatomical landmarks has wide application, including intra and interpatient registration, study location and navigation, and the targeting of specialized algorithms. In this paper, we demonstrate the automatic detection and localization of 127 anatomically defined landmarks distributed throughout the body, excluding arms. Landmarks are defined on the skeleton, vasculature and major organs. Our approach builds on the classification forests method,1 using this classifier with simple image features which can be efficiently computed. For the training and validation of the method we have used 369 CT volumes on which radiographers and anatomists have marked ground truth (GT) - that is the locations of all defined landmarks occurring in that volume. A particular challenge is to deal with the wide diversity of datasets encountered in radiology practice. These include data from all major scanner manufacturers, different extents covering single and multiple body compartments, truncated cardiac acquisitions, with and without contrast. Cases with stents and catheters are also represented. Validation is by a leave-one-out method, which we show can be efficiently implemented in the context of decision forest methods. Mean location accuracy of detected landmarks is 13.45mm overall; execution time averages 7s per volume on a modern server machine. We also present localization ROC analysis to characterize detection accuracy - that is to decide if a landmark is or is not present in a given dataset.

  12. Odor identification as an early marker for Alzheimer's disease: impact of lexical functioning and detection sensitivity.

    PubMed

    Morgan, C D; Nordin, S; Murphy, C

    1995-10-01

    The impact of lexical functioning and detection sensitivity on the deficit of odor identification in Alzheimer's disease (AD) was studied in persons diagnosed with probable and questionable AD. Tests consisted of lexical-based odor identification, lexical-based picture identification, picture-based odor identification, and odor-detection threshold. Results suggest (1) that odor identification is poorer than picture identification in probable and questionable AD, (2) that odor identification continues to be poor even when lexical demands are eliminated, (3) that odor detection does contribute to the odor-identification deficit, but does not account for it completely, and (4) that odor identification tests have a correct classification rate of 83-100%. Odor identification tests can be very useful tools in diagnosing AD and should be considered an important addition to existing diagnostic test batteries.

  13. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOEpatents

    Beer, Neil Reginald; Colston, Jr, Billy W.

    2016-08-09

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  14. The genetic-algorithm-enhanced blind system identification for water distribution pipeline leak detection

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Wen, Yumei; Li, Ping

    2007-07-01

    The conventional leak location is based on the correlation of leak acoustic signals acquired spatially separately. By correlation, the time lag is estimated for localizing the leakage. In these methods, the detection distance is a prerequisite that has to be known beforehand. However, in practice, this prerequisite is not always satisfied. In this case, the correlation-based methods are not feasible. Actually, the acquired signals contain the characteristics related to the acoustic propagation channels; thus the blind system identification strategy is applied to estimate the transmission performances of acoustic channels. Then the times due to the propagation of the leak source signal travelling from the leak point to sensors are determined. In this way, for leak location, the detection distance is no longer a prerequisite. In blind system identification, due to the long impulse responses of the leak acoustic channels, the channels are inevitably ill conditioned and sensitive to the initial values. To overcome the ill conditions, the overlap-save and cross-correlation fitting techniques are utilized to identify the long impulse sequences under a built constraint. In order to avoid converging to the local minima, the genetic algorithm is used to minimize the cost functions. The practical detection results show the validity of the proposed scheme.

  15. Detection and strain identification of Actinobacillus actinomycetemcomitans by nested PCR.

    PubMed Central

    Leys, E J; Griffen, A L; Strong, S J; Fuerst, P A

    1994-01-01

    By using PCR, Actinobacillus actinomycetemcomitans strains were identified directly from plaque samples without the need to isolate or culture bacteria. DNA fragments were generated by a nested, two-step PCR amplification of the ribosomal spacer region between the 16S and 23S rRNA genes. For the first amplification, primers homologous to sequences common to all bacterial species were used. This was followed by a second amplification with primers specific to A. actinomycetemcomitans. The ribosomal DNA spacer region was amplified from as few as 10 bacterial cells within a total population of 10(8) cells (0.00001%), and cross-reactivity between species was not observed. DNA fragments specific for Porphyromonas gingivalis were generated from the same samples by using a P. gingivalis-specific primer, and equivalent sensitivity and specificity were observed. A. actinomycetemcomitans was detected in 60% and P. gingivalis was detected in 79% of 52 subjects tested. Sequence analysis of the spacer region DNA fragment for A. actinomycetemcomitans gave precise strain identification, producing unique sequences for seven reference strains and identification of nine plaque-derived isolates. A phylogenetic tree based on quantitative sequence relationships was constructed. Two-step PCR amplification directly from plaque samples combined with sequence analysis of the ribosomal DNA spacer region provides a sensitive assay for detection and strain identification of multiple species directly from a single plaque sample. This simplified approach provides a practical method for large-scale studies on the transmission and pathogenicity of periodontitis-associated bacteria. Images PMID:8051258

  16. Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations.

    PubMed

    Prakash, Om; Datta, Bithin

    2013-07-01

    One of the difficulties in accurate characterization of unknown groundwater pollution sources is the uncertainty regarding the number and the location of such sources. Only when the number of source locations is estimated with some degree of certainty that the characterization of the sources in terms of location, magnitude, and activity duration can be meaningful. A fairly good knowledge of source locations can substantially decrease the degree of nonuniqueness in the set of possible aquifer responses to subjected geochemical stresses. A methodology is developed to use a sequence of dedicated monitoring network design and implementation and to screen and identify the possible source locations. The proposed methodology utilizes a combination of spatial interpolation of concentration measurements and simulated annealing as optimization algorithm for optimal design of the monitoring network. These monitoring networks are to be designed and implemented sequentially. The sequential design is based on iterative pollutant concentration measurement information from the sequentially designed monitoring networks. The optimal monitoring network design utilizes concentration gradient information from the monitoring network at previous iteration to define the objective function. The capability of the feedback information based iterative methodology is shown to be effective in estimating the source locations when no such information is initially available. This unknown pollution source locations identification methodology should be very useful as a screening model for subsequent accurate estimation of the unknown pollution sources in terms of location, magnitude, and activity duration.

  17. Identification of palm print using dermatoglyphics analysis and detection system.

    PubMed

    Qiao, Yiaohua; Li, Zhen; Wang, Qing; Zeng, Yanjun; Liang, Ke

    2005-04-01

    This paper investigated the biological characteristics of palm print. The preprocessing plays an important role in identifying the ridge characteristics of palm due to the complexity and poor quality of the images. As a functional plug-in of the dermatoglyphics analysis and detection system, the template-based image preprocessing was proposed in this study, including histogram redistribution, ridge orientation, and skeletonization. Using this system, the automatic identification of ridges and triradiuses was accomplished with an effective result. The study demonstrated the feasibility of the method and the potential of the system for being applied as an auxiliary diagnostic tool for heredity diseases (e.g. mammary cancer and neurofibromatosis).

  18. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  19. An up-to-date instrumentation system for detection, location and characterization of AE signals

    NASA Astrophysics Data System (ADS)

    Belcredi, D.; Sala, A.; Tornelli, C.

    1988-11-01

    An acoustic emission data overseeing system (AEDOS) has been developed for detection, location, and multiparametrical analysis of AE events such as amplitude, rise time, duration, energy, and delay time. The equipment comprises three main sections: the 'in field part' to detect and condition the AE events; the 'front end' that collects all the signals, makes the first screening among the signals, and measures the main parameters of the events; and the 'computer' to set up the system, to store the data, to analyze and display parametric isthograms, graphics, and location maps, and to supply an easy menu driven interface to the operator. A detailed functional description including performance specification of the system is given.

  20. [INVITED] Time reversal optical tomography: Detecting and locating tumors in an ex vivo model human breast

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Alrubaiee, Mohammad; Gayen, S. K.

    2016-03-01

    Time reversal optical tomography (TROT), a recently introduced diffuse optical imaging approach, is used to detect, locate, and obtain cross-section images of tumors inside a "model human breast." The model cancerous breast is assembled as a semi-cylindrical slab of uniform thickness using ex vivo human breast tissues with two pieces of tumors embedded in it. The experimental arrangement used a 750-nm light beam from a Ti:sapphire laser to illuminate an end face (source plane) of the sample in a multi-source probing scheme. A multi-detector signal acquisition scheme measured transmitted light intensity distribution on the other end face (detector plane). The perturbations in light intensity distribution in the detector plane were analyzed using TROT to obtain locations of the tumor pieces in three dimensions and estimate their cross sections. The estimated locations and dimensions of targets are in good agreement with the results of a corroborating magnetic resonance imaging experiment.

  1. A technique for detecting and locating polarisation nonuniformities in an anisotropic optical fibre

    SciTech Connect

    Burdin, V V; Konstantinov, Yurii A; Pervadchuk, Vladimir P; Smirnov, A S

    2013-06-30

    One of the most important requirements for optical fibres as waveguiding media is uniformity. Polarisation-maintaining anisotropic fibres contain a special type of nonuniformity, which leads to polarisation cross-talk: optical power is transferred from one polarisation mode to the orthogonal mode. In this paper, we report a technique for detecting and locating such nonuniformities in a PANDA anisotropic single-mode fibre using polarised reflectometry. (fiber optics)

  2. Advanced Passive Acoustic Leak Location and Detection Verification System for Underground Fuel Pipelines

    DTIC Science & Technology

    2003-04-01

    Conference (March 1993). 4. E. G. Eckert, M. R. Fierro , and J. W. Maresca, Jr., “A Passive-Acoustic Approach to the Detection of Leaking Valves in...Pressurized Pipelines,” Technical Report for Martin Marietta Energy Systems, Inc., Vista Research Project 1050, Vista Research, Inc., Mountain View...California (August 1994). 5. E. G. Eckert, M. R. Fierro , and J. W. Maresca, Jr., “Demonstration of a Gas Acoustic Tracer (GAT) Method for the Location of

  3. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  4. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  5. Damage detection and locating using tone burst and continuous excitation modulation method

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  6. Investigation on location dependent detectability in cone beam CT images with uniform and anatomical backgrounds

    NASA Astrophysics Data System (ADS)

    Han, Minah; Baek, Jongduk

    2017-03-01

    We investigate location dependent lesion detectability of cone beam computed tomography images for different background types (i.e., uniform and anatomical), image planes (i.e., transverse and longitudinal) and slice thicknesses. Anatomical backgrounds are generated using a power law spectrum of breast anatomy, 1/f3. Spherical object with a 5mm diameter is used as a signal. CT projection data are acquired by the forward projection of uniform and anatomical backgrounds with and without the signal. Then, projection data are reconstructed using the FDK algorithm. Detectability is evaluated by a channelized Hotelling observer with dense difference-of-Gaussian channels. For uniform background, off-centered images yield higher detectability than iso-centered images for the transverse plane, while for the longitudinal plane, detectability of iso-centered and off-centered images are similar. For anatomical background, off-centered images yield higher detectability for the transverse plane, while iso-centered images yield higher detectability for the longitudinal plane, when the slice thickness is smaller than 1.9mm. The optimal slice thickness is 3.8mm for all tasks, and the transverse plane at the off-center (iso-center and off-center) produces the highest detectability for uniform (anatomical) background.

  7. Detection and identification of illicit drugs using terahertz imaging

    NASA Astrophysics Data System (ADS)

    Lu, Meihong; Shen, Jingling; Li, Ning; Zhang, Yan; Zhang, Cunlin; Liang, Laishun; Xu, Xiaoyu

    2006-11-01

    We demonstrated an advanced terahertz imaging technique for detection and identification of illicit drugs by introducing the component spatial pattern analysis. As an explanation, the characteristic fingerprint spectra and refractive index of ketamine were first measured with terahertz time-domain spectroscopy both in the air and nitrogen. The results obtained in the ambient air indicated that some absorption peaks are not obvious or probably not dependable. It is necessary and important to present a more practical technique for the detection. The spatial distributions of several illicit drugs [3,4-methylenedioxymethamphetamine, methylenedioxyamphetamine, heroin, acetylcodeine, morphine, and ketamine], widely consumed in the world, were obtained from terahertz images using absorption spectra previously measured in the range from 0.2to2.6THz in the ambient air. The different kinds of pure illicit drugs hidden in mail envelopes were inspected and identified. It could be an effective method in the field of safety inspection.

  8. Lamb wave detection and source location using fiber Bragg gratin rosettes

    NASA Astrophysics Data System (ADS)

    Betz, Daniel C.; Thursby, Graham; Culshaw, Brian; Staszewski, Wieslaw J.

    2003-07-01

    We describe a novel fiber-optic system that is able to detect both ultrasonic Lamb waves and the location of their source. The aim of the system is to detect damage in structures such as those found in aerospace applications. Our system involves the use of fiber Bragg gratings, which may be either bonded to the surface of the material or embedded within it in order to detect the linear strain component produced by the acoustic waves. Interrogation of the Bragg gratings is carried out using a laser, which is tuned to the wavelength that gives the maximum sensitivity on the grating response curve. An amplitude modulated signal is produced by the interaction of the Lamb wave with the grating. The well defined directional properties of the Bragg grating (compared to the isotropic response of the more commonly used piezoceramic disc transducers) are used to determine the direction of propagation of the acoustic waves by mounting three of the gratings in a rosette configuration. Two suitably spaced rosettes are used to locate the source of the ultrasound by taking the intersection of the directions given by each rosette. This will become important when we extend the technique to include the study of the use of changes in the propagation properties of Lamb waves as a method of damage detection. We will present both theoretical and practical results on the interaction of the Lamb waves with the grating and the extraction of directional information from the response of the rosettes.

  9. Rapid Detection and Identification of Biogenic Aerosol Releases and Sources

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Macher, J.; Ghosal, S.; Ahmed, K.; Hemati, K.; Wall, S.; Kumagai, K.

    2011-12-01

    Biogenic aerosols can be important contributors to aerosol chemistry, cloud droplet and ice nucleation, absorption and scattering of radiation, human health and comfort, and plant, animal, and microbial ecology. Many types of bioaerosols, e.g., fungal spores, are released into the atmosphere in response to specific climatological and meteorological conditions. The rapid identification of bioaerosol releases is thus important for better characterization of the above phenomena, as well as enabling public officials to respond quickly and appropriately to releases of infectious agents or biological toxins. One approach to rapid and accurate bioaerosol detection is to employ sequential, automated samples that can be fed directly into an image acquisition and data analysis device. Raman spectroscopy-based identification of bioaerosols, automated analysis of microscopy images, and automated detection of near-monodisperse peaks in aerosol size-distribution data were investigated as complementary approaches to traditional, manual methods for the identification and counting of fungal and actinomycete spores. Manual light microscopy is a widely used analytical technique that is compatible with a number of air sample formats and requires minimal sample preparation. However, a major drawback is its dependence on a human analyst's ability to distinguish particles and accurately count, size, and identify them. Therefore, automated methods, such as those evaluated in this study, have the potential to provide cost-effective and rapid alternatives if demonstrated to be accurate and reliable. An exploratory examination of individual spores for several macro- and microfungi (those with and without large fruiting bodies) by Raman microspectroscopy found unique spectral features that were used to identify fungi to the genus level. Automated analyses of digital spore images accurately recognized and counted single fungal spores and clusters. An automated procedure to discriminate near

  10. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  11. Jersey number detection in sports video for athlete identification

    NASA Astrophysics Data System (ADS)

    Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen

    2005-07-01

    Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.

  12. Patient identification errors: the detective in the laboratory.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Lillo, Rosa; Gutiérrez, Mercedes; Lugo, Javier; Leiva-Salinas, Carlos

    2013-11-01

    The eradication of errors regarding patients' identification is one of the main goals for safety improvement. As clinical laboratory intervenes in 70% of clinical decisions, laboratory safety is crucial in patient safety. We studied the number of Laboratory Information System (LIS) demographic data errors registered in our laboratory during one year. The laboratory attends a variety of inpatients and outpatients. The demographic data of outpatients is registered in the LIS, when they present to the laboratory front desk. The requests from the primary care centers (PCC) are made electronically by the general practitioner. A manual step is always done at the PCC to conciliate the patient identification number in the electronic request with the one in the LIS. Manual registration is done through hospital information system demographic data capture when patient's medical record number is registered in LIS. Laboratory report is always sent out electronically to the patient's electronic medical record. Daily, every demographic data in LIS is manually compared to the request form to detect potential errors. Fewer errors were committed when electronic order was used. There was great error variability between PCC when using the electronic order. LIS demographic data manual registration errors depended on patient origin and test requesting method. Even when using the electronic approach, errors were detected. There was a great variability between PCC even when using this electronic modality; this suggests that the number of errors is still dependent on the personnel in charge of the technology. © 2013.

  13. Integrating Subcellular Location for Improving Machine Learning Models of Remote Homology Detection in Eukaryotic Organisms

    SciTech Connect

    Shah, Anuj R.; Oehmen, Chris S.; Harper, Jill K.; Webb-Robertson, Bobbie-Jo M.

    2007-02-23

    Motivation: At the center of bioinformatics, genomics, and pro-teomics is the need for highly accurate genome annotations. Producing high-quality reliable annotations depends on identifying sequences which are related evolutionarily (homologs) on which to infer function. Homology detection is one of the oldest tasks in bioinformatics, however most approaches still fail when presented with sequences that have low residue similarity despite a distant evolutionary relationship (remote homology). Recently, discriminative approaches, such as support vector machines (SVMs) have demonstrated a vast improvement in sensitivity for remote homology detection. These methods however have only focused on one aspect of the sequence at a time, e.g., sequence similarity or motif based scores. However, supplementary information, such as the sub-cellular location of a protein within the cell would give further clues as to possible homologous pairs, additionally eliminating false relationships due to simple functional roles that cannot exist due to location. We have developed a method, SVM-SimLoc that integrates sub-cellular location with sequence similarity information into a pro-tein family classifier and compared it to one of the most accurate sequence based SVM approaches, SVM-Pairwise. Results: The SCOP 1.53 benchmark data set was utilized to assess the performance of SVM-SimLoc. As cellular location prediction is dependent upon the type of sequence, eukaryotic or prokaryotic, the analysis is restricted to the 2630 eukaryotic sequences in the benchmark dataset, evaluating a total of 27 protein families. We demonstrate that the integration of sequence similarity and sub-cellular location yields notably more accurate results than using sequence similarity independently at a significance level of 0.006.

  14. Using detection or identification paradigms when assessing visual development: is a shift in paradigm necessary?

    PubMed

    Hanck, Julie; Cornish, Kim; Perreault, Audrey; Kogan, Cary; Bertone, Armando

    2012-06-01

    Given the inherent difference in judgment required to complete visual detection and identification tasks, it is unknown whether task selection differentially affects visual performance as a function of development. The aim of the present study is therefore to systematically assess and contrast visual performance using these two types of paradigms in order to determine whether paradigm-contingent differences in performance exist across different periods of development. To do so, we assessed sensitivity to both luminance- and texture-defined stationary and dynamic gratings using both detection and identification paradigms. Results demonstrated a relatively unchanged pattern of performance from the school ages through adolescence, suggesting that sensitivity was not differentially affected by choice of paradigm as a function of development. However, when averaged across age groups, a paradigm-contingent difference in sensitivity was evidenced for dynamic, texture-defined gratings only; it was easier to detect the spatial location of the gratings compared with identifying the direction of their motion. Paradigm-contingent differences were not evidenced for luminance-defined stimuli (whether stationary or dynamic), or for stationary, texture-defined gratings. In general, visual performance measured using either detection or identification paradigms is comparable across ages, particularly when information is stationary and defined by more simple visual attributes, such as luminance. Therefore, the use of detection paradigms might be advantageous under most circumstances when assessing visual abilities of very young and/or clinical populations in order to minimize potential challenges not related to visual perception (i.e., attentional) in these populations. Finally, paradigm-contingent differences in performance specific to dynamic, texture-defined information will be discussed.

  15. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  16. Fast photon detection for particle identification with COMPASS RICH-1

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Alekseev, M.; Angerer, H.; Apollonio, M.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Busso, L.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Costa, S.; Dalla Torre, S.; Dafni, T.; Delagnes, E.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Faso, D.; Ferrero, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Horikawa, S.; Joosten, R.; Ketzer, B.; Königsmann, K.; Kolosov, V. N.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pesaro, G.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schröder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2007-10-01

    Particle identification (PID) at high rates is an important challenge for many current and future high-energy physics experiments. The upgrade of the COMPASS RICH-1 detector requires a new technique for Cherenkov photon detection at count rates of several 106 per channel in the central detector region, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors in the central region have been replaced with the detection system described in this paper. In the peripheral regions, the existing multi-wire proportional chambers with CsI photocathode are now read out via a new system employing APV pre-amplifiers and flash ADC chips. The new detection system consists of multi-anode photomultiplier tubes (MAPMT) and fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip. The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run. We present the photon detection design, constructive aspects and the first Cherenkov light in the detector.

  17. Detection, Location, and Characterization of Hydroacoustic Signals Using Seafloor Cable Networks Offshore Japan

    NASA Astrophysics Data System (ADS)

    Suyehiro, K.; Sugioka, H.; Watanabe, T.

    2008-12-01

    The hydroacoustic monitoring by the International Monitoring System for CTBT (Comprehensive Nuclear- Test-Ban Treaty) verification system utilizes hydrophone stations (6) and seismic stations (5 and called T- phase stations) for worldwide detection. Some conspicuous signals of natural origin include those from earthquakes, volcanic eruptions, or whale calls. Among artificial sources are non-nuclear explosions and airgun shots. It is important for the IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressure and seismic sensors) may be utilized to increase the capability of IMS. We use these data to compare some selected event parameters with those by IMS. In particular, there have been several unconventional acoustic signals in the western Pacific,which were also captured by IMS hydrophones across the Pacific in the time period of 2007-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals.

  18. Defect occurrence, detection, location and characterization; essential variables of the LBB concept application to primary piping

    SciTech Connect

    Crutzen, S.; Koble, T.D.; Lemaitre, P.

    1997-04-01

    Applications of the Leak Before Break (LBB) concept involve the knowledge of flaw presence and characteristics. In Service Inspection is given the responsibility of detecting flaws of a determined importance to locate them precisely and to classify them in broad families. Often LBB concepts application imply the knowledge of flaw characteristics such as through wall depth; length at the inner diameter (ID) or outer diameter (OD) surface; orientation or tilt and skew angles; branching; surface roughness; opening or width; crack tip aspect. Besides detection and characterization, LBB evaluations consider important the fact that a crack could be in the weld material or in the base material or in the heat affected zone. Cracks in tee junctions, in homogenous simple welds and in elbows are not considered in the same way. Essential variables of a flaw or defect are illustrated, and examples of flaws found in primary piping as reported by plant operators or service vendors are given. If such flaw variables are important in the applications of LBB concepts, essential is then the knowledge of the performance achievable by NDE techniques, during an ISI, in detecting such flaws, in locating them and in correctly evaluating their characteristics.

  19. ORAGES: A micro-satellite to detect and to locate the lightning VHF emissions from space

    NASA Astrophysics Data System (ADS)

    Lalande, P.; Bondiou-Clergerie, A.; Blanchet, P.; Roux, F.; Chauzy, S.

    2002-12-01

    Space based sensors enable continuous observations of the convective activity over the whole earth. The ORAGES mission, selected by the French Space Agency (CNES), is designed to locate and detect the VHF emissions of lightning from space with a storm scale resolution. The altitude of the orbit will be at 700-800 km with an inclination of 20-25° which enables to observe the intertropical region where 60% of the storms occur. The instrument is based on a broad band VHF interferometer composed of a 5 antenna network with a center frequency of 120 MHz and a diameter of 3m. The data provided by ORAGES will be: - detection, localization and time sampling of the VHF lightning emission, within a field of view of 1000 km x 1000 km, with a horizontal resolution is 15 km x 15 km; - Outside this region, the most intense emissions will be located up to the limb (3200 km horizontally from the nadir) with a horizontal resolution less than 150 km x 150 km; - From spatial and temporal criteria, lightning channels will be reconstructed from the series of detected lightning sources; - Evaluation of the total lightning length; - Discrimination between intra-cloud and cloud-to-ground flashes; - Determination of the type of emission (lightning leader development, recoil streamers, TIPPs,...).

  20. Location and release time identification of pollution point source in river networks based on the Backward Probability Method.

    PubMed

    Ghane, Alireza; Mazaheri, Mehdi; Mohammad Vali Samani, Jamal

    2016-09-15

    The pollution of rivers due to accidental spills is a major threat to environment and human health. To protect river systems from accidental spills, it is essential to introduce a reliable tool for identification process. Backward Probability Method (BPM) is one of the most recommended tools that is able to introduce information related to the prior location and the release time of the pollution. This method was originally developed and employed in groundwater pollution source identification problems. One of the objectives of this study is to apply this method in identifying the pollution source location and release time in surface waters, mainly in rivers. To accomplish this task, a numerical model is developed based on the adjoint analysis. Then the developed model is verified using analytical solution and some real data. The second objective of this study is to extend the method to pollution source identification in river networks. In this regard, a hypothetical test case is considered. In the later simulations, all of the suspected points are identified, using only one backward simulation. The results demonstrated that all suspected points, determined by the BPM could be a possible pollution source. The proposed approach is accurate and computationally efficient and does not need any simplification in river geometry and flow. Due to this simplicity, it is highly recommended for practical purposes. Copyright © 2016. Published by Elsevier Ltd.

  1. Seismicity and detection/location threshold in the southern Great Basin seismic network

    USGS Publications Warehouse

    Gomberg, J.

    1991-01-01

    A spatially varying model of the detection/location capabilities of the Southern Great Basin seismic network (SGBSN) has been derived that is based on simple empirical relations and statistics. This permits use of almost all the catalog data gathered; instead of ignoring data that are below the threshold of completeness, a spatially varying threshold model is developed so that subregions having lower completeness levels than the network as a whole can be outlined and the completeness level of each sub-region determined. The predominantly aseismic regions located include the area west of the Death Valley/Furnace Creek fault system and an almost complete absence of events at Yucca Mountain. -from Author

  2. Leak Detection and Location of Water Pipes Using Vibration Sensors and Modified ML Prefilter.

    PubMed

    Choi, Jihoon; Shin, Joonho; Song, Choonggeun; Han, Suyong; Park, Doo Il

    2017-09-13

    This paper proposes a new leak detection and location method based on vibration sensors and generalised cross-correlation techniques. Considering the estimation errors of the power spectral densities (PSDs) and the cross-spectral density (CSD), the proposed method employs a modified maximum-likelihood (ML) prefilter with a regularisation factor. We derive a theoretical variance of the time difference estimation error through summation in the discrete-frequency domain, and find the optimal regularisation factor that minimises the theoretical variance in practical water pipe channels. The proposed method is compared with conventional correlation-based techniques via numerical simulations using a water pipe channel model, and it is shown through field measurement that the proposed modified ML prefilter outperforms conventional prefilters for the generalised cross-correlation. In addition, we provide a formula to calculate the leak location using the time difference estimate when different types of pipes are connected.

  3. Computerized detection of unruptured aneurysms in MRA images: reduction of false positives using anatomical location features

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Gao, Xin; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However, their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels on maximum intensity projection images. The purpose of this study is to develop a computerized method for the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions were first segmented using gray-level thresholding and a region growing technique. The gradient concentration (GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.

  4. Device for detection and identification of carbon- and nitrogen-containing materials

    SciTech Connect

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  5. Application of PZT sensors for detection of damage severity and location in concrete

    NASA Astrophysics Data System (ADS)

    Sabet Divsholi, Bahador; Yang, Yaowen

    2008-12-01

    Piezoelectric ceramic lead zirconate titanate (PZT) based electromechanical impedance (EMI) technique has been applied for structural health monitoring (SHM) of various engineering systems. However, study on identification of damage severity and location is still in need. In the EMI method, the PZT electromechanical (EM) admittance is used as a damage indicator. Statistical techniques such as root mean square deviation (RMSD) have been employed to associate the damage level with the changes in the EM admittance signature. To achieve high sensitivity to damage, high frequency signatures (>200 kHz) have been used to monitor the region close to the PZT location. It has been reported that the use of RMSD as the damage indicator is difficult to specify the damage location and severity due to the inconsistency in the RMSD results. This paper proposes the use of large frequency (30-400 kHz) range and the RMSD values of sub-frequency intervals to eliminate the inconsistency in the results. An experiment is carried out on a real size concrete structure subjected to artificial damages. The PZT admittance signatures in a frequency range of 30 to 400 kHz for various structural damages have been recorded and the RMSD values of sub-frequency intervals of 10 kHz are calculated. Results show less inconsistency and uncertainties compared to the traditional method using limited high frequency range. It is observed that the damage close to the PZT changes the RMSD at high frequency range significantly; however the damage far away from the PZT changes the RMSD at low frequency range significantly.

  6. Can Handheld Plastic Detectors Do Both Gamma and Neutron Isotopic Identification with Directional Source Location?

    SciTech Connect

    Robert Hayes

    2008-04-18

    This paper demonstrates, through MCNPX simulations, that a compact hexagonal array of detectors can be utilized to do both gamma isotopic identification (ID) along with neutron identification while simultaneously finding the direction of the source relative to the detector array. The detector array itself is composed of seven borated polyvinyl toluene (PVT) hexagonal light pipes approximately 4 inches long and with a 1.25 inch face-to-face thickness assembled in a tight configuration. The gamma ID capability is realized through judicious windowing algorithms as is the neutron spectral unfolding. By having multiple detectors in different relative positions, directional determination of the source can be realized. By further adding multiplicity counters to the neutron counts, fission events can be measured.

  7. Spatial Pattern and Determinants of the First Detection Locations of Invasive Alien Species in Mainland China

    PubMed Central

    Huang, Dingcheng; Zhang, Runzhi; Kim, Ke Chung; Suarez, Andrew V.

    2012-01-01

    Background The unintentional transport of species as a result of human activities has reached unprecedented rates. Once established, introduced species can be nearly impossible to eradicate. It is therefore essential to identify and monitor locations where invaders are most likely to establish new populations. Despite the obvious value of early detection, how does an agency identify areas that are most vulnerable to new invaders? Here we propose a novel approach by using the “first detection location” (FDL) of introduced species in China to quantify characteristics of areas where introduced species are first reported. Methodology/Principal Findings We obtained FDLs for 166 species (primarily agricultural and forestry pests) that were unintentionally introduced into China prior to 2008 from literature searches. The spatial pattern and determinants of FDLs were examined at the provincial level. The spatial pattern of FDLs varied among provinces with more commerce and trade and economically developed provinces in coastal regions having more FDLs than interior provinces. For example, 74.6% of FDLs were distributed in coastal regions despite that they only cover 15.6% of the total area in China. Variables that may be indicators of “introduction pressure” (e.g. the amount of received commerce) had an overwhelming effect on the number of FDLs in each province (R2 = 0.760). Conclusions/Significance Our results suggest that “introduction pressure” may be one of the most important factors that determine the locations where newly-introduced species are first detected, and that open and developed provinces in China should be prioritized when developing monitoring programs that focus on locating and managing new introductions. Our study illustrates that FDL approaches can contribute to the study and management of biological invasions not only for China but also for elsewhere. PMID:22363715

  8. [Influence of tumor location in patients with breast cancer on the sentinel node detection].

    PubMed

    González-Soto, M J; Bajén, M T; Pla, M J; Carrera, D; Gil, D; Benito, E; Ricart, Y; Roca, M; Martín-Comín, J

    2006-01-01

    To evaluate the influence of tumour quadrant localization on the sentinel node (SN) detection and the visualisation of internal mammary chain (IM) drainage by radioisotopic techniques. 316 patients with breast cancer were studied. Mean age 57 years (range 29-88). All patients received 37-74 MBq of 99mTc-albumin nanocolloid in 2 ml by peritumoral injection. The breast cancer was located in the upper outer quadrant in 189 patients, in the upper inner in 57, in the lower outer in 57, in the lower inner in 55 and in the subareolar area in 18 patients. At two hours p.i., anterior and lateral chest lymphographies were obtained. The SN location was marked on the patient skin with permanent ink. SN was identified intraoperatively by the gamma probe. Histopatological analysis included imprints, delayed hematoxilin-eosin, inmunohistochemistry CAM 19-2 and PCR. The scintigraphy and surgical detection was in the upper outer quadrant of 90 % and 93 % respectively; in the lower outer quadrant of 91 % and 95 %, in the upper inner quadrant of 93 % and 95 %, in the lower inner quadrant 87 % and 95 % and in the subareolar area in 94 % and 83 %. The IM chain drainage was of 6 % in the UO, in the LO of 5 %, in the UI of 12 %, in the LI of 20 % and none in subareolar. Our data suggest that sentinel node location (quadrant) is not a influential factor in the scintigraphy and surgical detection. Tumours localised in internal quadrant show a higher rate of IM chain drainage.

  9. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  10. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  11. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  12. Applying face identification to detecting hijacking of airplane

    NASA Astrophysics Data System (ADS)

    Luo, Xuanwen; Cheng, Qiang

    2004-09-01

    That terrorists hijacked the airplanes and crashed the World Trade Center is disaster to civilization. To avoid the happening of hijack is critical to homeland security. To report the hijacking in time, limit the terrorist to operate the plane if happened and land the plane to the nearest airport could be an efficient way to avoid the misery. Image processing technique in human face recognition or identification could be used for this task. Before the plane take off, the face images of pilots are input into a face identification system installed in the airplane. The camera in front of pilot seat keeps taking the pilot face image during the flight and comparing it with pre-input pilot face images. If a different face is detected, a warning signal is sent to ground automatically. At the same time, the automatic cruise system is started or the plane is controlled by the ground. The terrorists will have no control over the plane. The plane will be landed to a nearest or appropriate airport under the control of the ground or cruise system. This technique could also be used in automobile industry as an image key to avoid car stealth.

  13. Granada medium for detection and identification of group B streptococci.

    PubMed Central

    De La Rosa, M; Villareal, R; Vega, D; Miranda, C; Martinezbrocal, A

    1983-01-01

    A new starch serum medium, Granada medium, for isolation and identification of group B streptococci (GBS) anaerobically as red colonies is described. The medium contains 3.8% Proteose Peptone no. 3 (Difco), 15% soluble starch 1252 (Merck), 10% coagulated horse serum, 15 micrograms of trimethoprim per ml, and 0.06 M phosphate buffer (pH 7.8; medium pH 7.4). This medium inhibited fecal flora and at the same time supported growth of GBS. A new pigment-enhancing effect of folate inhibitors on GBS is reported and used in the formulation of the medium. The good selective and differential properties of the Granada medium favor quicker and easier detection of GBS in heavily contaminated specimens. Since the medium is convenient to use and requires only 18 h of incubation to detect and identify GBS, it should be useful in any clinical microbiology laboratory and would assist in the early detection of GBS in clinical specimens. PMID:6355158

  14. Wavelet features for failure detection and identification in vibration systems

    NASA Astrophysics Data System (ADS)

    Deckert, James C.; Rhenals, Alonso E.; Tenney, Robert R.; Willsky, Alan S.

    1992-12-01

    The result of this effort is an extremely flexible and powerful methodology for failure detection and identification (FDI) in vibrating systems. The essential elements of this methodology are: (1) an off-line set of techniques to identify high-energy, statistically significant features in the continuous wavelet transform (CWT); (2) a CWT-based preprocessor to extract the most useful features from the sensor signal; and (3) simple artificial neural networks (incorporating a mechanism to defer any decision if the current feature sample is determined to be ambiguous) for the subsequent classification task. For the helicopter intermediate gearbox test-stand data and centrifugal and fire pump shipboard (mild operating condition) data used, the algorithms designed using this method achieved perfect detection performance (1.000 probability of detection, and 0.000 false alarm probability), with a probability less than 0.04 that a decision would be deferred-based on only 500 milliseconds of data from each sample case. While this effort shows the exceptional promise of our wavelet-based method for FDI in vibrating systems, more demanding applications, which also have other sources of high-energy vibration, raise additional technical issues that could provide the focus for a Phase 2 effort.

  15. Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits

    PubMed Central

    Carbone, N. A.; Baez, G. R.; García, H. A.; Waks Serra, M. V.; Di Rocco, H. O.; Iriarte, D. I.; Pomarico, J. A.; Grosenick, D.; Macdonald, R.

    2014-01-01

    In the present contribution we investigate the images of CW diffusely reflected light for a point-like source, registered by a CCD camera imaging a turbid medium containing an absorbing lesion. We show that detection of μa variations (absorption anomalies) is achieved if images are normalized to background intensity. A theoretical analysis based on the diffusion approximation is presented to investigate the sensitivity and the limitations of our proposal and a novel procedure to find the location of the inclusions in 3D is given and tested. An analysis of the noise and its influence on the detection capabilities of our proposal is provided. Experimental results on phantoms are also given, supporting the proposed approach. PMID:24876999

  16. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  17. Automatic Infrasound Detection and Location of Sources in the western US

    NASA Astrophysics Data System (ADS)

    Park, J.; Arrowsmith, S.; Hayward, C.; Stump, B. W.

    2012-12-01

    Infrasound event catalogs can be used to study the characteristics of events as well as the time varying nature of the atmosphere. Additionally, these catalogs can be used to identify sources that repeat and thus provide ground truth for atmospheric studies. We focus on the production of a western US regional infrasound catalog for the time period of April 2011 to March 2012. Data from the University of Utah Seismograph Stations (UUSS) infrasonic arrays are supplemented with data from three additional infrasound arrays in Nevada. An automated detection procedure was applied to the observations based on an adaptive F-detector (Arrowsmith et al., 2009). The detection results document significant seasonal variations in time and space; detections during the winter tend to produce higher correlations relative to those from the summer, and a seasonal variation in azimuth is observed. These results indicate that the bulletin is seasonally variable. Association of detections and event localization was done utilizing the Bayesian infrasonic source location procedure (BISL, Modrak et al., 2010), accounting for unknown atmospheric propagation effects by adding a random component to the infrasonic group velocity. The resulting infrasonic catalog consists of 963 events for the one-year time period with indication of repeated events from a number of locations. The distribution of infrasound events in this study is well matched with the infrasound hot spots identified by Walker et al. (2011) which were based on a back projection procedure applied to seismic signals from USArray Transportable Array. There are common concentrations of events in both catalogs that include New Bomb in Nevada, Utah Test and Training Range (UTTR), and Dugway Proving Ground in Utah, as well as broader areas in central Nevada and southwest Idaho. The two bulletins document that the vast majority of events occur during work hours, suggesting they are related to human activities.

  18. Influence of Detection Method and Study Area Scale on Syphilis Cluster Identification in North Carolina.

    PubMed

    Escamilla, Veronica; Hampton, Kristen H; Gesink, Dionne C; Serre, Marc L; Emch, Michael; Leone, Peter A; Samoff, Erika; Miller, William C

    2016-04-01

    Identifying geographical clusters of sexually transmitted infections can aid in targeting prevention and control efforts. However, detectable clusters can vary between detection methods because of different underlying assumptions. Furthermore, because disease burden is not geographically homogenous, the reference population is sensitive to the study area scale, affecting cluster outcomes. We investigated the influence of cluster detection method and geographical scale on syphilis cluster detection in Mecklenburg County, North Carolina. We analyzed primary and secondary syphilis cases reported in North Carolina (2003-2010). Primary and secondary syphilis incidence rates were estimated using census tract-level population estimates. We used 2 cluster detection methods: local Moran's I using an areal adjacency matrix and Kulldorff's spatial scan statistic using a variable size moving circular window. We evaluated 3 study area scales: North Carolina, Piedmont region, and Mecklenburg County. We focused our investigation on Mecklenburg, an urban county with historically high syphilis rates. Syphilis clusters detected using local Moran's I and Kulldorff's scan statistic overlapped but varied in size and composition. Because we reduced the scale to a high-incidence urban area, the reference syphilis rate increased, leading to the identification of smaller clusters with higher incidence. Cluster demographic characteristics differed when the study area was reduced to a high-incidence urban county. Our results underscore the importance of selecting the correct scale for analysis to more precisely identify areas with high disease burden. A more complete understanding of high-burden cluster location can inform resource allocation for geographically targeted sexually transmitted infection interventions.

  19. Location, identification, and size distribution of depleted uranium grains in reservoir sediments.

    PubMed

    Lo, D; Fleischer, R L; Albert, E A; Arnason, J G

    2006-01-01

    The location, nature, and size distribution of uranium-rich grains in sediment layers can be identified by sunbursts of etched particle tracks if each sample is pressed against a track detector, next irradiated with thermal neutrons, and the detectors then chemically etched to reveal fission tracks. The total track abundance from the sample is a measure of the 235U content; hence, if the bulk uranium (mostly 238U) has been measured, the two sets of results give the depletion or enrichment of the uranium. Sunbursts of tracks mark the locations of low-abundance, high-uranium grains allowing them to be singled out for further study.

  20. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    PubMed Central

    Morón, Carlos; Portilla, Marina P.; Somolinos, José A.; Morales, Rafael

    2015-01-01

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach. PMID:26029951

  1. Probablilistic evaluation of earthquake detection and location capability for Illinois, Indiana, Kentucky, Ohio, and West Virginia

    SciTech Connect

    Mauk, F.J.; Christensen, D.H.

    1980-09-01

    Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0 through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.

  2. Low-cost impact detection and location for automated inspections of 3D metallic based structures.

    PubMed

    Morón, Carlos; Portilla, Marina P; Somolinos, José A; Morales, Rafael

    2015-05-28

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach.

  3. Detecting location-specific neuronal firing rate increases in the hippocampus of freely-moving monkeys.

    PubMed

    Ludvig, Nandor; Tang, Hai M; Gohil, Baiju C; Botero, Juan M

    2004-07-16

    The spatial properties of the firing of hippocampal neurons have mainly been studied in (a) freely moving rodents, (b) non-human primates seated in a moveable primate chair with head fixed, and (c) epileptic patients subjected to virtual navigation. Although these studies have all revealed the ability of hippocampal neurons to generate spatially selective discharges, the detected firing patterns have been found to be considerably different, even conflicting, in many respects. The present cellular electrophysiological study employed squirrel monkeys (Saimiri sciureus), which moved freely on the walls and floor of a large test chamber. This permitted the examination of the spatial firing of hippocampal neurons in nearly ideal conditions, similar to those used in rodents, yet in a species that belongs to the primate Suborder Anthropoidea. The major findings were that: (1) a group of slow-firing complex-spike cells increased their basal, awake firing rate more than 20-fold, often above 30 spikes/s, when the monkey was in a particular location in the chamber, (2) these location-specific discharges occurred consistently, forming 4-25 s action potential volleys, and (3) fast-firing cells displayed no such electrical activity. Thus, during free movement in three dimensions, primate hippocampal complex-spike cells do generate high-frequency, location-specific action potential volleys. Since these cells are components of the medial temporal lobe memory system, their uncovered firing pattern may well be involved in the formation of declarative memories on places.

  4. Ultrasound detection and identification of cosmetic fillers in the skin.

    PubMed

    Wortsman, X; Wortsman, J; Orlandi, C; Cardenas, G; Sazunic, I; Jemec, G B E

    2012-03-01

    While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated with the presence of those agents. We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Fillers are recognizable on ultrasound and generate different patterns of echogenicity and posterior acoustic artefacts. Cosmetic fillers were identified in 118 dermatological patients; most commonly hyaluronic acid among degradable agents and silicone oil among non-degradable. Fillers deposits were loosely scattered throughout the subcutaneous tissue, with occasional infiltration of local muscles and loco-regional lymph nodes. Accompanying dermatopathies were represented by highly localized inflammatory processes unresponsive to conventional treatment, morphea-like reactions, necrosis of fatty tissue and epidermal cysts; in the case of non-degradable agents, the associated dermatopathies were transient, resolving upon disappearance of the filler. Cosmetic filler agents may be detected and identified during routine ultrasound of dermatological lesions; the latter appear to be pathologically related to the cosmetic procedure. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  5. Detection, location, and analysis of earthquakes using seismic surface waves (Beno Gutenberg Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Ekström, Göran

    2015-04-01

    For shallow sources, Love and Rayleigh waves are the largest seismic phases recorded at teleseismic distances. The utility of these waves for earthquake characterization was traditionally limited to magnitude estimation, since geographically variable dispersion makes it difficult to determine useful travel-time information from the waveforms. Path delays due to heterogeneity of several tens of seconds are typical for waves at 50 sec period, and these delays must be accounted for with precision and accuracy in order to extract propagation-phase and source-phase information. Advances in tomographic mapping of global surface-wave phase velocities, and continuous growth and improvements of seismographic networks around the world, now make possible new applications of surface waves for earthquake monitoring and analysis. Through continuous back propagation of the long-period seismic wave field recorded by globally distributed stations, nearly all shallow earthquakes greater than M=5 can be detected and located with a precision of 25 km. Some of the detected events do not appear in standard earthquake catalogs and correspond to non-tectonic earthquakes, including landslides, glacier calving, and volcanic events. With the improved ability to predict complex propagation effects of surface waves across a heterogeneous Earth, moment-tensor and force representations of seismic sources can be routinely determined for all earthquakes greater than M=5 by waveform fitting of surface waves. A current area of progress in the use of surface waves for earthquake studies is the determination of precise relative locations of remote seismicity by systematic cross correlation and analysis of surface waves generated by neighboring sources. Preliminary results indicate that a location precision of 5 km may be achievable in many areas of the world.

  6. Detection and Location of Icy Particles Surrounding 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Farnham, T. L.; Schultz, P. H.; Kelley, M. S.; Lindler, D.; Thomas, P. C.; A'Hearn, M. F.

    2011-10-01

    The Deep Impact Flyby Spacecraft encountered comet 103P/Hartley 2 on November 4th, 2010 at a minimum distance of 694 km [1]. Both the High Resolution (HRI) and Medium Resolution Instruments (MRI) captured images of a field of debris enveloping the comet. Fine grain dust and ice (primarily detected in the HRI) and hundreds of discrete larger particles are apparent during encounter. The larger golf ball to basketball-sized particles are detected primarily near the nucleus (Fig. 1). This swarming of individual grains in the near-nucleus environment of Hartley 2 has not been observed in any other comet to date. The motion of the spacecraft instruments relative to the comet nucleus (including not only spacecraft velocity but pointing adjustments) provides sufficient parallax between successive images around closest approach to stereoscopically reconstruct the distance and displacement of these particles. In this study, we present an analysis of the identification, position, and motion of discrete ejected particles surrounding the comet.

  7. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    DOEpatents

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  8. Comparison of cancers detected at only a sextant or alternative location.

    PubMed

    Ochiai, Atsushi; Troncoso, Patricia; Babaian, Richard J

    2008-04-01

    To evaluate the effect of the tumour-positive biopsy site at extended biopsy on tumour volume and potential biological significance of prostate cancer. We retrospectively evaluated radical prostatectomy specimens from 247 consecutive men diagnosed with prostate cancer by extended biopsy. Men who had both a positive sextant and alternative site were excluded, resulting in 132 evaluable men. We assessed age, pretreatment prostate-specific antigen (PSA) level, prostate volume, pathological stage, Gleason score, total tumour volume, and location (sextant or alternative site) of the positive biopsy. Patients were grouped by location of the positive biopsy, i.e. sextant site only or alternative site only, including anterior horn, midline region and transition zone. A biopsy from a sextant-only or an alternative site only was positive in 42% (56/132) and 58% (76/132) of men, respectively. There was no significant difference in PSA level, number of positive cores, pathological stage, Gleason score, total tumour volume or the incidence of low-volume/low-grade cancer (volume <0.5 mL and a Gleason score of detected at an alternative site only were comparable to those of cancers detected at a sextant site only. Alternative site biopsy did not increase the incidence of low-volume/low-grade cancers detected.

  9. Convolutional Neural Networks for Earthquake Detection and Location of Seismicity in Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Perol, T.; Gharbi, M.; Denolle, M.

    2016-12-01

    Induced seismicity is characterized by localized activity of small-scale and moderate-magnitude earthquakes. Poor instrumental coverage limits the accuracy of traditional techniques for earthquake detection and localization. Currently, the most effective approach to detect new (and smaller) events is the so-called template matching method. It matches events' waveforms against previously-seen waveform templates. This restricts the search to events that are collocated with the cataloged events. We propose an alternative method, which we called ConvNetQuake, that leverages recent advances in convolutional neural networks for pattern recognition and classification. Once trained on a dataset of 3-component seismograms, ConvNetQuake learns a bank of finite impulse response filters that can discriminate seismic events against noise. First, we compare our algorithm to template matching on synthetic data. We generate synthetic waveforms by adding randomly scaled copies of a single 3-component template at random temporal offsets over a Gaussian noise floor. While the accuracy of ConvNetQuake is slightly lower than that of template matching, it has the advantage of a more compact non-linear representation that can detect new events that were not in the training set. Second, we cluster the Guthrie earthquakes using a Multivariate Gaussian Mixture Model (MGMM) based on the Oklahoma Geological Survey (OGS) catalog and sample a few events from each cluster. We proceed as before and construct synthetic seismograms with the additional information of the events' location. We now train our algorithm to discriminate events from the noise and, jointly, to estimate the probability than the event belongs to a particular cluster. Using the MGMM, we produce maps of the continuous probability distribution of event location. Finally, we apply ConvNetQuake to the Guthrie sequence by training it on data from February 15th, 2014 to August, 31th 2014 using the known cataloged seismicity provided

  10. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  11. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  12. Oligonucleotide probe for detection and identification of Campylobacter pylori.

    PubMed Central

    Morotomi, M; Hoshina, S; Green, P; Neu, H C; LoGerfo, P; Watanabe, I; Mutai, M; Weinstein, I B

    1989-01-01

    We have developed a novel and practical DNA-RNA hybridization assay for the detection and identification of Campylobacter pylori in the gastric mucosa. This technique utilizes a [32P]ddATP-labeled synthetic oligonucleotide probe complementary to a nucleotide sequence present in C. pylori 16S rRNA. This probe is very sensitive and reacted with all 23 strains of C. pylori tested. It is also highly specific, since there was no cross-reactivity with the heterologous organisms Campylobacter coli, C. fetus subsp. fetus, C. jejuni, and C. laridis or with Escherichia coli. Hybridization of the oligonucleotide probe with C. pylori RNA was completely inhibited by treatment of the membrane filters with RNase but not DNase. Although a gastric mucosa tissue homogenate slightly inhibited the hybridization, as few as 10(4) C. pylori cells could be detected even in the presence of 5 mg of gastric mucosa. Gastric biopsy specimens obtained from patients referred for upper gastrointestinal tract endoscopy were tested for C. pylori infection by direct oligonucleotide hybridization, and the results were compared with those of bacteriological cultures, the urease test, and histological observations. A comparison of the urease test and the oligonucleotide hybridization results showed an excellent correlation between the two methods. The clinical usefulness of this oligonucleotide-RNA hybridization method is discussed. Images PMID:2480360

  13. Rapid, Vehicle-Based Identification of Location and Magnitude of Urban Natural Gas Pipeline Leaks.

    PubMed

    von Fischer, Joseph C; Cooley, Daniel; Chamberlain, Sam; Gaylord, Adam; Griebenow, Claire J; Hamburg, Steven P; Salo, Jessica; Schumacher, Russ; Theobald, David; Ham, Jay

    2017-04-04

    Information about the location and magnitudes of natural gas (NG) leaks from urban distribution pipelines is important for minimizing greenhouse gas emissions and optimizing investment in pipeline management. To enable rapid collection of such data, we developed a relatively simple method using high-precision methane analyzers in Google Street View cars. Our data indicate that this automated leak survey system can document patterns in leak location and magnitude within and among cities, even without wind data. We found that urban areas with prevalent corrosion-prone distribution lines (Boston, MA, Staten Island, NY, and Syracuse, NY), leaked approximately 25-fold more methane than cities with more modern pipeline materials (Burlington, VT, and Indianapolis, IN). Although this mobile monitoring method produces conservative estimates of leak rates and leak counts, it can still help prioritize both leak repairs and replacement of leak-prone sections of distribution lines, thus minimizing methane emissions over short and long terms.

  14. Identification of clusters of foot pain location in a community sample.

    PubMed

    Gill, Tiffany K; Menz, Hylton B; Landorf, Karl B; Arnold, John B; Taylor, Anne W; Hill, Catherine L

    2017-02-23

    To identify foot pain clusters according to pain location in a community based sample of the general population. This study analysed data from the North West Adelaide Health Study. Data were obtained between 2004-2006, using Computer Assisted Telephone Interviewing, clinical assessment and self-completed questionnaire. The location of foot pain was assessed using a diagram during the clinical assessment. Hierarchical cluster analysis was undertaken to identify foot pain location clusters, which were then compared in relation to demographics, comorbidities and podiatry utilisation. There were 558 participants with foot pain (mean age 54.4 years, 57.5% female). Five clusters were identified: one with predominantly arch and ball pain (26.8%); one with hindfoot pain (20.9%); another with heel pain (13.3%), and two with predominantly forefoot, toe and nail pain (28.3% and 10.7%). Each cluster was distinct in age, sex and comorbidity profiles. Of the two clusters with predominantly forefoot, toe and nail pain, one had a higher proportion of males, and those who were classified as obese, had diabetes and who used podiatry services (30%), while the other was comprised of a higher proportion of females who were overweight and had a lower use of podiatry services (17.5%). Five clusters of foot pain according to pain location were identified, all with distinct age, sex and comorbidity profiles. These findings may assist in identifying individuals at risk for developing foot pain and the development of targeted preventative strategies and treatments. This article is protected by copyright. All rights reserved. © 2017, American College of Rheumatology.

  15. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  16. Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.; Davis, R. E.; Wright, R. E., Jr.; Sivertson, W. E., Jr.; Bullock, G. F.

    1986-01-01

    A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight.

  17. Location Performance and Detection Threshold of the Spanish National Seismic Network

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Badal, José; D'Anna, Giuseppe; Papanastassiou, Dimitris; Baskoutas, Ioannis; Özel, Nurcan M.

    2013-11-01

    Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment

  18. Infrared detection, recognition and identification of handheld objects

    NASA Astrophysics Data System (ADS)

    Adomeit, Uwe

    2012-10-01

    A main criterion for comparison and selection of thermal imagers for military applications is their nominal range performance. This nominal range performance is calculated for a defined task and standardized target and environmental conditions. The only standardization available to date is STANAG 4347. The target defined there is based on a main battle tank in front view. Because of modified military requirements, this target is no longer up-to-date. Today, different topics of interest are of interest, especially differentiation between friend and foe and identification of humans. There is no direct way to differentiate between friend and foe in asymmetric scenarios, but one clue can be that someone is carrying a weapon. This clue can be transformed in the observer tasks detection: a person is carrying or is not carrying an object, recognition: the object is a long / medium / short range weapon or civil equipment and identification: the object can be named (e. g. AK-47, M-4, G36, RPG7, Axe, Shovel etc.). These tasks can be assessed experimentally and from the results of such an assessment, a standard target for handheld objects may be derived. For a first assessment, a human carrying 13 different handheld objects in front of his chest was recorded at four different ranges with an IR-dual-band camera. From the recorded data, a perception experiment was prepared. It was conducted with 17 observers in a 13-alternative forced choice, unlimited observation time arrangement. The results of the test together with Minimum Temperature Difference Perceived measurements of the camera and temperature difference and critical dimension derived from the recorded imagery allowed defining a first standard target according to the above tasks. This standard target consist of 2.5 / 3.5 / 5 DRI line pairs on target, 0.24 m critical size and 1 K temperature difference. The values are preliminary and have to be refined in the future. Necessary are different aspect angles, different

  19. DETECTION AND IDENTIFICATION OF SPEECH SOUNDS USING CORTICAL ACTIVITY PATTERNS

    PubMed Central

    Centanni, T.M.; Sloan, A.M.; Reed, A.C.; Engineer, C.T.; Rennaker, R.; Kilgard, M.P.

    2014-01-01

    We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/sec), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech processing disorders. PMID:24286757

  20. Detection and identification of speech sounds using cortical activity patterns.

    PubMed

    Centanni, T M; Sloan, A M; Reed, A C; Engineer, C T; Rennaker, R L; Kilgard, M P

    2014-01-31

    We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance and without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/s), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech-processing disorders. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Study of Electrical Resistivity on the Location and Identification of Contamination.

    DTIC Science & Technology

    1985-01-01

    Pertof te fS.bueuAw the wof Master of Science Approvd by: %Z46L1 iKAiz/4f, -"-°. ., .- .% STUDY OF ELECTRICAL RESISTIVITY ON THE LOCATION AND...Education and Research UNIVERSITY OF CINCINNATI in partial fulfillment of the requirement for the degree of Master of Science 1985 by Brian D. McCarty...IF . -9- - - ~ V LIST OF FIGURES Figures 11-3 -Relationship of Resistance to Resistivity Diagram 11-5 - Earth Resistivity Diagram 11-7 -Wenner

  2. Visual Detection and Identification Are Not the Same: Evidence from Psychophysics and fMRI

    ERIC Educational Resources Information Center

    Straube, Sirko; Fahle, Manfred

    2011-01-01

    Sometimes object detection as opposed to identification is sufficient to initiate the appropriate action. To explore the neural origin of behavioural differences between the two tasks, we combine psychophysical measurements and fMRI, specifically contrasting shape detection versus identification of a figure. This figure consisted of Gabor elements…

  3. Visual Detection and Identification Are Not the Same: Evidence from Psychophysics and fMRI

    ERIC Educational Resources Information Center

    Straube, Sirko; Fahle, Manfred

    2011-01-01

    Sometimes object detection as opposed to identification is sufficient to initiate the appropriate action. To explore the neural origin of behavioural differences between the two tasks, we combine psychophysical measurements and fMRI, specifically contrasting shape detection versus identification of a figure. This figure consisted of Gabor elements…

  4. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    PubMed Central

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-01-01

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets. PMID:27801795

  5. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    PubMed

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  6. Improved Detection and Location of Ocean Microseism Signals using Array Techniques

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Gal, M.; Koper, K. D.; Tkalcic, H.

    2015-12-01

    We present and evaluate a range of approaches that may be used to investigate ocean microseisms using seismic array data. At amplitudes below the dominant incoming signal, the ambient seismic energy (background noise) associated with microseisms arrives from multiple directions at any one time. Thus we address the challenge of detecting weaker signals from unpredictable directions in the presence of other strong signals. Our aim is to extract the most accurate information possible from such weaker signals in order to expand the capability of ocean storm studies, using seismology, including the ability to extract storm patterns from archive seismic array records. Detection of weaker microseism signals may be improved using algorithms widely used in astronomy. One example is the CLEAN algorithm which has wide usage in radio astronomy. This algorithm operates by finding the position and strength of point sources and iteratively deconvolving their contribution to the image. It may be combined to optimum effect with the previously published (Incoherently Averaged Signal) IAS Capon implementation for an accurate detection of weaker sources. Having detected weaker sources, they may be backprojected using a suitable Earth model, taking into account a correction for the mislocation due to slowness-azimuth station corrections. The microseism generation locations inferred in this manner are strongly frequency dependent, even within relatively restricted frequency ranges (0.325-0.725 Hz) for some arrays. Our advances in seismic array processing, with a focus on methods appropriate to weaker ambient noise signals, have led to insights, for example, regarding the generation of seismic noise. We find that secondary microseisms in the lower frequency band are generated mainly by ocean swell whereas higher frequency bands are generated by local wind conditions. These arrivals are investigated over a two-decade time frame for the Southern Ocean and west Pacific Ocean.

  7. Accuracy of three different electronic apex locators in detecting simulated horizontal and vertical root fractures.

    PubMed

    Ebrahim, Aqeel K; Wadachi, Reiko; Suda, Hideaki

    2006-08-01

    The aim of this in vitro study was to evaluate the accuracy of three electronic apex locators (EALs): Root ZX, Foramatron D10 and Apex NRG, in the detection of fractures in teeth having simulated horizontal and vertical root fractures. A total of 90 extracted intact, straight, single-rooted teeth were divided into six groups of 15 teeth each. In Groups A, B and C, an incomplete horizontal fracture was simulated by preparing a horizontal incision in the coronal, middle or apical portion of the root until the circumferential half of the canal was exposed in the horizontal plane respectively. In Groups D, E and F, an incomplete vertical root fracture was simulated by preparing a vertical straight incision to expose the canal in the coronal, middle or apical portion of the root all the way in the longitudinal plane respectively. The simulated fractures were 0.25 mm in thickness in all groups. The teeth were embedded in 1% agar and the canals were irrigated with saline solution during electronic measurement. Detection of the simulated root fractures was established with a size 10 K-file when the meter value reached 'APEX' on each EAL. In Groups A, B and C, Kruskal-Wallis tests revealed that there were no statistically significant differences between the three EALs. However, statistically significant differences were found among the EALs in Groups D, E and F (P < 0.0001, one-way anova and Tukey's post-hoc test). In conclusion, the three EALs tested were accurate and acceptable clinical tools in the detection of horizontal root fractures. However, the three EALs were unreliable in detecting the position of vertical root fractures.

  8. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    SciTech Connect

    Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.

    2015-10-19

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.

  9. Unsupervised video-based lane detection using location-enhanced topic models

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Wang, Cheng; Wang, Boliang; El-Sheimy, Naser

    2010-10-01

    An unsupervised learning algorithm based on topic models is presented for lane detection in video sequences observed by uncalibrated moving cameras. Our contributions are twofold. First, we introduce the maximally stable extremal region (MSER) detector for lane-marking feature extraction and derive a novel shape descriptor in an affine invariant manner to describe region shapes and a modified scale-invariant feature transform descriptor to capture feature appearance characteristics. MSER features are more stable compared to edge points or line pairs and hence provide robustness to lane-marking variations in scale, lighting, viewpoint, and shadows. Second, we proposed a novel location-enhanced probabilistic latent semantic analysis (pLSA) topic model for simultaneous lane recognition and localization. The proposed model overcomes the limitation of a pLSA model for effective topic localization. Experimental results on traffic sequences in various scenarios demonstrate the effectiveness and robustness of the proposed method.

  10. Space station integrated wall design and penetration damage control. Task 4: Impact detection/location system

    NASA Technical Reports Server (NTRS)

    Nelson, J. M.; Lempriere, B. M.

    1987-01-01

    A program to develop a methodology is documented for detecting and locating meteoroid and debris impacts and penetrations of a wall configuration currently specified for use on space station. Testing consisted of penetrating and non-penetrating hypervelocity impacts on single and dual plate test configurations, including a prototype 1.22 m x 2.44 m x 3.56 mm (4 ft x 8 ft x 0.140 in) aluminum waffle grid backwall with multilayer insulation and a 0.063-in shield. Acoustic data were gathered with transducers and associated data acquisition systems and stored for later analysis with a multichannel digitizer. Preliminary analysis of test data included sensor evaluation, impact repeatability, first waveform arrival, and Fourier spectral analysis.

  11. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae.

    PubMed

    Webster, Ben; Bruce, Toby; Dufour, Samuel; Birkemeyer, Claudia; Birkett, Michael; Hardie, Jim; Pickett, John

    2008-09-01

    Behavioral and electrophysiological responses of winged Aphis fabae to volatiles of faba bean, Vicia faba (var. Sutton dwarf), plants were studied and semiochemicals used in host location were identified. In olfactometer bioassays, aphids spent significantly more time in the region of the olfactometer where V. faba volatiles from an intact plant were present than in control regions with clean air. This response also occurred when an air entrainment sample of a V. faba plant was used as the odor source. Coupled gas chromatography-electroantennography revealed the presence of 16 electrophysiologically active compounds in the air entrainment sample. Fifteen of these were identified as (Z)-3-hexen-1-ol, 1-hexanol, (E)-2-hexenal, benzaldehyde, 6-methyl-5-hepten-2-one, octanal, (Z)-3-hexen-1-yl acetate, (R)-(-)-linalool, methyl salicylate, decanal, undecanal, (E)-caryophyllene, (E)-beta-farnesene, (S)-(-)-germacrene D, and (E,E,)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. An olfactometer response was observed to a 15-component synthetic blend that comprised all identified compounds at the same concentration and ratio as in the natural sample, with the aphids spending significantly more time in the treated regions of the olfactometer where volatiles were present than in the control regions. These data are discussed in the context of insect host location and crop protection.

  12. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins

    PubMed Central

    1988-01-01

    As part of an effort to understand how proteins are imported into the peroxisome, we have sought to identify the peroxisomal targeting signals in four unrelated peroxisomal proteins: human catalase, rat hydratase:dehydrogenase, pig D-amino acid oxidase, and rat acyl-CoA oxidase. Using gene fusion experiments, we have identified a region of each protein that can direct heterologous proteins to peroxisomes. In each case, the peroxisomal targeting signal is contained at or near the carboxy terminus of the protein. For catalase, the peroxisomal targeting signal is located within the COOH-terminal 27 amino acids of the protein. For hydratase:dehydrogenase, D-amino acid oxidase, and acyl-CoA oxidase, the targeting signals are located within the carboxy- terminal 15, 14, and 15 amino acids, respectively. A tripeptide of the sequence Ser-Lys/His-Leu is present in each of these targeting signals as well as in the peroxisomal targeting signal identified in firefly luciferase (Gould, S.J., G.-A. Keller, and S. Subramani. 1987. J. Cell Biol. 105:2923-2931). When the peroxisomal targeting signal of the hydratase:dehydrogenase is mutated so that the Ser-Lys-Leu tripeptide is converted to Ser-Asn-Leu, it can no longer direct proteins to peroxisomes. We suggest that this tripeptide is an essential element of at least one class of peroxisomal targeting signals. PMID:2901422

  13. Self-contained local broadband seismogeodetic early warning system: Detection and location

    NASA Astrophysics Data System (ADS)

    Goldberg, D. E.; Bock, Y.

    2017-04-01

    Earthquake and local tsunami early warning is critical to mitigating adverse impacts of large-magnitude earthquakes. An optimal system must rely on near-source data to maximize warning time. To this end, we have developed a self-contained seismogeodetic early warning system employing an optimal combination of high-frequency information from strong-motion accelerometers and low-frequency information from collocated Global Navigation Satellite Systems (GNSS) instruments to estimate real-time displacements and velocities. Like GNSS, and unlike broadband seismometers, seismogeodetic stations record the full waveform, including static offset, without clipping in the near-field or saturating for large magnitude earthquakes. However, GNSS alone cannot provide a self-contained system and requires an external seismic trigger. Seismogeodetic stations detect P wave arrivals with the same sensitivity as strong-motion accelerometers and thus provide a stand-alone system. We demonstrate the utility of near-source seismogeodesy for event detection and location with analysis of the 2010 Mw7.2 El Mayor-Cucapah, Baja, California and 2014 Mw6.0 Napa, California strike-slip events, and the 2014 Mw8.2 Iquique, Chile subduction zone earthquake using observatory-grade accelerometers and GPS data. We present lessons from the 2014 Mw4.0 Piedmont, California and 2016 Mw5.2 Borrego Springs, California earthquakes, recorded by our seismogeodetic system with Micro-Electro Mechanical System (MEMS) accelerometers and GPS data and reanalyzed retrospectively. We conclude that our self-contained seismogeodetic system is suitable for early warning for earthquakes of significance (>M5) using either observatory-grade or MEMS accelerometers. Finally, we discuss the effect of network design on hypocenter location and suggest the deployment of additional seismogeodetic stations for the western U.S.

  14. Evaluating the performance of network screening methods for detecting high collision concentration locations on highways.

    PubMed

    Kwon, Oh Hoon; Park, Min Ju; Yeo, Hwasoo; Chung, Koohong

    2013-03-01

    This paper documents findings from evaluating performances of three different methods for segmenting freeway sites for the purpose of identifying high collision concentration locations: Sliding Moving Window (SMW), Peak Searching (PS) and Continuous Risk Profile (CRP). The traffic collision data from sites segmented in each method under two different roadway definitions were used to estimate excess expected average crash frequency with Empirical Bayes adjustment with respect to two different sets of Safety Performance Functions (SPFs). The estimates from each of the methods were then used to prioritize the detected sites for safety investigation and these lists were compared with previously confirmed high collision concentration locations (or hot spots). The input requirements for each of three methods were identical, yet their performance markedly varied. The findings revealed that CRP method has the lowest false positive (i.e., requiring a site for safety investigation while it is not needed) rate. The performances of SMW and PS significantly varied when different sets of SPFs were used while that of CRP was less affected.

  15. Detection of posteriorly located breast tumors using gold nanoparticles: a breast-mimicking phantom study.

    PubMed

    Ren, Liqiang; Wu, Di; Fajardo, Laurie L; Li, Yuhua; Zheng, Bin; Liu, Hong

    2014-01-01

    Accurately depicting breast tumors located posteriorly, close to the chest wall musculature, with conventional mammography is a technical challenge. This study demonstrates the proof of concept of an x-ray fluorescence mapping (XFM) technique to address this issue. A tissue-equivalent gel phantom is designed to mimic structures in the central part of a compressed breast. The posterior aspect of the breast and adjacent pectoralis major muscle are represented by another 10-mm-thickness breast tissue simulation phantom (BR12) that is attached to the back of the gel phantom as a region of interest (ROI). Two gold nanoparticle (GNP) solutions are embedded into the ROI to simulate varying GNP uptake within breast lesions. The ROI is imaged through performing the XFM technique with an x-ray pencil-beam and a single spectrometer. A 2D mapping of the middle plane in the ROI demonstrates feasibility and matches well the known spatial distribution and different GNP concentrations. 3D reconstruction of the ROI is easily rendered by repeating the 2D mapping process. XFM system geometry and its insensitivity to attenuation coefficients of breast tissue components are unique characteristics that may complement conventional mammography and improve the detection of breast cancers located posteriorly, adjacent to or overlying the chest wall musculature.

  16. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  17. Methods for detecting seismic events at known locations using NORESS (Norwegian Experimental Seismic System) data

    SciTech Connect

    Lee, D.O.; Stearns, S.D.; Wayland, J.R. Jr.

    1989-03-01

    The difficulty of detecting, locating and identifying low-magnitude seismic events has been an ongoing problem. In this note, we describe processing methods that help us to find low-magnitude seismic events. A series of algorithms with beamforming has been developed and has proven effective in helping to discover very low yield events. The beamforming technique consists of determining the array element time delays for the specific source region using previously established events. This allows us to concentrate the array to look at the specified source location. Examples of this type of analysis are provided. In the analysis of seismic data one may be in possession of other information, e.g., newspaper reports of an earthquake. Using this information to concentrate the search for an event will often identify an otherwise overlooked signal. The algorithms for this type of search are incorporated into computer software that includes capabilities for plotting, spectral and signal-to-noise estimation, direction finding, and other functions. 2 refs., 25 figs.

  18. Neural network based system for damage identification and location in structural and mechanical systems

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; Prime, M.B.; Cornwell, P.; Kam, M.; Straser, E.G.; Hoerst, B.C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Recent advances in wireless, remotely monitored data acquisition systems coupled with the development of vibration-based damage detection algorithms make the possibility of self- or remotely-monitored structures and mechanical systems appear to be within the capabilities of current technology. However, before such a system can be relied upon to perform this monitoring, the variability of the vibration properties that are the basis for the damage detection algorithm must be understood and quantified. This understanding is necessary so that the artificial intelligence/expert system that is employed to discriminate when changes in modal properties are indicative of damage will not yield false indications of damage. To this end, this project has focused on developing statistical methods for quantifying variability in identified vibration proper ties of structural and mechanical systems.

  19. Fusion of detected multi-channel maternal electrocardiogram (ECG) R-wave peak locations.

    PubMed

    Yu, Qiong; Guan, Qun; Li, Ping; Liu, Tie-Bing; Huang, Xiao-Lin; Zhao, Ying; Liu, Hong-Xing; Wang, Yuan-Qing

    2016-01-08

    Almost all promising non-invasive foetal ECG extraction methods involve accurately determining maternal ECG R-wave peaks. However, it is not easy to robustly detect accurate R-wave peaks of the maternal ECG component in an acquired abdominal ECG since it often has a low signal-to-noise ratio (SNR), sometimes containing a large foetal ECG component or other noises and interferences. This paper discusses, under the condition of acquiring multi-channel abdominal ECG signals, how to improve the robustness of maternal ECG R-wave peak detection. On the basis of summarising the current single channel ECG R-wave peak detection methods, the paper proposed a specific fusion algorithm of detected multi-channel maternal ECG R-wave peak locations. The proposed entire algorithm was then tested using two databases; one database, created by us, was composed of 343 groups of 8-channel data collected from 78 pregnant women, and the other one, called the challenge database, was from the Physionet/Computing in Cardiology Challenge 2013, including 175 groups of 4-channel data. When using these databases, each group of data was classified into two parts, called the training part and the validation test part respectively; the training part was the first 8.192 s of each group of data and the validation test part was the next 8.192 s. To show the results, three evaluation parameters-sensitivity (Se), positive predictive value (PPV) and F1-are used. The validation test results for the database we collected are Se = 99.93 %, PPV = 99.98 %, and F1 = 99.95 %, while the results for the challenge database are Se = 99.91 %, PPV = 99.86 %, and F1 = 99.88 %. The results of the test show that the robustness of our proposed whole fusion algorithm was superior to that of other outstanding algorithms for maternal R-wave detection, and is much better than that of single channel maternal R-wave detection algorithms.

  20. A New Self-Calibrated Procedure for Impact Detection and Location on Flat Surfaces

    PubMed Central

    Somolinos, José A.; López, Amable; Morales, Rafael; Morón, Carlos

    2013-01-01

    Many analyses of acoustic signals processing have been proposed for different applications over the last few years. When considering a bar-based structure, if the material through which the sound waves propagate is considered to be acoustically homogeneous and the sound speed is well known, then it is possible to determine the position and time of impact by a simple observation of the arrival times of the signals of all the transducers that are strategically disposed on the structure. This paper presents a generalized method for impact detection and location on a flat plate, together with a calibration procedure with which to obtain the sound speed from only one set of measurements. This propagation speed is not well known as a result of either imprecise material properties or the overlapping of longitudinal and transversal waves with different propagation velocities. The use of only three piezoelectric sensors allows the position and time of impact on the flat plate to be obtained when the sound speed is well known, while the use of additional sensors permits a larger detection area to be covered, helps to estimate the sound speed and/or avoids the wrong timing of difference measurements. Experimental results are presented using a robot with a specially designed knocking tool that produces impacts on a metallic flat plate. PMID:23722825

  1. A new self-calibrated procedure for impact detection and location on flat surfaces.

    PubMed

    Somolinos, José A; López, Amable; Morales, Rafael; Morón, Carlos

    2013-05-30

    Many analyses of acoustic signals processing have been proposed for different applications over the last few years. When considering a bar-based structure, if the material through which the sound waves propagate is considered to be acoustically homogeneous and the sound speed is well known, then it is possible to determine the position and time of impact by a simple observation of the arrival times of the signals of all the transducers that are strategically disposed on the structure. This paper presents a generalized method for impact detection and location on a flat plate, together with a calibration procedure with which to obtain the sound speed from only one set of measurements. This propagation speed is not well known as a result of either imprecise material properties or the overlapping of longitudinal and transversal waves with different propagation velocities. The use of only three piezoelectric sensors allows the position and time of impact on the flat plate to be obtained when the sound speed is well known, while the use of additional sensors permits a larger detection area to be covered, helps to estimate the sound speed and/or avoids the wrong timing of difference measurements. Experimental results are presented using a robot with a specially designed knocking tool that produces impacts on a metallic flat plate.

  2. Simple pathological examination technique for detection of cancer located at the surgical margin of the stomach.

    PubMed

    Okuda, Kotaro; Ishihara, Sho; Fujita, Yasuko; Yamamoto, Noriko; Kishimoto, Mitsuo; Konishi, Eiichi; Kato, Yo; Yanagisawa, Akio

    2014-04-01

    The technique for examining surgical resection margins described in the Japanese Classification of Gastric Carcinoma is based on the examination of continuous infiltration by the primary tumor, and discontinuous lesions such as multiple cancers are not examined. However, examining lesions-particularly cancers-at the resection margins is important for the prevention of cancers in the remaining stomach that result from cancer remnants (remnant gastric cancer). The clinical usefulness of a simple pathological examination technique for detecting cancer located at the surgical margin of the stomach was studied. A specimen 5-8 mm wide was resected from the surgical cut margin along the entire circumference of the stomach. When the pathological margin was positive for cancer, the surgical margin was also examined, and cases that were positive for cancer were regarded as marginally positive. Of the 1,498 patients with early gastric cancer who were examined using this method, 17 (1.1 %) were marginally positive for multiple cancers, and 8 of these 17 patients (57 %) had microcancers <5 mm in diameter. This method is simple and useful for detecting cancer involving the surgical margin, which occurs at a rate of 1.1 %, making it possible to prevent remnant gastric cancer by reoperation.

  3. Mass spectrometric detection, identification, and fragmentation of arseno-phytochelatins.

    PubMed

    Schmied-Tobies, Maria I H; Arroyo-Abad, Uriel; Mattusch, Jürgen; Reemtsma, Thorsten

    2014-11-01

    Phytochelatins (PC) are cystein-rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno-PC (As-PC) with PC of different degree of oligomerization (PC2-PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. As-PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As-PC does not follow the established pattern of peptides but is governed by the formation of series of As-containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As-PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As-PC and may be suited for a screening for As-PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As-PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Detection And Identification Of Inflammatory Bowel Disease Electronic Nose

    NASA Astrophysics Data System (ADS)

    Covington, J. A.; Ouaret, N.; Gardner, J. W.; Nwokolo, C.; Bardhan, K. D.; Arasaradnam, R. P.

    2011-11-01

    Inflammatory bowel disease (IBD) is an inflammation of the lining of the human bowel and a major health issue in Europe. IBD carries with it significant morbidity from toxic treatment, surgery and a risk of developing bowel cancer. Thus there is a need for early identification of the disease using non-invasive tests. Present diagnostic techniques are based around invasive tests (i.e. endoscopy) and laboratory culture; the latter is limited as only 50% of the gut bacteria can be identified. Here we explore the use of an e-nose as a tool to detect and identify two IBDs (i.e. Crohn's disease (CD) & Ulcerative Colitis (UC)) based on headspace analysis from urine samples. We believe that the gut bacterial flora is altered by disease (due to fermentation) that in-turn modulates the gas composition within urine samples. 24 samples (9 CD, 6 UC, 9 controls) were analysed with an in-house e-nose and an Owlstone IMS instrument. Data analysis was performed using linear discriminant analysis (LDA and principal components analysis (PCA). Using the e-nose, LDA separates both disease groups and control, whilst PCA shows a small overlap of classes. The IMS data are more complex but shows some disease/control separation. We are presently collecting further samples for a larger study using more advanced data processing methods.

  5. Location identification for indoor instantaneous point contaminant source by probability-based inverse Computational Fluid Dynamics modeling.

    PubMed

    Liu, X; Zhai, Z

    2008-02-01

    Indoor pollutions jeopardize human health and welfare and may even cause serious morbidity and mortality under extreme conditions. To effectively control and improve indoor environment quality requires immediate interpretation of pollutant sensor readings and accurate identification of indoor pollution history and source characteristics (e.g. source location and release time). This procedure is complicated by non-uniform and dynamic contaminant indoor dispersion behaviors as well as diverse sensor network distributions. This paper introduces a probability concept based inverse modeling method that is able to identify the source location for an instantaneous point source placed in an enclosed environment with known source release time. The study presents the mathematical models that address three different sensing scenarios: sensors without concentration readings, sensors with spatial concentration readings, and sensors with temporal concentration readings. The paper demonstrates the inverse modeling method and algorithm with two case studies: air pollution in an office space and in an aircraft cabin. The predictions were successfully verified against the forward simulation settings, indicating good capability of the method in finding indoor pollutant sources. The research lays a solid ground for further study of the method for more complicated indoor contamination problems. The method developed can help track indoor contaminant source location with limited sensor outputs. This will ensure an effective and prompt execution of building control strategies and thus achieve a healthy and safe indoor environment. The method can also assist the design of optimal sensor networks.

  6. Identification of slip surface location by TLS-GPS datafor landslide mitigation case study: Ciloto-Puncak, West Java

    SciTech Connect

    Sadarviana, Vera Hasanuddin, A. Z.; Joenil, G. K.; Irwan; Wijaya, Dudy; Ilman, H.; Agung, N.; Achmad, R. T.; Pangeran, C.; Martin, S.; Gamal, M.; Santoso, Djoko

    2015-04-24

    Landslide can prevented by understanding the direction of movement to the safety evacuation track or slip surface location to hold avalanches. Slip surface is separating between stable soil and unstable soil in the slope. The slip surface location gives information about stable material depth. The information can be utilize to mitigate technical step, such as pile installation to keep construction or settlement safe from avalanches.There are two kinds landslide indicators which are visualization and calculation. By visualization, landslide identified from soil crack or scarp. Scarp is a scar of exposed soil on the landslide. That identification can be done by Terrestrial Laser Scanner (TLS) Image. Shape of scarp shows type of slip surface, translation or rotational. By calculation, kinematic and dynamic mathematic model will give vector, velocity and acceleration of material movement. In this calculation need velocity trend line at GPS point from five GPS data campaign. From intersection of trend lines it will create curves or lines of slip surface location. The number of slip surface can be known from material movement direction in landslide zone.Ciloto landslide zone have complicated phenomenon because that zone have influence from many direction of ground water level pressure. The pressure is causes generating several slip surface in Ciloto zone. Types of Ciloto slip surface have mix between translational and rotational type.

  7. Identification of slip surface location by TLS-GPS datafor landslide mitigation case study: Ciloto-Puncak, West Java

    NASA Astrophysics Data System (ADS)

    Sadarviana, Vera; Hasanuddin Z., A.; Joenil, K.; Santoso, Djoko; Irwan, G.; Wijaya, Dudy; Ilman, H.; Agung, N.; R. T., Achmad; Pangeran, C.; S., Martin; Gamal, M.

    2015-04-01

    Landslide can prevented by understanding the direction of movement to the safety evacuation track or slip surface location to hold avalanches. Slip surface is separating between stable soil and unstable soil in the slope. The slip surface location gives information about stable material depth. The information can be utilize to mitigate technical step, such as pile installation to keep construction or settlement safe from avalanches.There are two kinds landslide indicators which are visualization and calculation. By visualization, landslide identified from soil crack or scarp. Scarp is a scar of exposed soil on the landslide. That identification can be done by Terrestrial Laser Scanner (TLS) Image. Shape of scarp shows type of slip surface, translation or rotational. By calculation, kinematic and dynamic mathematic model will give vector, velocity and acceleration of material movement. In this calculation need velocity trend line at GPS point from five GPS data campaign. From intersection of trend lines it will create curves or lines of slip surface location. The number of slip surface can be known from material movement direction in landslide zone.Ciloto landslide zone have complicated phenomenon because that zone have influence from many direction of ground water level pressure. The pressure is causes generating several slip surface in Ciloto zone. Types of Ciloto slip surface have mix between translational and rotational type.

  8. Robust method to detect and locate local earthquakes by means of amplitude measurements.

    NASA Astrophysics Data System (ADS)

    del Puy Papí Isaba, María; Brückl, Ewald

    2016-04-01

    In this study we present a robust new method to detect and locate medium and low magnitude local earthquakes. This method is based on an empirical model of the ground motion obtained from amplitude data of earthquakes in the area of interest, which were located using traditional methods. The first step of our method is the computation of maximum resultant ground velocities in sliding time windows covering the whole period of interest. In the second step, these maximum resultant ground velocities are back-projected to every point of a grid covering the whole area of interest while applying the empirical amplitude - distance relations. We refer to these back-projected ground velocities as pseudo-magnitudes. The number of operating seismic stations in the local network equals the number of pseudo-magnitudes at each grid-point. Our method introduces the new idea of selecting the minimum pseudo-magnitude at each grid-point for further analysis instead of searching for a minimum of the L2 or L1 norm. In case no detectable earthquake occurred, the spatial distribution of the minimum pseudo-magnitudes constrains the magnitude of weak earthquakes hidden in the ambient noise. In the case of a detectable local earthquake, the spatial distribution of the minimum pseudo-magnitudes shows a significant maximum at the grid-point nearest to the actual epicenter. The application of our method is restricted to the area confined by the convex hull of the seismic station network. Additionally, one must ensure that there are no dead traces involved in the processing. Compared to methods based on L2 and even L1 norms, our new method is almost wholly insensitive to outliers (data from locally disturbed seismic stations). A further advantage is the fast determination of the epicenter and magnitude of a seismic event located within a seismic network. This is possible due to the method of obtaining and storing a back-projected matrix, independent of the registered amplitude, for each seismic

  9. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    SciTech Connect

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  10. Identification of possible factors impacting dental students' ability to locate MB2 canals in maxillary molars.

    PubMed

    Park, Ellen; Chehroudi, Babak; Coil, Jeffrey M

    2014-05-01

    This study examined the effect of the access size and straight-line path of access on third-year dental students' ability to locate a second mesiobuccal (MB2) canal in maxillary first and second molars. One hundred and six third-year dental students at one Faculty of Dentistry performed simulated root canal treatment with the aid of 2x magnification loupes on extracted teeth. A postgraduate endodontic student subsequently made a reasonable search for an untreated MB2 canal with the aid of a dental operating microscope. The mesiobuccal roots were then sectioned horizontally for determination of the canal configuration. The dental students were able to treat an MB2 canal in 15.8 percent of the teeth, but this was not associated with satisfactory access criteria. The postgraduate endodontic student identified an MB2 canal in 54.7 percent of the remaining tooth samples excluding those where the MB2 canal was found by the dental students; this represented 94.3 percent of those teeth confirmed by horizontal sectioning of the root to have an MB2 canal. The postgraduate student troughed, on average, 2.6 mm before negotiating the MB2 canal. As satisfactory access criteria and straight-line path of access did not correlate with the dental students' ability to find a second mesiobuccal canal, this result has important implications for educational goals with respect to endodontic treatment of maxillary molar teeth.

  11. Identification and location of alpha-helices in mammalian cytochromes P450.

    PubMed

    Edwards, R J; Murray, B P; Boobis, A R; Davies, D S

    1989-05-02

    A model of the alpha-helical structure of mammalian cytochromes P450 is proposed. The location and sequence of alpha-helices in mammalian cytochromes P450 were predicted from their homology with those of cytochrome P450cam, and these sequences were generally confirmed as helical in nature by using a secondary structure prediction method. These analyses were applied to 26 sequences in 6 gene families of cytochrome P450. Mammalian cytochromes P450 consist of approximately 100 amino acid residues more than cytochrome P450cam. This difference was accounted for by three major areas of insertion: (1) at the N-terminus, (2) between helices C and D and between helices D and E, and (3) between helices J and K. Insertion 1 has been suggested by others as a membrane anchoring sequence, but the apparent insertions at 2 and 3 are novel observations; it is suggested that they may be involved in the binding of cytochrome P450 reductase. Only the mitochondrial cytochrome P450 family appeared to show a major variation from this pattern, as insertion 2 was absent, replaced by an insertion between helices G and H and between helices H and I. This may reflect the difference in electron donor proteins that bind to members of this cytochrome P450 family. Other than these differences the model of mammalian cytochromes P450 proposed maintains the general structure of cytochrome P450cam as determined by its alpha-helical composition.

  12. Identification of amino acids located in the antibody binding sites of human hepatitis A virus.

    PubMed

    Nainan, O V; Brinton, M A; Margolis, H S

    1992-12-01

    Antigenic mutants of human hepatitis A virus (human-HAV) were isolated by their resistance to neutralizing monoclonal antibodies raised to human-HAV. The nucleotide sequence determined for the capsid regions of 12 mutants identified amino acid changes that clustered in three non-overlapping sites; one in VP3 and two in VP1. All mutants had a change at amino acid residue 70 in VP3, indicating its primary importance for antibody binding. Ten mutants had two amino acid changes occurring in the VP3 site as well as one in one of the two VP1 sites. These data suggest that both sites in VP1 interact with the single VP3 site to form the immunodominant epitope of HAV. The amino acid changes found in the antigenic mutants of human-HAV selected in this study were located in the same positions as changes found in strains of HAV isolated from Old World monkeys. These simian strains of HAV are not recognized by most monoclonal antibodies raised to human-HAV, suggesting that the observed amino acid changes are part of the antibody binding site.

  13. Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast.

    PubMed

    Eckstein, M P; Whiting, J S

    1996-09-01

    Several studies have investigated the effect of signal location uncertainty on the detectability of simple visual signals in uncorrelated Gaussian noise with a deterministic background. For this case, human performance in locating a signal in a forced-choice experiment has been successfully predicted for 2-1800 alternative locations with the use of signal detection theory and the usual assumption that the observer's internal response is Gaussian distributed. Gaussian uncorrelated noise is far from realistic medical image noise, which includes not only fluctuations in intensity of quantum origin but also other anatomical objects lying in the x-ray path (structured backgrounds). Our goal is to determine whether signal detection theory with the Gaussian assumption is adequate for the case of structured backgrounds, or whether other more complex models need to be developed to predict human performance as a function of the number of possible signal locations in structured backgrounds. We present experimental data suggesting that an assumed Gaussian internal response accurately predicts the decrease in observer performance as the number of alternative locations is increased. The one exception is a lower-than-predicted performance for the detection of low-contrast signals for two alternative locations. Performance as measured by the index of detectability d' is also found to be linear with signal contrast. Together these findings extend the applicability of signal detection theory with Gaussian internal response functions to the case of complex structured backgrounds.

  14. RESEARCH PROGRAM FOR ALERTING, DETECTION AND IDENTIFICATION OF PATHOGENES.

    DTIC Science & Technology

    MICROORGANISMS, IDENTIFICATION), (*GAS CHROMATOGRAPHY, MICROORGANISMS), (*DETECTORS, MICROORGANISMS), ELECTRON CAPTURE, CHROMATOGRAPHIC ANALYSIS, VIRUSES, BACTERIA, TISSUE CULTURE, INFECTIONS, BLOOD SERUM, BLOOD, BRUCELLA , MICE

  15. Identification and location of symbionts associated with potato psyllid (Bactericera cockerelli) lifestages.

    PubMed

    Hail, Daymon; Dowd, Scot E; Bextine, Blake

    2012-02-01

    The potato psyllid (Bactericera cockerelli, Sulc) is an invasive pest of solenaceous plants including potatoes (Solanum tuberosum L.)and tomatoes (Solanum lycopersicum L.). The insect transmits the phytopathogen Candidatus Liberibacter solanacearum, which has been identified as the causal agent of Zebra Chip in potatoes. The microbiome of the potato psyllid provides knowledge of the insect's bacterial makeup which enables researchers to develop targeted biological control strategies. In this study, the microbes associated with four B. cockerelli life stages were evaluated by 16S bTEFAP pyrosequencing. The sequences were compared with a 16S-rDNA database derived from NCBI's GenBank. Some bacteria identified are initial discoveries. Species of Wolbachia, Rhizobium, Gordonia, Mycobacterium, Xanthomonas and others were also detected and an assessment of the microbiome associated with B. cockerelli was established.

  16. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms.

  17. [Transbronchoscopic end-tidal carbon dioxide detection for location of the leading bronchus in patients with pneumothorax].

    PubMed

    Zeng, Yiming; Lin, Huihuang

    2015-04-01

    To evaluate the effect of end-tidal carbon dioxide (EtCO2) detection for location of the leading bronchus in patients with pneumothorax. Transbronchoscopic EtCO2 detection was performed in 4 patients with intractable pneumothorax in whom transbronchoscopic balloon detection failed to localize the leading bronchus. A specific bronchus was suspected to be the leading bronchus when its EtCO2 value was significantly lower than that of the main bronchus of the affected lung. After the pleural air leakage was successfully sealed by bronchial occlusion of the suspected bronchus, the EtCO2 was confirmed to indicate the leading bronchus. Transbronchoscopic EtCO2 detection successfully located the leading bronchus in all 4 patients. Transbronchoscopic EtCO2 detection is a new method of locating the leading bronchus in patients with intractable pneumothorax.

  18. Dominant Aerosol Particle Type/Mixture Identification at Worldwide Locations Using the Aerosol Robotic Network (AERONET)

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2011-12-01

    mean AAE by ~±0.1 for all aerosol types using SSA; AAE had negligible deviations for coarse mode aerosol categories within the uncertainty estimates of AOD but AAE varied by ~±0.05 from the unperturbed mean AAE for fine mode aerosol categories; and the increase/decrease in spectral AOD or SSA decreased/increased mean AAE for fine mode aerosols. In addition, AOD and SSA input parameters were varied to assess the impact on wavelength pairs (e.g., 440 and 870 nm) and the effects of non-linearity. The AAE and aerosol size [AE (440-870 nm) and FMF of AOD (500 nm)] relationships showed partitioning among dust and mixed aerosol types with significant overlap between urban/industrial and biomass burning categories. The SSA (440 nm) to the FMF of AOD (550 nm) relationship showed good consistency and partitioning with respect to the expected aerosol types/mixtures. Furthermore, aerosol identification techniques will be compared to results from recent field campaigns (e.g., DISCOVER-AQ).

  19. Use of Medical Metered Dose Inhalers for Functionality Testing of Bioaerosol Detection and Identification Systems

    DTIC Science & Technology

    2012-05-01

    DETECTION AND IDENTIFICATION SYSTEMS 1. INTRODUCTION Field-deployed near- real - time bioaerosol detection (e.g., fluorescent aerosol particle...testing of two near- real - time UV bioaerosol detectors. Aerosol generated from one actuation of a bioMDD containing 1 µm fluorescently tagged PSLs... BIOAEROSOL DETECTION AND IDENTIFICATION SYSTEMS ECBC-TR-964 Jana Kesavan Deborah R. Schepers Jerold R. Bottiger RESEARCH AND TECHNOLOGY

  20. CFD modelling of sampling locations for early detection of spontaneous combustion in long-wall gob areas.

    PubMed

    Yuan, Liming; Smith, Alex C

    In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion.

  1. CFD modelling of sampling locations for early detection of spontaneous combustion in long-wall gob areas

    PubMed Central

    Smith, Alex C.

    2015-01-01

    In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion. PMID:26213572

  2. Molecular Identification of Cyanobacteria Associated with Stromatolites from Distinct Geographical Locations

    NASA Astrophysics Data System (ADS)

    Neilan, Brett A.; Burns, Brendan P.; Relman, David A.; Lowe, Donald R.

    2002-08-01

    Modern stromatolites represent a significant resource for studying microbial ecology and evolution. A preliminary investigation was undertaken employing specific genetic probes to characterize the cyanobacteria responsible for stromatolite construction in a range of environments, including microbial mats found in Australia not previously examined with molecular methods. Isolates of cyanobacteria were collected from stromatolites in thermal springs, hypersaline lakes, and oceanic fringes on two continents. A polymerase chain reaction specific for DNA of cyanobacterial 16S rRNA was developed, the resulting products of the DNA amplification reaction were sequenced, and the data were used to infer relatedness between the isolates studied and other members of the cyanobacterial radiation. Complete sequence was generated for the region from position 27 to 408 for 13 strains of cyanobacteria associated with stromatolites. All stromatolite-derived sequences were most closely related to cyanobacteria, as indicated by local sequence alignment. It was possible to correlate genetic identity with morphological nomenclatures and to expand the phylogeny of benthic cyanobacteria. These inferences were also expanded to temporal variation in the dominant resident cyanobacterial species based on sampling of surface and core sinter laminations. Under the methods employed, only one cyanobacterial strain was detected in each sample, suggesting the possible dominance of a specific clonal population of cyanobacteria at any one time in the biota of the samples tested. The data indicate that internal core samples of a stromatolite at least 10 years old can be successfully analyzed by DNA-based methods to identify preserved cyanobacteria.

  3. Identification and location of the cocaine and amphetamine regulated transcript (CART) in the abomasum of cattle.

    PubMed

    Janiuk, Izabela; Młynek, Krzysztof; Wysocki, Jarosław

    2013-05-01

    The cocaine and amphetamine regulated transcript (CART) belongs to the group of peptides with anorexigenic properties and is present in many areas of the central and peripheral nervous systems of numerous mammalian species. Research has suggested an effect on the feeling of appetite and satiety; however, there are no clear clues as to the role of CART in specific organs, including the stomach. Considering the specificity of cattle feeding and digestion, CART may play a highly significant role possibly associated with the option of administering greater amounts of high-volume feeds. Based on the results of immunohistochemical staining of abomasum samples prepared from hybrid bulls, the presence of CART-positive structures and CART distribution were determined in the mucosa, submucosa and muscularis layers of the stomach. Abundant sites of CART were found in the myenteric plexus, nerve fibers innervating the myocytes of the myenteron, neuroendocrine cells of the diffuse neuroendocrine system and the submucous plexus. The preliminary stage of abomasal CART detection suggests that CART is an agent that strongly affects the regulation of motor activity involved in stomach emptying and in secretory functions of the stomach. However, further research is necessary to explain the relationship.

  4. Identification, expression pattern, cellular location and potential role of the caveolin-1 gene from Artemia sinica.

    PubMed

    Li, Xuejie; Yao, Feng; Zhang, Wei; Cheng, Cheng; Chu, Bing; Liu, Yan; Mei, Yanli; Wu, Yang; Zou, Xiangyang; Hou, Lin

    2014-05-01

    Caveolins are integral membrane proteins that serve as scaffolds to recruit numerous signaling molecules. Caveolins play an important role in membrane trafficking, signal transduction, substrate transport and endocytosis in differentiated cells. In this study, a caveolin-1 gene from Artemia sinica (As-cav-1) was successfully cloned for the first time. The full-length cDNA of As-cav-1 comprises 974 bp, with a 675 bp open reading frame (ORF) that encodes a polypeptide of 224 amino acids with a caveolin scaffolding domain (CSD) and two transmembrane domains. Multiple sequence alignment revealed that the putative As-CAV-1 protein sequence was relatively conserved across species, especially in the CSD domain. Real-time PCR revealed high levels of the As-cav-1 transcript at 0h of embryo development. Furthermore, As-cav-1 transcripts were highly upregulated under high salinity (200‰) and low temperature stresses (15°C). To further characterize As-cav-1, recombinant pET30a-cav-1 protein was expressed using a prokaryotic expression system. The recombinant protein comprised 290 amino acids with a theoretical molecular weight of 32kDa, and a predicted isoelectric point of 5.6. Western blotting of the expression levels of As-CAV-1 during different embryo development stages revealed that As-CAV-1 levels decreased gradually during development stages from 0 h to 40 h, and increased at 3d. Furthermore, western blotting showed that As-CAV-1 was upregulated to its highest expression level by low temperature stress (15°C) and high salinity. Confocal laser microscopy analysis, using antibodies generated against the recombinant As-CAV-1 protein, showed that As-CAV-1 was mostly located in the cell membrane. Our results suggested that As-cav-1 plays a vital role in protecting embryos from high salt damage and low temperature stress, especially during post-diapause embryonic development. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Human movement detection and identification using pyroelectric infrared sensors.

    PubMed

    Yun, Jaeseok; Lee, Sang-Shin

    2014-05-05

    Pyroelectric infrared (PIR) sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth), three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor) and three speed levels (slow, moderate, fast). We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.

  6. Detection versus location judgments in a hidden pattern task: functional MRI and behavioral correlates.

    PubMed

    Bolster, R Bruce; D'Arcy, Ryan C N; Song, Xiaowei; Runke, Dwayne S; Ryner, Lawrence

    2011-08-01

    We used functional magnetic resonance imaging (fMRI) to assess cortical involvement in a hidden pattern task. The experimental and control conditions involved judgment of the presence/absence versus the position of a complex pattern. Activation specific to hidden pattern identification was concentrated on frontal, dorsal parietal, and mesolimbic cortex. This was consistent not only across individual subjects, but with hidden figures tasks used in previous fMRI investigations. Results suggest that pattern identification relies on a relatively stable neural network controlling selective attention. In combination with fMRI, hidden pattern tasks may be useful in neuropsychological assessment of visual search and object identification.

  7. Investigation on experimental techniques to detect, locate and quantify gear noise in helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Flanagan, P. M.; Atherton, W. J.

    1985-01-01

    A robotic system to automate the detection, location, and quantification of gear noise using acoustic intensity measurement techniques has been successfully developed. Major system components fabricated under this grant include an instrumentation robot arm, a robot digital control unit and system software. A commercial, desktop computer, spectrum analyzer and two microphone probe complete the equipment required for the Robotic Acoustic Intensity Measurement System (RAIMS). Large-scale acoustic studies of gear noise in helicopter transmissions cannot be performed accurately and reliably using presently available instrumentation and techniques. Operator safety is a major concern in certain gear noise studies due to the operating environment. The man-hours needed to document a noise field in situ is another shortcoming of present techniques. RAIMS was designed to reduce the labor and hazard in collecting data and to improve the accuracy and repeatability of characterizing the acoustic field by automating the measurement process. Using RAIMS a system operator can remotely control the instrumentation robot to scan surface areas and volumes generating acoustic intensity information using the two microphone technique. Acoustic intensity studies requiring hours of scan time can be performed automatically without operator assistance. During a scan sequence, the acoustic intensity probe is positioned by the robot and acoustic intensity data is collected, processed, and stored.

  8. Influence of detection method and study area scale on syphilis cluster identification in North Carolina

    PubMed Central

    Escamilla, Veronica; Hampton, Kristen H.; Gesink, Dionne C.; Serre, Marc L.; Emch, Michael; Leone, Peter A.; Samoff, Erika; Miller, William C.

    2017-01-01

    Background Identifying geographical clusters of sexually transmitted infections can aid in targeting prevention and control efforts. However, detectable clusters can vary between detection methods because of different underlying assumptions. Furthermore, because disease burden is not geographically homogenous, the reference population is sensitive to the study area scale, affecting cluster outcomes. We investigated the influence of cluster detection method and geographical scale on syphilis cluster detection in Mecklenburg County, North Carolina. Methods We analyzed primary and secondary (P&S) syphilis cases reported in North Carolina (2003–2010). Primary and secondary syphilis incidence rates were estimated using census tract-level population estimates. We used two cluster detection methods: local Moran’s I using an areal adjacency matrix, and Kulldorff’s spatial scan statistic using a variable size moving circular window. We evaluated three study area scales: North Carolina, Piedmont region, and Mecklenburg County. We focused our investigation on Mecklenburg, an urban county with historically high syphilis rates. Results Syphilis clusters detected using local Moran’s I and Kulldorff’s scan statistic overlapped but varied in size and composition. Because we reduced the scale to a high incidence urban area, the reference syphilis rate increased, leading to the identification of smaller clusters with higher incidence. Cluster demographic characteristics differed when the study area was reduced to a high incidence urban county. Conclusion Our results underscore the importance of selecting the correct scale for analysis to more precisely identify areas with high disease burden. A more complete understanding of high burden cluster location can inform resource allocation for geographically targeted sexually transmitted infection interventions. PMID:26967297

  9. An investigation into the feasibility of locating portable medical devices using radio frequency identification devices and technology.

    PubMed

    Britton, J

    2007-01-01

    Portable medical devices represent an important resource for assisting healthcare delivery. The movement of portable devices often results in them being unavailable when needed. Tracking equipment using radiofrequency identification technology/devices (RFID) may provide a promising solution to the problems encountered in locating portable equipment. An RFID technology trial was undertaken at Royal Alexandra Hospital, Paisley. This involved the temporary installation of three active readers and attaching actively transmitting radio frequency tags to different portable medical devices. The active readers and computer system were linked using a bespoke data network. Tags and readers from two separate manufacturers were tested. Reliability difficulties were encountered when testing the technology from the first manufacturer, probably due to the casing of the medical device interfering with the signal from the tag. Improved results were obtained when using equipment from the second manufacturer with an overall error rate of 12.3%. Tags from this manufacturer were specifically designed to overcome problems observed with the first system tested. Findings from this proof of concept trial suggest that RFID technology could be used to track the location of equipment in a hospital.

  10. Sex Differences in Object Location Memory: The Female Advantage of Immediate Detection of Changes

    ERIC Educational Resources Information Center

    Honda, Akio; Nihei, Yoshiaki

    2009-01-01

    Object location memory has been considered the only spatial ability in which females display an advantage over males. We examined sex differences in long-term object location memory. After participants studied an array of objects, they were asked to recall the locations of these objects three minutes later or one week later. Results showed a…

  11. Biochemical Detection and Identification False Alarm Rate Dependence on Wavelength Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.

    2006-01-01

    Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.

  12. Biochemical Detection and Identification False Alarm Rate Dependence on Wavelength Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.

    2006-01-01

    Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.

  13. DETECT: A MATLAB Toolbox for Event Detection and Identification in Time Series, with Applications to Artifact Detection in EEG Signals

    PubMed Central

    Lawhern, Vernon; Hairston, W. David; Robbins, Kay

    2013-01-01

    Recent advances in sensor and recording technology have allowed scientists to acquire very large time-series datasets. Researchers often analyze these datasets in the context of events, which are intervals of time where the properties of the signal change relative to a baseline signal. We have developed DETECT, a MATLAB toolbox for detecting event time intervals in long, multi-channel time series. Our primary goal is to produce a toolbox that is simple for researchers to use, allowing them to quickly train a model on multiple classes of events, assess the accuracy of the model, and determine how closely the results agree with their own manual identification of events without requiring extensive programming knowledge or machine learning experience. As an illustration, we discuss application of the DETECT toolbox for detecting signal artifacts found in continuous multi-channel EEG recordings and show the functionality of the tools found in the toolbox. We also discuss the application of DETECT for identifying irregular heartbeat waveforms found in electrocardiogram (ECG) data as an additional illustration. PMID:23638169

  14. a Uav Based 3-D Positioning Framework for Detecting Locations of Buried Persons in Collapsed Disaster Area

    NASA Astrophysics Data System (ADS)

    Moon, H.; Kim, C.; Lee, W.

    2016-06-01

    Regarding spatial location positioning, indoor location positioning theories based on wireless communication techniques such as Wi-Fi, beacon, UWB and Bluetooth has widely been developing across the world. These techniques are mainly focusing on spatial location detection of customers using fixed wireless APs and unique Tags in the indoor environment. Besides, since existing detection equipment and techniques using ultrasound or sound etc. to detect buried persons and identify survival status for them cause 2nd damages on the collapsed debris for rescuers. In addition, it might take time to check the buried persons. However, the collapsed disaster sites should consider both outdoor and indoor environments because empty spaces under collapsed debris exists. In order to detect buried persons from the empty spaces, we should collect wireless signals with Wi-Fi from their mobile phone. Basically, the Wi-Fi signal measure 2-D location. However, since the buried persons have Z value with burial depth, we also should collect barometer sensor data from their mobile phones in order to measure Z values according to weather conditions. Specially, for quick accessibility to the disaster area, a drone (UAV; Unmanned Arial Vehicle) system, which is equipped with a wireless detection module, was introduced. Using these framework, this study aims to provide the rescuers with effective rescue information by calculating 3-D location for buried persons based on the wireless and barometer sensor fusion.

  15. 68Ga-PSMA PET/CT Detects the Location and Extent of Primary Prostate Cancer.

    PubMed

    Fendler, Wolfgang P; Schmidt, Dorothea F; Wenter, Vera; Thierfelder, Kolja M; Zach, Christian; Stief, Christian; Bartenstein, Peter; Kirchner, Thomas; Gildehaus, Franz J; Gratzke, Christian; Faber, Claudius

    2016-11-01

    We evaluated the accuracy of PET/CT with (68)Ga-PSMA-HBED-CC-a (68)Ga-conjugated ligand of human prostate-specific membrane antigen (PSMA)-to localize cancer in the prostate and surrounding tissue at initial diagnosis. Twenty-one patients with biopsy-proven prostate cancer underwent (68)Ga-PSMA-HBED-CC ((68)Ga-PSMA) PET/CT at a median of 4 d (range, 0-47 d) before radical prostatectomy. Based on a 6-segment model, the Gleason score and proportion of tumor tissue within each segment (segmental tumor burden, or STB) as determined by histopathology (STBHP) were correlated with SUVmax and STB as determined by different SUV cutoffs for (68)Ga-PSMA PET (STBPET1-6). Furthermore, the involvement of seminal vesicles and other extracapsular extension were assessed by histopathology and PET/CT. Histopathology-positive segments (n = 100 of 126; 79%) demonstrated a significantly higher mean ± SD SUVmax (11.8 ± 7.6) than histopathology-negative segments (4.9 ± 2.9; P < 0.001). Receiver-operating-characteristic analysis revealed an optimal SUVmax cutoff of 6.5 for discrimination of histopathology-positive segments from histopathology-negative segments (area under the curve, 0.84; P < 0.001), which gave 67% sensitivity, 92% specificity, a 97% positive predictive value, a 42% negative predictive value, and 72% accuracy. STBPET3 as determined by (2 × blood SUV) + (2 × SD) correlated best with STBHP (Pearson ρ = 0.68; P < 0.001; mean difference ± SD, 19% ± 15%). PET/CT correctly detected invasion of seminal vesicles (n = 11 of 21 patients; 52%) with 86% accuracy and tumor spread through the capsule (n = 12; 57%) with 71% accuracy. (68)Ga-PSMA PET/CT accurately detected the location and extent of primary prostate cancer. Our preliminary findings warrant further investigation of (68)Ga-PSMA PET/CT in conjunction with needle biopsy. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  17. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...

  18. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...

  19. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...

  20. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...

  1. Sensitive quantitative detection/identification of infectious Cryptosporidium parvum oocysts by signature lipid biomarker analysis

    SciTech Connect

    White, D.C. |; Alugupalli, S.; Schrum, D.P.

    1997-08-01

    Unique signature lipid biomarkers were found in the acid-fast oocytes of Cryptosporidium parvum. This makes possible the rapid detection/identification and potential infectivity directly from drinking water membrane filtrates.

  2. Development of an auditory situation awareness test battery for advanced hearing protectors and TCAPS: detection subtest of DRILCOM (detection-recognition/identification-localization-communication).

    PubMed

    Lee, Kichol; Casali, John G

    2017-01-01

    To design a test battery and conduct a proof-of-concept experiment of a test method that can be used to measure the detection performance afforded by military advanced hearing protection devices (HPDs) and tactical communication and protective systems (TCAPS). The detection test was conducted with each of the four loudspeakers located at front, right, rear and left of the participant. Participants wore 2 in-ear-type TCAPS, 1 earmuff-type TCAPS, a passive Combat Arms Earplug in its "open" or pass-through setting and an EB-15LE™ electronic earplug. Devices with electronic gain systems were tested under two gain settings: "unity" and "max". Testing without any device (open ear) was conducted as a control. Ten participants with audiometric requirements of 25 dBHL or better at 500, 1000, 2000, 4000, 8000 Hz in both ears. Detection task performance varied with different signals and speaker locations. The test identified performance differences among certain TCAPS and protectors, and the open ear. A computer-controlled detection subtest of the Detection-Recognition/Identification-Localisation-Communication (DRILCOM) test battery was designed and implemented. Tested in a proof-of-concept experiment, it showed statistically-significant sensitivity to device differences in detection effects with the small sample of participants (10). This result has important implications for selection and deployment of TCAPS and HPDs on soldiers and workers in dynamic situations.

  3. Modeling and Reconstruction Algorithms for Detection, Location, and Identification of Subsurface Anomalies

    DTIC Science & Technology

    1990-06-01

    given in this section are summarized below. 1) In Fig. I of [51], the authors consider matching the mode ] to the data through human intervention. Here...the conditional probability density f"iicLion p(bix). The vector b is the data 3 vector, and x is the unknown mode ] vector. If the assumption is made...311 A.Q. Howard, Mode Match Solutions to Electromagnetic Scattering Problems in a Conducting Half-Space Environment, Ph.D. Thesis, University of

  4. Detection of low frequency external electronic identification devices using commercial panel readers.

    PubMed

    Stewart, S C; Rapnicki, P; Lewis, J R; Perala, M

    2007-09-01

    The ability of a commercially available panel reader system to read International Standards Organization-compliant electronic identification devices under commercial dairy conditions was examined. Full duplex (FDX-B) and half-duplex (HDX) low frequency radio-frequency identification external ear tags were utilized. The study involved 498 Holstein cows in the final 6 wk of gestation. There were 516 total electronic identification devices (n = 334 HDX and n = 182 FDX-B). Eighteen FDX-B were replaced with HDX during the study due to repeated detection failure. There were 6,679 HDX and 3,401 FDX-B device detection attempts. There were 220 (2.2%) unsuccessful and 9,860 (97.8%) successful identification detection attempts. There were 9 unsuccessful detection attempts for HDX (6,670/6,679 = 99.9% successful detection attempts) and 211 unsuccessful detection attempts for FDX-B (3,190/3,401 = 93.8% successful detection attempts). These results demonstrate that this panel system can achieve high detection rates of HDX devices and meet the needs of the most demanding management applications. The FDX-B detection rate was not sufficient for the most demanding applications, requiring a high degree of detection by panel readers. The lower FDX-B rate may not be inherent in the device technology itself, but could be due to other factors, including the particular panel reader utilized or the tuning of the panel reader.

  5. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of <1 ppb, and then the rapid return to the background lev-el could be due to a sink (destruction) or due to at-mospheric mixing. A wind mediated erosion process of ordinary quartz crystals was proposed to produce activated quartz grains, which sequester methane by forming covalent Si-C bonds. If this process is op-erational on Mars today, which some recent prelimi-nary studies on

  6. Precise Identification of DNA-Binding Proteins Genomic Location by Exonuclease Coupled Chromatin Immunoprecipitation (ChIP-exo).

    PubMed

    Matteau, Dominick; Rodrigue, Sébastien

    2015-01-01

    DNA-binding proteins play a crucial role in all living organisms by interacting with various DNA sequences across the genome. While several methods have been used to study the interaction between DNA and proteins in vitro, chromatin immunoprecipitation followed by sequencing (ChIP-seq) has become the standard technique for identifying the genome-wide location of DNA-binding proteins in vivo. However, the resolution of standard ChIP-seq methodology is limited by the DNA fragmentation process and presence of contaminating DNA. A significant improvement of the ChIP-seq technique results from the addition of an exonuclease treatment during the immunoprecipitation step (ChIP-exo) that lowers background noise and more importantly increases the identification of binding sites to a level near to single-base resolution by effectively footprinting DNA-bound proteins. By doing so, ChIP-exo offers new opportunities for a better characterization of the complex and fascinating architecture that resides in DNA-proteins interactions and provides new insights for the comprehension of important molecular mechanisms.

  7. Radio Frequency Identification Queuing & Geo-Location (RAQGEO): A spatial solution to inventory management at XYZ Logistics, Inc

    NASA Astrophysics Data System (ADS)

    Griffiths, Bradley Joseph

    New supply chain management methods using radio frequency identification (RFID) and global positioning system (GPS) technology are quickly being adopted by companies as various inventory management benefits are being realized. For example, companies such as Nippon Yusen Kaisha (NYK) Logistics use the technology coupled with geospatial support systems for distributors to quickly find and manage freight containers. Traditional supply chain management methods require pen-to-paper reporting, searching inventory on foot, and human data entry. Some companies that prioritize supply chain management have not adopted the new technology, because they may feel that their traditional methods save the company expenses. This thesis serves as a pilot study that examines how information technology (IT) utilizing RFID and GPS technology can serve to increase workplace productivity, decrease human labor associated with inventorying, plus be used for spatial analysis by management. This pilot study represents the first attempt to couple RFID technology with Geographic Information Systems (GIS) in supply chain management efforts to analyze and locate mobile assets by exploring costs and benefits of implementation plus how the technology can be employed. This pilot study identified a candidate to implement a new inventory management method as XYZ Logistics, Inc. XYZ Logistics, Inc. is a fictitious company but represents a factual corporation. The name has been changed to provide the company with anonymity and to not disclose confidential business information. XYZ Logistics, Inc., is a nation-wide company that specializes in providing space solutions for customers including portable offices, storage containers, and customizable buildings.

  8. A dissociation between detection and identification of phobic stimuli: unconscious perception?

    PubMed

    Siegel, Paul; Han, Edward; Cohen, Don; Anderson, Jason

    2013-01-01

    A psychophysical paradigm for investigating unconscious perception was used to test the hypothesis of dissociation between detection and identification of phobic stimuli. Spider-phobic and non-phobic participants were presented with masked images of spiders and flowers and an equal number of control stimuli in a random sequence. After each masked stimulus was flashed, participants first reported whether or not an object was presented. Then they identified each stimulus as either a spider or a flower, regardless of their prior detection response. Phobic participants identified both detected and undetected spiders better than chance, as assessed by two measures of response bias. They did not exhibit dissociation between detection and identification for flowers. Non-phobic participants did not exhibit detection-identification dissociation for either spiders or flowers. These results are consistent with the interpretation that phobic individuals unconsciously perceive their feared stimulus, and constitute the first direct demonstration of such for emotional stimuli.

  9. Visual detection and identification are not the same: evidence from psychophysics and fMRI.

    PubMed

    Straube, Sirko; Fahle, Manfred

    2011-02-01

    Sometimes object detection as opposed to identification is sufficient to initiate the appropriate action. To explore the neural origin of behavioural differences between the two tasks, we combine psychophysical measurements and fMRI, specifically contrasting shape detection versus identification of a figure. This figure consisted of Gabor elements being oriented differently from those in the background. We equalized performance levels for detection and identification by adjusting orientation differences accordingly for each observer. Hence, stimulus saliency was constant for both tasks allowing a differentiation between the activations specific for detection versus identification processes. Identification yielded higher psychophysical thresholds, slower reaction times and increased hemodynamic activations in the lateral-occipital complex (LOC) and an adjacent area in the collateral sulcus (CoS). Additional analysis using cortex-based alignment revealed four voxel-clusters differentially activated by the tasks, situated in the inferior parietal lobe, the precuneus, the anterior cingulum and the medial frontal gyrus. Our results indicate partly separated cortical mechanisms for object detection and identification.

  10. Reading and Detecting Color-Word Stimuli Presented at Various Retinal Locations.

    ERIC Educational Resources Information Center

    Goolkasian, Paula

    1978-01-01

    Reports a series of studies that investigated the role of parafoveal vision in reading by using the Stroop phenomenon. Supports the "peripheral search guidance" process of Hochberg's model of reading, and provides evidence of processing variations across retinal location. (RL)

  11. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  12. Field Demonstration of Innovative Leak Detection/Location in Conjunction with Pipe Wall Thickness Testing for Water Mains

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Se...

  13. FIELD DEMONSTRATION OF INNOVATIVE LEAK DETECTION/LOCATION TECHNOLOGIES COUPLED WITH WALL-THICKNESS SCREENING FOR WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  14. Field Demonstration of Innovative Leak Detection/Location in Conjunction with Pipe Wall Thickness Testing for Water Mains

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Se...

  15. The effects of changes in object location on object identity detection: A simultaneous EEG-fMRI study.

    PubMed

    Yang, Ping; Fan, Chenggui; Wang, Min; Fogelson, Noa; Li, Ling

    2017-08-15

    Object identity and location are bound together to form a unique integration that is maintained and processed in visual working memory (VWM). Changes in task-irrelevant object location have been shown to impair the retrieval of memorial representations and the detection of object identity changes. However, the neural correlates of this cognitive process remain largely unknown. In the present study, we aim to investigate the underlying brain activation during object color change detection and the modulatory effects of changes in object location and VWM load. To this end we used simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings, which can reveal the neural activity with both high temporal and high spatial resolution. Subjects responded faster and with greater accuracy in the repeated compared to the changed object location condition, when a higher VWM load was utilized. These results support the spatial congruency advantage theory and suggest that it is more pronounced with higher VWM load. Furthermore, the spatial congruency effect was associated with larger posterior N1 activity, greater activation of the right inferior frontal gyrus (IFG) and less suppression of the right supramarginal gyrus (SMG), when object location was repeated compared to when it was changed. The ERP-fMRI integrative analysis demonstrated that the object location discrimination-related N1 component is generated in the right SMG. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  17. An automated method for identification and ranking of hyperspectral target detections

    NASA Astrophysics Data System (ADS)

    Basener, Bill

    2011-06-01

    In this paper we present a new methodology for automated target detection and identification in hyperspectral imagery. The standard paradigm for target detection in hyperspectral imagery is to run a detection algorithm, typically statistical in nature, and visually inspect each high-scoring pixel to decide whether it is a true detection or a false alarm. Detection filters have constant false alarm rates (CFARs) approaching 10-5, but these can still result in a large number of false alarms given multiple images and a large number of target materials. Here we introduce a new methodology for target detection and identification in hyperspectral imagery that shows promise for hard targets. The result is a greatly reduced false alarm rate and a practical methodology for aiding an analyst in quantitatively evaluating detected pixels. We demonstrate the utility of the method with results on data from the HyMap sensor over the Cooke City, MT.

  18. Development of a QCL based IR polarimetric system for the stand-off detection and location of IEDs

    NASA Astrophysics Data System (ADS)

    Stokes, Robert J.; Normand, Erwan L.; Carrie, Iain D.; Foulger, Brian; Lewis, Colin

    2009-09-01

    Following the development of point sensing improvised explosive device (IED) technology[1] Cascade Technologies have initial work in the development of equivalent stand-off capability. Stand-off detection of IEDs is a very important technical requirement that would enable the safe identification and quantification of hazardous materials prior to a terrorist attack. This could provide advanced warning of potential danger allowing evacuation and mitigation measures to be implemented. With support from the UK government, Cascade Technologies is currently investigating technology developments aimed at addressing the above stand-off IED detection capability gap. To demonstrate and validate the concept, a novel stand-off platform will target the detection and identification of common high vapor pressure IED precursor compounds, such as hydrogen peroxide (H2O2), emanating from a point source. By actively probing a scene with polarized light, the novel platform will offer both enhanced selectivity and sensitivity as compared to traditional hyperspectral sensors, etc. The presentation will highlight the concept of this novel detection technique as well as illustrating preliminary results.

  19. Contemporary nucleic acid-based molecular techniques for detection, identification, and characterization of Bifidobacterium.

    PubMed

    Mianzhi, Yao; Shah, Nagendra P

    2017-03-24

    Bifidobacteria are one of the most important bacterial groups found in the gastrointestinal tract of humans. Medical and food industry researchers have focused on bifidobacteria because of their health-promoting properties. Researchers have historically relied on classic phenotypic approaches (culture and biochemical tests) for detection and identification of bifidobacteria. Those approaches still have values for the identification and detection of some bifidobacterial species, but they are often labor-intensive and time-consuming and can be problematic in differentiating closely related species. Rapid, accurate, and reliable methods for detection, identification, and characterization of bifidobacteria in a mixed bacterial population have become a major challenge. The advent of nucleic acid-based molecular techniques has significantly advanced isolation and detection of bifidobacteria. Diverse nucleic acid-based molecular techniques have been employed, including hybridization, target amplification, and fingerprinting. Certain techniques enable the detection, characterization, and identification at genus-, species-, and strains-levels, whereas others allow typing of species or strains of bifidobacteria. In this review, an overview of methodological principle, technique complexity, and application of various nucleic acid-based molecular techniques for detection, identification, and characterization of bifidobacteria is presented. Advantages and limitations of each technique are discussed, and significant findings based on particular techniques are also highlighted.

  20. a Topic Modeling Based Representation to Detect Tweet Locations. Example of the Event "je Suis Charlie"

    NASA Astrophysics Data System (ADS)

    Morchid, M.; Josselin, D.; Portilla, Y.; Dufour, R.; Altman, E.; Linarès, G.

    2015-09-01

    Social Networks became a major actor in information propagation. Using the Twitter popular platform, mobile users post or relay messages from different locations. The tweet content, meaning and location, show how an event-such as the bursty one "JeSuisCharlie", happened in France in January 2015, is comprehended in different countries. This research aims at clustering the tweets according to the co-occurrence of their terms, including the country, and forecasting the probable country of a non-located tweet, knowing its content. First, we present the process of collecting a large quantity of data from the Twitter website. We finally have a set of 2,189 located tweets about "Charlie", from the 7th to the 14th of January. We describe an original method adapted from the Author-Topic (AT) model based on the Latent Dirichlet Allocation (LDA) method. We define an homogeneous space containing both lexical content (words) and spatial information (country). During a training process on a part of the sample, we provide a set of clusters (topics) based on statistical relations between lexical and spatial terms. During a clustering task, we evaluate the method effectiveness on the rest of the sample that reaches up to 95% of good assignment. It shows that our model is pertinent to foresee tweet location after a learning process.

  1. Time-reversal optical tomography: detecting and locating extended targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Xu, M.; Gayen, S. K.

    2012-03-01

    Time Reversal Optical Tomography (TROT) is developed to locate extended target(s) in a highly scattering turbid medium, and estimate their optical strength and size. The approach uses Diffusion Approximation of Radiative Transfer Equation for light propagation along with Time Reversal (TR) Multiple Signal Classification (MUSIC) scheme for signal and noise subspaces for assessment of target location. A MUSIC pseudo spectrum is calculated using the eigenvectors of the TR matrix T, whose poles provide target locations. Based on the pseudo spectrum contours, retrieval of target size is modeled as an optimization problem, using a "local contour" method. The eigenvalues of T are related to optical strengths of targets. The efficacy of TROT to obtain location, size, and optical strength of one absorptive target, one scattering target, and two absorptive targets, all for different noise levels was tested using simulated data. Target locations were always accurately determined. Error in optical strength estimates was small even at 20% noise level. Target size and shape were more sensitive to noise. Results from simulated data demonstrate high potential for application of TROT in practical biomedical imaging applications.

  2. Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images

    PubMed Central

    Yan, Cheng; Li, Anan; Zhang, Bin; Ding, Wenxiang; Luo, Qingming; Gong, Hui

    2013-01-01

    Automated and accurate localization and morphometry of somas in 3D neuron images is essential for quantitative studies of neural networks in the brain. However, previous methods are limited in obtaining the location and surface morphology of somas with variable size and uneven staining in large-scale 3D neuron images. In this work, we proposed a method for automated soma locating in large-scale 3D neuron images that contain relatively sparse soma distributions. This method involves three steps: (i) deblocking the image with overlap between adjacent sub-stacks; (ii) locating the somas in each small sub-stack using multi-scale morphological close and adaptive thresholds; and (iii) fusion of the repeatedly located somas in all sub-stacks. We also describe a new method for the accurate detection of the surface morphology of somas containing hollowness; this was achieved by improving the classical Rayburst Sampling with a new gradient-based criteria. Three 3D neuron image stacks of different sizes were used to quantitatively validate our methods. For the soma localization algorithm, the average recall and precision were greater than 93% and 96%, respectively. For the soma surface detection algorithm, the overlap of the volumes created by automatic detection of soma surfaces and manually segmenting soma volumes was more than 84% for 89% of all correctly detected somas. Our method for locating somas can reveal the soma distributions in large-scale neural networks more efficiently. The method for soma surface detection will serve as a valuable tool for systematic studies of neuron types based on neuron structure. PMID:23638117

  3. An analytical solution to obtain the optimum source location using multiple direction finders on a spherical surface. [for lightning detection

    NASA Technical Reports Server (NTRS)

    Orville, Richard E., Jr.

    1987-01-01

    An analytical solution is presented for determining the optimum location of a radiating source on the surface of a sphere, given multiple bearings. The bearings are assumed to have small errors of the order of 0-10 deg. The optimum location is found by minimizing the sum of the squares of the perpendicular great-circle distances from the source to the bearing lines. This is achieved analytically through an eigenvalue approach, rather than the usual iterative, numerical approach. Bearings of different weight are taken into account by approximating the distance from each direction finder to the source. The result is general and may have wide application. Since it is simple and nearly as fast as the triangulation technique for source location, it is now used in the SUNY-Albany East Coast Lightning Detection Network to compute the optimum location for lightning in real time.

  4. Molecular identification of Ehrlichia species and host bloodmeal source in Amblyomma americanum L. from two locations in Tennessee, United States.

    PubMed

    Harmon, Jessica R; Scott, M Cathy; Baker, Ellen M; Jones, Carl J; Hickling, Graham J

    2015-04-01

    The current status of tick-borne diseases in the southeastern United States is challenging to define due to emerging pathogens, uncertain tick/host relationships, and changing disease case definitions. A golf-oriented retirement community on the Cumberland Plateau in Tennessee experienced an ehrlichiosis outbreak in 1993, prompting efforts to reduce the local tick population using '4-Poster' acaricide devices targeting white-tailed deer (Odocoileus virginianus). In 2009, the prevalence of Ehrlichia spp. in questing ticks was surveyed in the area and compared to a Tennessee state park where acaricide had not been applied. The range of wildlife hosts that immature Amblyomma americanum fed upon and the role that these hosts may play in pathogen dynamics were investigated using a reverse line blot (RLB) bloodmeal analysis technique. Amblyomma americanum was by far the most common tick species in both study areas (>99% of ticks collected). Of 303 adult and nymphal A. americanum tested at the retirement community, six were positive for Ehrlichia chaffeensis (2.0%), 16 were positive for E. ewingii (5.3%), and six were positive for Panola Mountain Ehrlichia (2.0%). This is the first confirmation of Panola Mountain Ehrlichia in A. americanum from the state of Tennessee. The 9.3% prevalence of Ehrlichia spp. in ticks from the retirement community was similar to that detected at the state park site (5.5%), suggesting that the 4-Poster treatment had not been sufficient to reduce Ehrlichia spp. cycling in the tick population. At both study sites, A. americanum fed on a wide range of mammal and bird species, with a minority of detectable bloodmeals coming from deer. Of the Ehrlichia-infected nymphs with positive bloodmeal identification, none fed on deer, indicating that multiple vertebrate species are contributing to sylvatic maintenance of Ehrlichia spp. at these sites. This highlights the difficulty of attempting to reduce the risk of tick-borne disease through host

  5. Development of Conductive Polymer Analysis for the Rapid Detection and Identification of Phytopathogenic Microbes

    Treesearch

    A. Dan Wilson; D.G. Lester; C.S. Oberle

    2004-01-01

    Conductive polymer analysis, a type of electronic aroma detection technology, was evaluated for its efficacy in the detection, identification, and discrimination of plant-pathogenic microorganisms on standardized media and in diseased plant tissues. The method is based on the acquisition of a diagnostic electronic fingerprint derived from multisensor responses to...

  6. [Identification and quantitative determination of baclofen in human blood by HPLC with mass spectrometry detection].

    PubMed

    Dukova, O A; Kotlovsky, M Yu; Pokrovsky, A A; Suvorova, E V; Shivrina, T G; Krasnov, E A; Efremov, A A

    2016-03-01

    A method of identification and quantitative determination of baclofen in blood by HPLC with mass spectrometry detection has been developed. It is characterized by high sensitivity, specificity, linearity, accuracy, reproducibility, and a low detection for quantitative determination. The method has been used for diagnostics of acute baclofen poisoning in patients.

  7. A System Identification and Change Detection Methodology for Stochastic Nonlinear Dynamic Systems

    SciTech Connect

    Yun, Hae-Bum; Masri, Sami F.; Caffrey, John P.

    2008-07-08

    In this paper a component-level detection methodology for system identification and change detection is discussed. The methodology is based on non-parametric, data-driven, stochastic system identification classifications using statistical pattern recognition techniques. In order to validate the methodology discussed in this paper an experimental study was performed using a complex nonlinear magneto-rheological (MR) damper. The results of this study show that the proposed methodology is very promising to detect interpret changes in critical structural components such as nonlinear springs joints as well as various types of dampers.

  8. Stochastic Subspace-Based Structural Identification and Damage Detection —APPLICATION to the Steel-Quake Benchmark

    NASA Astrophysics Data System (ADS)

    Mevel, L.; Basseville, M.; Goursat, M.

    2003-01-01

    Numerical results from the application of new stochastic subspace-based structural identification and damage detection methods to the steel-quake structure are discussed. Particular emphasis is put on structural model identification, for which we display some modeshapes.

  9. Exploration of available feature detection and identification systems and their performance on radiographs

    NASA Astrophysics Data System (ADS)

    Wantuch, Andrew C.; Vita, Joshua A.; Jimenez, Edward S.; Bray, Iliana E.

    2016-10-01

    Despite object detection, recognition, and identification being very active areas of computer vision research, many of the available tools to aid in these processes are designed with only photographs in mind. Although some algorithms used specifically for feature detection and identification may not take explicit advantage of the colors available in the image, they still under-perform on radiographs, which are grayscale images. We are especially interested in the robustness of these algorithms, specifically their performance on a preexisting database of X-ray radiographs in compressed JPEG form, with multiple ways of describing pixel information. We will review various aspects of the performance of available feature detection and identification systems, including MATLABs Computer Vision toolbox, VLFeat, and OpenCV on our non-ideal database. In the process, we will explore possible reasons for the algorithms' lessened ability to detect and identify features from the X-ray radiographs.

  10. Location-based errors in change detection: A challenge for the slots model of visual working memory.

    PubMed

    Donkin, Chris; Tran, Sophia Chi; Le Pelley, Mike

    2015-04-01

    The slots model of visual working memory, despite its simplicity, has provided an excellent account of data across a number of change detection experiments. In the current research, we provide a new test of the slots model by investigating its ability to account for the increased prevalence of errors when there is a potential for confusion about the location in which items are presented during study. We assume that such location errors in the slots model occur when the feature information for an item in one location is swapped with the feature information for an item in another location. We show that such a model predicts two factors that will influence the extent to which location errors occur: (1) whether the test item changes to an "external" item not presented at study, or to an "internal" item presented at another location during study, and (2) the number of items in the study array. We manipulate these factors in an experiment, and show that the slots model with location errors fails to provide a satisfactory account of the observed data.

  11. Real-time Supervised Detection of Pink Areas in Dermoscopic Images of Melanoma: Importance of Color Shades, Texture and Location

    PubMed Central

    Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.

    2015-01-01

    Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473

  12. Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location.

    PubMed

    Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V

    2015-11-01

    Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A novel method for the identification of saliva by detecting oral streptococci using PCR.

    PubMed

    Nakanishi, Hiroaki; Kido, Akira; Ohmori, Takeshi; Takada, Aya; Hara, Masaaki; Adachi, Noboru; Saito, Kazuyuki

    2009-01-10

    We have used DNA amplification methods to detect common oral bacterial strains to test for the presence of saliva in forensic samples. Streptococcus salivarius and Streptococcus mutans were detected in various forms of saliva samples, whereas these streptococci were not detected in semen, urine, vaginal fluid, or on skin surfaces. Therefore, we demonstrated that these streptococci are promising new marker for the forensic identification of saliva. Our data indicated that S. salivarius is more reliable than S. mutans as an indicator of saliva presence, because the detection rates for S. salivarius and S. mutans by this method were 100% and 90%, respectively. Furthermore, S. salivarius was detected in all saliva stain samples, whereas S. mutans was only identified in 60% of the stains. Finally, using this method we were able to successfully detect S. salivarius and S. mutans in mock forensic samples. We therefore suggested that this method is useful for the identification of saliva in forensic science.

  14. Sensor Technology Assessment for Ordnance and Explosive Waste Detection and Location. Revision B.

    DTIC Science & Technology

    2007-11-02

    Engineers 17 Section 2.1 - An Overview Of Ordnance Sensor Technologies provides its own source of energy . The system "illuminates" the terrain with...electromagnetic energy , detects the energy returning from the terrain (called radar return), and then records it as an image. (Passive remote sensing systems...such as photography and thermal infrared sensing detect the available energy reflected or radiated from the terrain, whereas radar systems operate

  15. Smart dust technology for detection and identification of persons

    NASA Astrophysics Data System (ADS)

    Cechak, Jaroslav

    2008-01-01

    The presented contribution is focused on the field of alternative use of seismic and magnetic sensors in an urbanized environment. The first part of the contribution presents the results achieved in the development of these sensors. Both theoretical possibilities and practical results of developed sensors are analyzed here and supplemented with their photographs. The next part of the contribution deals with the design of communication between individual sensors applying the principles of C4ISR in the conditions of an urbanized environment and the proposal of the own/foreign persons identification concept in the conditions of an urbanized environment.

  16. Line Detection and Texture Analysis for Automatic Nematode Identification

    PubMed Central

    Fdez-Valdivia, J.; Pérez de la Blanca, N.; Castillo, P.; Gómez-Barcina, A.

    1992-01-01

    This paper is the second in a series studying procedures for estimating and calibrating features of nematodes from digital images. Two kinds of features were analyzed for recognition: those with a directional component and those with a textural component. Features that have a directional component (lateral field and annules) were preprocessed with classic algorithms and modified by directional filters. Features having texture (esophagus and intestine) were analyzed with vectors of measures to define them and the statistical technique CART (classification and regression trees) to explain the role that each measure plays in the identification and discrimination process. PMID:19283037

  17. Detection, isolation, and identification of Vibrio cholerae from the environment.

    PubMed

    Huq, Anwar; Haley, Bradd J; Taviani, Elisa; Chen, Arlene; Hasan, Nur A; Colwell, Rita R

    2012-08-01

    Recent molecular advances in microbiology have greatly improved the detection of bacterial pathogens in the environment. These improvements and a downward trend in the cost of molecular detection methods have contributed to increased frequency of detection of pathogenic microorganisms where traditional culture-based detection methods have failed. Culture methods also have been greatly improved, and the confluence of the two suites of methods provides a powerful tool for detection, isolation, and characterization of pathogens. While molecular detection provides data on the presence and type of pathogens, culturing methods allow a researcher to preserve the organism of interest for "-omics" studies, such as genomic, metabolomic, secretomic, and transcriptomic analysis, which are rapidly becoming more affordable. This has yielded a clearer understanding of the ecology and epidemiology of microorganisms that cause disease. In this unit, we present commonly accepted methods for isolation, detection, and characterization of V. cholerae, providing more extensive knowledge of the ecology and epidemiology of this organism. This unit has been fully revised and updated from the earlier version with the latest knowledge and additional information not previously included. © 2012 by John Wiley & Sons, Inc.

  18. GPS location history data mining and anomalous detection: the scenario of bar-headed geese migration

    USGS Publications Warehouse

    Luo, Ze; Xiong, Yan; Yan, Baoping; Prosser, Diann J.; Takekawa, John Y.; Lu, W.; Cai, G.; Liu, W.; Xing, W.

    2013-01-01

    It is important to discover common movement sequences and uncommon behaviors during the migration of wild birds. In this paper, we propose a new approach to analyze the GPS location history data of migratory birds. The stopover sites are first extracted from the location history data of birds, and their movement sequences are generated automatically. Then, a consistency calculation method is introduced for calculating the movement sequence consistency degrees among the birds. The common movement sequences and uncommon behaviors can be recognized on the basis of consistency. We conducted experiments on the data collected from bar-headed geese captured in the Qinghai Lake region. The experiment results indicate the correctness of our approach.

  19. Detection and location of partial discharges in transformer windings using electrical methods

    NASA Astrophysics Data System (ADS)

    McMullan, P. J.

    1983-11-01

    With the increase in power ratings of modern high voltage transformers has come a corresponding interest in the value of partial discharge testing for quality control, design of HV equipment and fault diagnosis. A critical limitation on the development of electrical methods for the location of partial discharges (PD's) in large transformer windings has been the difficulty of pre-determining the changes at transformer terminals due to known disturbances at unique positions within the unit. A particular location and calibration method which is thought to be an improvement on existing techniques is discussed. The new technique is a built-in calibration system having a controlled source of live partial discharges which may be moved up and down the windings under test. The system is intrinsically safe as all the components are insulating materials.

  20. Microwave detection system for locating hemorrhage sites within the cranium and other regions

    NASA Astrophysics Data System (ADS)

    Riechers, Ronald G., Sr.; Pasala, Krishna M.; Ling, Geoffrey S. F.

    1998-05-01

    A novel method for location and characterization of discontinuities in biological system is presented. The method uses electromagnetic waves in the microwave and RF region and a modified algorithm previously used for the estimation of the angle of arrival of radar signals. Results are presented for the case of a skull section backed by porcine brain and the same section backed by a layer of blood backed by porcine brain.

  1. Methods for detection, identification and specification of listerias

    DOEpatents

    Bochner, Barry

    1992-01-01

    The present invention relates generally to differential carbon source metabolism in the genus Listeria, metabolic, biochemical, immunological and genetic procedures to measure said differential carbon source metabolism and the use of these produces to detect, isolate and/or distinguish species of the genus Listeria as well as detect, isolate and/or distinguish strains of species of Listeria. The present invention also contemplates test kits and enrichment media to facilitate these procedures.

  2. Detection and location of pipe damage by artificial-neural-net-processed moire error maps

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Cahall, Scott C.

    1993-05-01

    A novel automated inspection technique to recognize, locate, and quantify damage is developed. This technique is based on two already existing technologies: video moire metrology and artificial neural networks. Contour maps generated by video moire techniques provide an accurate description of surface structure that can then be automated by means of neutral networks. Artificial neural networks offer an attractive solution to the automated interpretation problem because they can generalize from the learned samples and provide an intelligent response for similar patterns having missing or noisy data. Two dimensional video moire images of pipes with dents of different depths, at several rotations, were used to train a multilayer feedforward neural network by the backpropagation algorithm. The backpropagation network is trained to recognize and classify the video moire images according to the dent's depth. Once trained, the network outputs give an indication of the probability that a dent has been found, a depth estimate, and the axial location of the center of the dent. This inspection technique has been demonstrated to be a powerful tool for the automatic location and quantification of structural damage, as illustrated using dented pipes.

  3. Detection, location, and quantification of structural damage by neural-net-processed moiré profilometry

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.

    1992-03-01

    The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.

  4. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    SciTech Connect

    Heiser,J.H.; Adams, J.; Dietz, R..; Milian, L.; Watson, T.

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100's of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow

  5. Traffic Sign Detection System for Locating Road Intersections and Roundabouts: The Chilean Case

    PubMed Central

    Villalón-Sepúlveda, Gabriel; Torres-Torriti, Miguel; Flores-Calero, Marco

    2017-01-01

    This paper presents a traffic sign detection method for signs close to road intersections and roundabouts, such as stop and yield (give way) signs. The proposed method relies on statistical templates built using color information for both segmentation and classification. The segmentation method uses the RGB-normalized (ErEgEb) color space for ROIs (Regions of Interest) generation based on a chromaticity filter, where templates at 10 scales are applied to the entire image. Templates consider the mean and standard deviation of normalized color of the traffic signs to build thresholding intervals where the expected color should lie for a given sign. The classification stage employs the information of the statistical templates over YCbCr and ErEgEb color spaces, for which the background has been previously removed by using a probability function that models the probability that the pixel corresponds to a sign given its chromaticity values. This work includes an analysis of the detection rate as a function of the distance between the vehicle and the sign. Such information is useful to validate the robustness of the approach and is often not included in the existing literature. The detection rates, as a function of distance, are compared to those of the well-known Viola–Jones method. The results show that for distances less than 48 m, the proposed method achieves a detection rate of 87.5% and 95.4% for yield and stop signs, respectively. For distances less than 30 m, the detection rate is 100% for both signs. The Viola–Jones approach has detection rates below 20% for distances between 30 and 48 m, and barely improves in the 20–30 m range with detection rates of up to 60%. Thus, the proposed method provides a robust alternative for intersection detection that relies on statistical color-based templates instead of shape information. The experiments employed videos of traffic signs taken in several streets of Santiago, Chile, using a research platform implemented at

  6. Traffic Sign Detection System for Locating Road Intersections and Roundabouts: The Chilean Case.

    PubMed

    Villalón-Sepúlveda, Gabriel; Torres-Torriti, Miguel; Flores-Calero, Marco

    2017-05-25

    This paper presents a traffic sign detection method for signs close to road intersections and roundabouts, such as stop and yield (give way) signs. The proposed method relies on statistical templates built using color information for both segmentation and classification. The segmentation method uses the RGB-normalized (ErEgEb) color space for ROIs (Regions of Interest) generation based on a chromaticity filter, where templates at 10 scales are applied to the entire image. Templates consider the mean and standard deviation of normalized color of the traffic signs to build thresholding intervals where the expected color should lie for a given sign. The classification stage employs the information of the statistical templates over YCbCr and ErEgEb color spaces, for which the background has been previously removed by using a probability function that models the probability that the pixel corresponds to a sign given its chromaticity values. This work includes an analysis of the detection rate as a function of the distance between the vehicle and the sign. Such information is useful to validate the robustness of the approach and is often not included in the existing literature. The detection rates, as a function of distance, are compared to those of the well-known Viola-Jones method. The results show that for distances less than 48 m, the proposed method achieves a detection rate of 87.5 % and 95.4 % for yield and stop signs, respectively. For distances less than 30 m, the detection rate is 100 % for both signs. The Viola-Jones approach has detection rates below 20 % for distances between 30 and 48 m, and barely improves in the 20-30 m range with detection rates of up to 60 % . Thus, the proposed method provides a robust alternative for intersection detection that relies on statistical color-based templates instead of shape information. The experiments employed videos of traffic signs taken in several streets of Santiago, Chile, using a research platform implemented at

  7. Development of a computerized scheme for detection of very subtle lung nodules located in opaque areas on chest radiographs

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junji; Li, Qiang; Doi, Kunio

    2006-03-01

    The detection of lung nodules located in opaque areas including the mediastinum, retrocardiac lung, and lung projected below or on the diaphragm has been very difficult, because the contrast of these nodules is usually extremely low, and sometimes radiologists may not pay attention to these locations. In this study, we have developed a new computer-aided diagnostic (CAD) scheme designed specifically for the detection of these difficult-to-detect lung nodules located in opaque areas. We used 1,000 chest images with 1,076 lung nodules, which included 73 very difficult lung nodules in these opaque areas. In this new computerized scheme, opaque areas within a chest image were segmented by use of an adaptive multi-thresholding method based on edge-gradient values, and then the gray level and contrast of the chest image were adjusted for the opaque areas. Initial candidates were identified by use of the nodule-enhanced image obtained with the average radial-gradient (ARG) filtering technique based on radial gradient values. We employed a total of 35 image features for sequential application of artificial neural networks (ANNs) in order to reduce the number of false-positive candidates. The ANNs were trained and tested by use of a k-fold cross-validation test method (k=100), in which each of 100 different combinations of training and test image data sets included 990 and 10 chest images, respectively. The overall performance determined from the results of 100 test data sets indicated that the average sensitivity in detecting lung nodules was 52.1% with 1.89 false positives per image, which was considered "acceptable", because these nodules were very subtle and difficult to detect. By combination of this advanced CAD scheme with our standard CAD scheme for lung-nodule detection, the clinical usefulness of the CAD scheme would be improved significantly.

  8. Fault detection in an air-handling unit using residual and recursive parameter identification methods

    SciTech Connect

    Lee, W.Y.; Park, C.; Kelly, G.E.

    1996-11-01

    A scheme for detecting faults in an air-handling unit using residual and parameter identification methods is presented. Faults can be detected by comparing the normal or expected operating condition data with the abnormal, measured data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system parameter identification technique. In this study, autoregressive moving average with exogenous input (ARMAX) and autoregressive with exogenous input (ARX) models with both single-input/single-output (SISO) and multi-input/single-output (MISO) structures are examined. Model parameters are determined using the Kalman filter recursive identification method. This approach is tested using experimental data from a laboratory`s variable-air-volume (VAV) air-handling unit operated with and without faults.

  9. Novel and sensitive qPCR assays for the detection and identification of aspergillosis causing species.

    PubMed

    Paholcsek, Melinda; Leiter, Eva; Markovics, Arnold; Biró, Sándor

    2014-09-01

    Despite concerted efforts, diagnosis of aspergillosis is still a great challenge to clinical microbiology laboratories. Along with the requirement for high sensitivity and specificity, species-specific identification is important. We developed rapid, sensitive and species-specific qPCR assays using the TaqMan technology for the detection and identification of Aspergillus fumigatus and Aspergillus terreus. The assays were designed to target orthologs of the Streptomyces factor C gene that are only found in a few species of filamentous fungi. Fungi acquired this gene through horizontal gene transfer and divergence of the gene allows identification of species. The assays have potential as a molecular diagnosis tool for the early detection of fungal infection caused by Aspergillus fumigatus and Aspergillus terreus, which merits future diagnostic studies. The assays were sensitive enough to detect a few genomic equivalents in blood samples.

  10. CT image quality evaluation for detection of signals with unknown location, size, contrast and shape using unsupervised methods

    NASA Astrophysics Data System (ADS)

    Pezeshk, Aria X.; Popescu, Lucretiu; Sahiner, Berkman

    2015-03-01

    The advent of new image reconstruction and image processing techniques for CT images has increased the need for robust objective image quality assessment methods. One of the most common quality assessment methods is the measurement of signal detectability for a known signal at a known location using supervised classification techniques. However, this method requires a large number of simulations or physical measurements, and its underlying assumptions may be considered clinically unrealistic. In this study we focus on objective assessment of image quality in terms of detection of a signal with unknown location, size, shape, and contrast. We explore several unsupervised saliency detection methods which assume no knowledge about the signal, along with a template matching technique which uses information about the signal's size and shape in the object domain, for simulated phantoms that have been reconstructed using filtered back projection (FBP) and iterative reconstruction algorithms (IRA). The performance of each of the image reconstruction algorithms is then measured using the area under the localization receiver operating characteristic curve (LROC) and exponential transformation of the free response operating characteristic curve (EFROC). Our results indicate that unsupervised saliency detection methods can be effectively used to determine image quality in terms of signal detectability for unknown signals given only a small number of sample images.

  11. An Evaluation of Detect and Avoid Displays for UAS: The Effect of Information Level and Display Location on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Pack, Jessica; Shively, Jay; Draper, Mark H.

    2015-01-01

    The pilot-in-the-loop Detect-and-Avoid (DAA) task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays.

  12. Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array

    NASA Astrophysics Data System (ADS)

    Hansen, Steven M.; Schmandt, Brandon

    2015-09-01

    In the summer of 2014 a dense array of 904 geophones was deployed at Mount St. Helens along the road and trail system within 15 km distance of the summit crater. The array recorded continuous data for approximately 2 weeks and presents an unprecedented seismic observation of an active volcano. A reverse-time imaging method is applied to short-term-average over long-term-average time series data to automatically detect and locate microseismicity. These efforts resulted in an order of magnitude increase in earthquake detections over the normal monitoring operations of the Pacific Northwest Seismic Network. Earthquake locations resolve a narrow, ≤1 km wide, vertical lineament of seismicity which extends from the surface to 4 km depth directly beneath the summit crater. This feature is interpreted as a fracture network that acts as a conduit connecting an underlying magma chamber to the surface.

  13. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.

    PubMed

    Kayasandik, Cihan Bilge; Labate, Demetrio

    2016-12-01

    Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Detecting Answer Copying Using Alternate Test Forms and Seat Locations in Small-Scale Examinations

    ERIC Educational Resources Information Center

    van der Ark, L. Andries; Emons, Wilco H. M.; Sijtsma, Klaas

    2008-01-01

    Two types of answer-copying statistics for detecting copiers in small-scale examinations are proposed. One statistic identifies the "copier-source" pair, and the other in addition suggests who is copier and who is source. Both types of statistics can be used when the examination has alternate test forms. A simulation study shows that the…

  15. Mapping the risk of sudden oak death in Oregon: prioritizing locations for early detection and eradication

    Treesearch

    V& aacute; clavík Tom& aacute; & scaron; ; Alan Kanaskie; Ellen Goheen; Janet Ohmann; Everett Hansen; Ross Meentemeyer

    2010-01-01

    Phytophthora ramorum was first discovered in forests of southwestern Oregon in 2001. Despite intense eradication efforts, disease continues to spread from initially infested sites because of the late discovery of disease outbreaks and incomplete detection. Here we present two GIS predictive models of sudden oak death (SOD) establishment and spread...

  16. Enhanced signal processing algorithms for buried unexploded ordnance detection and location estimation with magnetometer and electromagnetic induction measurements

    SciTech Connect

    Witten, A.

    1993-09-01

    Enhanced signal processing algorithms have been developed for the detection and location of buried unexploded ordnance using magnetometry and electromagnetic induction (EMI) measurements. These signal processing algorithms are related to those used to image with geophysical diffraction tomography (GDT) employing wave-based measurements. The underlying relationship of GDT is the Generalized Projection Slice Theorem (GPST) that relates the spatial Fourier transform of acquired data to the spatial Fourier transform of subsurface inhomogeneities of one higher dimension. This relationship can be used to simulate data templates for known targets and, by virtue of the shift property of Fourier transforms, a data simulation need only be computed for one reference target location. All other target locations are generated by an appropriate phase shift. These data templates can be correlated with acquired data to determine the spatial distribution of probable target location. This approach to target detection and location estimation, referred to as a maximum likelihood estimation, can be used to produce an {open_quotes}image{close_quotes} of the likelihood of a specified target`s position. For non wave-based methods, the relationship between data and target characteristics is not strictly associated with Fourier transforms. In the case of magnetometry, the appropriate GPST requires a Fourier-Laplace transform of the target characteristics while the EMI GPST is based on an integral transform with a complex wavenumber. Nevertheless, the shift rule for integral transforms can be invoked to yield GPST`s for these tools and the associated computationally efficient maximum likelihood estimators. The EMI detection algorithm was applied to data acquired at a known underground storage tank site and the algorithms for both magnetometry and EMI were applied to data acquired at the Magnetic Range of the Naval EOD Tech Center in Indian Head, Maryland.

  17. An automatic system to detect and extract texts in medical images for de-identification

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Singh, P. D.; Siddiqui, Khan; Gillam, Michael

    2010-03-01

    Recently, there is an increasing need to share medical images for research purpose. In order to respect and preserve patient privacy, most of the medical images are de-identified with protected health information (PHI) before research sharing. Since manual de-identification is time-consuming and tedious, so an automatic de-identification system is necessary and helpful for the doctors to remove text from medical images. A lot of papers have been written about algorithms of text detection and extraction, however, little has been applied to de-identification of medical images. Since the de-identification system is designed for end-users, it should be effective, accurate and fast. This paper proposes an automatic system to detect and extract text from medical images for de-identification purposes, while keeping the anatomic structures intact. First, considering the text have a remarkable contrast with the background, a region variance based algorithm is used to detect the text regions. In post processing, geometric constraints are applied to the detected text regions to eliminate over-segmentation, e.g., lines and anatomic structures. After that, a region based level set method is used to extract text from the detected text regions. A GUI for the prototype application of the text detection and extraction system is implemented, which shows that our method can detect most of the text in the images. Experimental results validate that our method can detect and extract text in medical images with a 99% recall rate. Future research of this system includes algorithm improvement, performance evaluation, and computation optimization.

  18. Forgery detection and value identification of Euro banknotes.

    PubMed

    Bruna, Arcangelo; Farinella, Giovanni Maria; Guarnera, Giuseppe Claudio; Battiato, Sebastiano

    2013-02-18

    This paper describes both hardware and software components to detect counterfeits of Euro banknotes. The proposed system is also able to recognize the banknote values. Differently than other state-of-the-art methods, the proposed approach makes use of banknote images acquired with a near infrared camera to perform recognition and authentication. This allows one to build a system that can effectively deal with real forgeries, which are usually not detectable with visible light. The hardware does not use any mechanical parts, so the overall system is low-cost. The proposed solution is reliable for ambient light and banknote positioning. Users should simply lean the banknote to be analyzed on a flat glass, and the system detects forgery, as well as recognizes the banknote value. The effectiveness of the proposed solution has been properly tested on a dataset composed by genuine and fake Euro banknotes provided by Italy's central bank. 

  19. Forgery Detection and Value Identification of Euro Banknotes

    PubMed Central

    Bruna, Arcangelo; Farinella, Giovanni Maria; Guarnera, Giuseppe Claudio; Battiato, Sebastiano

    2013-01-01

    This paper describes both hardware and software components to detect counterfeits of Euro banknotes. The proposed system is also able to recognize the banknote values. Differently than other state-of-the-art methods, the proposed approach makes use of banknote images acquired with a near infrared camera to perform recognition and authentication. This allows one to build a system that can effectively deal with real forgeries, which are usually not detectable with visible light. The hardware does not use any mechanical parts, so the overall system is low-cost. The proposed solution is reliable for ambient light and banknote positioning. Users should simply lean the banknote to be analyzed on a flat glass, and the system detects forgery, as well as recognizes the banknote value. The effectiveness of the proposed solution has been properly tested on a dataset composed by genuine and fake Euro banknotes provided by Italy's central bank. PMID:23429514

  20. Ultrasonic detection and identification of fabrication defects in composites

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Kullerd, Susan M.; Johnston, Patrick H.; Madaras, Eric I.

    1991-01-01

    Methods for deliberate fabrication of porosity into carbon/epoxy composite panels and the influence of three-dimensional stitching on the detection of porosity were investigated. Two methods of introducing porosity were investigated. Porosity was simulated by inclusion of glass microspheres, and a more realistic form of porosity was introduced by using low pressure during consolidation. The panels were ultrasonically scanned and the frequency slope of the ultrasonic attenuation coefficient was used to evaluate the two forms of porosity. The influence of stitching on the detection of porosity was studied using panels which were resin transfer molded from stitched plies of knitted carbon fabric and epoxy resin.

  1. [Fast identification of Salmonella by chemiluminescent photographic detection].

    PubMed

    Yang, X; Wu, L; Zhang, H; Zhang, Y

    1993-09-01

    Salmonella anatis was identified by the chemiluminescent photographic detection technique established in this lab. The horseradish peroxidase labelled antibody was incubated with the bacteria immobilized on nitrocellulose film; after washing, the film was contacted with a filter paper with absorbed chemiluminescence substrate solution. Twenty minutes of exposure of the chemiluminescence produced to X-ray film gave the positive results. As few as one hundred bacteria could be detected in about 2h. The tests showed that the specificity of the method is good.

  2. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  3. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  4. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    SciTech Connect

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  5. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  6. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  7. RESEARCH PROGRAM FOR ALERTING DETECTION AND IDENTIFICATION OF PATHOGENS.

    DTIC Science & Technology

    and Proteus vulgaris could be detected in growth medium within 2 hours incubation. The use of cometabilizable substrates, halogen substituted acids...examination of the sera of dogs infected with infectious hepatitus, herpes, and distemper viruses showed a specific response to each virus. The use of

  8. Sex pheromone source location by garter snakes: : A mechanism for detection of direction in nonvolatile trails.

    PubMed

    Ford, N B; Low, J R

    1984-08-01

    Male plains garter snakes,Thamnophis radix, tested in a 240-cm-long arena can detect directional information from a female pheromone trail only when the female is allowed to push against pegs while laying the trail. The female's normal locomotor activity apparently deposits pheromone on the anterolateral surfaces of vertical structures in her environment. The male sensorily assays the sides of these objects and from this information determines the female's direction of travel.

  9. Visual change detection: event-related potentials are dependent on stimulus location in humans.

    PubMed

    Czigler, István; Balázs, László; Pató, Lívia G

    2004-07-08

    Infrequent colored patterns within sequences of patterns of frequent color elicited a posterior negative event-related potential component only in case of lower half-field stimulation. This negativity in the 140-200 ms latency range is considered as a correlate of automatic visual change detection (visual mismatch negativity, vMMN). Retinotopic prestriate visual areas are suggested to be the generating loci of vMMN.

  10. Satellite-Based EMI Detection, Identification, and Mitigation

    NASA Astrophysics Data System (ADS)

    Stottler, R.; Bowman, C.

    2016-09-01

    Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.

  11. Detection and identification of wild yeasts in lager breweries.

    PubMed

    van der Aa Kühle, A; Jespersen, L

    1998-09-08

    Wild yeasts were detected in 41 out of 101 brewery yeast samples investigated using six different selective principles. Malt extract, yeast extract, glucose, peptone (MYGP) agar supplemented with 195 ppm CuSO4 was found to be the most effective selective principle, detecting wild yeasts in 80% of the contaminated samples. Both Saccharomyces and non-Saccharomyces wild yeasts were detected on this medium. Lysine medium, crystal violet medium and incubation of non-selective media at 37 degrees C detected wild yeasts in 46-56% of the contaminated samples. On using actidione medium, only 20% of the wild yeasts were detected. The combined use of MYGP supplemented with 195 ppm CuSO4 and one of the other selective principles did not improve the recovery of the wild yeasts. The wild yeasts found consisted of Saccharomyces cerevisiae (57%), Pichia spp. (28%) and Candida spp. (15%). Using the API ID 32 C kit, 35 different assimilation profiles were obtained for the 124 wild yeast isolates investigated. All isolates were capable of glucose assimilation, whereas only 79% of the isolates assimilated saccharose, 75% maltose, 70% galactose, 65% raffinose and 65% lactate. Lactose, inositol, rhamnose and glucuronate were not assimilated by any of the isolates. The differences in assimilation pattern did not reflect any differences in recovery by the selective principles investigated. The majority of the wild yeast isolates investigated were capable of growth in wort and beer, indicating their possible role as spoilage organisms. The Sacch. cerevisiae isolates were found to be the most hazardous, with some isolates being capable of extensive growth in bottled beer within seventeen days at ambient temperature.

  12. Detection and identification of spatial offset: double-judgment psychophysics revisited.

    PubMed

    Allik, Jüri; Toom, Mai; Rauk, Marika

    2014-11-01

    In a bull's-eye acuity task, we asked observers to identify in which direction, to the left or the right, a spot had been displaced from the center of a circle and-after that, in the same trial-to detect which of the two presented circles contained the displaced spot. Replicating our previous findings (Allik, Dzhafarov, & Rauk, 1982), the spatial offset direction identification probability was higher than the probability with which the correct observation interval could be detected. All data were explained by a Thurstonian model, according to which the spatial positions of both spots are projected onto an internal axis of representation as two random numbers, x and y, drawn from a random distribution with a fixed standard deviation ς (final sigma). The observed identification and detection probabilities were accurately reproduced, provided that the observer tested two different inequalities: x + y > 0 for the identification, and x (2) - y (2) > 0 for the detection. In order to eliminate small discrepancies between the predicted and the observed data, we proposed that the positional error increases with increasing distance from the center of the annulus. It was concluded that, to explain the superiority of the identification over the detection effect, there is no need to propose separate axes of representation for mono- and bipolar information, as is usually postulated in double-judgment psychophysics.

  13. SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures.

    PubMed

    Biro, Jan C; Fördös, Gergely

    2005-07-12

    The interacting residues of protein and nucleic acid sequences are close to each other - they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user: a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s). c. defines a distance from these atoms (3-15 A). The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s); provides a DotPlot-like visualization (Residues Contact Map), and calculates the frequency of every possible residue pairs (Residue Contact Table) in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA). Results obtained on protein structures showed highly significant correlations with results obtained from literature (p < 0.0001, n = 210, four different subsets). The co-location frequency of physico-chemically compatible amino acids is significantly higher than is calculated and expected in random protein sequences (p < 0.0001, n = 80). The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. AVAILABILITY AND REQUIREMENTS: http://janbiro.com/Downloads.html SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] http://www.sun.com) and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors.

  14. SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures

    PubMed Central

    Biro, Jan C; Fördös, Gergely

    2005-01-01

    Background The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. Results SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s) c. defines a distance from these atoms (3–15 Å). The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s); provides a DotPlot-like visualization (Residues Contact Map), and calculates the frequency of every possible residue pairs (Residue Contact Table) in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA). Results obtained on protein structures showed highly significant correlations with results obtained from literature (p < 0.0001, n = 210, four different subsets). The co-location frequency of physico-chemically compatible amino acids is significantly higher than is calculated and expected in random protein sequences (p < 0.0001, n = 80). Conclusion The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. Availability and requirements SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] ) and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors. PMID:16011796

  15. A new method for producing automated seismic bulletins: Probabilistic event detection, association, and location

    DOE PAGES

    Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; ...

    2015-10-01

    Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less

  16. Detection and location of multiple events by MARS. Final report. [Multiple Arrival Recognition System

    SciTech Connect

    Wang, J.; Masso, J.F.; Archambeau, C.B.; Savino, J.M.

    1980-09-01

    Seismic data from two explosions was processed using the Systems Science and Software MARS (Multiple Arrival Recognition System) seismic event detector in an effort to determine their relative spatial and temporal separation on the basis of seismic data alone. The explosions were less than 1.0 kilometer apart and were separated by less than 0.5 sec in origin times. The seismic data consisted of nine local accelerograms (r < 1.0 km) and four regional (240 through 400 km) seismograms. The MARS processing clearly indicates the presence of multiple explosions, but the restricted frequency range of the data inhibits accurate time picks and hence limits the precision of the event location.

  17. Detecting target velocity and location using a novel optoelectronic sensing system

    NASA Astrophysics Data System (ADS)

    Chang, Chi Ching

    2004-12-01

    We propose a cost-effective, compact, and robust optoelectronic sensing system for measuring ballistic impact velocity and distribution of the projectile motion. The key elements consisted of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of that. The time interval passing each pair can be measured precisely (~10-8 s). The average velocity and location of projectile are carried out according the measured time intervals. The system can precisely measure the velocity of a bullet as it leaves a gun barrel and the velocity toward the trajectory outside the firearm. Furthermore, the system uses a commonly found low-powered laser pointer as light source. Compared with other optoelectronic sensing systems that use high-powered lasers, our system is both economical and safe.

  18. A new method for producing automated seismic bulletins: Probabilistic event detection, association, and location

    SciTech Connect

    Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; Brogan, Ronald

    2015-10-01

    Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phases are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.

  19. Low-level mixing height detection in coastal locations with a scanning Doppler lidar

    NASA Astrophysics Data System (ADS)

    Vakkari, V.; O'Connor, E. J.; Nisantzi, A.; Mamouri, R. E.; Hadjimitsis, D. G.

    2015-04-01

    Mixing layer height (MLH) is one of the key parameters in describing lower tropospheric dynamics and capturing its diurnal variability is crucial, especially for interpreting surface observations. In this paper we introduce a method for identifying MLH below the minimum range of a scanning Doppler lidar when operated at vertical. The method we propose is based on velocity variance in low-elevation-angle conical scanning and is applied to measurements in two very different coastal environments: Limassol, Cyprus, during summer and Loviisa, Finland, during winter. At both locations, the new method agrees well with MLH derived from turbulent kinetic energy dissipation rate profiles obtained from vertically pointing measurements. The low-level scanning routine frequently indicated non-zero MLH less than 100 m above the surface. Such low MLHs were more common in wintertime Loviisa on the Baltic Sea coast than during summertime in Mediterranean Limassol.

  20. In harbor underwater threat detection/identification using active imaging

    NASA Astrophysics Data System (ADS)

    Weidemann, Alan; Fournier, Georges R.; Forand, Luc; Mathieu, Pierre

    2005-05-01

    We present results from trials of the LUCIE 2 (Laser Underwater Camera Image Enhancer) conducted in Halifax Harbor, Nova Scotia, Canada and Esquimalt Harbor, Victoria, British Columbia, Canada. LUCIE 2 is a new compact laser range gated camera (10 inches in diameter, 24 inches in length, and neutrally buoyant in water) originally designed to improve search and recovery operations under eye safe restrictions. The flexibility and eye safety of this second generation LUCIE makes it a tool for improved hull searches and force protection operations when divers are in the water attempting to identify bottom lying objects. The camera is equipped with a full image geo-positioning system. To cover various environmental and targets size conditions, the gate-delay, gate width, polarization and viewing and illuminating angles can be varied as well. We present an analysis on the performance of the system in various water conditions using several target types and a comparison with diver and camera identification. Coincident in-situ optical properties of absorption and scattering were taken to help resolve the environmental information contained in the LUCIE image. Several new capabilities are currently being designed and tested, among them a differential polarization imaging system, a stabilized line of sight system with step-stare capability for high resolution mosaic area coverage, a precision dimensioning system and a diver guided and operated version.

  1. Implementation of a novel double-side technique for partial discharge detection and location in covered conductor overhead distribution networks

    NASA Astrophysics Data System (ADS)

    He, Weisheng; Li, Hongjie; Liang, Deliang; Sun, Haojie; Yang, Chenbo; Wei, Jinqu; Yuan, Zhijian

    2015-12-01

    Partial discharge (PD) detection has proven to be one of the most acceptable techniques for on-line condition monitoring and predictive maintenance of power apparatus. A powerful tool for detecting PD in covered-conductor (CC) lines is urgently needed to improve the asset management of CC overhead distribution lines. In this paper, an appropriate, portable and simple system designed to detect PD activity in CC lines and ultimately pinpoint the PD source is developed and tested. The system is based on a novel double-side synchronised PD measurement technique driven by pulse injection. Emphasis is placed on the proposed PD-location mechanism and hardware structure, with descriptions of the pulse-injection process, detection device, synchronisation principle and PD-location algorithm. The system is simulated using ATP-EMTP, and the simulated results are found to be consistent with the actual simulation layout. For further validation, the capability of the system is tested in a high-voltage laboratory experiment using a 10-kV CC line with cross-linked polyethylene insulation.

  2. Identification and detection of anomalies through SSME data analysis

    NASA Technical Reports Server (NTRS)

    Pereira, Lisa; Ali, Moonis

    1990-01-01

    The goal of the ongoing research described in this paper is to analyze real-time ground test data in order to identify patterns associated with the anomalous engine behavior, and on the basis of this analysis to develop an expert system which detects anomalous engine behavior in the early stages of fault development. A prototype of the expert system has been developed and tested on the high frequency data of two SSME tests, namely Test #901-0516 and Test #904-044. The comparison of our results with the post-test analyses indicates that the expert system detected the presence of the anomalies in a significantly early stage of fault development.

  3. Experimental Progress Toward Detection and Identification of Electromagnetically Complex Structures

    DTIC Science & Technology

    2008-12-01

    requiring geolocation. These requirements led us to our choice of a pulsed ultra wide band ( UWB ) detection system. Structures of interest (targets...8-98) Prescribed by ANSI Std Z39-18 2 function of multiple frequencies contained in the UWB transmit pulse ). The range dependence of...test circuit) in the field . A technique for reliably predicting range from the pulsed radar receiver signals is available, and the range dependence of

  4. Automatic Identification of Specular Detections in Multistatic Sonar Systems

    DTIC Science & Technology

    2010-06-01

    contacts, each with measurements of arrival angle, arrival time, received level ( LVL ), SNR, as well as other feature or classification information. The...region are ignored. Within each segment, the maximum SNR (or, LVL ) of all the detection contacts is extracted and stored (indicated by the red colored...contacts indicating the contact with the maximum SNR/ LVL within each segment. Figure 15. Depiction of a maximal

  5. Multichannel System Identification and Detection Using Output Data Techniques

    DTIC Science & Technology

    1993-07-01

    Information Security Program Regulation. For unclassified limited documents, destroy by any method that will prevent disclosure of contents or reconstruction...detection methods must discriminate between the condition of target embedded in clutter and noise, and the condition of clutter and noise only. Figure 1-1... methods because the fundamental operation of the algorithm is to decompose the vector space spanned by the channel output data into signal and noise

  6. Neutron Interrogation System For Underwater Threat Detection And Identification

    SciTech Connect

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-10

    Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

  7. Rapid Detection and Identification of Respiratory Viruses by Direct Immunofluorescence

    PubMed Central

    D'Alessio, Donn; Williams, Stanley; Dick, Elliot C.

    1970-01-01

    The use of fluorescein-conjugated antiserum against respiratory syncytial (RS) and parainfluenza 1 and 3 viruses was compared with conventional techniques in the rapid detection of virus in tissue cultures inoculated with pharyngeal specimens known to contain these viruses. Twenty-three specimens were tested: 9 RS, 8 parainfluenza 1, and 6 parainfluenza 3. The fluorescent-antibody technique (FA) detected virus in 52% of the tissue cultures in 24 hr, and, by 72 hr, 22 of the 23 cultures were FA-positive whereas only 5 were positive by conventional techniques. Additionally, conjugated antisera were prepared against herpes simplex, influenza A2, and adenovirus type 5. All conjugates stained only the homologous virus and were 100- to 10,000-fold more sensitive than conventional techniques in detecting descending dilutions of virus inocula by 24 hr. With the procedures described, several antisera could be conjugated and ready for use within 24 hr. Serum fractionation was by ammonium sulfate precipitation, and with the procedure outlined virtually complete recovery of the globulin fraction and elimination of all of the albumin were accomplished. Images PMID:4098101

  8. Neutron Interrogation System For Underwater Threat Detection And Identification

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

  9. Fast Retinal Vessel Detection and Measurement Using Wavelets and Edge Location Refinement

    PubMed Central

    Bankhead, Peter; Scholfield, C. Norman

    2012-01-01

    The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available. PMID:22427837

  10. A PC-based computer package for automatic detection and location of earthquakes: Application to a seismic network in eastern sicity (Italy)

    NASA Astrophysics Data System (ADS)

    Patanè, Domenico; Ferrari, Ferruccio; Giampiccolo, Elisabetta; Gresta, Stefano

    Few automated data acquisition and processing systems operate on mainframes, some run on UNIX-based workstations and others on personal computers, equipped with either DOS/WINDOWS or UNIX-derived operating systems. Several large and complex software packages for automatic and interactive analysis of seismic data have been developed in recent years (mainly for UNIX-based systems). Some of these programs use a variety of artificial intelligence techniques. The first operational version of a new software package, named PC-Seism, for analyzing seismic data from a local network is presented in Patanè et al. (1999). This package, composed of three separate modules, provides an example of a new generation of visual object-oriented programs for interactive and automatic seismic data-processing running on a personal computer. In this work, we mainly discuss the automatic procedures implemented in the ASDP (Automatic Seismic Data-Processing) module and real time application to data acquired by a seismic network running in eastern Sicily. This software uses a multi-algorithm approach and a new procedure MSA (multi-station-analysis) for signal detection, phase grouping and event identification and location. It is designed for an efficient and accurate processing of local earthquake records provided by single-site and array stations. Results from ASDP processing of two different data sets recorded at Mt. Etna volcano by a regional network are analyzed to evaluate its performance. By comparing the ASDP pickings with those revised manually, the detection and subsequently the location capabilities of this software are assessed. The first data set is composed of 330 local earthquakes recorded in the Mt. Etna erea during 1997 by the telemetry analog seismic network. The second data set comprises about 970 automatic locations of more than 2600 local events recorded at Mt. Etna during the last eruption (July 2001) at the present network. For the former data set, a comparison of the

  11. Pyrosequencing as a tool for rapid fish species identification and commercial fraud detection.

    PubMed

    De Battisti, Cristian; Marciano, Sabrina; Magnabosco, Cristian; Busato, Sara; Arcangeli, Giuseppe; Cattoli, Giovanni

    2014-01-08

    The increased consumption of fish products, as well as the occurrence of exotic fish species in the Mediterranean Sea and in the fish market, has increased the risk of commercial fraud. Furthermore, the great amount of processed seafood products has greatly limited the application of classic identification systems. DNA-based identification allows a clear and unambiguous detection of polymorphisms between species, permitting differentiation and identification of both commercial fraud and introduction of species with potential toxic effects on humans. In this study, a novel DNA-based approach for differentiation of fish species based on pyrosequencing technology has been developed. Raw and processed fish products were tested, and up to 25 species of fish belonging to Clupeiformes and Pleuronectiformes groups were uniquely and rapidly identified. The proper identification based on short and unique genetic sequence signatures demonstrates that this approach is promising and cost-effective for large-scale surveys.

  12. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.

  13. Improved detection of differentially expressed genes through incorporation of gene locations.

    PubMed

    Xiao, Guanghua; Reilly, Cavan; Khodursky, Arkady B

    2009-09-01

    In determining differential expression in cDNA microarray experiments, the expression level of an individual gene is usually assumed to be independent of the expression levels of other genes, but many recent studies have shown that a gene's expression level tends to be similar to that of its neighbors on a chromosome, and differentially expressed (DE) genes are likely to form clusters of similar transcriptional activity along the chromosome. When modeled as a one-dimensional spatial series, the expression level of genes on the same chromosome frequently exhibit significant spatial correlation, reflecting spatial patterns in transcription. By modeling these spatial correlations, we can obtain improved estimates of transcript levels. Here, we demonstrate the existence of spatial correlations in transcriptional activity in the Escherichia coli (E. coli) chromosome across more than 50 experimental conditions. Based on this finding, we propose a hierarchical Bayesian model that borrows information from neighboring genes to improve the estimation of the expression level of a given gene and hence the detection of DE genes. Furthermore, we extend the model to account for the circular structure of E. coli chromosome and the intergenetic distance between gene neighbors. The simulation studies and analysis of real data examples in E. coli and yeast Saccharomyces cerevisiae show that the proposed method outperforms the commonly used significant analysis of microarray (SAM) t-statistic in detecting DE genes.

  14. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service.

    PubMed

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-02-22

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption.

  15. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  16. Detection and location of OP-degrading activity: A model to integrate education and research.

    PubMed

    Iyer, Rupa; Smith, Kevin; Kudrle, Bill; Leon, Alex

    2015-06-25

    The Environmental Sampling Research Module (ESRM) is an investigative/discovery module that provides undergraduate research experiences for students as part of an interdisciplinary research-based biotechnology curriculum at the University of Houston campus. As part of the ESRM, students collect soil samples from various locations to test for the presence of organophosphorous (OP) degrading bacteria. At the end of this research project students submit a research paper on their field and laboratory activities and discuss their experimental data and observations. Students also record the date, location of collection, and the results of testing the sample for the degradation of two pesticides, methyl parathion or paraoxon, in an electronic laboratory notebook (ELN). Each collection site is recorded on a Google Maps module and the data from student research activities is made available to other undergraduate students. This data is then used to generate a microorganism database of pesticide degrading activity and promote reading, critical thinking, and analytical skills as part of the curriculum. Our sampling of agricultural sites and wastewater within and around the city of Houston has identified seven distinct genera of OP degrading organisms, including Pseudomonas, Stenotrophomonas, Exiguobacterium, Delftia, Agrobacterium, Aeromonas, and Rhizobium. Collected strains exhibit phosphotriesterase-like enzymatic activity with isolates of Pseudomonas putida and Stenotrophomonas maltophilia capable of degrading both the phosphotriester paraoxon and the phosphorothioate methyl parathion. Using this collection of OP-degrading microorganisms, undergraduate students have evaluated their potential for enhancing the removal of harmful organophosphates and their toxic metabolites from contaminated agricultural soil and adjacent bodies of water. This analytical data can potentially be utilized for environmental and industrial applications in bioremediation and ecology providing an

  17. A DEEP LEARNING APPROACH FOR CANCER DETECTION AND RELEVANT GENE IDENTIFICATION

    PubMed Central

    Ghaeini, Reza; Hendrix, David A.

    2016-01-01

    Cancer detection from gene expression data continues to pose a challenge due to the high dimensionality and complexity of these data. After decades of research there is still uncertainty in the clinical diagnosis of cancer and the identification of tumor-specific markers. Here we present a deep learning approach to cancer detection, and to the identification of genes critical for the diagnosis of breast cancer. First, we used Stacked Denoising Autoencoder (SDAE) to deeply extract functional features from high dimensional gene expression profiles. Next, we evaluated the performance of the extracted representation through supervised classification models to verify the usefulness of the new features in cancer detection. Lastly, we identified a set of highly interactive genes by analyzing the SDAE connectivity matrices. Our results and analysis illustrate that these highly interactive genes could be useful cancer biomarkers for the detection of breast cancer that deserve further studies. PMID:27896977

  18. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    PubMed

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness.

  19. Application of higher order SVD to vibration-based system identification and damage detection

    NASA Astrophysics Data System (ADS)

    Chao, Shu-Hsien; Loh, Chin-Hsiung; Weng, Jian-Huang

    2012-04-01

    Singular value decomposition (SVD) is a powerful linear algebra tool. It is widely used in many different signal processing methods, such principal component analysis (PCA), singular spectrum analysis (SSA), frequency domain decomposition (FDD), subspace identification and stochastic subspace identification method ( SI and SSI ). In each case, the data is arranged appropriately in matrix form and SVD is used to extract the feature of the data set. In this study three different algorithms on signal processing and system identification are proposed: SSA, SSI-COV and SSI-DATA. Based on the extracted subspace and null-space from SVD of data matrix, damage detection algorithms can be developed. The proposed algorithm is used to process the shaking table test data of the 6-story steel frame. Features contained in the vibration data are extracted by the proposed method. Damage detection can then be investigated from the test data of the frame structure through subspace-based and nullspace-based damage indices.

  20. Fault Detection and Model Identification in Linear Dynamical Systems

    DTIC Science & Technology

    2001-02-01

    fault detection and isolation (FDI). One avenue of FDI is via the multi-model approach, in which the parameters of the nominal, unfailed model of the system are known, as well as the parameters of one or more fault models. The design goal is to obtain an indicator for when a fault has occurred, and, when more than one type is possible, which type of fault it is. A choice that must be made in tile system design is how to model noise. One way is as a bounded energy signal. This approach places very few restrictions on the types of noisy systems which

  1. Colorimetric detection and identification of natural and artificial sweeteners.

    PubMed

    Musto, Christopher J; Lim, Sung H; Suslick, Kenneth S

    2009-08-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments that are comprised of indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations, as well as commonly used individual-serving sweetener packets. The array has shown excellent reproducibility and long shelf life and has been optimized to work in the biological pH regime.

  2. Smart radio-frequency identification tag for diaper moisture detection.

    PubMed

    Ziai, M A; Batchelor, John C

    2015-02-01

    A passive smart tag is described that responds to dampness in diapers once a pre-defined threshold value is reached. A high-frequency (HF) system at 13.56 MHz is used as this allows operation through water or human tissues with less absorption that would occur for an ultra-HF signal. A circular spiral coil and swelling substrate facilitate a reaction to dampness that can be detected without contact to the diaper wearer. A prototype design is simulated and measured results are provided together with a demonstration of a tag integrated into a worn diaper.

  3. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    PubMed Central

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  4. Smart radio-frequency identification tag for diaper moisture detection

    PubMed Central

    Ziai, M.A.

    2015-01-01

    A passive smart tag is described that responds to dampness in diapers once a pre-defined threshold value is reached. A high-frequency (HF) system at 13.56 MHz is used as this allows operation through water or human tissues with less absorption that would occur for an ultra-HF signal. A circular spiral coil and swelling substrate facilitate a reaction to dampness that can be detected without contact to the diaper wearer. A prototype design is simulated and measured results are provided together with a demonstration of a tag integrated into a worn diaper. PMID:26609399

  5. Piezoelectric sensing coating for real time impact detection and location on aircraft structures

    NASA Astrophysics Data System (ADS)

    Capsal, Jean-Fabien; David, Charlotte; Dantras, Eric; Lacabanne, Colette

    2012-05-01

    Flexible, light weight and low cost electroactive coating has been fabricated by the dispersion of inorganic ferroelectric submicron particles in a polyurethane matrix. BaTiO3 particles have a mean diameter of 300 nm. The poling process and the influence of volume fraction of BaTiO3 on the piezoelectric activity of the coating have been reported. This spray coating has been realized on 1.6 × 1.6 m2 poly(epoxy)/carbon fiber reinforced composite. Impact detection has been also performed. A well-known cross correlated algorithm has been successfully employed to localize impact in a 90 × 90 cm2 area of the composite.

  6. Phase coherence adaptive processor for automatic signal detection and identification

    NASA Astrophysics Data System (ADS)

    Wagstaff, Ronald A.

    2006-05-01

    A continuously adapting acoustic signal processor with an automatic detection/decision aid is presented. Its purpose is to preserve the signals of tactical interest, and filter out other signals and noise. It utilizes single sensor or beamformed spectral data and transforms the signal and noise phase angles into "aligned phase angles" (APA). The APA increase the phase temporal coherence of signals and leave the noise incoherent. Coherence thresholds are set, which are representative of the type of source "threat vehicle" and the geographic area or volume in which it is operating. These thresholds separate signals, based on the "quality" of their APA coherence. An example is presented in which signals from a submerged source in the ocean are preserved, while clutter signals from ships and noise are entirely eliminated. Furthermore, the "signals of interest" were identified by the processor's automatic detection aid. Similar performance is expected for air and ground vehicles. The processor's equations are formulated in such a manner that they can be tuned to eliminate noise and exploit signal, based on the "quality" of their APA temporal coherence. The mathematical formulation for this processor is presented, including the method by which the processor continuously self-adapts. Results show nearly complete elimination of noise, with only the selected category of signals remaining, and accompanying enhancements in spectral and spatial resolution. In most cases, the concept of signal-to-noise ratio looses significance, and "adaptive automated /decision aid" is more relevant.

  7. Detection and identification of bacteria by gas chromatography.

    PubMed

    Henis, Y; Gould, J R; Alexander, M

    1966-07-01

    Ether extracts of cultures of 29 strains representing 6 species of Bacillus, and of individual strains of Escherichia coli, Aerobacter aerogenes, and Pseudomonas aeruginosa were examined in a gas chromatograph by use of flame ionization and electron capture detectors. Among the products detected were compounds with the chromatographic characteristics of acetic, propionic, and butyric acids, ethyl alcohol, diacetyl, acetoin, and 2,3-butanediol. The differences in peak areas of the various products formed by the bacteria were determined statistically for the chromatograms obtained with the two detectors, and the peaks were arranged in order of decreasing areas to yield a signature for each bacterial strain. Different signatures were obtained for the various genera and species and for strains of the same species. B. licheniformis, B. subtilis, and A. aerogenes formed significant quantities of a number of volatile compounds, and qualitative and quantitative differences between strains were noted. The electron capture detector was particularly sensitive to diacetyl and acetoin as well as to unknown compounds. By use of this detector, the presence of 5 pg of diacetyl and 20 pg of acetoin could be demonstrated. The quantity of acetoin detected in B. subtilis and B. licheniformis cultures was present in as little as 6.3 x 10(-3) muliters of medium.

  8. Rocket engine failure detection using system identification techniques

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.; Zakrajsek, June F.

    1990-01-01

    The theoretical foundation and application of two univariate failure detection algorithms to Space Shuttle Main Engine (SSME) test firing data is presented. Both algorithms were applied to data collected during steady state operation of the engine. One algorithm, the time series algorithm, is based on time series techniques and involves the computation of autoregressive models. Time series techniques have been previously applied to SSME data. The second algorithm is based on standard signal processing techniques. It consists of tracking the variations in the average signal power with time. The average signal power algorithm is a newly proposed SSME failure detection algorithm. Seven nominal test firings were used to develop failure indication thresholds for each algorithm. These thresholds were tested using four anomalous firings and one additional nominal firing. Both algorithms provided significantly earlier failure indication times than did the current redline limit system. Neither algorithm gave false failure indications for the nominal firing. The strengths and weaknesses of the two algorithms are discussed and compared. The average signal algorithm was found to have several advantages over the time series algorithm.

  9. Rocket engine failure detection using system identification techiques

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.; Zakrajsek, June F.

    1990-01-01

    The theoretical foundation and application of two univariate failure detection algorithms to Space Shuttle Main Engine (SSME) test firing data is presented. Both algorithms were applied to data collected during steady state operation of the engine. One algorithm, the time series algorithm, is based on time series techniques and involves the computation of autoregressive models. Times series techniques have been previously applied to SSME data. The second algorithm is based on standard signal processing techniques. It consists of tracking the variations in the average signal power with time. The average signal power algorithm is a newly proposed SSME failure detection algorithm. Seven nominal test firings were used to develop failure indication thresholds for each algorithm. These thresholds were tested using four anomalous firings and one additional nominal firing. Both algorithms provided significantly earlier failure indication times than did the current redline limit system. Neither algorithm gave false failure indications for the nominal firing. The strengths and weaknesses of the two algorithms are discussed and compared. The average signal algorithm was found to have several advantages over the time series algorithm.

  10. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid.

    PubMed

    Akutsu, Tomoko; Motani, Hisako; Watanabe, Ken; Iwase, Hirotaro; Sakurada, Koichi

    2012-05-01

    To preliminarily evaluate the applicability of bacterial DNA as a marker for the forensic identification of vaginal fluid, we developed and performed PCR-based detection of 16S ribosomal RNA genes of Lactobacillus spp. dominating the vagina and of bacterial vaginosis-related bacteria from DNA extracted from body fluids and stains. As a result, 16S ribosomal RNA genes of Lactobacillus crispatus, Lactobacillus jensenii and Atopobium vaginae were specifically detected in vaginal fluid and female urine samples. Bacterial genes detected in female urine might have originated from contaminated vaginal fluid. In addition, those of Lactobacillus iners, Lactobacillus gasseri and Gardnerella vaginalis were also detected in non-vaginal body fluids such as semen. Because bacterial genes were successfully amplified in DNA samples extracted by using the general procedure for animal tissues without any optional treatments, DNA samples prepared for the identification of vaginal fluid can also be used for personal identification. In conclusion, 16S ribosomal RNA genes of L. crispatus, L. jensenii and A. vaginae could be effective markers for forensic identification of vaginal fluid.

  11. Change-point detection of gaseous and particulate traffic-related pollutants at a roadside location.

    PubMed

    Carslaw, David C; Ropkins, Karl; Bell, Margaret C

    2006-11-15

    An 8-year (1998-2005), hourly data set of measurements of NOx, NO2, PM10, PM2.5, and PMcoarse (defined as PM(2.5-10)) from a busy roadside location in central London has been analyzed to identify important change-points in the time series using a cumulative sum (CUSUM) technique. Randomization methods were used to estimate the uncertainty level associated with the change-points with uncertainty intervals derived using a bootstrap approach. The results show that there is a clear change-point increase for NO2 coinciding with the introduction of the London congestion-charging in February 2003 (95% confidence interval from January-March 2003). At this time there was both an increase in bus numbers and buses fitted with catalyzed diesel particulate filters, which increase direct emissions of NO2. A highly statistically significant change-point was also observed for PMcoarse (95% confidence interval from December 2002-February 2003), which also occurred close to the time of the congestion charge introduction and is most closely related to the increase in bus flows. The increase in PMcoarse at this time has largely compensated for reductions in the concentration of PM2.5, such that the concentration of PM10 has remained almost constant. Comparing the 2 years before and after the introduction of congestion charging, the increment in NO2 above background increased from 22 to 34 ppb and PMcoarse increased from 4 to 9 microg m(-3). These results could have important implications for meeting European air quality standards that currently set limits for PMlo rather than PM2.5.

  12. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  13. Applicability of ELISA detection of statherin for forensic identification of saliva.

    PubMed

    Akutsu, Tomoko; Watanabe, Ken; Fujinami, Yoshihito; Sakurada, Koichi

    2010-09-01

    Statherin is a low molecular-weight phosphoprotein secreted from the parotid gland. Statherin mRNA was previously reported to be a useful marker for mRNA-based saliva identification. In this study, applicability of ELISA detection of statherin for forensic identification of saliva was investigated. The specificity and sensitivity of ELISA for detection of statherin were compared with those of ELISA for α-amylase and the Phadebas® amylase test. Statherin was specifically detected in saliva but not in other body fluids. In addition, statherin was successfully detected in aged saliva stains, mixed body fluids-saliva stains, and simulated casework samples. On the other hand, although ELISA for α-amylase showed higher sensitivity than ELISA for statherin, it was not specific enough to identify saliva. The Phadebas® amylase test also showed positive results in other body fluids that are known to have α-amylase activity; however, it is easy to use for screening forensic casework samples. In conclusion, ELISA for detection of statherin developed in this study could be an effective tool for the forensic identification of saliva because of its specificity for saliva among other body fluids. Forensic casework samples should be tested by ELISA detection or mRNA-based analysis for statherin, depending on the condition of the sample, to supplement presumptive tests for α-amylase, such as the Phadebas® amylase test.

  14. A geometric approach to failure detection and identification in linear systems

    NASA Technical Reports Server (NTRS)

    Massoumnia, M. A.

    1986-01-01

    Using concepts of (C,A)-invariant and unobservability (complementary observability) subspaces, a geometric formulation of the failure detection and identification filter problem is stated. Using these geometric concepts, it is shown that it is possible to design a causal linear time-invariant processor that can be used to detect and uniquely identify a component failure in a linear time-invariant system, assuming: (1) The components can fail simultaneously, and (2) The components can fail only one at a time. In addition, a geometric formulation of Beard's failure detection filter problem is stated. This new formulation completely clarifies of output separability and mutual detectability introduced by Beard and also exploits the dual relationship between a restricted version of the failure detection and identification problem and the control decoupling problem. Moreover, the frequency domain interpretation of the results is used to relate the concepts of failure sensitive observers with the generalized parity relations introduced by Chow. This interpretation unifies the various failure detection and identification concepts and design procedures.

  15. Polarimetric radars for detection and identification of marine oil pollution

    NASA Astrophysics Data System (ADS)

    Sineva, Anastasia

    2015-04-01

    The roughness of the sea surface that is responsible for the backscatter is due to the small gravitational waves generated by winds. Oil slicks suppress the waves and backscatter and manifest itself on radar images as dark spots. However, the other processes could be shown on the radar images similarly: upwelling, atmospheric convection, internal waves, calm area, etc. All of them may be falsely interpreted as oil pollution. Polarization SAR data carry additional information directly related to the vector nature of the reflected electromagnetic wave and can assist in the identification of different types of slicks. When polarized wave falls on a surface and reflects from it the reflected wave is also polarized. Sea surface is rough, i.e. consists essentially of a large number of differently oriented elementary areas. Consequently the signals reflected from different elementary areas are characterized by different polarization parameters and total signal carries information about all rough surface scanned [1]. When scanning sea surface, quad-polarization SAR generates scattering matrix for each pixel of radar data, which contains all the information regarding the polarimetric backscattering properties of the study area and that can be used for the classification of SAR images according to different scattering mechanisms. As mentioned above, various surface manifestations (calm area, biogenic film, etc.) may be falsely interpreted as oil slicks. In [2] was proposed a method to distinguish them, for which the following parameters were chosen: the polarization ratio (HH channel to VV) and the difference (VV minus HH channel). Normalized radar cross-section (NRCS) σ0pp can be represented as follows: σp0p = σp0pB + σwb, where σ0Bpp - Bragg scattering, σwb - non-polarized scattering. Thus the polarization ratio (PR) and the polarization difference (PD) can be expressed respectively as: PR = σH0H- = σH0HB-+σwb- σV0 V σV0BV+ σwb PD = σV0V - σH0H = σV0VB +

  16. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs.

    PubMed

    Pfiester, Margie; Koehler, Philip G; Pereira, Roberto M

    2008-08-01

    The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5-6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs.

  17. Identification of bitmap compression history: JPEG detection and quantizer estimation.

    PubMed

    Fan, Zhigang; de Queiroz, Ricardo L

    2003-01-01

    Sometimes image processing units inherit images in raster bitmap format only, so that processing is to be carried without knowledge of past operations that may compromise image quality (e.g., compression). To carry further processing, it is useful to not only know whether the image has been previously JPEG compressed, but to learn what quantization table was used. This is the case, for example, if one wants to remove JPEG artifacts or for JPEG re-compression. In this paper, a fast and efficient method is provided to determine whether an image has been previously JPEG compressed. After detecting a compression signature, we estimate compression parameters. Specifically, we developed a method for the maximum likelihood estimation of JPEG quantization steps. The quantizer estimation method is very robust so that only sporadically an estimated quantizer step size is off, and when so, it is by one value.

  18. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    SciTech Connect

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  19. Synchrosqueezed wavelet transform-fractality model for locating, detecting, and quantifying damage in smart highrise building structures

    NASA Astrophysics Data System (ADS)

    Amezquita-Sanchez, Juan P.; Adeli, Hojjat

    2015-06-01

    A new methodology is presented for (a) detecting, (b) locating, and (c) quantifying the damage severity in a smart highrise building structure. The methodology consists of three steps: In step 1, the synchrosqueezed wavelet transform is used to eliminate the noise in the signals. In step 2, a nonlinear dynamics measure based on the chaos theory, fractality dimension (FD), is employed to detect features to be used for damage detection. In step 3, a new structural damage index, based on the estimated FD values, is proposed as a measure of the condition of the structure. Further, the damage location is obtained using the changes of the estimated FD values. Three different FD algorithms for computing the fractality of time series signals are investigated. They are Katz’s FD, Higuchi’s FD, and box dimension. The usefulness and effectiveness of the proposed methodology are validated using the sensed data obtained experimentally for the 1:20 scaled model of a 38-storey concrete building structure.

  20. Distributed fiber optic sensor employing phase generate carrier for disturbance detection and location

    NASA Astrophysics Data System (ADS)

    Xu, Haiyan; Wu, Hongyan; Zhang, Xuewu; Zhang, Zhuo; Li, Min

    2015-05-01

    Distributed optic fiber sensor is a new type of system, which could be used in the long-distance and strong-EMI condition for monitoring and inspection. A method of external modulation with a phase modulator is proposed in this paper to improve the positioning accuracy of the disturbance in a distributed optic-fiber sensor. We construct distributed disturbance detecting system based on Michelson interferometer, and a phase modulator has been attached to the fiber sensor in front of the Faraday rotation mirror (FRM), to elevate the signal produced by interfering of the two lights reflected by the Faraday rotation Mirror to a high frequency, while other signals remain in the low frequency. Through a high pass filter and phase retrieve circus, a signal which is proportional to the external disturbance is acquired. The accuracy of disturbance positioning with this signal can be largely improved. The method is quite simple and easy to achieve. Theoretical analysis and experimental results show that, this method can effectively improve the positioning accuracy.

  1. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments

    PubMed Central

    Ramon Soria, Pablo; Arrue, Begoña C.; Ollero, Anibal

    2017-01-01

    The article presents a vision system for the autonomous grasping of objects with Unmanned Aerial Vehicles (UAVs) in real time. Giving UAVs the capability to manipulate objects vastly extends their applications, as they are capable of accessing places that are difficult to reach or even unreachable for human beings. This work is focused on the grasping of known objects based on feature models. The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm. The algorithm learns a feature-based model in an offline stage, then it is used online for detection of the targeted object and estimation of its position. This feature-based model was proved to be robust to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage, providing 3D information and helping to filter features in the online stage. An experimental system was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic arm is designed with three degrees of freedom and is lightweight due to payload limitations of the UAV. The system has been validated with different objects, both indoors and outdoors. PMID:28067851

  2. Computational detection and location of transcription start sites in mammalian genomic DNA.

    PubMed

    Down, Thomas A; Hubbard, Tim J P

    2002-03-01

    Transcription, the process whereby RNA copies are made from sections of the DNA genome, is directed by promoter regions. These define the transcription start site, and also the set of cellular conditions under which the promoter is active. At least in more complex species, it appears to be common for genes to have several different transcription start sites, which may be active under different conditions. Eukaryotic promoters are complex and fairly diffuse structures, which have proven hard to detect in silico. We show that a novel hybrid machine-learning method is able to build useful models of promoters for >50% of human transcription start sites. We estimate specificity to be >70%, and demonstrate good positional accuracy. Based on the structure of our learned models, we conclude that a signal resembling the well known TATA box, together with flanking regions of C-G enrichment, are the most important sequence-based signals marking sites of transcriptional initiation at a large class of typical promoters.

  3. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments.

    PubMed

    Ramon Soria, Pablo; Arrue, Begoña C; Ollero, Anibal

    2017-01-07

    The article presents a vision system for the autonomous grasping of objects with Unmanned Aerial Vehicles (UAVs) in real time. Giving UAVs the capability to manipulate objects vastly extends their applications, as they are capable of accessing places that are difficult to reach or even unreachable for human beings. This work is focused on the grasping of known objects based on feature models. The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm. The algorithm learns a feature-based model in an offline stage, then it is used online for detection of the targeted object and estimation of its position. This feature-based model was proved to be robust to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage, providing 3D information and helping to filter features in the online stage. An experimental system was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic arm is designed with three degrees of freedom and is lightweight due to payload limitations of the UAV. The system has been validated with different objects, both indoors and outdoors.

  4. Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform

    NASA Astrophysics Data System (ADS)

    Abd-el-Malek, Mina; Abdelsalam, Ahmed K.; Hassan, Ola E.

    2017-09-01

    Robustness, low running cost and reduced maintenance lead Induction Motors (IMs) to pioneerly penetrate the industrial drive system fields. Broken rotor bars (BRBs) can be considered as an important fault that needs to be early assessed to minimize the maintenance cost and labor time. The majority of recent BRBs' fault diagnostic techniques focus on differentiating between healthy and faulty rotor cage. In this paper, a new technique is proposed for detecting the location of the broken bar in the rotor. The proposed technique relies on monitoring certain statistical parameters estimated from the analysis of the start-up stator current envelope. The envelope of the signal is obtained using Hilbert Transformation (HT). The proposed technique offers non-invasive, fast computational and accurate location diagnostic process. Various simulation scenarios are presented that validate the effectiveness of the proposed technique.

  5. Change of Detection: To Find the Terrorist within the Identification of the U.S. Army’s Insider Threat

    DTIC Science & Technology

    2012-06-08

    A CHANGE OF DETECTION: TO FIND THE TERRORIST WITHIN THE IDENTIFICATION OF THE U.S. ARMY’S INSIDER THREAT A thesis presented......Baker Thesis Title: A Change of Detection: To Find the Terrorist within the Identification of the U.S. Army’s Insider Threat Approved by

  6. An Analysis on Sensor Locations of the Human Body for Wearable Fall Detection Devices: Principles and Practice

    PubMed Central

    Özdemir, Ahmet Turan

    2016-01-01

    Wearable devices for fall detection have received attention in academia and industry, because falls are very dangerous, especially for elderly people, and if immediate aid is not provided, it may result in death. However, some predictive devices are not easily worn by elderly people. In this work, a huge dataset, including 2520 tests, is employed to determine the best sensor placement location on the body and to reduce the number of sensor nodes for device ergonomics. During the tests, the volunteer’s movements are recorded with six groups of sensors each with a triaxial (accelerometer, gyroscope and magnetometer) sensor, which is placed tightly on different parts of the body with special straps: head, chest, waist, right-wrist, right-thigh and right-ankle. The accuracy of individual sensor groups with their location is investigated with six machine learning techniques, namely the k-nearest neighbor (k-NN) classifier, Bayesian decision making (BDM), support vector machines (SVM), least squares method (LSM), dynamic time warping (DTW) and artificial neural networks (ANNs). Each technique is applied to single, double, triple, quadruple, quintuple and sextuple sensor configurations. These configurations create 63 different combinations, and for six machine learning techniques, a total of 63 × 6 = 378 combinations is investigated. As a result, the waist region is found to be the most suitable location for sensor placement on the body with 99.96% fall detection sensitivity by using the k-NN classifier, whereas the best sensitivity achieved by the wrist sensor is 97.37%, despite this location being highly preferred for today’s wearable applications. PMID:27463719

  7. An Analysis on Sensor Locations of the Human Body for Wearable Fall Detection Devices: Principles and Practice.

    PubMed

    Özdemir, Ahmet Turan

    2016-07-25

    Wearable devices for fall detection have received attention in academia and industry, because falls are very dangerous, especially for elderly people, and if immediate aid is not provided, it may result in death. However, some predictive devices are not easily worn by elderly people. In this work, a huge dataset, including 2520 tests, is employed to determine the best sensor placement location on the body and to reduce the number of sensor nodes for device ergonomics. During the tests, the volunteer's movements are recorded with six groups of sensors each with a triaxial (accelerometer, gyroscope and magnetometer) sensor, which is placed tightly on different parts of the body with special straps: head, chest, waist, right-wrist, right-thigh and right-ankle. The accuracy of individual sensor groups with their location is investigated with six machine learning techniques, namely the k-nearest neighbor (k-NN) classifier, Bayesian decision making (BDM), support vector machines (SVM), least squares method (LSM), dynamic time warping (DTW) and artificial neural networks (ANNs). Each technique is applied to single, double, triple, quadruple, quintuple and sextuple sensor configurations. These configurations create 63 different combinations, and for six machine learning techniques, a total of 63 × 6 = 378 combinations is investigated. As a result, the waist region is found to be the most suitable location for sensor placement on the body with 99.96% fall detection sensitivity by using the k-NN classifier, whereas the best sensitivity achieved by the wrist sensor is 97.37%, despite this location being highly preferred for today's wearable applications.

  8. Haplotype identification and detection of mitochondrial DNA heteroplasmy in Varroa destructor mites using ARMS and PCR-RFLP methods.

    PubMed

    Gajić, Bojan; Stevanović, Jevrosima; Radulović, Željko; Kulišić, Zoran; Vejnović, Branislav; Glavinić, Uroš; Stanimirović, Zoran

    2016-11-01

    In the present study, amplification refractory mutation system (ARMS) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were used for identification of recently described Serbia 1 (S1) and Peshter 1 (P1) mitochondrial haplotypes of Varroa destructor. Based on single nucleotide polymorphisms (SNPs) within cytochrome oxidase 1 (cox1) and cytochrome b (cytb) gene sequences, a total of 64 adult V. destructor females were analyzed from locations where the S1 and P1 haplotypes had been detected previously. Results of haplotype identification obtained by ARMS and PCR-RFLP methods were completely consistent with the sequencing data. Furthermore, in some analyzed samples the occurrence of site heteroplasmy at haplotype-defining sites was detected, as it was confirmed by double peaks in the sequence chromatograms. Neither mites with simultaneous nucleotide variability, nor those with combined SNP and heteroplasmy in cox1 and cytb were found. Given that this is the first occurrence of site heteroplasmy in V. destructor, the origin of this phenomenon and possible specific traits of heteroplasmic mites have yet to be determined.

  9. Modulation of synaptic input by GABAB receptors improves coincidence detection for computation of sound location

    PubMed Central

    Fischl, Matthew J; Combs, T Dalton; Klug, Achim; Grothe, Benedikt; Burger, R Michael

    2012-01-01

    Interaural time disparities (ITDs) are the primary cues for localisation of low-frequency sound stimuli. ITDs are computed by coincidence-detecting neurones in the medial superior olive (MSO) in mammals. Several previous studies suggest that control of synaptic gain is essential for maintaining ITD selectivity as stimulus intensity increases. Using acute brain slices from postnatal day 7 to 24 (P7–P24) Mongolian gerbils, we confirm that activation of GABAB receptors reduces the amplitude of excitatory and inhibitory synaptic currents to the MSO and, moreover, show that the decay kinetics of IPSCs are slowed in mature animals. During repetitive stimuli, activation of GABAB receptors reduced the amount of depression observed, while PSC suppression and the slowed kinetics were maintained. Additionally, we used physiological and modelling approaches to test the potential impact of GABAB activation on ITD encoding in MSO neurones. Current clamp recordings from MSO neurones were made while pharmacologically isolated excitatory inputs were bilaterally stimulated using pulse trains that simulate ITDs in vitro. MSO neurones showed strong selectivity for bilateral delays. Application of both GABAB agonists and antagonists demonstrate that GABAB modulation of synaptic input can sharpen ITD selectivity. We confirmed and extended these results in a computational model that allowed for independent manipulation of each GABAB-dependent effect. Modelling suggests that modulation of both amplitude and kinetics of synaptic inputs by GABAB receptors can improve precision of ITD computation. Our studies suggest that in vivo modulation of synaptic input by GABAB receptors may act to preserve ITD selectivity across various stimulus conditions. PMID:22473782

  10. Common pharmacophore identification using frequent clique detection algorithm.

    PubMed

    Podolyan, Yevgeniy; Karypis, George

    2009-01-01

    The knowledge of a pharmacophore, or the 3D arrangement of features in the biologically active molecule that is responsible for its pharmacological activity, can help in the search and design of a new or better drug acting upon the same or related target. In this paper, we describe two new algorithms based on the frequent clique detection in the molecular graphs. The first algorithm mines all frequent cliques that are present in at least one of the conformers of each (or a portion of all) molecules. The second algorithm exploits the similarities among the different conformers of the same molecule and achieves an order of magnitude performance speedup compared to the first algorithm. Both algorithms are guaranteed to find all common pharmacophores in the data set, which is confirmed by the validation on the set of molecules for which pharmacophores have been determined experimentally. In addition, these algorithms are able to scale to data sets with arbitrarily large number of conformers per molecule and identify multiple ligand binding modes or multiple binding sites of the target.

  11. Common Pharmacophore Identification Using Frequent Clique Detection Algorithm

    PubMed Central

    Podolyan, Yevgeniy; Karypis, George

    2008-01-01

    The knowledge of a pharmacophore, or the 3D arrangement of features in the biologically active molecule that is responsible for its pharmacological activity, can help in the search and design of a new or better drug acting upon the same or related target. In this paper we describe two new algorithms based on the frequent clique detection in the molecular graphs. The first algorithm mines all frequent cliques that are present in at least one of the conformers of each (or a portion of all) molecules. The second algorithm exploits the similarities among the different conformers of the same molecule and achieves an order of magnitude performance speedup compared to the first algorithm. Both algorithms are guaranteed to find all common pharmacophores in the dataset, which is confirmed by the validation on the set of molecules for which pharmacophores have been determined experimentally. In addition, these algorithms are able to scale to datasets with arbitrarily large number of conformers per molecule and identify multiple ligand binding modes or multiple binding sites of the target. PMID:19072298

  12. A detection system for the identification of heavy residues

    NASA Astrophysics Data System (ADS)

    Bakkum, E. A.; van den Brink, A.; Meijer, R. J.; Kamermans, R.

    1986-03-01

    A detection system for heavy residues at low energies consisting of a time-of-flight (TOF) system and a ΔE-ER telescope is described. The start signal of the TOF system is obtained from a microchannelplate detector of the mirror type. The ΔE-ER telescope consists of an ionization counter as transmission detector and array of silicon surface barrier detectors to stop the heavy ions. The two position coordinates of the trajectory of the heavy ions are both determined with the drift time method. The intrinsic time resolution of the TOF system, measured with 47 MeV63Cu ions, is 175 ps. The energy resolution of the ΔE-ER telescope is 310 keV for 39 MeV 12C ions, which is mainly due to the spread in the energy loss in the entrance window of the ionization chamber. The energy-loss resolution is mainly determined by energy straggling in the gas. The largest contribution to the position resolution is caused by multiple scattering in the counter gas.

  13. Identification of cyanobacteriochromes detecting far-red light

    DOE PAGES

    Rockwell, Nathan C.; Martin, Shelley S.; Lagarias, J. Clark

    2016-06-13

    The opacity of mammalian tissue to visible light and the strong attenuation of infrared light by water at ≥900 nm have contributed to growing interest in the development of far-red and near-infrared absorbing tools for visualizing and actuating responses within live cells. Here we report the discovery of cyanobacteriochromes (CBCRs) responsive to light in this far-red window. CBCRs are linear tetrapyrrole (bilin)-based light sensors distantly related to plant phytochrome sensors. Our studies reveal far-red (λmax = 725–755 nm)/orange (λmax = 590–600 nm) and far-red/red (λmax = 615–685 nm) photoswitches that are small (<200 amino acids) and can be genetically reconstitutedmore » in living cells. Phylogenetic analysis and characterization of additional CBCRs demonstrated that far-red/orange CBCRs evolved after a complex transition from green/red CBCRs known for regulating complementary chromatic acclimation. Incorporation of different bilin chromophores demonstrated that tuning mechanisms responsible for red-shifted chromophore absorption act at the A-, B-, and/ or C-rings, whereas photoisomerization occurs at the D-ring. Two such proteins exhibited detectable fluorescence extending well into the near-infrared region. In conclusion, this work extends the spectral window of CBCRs to the edge of the infrared, raising the possibility of using CBCRs in synthetic biology applications in the far-red region of the spectrum.« less

  14. Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy.

    PubMed

    Dixon, P B; Hahn, D W

    2005-01-15

    The detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy (LIBS) is investigated using aerosolized Bacillus spores. Spores of Bacillus atrophaeous, Bacillus pumilus, and Bacillus stearothemophilus were introduced into an aerosol flow stream in a prescribed manner such that single-particle LIBS detection was realized. Bacillus spores were successfully detected based on the presence of the 393.4- and 396.9-nm calcium atomic emission lines. Statistical analyses based on the aerosol number density, the LIBS-based spore sampling frequency, and the distribution of the resulting calcium mass loadings support the conclusion of individual spore detection within single-shot laser-induced plasmas. The average mass loadings were in the range of 2-3 fg of calcium/Bacillus spore, which corresponds to a calcium mass percentage of approximately 0.5%. While individual spores were detected based on calcium emission, the resulting Bacillus spectra were free from CN emission bands, which has implications for the detection of elemental carbon, and LIBS-based detection of single spores based on the presence of magnesium or sodium atomic emission was unsuccessful. Based on the current instrumental setup and analyses, real-time LIBS-based detection and identification of single Bacillus spores in ambient (i.e., real life) conditions appears unfeasible.

  15. Odor detection threshold, but not odor identification, is impaired in children with autism.

    PubMed

    Dudova, Iva; Vodicka, Jan; Havlovicova, Marketa; Sedlacek, Zdenek; Urbanek, Tomas; Hrdlicka, Michal

    2011-07-01

    The aim of our study was to examine odor detection thresholds and odor identification in autistic subjects. Thirty-five patients with Asperger's syndrome and high functioning autism (mean age 10.8 ± 3.6 years; 31 boys) were compared with 35 healthy control subjects (mean age 10.4 ± 2.4 years; 28 boys). There were no significant differences between groups with regard to mean age (p = 0.598) and gender proportion (p = 0.324). Olfactory testing used the Sniffin' Sticks test (threshold and identification parts only). Participants with Asperger's syndrome and high functioning autism, in comparison with healthy controls, were significantly impaired relative to odor detection thresholds (6.3 ± 3.1 vs. 7.9 ± 2.0; p = 0.025). Autistic participants were significantly better in correctly identifying the odor of an orange (94 vs. 63%; p < 0.05) and significantly worse at correctly identifying the odor of cloves (40 vs. 74%; p < 0.05). With regard to identification of fourteen other substances, there were no significant differences. There was no significant difference between autistic and control subjects on the total score of olfactory identification (p = 0.799). Odor identification ability (as expressed by this total score) correlated significantly with age in the control group (p = 0.049), but not in the autism group (p = 0.103). We found impaired odor detection and almost normal odor identification in children with autism. Implications for further research are discussed.

  16. A novel multiplex isothermal amplification method for rapid detection and identification of viruses

    PubMed Central

    Nyan, Dougbeh-Chris; Swinson, Kevin L.

    2015-01-01

    A rapid multiplex isothermal amplification assay has been developed for detection and identification of multiple blood-borne viruses that infect millions of people world-wide. These infections may lead to chronic diseases or death if not diagnosed and treated in a timely manner. Sets of virus-specific oligonucleotides and oligofluorophores were designed and used in a reverse-transcription loop-mediated multiplexed isothermal amplification reaction for detection and gel electrophoretic identification of human Immunodeficiency virus (HIV), hepatitis-B virus (HBV), hepatitis-C virus (HCV), hepatitis-E virus (HEV), dengue virus (DENV), and West Nile (WNV) virus infection in blood plasma. Amplification was catalyzed with two thermostable enzymes for 30–60 minutes under isothermal condition, utilizing a simple digital heat source. Electrophoretic analysis of amplified products demonstrated simultaneous detection of 6 viruses that were distinctly identified by unique ladder-like banding patterns. Naked-eye fluorescent visualization of amplicons revealed intensely fluorescing products that indicated positive detection. The test demonstrated a 97% sensitivity and a 100% specificity, with no cross-reaction with other viruses observed. This portable detection tool may have clinical and field utility in the developing and developed world settings. This may enable rapid diagnosis and identification of viruses for targeted therapeutic intervention and prevention of disease transmission. PMID:26643761

  17. A novel multiplex isothermal amplification method for rapid detection and identification of viruses.

    PubMed

    Nyan, Dougbeh-Chris; Swinson, Kevin L

    2015-12-08

    A rapid multiplex isothermal amplification assay has been developed for detection and identification of multiple blood-borne viruses that infect millions of people world-wide. These infections may lead to chronic diseases or death if not diagnosed and treated in a timely manner. Sets of virus-specific oligonucleotides and oligofluorophores were designed and used in a reverse-transcription loop-mediated multiplexed isothermal amplification reaction for detection and gel electrophoretic identification of human Immunodeficiency virus (HIV), hepatitis-B virus (HBV), hepatitis-C virus (HCV), hepatitis-E virus (HEV), dengue virus (DENV), and West Nile (WNV) virus infection in blood plasma. Amplification was catalyzed with two thermostable enzymes for 30-60 minutes under isothermal condition, utilizing a simple digital heat source. Electrophoretic analysis of amplified products demonstrated simultaneous detection of 6 viruses that were distinctly identified by unique ladder-like banding patterns. Naked-eye fluorescent visualization of amplicons revealed intensely fluorescing products that indicated positive detection. The test demonstrated a 97% sensitivity and a 100% specificity, with no cross-reaction with other viruses observed. This portable detection tool may have clinical and field utility in the developing and developed world settings. This may enable rapid diagnosis and identification of viruses for targeted therapeutic intervention and prevention of disease transmission.

  18. Confidence in word detection predicts word identification: implications for an unconscious perception paradigm.

    PubMed

    Haase, S J; Fisk, G

    2001-01-01

    The present experiments extend the scope of the independent observation model based on signal detection theory (Macmillan & Creelman, 1991) to complex (word) stimulus sets. In the first experiment, the model predicts the relationship between uncertain detection and subsequent correct identification, thereby providing an alternative interpretation to a phenomenon often described as unconscious perception. Our second experiment used an exclusion task (Jacoby, Toth, & Yonelinas, 1993), which, according to theories of unconscious perception, should show qualitative differences in performance based on stimulus detection accuracy and provide a relative measure of conscious versus unconscious influences (Merikle, Joordens, & Stoltz, 1995). Exclusion performance was also explained by the model, suggesting that undetected words did not unconsciously influence identification responses.

  19. High effective algorithm of the detection and identification of substance using the noisy reflected THz pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.; Tikhomirov, Vasily V.

    2015-08-01

    Principal limitations of the standard THz-TDS method for the detection and identification are demonstrated under real conditions (at long distance of about 3.5 m and at a high relative humidity more than 50%) using neutral substances thick paper bag, paper napkins and chocolate. We show also that the THz-TDS method detects spectral features of dangerous substances even if the THz signals were measured in laboratory conditions (at distance 30-40 cm from the receiver and at a low relative humidity less than 2%); silicon-based semiconductors were used as the samples. However, the integral correlation criteria, based on SDA method, allows us to detect the absence of dangerous substances in the neutral substances. The discussed algorithm shows high probability of the substance identification and a reliability of realization in practice, especially for security applications and non-destructive testing.

  20. Effect of attention on the detection and identification of masked spatial patterns.

    PubMed

    Põder, Endel

    2005-01-01

    The effect of attention on the detection and identification of vertically and horizontally oriented Gabor patterns in the condition of simultaneous masking with obliquely oriented Gabors was studied. Attention was manipulated by varying the set size in a visual-search experiment. In the first experiment, small target Gabors were presented on the background of larger masking Gabors. In the detection task, the effect of set size was as predicted by unlimited-capacity signal detection theory. In the orientation identification task, increasing the set size from 1 to 8 resulted in a much larger decline in performance. The results of the additional experiments suggest that attention can reduce the crowding effect of maskers.

  1. An algorithm for image clusters detection and identification based on color for an autonomous mobile robot

    SciTech Connect

    Uy, D.L.

    1996-02-01

    An algorithm for detection and identification of image clusters or {open_quotes}blobs{close_quotes} based on color information for an autonomous mobile robot is developed. The input image data are first processed using a crisp color fuszzyfier, a binary smoothing filter, and a median filter. The processed image data is then inputed to the image clusters detection and identification program. The program employed the concept of {open_quotes}elastic rectangle{close_quotes}that stretches in such a way that the whole blob is finally enclosed in a rectangle. A C-program is develop to test the algorithm. The algorithm is tested only on image data of 8x8 sizes with different number of blobs in them. The algorithm works very in detecting and identifying image clusters.

  2. Computational Identification of Tumor Anatomic Location Associated with Survival in 2 Large Cohorts of Human Primary Glioblastomas.

    PubMed

    Liu, T T; Achrol, A S; Mitchell, L A; Du, W A; Loya, J J; Rodriguez, S A; Feroze, A; Westbroek, E M; Yeom, K W; Stuart, J M; Chang, S D; Harsh, G R; Rubin, D L

    2016-04-01

    Tumor location has been shown to be a significant prognostic factor in patients with glioblastoma. The purpose of this study was to characterize glioblastoma lesions by identifying MR imaging voxel-based tumor location features that are associated with tumor molecular profiles, patient characteristics, and clinical outcomes. Preoperative T1 anatomic MR images of 384 patients with glioblastomas were obtained from 2 independent cohorts (n = 253 from the Stanford University Medical Center for training and n = 131 from The Cancer Genome Atlas for validation). An automated computational image-analysis pipeline was developed to determine the anatomic locations of tumor in each patient. Voxel-based differences in tumor location between good (overall survival of >17 months) and poor (overall survival of <11 months) survival groups identified in the training cohort were used to classify patients in The Cancer Genome Atlas cohort into 2 brain-location groups, for which clinical features, messenger RNA expression, and copy number changes were compared to elucidate the biologic basis of tumors located in different brain regions. Tumors in the right occipitotemporal periventricular white matter were significantly associated with poor survival in both training and test cohorts (both, log-rank P < .05) and had larger tumor volume compared with tumors in other locations. Tumors in the right periatrial location were associated with hypoxia pathway enrichment and PDGFRA amplification, making them potential targets for subgroup-specific therapies. Voxel-based location in glioblastoma is associated with patient outcome and may have a potential role for guiding personalized treatment. © 2016 by American Journal of Neuroradiology.

  3. Computational identification of tumor anatomic location associated with survival in two large cohorts of human primary glioblastomas

    PubMed Central

    Liu, Tiffany T.; Achrol, Achal S.; Mitchell, Lex A.; Du, William A.; Loya, Joshua J.; Rodriguez, Scott A.; Feroze, Abdullah; Westbroek, Erick M.; Yeom, Kristen W.; Stuart, Joshua M.; Chang, Steven D.; Harsh, Griffith R.; Rubin, Daniel L.

    2015-01-01

    Background and Purpose Tumor location has been shown to be a significant prognostic factor in patients with glioblastoma (GBM). The purpose of this study is to characterize GBM lesions by identifying MRI voxel-based tumor location features that are associated with tumor molecular profiles, patient characteristics and clinical outcomes. Materials and Methods Preoperative T1 anatomic MR images of 384 GBM patients were obtained from two independent cohorts (N=253 from our local (name withheld to preserve anonymity) Medical Center for training and N=131 from the Cancer Genome Atlas (TCGA) for validation). An automated computational image analysis pipeline was developed to determine the anatomic locations of tumor in each patient. Voxel-based differences in tumor location between good (overall survival (OS) > 17 months) and poor (OS < 11 months) survival groups identified in the training cohort were used to classify patients in the TCGA cohort into two brain location groups, for which clinical features, mRNA expression, and copy number changes were compared to elucidate the biological basis of tumors located in different brain regions. Results Tumors in the right occipito-temporal periventricular white matter were significantly associated with poor survival in both training and test cohorts (both log-rank P < 0.05) and had larger tumor volume compared to tumors in other locations. Tumors in the right peri-atrial location were associated with hypoxia pathway enrichment and PDGFRA amplification, making them potential targets for subgroup-specific therapies. Conclusion Voxel-based location in GBM is associated with patient outcome and may have a potential role for guiding personalized treatment. PMID:26744442

  4. Metamaterial absorber for molecular detection and identification (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuo

    2017-03-01

    Metamaterial absorber was used for a background-suppressed surface-enhanced molecular detection technique. By utilizing the resonant coupling between plasmonic modes of a metamaterial absorber and infrared (IR) vibrational modes of a self-assembled monolayer (SAM), attomole level molecular sensitivity was experimentally demonstrated. IR absorption spectroscopy of molecular vibrations is of importance in chemical, material, medical science and so on, since it provides essential information of the molecular structure, composition, and orientation. In the vibrational spectroscopic techniques, in addition to the weak signals from the molecules, strong background degrades the signal-to-noise ratio, and suppression of the background is crucial for the further improvement of the sensitivity. Here, we demonstrate low-background resonant Surface enhanced IR absorption (SEIRA) by using the metamaterial IR absorber that offers significant background suppression as well as plasmonic enhancement. By using mask-less laser lithography technique, metamaterial absorber which consisted of 1D array of Au micro-ribbons on a thick Au film separated by a transparent gap layer made of MgF2 was fabricated. This metamaterial structure was designed to exhibit an anomalous IR absorption at 3000 cm-1, which spectrally overlapped with C-H stretching vibrational modes. 16-Mercaptohexadecanoic acid (16-MHDA) was used as a test molecule, which formed a 2-nm thick SAM with their thiol head-group chemisorbed on the Au surface. In the FTIR measurements, the symmetric and asymmetric C-H stretching modes were clearly observed as reflection peaks within a broad plasmonic absorption of the metamaterial, and 1.8 attomole molecular sensitivity was experimentally demonstrated.

  5. Identification and Detection of Simple 3D Objects with Severely Blurred Vision

    PubMed Central

    Kallie, Christopher S.; Legge, Gordon E.; Yu, Deyue

    2012-01-01

    Purpose. Detecting and recognizing three-dimensional (3D) objects is an important component of the visual accessibility of public spaces for people with impaired vision. The present study investigated the impact of environmental factors and object properties on the recognition of objects by subjects who viewed physical objects with severely reduced acuity. Methods. The experiment was conducted in an indoor testing space. We examined detection and identification of simple convex objects by normally sighted subjects wearing diffusing goggles that reduced effective acuity to 20/900. We used psychophysical methods to examine the effect on performance of important environmental variables: viewing distance (from 10–24 feet, or 3.05–7.32 m) and illumination (overhead fluorescent and artificial window), and object variables: shape (boxes and cylinders), size (heights from 2–6 feet, or 0.61–1.83 m), and color (gray and white). Results. Object identification was significantly affected by distance, color, height, and shape, as well as interactions between illumination, color, and shape. A stepwise regression analysis showed that 64% of the variability in identification could be explained by object contrast values (58%) and object visual angle (6%). Conclusions. When acuity is severely limited, illumination, distance, color, height, and shape influence the identification and detection of simple 3D objects. These effects can be explained in large part by the impact of these variables on object contrast and visual angle. Basic design principles for improving object visibility are discussed. PMID:23111613

  6. Peculiarities of the detection and identification of substance at long distance

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.; Tikhomirov, Vasily V.

    2014-05-01

    Nowadays, the detection and identification of dangerous substances at long distance (several meters, for example) by using of THz pulse reflected from the object is an important problem. In this report we demonstrate possibility of THz signal measuring reflected from investigated object that is placed before a flat metallic mirror. A distance between the flat mirror and the parabolic mirror this mirror is equal to 3.5 meters. Therefore, at present time our measurements contain features of both transmission and reflection modes. The reflecting mirror is used because of weak average power of used femtosecond laser. Measurements were provided at room temperature and humidity about 60%. The aim of investigation was the detection of a substance in real condition. Chocolate and Cookies were used as samples for identification. We also discuss modified correlation criteria for the detection and identification of various substances using pulsed THz signal in the transmission and reflection mode at short distances of about 30-40 cm. These criteria are integral criteria in time and they are based on the SDA method. Proposed algorithms show both high probability of the substance identification and a reliability of realization in practice. We compare P-spectrum and SDA- methods in the paper and show that P-spectrum method is a partial case of SDAmethod.

  7. Model-based fault detection and identification with online aerodynamic model structure selection

    NASA Astrophysics Data System (ADS)

    Lombaerts, T.

    2013-12-01

    This publication describes a recursive algorithm for the approximation of time-varying nonlinear aerodynamic models by means of a joint adaptive selection of the model structure and parameter estimation. This procedure is called adaptive recursive orthogonal least squares (AROLS) and is an extension and modification of the previously developed ROLS procedure. This algorithm is particularly useful for model-based fault detection and identification (FDI) of aerospace systems. After the failure, a completely new aerodynamic model can be elaborated recursively with respect to structure as well as parameter values. The performance of the identification algorithm is demonstrated on a simulation data set.

  8. Polarimetric radars and polarimetric SAR data in tasks of detection and identification of marine oil pollution

    NASA Astrophysics Data System (ADS)

    Sineva, A. A.; Ivanov, A. Yu.

    2016-12-01

    Detecting and distinguishing different kinds of oil pollution, including spills of crude oil on the sea surface, is one important problem of modern remote sensing. The wide use of imaging radars is not always effective. In this review paper, the main principles and methods of polarization radar imaging and radar data processing are discussed based on present theoretical and experimental approaches and ideas. The efficiency of polarimetric methods for oil-spill detection and accurate identification on the sea surface is demonstrated as well. As is shown, modern methods of multipolarimetric radar-signal processing is a powerful means for improving oil-pollution detection and discrimination algorithms.

  9. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  10. Multidimensional evaluation of a radio frequency identification wi-fi location tracking system in an acute-care hospital setting

    PubMed Central

    Okoniewska, Barbara; Graham, Alecia; Gavrilova, Marina; Wah, Dannel; Gilgen, Jonathan; Coke, Jason; Burden, Jack; Nayyar, Shikha; Kaunda, Joseph; Yergens, Dean; Baylis, Barry

    2012-01-01

    Real-time locating systems (RTLS) have the potential to enhance healthcare systems through the live tracking of assets, patients and staff. This study evaluated a commercially available RTLS system deployed in a clinical setting, with three objectives: (1) assessment of the location accuracy of the technology in a clinical setting; (2) assessment of the value of asset tracking to staff; and (3) assessment of threshold monitoring applications developed for patient tracking and inventory control. Simulated daily activities were monitored by RTLS and compared with direct research team observations. Staff surveys and interviews concerning the system's effectiveness and accuracy were also conducted and analyzed. The study showed only modest location accuracy, and mixed reactions in staff interviews. These findings reveal that the technology needs to be refined further for better specific location accuracy before full-scale implementation can be recommended. PMID:22298566

  11. Luciferase Reporter Mycobacteriophages for Detection, Identification, and Antibiotic Susceptibility Testing of Mycobacterium tuberculosis in Mexico

    PubMed Central

    Banaiee, N.; Bobadilla-del-Valle, M.; Bardarov, S.; Riska, P. F.; Small, P. M.; Ponce-de-Leon, A.; Jacobs, W. R.; Hatfull, G. F.; Sifuentes-Osornio, J.

    2001-01-01

    The utility of luciferase reporter mycobacteriophages (LRPs) for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis was prospectively evaluated in a clinical microbiology laboratory in Mexico City, Mexico. Five hundred twenty-three consecutive sputum samples submitted to the laboratory during a 5-month period were included in this study. These specimens were cultivated in Middlebrook 7H9 (MADC), MGIT, and Löwenstein-Jensen (LJ) media. Of the 71 mycobacterial isolates recovered with any of the three media, 76% were detected with the LRPs, 97% were detected with the MGIT 960 method, and 90% were detected with LJ medium. When contaminated specimens were excluded from the analysis, the LRPs detected 92% (54 of 59) of the cultures. The median time to detection of bacteria was 7 days with both the LRPs and the MGIT 960 method. LRP detection of growth in the presence of p-nitro-α-acetylamino-β-hydroxypropiophenone (NAP) was used for selective identification of M. tuberculosis complex (MTC) and compared to identification with BACTEC 460. Using the LRP NAP test, 47 (94%) out of 50 isolates were correctly identified as tuberculosis complex. The accuracy and speed of LRP antibiotic susceptibility testing with rifampin, streptomycin, isoniazid, and ethambutol were compared to those of the BACTEC 460 method, and discrepant results were checked by the conventional proportion method. In total, 50 MTC isolates were tested. The overall agreement between the LRP and BACTEC 460 results was 98.5%. The median LRP-based susceptibility turnaround time was 2 days (range, 2 to 4 days) compared to 10.5 days (range, 7 to 16 days) by the BACTEC 460 method. Phage resistance was not detected in any of the 243 MTC isolates tested. Mycobacteriophage-based approaches to tuberculosis diagnostics can be implemented in clinical laboratories with sensitivity, specificity, and rapidity that compare favorably with those of the MGIT 960 and BACTEC 460

  12. Comparison of third generation versus fourth generation electronic apex locators in detecting apical constriction: An in vivo study

    PubMed Central

    Swapna, DV; Krishna, Akash; Patil, Anand C; Rashmi, K; Pai, Veena S; Ranjini, MA

    2015-01-01

    Aim: The aim of this in vivo study was to compare the accuracy of Root ZX and Raypex 5 in detecting minor diameter in human permanent single-rooted teeth. Materials and Methods: Thirty-one patients with completely formed single-rooted permanent teeth indicated for extraction were selected for the study. Crown was flattened for stable reference point and access cavity prepared. Working length was determined with both apex locators. A 15 K file adjusted to that reading was placed in the root canal and stabilized with cement. The tooth was then extracted atraumatically. Following extraction apical 4 mm of root was shaved. The position of the minor diameter in relation to the anatomic apex was recorded for each tooth under stereomicroscope at ×10. The efficiency of two electronic apex locators to determine the minor diameter was statistically analyzed using paired sample t-test. Results: The minor diameter was located within the limits of ±0.5 mm in 96.6% of the samples with the Root ZX and 93.2% of the samples with Raypex 5. The paired sample t-test showed no significant difference. Conclusion: On analyzing the results of our study it can be concluded that Raypex 5 was as effective as Root ZX in determining the minor diameter. PMID:26180412

  13. A high-throughput multiplex genetic detection system for Helicobacter pylori identification, virulence and resistance analysis.

    PubMed

    Hu, Binjie; Zhao, Fuju; Wang, Shiwen; Olszewski, Michal A; Bian, Haipeng; Wu, Yong; Kong, Mimi; Xu, Lingli; Miao, Yingxin; Fang, Yi; Yang, Changqing; Zhao, Hu; Zhang, Yanmei

    2016-10-01

    We established a high-throughput multiplex genetic detection system (HMGS) for identification of Helicobacter pylori with concomitant analysis of virulence and drug resistance. Confirmed 132 H. pylori cultures from gastric biopsies were screened by 20-gene site-HMGS, sequencing and E-test. HMGS was highly sensitive and specific for H. pylori identification. Concordance rate between HMGS and sequencing averaged 94.5% (virulence genes) and 97.3% (resistance genes). Observed resistance rates to four mainstream antibiotics were high, except for amoxicillin. Significant association between virulence genotype and risks for specific gastrointestinal diseases was found for five genes. Metronidazole resistance in peptic ulcer patients was significantly higher. HMGS is an effective method for H. pylori identification and analysis of virulence and drug resistance.

  14. In-flight detection and identification and accommodation of aircraft icing

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2012-11-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  15. The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains.

    PubMed

    Li, Bo; Beveridge, Peter; O'Hare, William T; Islam, Meez

    2014-12-01

    Current methods of detection and identification of blood stains rely largely on visual examination followed by presumptive tests such as Kastle-Meyer, Leuco-malachite green or luminol. Although these tests are useful, they can produce false positives and can also have a negative impact on subsequent DNA tests. A novel application of visible wavelength reflectance hyperspectral imaging has been used for the detection and positive identification of blood stains in a non contact and non destructive manner on a range of coloured substrates. The identification of blood staining was based on the unique visible absorption spectrum of haemoglobin between 400 and 500 nm. Images illustrating successful discrimination of blood stains from nine red substances are included. It has also been possible to distinguish between blood and approximately 40 other reddish stains. The technique was also successfully used to detect latent blood stains deposited on white filter paper at dilutions of up to 1 in 512 folds and on red tissue at dilutions of up to 1 in 32 folds. Finally, in a blind trial, the method successfully detected and identified a total of 9 blood stains on a red T-shirt. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Hance_WFSR flasher locations

    EPA Pesticide Factsheets

    This entry contains two files. The first file, Hance_WFSR Flasher locations.xlxs, contains information describing the location of installed landmark 'flashers' consisting of 2 square aluminum metal tags. Each tag was inscribed with a number to aid field personnel in the identification of landmark location within the West Fork Smith River watershed in southern coastal Oregon. These landmarks were used to calculate stream distances between points in the watershed, including distances between tagging locations and detection events for tagged fish. A second file, named Hance_fish_detection_data1.xlxs contains information on the detection of tagged fish within the West Fork Smith River stream network. The file includes both the location where the fish were tagged and where they were subsequently detected. Together with the information in the WFSR flasher location dataset, these data allow estimation of the minimum distances and directions moved by juvenile coho salmon during the fall transition period.A map locator is provided in Figure 1 in the accompanying manuscript: Dalton J. Hance, Lisa M. Ganio, Kelly M. Burnett & Joseph L. Ebersole (2016) Basin-Scale Variation in the Spatial Pattern of Fall Movement of Juvenile Coho Salmon in the West Fork Smith River, Oregon, Transactions of the American Fisheries Society, 145:5, 1018-1034, DOI: 10.1080/00028487.2016.1194892This dataset is associated with the following publication:Hance, D.J., L.M. Ganio, K.M. Burnett, an

  17. Distinct cortical networks for the detection and identification of human body.

    PubMed

    Hodzic, Amra; Kaas, Amanda; Muckli, Lars; Stirn, Aglaja; Singer, Wolf

    2009-05-01

    In the human brain information about bodies and faces is processed in specialized cortical regions named EBA and FBA (extrastriate and fusiform body area) and OFA and FFA (occipital and fusiform face area), respectively. Here we investigate with functional magnetic resonance imaging (fMRI) the cortical areas responsible for the identification of individual bodies and the distinction between 'self' and 'others'. To this end we presented subjects with images of unfamiliar and familiar bodies and their own body. We identified separate coactivation networks for body-detection (processing body related information), body-identification (processing of information relating to individual bodies) and self-identification (distinction of self from others). Body detection involves the EBA in both hemispheres, and in the right hemisphere: the FBA and areas in the IPL (inferior parietal lobe). Body identification involves areas in the inferior frontal gyrus (IFG) of both hemispheres and in the right hemisphere areas in the medial frontal gyrus (MFG), in the cingulate gyrus (CG), in the central (CS) and the post-central sulcus (PCS), in the inferior parietal lobe (IPL) and the FBA. When the recognition of one's own body is contrasted to the identification of familiar bodies, differential activation is observed in areas of the inferior parietal lobe (IPL) and inferior parietal sulcus (IPS) of the right hemisphere, and in the posterior orbital gyrus (pOrbG) and in the lateral occipital gyrus (LOG) of the left hemisphere. Thus, identification of individual bodies and self-other distinction involve in addition to the classical occipito-parietal network a parieto-frontal network. Interestingly, the EBA shows no differential activation for distinctions between familiar or unfamiliar bodies or recognition of one's own body.

  18. Utilization of advanced clutter suppression algorithms for improved standoff detection and identification of radionuclide threats

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Shokhirev, Kirill; Mulhall, Phil; Payne, David; Harris, Bernard

    2014-05-01

    Technology development efforts seek to increase the capability of detection systems in low Signal-to-Noise regimes encountered in both portal and urban detection applications. We have recently demonstrated significant performance enhancement in existing Advanced Spectroscopic Portals (ASP), Standoff Radiation Detection Systems (SORDS) and handheld isotope identifiers through the use of new advanced detection and identification algorithms. The Poisson Clutter Split (PCS) algorithm is a novel approach for radiological background estimation that improves the detection and discrimination capability of medium resolution detectors. The algorithm processes energy spectra and performs clutter suppression, yielding de-noised gamma-ray spectra that enable significant enhancements in detection and identification of low activity threats with spectral target recognition algorithms. The performance is achievable at the short integration times (0.5 - 1 second) necessary for operation in a high throughput and dynamic environment. PCS has been integrated with ASP, SORDS and RIID units and evaluated in field trials. We present a quantitative analysis of algorithm performance against data collected by a range of systems in several cluttered environments (urban and containerized) with embedded check sources. We show that the algorithm achieves a high probability of detection/identification with low false alarm rates under low SNR regimes. For example, utilizing only 4 out of 12 NaI detectors currently available within an ASP unit, PCS processing demonstrated Pd,ID > 90% at a CFAR (Constant False Alarm Rate) of 1 in 1000 occupancies against weak activity (7 - 8μCi) and shielded sources traveling through the portal at 30 mph. This vehicle speed is a factor of 6 higher than was previously possible and results in significant increase in system throughput and overall performance.

  19. Structural equation modeling for estimating the identification accuracy and detection time latency of English monosyllabic words

    NASA Astrophysics Data System (ADS)

    Takayanagi, Sumiko; Bernstein, Lynne E.; Auer, Edward T.

    2003-10-01

    Structural equation modeling (SEM) was used to examine the statistical structure among sets of experiential (word age of acquisition and subjective familiarity) and lexical similarity (lexical equivalence class size and neighborhood density) variables for word identification and reaction time latency tasks. Stimuli were 240 vocoded monosyllabic English words with reduced intelligibility and altered similarity relationships. Participants detected a target word following a prime and on every trial reported the prime. The identification accuracy was estimated by words and phonemes correct, and detection latency was estimated by trimmed and harmonic mean RTs. A parsimonious SEM was chosen in terms of the chi-square and model fit indices that determine whether the models adequately described the particular associations of variables/interfactor relationships. The variable/factor error variances were constrained to be uncorrelated with each other in order to evaluate effects independently. A bootstrapping technique indicated that the regression weights of the top-down and bottom-up factors were small, but they were significant in the model. The variance accounted for (VAF) by the model was 7.1% for identification accuracy, and 5.2% for RT latency. The model also indicated that RT latency was highly influenced by prime identification accuracy (15% VAF). [Work supported by NIH/NIDCD00695.

  20. Detection and identification of multiple genetically modified events using DNA insert fingerprinting.

    PubMed

    Raymond, Philippe; Gendron, Louis; Khalf, Moustafa; Paul, Sylvianne; Dibley, Kim L; Bhat, Somanath; Xie, Vicki R D; Partis, Lina; Moreau, Marie-Eve; Dollard, Cheryl; Coté, Marie-José; Laberge, Serge; Emslie, Kerry R

    2010-03-01

    Current screening and event-specific polymerase chain reaction (PCR) assays for the detection and identification of genetically modified organisms (GMOs) in samples of unknown composition or for the detection of non-regulated GMOs have limitations, and alternative approaches are required. A transgenic DNA fingerprinting methodology using restriction enzyme digestion, adaptor ligation, and nested PCR was developed where individual GMOs are distinguished by the characteristic fingerprint pattern of the fragments generated. The inter-laboratory reproducibility of the amplified fragment sizes using different capillary electrophoresis platforms was compared, and reproducible patterns were obtained with an average difference in fragment size of 2.4 bp. DNA insert fingerprints for 12 different maize events, including two maize hybrids and one soy event, were generated that reflected the composition of the transgenic DNA constructs. Once produced, the fingerprint profiles were added to a database which can be readily exchanged and shared between laboratories. This approach should facilitate the process of GMO identification and characterization.

  1. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  2. Gyro and accelerometer failure detection and identification in redundant sensor systems

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Deckert, J. C.

    1972-01-01

    Algorithms for failure detection and identification for redundant noncolinear arrays of single degree of freedom gyros and accelerometers are described. These algorithms are optimum in the sense that detection occurs as soon as it is no longer possible to account for the instrument outputs as the outputs of good instruments operating within their noise tolerances, and identification occurs as soon as it is true that only a particular instrument failure could account for the actual instrument outputs within the noise tolerance of good instruments. An estimation algorithm is described which minimizes the maximum possible estimation error magnitude for the given set of instrument outputs. Monte Carlo simulation results are presented for the application of the algorithms to an inertial reference unit consisting of six gyros and six accelerometers in two alternate configurations.

  3. Locating Basic Spanish Colour Categories in CIE L*u*v* Space: Identification, Lightness Segregation and Correspondence with English Equivalents

    ERIC Educational Resources Information Center

    Lillo, Julio; Moreira, Humberto; Vitini, Isaac; Martin, Jesus

    2007-01-01

    Five experiments were performed to identify the basic Spanish colour categories (BCCs) and to locate them in the CIE L*u*v* space. The existence of 11 BCCs was confirmed using an elicited list task and a free monolexemic naming task. From the results provided by a synonymicity estimation task, it was concluded that, in Spanish, 2 synonymous terms…

  4. Acoustic rhinometry: accuracy and ability to detect changes in passage area at different locations in the nasal cavity.

    PubMed

    Cakmak, Ozcan; Tarhan, Erkan; Coskun, Mehmet; Cankurtaran, Mehmet; Celik, Huseyin

    2005-12-01

    To evaluate the accuracy of acoustic rhinometry (AR) measurements, and to assess how well AR detects obstructions of various sizes at specific sites in the nasal cavity, we created a cast model from an adult cadaver nasal cavity. The actual cross-sectional areas of the cast model nasal passage were determined by computed tomography and compared with the corresponding areas measured by AR. To assess how nasal obstruction affects the AR results, we placed small wax spheres of different diameters at specific sites in the model (nasal valve, head of the inferior turbinate, head of the middle turbinate, middle of the middle turbinate, choana, and nasopharynx). The AR-derived cross-sectional areas in the first 6.5 cm of the cast model nasal cavity were very close to the corresponding areas calculated from computed tomographic sections perpendicular to the presumed acoustic axis. However, AR overestimated the passage areas at locations posterior to the 6.5-cm point. Acoustic rhinometry gave an accurate indication of the passage area of the nasal valve and its distance from the nostril. The nasal valve and the choana were indicated by significant dips on the AR area-distance curve, whereas the curve was smooth throughout the region that included the head of the inferior turbinate, the head of the middle turbinate, the middle of the middle turbinate, and the nasopharynx. In other words, AR did not discretely identify these latter sites. Acoustic rhinometry detected the different-sized inserts (obstructions) more accurately at the nasal valve than at sites posterior to this location. The results of the study show that AR is a valuable method for assessing the anterior nasal cavity. This technique is sensitive for detecting changes in passage area at the nasal valve region; however, the sensitivity is lower at sites posterior to this. The findings suggest that when there is substantial narrowing of the nasal valve, AR will not identify an obstruction at any location posterior

  5. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays

    DTIC Science & Technology

    2009-04-01

    Society for Microbiology. All Rights Reserved. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays...been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the...appearance of some human infections have increased the concern of a possible new influenza pandemic, which highlights the need for broad-spectrum

  6. Identification of Barriers to Munitions Detection Technology Transfer: Unexploded Ordnance Wide Area Assessment

    DTIC Science & Technology

    2008-09-01

    Noblis Technical Report Identification of Barriers to Munitions Detection Technology Transfer Unexploded Ordnance Wide Area Assessment...September 2008 Jon Horin Robert S. Wassmann Customer: SERDP/ESTCP Contract No.: FA8903-04-D-8715 Noblis Dept. No.: H300 Project No... Noblis ,3150 Fairview Park Drive South,Falls Church,VA,22042-4504 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  7. Night Vision Performance in Detection and Identification of Moving Targets after Glare

    DTIC Science & Technology

    1979-07-01

    provided by the Institute. We are grateful to Noah Phyllis Levin , M.A., who provided adminis- trative and secretarial services essential to the conduct of...NIGHT VISION PERFORMANCE IN DETECTION AND IDENTIFICATION OF MOVING TARGETS AFTER GLARE Final Report July 1979 Anthony J. Adams , Ph.D. Gunilla...surprise, since our previous work (Brown, 1972; Adams et a], 1976) revealed significant velocity effects for resolution of ramp targets without glare. Brown

  8. Attentive and pre-attentive processes in change detection and identification.

    PubMed

    Hughes, Howard C; Caplovitz, Gideon Paul; Loucks, Rebecca A; Fendrich, Robert

    2012-01-01

    In studies of change blindness, observers often have the phenomenological impression that the blindness is overcome all at once, so that change detection, localization and identification apparently occur together. Three experiments are described that explore dissociations between these processes using a discrete trial procedure in which 2 visual frames are presented sequentially with no intervening inter-frame-interval. The results reveal that change detection and localization are essentially perfect under these conditions regardless of the number of elements in the display, which is consistent with the idea that change detection and localization are mediated by pre-attentive parallel processes.In contrast, identification accuracy for an item before it changes is generally poor, and is heavily dependent on the number of items displayed. Identification accuracy after a change is substantially better, but depends on the new item's duration. This suggests that the change captures attention, which substantially enhances the likelihood of correctly identifying the new item. However, the results also reveal a limited capacity to identify unattended items. Specifically, we provide evidence that strongly suggests that, at least under these conditions, observers were able to identify two items without focused attention. Our results further suggest that spatial pre-cues that attract attention to an item before the change occurs simply ensure that the cued item is one of the two whose identity is encoded.

  9. Attentive and Pre-Attentive Processes in Change Detection and Identification

    PubMed Central

    Hughes, Howard C.; Caplovitz, Gideon Paul; Loucks, Rebecca A.; Fendrich, Robert

    2012-01-01

    In studies of change blindness, observers often have the phenomenological impression that the blindness is overcome all at once, so that change detection, localization and identification apparently occur together. Three experiments are described that explore dissociations between these processes using a discrete trial procedure in which 2 visual frames are presented sequentially with no intervening inter-frame-interval. The results reveal that change detection and localization are essentially perfect under these conditions regardless of the number of elements in the display, which is consistent with the idea that change detection and localization are mediated by pre-attentive parallel processes. In contrast, identification accuracy for an item before it changes is generally poor, and is heavily dependent on the number of items displayed. Identification accuracy after a change is substantially better, but depends on the new item's duration. This suggests that the change captures attention, which substantially enhances the likelihood of correctly identifying the new item. However, the results also reveal a limited capacity to identify unattended items. Specifically, we provide evidence that strongly suggests that, at least under these conditions, observers were able to identify two items without focused attention. Our results further suggest that spatial pre-cues that attract attention to an item before the change occurs simply ensure that the cued item is one of the two whose identity is encoded. PMID:22916170

  10. Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures

    NASA Astrophysics Data System (ADS)

    Bodeux, J. B.; Golinval, J. C.

    2001-06-01

    In this paper, the application of auto-regressive moving average vector models to system identification and damage detection is investigated. These parametric models have already been applied for the analysis of multiple input-output systems under ambient excitation. Their main advantage consists in the capability of extracting modal parameters from the recorded time signals, without the requirement of excitation measurement. The excitation is supposed to be a stationary Gaussian white noise. The method also allows the estimation of modal parameter uncertainties. On the basis of these uncertainties, a statistically based damage detection scheme is performed and it becomes possible to assess whether changes of modal parameters are caused by, e.g. some damage or simply by estimation inaccuracies. The paper reports first an example of identification and damage detection applied to a simulated system under random excitation. The `Steel-Quake' benchmark proposed in the framework of COST Action F3 `Structural Dynamics' is also analysed. This structure was defined by the Joint Research Centre in Ispra (Italy) to test steel building performance during earthquakes. The proposed method gives an excellent identification of frequencies and mode shapes, while damping ratios are estimated with less accuracy.

  11. Towards a more Complete Survey of Rockfall Activity: Seismic and LiDAR Detection, Location and Volume Estimate

    NASA Astrophysics Data System (ADS)

    Dietze, M., VI; Mohadjer, S.; Burtin, A.; Turowski, J. M.; Ehlers, T. A.; Hovius, N.

    2015-12-01

    Rockfall activity in steep alpine landscapes is often difficult to survey due to its infrequent nature. Classical approaches are limited by temporal and spatial resolution. In contrast, seismic monitoring provides access to catchment-wide analysis of activity patterns in rockfall-dominated environments. The deglaciated U-shaped Lauterbrunnen Valley in the Bernese Oberland, Switzerland, is a perfect example of such landscapes. It was instrumented with up to six broadband seismometers (capable of detecting volumes down to individual clasts) and repeatedly surveyed by terrestrial LiDAR (few weeks lapse time) to provide independent validation of the seismic data. During August-October 2014 and April-June 2015 more than 23 (LiDAR) to hundred (seismic) rockfall and icefall events were detected. Their volumes range from 0.1 to 5.80 m3 as detected by LiDAR. At the beginning of April 2015, increased activity was detected with more than 40 ice- or rockfalls in less than two hours. The evolution of these individual events (i.e., precursor activity, detachment, falling phase, impact, talus cone activity) is quantified in terms of location (within less than 200 m uncertainty) and duration. For events that consist of single detachments rather than a series of releases, volume scaling relationships are presented. Rockfall activity is linked to meteorological patterns at different temporal cycles. Seismic monitoring approaches are well-suited for studying not only the rockfall process but also for understanding the geomorphic framework and boundary conditions that control such processes in a comprehensive way. Taken together, the combined LiDAR and seismic monitoring approach provides high fidelity spatial and temporal resolution of individual events.

  12. Advanced techniques for detection and identification of microbial agents of gastroenteritis.

    PubMed

    Dunbar, Sherry A; Zhang, Hongwei; Tang, Yi-Wei

    2013-09-01

    Gastroenteritis persists as a worldwide problem, responsible for approximately 2 million deaths annually. Traditional diagnostic methods used in the clinical microbiology laboratory include a myriad of tests, such as culture, microscopy, and immunodiagnostics, which can be labor intensive and suffer from long turnaround times and, in some cases, poor sensitivity. [corrected]. This article reviews recent advances in genomic and proteomic technologies that have been applied to the detection and identification of gastrointestinal pathogens. These methods simplify and speed up the detection of pathogenic microorganisms, and their implementation in the clinical microbiology laboratory has potential to revolutionize the diagnosis of gastroenteritis.

  13. Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

    NASA Technical Reports Server (NTRS)

    Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.; Kalogera, V.; Mandel, I.; O'Shaughnessy, R.; Pitkin, M.; Price, L.; Raymond, V.; Roever, C.; Singer, L.; vanderSluys, M.; Smith, R. J. E.; Vecchio, A.; Veitch, J.; Vitale, S.

    2014-01-01

    The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.

  14. Spatial frequency characteristics at image decision-point locations for observers with different radiological backgrounds in lung nodule detection

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Manning, David J.; Dix, Alan; Donovan, Tim

    2009-02-01

    Aim: The goal of the study is to determine the spatial frequency characteristics at locations in the image of overt and covert observers' decisions and find out if there are any similarities in different observers' groups: the same radiological experience group or the same accuracy scored level. Background: The radiological task is described as a visual searching decision making procedure involving visual perception and cognitive processing. Humans perceive the world through a number of spatial frequency channels, each sensitive to visual information carried by different spatial frequency ranges and orientations. Recent studies have shown that particular physical properties of local and global image-based elements are correlated with the performance and the level of experience of human observers in breast cancer and lung nodule detections. Neurological findings in visual perception were an inspiration for wavelet applications in vision research because the methodology tries to mimic the brain processing algorithms. Methods: The wavelet approach to the set of postero-anterior chest radiographs analysis has been used to characterize perceptual preferences observers with different levels of experience in the radiological task. Psychophysical methodology has been applied to track eye movements over the image, where particular ROIs related to the observers' fixation clusters has been analysed in the spaces frame by Daubechies functions. Results: Significance differences have been found between the spatial frequency characteristics at the location of different decisions.

  15. Detection and location of SRF bulk niobium cavities quench using second sound sensitive sensors in superfluid helium

    NASA Astrophysics Data System (ADS)

    Fouaidy, M.; Longuevergne, D.; Dubois, F.; Pochon, O.; Yaniche, J.-F.

    2017-02-01

    We developed sensors and instrumentation dedicated to detection and location of thermal quenches in SRF cavities via 2nd sound events in HeII. We studied 2 types of Quench Detectors (QD): 1) Oscillating Super leak Transducer (OST), 2) LOw REsponse Time resIstive Thermometers (LORETIT). The QD were characterized in He II bath (Temperature T0 = 1.6 K- Tλ. The SRF cavity quench is experimentally simulated using resistors of different sizes and geometries. High pulsed heat flux qP (qP < 2MW/m2) were applied to these heaters and the dynamic response of QD were investigated as function of several parameters (T0, qP, distance to heater). The OST were used for locating quench on different SRF cavities resonating at 2 frequencies f0 (f0 =88 MHz or f0 =352 MHz). The quench dynamics and critical size of normal resistive area leading to quench were investigated. Furthermore, a Second Sound Resonator (SSR) equipped with a pair of OST at each extremity (2nd sound generator (G) and detector (D)), a low thermal capacity heater (G) and a LORETIT (D), was successfully operated in the resonating and in the pulsed mode. The measured 1st sound and 2nd sound spectra were compared theoretical results and a good agreement is obtained.

  16. Rapid detection and identification of Clostridium chauvoei by PCR based on flagellin gene sequence.

    PubMed

    Kojima, A; Uchida, I; Sekizaki, T; Sasaki, Y; Ogikubo, Y; Tamura, Y

    2001-02-26

    We developed a one-step polymerase chain reaction (PCR) system that specifically detects Clostridium chauvoei. Oligonucleotide primers were designed to amplify a 516-bp fragment of the structural flagellin gene. The specificity of the PCR was investigated by analyzing 59 strains of clostridia, and seven strain of other genera. A 516-bp fragment could be amplified from all the C. chauvoei strains tested, and no amplification was observed by using DNAs from the other strains tested, including Clostridium septicum. Similarly, this PCR-based method specifically detected C. chauvoei DNA sequences in samples of muscle and exudate of obtained from mice within 12h of inoculation. In tests using samples of muscle or liver, the limit of detection was about 200 organisms per reaction. These results suggest that the one-step PCR system may be useful for direct detection and identification of C. chauvoei in clinical specimens.

  17. Detection and identification of infectious bronchitis virus by RT-PCR in Iran.

    PubMed

    Homayounimehr, Alireza; Pakbin, Ahmad; Momayyez, Reza; Fatemi, Seyyedeh Mahsa Rastegar

    2016-06-01

    Infectious bronchitis virus (IBV) causes severe diseases in poultry with significant economic consequences to the poultry industry in Iran. The aim of this study was the detection and identification of IBV by reverse transcription(RT)-PCR in Iran. Ten IB virus strains were detected by testing trachea, cecal tonsil, and kidney tissues collected from broiler and layer farms in Iran. In order to detect infectious bronchitis virus, an optimized RT-PCR was used. Primers targeting the conserved region of known IBV serotypes were used in the RT-PCR assay. Primers selectively detecting Massachusetts and 793/B type IB viruses were designed to amplify the S1 gene of the virus and used in the nested PCR test. Our findings indicate the circulation of at least three genotypes of IB viruses (Massachusetts, 793/B, and variant 2) among poultry flocks.

  18. Inverse identification of the release location, temporal rates, and sensor alarming time of an airborne pollutant source.

    PubMed

    Zhang, T; Zhou, H; Wang, S

    2015-08-01

    With an accidental release of an airborne pollutant, it is always critical to know where, when, and how the pollutant has been released. Then, emergency measures can be scientifically advised to prevent any possible harm. This investigation proposes an inverse model to identify the release location, the temporal rate profile, and the sensor alarming time from the start of a pollutant release. The first step is to implement the inverse operation to the cause-effect matrix to obtain the release rate profiles for discrete candidate scenarios with concentration information provided by one sensor. The second step is to interpret the occurrence probability of each solution in the first step with the Bayesian model by matching the concentration at the other sensor. The proposed model was applied to identify a single pollutant source in a two-dimensional enclosure using measurement data and in a three-dimensional aircraft cabin with simulated data. The results show that the model is able to correctly determine the pollutant source location, the temporal rate profile, and the sensor alarming time. The known conditions for input into the inverse model include a steady flow field and the valid temporal concentrations at two different locations. The proposed inverse model can tell where, when, and how a gaseous pollutant has been accidently released based on the monitoring concentrations measured by two sensors. This methodology can be useful for providing emergency protection to indoor occupants. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Molecular approaches for blood meal analysis and species identification of mosquitoes (Insecta: Diptera: Culicidae) in rural locations in southern England, United Kingdom.

    PubMed

    Hernández-Triana, Luis Miguel; Brugman, Victor Albert; Prosser, Sean Williams John; Weland, Chris; Nikolova, Nadya; Thorne, Leigh; Marco, Mar Fernández DE; Fooks, Anthony Richard; Johnson, Nicholas

    2017-04-03

    Thirty-four species of Culicidae are present in the UK, of which 15 have been implicated as potential vectors of arthropod-borne viruses such as West Nile virus. Identification of mosquito feeding preferences is paramount to the understanding of vector-host-pathogen interactions which, in turn, would assist in the control of disease outbreaks. Results are presented on the application of DNA barcoding for vertebrate species identification in blood-fed female mosquitoes in rural locations. Blood-fed females (n = 134) were collected in southern England from rural sites and identified based on morphological criteria. Blood meals from 59 specimens (44%) were identified as feeding on eight hosts: European rabbit, cow, human, barn swallow, dog, great tit, magpie and blackbird. Analysis of the cytochrome c oxidase subunit I mtDNA barcoding region and the internal transcribed spacer 2 rDNA region of the specimens morphologically identified as Anopheles maculipennis s.l. revealed the presence of An. atroparvus and An. messeae. A similar analysis of specimens morphologically identified as Culex pipiens/Cx. torrentium showed all specimens to be Cx. pipiens (typical form). This study demonstrates the importance of using molecular techniques to support species-level identification in blood-fed mosquitoes to maximize the information obtained in studies investigating host feeding patterns.

  20. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  1. A comprehensive comparison of assays for detection and identification of Ralstonia solanacearum race 3 biovar 2.

    PubMed

    Li, X; Nie, J; Hammill, D L; Smith, D; Xu, H; De Boer, S H

    2014-10-01

    To determine the reliable combination of protocols for specific detection and identification of R. solanacearum race 3 biovar 2 (R3bv2) through a comprehensive comparison among currently available techniques. Sensitivity and specificity of the conventional isolation, bioassay, serological assays, conventional and real-time PCR and multiplex PCR were assessed for the detection of 25 strains of R. solanacearum biovars 1, 2 and 3 (Phylotypes I, II, III and IV) in spiked potato saps. Results indicated that all assays evaluated varied in complexity and sensitivity and should be applied strategically in indexing schemes to maximize efficiency of testing without compromising accuracy of the results. The TaqMan PCR assay, with an internal reaction control and confirmation by melting curve and electrophoretic analysis, achieved best sensitivity at 10(2) -10(3 ) CFU ml(-1) for all eighteen strains of R. solanacearum R3bv2. Selective enrichment on mSMSA medium plates enhanced the detection sensitivity up to 10-100 CFU ml(-1) for the conventional PCR-based assays. This is the first time nine different assays were compared side by side for their sensitivity and specificity in detection and identification of R. solanacearum R3bv2. The data accumulated here will provide basis for regulatory applications for low level detection and rapid identification of latently infections caused by R. solanacearum R3bv2. © 2014 Her Majesty the Queen in Right of Canada © 2014 Society for Applied Microbiology Reproduced with the permission of the Minister of Canadian Food inspection Agency.

  2. Nondestructive rule-based defect detection and identification system in CT images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2001-01-01

    This paper is concerned with the detection of internal defects in hardwood logs. Because the commercial value of hardwood lumber is directly related to the quantity, type, and location of defects in the wood, sawing strategies are typically chosen in an attempt to minimize the defects in the resulting boards. Traditionally, the sawyer makes sawing decisions by visually...

  3. Identification of substorm onset location and pre-onset sequence using Reimei, THEMIS GBO, PFISR and Geotail (Invited)

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nishimura, Y.; Lyons, L. R.; Hirahara, M.; Sakanoi, T.; Asamura, K.; Nicolls, M. J.; Miyashita, Y.; Mende, S. B.; Heinselman, C. J.

    2010-12-01

    One of the most important questions puzzling the substorm community is the location of the breakup arc relative to general auroral morphology, ionospheric convection, and particle precipitation, which are ionospheric signatures of dynamic processes in the magnetosphere. We present a state-of-the-art ground and space-based imaging study of a substorm that occurred on 12 October 2007. The auroral breakup was observed simultaneously by the Reimei satellite, THEMIS all-sky imager and PFISR radar. The magnetic field footprint of the Geotail spacecraft was also near the ionospheric location of the substorm onset. We report unique spaceborne high-spatial and temporal resolution images of a portion of a breakup arc and of a wave-like auroral enhancement captured by cameras onboard Reimei. This substorm was isolated and occurred in a thin, only ~1.5° wide, auroral oval. Observations from PFISR and Geotail suggest a sudden plasma sheet thinning initiated ~10 min prior to the onset. Wave-like auroral enhancements were observed twice along the most equatorward preexisting auroral arc about 3 min and 1 min before the auroral expansion. This most equatorward wavy arc did not initiate the auroral spatial expansion, but remained almost stable until being engulfed after onset by auroral equatorward expansion from slightly higher latitudes. The wave-like auroral enhancement was associated with three fine inverted-V structures and fully embedded within energetic ion precipitation and westward flows. Following this enhancement, an arc formed at higher latitude just adjacent to the PSBL, and was likely a poleward boundary intensification (PBI). This arc then extended southwestward and initiated the spatial expansion. The breakup arc, i.e., the arc initiated the spatial expansion, was located poleward of and separated from the wave-like auroral enhancement. Assuming longitudinal homogeneity of proton precipitation over one degree in geographic longitude, this breakup arc was located

  4. A review of in-flight detection and identification of aircraft icing and reconfigurable control

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2013-07-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this review paper, aircraft icing identification based on neural network (NN), batch least-squares algorithm, Kalman filtering (KF), combined NN/KF, and H∞ parameter identification techniques are investigated, and compared with each other. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  5. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants

    USDA-ARS?s Scientific Manuscript database

    Rapid and accurate detection, identification and genetic characterization are essential for effective surveillance and epidemiological tracking of influenza viruses. This report describes applications of a resequencing pathogen microarray (RPM) assay that is capable of simultaneous sequencing of su...

  6. A Pulsed Thermographic Imaging System for Detection and Identification of Cotton Foreign Matter.

    PubMed

    Kuzy, Jesse; Li, Changying

    2017-03-04

    Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton quality, which in turn impacts the marketability of the cotton. Current grading systems return estimates of the amount of foreign matter present, but provide no information about the identity of the contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify cotton foreign matter. The design and implementation of a pulsed thermographic analysis system is described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-crafted waveform features and frequency-domain features were extracted and analyzed for statistical significance. Classification was performed on these features using linear discriminant analysis and support vector machines. Using waveform features and support vector machine classifiers, detection of cotton foreign matter was performed with 99.17% accuracy. Using frequency-domain features and linear discriminant analysis, identification was performed with 90.00% accuracy. These results demonstrate that pulsed thermographic imaging analysis produces data which is of significant utility for the detection and identification of cotton foreign matter.

  7. Consistent detection and identification of individuals in a large camera network

    NASA Astrophysics Data System (ADS)

    Colombo, Alberto; Leung, Valerie; Orwell, James; Velastin, Sergio A.

    2007-10-01

    In the wake of an increasing number of terrorist attacks, counter-terrorism measures are now a main focus of many research programmes. An important issue for the police is the ability to track individuals and groups reliably through underground stations, and in the case of post-event analysis, to be able to ascertain whether specific individuals have been at the station previously. While there exist many motion detection and tracking algorithms, the reliable deployment of them in a large network is still ongoing research. Specifically, to track individuals through multiple views, on multiple levels and between levels, consistent detection and labelling of individuals is crucial. In view of these issues, we have developed a change detection algorithm to work reliably in the presence of periodic movements, e.g. escalators and scrolling advertisements, as well as a content-based retrieval technique for identification. The change detection technique automatically extracts periodically varying elements in the scene using Fourier analysis, and constructs a Markov model for the process. Training is performed online, and no manual intervention is required, making this system suitable for deployment in large networks. Experiments on real data shows significant improvement over existing techniques. The content-based retrieval technique uses MPEG-7 descriptors to identify individuals. Given the environment under which the system operates, i.e. at relatively low resolution, this approach is suitable for short timescales. For longer timescales, other forms of identification such as gait, or if the resolution allows, face recognition, will be required.

  8. A Pulsed Thermographic Imaging System for Detection and Identification of Cotton Foreign Matter

    PubMed Central

    Kuzy, Jesse; Li, Changying

    2017-01-01

    Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton quality, which in turn impacts the marketability of the cotton. Current grading systems return estimates of the amount of foreign matter present, but provide no information about the identity of the contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify cotton foreign matter. The design and implementation of a pulsed thermographic analysis system is described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-crafted waveform features and frequency-domain features were extracted and analyzed for statistical significance. Classification was performed on these features using linear discriminant analysis and support vector machines. Using waveform features and support vector machine classifiers, detection of cotton foreign matter was performed with 99.17% accuracy. Using frequency-domain features and linear discriminant analysis, identification was performed with 90.00% accuracy. These results demonstrate that pulsed thermographic imaging analysis produces data which is of significant utility for the detection and identification of cotton foreign matter. PMID:28273848

  9. Generic RT-PCR tests for detection and identification of tospoviruses.

    PubMed

    Hassani-Mehraban, A; Westenberg, M; Verhoeven, J T J; van de Vossenberg, B T L H; Kormelink, R; Roenhorst, J W

    2016-07-01

    A set of tests for generic detection and identification of tospoviruses has been developed. Based on a multiple sequence alignment of the nucleocapsid gene and its 5' upstream untranslated region sequence from 28 different species, primers were designed for RT-PCR detection of tospoviruses from all recognized clades, i.e. the American, Asian and Eurasian clades, and from the small group of distinct and floating species. Pilot experiments on isolates from twenty different species showed that the designed primer sets successfully detected all species by RT-PCR, as confirmed by nucleotide sequence analysis of the amplicons. In a final optimized design, the primers were applied in a setting of five RT-PCR tests. Seven different tospoviruses were successfully identified from diagnostic samples and in addition a non-described tospovirus species from alstroemeria plants. The results demonstrate that the newly developed generic RT-PCR tests provide a relevant tool for broad detection and identification of tospoviruses in plant quarantine and diagnostic laboratories.

  10. Immunity-based detection, identification, and evaluation of aircraft sub-system failures

    NASA Astrophysics Data System (ADS)

    Moncayo, Hever Y.

    This thesis describes the design, development, and flight-simulation testing of an integrated Artificial Immune System (AIS) for detection, identification, and evaluation of a wide variety of sensor, actuator, propulsion, and structural failures/damages including the prediction of the achievable states and other limitations on performance and handling qualities. The AIS scheme achieves high detection rate and low number of false alarms for all the failure categories considered. Data collected using a motion-based flight simulator are used to define the self for an extended sub-region of the flight envelope. The NASA IFCS F-15 research aircraft model is used and represents a supersonic fighter which include model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The flight simulation tests are designed to analyze and demonstrate the performance of the immunity-based aircraft failure detection, identification and evaluation (FDIE) scheme. A general robustness analysis is also presented by determining the achievable limits for a desired performance in the presence of atmospheric perturbations. For the purpose of this work, the integrated AIS scheme is implemented based on three main components. The first component performs the detection when one of the considered failures is present in the system. The second component consists in the identification of the failure category and the classification according to the failed element. During the third phase a general evaluation of the failure is performed with the estimation of the magnitude/severity of the failure and the prediction of its effect on reducing the flight envelope of the aircraft system. Solutions and alternatives to specific design issues of the AIS scheme, such as data clustering and empty space optimization, data fusion and duplication removal, definition of features, dimensionality reduction, and selection of cluster/detector shape are also

  11. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence

    PubMed Central

    Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas

    2015-01-01

    Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569

  12. Word identification and eye fixation locations in visual and visual-plus-auditory presentations of spoken sentences.

    PubMed

    Lansing, Charissa R; McConkie, George W

    2003-05-01

    In this study, we investigated where people look on talkers' faces as they try to understand what is being said. Sixteen young adults with normal hearing and demonstrated average speechreading proficiency were evaluated under two modality presentation conditions: vision only versus vision plus low-intensity sound. They were scored for the number of words correctly identified from 80 unconnected sentences spoken by two talkers. The results showed two competing tendencies: an eye primacy effect that draws the gaze to the talkers eyes during silence and an information source attraction effect that draws the gaze to the talker's mouth during speech periods. Dynamic shifts occur between eyes and mouth prior to speech onset and following the offset of speech, and saccades tend to be suppressed during speech periods. The degree to which the gaze is drawn to the mouth during speech and the degree to which saccadic activity is suppressed depend on the difficulty of the speech identification task. Under the most difficult modality presentation condition, vison only, accuracy was related to average sentence difficulty and individual proficiency in visual speech perception, but not to the proportion of gaze time directed toward the talkers mouth or toward other parts of the talker's face.

  13. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  14. Location of motor fibers within branches of the recurrent laryngeal nerve with extralaryngeal terminal bifurcation; Functional identification by intraoperative neuromonitoring.

    PubMed

    Gurleyik, Emin

    2015-11-01

    Extralaryngeal terminal bifurcation (ETB) of the recurrent laryngeal nerve (RLN) is an anatomic variation that threatens the safety of thyroid operation. Therefore, it is important to identify motor function in nerve branches to preserve appropriate motor activity. Intraoperative neuromonitoring (IONM) is an accepted procedure to identify motor function of the RLN. We established the operative anatomy of RLNs with ETB in 47 patients. The main trunk, bifurcation point, and the branches were identified and exposed completely during thyroid operation. The location of motor fibers within nerve branches was investigated by identifying motor function via IONM. Wave amplitudes were recorded after electrophysiologic stimulation. A total of 61 RLNs had ETBs with anterior and posterior branches. Bifurcation occurred early along the pre-arterial (proximal) segment in 13% of bifid RLNs. IONM showed motor function in all anterior branches. IONM identified motor activity in 4 (18%) posterior branches of 22 right, 3 (8%) posterior branches of 39 left, and 7 (12%) posterior branches of all 61 RLNs with ETB. The rate of recorded wave amplitudes of motor function in seven posterior branches was between 14 and 78% of those of corresponding anterior branches. In the RLN, the anterior branch always and the posterior branch uncommonly contain motor fibers. Wave amplitude analysis showed that motor function in the posterior branch is weaker than that in the anterior branch. On the basis of the location of motor fibers in both branches, total exposure and preservation of anatomy and function of all branches of the RLN is mandatory for complication-free thyroid surgery. Electrophysiologic testing may be as an important adjunct to visualization of the nerve with anatomic variation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Detection and location of shallow very low frequency earthquakes along the Nankai trough and the Ryukyu trench

    NASA Astrophysics Data System (ADS)

    Asano, Y.; Matsuzawa, T.; Obara, K.

    2013-12-01

    We have investigated spatiotemporal distribution of shallow very low frequency earthquakes (VLFEs) along the Nankai trough and the Ryukyu trench. Three component seismograms recorded at broadband stations of the NIED F-net were analyzed by using waveform-correlation and back-projection techniques after processing a band-pass filter (0.02 to 0.05 Hz). Here we used known VLFEs and regular interplate earthquakes near the trench axis as template events. Time series of cross-correlation function (CC) at each station was calculated from continuous waveform data and triggered seismograms of template events with a length of 180 s. Assuming surface wave propagation with a velocity of 3.8 km/s, CCs are back-propagated onto possible origin times and horizontal locations. We obtained VLFE epicenters by performing a grid search in time and space domains with spacing of 1 s and 0.025 degrees, respectively, to maximize the averaged CCs from all stations. At first, we choose grid points with averaged CCs larger than 0.5. If these grid points have similar origin times within 180 s, we assume that these grid points reflect a same event and choose the VLFE candidate having the largest averaged CC. If some grid points are detected in the same time window from different template events, we choose the VLFE candidate with the largest averaged CC from grid points located within 100 km from the template event. VLFEs were finally identified by removing regular earthquakes listed in the JMA catalogue from all candidates. As a result of the analysis for data from October, 2009 to February, 2010, two episodes of VLFE activity were detected. One episode was located east of the M6.8 interplate earthquake which occurred on October 30, 2009 along the Ryukyu trench. The VLFE seismicity was quite active just after the M6.8 earthquake and had been smoothly decreasing with the elapsed time. Such time dependent seismicity may be related to the post-seismic slip following the M6.8 earthquake. Another

  16. Searching the source location of methane detected at Gale crater using the Mars Regional Atmospheric Modeling System (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge; Rafkin, Scot C. R.

    2017-04-01

    The in situ detection of methane by SAM instrument has garnered significant attention. There are many major unresolved questions regarding this detection: 1) Where is the release location? 2) How spatially extensive is the release? 3) For how long is CH4 released? In an effort to better address the potential mixing and remaining questions, atmospheric circulation studies of Gale Crater were performed with MRAMS mesoscale model, ideally suited for this investigation. The model was focused on rover locations using nested grids with a spacing of 330 meters on the innermost grid that is centered over the detection site. In order to characterize seasonal mixing changes throughout the Martian year, simulations were conducted at Ls0, 90, 180 and 270. The rise in CH4 concentration was reported to start around Ls336, peaked shortly after Ls82, and then dropped to background prior to Ls103. The aim of this work is to establish the amount of mixing during all seasons and to test whether CH4 releases inside or outside of Gale crater are consistent with SAM observations. The experiments were designed injecting four tracers into the model to simulate the transport of methane and to understand the mixing of air inside and outside the crater. Two scenarios are considered in the context of the circulations predicted by MRAMS. The first scenario is a punctual release of CH4 (tracer 1#) within the crater whereas in the second scenario that punctual release is outside the crater ( 100 km NW rover position). In both scenarios tracer 2# is placed from 200 to 500 meters above ground level (AGL) inside Gale crater, tracer 3# from 500 to 2,000 meters AGL inside Gale crater, and tracer 4# elsewhere (outside and above Gale crater). The punctual release is assumed to take place near the season when the rise of concentration was first noted (Ls336). Conclusions As expected, Ls270 was shown to be a fas